WorldWideScience

Sample records for adaptive spatial intercell

  1. A Statistical Model for Uplink Intercell Interference with Power Adaptation and Greedy Scheduling

    KAUST Repository

    Tabassum, Hina

    2012-10-03

    This paper deals with the statistical modeling of uplink inter-cell interference (ICI) considering greedy scheduling with power adaptation based on channel conditions. The derived model is implicitly generalized for any kind of shadowing and fading environments. More precisely, we develop a generic model for the distribution of ICI based on the locations of the allocated users and their transmit powers. The derived model is utilized to evaluate important network performance metrics such as ergodic capacity, average fairness and average power preservation numerically. Monte-Carlo simulation details are included to support the analysis and show the accuracy of the derived expressions. In parallel to the literature, we show that greedy scheduling with power adaptation reduces the ICI, average power consumption of users, and enhances the average fairness among users, compared to the case without power adaptation. © 2012 IEEE.

  2. A Statistical Model for Uplink Intercell Interference with Power Adaptation and Greedy Scheduling

    KAUST Repository

    Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim

    2012-01-01

    This paper deals with the statistical modeling of uplink inter-cell interference (ICI) considering greedy scheduling with power adaptation based on channel conditions. The derived model is implicitly generalized for any kind of shadowing and fading environments. More precisely, we develop a generic model for the distribution of ICI based on the locations of the allocated users and their transmit powers. The derived model is utilized to evaluate important network performance metrics such as ergodic capacity, average fairness and average power preservation numerically. Monte-Carlo simulation details are included to support the analysis and show the accuracy of the derived expressions. In parallel to the literature, we show that greedy scheduling with power adaptation reduces the ICI, average power consumption of users, and enhances the average fairness among users, compared to the case without power adaptation. © 2012 IEEE.

  3. The Inter-Cell Interference Dilemma in Dense Outdoor Small Cell Deployment

    DEFF Research Database (Denmark)

    Polignano, Michele; Mogensen, Preben; Fotiadis, Panagiotis

    2014-01-01

    The deployment of low-power small cells is envisaged as the main driver to accommodate the mobile broadband traffic growth in cellular networks. Depending on the spatial distribution of the user traffic, a densification of the small cells may be required in confined areas. However, deploying more...... and more cells in given areas may imply an increase of the inter-cell interference among the small cells. This study aims at investigating if the inter-cell interference among outdoor small cells may represent an impairment to the user experience, and evaluates if and in what conditions the interference...... coordination is worthwhile compared to the universal frequency reuse. Results show that the inter-cell interference depends on the small cell deployment in the urban environment (e.g. streets and squares) and on the network load condition. In case of deployment along urban streets, the inter-cell interference...

  4. Interference Aware Inter-Cell Rank Coordination for 5G Systems

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Pedersen, Klaus I.; Mogensen, Preben Elgaard

    2017-01-01

    at balancing the trade-off between increasing the spatial multiplexing gain through independent streams, or improving the interference resilience property. An interference aware inter-cell rank coordination framework for the future fifth generation wireless system is proposed in this article. The proposal...... resilience trade-off. Centralized and distributed implementations of the proposed inter-cell rank coordination framework are presented, followed by exhaustive Monte Carlo simulation results demonstrating its performance. The obtained results indicate that the performance of the proposed method is up to 56...

  5. Managing inter-cell interference with advanced receivers and rank adaptation in 5G small cells

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão; Berardinelli, Gilberto; Catania, Davide

    2015-01-01

    -cell interference management. In this paper, we evaluate whether it is possible to rely on such advanced receivers as the main tool to deal with the inter-cell interference problem. We present a system-level performance evaluation in three different dense indoor small cell scenarios using a receiver model...... that includes both interference rejection combining (IRC) and successive interference cancellation (SIC) principles, as well as different rank adaptation strategies. Our results confirm that interference suppression receivers with a supportive system design can indeed represent a valid alternative to frequency...

  6. Intercell scheduling: A negotiation approach using multi-agent coalitions

    Science.gov (United States)

    Tian, Yunna; Li, Dongni; Zheng, Dan; Jia, Yunde

    2016-10-01

    Intercell scheduling problems arise as a result of intercell transfers in cellular manufacturing systems. Flexible intercell routes are considered in this article, and a coalition-based scheduling (CBS) approach using distributed multi-agent negotiation is developed. Taking advantage of the extended vision of the coalition agents, the global optimization is improved and the communication cost is reduced. The objective of the addressed problem is to minimize mean tardiness. Computational results show that, compared with the widely used combinatorial rules, CBS provides better performance not only in minimizing the objective, i.e. mean tardiness, but also in minimizing auxiliary measures such as maximum completion time, mean flow time and the ratio of tardy parts. Moreover, CBS is better than the existing intercell scheduling approach for the same problem with respect to the solution quality and computational costs.

  7. On Intercell Interference and Its Cancellation in Cellular Multicarrier CDMA Systems

    Directory of Open Access Journals (Sweden)

    Plass Simon

    2008-01-01

    Full Text Available Abstract The handling of intercell interference at the cell border area is a strong demand in future communication systems to guarantee efficient use of the available bandwidth. Therefore, this paper focuses on the application of iterative intercell interference cancellation schemes in cellular multicarrier code division multiple access (MC-CDMA systems at the receiver side for the downlink. First, the influence of the interfering base stations to the total intercell interference is investigated. Then, different concepts for intercell interference cancellation are described and investigated for scenarios with several interfering cells. The first approach is based on the use of the hard decision of the demodulator to reconstruct the received signals. This does not require the higher amount of complexity compared to the second approach which is based on the use of the more reliable soft values from the decoding process. Furthermore, the extrinsic information as a reliability measure of this soft iterative cancellation process is investigated in more detail based on the geographical position of the mobile terminal. Both approaches show significant performance gains in the severe cell border area. With the soft intercell interference cancellation scheme, it is possible to reach the single-user bound. Therefore, the intercell interference can be almost eliminated.

  8. Enhanced Inter-Cell Interference Coordination in Co-Channel Multi-Layer LTE-Advanced Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Wang, Yuanye; Strzyz, Stanislav

    2013-01-01

    Different technical solutions and innovations are enabling the move from macro-only scenarios towards heterogeneous networks with a mixture of different base station types. In this article we focus on multi-layer LTE-Advanced networks, and especially address aspects related to interference...... management. The network controlled time-domain enhanced inter-cell interference coordination (eICIC) concept is outlined by explaining the benefits and characteristics of this solution. The benefits of using advanced terminal device receiver architectures with interference suppression capabilities...... are motivated. Extensive system level performance results are presented with bursty traffic to demonstrate the eICIC concepts ability to dynamically adapt according to the traffic conditions....

  9. A Framework for Uplink Intercell Interference Modeling with Channel-Based Scheduling

    KAUST Repository

    Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim

    2012-01-01

    This paper presents a novel framework for modeling the uplink intercell interference(ICI) in a multiuser cellular network. The proposed framework assists in quantifying the impact of various fading channel models and state-of-the-art scheduling

  10. Diversity-Multiplexing-Nulling Trade-Off Analysis of Multiuser MIMO System for Intercell Interference Coordination

    Directory of Open Access Journals (Sweden)

    Jinwoo Kim

    2017-01-01

    Full Text Available A fundamental performance trade-off of multicell multiuser multiple-input multiple-output (MU-MIMO systems is explored for achieving intercell and intracell interference-free conditions. In particular, we analyze the three-dimensional diversity-multiplexing-nulling trade-off (DMNT among the diversity order (i.e., the slope of the error performance curve, multiplexing order (i.e., the number of users that are simultaneously served by MU-MIMO, and nulling order (i.e., the number of users with zero interference in a victim cell. This trade-off quantifies the performance of MU-MIMO in terms of its diversity and multiplexing order, while nulling the intercell interference toward the victim cell in the neighbor. First, we design a precoding matrix to mitigate both intercell and intracell interference for a linear precoding-based MU-MIMO system. Then, the trade-off relationship is obtained by analyzing the distribution of the signal-to-noise ratio (SNR at the user terminals. Furthermore, we demonstrate how DMNT can be applied to estimate the long-term throughput for each mobile station, which allows for determining the optimal number of multiplexing order and throughput loss due to the interference nulling.

  11. A Centralized Inter-Cell Rank Coordination Mechanism for 5G Systems

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Pedersen, Klaus I.; Mogensen, Preben Elgaard

    2017-01-01

    Multiple transmit and receive antennas can be used to increase the number of independent streams between a transmitter-receiver pair, or to improve the interference resilience property with the help of linear minimum mean squared error (MMSE) receivers. An interference aware inter-cell rank coord...

  12. Dynamic Enhanced Inter-Cell Interference Coordination for Realistic Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Alvarez, Beatriz Soret; Barcos, Sonia

    2016-01-01

    Enhanced Inter-Cell Interference Coordination (eICIC) is a key ingredient to boost the performance of co-channel Heterogeneous Networks (HetNets). eICIC encompasses two main techniques: Almost Blank Subframes (ABS), during which the macro cell remains silent to reduce the interference, and biased...... and an opportunistic approach exploiting the varying cell conditions. Moreover, an autonomous fast distributed muting algorithm is presented, which is simple, robust, and well suited for irregular network deployments. Performance results for realistic network deployments show that the traditional semi-static e...

  13. Centralized and Distributed Solutions for Fast Muting Adaptation in LTE-Advanced HetNets

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.

    2015-01-01

    Enhanced Intercell Interference Coordination (eICIC) is known to provide promising performance benefits for LTE-Advanced Heterogeneous Networks. The use of eICIC facilitates more flexible inter-layer load balancing by means of small cell Range Extension (RE) and Almost Blank Subframes (ABS). Even...... though the eICIC configuration (RE and ABS) ideally should be instantaneously adapted to follow the fluctuations of the traffic and the channel conditions over time, previous studies have focused on slow intercell coordination. In this paper, we investigate fast dynamic eICIC solutions for centralized....... Two different fast muting adaptation algorithms are derived, and it is shown how those can be appplied to both the centralized and the distributed architecture. Performance results with bursty traffic show that the fast dynamic adaptation provides significant gains, both in 5%-ile and 50%-ile user...

  14. A Distributed Taxation Based Rank Adaptation Scheme for 5G Small Cells

    DEFF Research Database (Denmark)

    Catania, Davide; Cattoni, Andrea Fabio; Mahmood, Nurul Huda

    2015-01-01

    The further densification of small cells impose high and undesirable levels of inter-cell interference. Multiple Input Multiple Output (MIMO) systems along with advanced receiver techniques provide us with extra degrees of freedom to combat such a problem. With such tools, rank adaptation...

  15. Interocular transfer of spatial adaptation is weak at low spatial frequencies.

    Science.gov (United States)

    Baker, Daniel H; Meese, Tim S

    2012-06-15

    Adapting one eye to a high contrast grating reduces sensitivity to similar target gratings shown to the same eye, and also to those shown to the opposite eye. According to the textbook account, interocular transfer (IOT) of adaptation is around 60% of the within-eye effect. However, most previous studies on this were limited to using high spatial frequencies, sustained presentation, and criterion-dependent methods for assessing threshold. Here, we measure IOT across a wide range of spatiotemporal frequencies, using a criterion-free 2AFC method. We find little or no IOT at low spatial frequencies, consistent with other recent observations. At higher spatial frequencies, IOT was present, but weaker than previously reported (around 35%, on average, at 8c/deg). Across all conditions, monocular adaptation raised thresholds by around a factor of 2, and observers showed normal binocular summation, demonstrating that they were not binocularly compromised. These findings prompt a reassessment of our understanding of the binocular architecture implied by interocular adaptation. In particular, the output of monocular channels may be available to perceptual decision making at low spatial frequencies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Spatial Domain Adaptive Control of Nonlinear Rotary Systems Subject to Spatially Periodic Disturbances

    Directory of Open Access Journals (Sweden)

    Yen-Hsiu Yang

    2012-01-01

    Full Text Available We propose a generic spatial domain control scheme for a class of nonlinear rotary systems of variable speeds and subject to spatially periodic disturbances. The nonlinear model of the rotary system in time domain is transformed into one in spatial domain employing a coordinate transformation with respect to angular displacement. Under the circumstances that measurement of the system states is not available, a nonlinear state observer is established for providing the estimated states. A two-degree-of-freedom spatial domain control configuration is then proposed to stabilize the system and improve the tracking performance. The first control module applies adaptive backstepping with projected parametric update and concentrates on robust stabilization of the closed-loop system. The second control module introduces an internal model of the periodic disturbances cascaded with a loop-shaping filter, which not only further reduces the tracking error but also improves parametric adaptation. The overall spatial domain output feedback adaptive control system is robust to model uncertainties and state estimated error and capable of rejecting spatially periodic disturbances under varying system speeds. Stability proof of the overall system is given. A design example with simulation demonstrates the applicability of the proposed design.

  17. Spatial adaptation of the cortical visual evoked potential of the cat.

    Science.gov (United States)

    Bonds, A B

    1984-06-01

    Adaptation that is spatially specific for the adapting pattern has been seen psychophysically in humans. This is indirect evidence for independent analyzers (putatively single units) that are specific for orientation and spatial frequency in the human visual system, but it is unclear how global adaptation characteristics may be related to single unit performance. Spatially specific adaptation was sought in the cat visual evoked potential (VEP), with a view towards relating this phenomenon with what we know of cat single units. Adaptation to sine-wave gratings results in a temporary loss of cat VEP amplitude, with induction and recovery similar to that seen in human psychophysical experiments. The amplitude loss was specific for both the spatial frequency and orientation of the adapting pattern. The bandwidth of adaptation was not unlike the average selectivity of a population of cat single units.

  18. SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering

    International Nuclear Information System (INIS)

    Iliopoulos, AS; Sun, X; Floros, D; Zhang, Y; Yin, FF; Ren, L; Pitsianis, N

    2016-01-01

    Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well as histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial

  19. SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Floros, D [Aristotle University of Thessaloniki (Greece); Zhang, Y; Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well as histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial

  20. Inter-individual and inter-cell type variation in residual DNA damage after in vivo irradiation of human skin

    International Nuclear Information System (INIS)

    Chua, Melvin Lee Kiang; Somaiah, Navita; Bourne, Sara; Daley, Frances; A'Hern, Roger; Nuta, Otilia; Davies, Sue; Herskind, Carsten; Pearson, Ann; Warrington, Jim; Helyer, Sarah; Owen, Roger; Yarnold, John; Rothkamm, Kai

    2011-01-01

    Purpose: The aim of this study was to compare inter-individual and inter-cell type variation in DNA double-strand break (DSB) repair following in vivo irradiation of human skin. Materials and methods: Duplicate 4 mm core biopsies of irradiated and unirradiated skin were collected from 35 patients 24 h after 4 Gy exposure using 6 MeV electrons. Residual DSB were quantified by scoring 53BP1 foci in dermal fibroblasts, endothelial cells, superficial keratinocytes and basal epidermal cells. Results: Coefficients of inter-individual variation for levels of residual foci 24 h after in vivo irradiation of skin were 39.9% in dermal fibroblasts, 44.3% in endothelial cells, 32.9% in superficial keratinocytes and 46.4% in basal epidermal cells (p < 0.001, ANOVA). In contrast, the coefficient of inter-cell type variation for residual foci levels was only 11.3% in human skin between the different epidermal and dermal cells (p = 0.034, ANOVA). Foci levels between the different skin cell types were correlated (Pearson's R = 0.855-0.955, p < 0.001). Conclusions: Patient-specific factors appear to be more important than cell type-specific factors in determining residual foci levels following in vivo irradiation of human skin.

  1. Performance Analysis of enhanced Inter-cell Interference Coordination in LTE-Advanced Heterogeneous Networks

    DEFF Research Database (Denmark)

    Wang, Yuanye; Pedersen, Klaus I.

    2012-01-01

    The performance of enhanced Inter-Cell Interference Coordination (eICIC) for Long Term Evolution (LTE)- Advanced with co-channel deployment of both macro and pico is analyzed. The use of pico-cell Range Extension (RE) and time domain eICIC (TDM muting) is combined. The performance is evaluated...... in the downlink by means of extensive system level simulations that follow the 3GPP guidelines. The overall network performance is analyzed for different number of pico-eNBs, transmit power levels, User Equipment (UE) distributions, and packet schedulers. Recommended settings of the RE offset and TDM muting ratio...... in different scenarios are identified. The presented performance results and findings can serve as input to guidelines for co-channel deployment of macro and pico-eNBs with eICIC....

  2. SDN-controlled topology-reconfigurable optical mobile fronthaul architecture for bidirectional CoMP and low latency inter-cell D2D in the 5G mobile era.

    Science.gov (United States)

    Cvijetic, Neda; Tanaka, Akihiro; Kanonakis, Konstantinos; Wang, Ting

    2014-08-25

    We demonstrate the first SDN-controlled optical topology-reconfigurable mobile fronthaul (MFH) architecture for bidirectional coordinated multipoint (CoMP) and low latency inter-cell device-to-device (D2D) connectivity in the 5G mobile networking era. SDN-based OpenFlow control is used to dynamically instantiate the CoMP and inter-cell D2D features as match/action combinations in control plane flow tables of software-defined optical and electrical switching elements. Dynamic re-configurability is thereby introduced into the optical MFH topology, while maintaining back-compatibility with legacy fiber deployments. 10 Gb/s peak rates with <7 μs back-to-back transmission latency and 29.6 dB total power budget are experimentally demonstrated, confirming the attractiveness of the new approach for optical MFH of future 5G mobile systems.

  3. Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms.

    Science.gov (United States)

    Chapman, Heidi L; Eramudugolla, Ranmalee; Gavrilescu, Maria; Strudwick, Mark W; Loftus, Andrea; Cunnington, Ross; Mattingley, Jason B

    2010-07-01

    Visuomotor adaptation to a shift in visual input produced by prismatic lenses is an example of dynamic sensory-motor plasticity within the brain. Prism adaptation is readily induced in healthy individuals, and is thought to reflect the brain's ability to compensate for drifts in spatial calibration between different sensory systems. The neural correlate of this form of functional plasticity is largely unknown, although current models predict the involvement of parieto-cerebellar circuits. Recent studies that have employed event-related functional magnetic resonance imaging (fMRI) to identify brain regions associated with prism adaptation have discovered patterns of parietal and cerebellar modulation as participants corrected their visuomotor errors during the early part of adaptation. However, the role of these regions in the later stage of adaptation, when 'spatial realignment' or true adaptation is predicted to occur, remains unclear. Here, we used fMRI to quantify the distinctive patterns of parieto-cerebellar activity as visuomotor adaptation develops. We directly contrasted activation patterns during the initial error correction phase of visuomotor adaptation with that during the later spatial realignment phase, and found significant recruitment of the parieto-cerebellar network--with activations in the right inferior parietal lobe and the right posterior cerebellum. These findings provide the first evidence of both cerebellar and parietal involvement during the spatial realignment phase of prism adaptation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Resource allocation based uplink intercell interference model in multi-carrier networks

    KAUST Repository

    Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim

    2013-01-01

    Intercell interference (ICI) is a primary cause for performance limitation in emerging wireless cellular systems due to its highly indeterministic nature. In this paper, we derive an analytical statistical model for the uplink ICI in a multiuser multi-carrier cellular network considering the impact of various uncoordinated scheduling schemes on the locations and transmit powers of the interferers. The derived model applies to generic composite fading distributions and provides a useful computational tool to evaluate key performance metrics such as the network ergodic capacity. The derived model is extended to incorporate coordinated scheduling schemes. A study is then presented to quantify the potential performance gains of coordinated over uncoordinated scheduling schemes under various base station coordination scenarios. Numerical results demonstrate that different frequency allocation patterns significantly impact the network performance depending on the coordination among neighboring base stations. The accuracy of the derived analytical expressions is verified via Monte-Carlo simulations. © 2013 IEEE.

  5. A Framework for Uplink Intercell Interference Modeling with Channel-Based Scheduling

    KAUST Repository

    Tabassum, Hina

    2012-12-29

    This paper presents a novel framework for modeling the uplink intercell interference(ICI) in a multiuser cellular network. The proposed framework assists in quantifying the impact of various fading channel models and state-of-the-art scheduling schemes on the uplink ICI. Firstly, we derive a semianalytical expression for the distribution of the location of the scheduled user in a given cell considering a wide range of scheduling schemes. Based on this, we derive the distribution and moment generating function (MGF) of the uplink ICI considering a single interfering cell. Consequently, we determine the MGF of the cumulative ICI observed from all interfering cells and derive explicit MGF expressions for three typical fading models. Finally, we utilize the obtained expressions to evaluate important network performance metrics such as the outage probability, ergodic capacity, and average fairness numerically. Monte-Carlo simulation results are provided to demonstrate the efficacy of the derived analytical expressions.

  6. Resource allocation based uplink intercell interference model in multi-carrier networks

    KAUST Repository

    Tabassum, Hina

    2013-06-01

    Intercell interference (ICI) is a primary cause for performance limitation in emerging wireless cellular systems due to its highly indeterministic nature. In this paper, we derive an analytical statistical model for the uplink ICI in a multiuser multi-carrier cellular network considering the impact of various uncoordinated scheduling schemes on the locations and transmit powers of the interferers. The derived model applies to generic composite fading distributions and provides a useful computational tool to evaluate key performance metrics such as the network ergodic capacity. The derived model is extended to incorporate coordinated scheduling schemes. A study is then presented to quantify the potential performance gains of coordinated over uncoordinated scheduling schemes under various base station coordination scenarios. Numerical results demonstrate that different frequency allocation patterns significantly impact the network performance depending on the coordination among neighboring base stations. The accuracy of the derived analytical expressions is verified via Monte-Carlo simulations. © 2013 IEEE.

  7. An Adaptation-Induced Repulsion Illusion in Tactile Spatial Perception

    Directory of Open Access Journals (Sweden)

    Lux Li

    2017-06-01

    Full Text Available Following focal sensory adaptation, the perceived separation between visual stimuli that straddle the adapted region is often exaggerated. For instance, in the tilt aftereffect illusion, adaptation to tilted lines causes subsequently viewed lines with nearby orientations to be perceptually repelled from the adapted orientation. Repulsion illusions in the nonvisual senses have been less studied. Here, we investigated whether adaptation induces a repulsion illusion in tactile spatial perception. In a two-interval forced-choice task, participants compared the perceived separation between two point-stimuli applied on the forearms successively. Separation distance was constant on one arm (the reference and varied on the other arm (the comparison. In Experiment 1, we took three consecutive baseline measurements, verifying that in the absence of manipulation, participants’ distance perception was unbiased across arms and stable across experimental blocks. In Experiment 2, we vibrated a region of skin on the reference arm, verifying that this focally reduced tactile sensitivity, as indicated by elevated monofilament detection thresholds. In Experiment 3, we applied vibration between the two reference points in our distance perception protocol and discovered that this caused an illusory increase in the separation between the points. We conclude that focal adaptation induces a repulsion aftereffect illusion in tactile spatial perception. The illusion provides clues as to how the tactile system represents spatial information. The analogous repulsion aftereffects caused by adaptation in different stimulus domains and sensory systems may point to fundamentally similar strategies for dynamic sensory coding.

  8. Interfering Waves of Adaptation Promote Spatial Mixing

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Hallatschek, Oskar

    2011-01-01

    A fundamental problem of asexual adaptation is that beneficial substitutions are not efficiently accumulated in large populations: Beneficial mutations often go extinct because they compete with one another in going to fixation. It has been argued that such clonal interference may have led...... to the evolution of sex and recombination in well-mixed populations. Here, we study clonal interference, and mechanisms of its mitigation, in an evolutionary model of spatially structured populations with uniform selection pressure. Clonal interference is much more prevalent with spatial structure than without......, due to the slow wave-like spread of beneficial mutations through space. We find that the adaptation speed of asexuals saturates when the linear habitat size exceeds a characteristic interference length, which becomes shorter with smaller migration and larger mutation rate. The limiting speed...

  9. An Adaptive Sweep-Circle Spatial Clustering Algorithm Based on Gestalt

    Directory of Open Access Journals (Sweden)

    Qingming Zhan

    2017-08-01

    Full Text Available An adaptive spatial clustering (ASC algorithm is proposed in this present study, which employs sweep-circle techniques and a dynamic threshold setting based on the Gestalt theory to detect spatial clusters. The proposed algorithm can automatically discover clusters in one pass, rather than through the modification of the initial model (for example, a minimal spanning tree, Delaunay triangulation, or Voronoi diagram. It can quickly identify arbitrarily-shaped clusters while adapting efficiently to non-homogeneous density characteristics of spatial data, without the need for prior knowledge or parameters. The proposed algorithm is also ideal for use in data streaming technology with dynamic characteristics flowing in the form of spatial clustering in large data sets.

  10. On the modeling of uplink inter-cell interference based on proportional fair scheduling

    KAUST Repository

    Tabassum, Hina

    2012-10-03

    We derive a semi-analytical expression for the uplink inter-cell interference (ICI) assuming proportional fair scheduling (with a maximum normalized signal-to-noise ratio (SNR) criterion) deployed in the cellular network. The derived expression can be customized for different models of channel statistics that can capture path loss, shadowing, and fading. Firstly, we derive an expression for the distribution of the locations of the allocated user in a given cell. Then, we derive the distribution and moment generating function of the uplink ICI from one interfering cell. Finally, we determine the moment generating function of the cumulative uplink ICI from all interfering cells. The derived expression is utilized to evaluate important network performance metrics such as outage probability and fairness among users. The accuracy of the derived expressions is verified by comparing the obtained results to Monte Carlo simulations. © 2012 IEEE.

  11. On the modeling of uplink inter-cell interference based on proportional fair scheduling

    KAUST Repository

    Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim

    2012-01-01

    We derive a semi-analytical expression for the uplink inter-cell interference (ICI) assuming proportional fair scheduling (with a maximum normalized signal-to-noise ratio (SNR) criterion) deployed in the cellular network. The derived expression can be customized for different models of channel statistics that can capture path loss, shadowing, and fading. Firstly, we derive an expression for the distribution of the locations of the allocated user in a given cell. Then, we derive the distribution and moment generating function of the uplink ICI from one interfering cell. Finally, we determine the moment generating function of the cumulative uplink ICI from all interfering cells. The derived expression is utilized to evaluate important network performance metrics such as outage probability and fairness among users. The accuracy of the derived expressions is verified by comparing the obtained results to Monte Carlo simulations. © 2012 IEEE.

  12. Prism adaptation for spatial neglect after stroke: translational practice gaps.

    Science.gov (United States)

    Barrett, A M; Goedert, Kelly M; Basso, Julia C

    2012-10-01

    Spatial neglect increases hospital morbidity and costs in around 50% of the 795,000 people per year in the USA who survive stroke, and an urgent need exists to reduce the care burden of this condition. However, effective acute treatment for neglect has been elusive. In this article, we review 48 studies of a treatment of intense neuroscience interest: prism adaptation training. Due to its effects on spatial motor 'aiming', prism adaptation training may act to reduce neglect-related disability. However, research failed, first, to suggest methods to identify the 50-75% of patients who respond to treatment; second, to measure short-term and long-term outcomes in both mechanism-specific and functionally valid ways; third, to confirm treatment utility during the critical first 8 weeks poststroke; and last, to base treatment protocols on systematic dose-response data. Thus, considerable investment in prism adaptation research has not yet touched the fundamentals needed for clinical implementation. We suggest improved standards and better spatial motor models for further research, so as to clarify when, how and for whom prism adaptation should be applied.

  13. Criticality safety studies for the storage of waste from nuclear fuel service in Intercell Storage Wells 2 and 3 of Building 3019

    International Nuclear Information System (INIS)

    Primm, R.T. III; Hopper, C.M.; Smolen, G.R.

    1992-11-01

    This report provides computational evaluation results demonstrating that mixed oxide waste can be safely stored in Intercell Storage Wells 2 and 3 of Building 3019 at the Oak Ridge National Laboratory. Existing, verified computational techniques are validated with applicable critical experiments and tolerance limits for safety analyses are derived. Multiplication factors for normal and credible abnormal configurations are calculated and found to be far subcritical when compared to derived safety limits

  14. Power adaptive multi-filter carrierless amplitude and phase access scheme for visible light communication network

    Science.gov (United States)

    Li, Wei; Huang, Zhitong; Li, Haoyue; Ji, Yuefeng

    2018-04-01

    Visible light communication (VLC) is a promising candidate for short-range broadband access due to its integration of advantages for both optical communication and wireless communication, whereas multi-user access is a key problem because of the intra-cell and inter-cell interferences. In addition, the non-flat channel effect results in higher losses for users in high frequency bands, which leads to unfair qualities. To solve those issues, we propose a power adaptive multi-filter carrierless amplitude and phase access (PA-MF-CAPA) scheme, and in the first step of this scheme, the MF-CAPA scheme utilizing multiple filters as different CAP dimensions is used to realize multi-user access. The character of orthogonality among the filters in different dimensions can mitigate the effect of intra-cell and inter-cell interferences. Moreover, the MF-CAPA scheme provides different channels modulated on the same frequency bands, which further increases the transmission rate. Then, the power adaptive procedure based on MF-CAPA scheme is presented to realize quality fairness. As demonstrated in our experiments, the MF-CAPA scheme yields an improved throughput compared with multi-band CAP access scheme, and the PA-MF-CAPA scheme enhances the quality fairness and further improves the throughput compared with the MF-CAPA scheme.

  15. 3D spatially-adaptive canonical correlation analysis: Local and global methods.

    Science.gov (United States)

    Yang, Zhengshi; Zhuang, Xiaowei; Sreenivasan, Karthik; Mishra, Virendra; Curran, Tim; Byrd, Richard; Nandy, Rajesh; Cordes, Dietmar

    2018-04-01

    Local spatially-adaptive canonical correlation analysis (local CCA) with spatial constraints has been introduced to fMRI multivariate analysis for improved modeling of activation patterns. However, current algorithms require complicated spatial constraints that have only been applied to 2D local neighborhoods because the computational time would be exponentially increased if the same method is applied to 3D spatial neighborhoods. In this study, an efficient and accurate line search sequential quadratic programming (SQP) algorithm has been developed to efficiently solve the 3D local CCA problem with spatial constraints. In addition, a spatially-adaptive kernel CCA (KCCA) method is proposed to increase accuracy of fMRI activation maps. With oriented 3D spatial filters anisotropic shapes can be estimated during the KCCA analysis of fMRI time courses. These filters are orientation-adaptive leading to rotational invariance to better match arbitrary oriented fMRI activation patterns, resulting in improved sensitivity of activation detection while significantly reducing spatial blurring artifacts. The kernel method in its basic form does not require any spatial constraints and analyzes the whole-brain fMRI time series to construct an activation map. Finally, we have developed a penalized kernel CCA model that involves spatial low-pass filter constraints to increase the specificity of the method. The kernel CCA methods are compared with the standard univariate method and with two different local CCA methods that were solved by the SQP algorithm. Results show that SQP is the most efficient algorithm to solve the local constrained CCA problem, and the proposed kernel CCA methods outperformed univariate and local CCA methods in detecting activations for both simulated and real fMRI episodic memory data. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Spatially heterogeneous stochasticity and the adaptive diversification of dormancy.

    Science.gov (United States)

    Rajon, E; Venner, S; Menu, F

    2009-10-01

    Diversified bet-hedging, a strategy that leads several individuals with the same genotype to express distinct phenotypes in a given generation, is now well established as a common evolutionary response to environmental stochasticity. Life-history traits defined as diversified bet-hedging (e.g. germination or diapause strategies) display marked differences between populations in spatial proximity. In order to find out whether such differences can be explained by local adaptations to spatially heterogeneous environmental stochasticity, we explored the evolution of bet-hedging dormancy strategies in a metapopulation using a two-patch model with patch differences in stochastic juvenile survival. We found that spatial differences in the level of environmental stochasticity, restricted dispersal, increased fragmentation and intermediate survival during dormancy all favour the adaptive diversification of bet-hedging dormancy strategies. Density dependency also plays a major role in the diversification of dormancy strategies because: (i) it may interact locally with environmental stochasticity and amplify its effects; however, (ii) it can also generate chaotic population dynamics that may impede diversification. Our work proposes new hypotheses to explain the spatial patterns of bet-hedging strategies that we hope will encourage new empirical studies of this topic.

  17. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yuxing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Fan, Jiwen [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xiao, Heng [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Zhang, Guang J. [Scripps Institution of Oceanography, University of California, San Diego CA USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xu, Kuan-Man [NASA Langley Research Center, Hampton VA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Gustafson, William I. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32 km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.

  18. P1-14: Relationship between Colorfulness Adaptation and Spatial Frequency Components in Natural Image

    Directory of Open Access Journals (Sweden)

    Shun Sakaibara

    2012-10-01

    Full Text Available We previously found the effect of colorfulness-adaptation in natural images. It was observed to be stronger in natural images than unnatural images, suggesting the influence of naturalness on the adaptation. However, what characteristics of images and what levels of visual system were involved were not examined enough. This research investigates whether the effect of colorfulness-adaptation is associated with spatial frequency components in natural images. If adaptation was a mechanism in early cortical level, the effect would be strong for adaptation and test images sharing similar spatial frequency components. In the experiment, we examined how the colorfulness impression of a test image changed following adaptation images with different levels of saturation. We selected several types of natural image from a standard image database for test and adaptation images. We also processed them to make shuffled images with spatial frequency component differed from the originals and phase-scrambled images with the component similar to the originals, for both adaptation and test images. Observers evaluated whether a test image was colorful or faded. Results show that the colorfulness perception of the test images was influenced by the saturation of the adaptation images. The effect was the strongest for the combination of natural (original adaptation and natural test images regardless of image types. The effect for the combination of phase-scrambled images was weaker than those of original images and stronger than those of shuffled images. They suggest that not only the spatial frequency components of an image but also the recognition of images would contribute to colorfulness-adaptation.

  19. Vestibular adaption to an altered gravitational environment : Consequences for spatial orientation

    NARCIS (Netherlands)

    Nooij, S.A.E.

    2008-01-01

    Earth's gravity is an omnipresent factor in human life and provides a strong reference for spatial orientation. Changes in the prevailing gravity level, like the transition to weightlessness during space flight, affect spatial orientation and require adaptation of many physiological processes

  20. The impact of natural transformation on adaptation in spatially structured bacterial populations.

    Science.gov (United States)

    Moradigaravand, Danesh; Engelstädter, Jan

    2014-06-20

    Recent studies have demonstrated that natural transformation and the formation of highly structured populations in bacteria are interconnected. In spite of growing evidence about this connection, little is known about the dynamics of natural transformation in spatially structured bacterial populations. In this work, we model the interdependency between the dynamics of the bacterial gene pool and those of environmental DNA in space to dissect the effect of transformation on adaptation. Our model reveals that even with only a single locus under consideration, transformation with a free DNA fragment pool results in complex adaptation dynamics that do not emerge in previous models focusing only on the gene shuffling effect of transformation at multiple loci. We demonstrate how spatial restriction on population growth and DNA diffusion in the environment affect the impact of transformation on adaptation. We found that in structured bacterial populations intermediate DNA diffusion rates predominantly cause transformation to impede adaptation by spreading deleterious alleles in the population. Overall, our model highlights distinctive evolutionary consequences of bacterial transformation in spatially restricted compared to planktonic bacterial populations.

  1. Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters

    Science.gov (United States)

    Abhayaratne, Charith

    2011-07-01

    Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.

  2. An innovative artificial bee colony algorithm and its application to a practical intercell scheduling problem

    Science.gov (United States)

    Li, Dongni; Guo, Rongtao; Zhan, Rongxin; Yin, Yong

    2018-06-01

    In this article, an innovative artificial bee colony (IABC) algorithm is proposed, which incorporates two mechanisms. On the one hand, to provide the evolutionary process with a higher starting level, genetic programming (GP) is used to generate heuristic rules by exploiting the elements that constitute the problem. On the other hand, to achieve a better balance between exploration and exploitation, a leading mechanism is proposed to attract individuals towards a promising region. To evaluate the performance of IABC in solving practical and complex problems, it is applied to the intercell scheduling problem with limited transportation capacity. It is observed that the GP-generated rules incorporate the elements of the most competing human-designed rules, and they are more effective than the human-designed ones. Regarding the leading mechanism, the strategies of the ageing leader and multiple challengers make the algorithm less likely to be trapped in local optima.

  3. Performance evaluation of spatial compounding in the presence of aberration and adaptive imaging

    Science.gov (United States)

    Dahl, Jeremy J.; Guenther, Drake; Trahey, Gregg E.

    2003-05-01

    Spatial compounding has been used for years to reduce speckle in ultrasonic images and to resolve anatomical features hidden behind the grainy appearance of speckle. Adaptive imaging restores image contrast and resolution by compensating for beamforming errors caused by tissue-induced phase errors. Spatial compounding represents a form of incoherent imaging, whereas adaptive imaging attempts to maintain a coherent, diffraction-limited aperture in the presence of aberration. Using a Siemens Antares scanner, we acquired single channel RF data on a commercially available 1-D probe. Individual channel RF data was acquired on a cyst phantom in the presence of a near field electronic phase screen. Simulated data was also acquired for both a 1-D and a custom built 8x96, 1.75-D probe (Tetrad Corp.). The data was compounded using a receive spatial compounding algorithm; a widely used algorithm because it takes advantage of parallel beamforming to avoid reductions in frame rate. Phase correction was also performed by using a least mean squares algorithm to estimate the arrival time errors. We present simulation and experimental data comparing the performance of spatial compounding to phase correction in contrast and resolution tasks. We evaluate spatial compounding and phase correction, and combinations of the two methods, under varying aperture sizes, aperture overlaps, and aberrator strength to examine the optimum configuration and conditions in which spatial compounding will provide a similar or better result than adaptive imaging. We find that, in general, phase correction is hindered at high aberration strengths and spatial frequencies, whereas spatial compounding is helped by these aberrators.

  4. On the statistics of uplink inter-cell interference with greedy resource allocation

    KAUST Repository

    Tabassum, Hina

    2012-10-03

    In this paper, we introduce a new methodology to model the uplink inter-cell interference (ICI) in wireless cellular networks. The model takes into account both the effect of channel statistics (i.e., path loss, shadowing, fading) and the resource allocation scheme in the interfering cells. Firstly, we derive a semi-analytical expression for the distribution of the locations of the allocated user in a given cell considering greedy resource allocation with maximum signal-to-noise ratio (SNR) criterion. Based on this, we derive the distribution of the uplink ICI from one neighboring cell. Next, we compute the moment generating function (MGF) of the cumulative ICI observed from all neighboring cells and discuss some examples. Finally, we utilize the derived expressions to evaluate the outage probability in the network. In order to validate the accuracy of the developed semi-analytical expressions, we present comparison results with Monte Carlo simulations. The major benefit of the proposed mechanism is that it helps in estimating the distribution of ICI without the knowledge of instantaneous resource allocations in the neighbor cells. The proposed methodology applies to any shadowing and fading distributions. Moreover, it can be used to evaluate important network performance metrics numerically without the need for time-consuming Monte Carlo simulations. © 2011 IEEE.

  5. On the statistics of uplink inter-cell interference with greedy resource allocation

    KAUST Repository

    Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim

    2012-01-01

    In this paper, we introduce a new methodology to model the uplink inter-cell interference (ICI) in wireless cellular networks. The model takes into account both the effect of channel statistics (i.e., path loss, shadowing, fading) and the resource allocation scheme in the interfering cells. Firstly, we derive a semi-analytical expression for the distribution of the locations of the allocated user in a given cell considering greedy resource allocation with maximum signal-to-noise ratio (SNR) criterion. Based on this, we derive the distribution of the uplink ICI from one neighboring cell. Next, we compute the moment generating function (MGF) of the cumulative ICI observed from all neighboring cells and discuss some examples. Finally, we utilize the derived expressions to evaluate the outage probability in the network. In order to validate the accuracy of the developed semi-analytical expressions, we present comparison results with Monte Carlo simulations. The major benefit of the proposed mechanism is that it helps in estimating the distribution of ICI without the knowledge of instantaneous resource allocations in the neighbor cells. The proposed methodology applies to any shadowing and fading distributions. Moreover, it can be used to evaluate important network performance metrics numerically without the need for time-consuming Monte Carlo simulations. © 2011 IEEE.

  6. Experimental Evaluation of Interference Suppression Receivers and Rank Adaptation in 5G Small Cells

    DEFF Research Database (Denmark)

    Assefa, Dereje; Berardinelli, Gilberto; Catania, Davide

    2015-01-01

    Advanced receivers are a key component of the 5th Generation (5G) ultra-dense small cells concept given their capability of efficiently dealing with the ever-increasing problem of inter-cell interference. In this paper, we evaluate the potential of interference suppression receivers in real network...... the Interference Rejection Combining (IRC) and Successive Interference Cancellation (SIC) receivers and different rank adaptation approaches. Each node in our software defined radio (SDR) testbed features a 22 MIMO transceiver built with the USRP N200 hardware by Ettus Research. Our experimental results confirm...

  7. Poststroke Hemiparesis Impairs the Rate but not Magnitude of Adaptation of Spatial and Temporal Locomotor Features

    Science.gov (United States)

    Savin, Douglas N.; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M.

    2015-01-01

    Background Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Objective Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Methods Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of “initial” and “late” locomotor adaptation rates were determined. Results All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Conclusions Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which “late” adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population. PMID:22367915

  8. Spatial compression impairs prism-adaptation in healthy individuals

    Directory of Open Access Journals (Sweden)

    Rachel J Scriven

    2013-05-01

    Full Text Available Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation is effective in ameliorating some neglect behaviours, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control processes in prism-adaptation may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced strategic control might result from a failure to detect prism-induced reaching errors properly either because a the size of the error is underestimated in compressed visual space or b pathologically increased error detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether strategic control and subsequent aftereffects were abnormal compared to standard prism adaptation. Each participant completed three prism-adaptation procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During prism-adaptation, visual-feedback of the reach could be compressed, perturbed by noise or represented veridically. Compressed visual space significantly reduced strategic control and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms.

  9. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    Science.gov (United States)

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan

    2016-02-22

    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

  10. Spatial and temporal aspects of chromatic adaptation and their functional significance for colour constancy.

    Science.gov (United States)

    Werner, Annette

    2014-11-01

    Illumination in natural scenes changes at multiple temporal and spatial scales: slow changes in global illumination occur in the course of a day, and we encounter fast and localised illumination changes when visually exploring the non-uniform light field of three-dimensional scenes; in addition, very long-term chromatic variations may come from the environment, like for example seasonal changes. In this context, I consider the temporal and spatial properties of chromatic adaptation and discuss their functional significance for colour constancy in three-dimensional scenes. A process of fast spatial tuning in chromatic adaptation is proposed as a possible sensory mechanism for linking colour constancy to the spatial structure of a scene. The observed middlewavelength selectivity of this process is particularly suitable for adaptation to the mean chromaticity and the compensation of interreflections in natural scenes. Two types of sensory colour constancy are distinguished, based on the functional differences of their temporal and spatial scales: a slow type, operating at a global scale for the compensation of the ambient illumination; and a fast colour constancy, which is locally restricted and well suited to compensate region-specific variations in the light field of three dimensional scenes. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Adaptation of spatial navigation tests to virtual reality.

    OpenAIRE

    Šupalová, Ivana

    2009-01-01

    At the Department of Neurophysiology of Memory in the Academy of Sciences in Czech Republic are recently performed tests of spatial navigation of people in experimental real enviroment called Blue Velvet Arena. In introdution of this thesis is described importancy of these tests for medical purposes and the recent solution. The main aim is to adapt this real enviroment to virtual reality, allow it's configuration and enable to collect data retieved during experiment's execution. Resulting sys...

  12. Dynamic Post-Earthquake Image Segmentation with an Adaptive Spectral-Spatial Descriptor

    Directory of Open Access Journals (Sweden)

    Genyun Sun

    2017-08-01

    Full Text Available The region merging algorithm is a widely used segmentation technique for very high resolution (VHR remote sensing images. However, the segmentation of post-earthquake VHR images is more difficult due to the complexity of these images, especially high intra-class and low inter-class variability among damage objects. Herein two key issues must be resolved: the first is to find an appropriate descriptor to measure the similarity of two adjacent regions since they exhibit high complexity among the diverse damage objects, such as landslides, debris flow, and collapsed buildings. The other is how to solve over-segmentation and under-segmentation problems, which are commonly encountered with conventional merging strategies due to their strong dependence on local information. To tackle these two issues, an adaptive dynamic region merging approach (ADRM is introduced, which combines an adaptive spectral-spatial descriptor and a dynamic merging strategy to adapt to the changes of merging regions for successfully detecting objects scattered globally in a post-earthquake image. In the new descriptor, the spectral similarity and spatial similarity of any two adjacent regions are automatically combined to measure their similarity. Accordingly, the new descriptor offers adaptive semantic descriptions for geo-objects and thus is capable of characterizing different damage objects. Besides, in the dynamic region merging strategy, the adaptive spectral-spatial descriptor is embedded in the defined testing order and combined with graph models to construct a dynamic merging strategy. The new strategy can find the global optimal merging order and ensures that the most similar regions are merged at first. With combination of the two strategies, ADRM can identify spatially scattered objects and alleviates the phenomenon of over-segmentation and under-segmentation. The performance of ADRM has been evaluated by comparing with four state-of-the-art segmentation methods

  13. A statistical model of uplink inter-cell interference with slow and fast power control mechanisms

    KAUST Repository

    Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim

    2013-01-01

    Uplink power control is in essence an interference mitigation technique that aims at minimizing the inter-cell interference (ICI) in cellular networks by reducing the transmit power levels of the mobile users while maintaining their target received signal quality levels at base stations. Power control mechanisms directly impact the interference dynamics and, thus, affect the overall achievable capacity and consumed power in cellular networks. Due to the stochastic nature of wireless channels and mobile users' locations, it is important to derive theoretical models for ICI that can capture the impact of design alternatives related to power control mechanisms. To this end, we derive and verify a novel statistical model for uplink ICI in Generalized-K composite fading environments as a function of various slow and fast power control mechanisms. The derived expressions are then utilized to quantify numerically key network performance metrics that include average resource fairness, average reduction in power consumption, and ergodic capacity. The accuracy of the derived expressions is validated via Monte-Carlo simulations. Results are generated for multiple network scenarios, and insights are extracted to assess various power control mechanisms as a function of system parameters. © 1972-2012 IEEE.

  14. A statistical model of uplink inter-cell interference with slow and fast power control mechanisms

    KAUST Repository

    Tabassum, Hina

    2013-09-01

    Uplink power control is in essence an interference mitigation technique that aims at minimizing the inter-cell interference (ICI) in cellular networks by reducing the transmit power levels of the mobile users while maintaining their target received signal quality levels at base stations. Power control mechanisms directly impact the interference dynamics and, thus, affect the overall achievable capacity and consumed power in cellular networks. Due to the stochastic nature of wireless channels and mobile users\\' locations, it is important to derive theoretical models for ICI that can capture the impact of design alternatives related to power control mechanisms. To this end, we derive and verify a novel statistical model for uplink ICI in Generalized-K composite fading environments as a function of various slow and fast power control mechanisms. The derived expressions are then utilized to quantify numerically key network performance metrics that include average resource fairness, average reduction in power consumption, and ergodic capacity. The accuracy of the derived expressions is validated via Monte-Carlo simulations. Results are generated for multiple network scenarios, and insights are extracted to assess various power control mechanisms as a function of system parameters. © 1972-2012 IEEE.

  15. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    Science.gov (United States)

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  16. An Attention-Information-Based Spatial Adaptation Framework for Browsing Videos via Mobile Devices

    Directory of Open Access Journals (Sweden)

    Li Houqiang

    2007-01-01

    Full Text Available With the growing popularity of personal digital assistant devices and smart phones, more and more consumers are becoming quite enthusiastic to appreciate videos via mobile devices. However, limited display size of the mobile devices has been imposing significant barriers for users to enjoy browsing high-resolution videos. In this paper, we present an attention-information-based spatial adaptation framework to address this problem. The whole framework includes two major parts: video content generation and video adaptation system. During video compression, the attention information in video sequences will be detected using an attention model and embedded into bitstreams with proposed supplement-enhanced information (SEI structure. Furthermore, we also develop an innovative scheme to adaptively adjust quantization parameters in order to simultaneously improve the quality of overall encoding and the quality of transcoding the attention areas. When the high-resolution bitstream is transmitted to mobile users, a fast transcoding algorithm we developed earlier will be applied to generate a new bitstream for attention areas in frames. The new low-resolution bitstream containing mostly attention information, instead of the high-resolution one, will be sent to users for display on the mobile devices. Experimental results show that the proposed spatial adaptation scheme is able to improve both subjective and objective video qualities.

  17. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  18. Illumination robust face recognition using spatial adaptive shadow compensation based on face intensity prior

    Science.gov (United States)

    Hsieh, Cheng-Ta; Huang, Kae-Horng; Lee, Chang-Hsing; Han, Chin-Chuan; Fan, Kuo-Chin

    2017-12-01

    Robust face recognition under illumination variations is an important and challenging task in a face recognition system, particularly for face recognition in the wild. In this paper, a face image preprocessing approach, called spatial adaptive shadow compensation (SASC), is proposed to eliminate shadows in the face image due to different lighting directions. First, spatial adaptive histogram equalization (SAHE), which uses face intensity prior model, is proposed to enhance the contrast of each local face region without generating visible noises in smooth face areas. Adaptive shadow compensation (ASC), which performs shadow compensation in each local image block, is then used to produce a wellcompensated face image appropriate for face feature extraction and recognition. Finally, null-space linear discriminant analysis (NLDA) is employed to extract discriminant features from SASC compensated images. Experiments performed on the Yale B, Yale B extended, and CMU PIE face databases have shown that the proposed SASC always yields the best face recognition accuracy. That is, SASC is more robust to face recognition under illumination variations than other shadow compensation approaches.

  19. Fused Adaptive Lasso for Spatial and Temporal Quantile Function Estimation

    KAUST Repository

    Sun, Ying

    2015-09-01

    Quantile functions are important in characterizing the entire probability distribution of a random variable, especially when the tail of a skewed distribution is of interest. This article introduces new quantile function estimators for spatial and temporal data with a fused adaptive Lasso penalty to accommodate the dependence in space and time. This method penalizes the difference among neighboring quantiles, hence it is desirable for applications with features ordered in time or space without replicated observations. The theoretical properties are investigated and the performances of the proposed methods are evaluated by simulations. The proposed method is applied to particulate matter (PM) data from the Community Multiscale Air Quality (CMAQ) model to characterize the upper quantiles, which are crucial for studying spatial association between PM concentrations and adverse human health effects. © 2016 American Statistical Association and the American Society for Quality.

  20. Temporal and spatial adaptations during the acquisition of a reversal movement.

    Science.gov (United States)

    van Loon, E M; Buekers, M J; Helsen, W; Magill, R A

    1998-03-01

    Adjustments of the biphasic movement in a coincidence anticipation task were studied using an erroneous knowledge of results (KR) paradigm. Forty participants received either no KR, correct KR, erroneous (+100 ms) KR, or 100 trials of correct KR followed by 50 trials of erroneous KR. Kinematic analyses revealed that for this 100-50 KR group the extension part of the movement was temporally adjusted under the influence of erroneous KR. Although accompanied by a decrease in movement amplitude, this did not account for the temporal shift in movement outcome, because all groups showed a reduction in amplitude. It is argued that changing external time constraints mainly results in temporal adaptations. However, spatial adaptations do play a role in kinematic changes during acquisition.

  1. The Gap of Climate Adaptation Development of the Spatial Planning System in Taiwan : How the Multilevel Planning Agencies Respond to Climate Risk

    NARCIS (Netherlands)

    Lin, Y.T.

    2015-01-01

    Recognizing that climate risk is a real threat to the environment and society, spatial planning plays a key role in developing adaptation policy responses as well as in integrating the territorial or spatial impacts of governmental sectoral policies. Planning for adaptation through policy

  2. Implications of the spatial dependence of the single-event-upset threshold in SRAMs measured with a pulsed laser

    International Nuclear Information System (INIS)

    Buchner, S.; Langworthy, J.B.; Stapor, W.J.; Campbell, A.B.; Rivet, S.

    1994-01-01

    Pulsed laser light was used to measure single event upset (SEU) thresholds for a large number of memory cells in both CMOS and bipolar SRAMs. Results showed that small variations in intercell upset threshold could not explain the gradual rise in the curve of cross section versus linear energy transfer (LET). The memory cells exhibited greater intracell variations implying that the charge collection efficiency within a memory cell varies spatially and contributes substantially to the shape of the curve of cross section versus LET. The results also suggest that the pulsed laser can be used for hardness-assurance measurements on devices with sensitive areas larger than the diameter of the laser beam

  3. Genetic risk prediction using a spatial autoregressive model with adaptive lasso.

    Science.gov (United States)

    Wen, Yalu; Shen, Xiaoxi; Lu, Qing

    2018-05-31

    With rapidly evolving high-throughput technologies, studies are being initiated to accelerate the process toward precision medicine. The collection of the vast amounts of sequencing data provides us with great opportunities to systematically study the role of a deep catalog of sequencing variants in risk prediction. Nevertheless, the massive amount of noise signals and low frequencies of rare variants in sequencing data pose great analytical challenges on risk prediction modeling. Motivated by the development in spatial statistics, we propose a spatial autoregressive model with adaptive lasso (SARAL) for risk prediction modeling using high-dimensional sequencing data. The SARAL is a set-based approach, and thus, it reduces the data dimension and accumulates genetic effects within a single-nucleotide variant (SNV) set. Moreover, it allows different SNV sets having various magnitudes and directions of effect sizes, which reflects the nature of complex diseases. With the adaptive lasso implemented, SARAL can shrink the effects of noise SNV sets to be zero and, thus, further improve prediction accuracy. Through simulation studies, we demonstrate that, overall, SARAL is comparable to, if not better than, the genomic best linear unbiased prediction method. The method is further illustrated by an application to the sequencing data from the Alzheimer's Disease Neuroimaging Initiative. Copyright © 2018 John Wiley & Sons, Ltd.

  4. A spatially explicit scenario-driven model of adaptive capacity to global change in Europe

    NARCIS (Netherlands)

    Acosta, L.; Klein, R.J.T.; Reidsma, P.; Metzger, M.J.; Rounsevell, M.D.A.; Leemans, R.

    2013-01-01

    Traditional impact models combine exposure in the form of scenarios and sensitivity in the form of parameters, providing potential impacts of global change as model outputs. However, adaptive capacity is rarely addressed in these models. This paper presents the first spatially explicit

  5. Spatially adaptive mixture modeling for analysis of FMRI time series.

    Science.gov (United States)

    Vincent, Thomas; Risser, Laurent; Ciuciu, Philippe

    2010-04-01

    Within-subject analysis in fMRI essentially addresses two problems, the detection of brain regions eliciting evoked activity and the estimation of the underlying dynamics. In Makni et aL, 2005 and Makni et aL, 2008, a detection-estimation framework has been proposed to tackle these problems jointly, since they are connected to one another. In the Bayesian formalism, detection is achieved by modeling activating and nonactivating voxels through independent mixture models (IMM) within each region while hemodynamic response estimation is performed at a regional scale in a nonparametric way. Instead of IMMs, in this paper we take advantage of spatial mixture models (SMM) for their nonlinear spatial regularizing properties. The proposed method is unsupervised and spatially adaptive in the sense that the amount of spatial correlation is automatically tuned from the data and this setting automatically varies across brain regions. In addition, the level of regularization is specific to each experimental condition since both the signal-to-noise ratio and the activation pattern may vary across stimulus types in a given brain region. These aspects require the precise estimation of multiple partition functions of underlying Ising fields. This is addressed efficiently using first path sampling for a small subset of fields and then using a recently developed fast extrapolation technique for the large remaining set. Simulation results emphasize that detection relying on supervised SMM outperforms its IMM counterpart and that unsupervised spatial mixture models achieve similar results without any hand-tuning of the correlation parameter. On real datasets, the gain is illustrated in a localizer fMRI experiment: brain activations appear more spatially resolved using SMM in comparison with classical general linear model (GLM)-based approaches, while estimating a specific parcel-based HRF shape. Our approach therefore validates the treatment of unsmoothed fMRI data without fixed GLM

  6. Demography-based adaptive network model reproduces the spatial organization of human linguistic groups

    Science.gov (United States)

    Capitán, José A.; Manrubia, Susanna

    2015-12-01

    The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.

  7. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio

    2015-01-26

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet\\'s performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  8. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  9. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation

    Science.gov (United States)

    Huang, Aiping; Tao, Linwei; Niu, Yilong

    2018-04-01

    In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.

  10. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Iqbal, Shaukat; Rahman, Faizur

    2007-01-01

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K + variational principle for slab geometry. The program has a core K + module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10 2 has been achieved using the new approach in some cases

  11. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)

    2007-07-15

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.

  12. Putting Climate Adaptation on the Map: Developing Spatial Management Strategies for Whitebark Pine in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Ireland, Kathryn B.; Hansen, Andrew J.; Keane, Robert E.; Legg, Kristin; Gump, Robert L.

    2018-06-01

    Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climate-informed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.

  13. Coherent visualization of spatial data adapted to roles, tasks, and hardware

    Science.gov (United States)

    Wagner, Boris; Peinsipp-Byma, Elisabeth

    2012-06-01

    Modern crisis management requires that users with different roles and computer environments have to deal with a high volume of various data from different sources. For this purpose, Fraunhofer IOSB has developed a geographic information system (GIS) which supports the user depending on available data and the task he has to solve. The system provides merging and visualization of spatial data from various civilian and military sources. It supports the most common spatial data standards (OGC, STANAG) as well as some proprietary interfaces, regardless if these are filebased or database-based. To set the visualization rules generic Styled Layer Descriptors (SLDs) are used, which are an Open Geospatial Consortium (OGC) standard. SLDs allow specifying which data are shown, when and how. The defined SLDs consider the users' roles and task requirements. In addition it is possible to use different displays and the visualization also adapts to the individual resolution of the display. Too high or low information density is avoided. Also, our system enables users with different roles to work together simultaneously using the same data base. Every user is provided with the appropriate and coherent spatial data depending on his current task. These so refined spatial data are served via the OGC services Web Map Service (WMS: server-side rendered raster maps), or the Web Map Tile Service - (WMTS: pre-rendered and cached raster maps).

  14. Probing spatial locality in ionic liquids with the grand canonical adaptive resolution molecular dynamics technique

    Science.gov (United States)

    Shadrack Jabes, B.; Krekeler, C.; Klein, R.; Delle Site, L.

    2018-05-01

    We employ the Grand Canonical Adaptive Resolution Simulation (GC-AdResS) molecular dynamics technique to test the spatial locality of the 1-ethyl 3-methyl imidazolium chloride liquid. In GC-AdResS, atomistic details are kept only in an open sub-region of the system while the environment is treated at coarse-grained level; thus, if spatial quantities calculated in such a sub-region agree with the equivalent quantities calculated in a full atomistic simulation, then the atomistic degrees of freedom outside the sub-region play a negligible role. The size of the sub-region fixes the degree of spatial locality of a certain quantity. We show that even for sub-regions whose radius corresponds to the size of a few molecules, spatial properties are reasonably reproduced thus suggesting a higher degree of spatial locality, a hypothesis put forward also by other researchers and that seems to play an important role for the characterization of fundamental properties of a large class of ionic liquids.

  15. Robust Unit Commitment Considering the Temporal and Spatial Correlations of Wind Farms Using a Data-Adaptive Approach

    DEFF Research Database (Denmark)

    Zhang, Yipu; Ai, Xiaomeng; Wen, Jinyu

    2018-01-01

    . In this paper, a novel data-adaptive robust optimization method for the unit commitment is proposed for the power system with wind farms integrated. The extreme scenario extraction and the two stage robust optimization are combined in the proposed method. The data-adaptive set consisting of a few extreme...... scenarios is derived to reduce the conservativeness by considering the temporal and spatial correlations of multiple wind farms. Numerical results demonstrate that the proposed data-adaptive robust optimization algorithm is less conservative than the current two-stage optimization approaches while maintains...

  16. Adaptive and bounded investment returns promote cooperation in spatial public goods games.

    Directory of Open Access Journals (Sweden)

    Xiaojie Chen

    Full Text Available The public goods game is one of the most famous models for studying the evolution of cooperation in sizable groups. The multiplication factor in this game can characterize the investment return from the public good, which may be variable depending on the interactive environment in realistic situations. Instead of using the same universal value, here we consider that the multiplication factor in each group is updated based on the differences between the local and global interactive environments in the spatial public goods game, but meanwhile limited to within a certain range. We find that the adaptive and bounded investment returns can significantly promote cooperation. In particular, full cooperation can be achieved for high feedback strength when appropriate limitation is set for the investment return. Also, we show that the fraction of cooperators in the whole population can become larger if the lower and upper limits of the multiplication factor are increased. Furthermore, in comparison to the traditionally spatial public goods game where the multiplication factor in each group is identical and fixed, we find that cooperation can be better promoted if the multiplication factor is constrained to adjust between one and the group size in our model. Our results highlight the importance of the locally adaptive and bounded investment returns for the emergence and dominance of cooperative behavior in structured populations.

  17. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security

    Science.gov (United States)

    Tai, Amos P. K.; Val Martin, Maria

    2017-11-01

    Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation

  18. Model of inter-cell interference phenomenon in 10 nm magnetic tunnel junction with perpendicular anisotropy array due to oscillatory stray field from neighboring cells

    Science.gov (United States)

    Ohuchida, Satoshi; Endoh, Tetsuo

    2018-06-01

    In this paper, we propose a new model of inter-cell interference phenomenon in a 10 nm magnetic tunnel junction with perpendicular anisotropy (p-MTJ) array and investigated the interference effect between a program cell and unselected cells due to the oscillatory stray field from neighboring cells by Landau–Lifshitz–Gilbert micromagnetic simulation. We found that interference brings about a switching delay in a program cell and excitation of magnetization precession in unselected cells even when no programing current passes through. The origin of interference is ferromagnetic resonance between neighboring cells. During the interference period, the precession frequency of the program cell is 20.8 GHz, which synchronizes with that of the theoretical precession frequency f = γH eff in unselected cells. The disturbance strength of unselected cells decreased to be inversely proportional to the cube of the distance from the program cell, which is in good agreement with the dependence of stray field on the distance from the program cell calculated by the dipole approximation method.

  19. Using a "time machine" to test for local adaptation of aquatic microbes to temporal and spatial environmental variation.

    Science.gov (United States)

    Fox, Jeremy W; Harder, Lawrence D

    2015-01-01

    Local adaptation occurs when different environments are dominated by different specialist genotypes, each of which is relatively fit in its local conditions and relatively unfit under other conditions. Analogously, ecological species sorting occurs when different environments are dominated by different competing species, each of which is relatively fit in its local conditions. The simplest theory predicts that spatial, but not temporal, environmental variation selects for local adaptation (or generates species sorting), but this prediction is difficult to test. Although organisms can be reciprocally transplanted among sites, doing so among times seems implausible. Here, we describe a reciprocal transplant experiment testing for local adaptation or species sorting of lake bacteria in response to both temporal and spatial variation in water chemistry. The experiment used a -80°C freezer as a "time machine." Bacterial isolates and water samples were frozen for later use, allowing transplantation of older isolates "forward in time" and newer isolates "backward in time." Surprisingly, local maladaptation predominated over local adaptation in both space and time. Such local maladaptation may indicate that adaptation, or the analogous species sorting process, fails to keep pace with temporal fluctuations in water chemistry. This hypothesis could be tested with more finely resolved temporal data. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  20. Adaptive Architecture - a Spatial Objective

    DEFF Research Database (Denmark)

    Unterrainer, Walter

    2011-01-01

    New challenges of a fast changing society with new social phenomena as well as growing environmental problems ask for rethinking our habitats on all scales and reflecting our design methods to produce them. Many Megacities prepare with big projects against dramatic environmental threats (New York...... detail in itself, does not create humanity: We have today enough of superficial and rather bad architecture which is modern.´ There is nothing to add on....... the weakest point in the development towards a more sustainable architecture on all scales, the problems and solutions are discussed as spatial challenges, including all aspects of spatial creations and spatial retrofitting. To get to the point: The ´sustainable´ in ´sustainable architecture´ is reduced...... in too many buildings to implementations of new technologies, in its worst examples reduced to meaningless applications of new technologies to rather mediocre architecture. I am not arguing in general against new building technologies and I have been involved myself in developments of new building skins...

  1. Signal Adaptive System for Space/Spatial-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Veselin N. Ivanović

    2009-01-01

    Full Text Available This paper outlines the development of a multiple-clock-cycle implementation (MCI of a signal adaptive two-dimensional (2D system for space/spatial-frequency (S/SF signal analysis. The design is based on a method for improved S/SF representation of the analyzed 2D signals, also proposed here. The proposed MCI design optimizes critical design performances related to hardware complexity, making it a suitable system for real time implementation on an integrated chip. Additionally, the design allows the implemented system to take a variable number of clock cycles (CLKs (the only necessary ones regarding desirable—2D Wigner distribution-presentation of autoterms in different frequency-frequency points during the execution. This ability represents a major advantage of the proposed design which helps to optimize the time required for execution and produce an improved, cross-terms-free S/SF signal representation. The design has been verified by a field-programmable gate array (FPGA circuit design, capable of performing S/SF analysis of 2D signals in real time.

  2. The adaptive value of habitat preferences from a multi-scale spatial perspective: insights from marsh-nesting avian species

    Directory of Open Access Journals (Sweden)

    Jan Jedlikowski

    2017-03-01

    Full Text Available Background Habitat selection and its adaptive outcomes are crucial features for animal life-history strategies. Nevertheless, congruence between habitat preferences and breeding success has been rarely demonstrated, which may result from the single-scale evaluation of animal choices. As habitat selection is a complex multi-scale process in many groups of animal species, investigating adaptiveness of habitat selection in a multi-scale framework is crucial. In this study, we explore whether habitat preferences acting at different spatial scales enhance the fitness of bird species, and check the appropriateness of single vs. multi-scale models. We expected that variables found to be more important for habitat selection at individual scale(s, would coherently play a major role in affecting nest survival at the same scale(s. Methods We considered habitat preferences of two Rallidae species, little crake (Zapornia parva and water rail (Rallus aquaticus, at three spatial scales (landscape, territory, and nest-site and related them to nest survival. Single-scale versus multi-scale models (GLS and glmmPQL were compared to check which model better described adaptiveness of habitat preferences. Consistency between the effect of variables on habitat selection and on nest survival was checked to investigate their adaptive value. Results In both species, multi-scale models for nest survival were more supported than single-scale ones. In little crake, the multi-scale model indicated vegetation density and water depth at the territory scale, as well as vegetation height at nest-site scale, as the most important variables. The first two variables were among the most important for nest survival and habitat selection, and the coherent effects suggested the adaptive value of habitat preferences. In water rail, the multi-scale model of nest survival showed vegetation density at territory scale and extent of emergent vegetation within landscape scale as the most

  3. Spatially adaptive hp refinement approach for PN neutron transport equation using spectral element method

    International Nuclear Information System (INIS)

    Nahavandi, N.; Minuchehr, A.; Zolfaghari, A.; Abbasi, M.

    2015-01-01

    Highlights: • Powerful hp-SEM refinement approach for P N neutron transport equation has been presented. • The method provides great geometrical flexibility and lower computational cost. • There is a capability of using arbitrary high order and non uniform meshes. • Both posteriori and priori local error estimation approaches have been employed. • High accurate results are compared against other common adaptive and uniform grids. - Abstract: In this work we presented the adaptive hp-SEM approach which is obtained from the incorporation of Spectral Element Method (SEM) and adaptive hp refinement. The SEM nodal discretization and hp adaptive grid-refinement for even-parity Boltzmann neutron transport equation creates powerful grid refinement approach with high accuracy solutions. In this regard a computer code has been developed to solve multi-group neutron transport equation in one-dimensional geometry using even-parity transport theory. The spatial dependence of flux has been developed via SEM method with Lobatto orthogonal polynomial. Two commonly error estimation approaches, the posteriori and the priori has been implemented. The incorporation of SEM nodal discretization method and adaptive hp grid refinement leads to high accurate solutions. Coarser meshes efficiency and significant reduction of computer program runtime in comparison with other common refining methods and uniform meshing approaches is tested along several well-known transport benchmarks

  4. Cross case analysis of institutions and adaptive capacity in The Netherlands: Do institutions for spatial planning, water and nature management in The Netherlands enhance the capacity of society to adapt to climate change?

    NARCIS (Netherlands)

    Meijerink, S.; Bergsma, E.; Gupta, J.; Jong, P.; Klostermann, J.E.M.; Termeer, C.J.A.M.

    2010-01-01

    In this working document we aim to answer the following question: Do institutions for spatial planning, water and nature management in the Netherlands enhance the capacity of society to adapt to climate change? To answer this question we have first reviewed the literature on adaptive governance and

  5. Adaptive evolution of Escherichia coli to Ciprofloxacin in controlled stress environments: emergence of tolerance in spatial and temporal gradients

    Science.gov (United States)

    Deng, J.; Sanford, R. A.; Dong, Y.; Shechtman, L. A.; Zhou, L.; Alcalde, R.; Werth, C. J.; Fouke, B. W.

    2016-12-01

    Microorganisms in nature have evolved in response to a variety of environmental stresses, including gradients of temperature, pH, substrate availability and aqueous chemistry. While environmental stresses are considered to be the driving forces of adaptive evolution, the impact and extent of any specific stress needed to drive such changes has not been well characterized. In this study, the antibiotic Ciprofloxacin was used as a stressor and systematically applied to E. coli st. 307 cells via a spatial gradient in a microfluidic pore network and a temporal gradient in batch cultures. The microfluidic device facilitated in vitro real-time tracking of bacterial abundances and dynamic spatial distributions in response to the gradients of both the antibiotic and nutrients. Cells collected from the microfluidic device showed growth on plates containing up to 10-times the original minimum inhibition concentration (MIC). In batch systems, Ciprofloxacin was used to evaluate adaptive responses via temporal gradients, in which the stressor concentration was incrementally increased over time with each transfer of the culture after 24 hours of growth. Responses of E. coli 307 to these stress patterns were measured by quantifying changes in the MIC for Ciprofloxacin. Over a period of 18 days of step-wise concentration increments, bacterial cells were observed to acquire tolerance gradually and eventually adapt to a 28-fold increase in the original MIC. Samples at different stages within the temporal Ciprofloxacin gradient treatment show different extents of resistance. All samples exhibited resistance exceeding the highest exposure stress concentration. In combination with the spatial and temporal gradient systems, this work provides the first comprehensive measure of the dynamic resistance of E. coli in response to Ciprofloxacin concentration gradients. These will provide invaluable insights to understand the effects of antibiotic stresses on bacterial adaptive evolution in

  6. Brain Activity Stimulated by Prism Adaptation Tasks Utilized for the Treatment of Unilateral Spatial Neglect: A Study with fNIRS

    Directory of Open Access Journals (Sweden)

    Hiroshi Taniguchi

    2012-01-01

    Full Text Available We investigated the neurological basis for efficacy of prism adaptation therapy, which is used for the treatment of poststroke unilateral spatial neglect (USN. Study subjects were 6 USN-positive (+, 6 USN-negative patients, and 6 healthy volunteer control subjects. USN was identified by the Behavioural Inattention Test (BIT. During the tasks, brain activity was assessed with fNIRS via changes in oxyHb concentration per unit length. There was no significant difference in the number of errors in the task between the 3 groups. However, in the USN(+ group there was a significantly greater reduction in oxyHb levels in the right parietal association cortex during the prism adaptation task than in the other 2 groups (<0.05. There was an immediate improvement in USN symptoms as well as a significant increase in oxyHb levels during the prism adaptation in the channels covering the right frontal and parietal lobes in 2 patients in the USN(+ group (<0.05. This result suggested that decreased activity in the right parietal association cortex, which is related to spatial perception, during the prism adaptation task and task-induced reorganization of the right frontal and parietal areas were involved in improvement in USN symptoms.

  7. Spatial eigensolution analysis of energy-stable flux reconstruction schemes and influence of the numerical flux on accuracy and robustness

    Science.gov (United States)

    Mengaldo, Gianmarco; De Grazia, Daniele; Moura, Rodrigo C.; Sherwin, Spencer J.

    2018-04-01

    This study focuses on the dispersion and diffusion characteristics of high-order energy-stable flux reconstruction (ESFR) schemes via the spatial eigensolution analysis framework proposed in [1]. The analysis is performed for five ESFR schemes, where the parameter 'c' dictating the properties of the specific scheme recovered is chosen such that it spans the entire class of ESFR methods, also referred to as VCJH schemes, proposed in [2]. In particular, we used five values of 'c', two that correspond to its lower and upper bounds and the others that identify three schemes that are linked to common high-order methods, namely the ESFR recovering two versions of discontinuous Galerkin methods and one recovering the spectral difference scheme. The performance of each scheme is assessed when using different numerical intercell fluxes (e.g. different levels of upwinding), ranging from "under-" to "over-upwinding". In contrast to the more common temporal analysis, the spatial eigensolution analysis framework adopted here allows one to grasp crucial insights into the diffusion and dispersion properties of FR schemes for problems involving non-periodic boundary conditions, typically found in open-flow problems, including turbulence, unsteady aerodynamics and aeroacoustics.

  8. Framework for mapping the drivers of coastal vulnerability and spatial decision making for climate-change adaptation: A case study from Maharashtra, India.

    Science.gov (United States)

    Krishnan, Pandian; Ananthan, Pachampalayam Shanmugam; Purvaja, Ramachandran; Joyson Joe Jeevamani, Jeyapaul; Amali Infantina, John; Srinivasa Rao, Cherukumalli; Anand, Arur; Mahendra, Ranganalli Somashekharappa; Sekar, Iyyapa; Kareemulla, Kalakada; Biswas, Amit; Kalpana Sastry, Regulagedda; Ramesh, Ramachandran

    2018-05-31

    The impacts of climate change are of particular concern to the coastal region of tropical countries like India, which are exposed to cyclones, floods, tsunami, seawater intrusion, etc. Climate-change adaptation presupposes comprehensive assessment of vulnerability status. Studies so far relied either on remote sensing-based spatial mapping of physical vulnerability or on certain socio-economic aspects with limited scope for upscaling or replication. The current study is an attempt to develop a holistic and robust framework to assess the vulnerability of coastal India at different levels. We propose and estimate cumulative vulnerability index (CVI) as a function of exposure, sensitivity and adaptive capacity, at the village level, using nationally comparable and credible datasets. The exposure index (EI) was determined at the village level by decomposing the spatial multi-hazard maps, while sensitivity (SI) and adaptive capacity indices (ACI) were estimated using 23 indicators, covering social and economic aspects. The indicators were identified through the literature review, expert consultations, opinion survey, and were further validated through statistical tests. The socio-economic vulnerability index (SEVI) was constructed as a function of sensitivity and adaptive capacity for planning grassroot-level interventions and adaptation strategies. The framework was piloted in Sindhudurg, a coastal district in Maharashtra, India. It comprises 317 villages, spread across three taluks viz., Devgad, Malvan and Vengurla. The villages in Sindhudurg were ranked based on this multi-criteria approach. Based on CVI values, 92 villages (30%) in Sindhudurg were identified as highly vulnerable. We propose a decision tool for identifying villages vulnerable to changing climate, based on their level of sensitivity and adaptive capacity in a two-dimensional matrix, thus aiding in planning location-specific interventions. Here, vulnerability indicators are classified and designated as

  9. A New Perspective on Changing Arctic Marine Ecosystems: Panarchy Adaptive Cycles in Pan-Arctic Spatial and Temporal Scales

    Science.gov (United States)

    Wiese, F. K.; Huntington, H. P.; Carmack, E.; Wassmann, P. F. J.; Leu, E. S.; Gradinger, R.

    2016-02-01

    Changes in the physical/biological interactions in the Arctic are occurring across a variety of spatial and temporal scales and may be mitigated or strengthened based on varying rates of evolutionary adaptation. A novel way to view these interactions and their social relevance is through the systems theory perspective of "Panarchy" proposed by Gunderson and Holling. Panarchy is an interdisciplinary approach in which structures, scales and linkages of complex-adaptive systems, including those of nature (e.g. ocean), humans (e.g. economics), and combined social-ecological systems (e.g. institutions that govern natural resource use), are mapped across multiple space and time scales in continual and interactive adaptive cycles of growth, accumulation, restructuring and renewal. In complex-adaptive systems the dynamics at a given scale are generally dominated by a small number of key internal variables that are forced by one or more external variables. The stability of such a system is characterized by its resilience, i.e. its capacity to absorb disturbance and re-organize while undergoing change, so as to retain essentially similar function, structure, identity and feedbacks. It is in the capacity of a system to cope with pressures and adversities such as exploitation, warming, governance restrictions, competition, etc. that resilience embraces human and natural systems as complex entities continually adapting through cycles of change. In this paper we explore processes at four linked spatial domains in the Arctic Ocean and link it to ecosystem resilience and re-organization characteristics. From this we derive a series of hypotheses concerning the biological responses to future physical changes and suggest ways how Panarchy theory can be applied to observational strategies to help detect early signs of environmental shifts affecting marine system services and functions. We close by discussing possible implications of the Panarchy framework for policy and governance.

  10. A comparison of the adaptations of strains of Lymantria dispar multiple nucleopolyhedrovirus to hosts from spatially isolated populations

    Science.gov (United States)

    V.V. Martemyanov; J.D. Podgwaite; I.A. Belousova; S.V. Pavlushin; J.M. Slavicek; O.A. Baturina; M.R. Kabilov; A.V. Ilyinykh

    2017-01-01

    The adaptation of pathogens to either their hosts or to environmental conditions is the focus of many current ecological studies. In this work we compared the ability of six spatially-distant Lymantria dispar (gypsy moth) multiple nucleopolyhedrovirus (LdMNPV) strains (three from eastern North America and three from central Asia) to induce acute...

  11. From Collective Adaptive Systems to Human Centric Computation and Back: Spatial Model Checking for Medical Imaging

    Directory of Open Access Journals (Sweden)

    Gina Belmonte

    2016-07-01

    Full Text Available Recent research on formal verification for Collective Adaptive Systems (CAS pushed advancements in spatial and spatio-temporal model checking, and as a side result provided novel image analysis methodologies, rooted in logical methods for topological spaces. Medical Imaging (MI is a field where such technologies show potential for ground-breaking innovation. In this position paper, we present a preliminary investigation centred on applications of spatial model checking to MI. The focus is shifted from pure logics to a mixture of logical, statistical and algorithmic approaches, driven by the logical nature intrinsic to the specification of the properties of interest in the field. As a result, novel operators are introduced, that could as well be brought back to the setting of CAS.

  12. SAMPLING ADAPTIVE STRATEGY AND SPATIAL ORGANISATION ESTIMATION OF SOIL ANIMAL COMMUNITIES AT VARIOUS HIERARCHICAL LEVELS OF URBANISED TERRITORIES

    Directory of Open Access Journals (Sweden)

    Baljuk J.A.

    2014-12-01

    Full Text Available In work the algorithm of adaptive strategy of optimum spatial sampling for studying of the spatial organisation of communities of soil animals in the conditions of an urbanization have been presented. As operating variables the principal components obtained as a result of the analysis of the field data on soil penetration resistance, soils electrical conductivity and density of a forest stand, collected on a quasiregular grid have been used. The locations of experimental polygons have been stated by means of program ESAP. The sampling has been made on a regular grid within experimental polygons. The biogeocoenological estimation of experimental polygons have been made on a basis of A.L.Belgard's ecomorphic analysis. The spatial configuration of biogeocoenosis types has been established on the basis of the data of earth remote sensing and the analysis of digital elevation model. The algorithm was suggested which allows to reveal the spatial organisation of soil animal communities at investigated point, biogeocoenosis, and landscape.

  13. Spatial adaptation as the Madurese migrant resilience form at urban informal sector workers settlement: a case study of Kotalama settlement - Malang

    Science.gov (United States)

    Asikin, Damayanti; Antariksa; Dwi Wulandari, Lisa; Indira Rukmi, Wara

    2017-12-01

    Migration is the movement of the population that will bring the change of society's behavior because of the adjustments occuring at the destination of migrant area. The availability of houses in urban area is not a proportional comparison to the increasing of limited housing space, thus it encourages urban migrants to adapt to the existing conditions. Adaptation will be closely linked to the resilience of migrants in the process of interacting with their environment. The theory of urban settlement architecture continues to grow constantly, so the used paradigm should be interdisciplinary. Thereby, the understanding of adaptation, which is used will concern to various aspects of physical and non-physical environment, and it is viewed as a process and product of human interactions with the environment holistically. Malang city is one of the migration destinations of Madurese people since 1930s, and Kotalama Malang settlement is the settlement that holds the largest Madurese migrant working in informal sector, which has been developed since 1950s. This study was conducted to determine the spatial adaptation of Madurese migrants in urban settlement area as a resilience form towards their settlement environment. The qualitative descriptive method with the discourse analysis approach of searching the data through the observation and the in-depth interview of key person were used to know the adaptation process that happened. The study result indicated that spatial adaptation as a process and product on meso and micro scale conducted by Madurese migrants was the form of resilience towards their settlement environment.

  14. A spatiotemporal model for the LTE uplink: Spatially interacting tandem queues approach

    KAUST Repository

    Gharbieh, Mohammad

    2017-07-31

    With the proliferation of the Internet-of-things (IoT), there is an undeniable consensus that cellular LTE networks will have to support a dramatically larger number of uplink connections. This is true since most of the devices to be added incur machine-type communications which is dominantly upstream. Can current LTE network withstand this challenge? To answer this question, the joint performance of random access process and the uplink data transmission should be investigated. These two problems have been classically treated in the literature in a disjoint fashion. In this paper, they are jointly analyzed as an inseparable couple. To do that, a tandem queuing model is adopted whereby devices are represented as spatially interacting queues. The interaction between queues is governed by the mutual inter-cell and intra-cell interference. To that end, a joint stochastic geometry and queueing theory model is exploited to study this problem and a spatiotemporal analytical model is developed accordingly. Network stability and scalability are two prime performance criteria for performance assessment. In light of these two criteria, the developed model is poised to offer valuable insights into efficient access and resource allocation strategies.

  15. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface

    Science.gov (United States)

    Rouse, A. G.; Williams, J. J.; Wheeler, J. J.; Moran, D. W.

    2016-10-01

    Objective. Electrocorticography (ECoG) has been used for a range of applications including electrophysiological mapping, epilepsy monitoring, and more recently as a recording modality for brain-computer interfaces (BCIs). Studies that examine ECoG electrodes designed and implanted chronically solely for BCI applications remain limited. The present study explored how two key factors influence chronic, closed-loop ECoG BCI: (i) the effect of inter-electrode distance on BCI performance and (ii) the differences in neural adaptation and performance when fixed versus adaptive BCI decoding weights are used. Approach. The amplitudes of epidural micro-ECoG signals between 75 and 105 Hz with 300 μm diameter electrodes were used for one-dimensional and two-dimensional BCI tasks. The effect of inter-electrode distance on BCI control was tested between 3 and 15 mm. Additionally, the performance and cortical modulation differences between constant, fixed decoding using a small subset of channels versus adaptive decoding weights using the entire array were explored. Main results. Successful BCI control was possible with two electrodes separated by 9 and 15 mm. Performance decreased and the signals became more correlated when the electrodes were only 3 mm apart. BCI performance in a 2D BCI task improved significantly when using adaptive decoding weights (80%-90%) compared to using constant, fixed weights (50%-60%). Additionally, modulation increased for channels previously unavailable for BCI control under the fixed decoding scheme upon switching to the adaptive, all-channel scheme. Significance. Our results clearly show that neural activity under a BCI recording electrode (which we define as a ‘cortical control column’) readily adapts to generate an appropriate control signal. These results show that the practical minimal spatial resolution of these control columns with micro-ECoG BCI is likely on the order of 3 mm. Additionally, they show that the combination and

  16. [Effect of spatial location on the generality of block-wise conflict adaptation between different types of scripts].

    Science.gov (United States)

    Watanabe, Yurina; Yoshizaki, Kazuhito

    2014-10-01

    This study aimed to investigate the generality of conflict adaptation associated with block-wise conflict frequency between two types of stimulus scripts (Kanji and Hiragana). To this end, we examined whether the modulation of the compatibility effect with one type of script depending on block-wise conflict frequency (75% versus 25% generalized to the other type of script whose block-wise conflict frequency was kept constant (50%), using the Spatial Stroop task. In Experiment 1, 16 participants were required to identify the target orientation (up or down) presented in the upper or lower visual-field. The results showed that block-wise conflict adaptation with one type of stimulus script generalized to the other. The procedure in Experiment 2 was the same as that in Experiment 1, except that the presentation location differed between the two types of stimulus scripts. We did not find a generalization from one script to the other. These results suggest that presentation location is a critical factor contributing to the generality of block-wise conflict adaptation.

  17. Spatially Explicit Assessment of Ecosystem Resilience: An Approach to Adapt to Climate Changes

    Directory of Open Access Journals (Sweden)

    Haiming Yan

    2014-01-01

    Full Text Available The ecosystem resilience plays a key role in maintaining a steady flow of ecosystem services and enables quick and flexible responses to climate changes, and maintaining or restoring the ecosystem resilience of forests is a necessary societal adaptation to climate change; however, there is a great lack of spatially explicit ecosystem resilience assessments. Drawing on principles of the ecosystem resilience highlighted in the literature, we built on the theory of dissipative structures to develop a conceptual model of the ecosystem resilience of forests. A hierarchical indicator system was designed with the influencing factors of the forest ecosystem resilience, including the stand conditions and the ecological memory, which were further disaggregated into specific indicators. Furthermore, indicator weights were determined with the analytic hierarchy process (AHP and the coefficient of variation method. Based on the remote sensing data and forest inventory data and so forth, the resilience index of forests was calculated. The result suggests that there is significant spatial heterogeneity of the ecosystem resilience of forests, indicating it is feasible to generate large-scale ecosystem resilience maps with this assessment model, and the results can provide a scientific basis for the conservation of forests, which is of great significance to the climate change mitigation.

  18. Adaptive spatial filtering for daytime satellite quantum key distribution

    Science.gov (United States)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2014-11-01

    The rate of secure key generation (SKG) in quantum key distribution (QKD) is adversely affected by optical noise and loss in the quantum channel. In a free-space atmospheric channel, the scattering of sunlight into the channel can lead to quantum bit error ratios (QBERs) sufficiently large to preclude SKG. Furthermore, atmospheric turbulence limits the degree to which spatial filtering can reduce sky noise without introducing signal losses. A system simulation quantifies the potential benefit of tracking and higher-order adaptive optics (AO) technologies to SKG rates in a daytime satellite engagement scenario. The simulations are performed assuming propagation from a low-Earth orbit (LEO) satellite to a terrestrial receiver that includes an AO system comprised of a Shack-Hartmann wave-front sensor (SHWFS) and a continuous-face-sheet deformable mirror (DM). The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain waveoptics hardware emulator. Secure key generation rates are then calculated for the decoy state QKD protocol as a function of the receiver field of view (FOV) for various pointing angles. The results show that at FOVs smaller than previously considered, AO technologies can enhance SKG rates in daylight and even enable SKG where it would otherwise be prohibited as a consequence of either background optical noise or signal loss due to turbulence effects.

  19. Spatially distinct response of rice yield to autonomous adaptation under the CMIP5 multi-model projections

    Science.gov (United States)

    Shin, Yonghee; Lee, Eun-Jeong; Im, Eun-Soon; Jung, Il-Won

    2017-02-01

    Rice ( Oryza sativa L.) is a very important staple crop, as it feeds more than half of the world's population. Numerous studies have focused on the negative impacts of climate change on rice production. However, there is little debate on which region of the world is more vulnerable to climate change and how adaptation to this change can mitigate the negative impacts on rice production. We investigated the impacts of climate change on rice yield, based on simulations combining a global crop model, M-GAZE, and Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model projections. Our focus was the impact of mitigating emission forcings (representative concentration pathway RCP 4.5 vs. RCP 8.5) and autonomous adaptation (i.e., changing crop variety and planting date) on rice yield. In general, our results showed that climate change due to anthropogenic warming leads to a significant reduction in rice yield. However, autonomous adaptation provides the potential to reduce the negative impact of global warming on rice yields in a spatially distinct manner. The adaptation was less beneficial for countries located at a low latitude (e.g., Cambodia, Thailand, Brazil) compared to mid-latitude countries (e.g., USA, China, Pakistan), as regional climates at the lower latitudes are already near the upper temperature thresholds for acceptable rice growth. These findings suggest that the socioeconomic effects from rice production in lowlatitude countries can be highly vulnerable to anthropogenic global warming. Therefore, these countries need to be accountable to develop transformative adaptation strategies, such as adopting (or developing) heat-tolerant varieties, and/or improve irrigation systems and fertilizer use efficiency.

  20. A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level.

    Directory of Open Access Journals (Sweden)

    Amanda Bourne

    Full Text Available Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from

  1. A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level

    Science.gov (United States)

    Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I.; Midgley, Guy

    2016-01-01

    Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa

  2. Adaptation, Spatial Heterogeneity, and the Vulnerability of Agricultural Systems to Climate Change and CO2 Fertilization: An Integrated Assessment Approach

    International Nuclear Information System (INIS)

    Antle, J.M.; Capalbo, S.M.; Elliott, E.T.; Paustian, K.H.

    2004-01-01

    In this paper we develop economic measures of vulnerability to climate change with and without adaptation in agricultural production systems. We implement these measures using coupled, site-specific ecosystem and economic simulation models. This modeling approach has two key features needed to study the response of agricultural production systems to climate change: it represents adaptation as an endogenous, non-marginal economic response to climate change; and it provides the capability to represent the spatial variability in bio-physical and economic conditions that interact with adaptive responses. We apply this approach to the dryland grain production systems of the Northern Plains region of the United States. The results support the hypothesis that the most adverse impacts on net returns distributions tend to occur in the areas with the poorest resource endowments and when mitigating effects of CO2 fertilization and adaptation are absent. We find that relative and absolute measures of vulnerability depend on complex interactions between climate change, CO2 level, adaptation, and economic conditions such as relative output prices. The relationship between relative vulnerability and resource endowments varies with assumptions about climate change, adaptation, and economic conditions. Vulnerability measured with respect to an absolute threshold is inversely related to resource endowments in all cases investigated

  3. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    Science.gov (United States)

    Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; Kiefer, Jacob; Bazarov, Ivan

    2015-02-01

    The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.

  4. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    Directory of Open Access Journals (Sweden)

    Jared Maxson

    2015-02-01

    Full Text Available The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.

  5. The spatial patterns of directional phenotypic selection.

    Science.gov (United States)

    Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M

    2013-11-01

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  6. The spatial patterns of directional phenotypic selection

    KAUST Repository

    Siepielski, Adam M.

    2013-09-12

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  7. PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras.

    Science.gov (United States)

    Zheng, Lei; Lukac, Rastislav; Wu, Xiaolin; Zhang, David

    2009-04-01

    Single-sensor digital color cameras use a process called color demosiacking to produce full color images from the data captured by a color filter array (CAF). The quality of demosiacked images is degraded due to the sensor noise introduced during the image acquisition process. The conventional solution to combating CFA sensor noise is demosiacking first, followed by a separate denoising processing. This strategy will generate many noise-caused color artifacts in the demosiacking process, which are hard to remove in the denoising process. Few denoising schemes that work directly on the CFA images have been presented because of the difficulties arisen from the red, green and blue interlaced mosaic pattern, yet a well-designed "denoising first and demosiacking later" scheme can have advantages such as less noise-caused color artifacts and cost-effective implementation. This paper presents a principle component analysis (PCA)-based spatially-adaptive denoising algorithm, which works directly on the CFA data using a supporting window to analyze the local image statistics. By exploiting the spatial and spectral correlations existing in the CFA image, the proposed method can effectively suppress noise while preserving color edges and details. Experiments using both simulated and real CFA images indicate that the proposed scheme outperforms many existing approaches, including those sophisticated demosiacking and denoising schemes, in terms of both objective measurement and visual evaluation.

  8. Spatial, Hysteretic, and Adaptive Host-Guest Chemistry in a Metal-Organic Framework with Open Watson-Crick Sites.

    Science.gov (United States)

    Cai, Hong; Li, Mian; Lin, Xiao-Rong; Chen, Wei; Chen, Guang-Hui; Huang, Xiao-Chun; Li, Dan

    2015-09-01

    Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site-specific recognition takes advantage of cooperative spatial effects, as in local folding in protein-DNA binding. Herein, we report a new nucleobase-tagged metal-organic framework (MOF), namely ZnBTCA (BTC=benzene-1,3,5-tricarboxyl, A=adenine), in which the exposed Watson-Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson-Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host-guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine-thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Performance of Fast AMC in E-UTRAN Uplink

    DEFF Research Database (Denmark)

    Rosa, Claudio; López Villa, Dimas; Úbeda Castellanos, Carlos

    2008-01-01

    Evolved (E-) UTRA is currently being standardized as a long term evolution (LTE) of the 3GPP radio access technology. One of the goals of E-UTRA is to achieve 2-4 times the spectral efficiency and user throughputs compared to HSUPA/HSDPA [1]. Support for fast link adaptation based on adaptive...... and interference conditions. It is shown that despite measurement errors and the high variability of uplink inter-cell interference, fast AMC can boost the capacity of E-UTRA uplink by approximately 20% to 25%....

  10. Modeling and Mangement of InterCell Interference in Future Generation Wireless Networks

    KAUST Repository

    Tabassum, Hina

    2012-12-01

    There has been a rapid growth in the data rate carried by cellular services, and this increase along with the emergence of new multimedia applications have motivated the 3rd Generation Partnership (3GPP) Project to launch Long-Term Evolution (LTE) [1]. LTE is the latest standard in the mobile network technology and is designed to meet the ubiquitous demands of next-generation mobile networks. LTE assures significant spectral and energy efficiency gains in both the uplink and down- link with low latency. Multiple access schemes such as Orthogonal Frequency Division Aultiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) which is a modified version of OFDMA have been recently adopted in 3GPP LTE downlink and uplink, respectively [1]. A typical feature of OFDMA is the decomposition of available bandwidth into multiple narrow orthogonal subcarriers. The orthogonality among subcarriers causes minimal intra-cell interference, however, the inter-cell interference (ICI) incurred on a given subcarrier is relatively impulsive and poses a fundamental challenge for the network designers. Moreover, as the number of interferers on a given subcarrier can be relatively limited it may not be accurate to model ICI as a Gaussian random variable by invoking the central limit theorem. The nature of ICI relies on a variety of indeterministic parameters which include frequency reuse factor, channel conditions, scheduling decisions, transmit power, and location of the interferers. This thesis presents a combination of algorithmic and theoretical studies for efficient modeling and management of ICI via radio resource management. In the preliminary phase, we focus on developing and analyzing the performance of several centralized and distributed interference mitigation and rate maximization algorithms. These algorithms relies on optimizing the spectrum allocation and user’s transmission powers to maximize the system capacity. Even though, the developed

  11. Spatial Modeling Of Infant Mortality Rate In South Central Timor Regency Using GWLR Method With Adaptive Bisquare Kernel And Gaussian Kernel

    Directory of Open Access Journals (Sweden)

    Teguh Prawono Sabat

    2017-08-01

    Full Text Available Geographically Weighted Logistic Regression (GWLR was regression model consider the spatial factor, which could be used to analyze the IMR. The number of Infant Mortality as big as 100 cases in 2015 or 12 per 1000 live birth in South Central Timor Regency. The aim of this study was to determine the best modeling of GWLR with fixed weighting function and Adaptive Gaussian Kernel in the case of infant mortality in South Central Timor District in 2015. The response variable (Y in this study was a case of infant mortality, while variable predictor was the percentage of neonatal first visit (KN1 (X1, the percentage of neonatal visit 3 times (Complete KN (X2, the percentage of pregnant get Fe tablet (X3, percentage of poor families pre prosperous (X4. This was a non-reactive study, which is a measurement which individuals surveyed did not realize that they are part of a study, with analysis unit in 32 sub-districts of South Central Timor Districts. Data analysis used open source program that was Excel, R program, Quantum GIS and GWR4. The best GWLR spatial modeling with Adaptive Gaussian Kernel weighting function, a global model parameters GWLR Adaptive Gaussian Kernel weighting function obtained by g (x = 0.941086 - 0,892506X4, GWLR local models with adaptive Kernel bisquare weighting function in the 13 Districts were obtained g(x = 0 − 0X4, factors that affect the cases of infant mortality in 13 sub-districts of South Central Timor Regency in 2015 was the percentage of poor families pre prosperous.

  12. Multichannel Spatial Auditory Display for Speed Communications

    Science.gov (United States)

    Begault, Durand R.; Erbe, Tom

    1994-01-01

    A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplifiedhead-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four-letter call signs used by launch personnel at NASA against diotic speech babble. Spatial positions at 30 degree azimuth increments were evaluated. The results from eight subjects showed a maximum intelligibility improvement of about 6-7 dB when the signal was spatialized to 60 or 90 degree azimuth positions.

  13. Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver

    Science.gov (United States)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2016-02-01

    Spatial filtering is an important technique for reducing sky background noise in a satellite quantum key distribution downlink receiver. Atmospheric turbulence limits the extent to which spatial filtering can reduce sky noise without introducing signal losses. Using atmospheric propagation and compensation simulations, the potential benefit of adaptive optics (AO) to secure key generation (SKG) is quantified. Simulations are performed assuming optical propagation from a low-Earth-orbit satellite to a terrestrial receiver that includes AO. Higher-order AO correction is modeled assuming a Shack-Hartmann wavefront sensor and a continuous-face-sheet deformable mirror. The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain wave-optics hardware emulator. SKG rates are calculated for a decoy-state protocol as a function of the receiver field of view for various strengths of turbulence, sky radiances, and pointing angles. The results show that at fields of view smaller than those discussed by others, AO technologies can enhance SKG rates in daylight and enable SKG where it would otherwise be prohibited as a consequence of background optical noise and signal loss due to propagation and turbulence effects.

  14. Sharpening vision by adapting to flicker

    Science.gov (United States)

    Arnold, Derek H.; Williams, Jeremy D.; Phipps, Natasha E.; Goodale, Melvyn A.

    2016-01-01

    Human vision is surprisingly malleable. A static stimulus can seem to move after prolonged exposure to movement (the motion aftereffect), and exposure to tilted lines can make vertical lines seem oppositely tilted (the tilt aftereffect). The paradigm used to induce such distortions (adaptation) can provide powerful insights into the computations underlying human visual experience. Previously spatial form and stimulus dynamics were thought to be encoded independently, but here we show that adaptation to stimulus dynamics can sharpen form perception. We find that fast flicker adaptation (FFAd) shifts the tuning of face perception to higher spatial frequencies, enhances the acuity of spatial vision—allowing people to localize inputs with greater precision and to read finer scaled text, and it selectively reduces sensitivity to coarse-scale form signals. These findings are consistent with two interrelated influences: FFAd reduces the responsiveness of magnocellular neurons (which are important for encoding dynamics, but can have poor spatial resolution), and magnocellular responses contribute coarse spatial scale information when the visual system synthesizes form signals. Consequently, when magnocellular responses are mitigated via FFAd, human form perception is transiently sharpened because “blur” signals are mitigated. PMID:27791115

  15. A Bayesian spatial assimilation scheme for snow coverage observations in a gridded snow model

    Directory of Open Access Journals (Sweden)

    S. Kolberg

    2006-01-01

    Full Text Available A method for assimilating remotely sensed snow covered area (SCA into the snow subroutine of a grid distributed precipitation-runoff model (PRM is presented. The PRM is assumed to simulate the snow state in each grid cell by a snow depletion curve (SDC, which relates that cell's SCA to its snow cover mass balance. The assimilation is based on Bayes' theorem, which requires a joint prior distribution of the SDC variables in all the grid cells. In this paper we propose a spatial model for this prior distribution, and include similarities and dependencies among the grid cells. Used to represent the PRM simulated snow cover state, our joint prior model regards two elevation gradients and a degree-day factor as global variables, rather than describing their effect separately for each cell. This transformation results in smooth normalised surfaces for the two related mass balance variables, supporting a strong inter-cell dependency in their joint prior model. The global features and spatial interdependency in the prior model cause each SCA observation to provide information for many grid cells. The spatial approach similarly facilitates the utilisation of observed discharge. Assimilation of SCA data using the proposed spatial model is evaluated in a 2400 km2 mountainous region in central Norway (61° N, 9° E, based on two Landsat 7 ETM+ images generalized to 1 km2 resolution. An image acquired on 11 May, a week before the peak flood, removes 78% of the variance in the remaining snow storage. Even an image from 4 May, less than a week after the melt onset, reduces this variance by 53%. These results are largely improved compared to a cell-by-cell independent assimilation routine previously reported. Including observed discharge in the updating information improves the 4 May results, but has weak effect on 11 May. Estimated elevation gradients are shown to be sensitive to informational deficits occurring at high altitude, where snowmelt has not started

  16. Development of Adaptive Feedback Control System of Both Spatial and Temporal Beam Shaping for UV-Laser Light Source for RF Gun

    CERN Document Server

    Tomizawa, H; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Yanagida, K

    2004-01-01

    The ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from a photo-cathode rf gun. We have been developing highly qualified UV-laser pulse as a light source of the rf gun for an injector candidate of future light sources. The gun cavity is a single-cell pillbox, and the copper inner wall is used as a photo cathode. The electron beam was accelerated up to 4.1 MeV at the maximum electric field on the cathode surface of 175 MV/m. For emittance compensation, two solenoid coils were used. As the first test run, with a microlens array as a simple spatial shaper, we obtained a minimum emittance value of 2 π·mm·mrad with a beam energy of 3.1 MeV, holding its charge to 0.1 nC/bunch. In the next test run, we prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. We applied the both adaptive optics to automatically shape the bot...

  17. Landscape structure and the speed of adaptation

    International Nuclear Information System (INIS)

    Claudino, Elder S.; Campos, Paulo R.A.

    2014-01-01

    The role of fragmentation in the adaptive process is addressed. We investigate how landscape structure affects the speed of adaptation in a spatially structured population model. As models of fragmented landscapes, here we simulate the percolation maps and the fractal landscapes. In the latter the degree of spatial autocorrelation can be suited. We verified that fragmentation can effectively affect the adaptive process. The examination of the fixation rates and speed of adaptation discloses the dichotomy exhibited by percolation maps and fractal landscapes. In the latter, there is a smooth change in the pace of the adaptation process, as the landscapes become more aggregated higher fixation rates and speed of adaptation are obtained. On the other hand, in random percolation the geometry of the percolating cluster matters. Thus, the scenario depends on whether the system is below or above the percolation threshold. - Highlights: • The role of fragmentation on the adaptive process is addressed. • Our approach makes the linkage between population genetics and landscape ecology. • Fragmentation affects gene flow and thus influences the speed of adaptation. • The level of clumping determines how the speed of adaptation is influenced

  18. Dim small targets detection based on self-adaptive caliber temporal-spatial filtering

    Science.gov (United States)

    Fan, Xiangsuo; Xu, Zhiyong; Zhang, Jianlin; Huang, Yongmei; Peng, Zhenming

    2017-09-01

    To boost the detect ability of dim small targets, this paper began by using improved anisotropy for background prediction (IABP), followed by target enhancement by improved high-order cumulates (HQS). Finally, on the basis of image pre-processing, to address the problem of missed and wrong detection caused by fixed caliber of traditional pipeline filtering, this paper used targets' multi-frame movement correlation in the time-space domain, combined with the scale-space theory, to propose a temporal-spatial filtering algorithm which allows the caliber to make self-adaptive changes according to the changes of the targets' scale, effectively solving the detection-related issues brought by unchanged caliber and decreased/increased size of the targets. Experiments showed that the improved anisotropic background predication could be loyal to the true background of the original image to the maximum extent, presenting a superior overall performance to other background prediction methods; the improved HQS significantly increased the signal-noise ratio of images; when the signal-noise ratio was lower than 2.6 dB, this detection algorithm could effectively eliminate noise and detect targets. For the algorithm, the lowest signal-to-noise ratio of the detectable target is 0.37.

  19. Adaptive proxy map server for efficient vector spatial data rendering

    Science.gov (United States)

    Sayar, Ahmet

    2013-01-01

    The rapid transmission of vector map data over the Internet is becoming a bottleneck of spatial data delivery and visualization in web-based environment because of increasing data amount and limited network bandwidth. In order to improve both the transmission and rendering performances of vector spatial data over the Internet, we propose a proxy map server enabling parallel vector data fetching as well as caching to improve the performance of web-based map servers in a dynamic environment. Proxy map server is placed seamlessly anywhere between the client and the final services, intercepting users' requests. It employs an efficient parallelization technique based on spatial proximity and data density in case distributed replica exists for the same spatial data. The effectiveness of the proposed technique is proved at the end of the article by the application of creating map images enriched with earthquake seismic data records.

  20. Survival and Adaptation of the Thermophilic Species Geobacillus thermantarcticus in Simulated Spatial Conditions

    Science.gov (United States)

    Di Donato, Paola; Romano, Ida; Mastascusa, Vincenza; Poli, Annarita; Orlando, Pierangelo; Pugliese, Mariagabriella; Nicolaus, Barbara

    2018-03-01

    Astrobiology studies the origin and evolution of life on Earth and in the universe. According to the panspermia theory, life on Earth could have emerged from bacterial species transported by meteorites, that were able to adapt and proliferate on our planet. Therefore, the study of extremophiles, i.e. bacterial species able to live in extreme terrestrial environments, can be relevant to Astrobiology studies. In this work we described the ability of the thermophilic species Geobacillus thermantarcticus to survive after exposition to simulated spatial conditions including temperature's variation, desiccation, X-rays and UVC irradiation. The response to the exposition to the space conditions was assessed at a molecular level by studying the changes in the morphology, the lipid and protein patterns, the nucleic acids. G. thermantarcticus survived to the exposition to all the stressing conditions examined, since it was able to restart cellular growth in comparable levels to control experiments carried out in the optimal growth conditions. Survival was elicited by changing proteins and lipids distribution, and by protecting the DNA's integrity.

  1. Adaptation strategies and approaches: Chapter 2

    Science.gov (United States)

    Patricia Butler; Chris Swanston; Maria Janowiak; Linda Parker; Matt St. Pierre; Leslie. Brandt

    2012-01-01

    A wealth of information is available on climate change adaptation, but much of it is very broad and of limited use at the finer spatial scales most relevant to land managers. This chapter contains a "menu" of adaptation actions and provides land managers in northern Wisconsin with a range of options to help forest ecosystems adapt to climate change impacts....

  2. Collaborative use of geodesign tools to support decision-making on adaptation to climate change

    NARCIS (Netherlands)

    Eikelboom, T.; Janssen, R.

    2017-01-01

    Spatial planners around the world need to make climate change adaptation plans. Climate adaptation planning requires combining spatial information with stakeholder values. This study demonstrates the potential of geodesign tools as a mean to integrate spatial analysis with stakeholder participation

  3. MPEG DASH SRD : Spatial Relationship Description

    NARCIS (Netherlands)

    Niamut, O.A.; Thomas, E.D.R.; D'Acunto, L.; Concolato, C.; Denoual, F.; Yong Lim, S.

    2016-01-01

    This paper presents the Spatial Representation Description (SRD)feature of the second amendment of MPEG DASH standard part 1, 23009-1:2014 [1]. SRD is an approach for streaming only spatial sub-parts of a video to display devices, in combination with the form of adaptive multi-rate streaming that is

  4. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Kongshaug, Jesper; Søndergaard, Karin

    2015-01-01

    offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... to be static, and no longer acts as a kind of spatial constancy maintaining stability and order? Moreover, what new potentials open in lighting design? This book is one of four books that is published in connection with the research project entitled LED Lighting; Interdisciplinary LED Lighting Research...

  5. Development of a Discrete Spatial-Temporal SEIR Simulator for Modeling Infectious Diseases

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, S.A.

    2000-11-01

    Multiple techniques have been developed to model the temporal evolution of infectious diseases. Some of these techniques have also been adapted to model the spatial evolution of the disease. This report examines the application of one such technique, the SEIR model, to the spatial and temporal evolution of disease. Applications of the SEIR model are reviewed briefly and an adaptation to the traditional SEIR model is presented. This adaptation allows for modeling the spatial evolution of the disease stages at the individual level. The transmission of the disease between individuals is modeled explicitly through the use of exposure likelihood functions rather than the global transmission rate applied to populations in the traditional implementation of the SEIR model. These adaptations allow for the consideration of spatially variable (heterogeneous) susceptibility and immunity within the population. The adaptations also allow for modeling both contagious and non-contagious diseases. The results of a number of numerical experiments to explore the effect of model parameters on the spread of an example disease are presented.

  6. An adaptive sampling and windowing interrogation method in PIV

    Science.gov (United States)

    Theunissen, R.; Scarano, F.; Riethmuller, M. L.

    2007-01-01

    This study proposes a cross-correlation based PIV image interrogation algorithm that adapts the number of interrogation windows and their size to the image properties and to the flow conditions. The proposed methodology releases the constraint of uniform sampling rate (Cartesian mesh) and spatial resolution (uniform window size) commonly adopted in PIV interrogation. Especially in non-optimal experimental conditions where the flow seeding is inhomogeneous, this leads either to loss of robustness (too few particles per window) or measurement precision (too large or coarsely spaced interrogation windows). Two criteria are investigated, namely adaptation to the local signal content in the image and adaptation to local flow conditions. The implementation of the adaptive criteria within a recursive interrogation method is described. The location and size of the interrogation windows are locally adapted to the image signal (i.e., seeding density). Also the local window spacing (commonly set by the overlap factor) is put in relation with the spatial variation of the velocity field. The viability of the method is illustrated over two experimental cases where the limitation of a uniform interrogation approach appears clearly: a shock-wave-boundary layer interaction and an aircraft vortex wake. The examples show that the spatial sampling rate can be adapted to the actual flow features and that the interrogation window size can be arranged so as to follow the spatial distribution of seeding particle images and flow velocity fluctuations. In comparison with the uniform interrogation technique, the spatial resolution is locally enhanced while in poorly seeded regions the level of robustness of the analysis (signal-to-noise ratio) is kept almost constant.

  7. Autonomous spatially adaptive sampling in experiments based on curvature, statistical error and sample spacing with applications in LDA measurements

    Science.gov (United States)

    Theunissen, Raf; Kadosh, Jesse S.; Allen, Christian B.

    2015-06-01

    Spatially varying signals are typically sampled by collecting uniformly spaced samples irrespective of the signal content. For signals with inhomogeneous information content, this leads to unnecessarily dense sampling in regions of low interest or insufficient sample density at important features, or both. A new adaptive sampling technique is presented directing sample collection in proportion to local information content, capturing adequately the short-period features while sparsely sampling less dynamic regions. The proposed method incorporates a data-adapted sampling strategy on the basis of signal curvature, sample space-filling, variable experimental uncertainty and iterative improvement. Numerical assessment has indicated a reduction in the number of samples required to achieve a predefined uncertainty level overall while improving local accuracy for important features. The potential of the proposed method has been further demonstrated on the basis of Laser Doppler Anemometry experiments examining the wake behind a NACA0012 airfoil and the boundary layer characterisation of a flat plate.

  8. Interference Aware Inter-Cell Rank Coordination for 5G Wide Area Networks

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Pedersen, Klaus I.; Mogensen, Preben Elgaard

    2017-01-01

    Multiple receive and transmit antennas can be used to improve the spectral efficiency by transmitting over multiple independent streams. In addition, multiple receive antennas facilitate interference suppression through the use of interference rejection combining receivers. Rank adaptation algori...

  9. Successful adaptation to climate change across scales

    International Nuclear Information System (INIS)

    Adger, W.N.; Arnell, N.W.; University of Southampton; Tompkins, E.L.; University of East Anglia, Norwich; University of Southampton

    2005-01-01

    Climate change impacts and responses are presently observed in physical and ecological systems. Adaptation to these impacts is increasingly being observed in both physical and ecological systems as well as in human adjustments to resource availability and risk at different spatial and societal scales. We review the nature of adaptation and the implications of different spatial scales for these processes. We outline a set of normative evaluative criteria for judging the success of adaptations at different scales. We argue that elements of effectiveness, efficiency, equity and legitimacy are important in judging success in terms of the sustainability of development pathways into an uncertain future. We further argue that each of these elements of decision-making is implicit within presently formulated scenarios of socio-economic futures of both emission trajectories and adaptation, though with different weighting. The process by which adaptations are to be judged at different scales will involve new and challenging institutional processes. (author)

  10. Combination of Adaptive Feedback Cancellation and Binaural Adaptive Filtering in Hearing Aids

    Directory of Open Access Journals (Sweden)

    Anthony Lombard

    2009-01-01

    Full Text Available We study a system combining adaptive feedback cancellation and adaptive filtering connecting inputs from both ears for signal enhancement in hearing aids. For the first time, such a binaural system is analyzed in terms of system stability, convergence of the algorithms, and possible interaction effects. As major outcomes of this study, a new stability condition adapted to the considered binaural scenario is presented, some already existing and commonly used feedback cancellation performance measures for the unilateral case are adapted to the binaural case, and possible interaction effects between the algorithms are identified. For illustration purposes, a blind source separation algorithm has been chosen as an example for adaptive binaural spatial filtering. Experimental results for binaural hearing aids confirm the theoretical findings and the validity of the new measures.

  11. Evolution of cooperation through adaptive interaction in a spatial prisoner's dilemma game

    Science.gov (United States)

    Pan, Qiuhui; Liu, Xuesong; Bao, Honglin; Su, Yu; He, Mingfeng

    2018-02-01

    In this paper, we study the effect of adaptive interaction on the evolution of cooperation in a spatial prisoner's dilemma game. The connections of players are co-evolutionary with cooperation; whether adjacent players can play the prisoner's dilemma game is associated with the strategies they took in the preceding round. If a player defected in the preceding round, his neighbors will refuse to play the prisoner's dilemma game with him in accordance with a certain probability distribution. We use the disconnecting strength to represent this probability. We discuss the evolution of cooperation with different values of temptation to defect, sucker's payoff and disconnecting strength. The simulation results show that cooperation can be significantly enhanced through increasing the value of the disconnecting strength. In addition, the increase in disconnecting strength can improve the cooperators' ability to resist the increase in temptation and the decrease in reward. We study the parameter ranges for three different evolutionary results: cooperators extinction, defectors extinction, cooperator and defector co-existence. Meanwhile, we recruited volunteers and designed a human behavioral experiment to verify the theoretical simulation results. The punishment of disconnection has a positive effect on cooperation. A higher disconnecting strength will enhance cooperation more significantly. Our research findings reveal some significant insights into efficient mechanisms of the evolution of cooperation.

  12. Adaptive Wireless Transceiver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless technologies are an increasingly attractive means for spatial data, input, manipulation, and distribution. Mobitrum is proposing an innovative Adaptive...

  13. Selective spatial enhancement: Attentional spotlight size impacts spatial but not temporal perception.

    Science.gov (United States)

    Goodhew, Stephanie C; Shen, Elizabeth; Edwards, Mark

    2016-08-01

    An important but often neglected aspect of attention is how changes in the attentional spotlight size impact perception. The zoom-lens model predicts that a small ("focal") attentional spotlight enhances all aspects of perception relative to a larger ("diffuse" spotlight). However, based on the physiological properties of the two major classes of visual cells (magnocellular and parvocellular neurons) we predicted trade-offs in spatial and temporal acuity as a function of spotlight size. Contrary to both of these accounts, however, across two experiments we found that attentional spotlight size affected spatial acuity, such that spatial acuity was enhanced for a focal relative to a diffuse spotlight, whereas the same modulations in spotlight size had no impact on temporal acuity. This likely reflects the function of attention: to induce the high spatial resolution of the fovea in periphery, where spatial resolution is poor but temporal resolution is good. It is adaptive, therefore, for the attentional spotlight to enhance spatial acuity, whereas enhancing temporal acuity does not confer the same benefit.

  14. Smart thermal patch for adaptive thermotherapy

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-11-12

    A smart thermal patch for adaptive thermotherapy is provided. In an embodiment, the patch can be a stretchable, non-polymeric, conductive thin film flexible and non-invasive body integrated mobile thermal heater with wireless control capabilities that can be used to provide adaptive thermotherapy. The patch can be geometrically and spatially tunable on various pain locations. Adaptability allows the amount of heating to be tuned based on the temperature of the treated portion.

  15. Adaptive social learning strategies in temporally and spatially varying environments : how temporal vs. spatial variation, number of cultural traits, and costs of learning influence the evolution of conformist-biased transmission, payoff-biased transmission, and individual learning.

    Science.gov (United States)

    Nakahashi, Wataru; Wakano, Joe Yuichiro; Henrich, Joseph

    2012-12-01

    Long before the origins of agriculture human ancestors had expanded across the globe into an immense variety of environments, from Australian deserts to Siberian tundra. Survival in these environments did not principally depend on genetic adaptations, but instead on evolved learning strategies that permitted the assembly of locally adaptive behavioral repertoires. To develop hypotheses about these learning strategies, we have modeled the evolution of learning strategies to assess what conditions and constraints favor which kinds of strategies. To build on prior work, we focus on clarifying how spatial variability, temporal variability, and the number of cultural traits influence the evolution of four types of strategies: (1) individual learning, (2) unbiased social learning, (3) payoff-biased social learning, and (4) conformist transmission. Using a combination of analytic and simulation methods, we show that spatial-but not temporal-variation strongly favors the emergence of conformist transmission. This effect intensifies when migration rates are relatively high and individual learning is costly. We also show that increasing the number of cultural traits above two favors the evolution of conformist transmission, which suggests that the assumption of only two traits in many models has been conservative. We close by discussing how (1) spatial variability represents only one way of introducing the low-level, nonadaptive phenotypic trait variation that so favors conformist transmission, the other obvious way being learning errors, and (2) our findings apply to the evolution of conformist transmission in social interactions. Throughout we emphasize how our models generate empirical predictions suitable for laboratory testing.

  16. Children's attention to task-relevant information accounts for relations between language and spatial cognition.

    Science.gov (United States)

    Miller, Hilary E; Simmering, Vanessa R

    2018-08-01

    Children's spatial language reliably predicts their spatial skills, but the nature of this relation is a source of debate. This investigation examined whether the mechanisms accounting for such relations are specific to language use or reflect a domain-general mechanism of selective attention. Experiment 1 examined whether 4-year-olds' spatial skills were predicted by their selective attention or their adaptive language use. Children completed (a) an attention task assessing attention to task-relevant color, size, and location cues; (b) a description task assessing adaptive language use to describe scenes varying in color, size, and location; and (c) three spatial tasks. There was correspondence between the cue types that children attended to and produced across description and attention tasks. Adaptive language use was predicted by both children's attention and task-related language production, suggesting that selective attention underlies skills in using language adaptively. After controlling for age, gender, receptive vocabulary, and adaptive language use, spatial skills were predicted by children's selective attention. The attention score predicted variance in spatial performance previously accounted for by adaptive language use. Experiment 2 followed up on the attention task (Experiment 2a) and description task (Experiment 2b) from Experiment 1 to assess whether performance in the tasks related to selective attention or task-specific demands. Performance in Experiments 2a and 2b paralleled that in Experiment 1, suggesting that the effects in Experiment 1 reflected children's selective attention skills. These findings show that selective attention is a central factor supporting spatial skill development that could account for many effects previously attributed to children's language use. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Evaluating spatial memory function in mice: a within-subjects comparison between the water maze test and its adaptation to dry land.

    Science.gov (United States)

    Llano Lopez, L; Hauser, J; Feldon, J; Gargiulo, P A; Yee, B K

    2010-05-01

    The Morris water maze (WM) is a common spatial memory test in rats. It has been adapted for evaluating genetic manipulations in mice. One major acknowledged problem of this cross-species translation is floating. We investigated here in mice the feasibility and practicality of an alternative paradigm-the cheeseboard (CB), which is a dry version of the WM, in a within-subject design allowing direct comparison with the conventional WM. Under identical task demands (reference or working memory), mice learned in the CB as efficiently as in the WM. Furthermore, individual differences in learning rate correlated between the two reference memory tests conducted separately in the two mazes. However, no such correlation was found with respect to reference memory retention or working memory performance. This study demonstrated that the CB is an effective alternative to the WM as spatial cognition test. Additional tests in the CB confirmed that the mice relied on extra maze cues in their spatial search. We would recommend the CB as a valuable addition to, rather than a replacement of the WM in phenotyping transgenic mice, because the two apparatus might diverge in the ability to detect individual differences in various domains of mnemonic functions.

  18. Adaptive assay of pulmonary radioactive aerosol with an external detector

    International Nuclear Information System (INIS)

    Talmor, A.

    1989-12-01

    The applicability of the adaptive assay method was examined and then used to reduce the error caused by non-uniform spatial distribution. A computer program simulates adaptive assay of pulmonary aerosol within a standard man lungs, and compares its results with the results of static measurement. In the extreme hypothetical situation in which the aerosol is concentrated entirely in the left lung, and the static measurement is performed under the right arm, the errors obtained by calibration the static measurement on assumption of uniform spatial distribution, is as large as a factor 5 of the true value. In the same situation the adaptive assay result errs by less than 20%. In another situation, in which the aerosol is distributed in both lungs, and its concentration is higher in the pleura and near the back, the error obtained by calibrating the static measurement on the assumption of uniform spatial distribution, is as large as 30%, while the adaptive assay result errs by less than 2%. (author)

  19. Temporal dark adaptation to spatially complex backgrounds : effect of an additional light source

    NARCIS (Netherlands)

    Stokkermans, M.G.M.; Heynderickx, I.E.J.

    2014-01-01

    Visual adaptation (and especially dark adaptation) has been studied extensively in the past, however, mainly addressing adaptation to fully dark backgrounds. At this stage, it is unclear whether these results are not too simple to be applied to complex situations, such as predicting adaptation of a

  20. Spatially Representing Vulnerability to Extreme Rain Events Using Midwestern Farmers' Objective and Perceived Attributes of Adaptive Capacity.

    Science.gov (United States)

    Gardezi, Maaz; Arbuckle, J Gordon

    2017-11-29

    Potential climate-change-related impacts to agriculture in the upper Midwest pose serious economic and ecological risks to the U.S. and the global economy. On a local level, farmers are at the forefront of responding to the impacts of climate change. Hence, it is important to understand how farmers and their farm operations may be more or less vulnerable to changes in the climate. A vulnerability index is a tool commonly used by researchers and practitioners to represent the geographical distribution of vulnerability in response to global change. Most vulnerability assessments measure objective adaptive capacity using secondary data collected by governmental agencies. However, other scholarship on human behavior has noted that sociocultural and cognitive factors, such as risk perceptions and perceived capacity, are consequential for modulating people's actual vulnerability. Thus, traditional assessments can potentially overlook people's subjective perceptions of changes in climate and extreme weather events and the extent to which people feel prepared to take necessary steps to cope with and respond to the negative effects of climate change. This article addresses this knowledge gap by: (1) incorporating perceived adaptive capacity into a vulnerability assessment; (2) using spatial smoothing to aggregate individual-level vulnerabilities to the county level; and (3) evaluating the relationships among different dimensions of adaptive capacity to examine whether perceived capacity should be integrated into vulnerability assessments. The result suggests that vulnerability assessments that rely only on objective measures might miss important sociocognitive dimensions of capacity. Vulnerability indices and maps presented in this article can inform engagement strategies for improving environmental sustainability in the region. © 2017 Society for Risk Analysis.

  1. Efficient Pseudorecursive Evaluation Schemes for Non-adaptive Sparse Grids

    KAUST Repository

    Buse, Gerrit; Pflü ger, Dirk; Jacob, Riko

    2014-01-01

    In this work we propose novel algorithms for storing and evaluating sparse grid functions, operating on regular (not spatially adaptive), yet potentially dimensionally adaptive grid types. Besides regular sparse grids our approach includes truncated

  2. A qualitative assessment of climate adaptation options and some estimates of adaptation costs

    International Nuclear Information System (INIS)

    Van Ierland, E.C.; De Bruin, K.; Dellink, R.B.; Ruijs, A.

    2006-12-01

    The Routeplanner project aims to provide a 'systematic assessment' of potential adaptation options to respond to climate change in the Netherlands in connection to spatial planning. The study is the result of a policy oriented project that took place between May and September 2006. The aim of the current study is to provide a 'qualitative assessment' of the direct and indirect effects of adaptation options and to provide an assessment of some of the costs and benefits of adaptation options. The present report presents and summarizes the results of all phases of the study: an inventory of adaptation options, a qualitative assessment of the effects of the adaptation options for the Netherlands in the long run, a database which allows to rank the various options according to a set of criteria and a relative ranking on the basis of these criteria. Finally, the report also contains the best available information on costs and benefits of various adaptation options.

  3. Peri-urbanisation and multifunctional adaptation of agriculture around Copenhagen

    DEFF Research Database (Denmark)

    Zasada, Ingo; Fertner, Christian; Piorr, Annette

    2011-01-01

    Peri-urbanisation, as a process of the physical expansion of settlement areas but also socio-economic transformation, has been recognised as a major spatial development beyond the urban fringes. Agriculture, the main land use actor in the hinterlands of many urban areas is increasingly affected b...... activities. Findings confirm that the differentiation of peri-urban processes is meaningful for the explanation of spatial distribution of farm adaptation strategies, particularly in the case of leisure and environmental oriented farm practices....... by urban encroachment, responds with adaptation strategies and farming activities to cope with the peri-urban framework conditions. Adaptation pathways encompass specialisation into horticulture as well as enhanced environmental and lifestyle orientation of farming – typical elements of multifunctional......Peri-urbanisation, as a process of the physical expansion of settlement areas but also socio-economic transformation, has been recognised as a major spatial development beyond the urban fringes. Agriculture, the main land use actor in the hinterlands of many urban areas is increasingly affected...

  4. Spatial consequences of bleaching adaptation in cat retinal ganglion cells.

    Science.gov (United States)

    Bonds, A B; Enroth-Cugell, C

    1981-01-01

    1. Experiments were conducted to study the effects of localized bleaching on the centre responses of rod-driven cat retinal ganglion cells. 2. Stimulation as far as 2 degrees from the bleaching site yielded responses which were reduced nearly as much as those generated at the bleaching site. Bleaching in the receptive field middle reduced responsiveness at a site 1 degrees peripheral more than bleaching at that peripheral site itself. 3. The effectiveness of a bleach in reducing centre responsiveness is related to the sensitivity of the region in which the bleach is applied. 4. Response reduction after a 0.2 degree bleach followed the same temporal pattern for concentric test spots of from 0.2 to 1.8 degrees in diameter, implying a substantially uniform spread of adaptation within these bounds. 5. A linear trade-off between fraction of rhodopsin and area bleached over a range of 8:1 yields the same pattern of response reduction, implying that the non-linear nature of bleaching adaptation is a property of the adaptation pool rather than independent photoreceptors. PMID:7320894

  5. Spatial Game Analytics and Visualization

    DEFF Research Database (Denmark)

    Drachen, Anders; Schubert, Matthias

    2013-01-01

    , techniques for spatial analysis had their share in these developments. However, the methods for analyzing and visualizing spatial and spatio-temporal patterns in player behavior being used by the game industry are not as diverse as the range of techniques utilized in game research, leaving room...... for a continuing development. This paper presents a review of current work on spatial and spatio-temporal game analytics across industry and research, describing and defining the key terminology, outlining current techniques and their application. We summarize the current problems and challenges in the field......The recently emerged field of game analytics and the development and adaptation of business intelligence techniques to support game design and development has given data-driven techniques a direct role in game development. Given that all digital games contain some sort of spatial operation...

  6. Analysis of the spatial and temporal variation of seasonal snow accumulation in alpine catchments using airborne laser scanning : basic research for the adaptation of spatially distributed hydrological models to mountain regions

    International Nuclear Information System (INIS)

    Helfricht, K.

    2014-01-01

    Information about the spatial distribution of snow accumulation is a prerequisitefor adaptating hydro-meteorological models to achieve realistic simulations of therunoff from mountain catchments. Therefore, the spatial snow depthdistribution in complex topography of ice-free terrain and glaciers was investigatedusing airborne laser scanning (ALS) data. This thesis presents for the first time an analysis of the persistence and the variability of the snow patterns at the end of five accumulation seasons in a comparatively large catchment. ALS derived seasonal surface elevation changes on glaciers were compared to the actual snow depths calculated from ground penetrating radar (GPR) measurements. Areas of increased deviations. In the investigated region, the ALS-derived snow depths on most of the glacier surface do not deviate markedly from actual snow depths. 75% of a the total area showed low inter-annual variability of standardized snow depths at the end of the five accumulation seasons. The high inter-annual variability of snow depths could be attributed to changes in the ice cover within the investigated 10-yearperiod for much of the remaining area. Avalanches and snow sloughs continuously contribute to the accumulation on glaciers, but their share of the total snow covervolume is small. The assimilation of SWE maps calculated from ALS data in the adaptation of snow-hydrological models to mountain catchments improved the results not only for the but also for the simulated snow cover distribution and for the mass balance of the glaciers. The results demonstrate that ALS data are a beneficial source for extensive analysis of snow patterns and for modeling the runoff from high Alpine catchments.(author) [de

  7. Adaptive Spatial Filter Based on Similarity Indices to Preserve the Neural Information on EEG Signals during On-Line Processing

    Directory of Open Access Journals (Sweden)

    Denis Delisle-Rodriguez

    2017-11-01

    Full Text Available This work presents a new on-line adaptive filter, which is based on a similarity analysis between standard electrode locations, in order to reduce artifacts and common interferences throughout electroencephalography (EEG signals, but preserving the useful information. Standard deviation and Concordance Correlation Coefficient (CCC between target electrodes and its correspondent neighbor electrodes are analyzed on sliding windows to select those neighbors that are highly correlated. Afterwards, a model based on CCC is applied to provide higher values of weight to those correlated electrodes with lower similarity to the target electrode. The approach was applied to brain computer-interfaces (BCIs based on Canonical Correlation Analysis (CCA to recognize 40 targets of steady-state visual evoked potential (SSVEP, providing an accuracy (ACC of 86.44 ± 2.81%. In addition, also using this approach, features of low frequency were selected in the pre-processing stage of another BCI to recognize gait planning. In this case, the recognition was significantly ( p < 0.01 improved for most of the subjects ( A C C ≥ 74.79 % , when compared with other BCIs based on Common Spatial Pattern, Filter Bank-Common Spatial Pattern, and Riemannian Geometry.

  8. Farming System Evolution and Adaptive Capacity: Insights for Adaptation Support

    Directory of Open Access Journals (Sweden)

    Jami L. Dixon

    2014-02-01

    Full Text Available Studies of climate impacts on agriculture and adaptation often provide current or future assessments, ignoring the historical contexts farming systems are situated within. We investigate how historical trends have influenced farming system adaptive capacity in Uganda using data from household surveys, semi-structured interviews, focus-group discussions and observations. By comparing two farming systems, we note three major findings: (1 similar trends in farming system evolution have had differential impacts on the diversity of farming systems; (2 trends have contributed to the erosion of informal social and cultural institutions and an increasing dependence on formal institutions; and (3 trade-offs between components of adaptive capacity are made at the farm-scale, thus influencing farming system adaptive capacity. To identify the actual impacts of future climate change and variability, it is important to recognize the dynamic nature of adaptation. In practice, areas identified for further adaptation support include: shift away from one-size-fits-all approach the identification and integration of appropriate modern farming method; a greater focus on building inclusive formal and informal institutions; and a more nuanced understanding regarding the roles and decision-making processes of influential, but external, actors. More research is needed to understand farm-scale trade-offs and the resulting impacts across spatial and temporal scales.

  9. Adaptive interrogation for 3D-PIV

    International Nuclear Information System (INIS)

    Novara, Matteo; Scarano, Fulvio; Ianiro, Andrea

    2013-01-01

    A method to adapt the shape and orientation of interrogation volumes for 3D-PIV motion analysis is introduced, aimed to increase the local spatial resolution. The main application of this approach is the detailed analysis of complex 3D and vortex-dominated flows that exhibit high vorticity in confined regions like shear layers and vortex filaments. The adaptive criterion is based on the analysis of the components of the local velocity gradient tensor, which returns the level of anisotropy of velocity spatial fluctuations. The principle to increase the local spatial resolution is based on the deformation of spherical isotropic interrogation regions, obtained by means of Gaussian weighting, into ellipsoids, with free choice of the principal axes and their directions. The interrogation region is contracted in the direction of the maximum velocity variation and elongated in the minimum one in order to maintain a constant interrogation volume. The adaptivity technique for three-dimensional PIV data takes advantage of the 3D topology of the flow, allowing increasing the spatial resolution not only in the case of shear layers, but also for vortex filaments, which is not possible for two-dimensional measurement in the plane normal to the vortex axis. The definition of the ellipsoidal interrogation region semi-axes is based on the singular values and singular directions of the local velocity gradient tensor as obtained by the singular values decomposition technique (SVD). The working principle is verified making use of numerical simulations of a shear layer and of a vortex filament. The application of the technique to data from a Tomo-PIV experiment conducted on a round jet, shows that the resolution of the shear layer at the jet exit can be considerably improved and an increase of about 25% in the vorticity peak is attained when the adaptive approach is applied. On the other hand, the peak vorticity description in the core of vortex rings is only slightly improved with

  10. Die Fledermaus: regarding optokinetic contrast sensitivity and light-adaptation, chicks are mice with wings.

    Directory of Open Access Journals (Sweden)

    Qing Shi

    Full Text Available Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity.We used the optokinetic response to characterize contrast sensitivity (CS in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1 daytime, cone-driven CS was tuned to spatial frequency; 2 nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3 daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4 daytime photopic CS was invariant with clock time.Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a "day/night" or "cone/rod" switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease.

  11. Adaptive Multidimensional Scaling : The Spatial Representation of Brand Consideration and Dissimilarity Judgments

    NARCIS (Netherlands)

    Bijmolt, T.H.A.; Wedel, M.; DeSarbo, W.S.

    2002-01-01

    We propose Adaptive Multidimensional Scaling (AMDS) for simultaneously deriving a brand map and market segments using consumer data on cognitive decision sets and brand dissimilarities.In AMDS, the judgment task is adapted to the individual respondent: dissimilarity judgments are collected only for

  12. Convergence acceleration of Navier-Stokes equation using adaptive wavelet method

    International Nuclear Information System (INIS)

    Kang, Hyung Min; Ghafoor, Imran; Lee, Do Hyung

    2010-01-01

    An efficient adaptive wavelet method is proposed for the enhancement of computational efficiency of the Navier-Stokes equations. The method is based on sparse point representation (SPR), which uses the wavelet decomposition and thresholding to obtain a sparsely distributed dataset. The threshold mechanism is modified in order to maintain the spatial accuracy of a conventional Navier-Stokes solver by adapting the threshold value to the order of spatial truncation error. The computational grid can be dynamically adapted to a transient solution to reflect local changes in the solution. The flux evaluation is then carried out only at the points of the adapted dataset, which reduces the computational effort and memory requirements. A stabilization technique is also implemented to avoid the additional numerical errors introduced by the threshold procedure. The numerical results of the adaptive wavelet method are compared with a conventional solver to validate the enhancement in computational efficiency of Navier-Stokes equations without the degeneration of the numerical accuracy of a conventional solver

  13. On the Potential of Full Duplex Performance in 5G Ultra-Dense Small Cell Networks

    DEFF Research Database (Denmark)

    Gatnau, Marta; Fleischer, Marko; Berardinelli, Gilberto

    2016-01-01

    inter-cell interference and traffic constraints. In this paper, we first study the self-interference cancellation capabilities by using a real demonstrator. Results show that achieving ~110 dB of cancellation is already possible with the current available technology, thus providing the required level...... of isolation to build an operational full duplex node. Secondly, we investigate the inter-cell interference and traffic constraints impact on the full duplex performance in 5th generation systems. System level results show that both the traffic and the inter-cell interference can significantly reduce...... the potential gain of full duplex with respect to half duplex. However, for large traffic asymmetry, full duplex can boost the performance of the lightly loaded link....

  14. Adaptive Planning for Resilient Coastal Waterfronts

    Directory of Open Access Journals (Sweden)

    Peter Christiaan van Veelen

    2016-11-01

    The method follows three basic steps: (1 assessing the spatial and timely synchronisation of adaptation measures with planned urban development projects and public and private infrastructure maintenance investments; (2 assessing the institutional and financial barriers to be removed in order to mainstream climate adaptation measures in these urban development processes, and (3 assessing what opportunities derived from urban development are able to ‘break through’ the path dependencies that lock-in more sustainable adaptive paths. The method is based on mapping all planned spatial investments in brownfield development, urban renovation, and maintenance projects of public and private infrastructure and assets and by assessing the effectiveness of prevailing policies. Using design research, new opportunities for adaptation are explored and assessed. The urban dynamics based adaptation pathways method is tested at two waterfront areas in Rotterdam (Feijenoord and New York (Red Hook. Both cases show that identifying intervention opportunities and potential transitional interventions is helpful in selecting and assessing adaptive pathways. Moreover, it helps to identify legal or financial arrangements that are needed to unlock the potential of adaptation paths. One of the key findings of the case study research is that in high density urban conditions there is limited potential to build resilience from household redevelopment or renovation, even when new complementary policies and regulative instruments that support buildinglevel resilience would be developed. District-wide flood protection is effective in terms of flood risk, but requires large-scale transformations of the waterfront zone to seize opportunities to develop integrated protection at low costs. This strategy, however, needs new governance structures and financial arrangements to redistribute costs and benefits fairly among stakeholders.

  15. Left-Deviating Prism Adaptation in Left Neglect Patient: Reflexions on a Negative Result

    Directory of Open Access Journals (Sweden)

    Jacques Luauté

    2012-01-01

    Full Text Available Adaptation to right-deviating prisms is a promising intervention for the rehabilitation of patients with left spatial neglect. In order to test the lateral specificity of prism adaptation on left neglect, the present study evaluated the effect of left-deviating prism on straight-ahead pointing movements and on several classical neuropsychological tests in a group of five right brain-damaged patients with left spatial neglect. A group of healthy subjects was also included for comparison purposes. After a single session of exposing simple manual pointing to left-deviating prisms, contrary to healthy controls, none of the patients showed a reliable change of the straight-ahead pointing movement in the dark. No significant modification of attentional paper-and-pencil tasks was either observed immediately or 2 hours after prism adaptation. These results suggest that the therapeutic effect of prism adaptation on left spatial neglect relies on a specific lateralized mechanism. Evidence for a directional effect for prism adaptation both in terms of the side of the visuomanual adaptation and therefore possibly in terms of the side of brain affected by the stimulation is discussed.

  16. Socio spatial adaptation as a resilience form of native unplanned settlement in confrontation with new planned settlement development pressure (case study: enclave native settlement in Serpong, Tangerang)

    Science.gov (United States)

    Ischak, Mohammad; Setioko, Bambang; Nurgandarum, Dedes

    2017-12-01

    Urban growth refers to expansion of a metropolitan into sub urban areas as the surrounding environment, with no exception of Jakarta city due to limited availability and high price of land within the city. The city of Jakarta, as a metropolitan, carries of expansion in its surrounding environment including Tangerang. Privat developers may an important role in this urban growth through their large scale of new settlement development project. The formation of establishment of enclave native unplanned sub urban settlement scattered within planned new settlement in Tangerang is to be an consequence of Jakarta urban growth. This fenomena could be comprehended as a form of resilience native settlement in confrontation with the new planned settlement pressure. The aim of this research, presented in this paper is to understand the socio-spatial concept of those enclave native settlement as an adaptation form to the new planned settlement pressure. Through descriptive qualitative research method, with indepth interview as a main research instrument, this research could depict or uncover the facts that there are various form of socio-spatial adaptation as the main theme of resilience native suburban settlement formation.

  17. Visuomotor adaptability in older adults with mild cognitive decline.

    Science.gov (United States)

    Schaffert, Jeffrey; Lee, Chi-Mei; Neill, Rebecca; Bo, Jin

    2017-02-01

    The current study examined the augmentation of error feedback on visuomotor adaptability in older adults with varying degrees of cognitive decline (assessed by the Montreal Cognitive Assessment; MoCA). Twenty-three participants performed a center-out computerized visuomotor adaptation task when the visual feedback of their hand movement error was presented in a regular (ratio=1:1) or enhanced (ratio=1:2) error feedback schedule. Results showed that older adults with lower scores on the MoCA had less adaptability than those with higher MoCA scores during the regular feedback schedule. However, participants demonstrated similar adaptability during the enhanced feedback schedule, regardless of their cognitive ability. Furthermore, individuals with lower MoCA scores showed larger after-effects in spatial control during the enhanced schedule compared to the regular schedule, whereas individuals with higher MoCA scores displayed the opposite pattern. Additional neuro-cognitive assessments revealed that spatial working memory and processing speed were positively related to motor adaptability during the regular scheduled but negatively related to adaptability during the enhanced schedule. We argue that individuals with mild cognitive decline employed different adaptation strategies when encountering enhanced visual feedback, suggesting older adults with mild cognitive impairment (MCI) may benefit from enhanced visual error feedback during sensorimotor adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Retrieval of Brain Tumors by Adaptive Spatial Pooling and Fisher Vector Representation.

    Science.gov (United States)

    Cheng, Jun; Yang, Wei; Huang, Meiyan; Huang, Wei; Jiang, Jun; Zhou, Yujia; Yang, Ru; Zhao, Jie; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-01-01

    Content-based image retrieval (CBIR) techniques have currently gained increasing popularity in the medical field because they can use numerous and valuable archived images to support clinical decisions. In this paper, we concentrate on developing a CBIR system for retrieving brain tumors in T1-weighted contrast-enhanced MRI images. Specifically, when the user roughly outlines the tumor region of a query image, brain tumor images in the database of the same pathological type are expected to be returned. We propose a novel feature extraction framework to improve the retrieval performance. The proposed framework consists of three steps. First, we augment the tumor region and use the augmented tumor region as the region of interest to incorporate informative contextual information. Second, the augmented tumor region is split into subregions by an adaptive spatial division method based on intensity orders; within each subregion, we extract raw image patches as local features. Third, we apply the Fisher kernel framework to aggregate the local features of each subregion into a respective single vector representation and concatenate these per-subregion vector representations to obtain an image-level signature. After feature extraction, a closed-form metric learning algorithm is applied to measure the similarity between the query image and database images. Extensive experiments are conducted on a large dataset of 3604 images with three types of brain tumors, namely, meningiomas, gliomas, and pituitary tumors. The mean average precision can reach 94.68%. Experimental results demonstrate the power of the proposed algorithm against some related state-of-the-art methods on the same dataset.

  19. eICIC functionality and performance for LTE HetNet co-channel deployments

    DEFF Research Database (Denmark)

    Pedersen, Klaus Ingemann; Wang, Yuanye; Soret, Beatriz

    2012-01-01

    . The network controlled time-domain enhanced inter-cell interference coordination (eICIC) concept is outlined by explaining the benefits and characteristics of this solution. Extensive system level performance results are presented with bursty and non-bursty traffic to demonstrate the eICIC concepts ability......Different technical solutions are enabling the move from macro-only scenarios towards heterogeneous networks with a mixture of different base station types. In this paper we focus on multi-layer LTE-Advanced networks, and especially address aspects related to co-channel interference management...... to dynamically adapt according to the traffic conditions....

  20. The Development of Spatial Frequency Biases in Face Recognition

    Science.gov (United States)

    Leonard, Hayley C.; Karmiloff-Smith, Annette; Johnson, Mark H.

    2010-01-01

    Previous research has suggested that a mid-band of spatial frequencies is critical to face recognition in adults, but few studies have explored the development of this bias in children. We present a paradigm adapted from the adult literature to test spatial frequency biases throughout development. Faces were presented on a screen with particular…

  1. Make way for the climate. National adaptation strategy. The interdepartmental memorandum

    International Nuclear Information System (INIS)

    2007-11-01

    This memorandum describes the outline of a national strategy for adaptation to the consequences of climate change. The memorandum is the first report of the Adapting Spatial Planning to Climate Change programme (ARK). [mk] [nl

  2. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  3. Neuromapping: Inflight Evaluation of Cognition and Adaptability

    Science.gov (United States)

    Kofman, I. S.; De Dios, Y. E.; Lawrence, K.; Schade, A.; Reschke, M. F.; Bloomberg, J. J.; Wood, S. J.; Mulavara, A. P.; Seidle, R. D.

    2016-01-01

    In consideration of the health and performance of crewmembers during flight and postflight, we are conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. Previous studies investigating sensorimotor adaptation to the microgravity environment longitudinally inflight have shown reduction in the ability to perform complex dual tasks. In this study we perform a series of tests investigating the longitudinal effects of adaptation to the microgravity environment and how it affects spatial cognition, manual visuo-motor adaption and dual tasking.

  4. A qualitative assessment of climate adaptation options and some estimates of adaptation costs

    International Nuclear Information System (INIS)

    Van Ierland, E.C.; De Bruin, K.; Dellink, R.B.; Ruijs, A.

    2007-02-01

    The Routeplanner project aims to provide a 'systematic assessment' of potential adaptation options to respond to climate change in the Netherlands in connection to spatial planning. The study is the result of a policy oriented project that took place between May and September 2006. The aim of the current study is to provide a 'qualitative assessment' of the direct and indirect effects of adaptation options and to provide an assessment of some of the costs and benefits of adaptation options. The present report presents and summarizes the results of all phases of the study: an inventory of adaptation options, a qualitative assessment of the effects of the adaptation options for the Netherlands in the long run, a database which allows to rank the various options according to a set of criteria and a relative ranking on the basis of these criteria. Finally, the report also contains the best available information on costs and benefits of various adaptation options. However, while conducting the study the project team observed that reliable information in this respect is in many cases still lacking and an urgent need exists for more detailed studies on costs and benefits of adaptation options and the design of the best options to cope with climate change

  5. Adaptive Analysis of Functional MRI Data

    International Nuclear Information System (INIS)

    Friman, Ola

    2003-01-01

    Functional Magnetic Resonance Imaging (fMRI) is a recently developed neuro-imaging technique with capacity to map neural activity with high spatial precision. To locate active brain areas, the method utilizes local blood oxygenation changes which are reflected as small intensity changes in a special type of MR images. The ability to non-invasively map brain functions provides new opportunities to unravel the mysteries and advance the understanding of the human brain, as well as to perform pre-surgical examinations in order to optimize surgical interventions. This dissertation introduces new approaches for the analysis of fMRI data. The detection of active brain areas is a challenging problem due to high noise levels and artifacts present in the data. A fundamental tool in the developed methods is Canonical Correlation Analysis (CCA). CCA is used in two novel ways. First as a method with the ability to fully exploit the spatio-temporal nature of fMRI data for detecting active brain areas. Established analysis approaches mainly focus on the temporal dimension of the data and they are for this reason commonly referred to as being mass-univariate. The new CCA detection method encompasses and generalizes the traditional mass-univariate methods and can in this terminology be viewed as a mass-multivariate approach. The concept of spatial basis functions is introduced as a spatial counterpart of the temporal basis functions already in use in fMRI analysis. The spatial basis functions implicitly perform an adaptive spatial filtering of the fMRI images, which significantly improves detection performance. It is also shown how prior information can be incorporated into the analysis by imposing constraints on the temporal and spatial models and a constrained version of CCA is devised to this end. A general Principal Component Analysis technique for generating and constraining temporal and spatial subspace models is proposed to be used in combination with the constrained CCA

  6. Overview of adaptive finite element analysis in computational geodynamics

    Science.gov (United States)

    May, D. A.; Schellart, W. P.; Moresi, L.

    2013-10-01

    The use of numerical models to develop insight and intuition into the dynamics of the Earth over geological time scales is a firmly established practice in the geodynamics community. As our depth of understanding grows, and hand-in-hand with improvements in analytical techniques and higher resolution remote sensing of the physical structure and state of the Earth, there is a continual need to develop more efficient, accurate and reliable numerical techniques. This is necessary to ensure that we can meet the challenge of generating robust conclusions, interpretations and predictions from improved observations. In adaptive numerical methods, the desire is generally to maximise the quality of the numerical solution for a given amount of computational effort. Neither of these terms has a unique, universal definition, but typically there is a trade off between the number of unknowns we can calculate to obtain a more accurate representation of the Earth, and the resources (time and computational memory) required to compute them. In the engineering community, this topic has been extensively examined using the adaptive finite element (AFE) method. Recently, the applicability of this technique to geodynamic processes has started to be explored. In this review we report on the current status and usage of spatially adaptive finite element analysis in the field of geodynamics. The objective of this review is to provide a brief introduction to the area of spatially adaptive finite analysis, including a summary of different techniques to define spatial adaptation and of different approaches to guide the adaptive process in order to control the discretisation error inherent within the numerical solution. An overview of the current state of the art in adaptive modelling in geodynamics is provided, together with a discussion pertaining to the issues related to using adaptive analysis techniques and perspectives for future research in this area. Additionally, we also provide a

  7. Spatial distributions of niche-constructing populations

    Directory of Open Access Journals (Sweden)

    Xiaozhuo Han

    2015-12-01

    Full Text Available Niche construction theory regards organisms not only as the object of natural selection but also an active subject that can change their own selective pressure through eco-evolutionary feedbacks. Through reviewing the existing works on the theoretical models of niche construction, here we present the progress made on how niche construction influences genetic structure of spatially structured populations and the spatial-temporal dynamics of metapopulations, with special focuses on mathematical models and simulation methods. The majority of results confirmed that niche construction can significantly alter the evolutionary trajectories of structured populations. Organism-environmental interactions induced by niche construction can have profound influence on the dynamics, competition and diversity of metapopulations. It can affect fine-scale spatially distribution of species and spatial heterogeneity of the environment. We further propose a few research directions with potentials, such as applying adaptive dynamics or spatial game theory to explore the effect of niche construction on phenotypic evolution and diversification.

  8. The science of adaptation. A framework for assessment

    International Nuclear Information System (INIS)

    Smit, B.; Burton, I.; Street, R.; Klein, R.J.T.; Maciver, D.C.

    1999-01-01

    This paper outlines what is meant by 'adaptation' to climate change, and how it might be addressed in the IPCC Assessments. Two roles of adaptation in the climate change field are identified: adaptation as part of impact assessment (where the key question is: what adaptations are likely?), and adaptation as part of the policy response (where the central question is: what adaptations are recommended?). The concept of adaptation has been adopted in several fields including climate impact assessment and policy development, risk management, and natural hazards research. A framework for systematically defining adaptations is based on three questions: (1) adaptation to what? (2) who or what adapts? and (3) how does adaptation occur? The paper demonstrates that, for adaptation purposes, climate extremes and variability are integral parts of climate change, along with shifts in mean conditions. Attributes for differentiating adaptations include purposefulness, timing, temporal and spatial scope, effects, form and performance. The framework provides a guide for the treatment of adaptation in the IPCC assessments, both in the assessment of impacts and in the evaluation of adaptive policy options. 64 refs

  9. Fused Adaptive Lasso for Spatial and Temporal Quantile Function Estimation

    KAUST Repository

    Sun, Ying; Wang, Huixia J.; Fuentes, Montserrat

    2015-01-01

    and temporal data with a fused adaptive Lasso penalty to accommodate the dependence in space and time. This method penalizes the difference among neighboring quantiles, hence it is desirable for applications with features ordered in time or space without

  10. Intelligent Context-Aware and Adaptive Interface for Mobile LBS.

    Science.gov (United States)

    Feng, Jiangfan; Liu, Yanhong

    2015-01-01

    Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results.

  11. Ground-based research on vestibular adaptation to g-level transitions

    NARCIS (Netherlands)

    Groen, Eric L.; Nooij, Suzanne A E; Bos, Jelte E.

    2008-01-01

    At TNO research is ongoing on neuro-vestibular adaptation to altered G-levels. It is well-known that during the first days in weightlessness 50-80% of all astronauts suffer from the Space Adaptation Syndrome (SAS), which involves space motion sickness, spatial disorientation and motion illusions.

  12. Non-Orthogonal Multiple Access for Large-Scale 5G Networks: Interference Aware Design

    KAUST Repository

    Ali, Konpal S.

    2017-09-18

    Non-orthogonal multiple access (NOMA) is promoted as a key component of 5G cellular networks. As the name implies, NOMA operation introduces intracell interference (i.e., interference arising within the cell) to the cellular operation. The intracell interference is managed by careful NOMA design (e.g., user clustering and resource allocation) along with successive interference cancellation. However, most of the proposed NOMA designs are agnostic to intercell interference (i.e., interference from outside the cell), which is a major performance limiting parameter in 5G networks. This article sheds light on the drastic negative-impact of intercell interference on the NOMA performance and advocates interference-aware NOMA design that jointly accounts for both intracell and intercell interference. To this end, a case study for fair NOMA operation is presented and intercell interference mitigation techniques for NOMA networks are discussed. This article also investigates the potential of integrating NOMA with two important 5G transmission schemes, namely, full duplex and device-to-device communication. This is important since the ambitious performance defined by the 3rd Generation Partnership Project (3GPP) for 5G is foreseen to be realized via seamless integration of several new technologies and transmission techniques.

  13. Spatial structure and climatic adaptation in African maize revealed by surveying SNP diversity in relation to global breeding and landrace panels.

    Directory of Open Access Journals (Sweden)

    Ola T Westengen

    Full Text Available BACKGROUND: Climate change threatens maize productivity in sub-Saharan Africa. To ensure food security, access to locally adapted genetic resources and varieties is an important adaptation measure. Most of the maize grown in Africa is a genetic mix of varieties introduced at different historic times following the birth of the trans-Atlantic economy, and knowledge about geographic structure and local adaptations is limited. METHODOLOGY: A panel of 48 accessions of maize representing various introduction routes and sources of historic and recent germplasm introductions in Africa was genotyped with the MaizeSNP50 array. Spatial genetic structure and genetic relationships in the African panel were analysed separately and in the context of a panel of 265 inbred lines representing global breeding material (based on 26,900 SNPs and a panel of 1127 landraces from the Americas (270 SNPs. Environmental association analysis was used to detect SNPs associated with three climatic variables based on the full 43,963 SNP dataset. CONCLUSIONS: The genetic structure is consistent between subsets of the data and the markers are well suited for resolving relationships and admixture among the accessions. The African accessions are structured in three clusters reflecting historical and current patterns of gene flow from the New World and within Africa. The Sahelian cluster reflects original introductions of Meso-American landraces via Europe and a modern introduction of temperate breeding material. The Western cluster reflects introduction of Coastal Brazilian landraces, as well as a Northeast-West spread of maize through Arabic trade routes across the continent. The Eastern cluster most strongly reflects gene flow from modern introduced tropical varieties. Controlling for population history in a linear model, we identify 79 SNPs associated with maximum temperature during the growing season. The associations located in genes of known importance for abiotic stress

  14. Multiscale Feature Model for Terrain Data Based on Adaptive Spatial Neighborhood

    Directory of Open Access Journals (Sweden)

    Huijie Zhang

    2013-01-01

    Full Text Available Multiresolution hierarchy based on features (FMRH has been applied in the field of terrain modeling and obtained significant results in real engineering. However, it is difficult to schedule multiresolution data in FMRH from external memory. This paper proposed new multiscale feature model and related strategies to cluster spatial data blocks and solve the scheduling problems of FMRH using spatial neighborhood. In the model, the nodes with similar error in the different layers should be in one cluster. On this basis, a space index algorithm for each cluster guided by Hilbert curve is proposed. It ensures that multi-resolution terrain data can be loaded without traversing the whole FMRH; therefore, the efficiency of data scheduling is improved. Moreover, a spatial closeness theorem of cluster is put forward and is also proved. It guarantees that the union of data blocks composites a whole terrain without any data loss. Finally, experiments have been carried out on many different large scale data sets, and the results demonstrate that the schedule time is shortened and the efficiency of I/O operation is apparently improved, which is important in real engineering.

  15. A Sparse Dictionary Learning-Based Adaptive Patch Inpainting Method for Thick Clouds Removal from High-Spatial Resolution Remote Sensing Imagery.

    Science.gov (United States)

    Meng, Fan; Yang, Xiaomei; Zhou, Chenghu; Li, Zhi

    2017-09-15

    Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features.

  16. BioSig: A bioinformatic system for studying the mechanism of intra-cell signaling

    OpenAIRE

    Parvin, B.; Cong, G.; Fontenay, G.; Taylor, J.; Henshall, R.; Barcellos-Hoff, M.H.

    2000-01-01

    Mapping inter-cell signaling pathways requires an integrated view of experimental and informatic protocols. BioSig provides the foundation of cataloging inter-cell responses as a function of particular conditioning, treatment, staining, etc. for either in vivo or in vitro experiments. This paper outlines the system architecture, a functional data model for representing experimental protocols, algorithms for image analysis, and the requried statistical analysis. The architecture provides...

  17. Attention modulates visual size adaptation.

    Science.gov (United States)

    Kreutzer, Sylvia; Fink, Gereon R; Weidner, Ralph

    2015-01-01

    The current study determined in healthy subjects (n = 16) whether size adaptation occurs at early, i.e., preattentive, levels of processing or whether higher cognitive processes such as attention can modulate the illusion. To investigate this issue, bottom-up stimulation was kept constant across conditions by using a single adaptation display containing both small and large adapter stimuli. Subjects' attention was directed to either the large or small adapter stimulus by means of a luminance detection task. When attention was directed toward the small as compared to the large adapter, the perceived size of the subsequent target was significantly increased. Data suggest that different size adaptation effects can be induced by one and the same stimulus depending on the current allocation of attention. This indicates that size adaptation is subject to attentional modulation. These findings are in line with previous research showing that transient as well as sustained attention modulates visual features, such as contrast sensitivity and spatial frequency, and influences adaptation in other contexts, such as motion adaptation (Alais & Blake, 1999; Lankheet & Verstraten, 1995). Based on a recently suggested model (Pooresmaeili, Arrighi, Biagi, & Morrone, 2013), according to which perceptual adaptation is based on local excitation and inhibition in V1, we conclude that guiding attention can boost these local processes in one or the other direction by increasing the weight of the attended adapter. In sum, perceptual adaptation, although reflected in changes of neural activity at early levels (as shown in the aforementioned study), is nevertheless subject to higher-order modulation.

  18. Does prism adaptation affect visual search in spatial neglect patients: A systematic review.

    Science.gov (United States)

    De Wit, Liselotte; Ten Brink, Antonia F; Visser-Meily, Johanna M A; Nijboer, Tanja C W

    2018-03-01

    Prism adaptation (PA) is a widely used intervention for (visuo-)spatial neglect. PA-induced improvements can be assessed by visual search tasks. It remains unclear which outcome measures are the most sensitive for the effects of PA in neglect. In this review, we aimed to evaluate PA effects on visual search measures. A systematic literature search was completed regarding PA intervention studies focusing on patients with neglect using visual search tasks. Information about study content and effectiveness was extracted. Out of 403 identified studies, 30 met the inclusion criteria. The quality of the studies was evaluated: Rankings were moderate-to-high for 7, and low for 23 studies. As feature search was only performed by five studies, low-to-moderate ranking, we were limited in drawing firm conclusions about the PA effect on feature search. All moderate-to-high-ranking studies investigated cancellation by measuring only omissions or hits. These studies found an overall improvement after PA. Measuring perseverations and total task duration provides more specific information about visual search. The two (low ranking) studies that measured this found an improvement after PA on perseverations and duration (while accuracy improved for one study and remained the same for the other). This review suggests there is an overall effect of PA on visual search, although complex visual search tasks and specific visual search measures are lacking. Suggestions for search measures that give insight in subcomponents of visual search are provided for future studies, such as perseverations, search path intersections, search consistency and using a speed-accuracy trade-off. © 2016 The British Psychological Society.

  19. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency.

    Science.gov (United States)

    Guilbert, Solenn M; Lambert, Herman; Rodrigue, Marc-Antoine; Fuchs, Margit; Landry, Jacques; Lavoie, Josée N

    2018-02-05

    BCL2-associated athanogene (BAG)-3 is viewed as a platform that would physically and functionally link distinct classes of molecular chaperones of the heat shock protein (HSP) family for the stabilization and clearance of damaged proteins. In this study, we show that HSPB8, a member of the small heat shock protein subfamily, cooperates with BAG3 to coordinate the sequestration of harmful proteins and the cellular adaptive response upon proteasome inhibition. Silencing of HSPB8, like depletion of BAG3, inhibited targeting of ubiquitinated proteins to the juxtanuclear aggresome, a mammalian system of spatial quality control. However, aggresome targeting was restored in BAG3-depleted cells by a mutant BAG3 defective in HSPB8 binding, uncoupling HSPB8 function from its binding to BAG3. Depletion of HSPB8 impaired formation of ubiquitinated microaggregates in an early phase and interfered with accurate modifications of the stress sensor p62/sequestosome (SQSTM)-1. This impairment correlated with decreased coupling of BAG3 to p62/SQSTM1 in response to stress, hindering Kelch-like ECH-associated protein (KEAP)-1 sequestration and stabilization of nuclear factor E2-related factor (Nrf)-2, an important arm of the antioxidant defense. Notably, the myopathy-associated mutation of BAG3 (P209L), which lies within the HSPB8-binding motif, deregulated the association between BAG3 and p62/SQSTM1 and the KEAP1-Nrf2 signaling axis. Together, our findings support a so-far-unrecognized role for the HSPB8-BAG3 connection in mounting of an efficient stress response, which may be involved in BAG3-related human diseases.-Guilbert, S. M., Lambert, H., Rodrigue, M.-A., Fuchs, M., Landry, J., Lavoie, J. N. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency.

  20. Use of dynamic grid adaption in the ASWR-method

    International Nuclear Information System (INIS)

    Graf, U.; Romstedt, P.; Werner, W.

    1985-01-01

    A dynamic grid adaption method has been developed for use with the ASWR-method. The method automatically adapts the number and position of the spatial meshpoints as the solution of hyperbolic or parabolic vector partial differential equations progresses in time. The mesh selection algorithm is based on the minimization of the L 2 -norm of the spatial discretization error. The method permits accurate calculation of the evolution of inhomogenities like wave fronts, shock layers and other sharp transitions, while generally using a coarse computational grid. The number of required mesh points is significantly reduced, relative to a fixed Eulerian grid. Since the mesh selection algorithm is computationally inexpensive, a corresponding reduction of computing time results

  1. M-Eco enhanced Adaptation Service (D5.2)

    DEFF Research Database (Denmark)

    Dolog, Peter; Durao, Frederico; Lage, Ricardo Gomes

    2012-01-01

    In this report, we present the improvements of the Adaptive Tuning and Personalization (WP5) component of the M-Eco system. This component is focused on four main areas of interest to users of surveillance systems: presentation options for recommendation and adaptation, user and group models, use...... interests. The main contributions of the report are spatial reasoning methods evaluated in group recommendations, personalized tag clouds, and web services integration....

  2. Intelligent Context-Aware and Adaptive Interface for Mobile LBS

    Directory of Open Access Journals (Sweden)

    Jiangfan Feng

    2015-01-01

    Full Text Available Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users’ demands in a complicated environment and suggested the feasibility by the experimental results.

  3. Cathodal Transcranial Direct Current Stimulation (tDCS) to the Right Cerebellar Hemisphere Affects Motor Adaptation During Gait.

    Science.gov (United States)

    Fernandez, Lara; Albein-Urios, Natalia; Kirkovski, Melissa; McGinley, Jennifer L; Murphy, Anna T; Hyde, Christian; Stokes, Mark A; Rinehart, Nicole J; Enticott, Peter G

    2017-02-01

    The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced 'limp' at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.

  4. Representations and processes of human spatial competence.

    Science.gov (United States)

    Gunzelmann, Glenn; Lyon, Don R

    2011-10-01

    This article presents an approach to understanding human spatial competence that focuses on the representations and processes of spatial cognition and how they are integrated with cognition more generally. The foundational theoretical argument for this research is that spatial information processing is central to cognition more generally, in the sense that it is brought to bear ubiquitously to improve the adaptivity and effectiveness of perception, cognitive processing, and motor action. We describe research spanning multiple levels of complexity to understand both the detailed mechanisms of spatial cognition, and how they are utilized in complex, naturalistic tasks. In the process, we discuss the critical role of cognitive architectures in developing a consistent account that spans this breadth, and we note some areas in which the current version of a popular architecture, ACT-R, may need to be augmented. Finally, we suggest a framework for understanding the representations and processes of spatial competence and their role in human cognition generally. Copyright © 2011 Cognitive Science Society, Inc.

  5. Emotional Faces Capture Spatial Attention in 5-Year-Old Children

    Directory of Open Access Journals (Sweden)

    Kit K. Elam

    2010-10-01

    Full Text Available Emotional facial expressions are important social cues that convey salient affective information. Infants, younger children, and adults all appear to orient spatial attention to emotional faces with a particularly strong bias to fearful faces. Yet in young children it is unclear whether or not both happy and fearful faces extract attention. Given that the processing of emotional faces is believed by some to serve an evolutionarily adaptive purpose, attentional biases to both fearful and happy expressions would be expected in younger children. However, the extent to which this ability is present in young children and whether or not this ability is genetically mediated is untested. Therefore, the aims of the current study were to assess the spatial-attentional properties of emotional faces in young children, with a preliminary test of whether this effect was influenced by genetics. Five-year-old twin pairs performed a dot-probe task. The results suggest that children preferentially direct spatial attention to emotional faces, particularly right visual field faces. The results provide support for the notion that the direction of spatial attention to emotional faces serves an evolutionarily adaptive function and may be mediated by genetic mechanisms.

  6. HYSTOLOGICAL-FUNCTIONAL SPECIFITY OF NYMPHAEA ALBA L.VEGETATIVE ORGANS

    Directory of Open Access Journals (Sweden)

    Sidorova V. N.

    2012-11-01

    Full Text Available Nymphaea alba L. belongs to aerohydrophytes and has all typical features of such ecological group. We found out the followings anatomic and functional features which are adaptation to the surplus of water: 1 formation of astrosklereid, which are the mechanical fabrics; 2 presence of large intercells which serve as plant fixation; 3 absence of stomas on the lower side of leaf and submarine organs that alterate the interchange of gases. The mycrochemical ash analysis of plant vegetative organs showed the presence of crystals of strontium, sulfur, potassium, ferrum, calcium, sodium, nitrogen, which vary by accumulation, form, and sizes, in vegetative organs (leaf, root and stem. We proved that quantitative, anatomical, and physiological peculiarities of Nymphaea alba L. vegetative organs uncover the mechanism of adaptation of aerohydrophytes to environment factors. The adaptative mechanisms of plant and their functioning are changed under influence of surplus of water.

  7. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v.

    Science.gov (United States)

    Lim, Kyungjae; Kwon, Heejin; Cho, Jinhan; Oh, Jongyoung; Yoon, Seongkuk; Kang, Myungjin; Ha, Dongho; Lee, Jinhwa; Kang, Eunju

    2015-01-01

    The purpose of this study was to assess the image quality of a novel advanced iterative reconstruction (IR) method called as "adaptive statistical IR V" (ASIR-V) by comparing the image noise, contrast-to-noise ratio (CNR), and spatial resolution from those of filtered back projection (FBP) and adaptive statistical IR (ASIR) on computed tomography (CT) phantom image. We performed CT scans at 5 different tube currents (50, 70, 100, 150, and 200 mA) using 3 types of CT phantoms. Scanned images were subsequently reconstructed in 7 different scan settings, such as FBP, and 3 levels of ASIR and ASIR-V (30%, 50%, and 70%). The image noise was measured in the first study using body phantom. The CNR was measured in the second study using contrast phantom and the spatial resolutions were measured in the third study using a high-resolution phantom. We compared the image noise, CNR, and spatial resolution among the 7 reconstructed image scan settings to determine whether noise reduction, high CNR, and high spatial resolution could be achieved at ASIR-V. At quantitative analysis of the first and second studies, it showed that the images reconstructed using ASIR-V had reduced image noise and improved CNR compared with those of FBP and ASIR (P ASIR-V had significantly improved spatial resolution than those of FBP and ASIR (P ASIR-V provides a significant reduction in image noise and a significant improvement in CNR as well as spatial resolution. Therefore, this technique has the potential to reduce the radiation dose further without compromising image quality.

  8. Wayfinding in the Blind: Larger Hippocampal Volume and Supranormal Spatial Navigation

    Science.gov (United States)

    Fortin, Madeleine; Voss, Patrice; Lord, Catherine; Lassonde, Maryse; Pruessner, Jens; Saint-Amour, Dave; Rainville, Constant; Lepore, Franco

    2008-01-01

    In the absence of visual input, the question arises as to how complex spatial abilities develop and how the brain adapts to the absence of this modality. We explored navigational skills in both early and late blind individuals and structural differences in the hippocampus, a brain region well known to be involved in spatial processing.…

  9. Content Adaptive True Motion Estimator for H.264 Video Compression

    Directory of Open Access Journals (Sweden)

    P. Kulla

    2007-12-01

    Full Text Available Content adaptive true motion estimator for H.264 video coding is a fast block-based matching estimator with implemented multi-stage approach to estimate motion fields between two image frames. It considers the theory of 3D scene objects projection into 2D image plane for selection of motion vector candidates from the higher stages. The stages of the algorithm and its hierarchy are defined upon motion estimation reliability measurement (image blocks including two different directions of spatial gradient, blocks with one dominant spatial gradient and blocks including minimal spatial gradient. Parameters of the image classification into stages are set adaptively upon image structure. Due to search strategy are the estimated motion fields more corresponding to a true motion in an image sequence as in the case of conventional motion estimation algorithms that use fixed sets of motion vector candidates from tight neighborhood.

  10. Adaptive deformable mirror : based on electromagnetic actuators

    NARCIS (Netherlands)

    Hamelinck, R.F.M.M.

    2010-01-01

    Refractive index variations in the earth's atmosphere cause wavefront aberrations and limit thereby the resolution in ground-based telescopes. With Adaptive Optics (AO) the temporally and spatially varying wavefront distortions can be corrected in real time. Most implementations in a ground based

  11. Eye and hand movements during reconstruction of spatial memory

    OpenAIRE

    Burke, MR; Allen, RJ; Gonzalez, C

    2012-01-01

    © 2012 a Pion publication Recent behavioural and biological evidence indicates common mechanisms serving working memory and attention (e.g., Awh et al, 2006 Neuroscience 139 201-208). This study explored the role of spatial attention and visual search in an adapted Corsi spatial memory task. Eye movements and touch responses were recorded from participants who recalled locations (signalled by colour or shape change) from an array presented either simultaneously or sequentially. The time de...

  12. Eye and Hand Movements during Reconstruction of Spatial Memory

    OpenAIRE

    Melanie Rose Burke; Richard Allen; Matilda Webster; Claudia Gonzalez

    2012-01-01

    Recent behavioural and biological evidence indicates common mechanisms serving working memory and attention (eg, Awh et al 2006, Trends in Cognitive Sciences 10, 124–130). This study explored the role of spatial attention and visual search in an adapted Corsi spatial memory task. Eye movements and touch responses were recorded from participants who recalled locations (signalled by colour or shape change) from an array presented either simultaneously or sequentially. The time delay between tar...

  13. Multi-Stage Adaptive Noise Cancellation Technique for Synthetic Hard-α Inclusion

    International Nuclear Information System (INIS)

    Kim, Jae Joon

    2003-01-01

    Adaptive noise cancellation techniques are ideally suitable for reducing spatially varying noise due to the grain structure of material in ultrasonic nondestructive evaluation. Grain noises have an un-correlation property, while flaw echoes are correlated. Thus, adaptive filtering algorithms use the correlation properties of signals to enhance the signal-to-noise ratio (SNR) of the output signal. In this paper, a multi-stage adaptive noise cancellation (MANC) method using adaptive least mean square error (LMSE) filter for enhancing flaw detection in ultrasonic signals is proposed

  14. Adaptive nonlocal means filtering based on local noise level for CT denoising

    International Nuclear Information System (INIS)

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.

    2014-01-01

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the

  15. Normalized value coding explains dynamic adaptation in the human valuation process.

    Science.gov (United States)

    Khaw, Mel W; Glimcher, Paul W; Louie, Kenway

    2017-11-28

    The notion of subjective value is central to choice theories in ecology, economics, and psychology, serving as an integrated decision variable by which options are compared. Subjective value is often assumed to be an absolute quantity, determined in a static manner by the properties of an individual option. Recent neurobiological studies, however, have shown that neural value coding dynamically adapts to the statistics of the recent reward environment, introducing an intrinsic temporal context dependence into the neural representation of value. Whether valuation exhibits this kind of dynamic adaptation at the behavioral level is unknown. Here, we show that the valuation process in human subjects adapts to the history of previous values, with current valuations varying inversely with the average value of recently observed items. The dynamics of this adaptive valuation are captured by divisive normalization, linking these temporal context effects to spatial context effects in decision making as well as spatial and temporal context effects in perception. These findings suggest that adaptation is a universal feature of neural information processing and offer a unifying explanation for contextual phenomena in fields ranging from visual psychophysics to economic choice.

  16. Adaptive optics scanning laser ophthalmoscope using liquid crystal on silicon spatial light modulator: Performance study with involuntary eye movement

    Science.gov (United States)

    Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi

    2017-09-01

    The performance of an adaptive optics scanning laser ophthalmoscope (AO-SLO) using a liquid crystal on silicon spatial light modulator and Shack-Hartmann wavefront sensor was investigated. The system achieved high-resolution and high-contrast images of human retinas by dynamic compensation for the aberrations in the eyes. Retinal structures such as photoreceptor cells, blood vessels, and nerve fiber bundles, as well as blood flow, could be observed in vivo. We also investigated involuntary eye movements and ascertained microsaccades and drifts using both the retinal images and the aberrations recorded simultaneously. Furthermore, we measured the interframe displacement of retinal images and found that during eye drift, the displacement has a linear relationship with the residual low-order aberration. The estimated duration and cumulative displacement of the drift were within the ranges estimated by a video tracking technique. The AO-SLO would not only be used for the early detection of eye diseases, but would also offer a new approach for involuntary eye movement research.

  17. Predicting the Overall Spatial Quality of Automotive Audio Systems

    Science.gov (United States)

    Koya, Daisuke

    The spatial quality of automotive audio systems is often compromised due to their unideal listening environments. Automotive audio systems need to be developed quickly due to industry demands. A suitable perceptual model could evaluate the spatial quality of automotive audio systems with similar reliability to formal listening tests but take less time. Such a model is developed in this research project by adapting an existing model of spatial quality for automotive audio use. The requirements for the adaptation were investigated in a literature review. A perceptual model called QESTRAL was reviewed, which predicts the overall spatial quality of domestic multichannel audio systems. It was determined that automotive audio systems are likely to be impaired in terms of the spatial attributes that were not considered in developing the QESTRAL model, but metrics are available that might predict these attributes. To establish whether the QESTRAL model in its current form can accurately predict the overall spatial quality of automotive audio systems, MUSHRA listening tests using headphone auralisation with head tracking were conducted to collect results to be compared against predictions by the model. Based on guideline criteria, the model in its current form could not accurately predict the overall spatial quality of automotive audio systems. To improve prediction performance, the QESTRAL model was recalibrated and modified using existing metrics of the model, those that were proposed from the literature review, and newly developed metrics. The most important metrics for predicting the overall spatial quality of automotive audio systems included those that were interaural cross-correlation (IACC) based, relate to localisation of the frontal audio scene, and account for the perceived scene width in front of the listener. Modifying the model for automotive audio systems did not invalidate its use for domestic audio systems. The resulting model predicts the overall spatial

  18. Thinking Egyptian: Active Models for Understanding Spatial Representation.

    Science.gov (United States)

    Schiferl, Ellen

    This paper highlights how introductory textbooks on Egyptian art inhibit understanding by reinforcing student preconceptions, and demonstrates another approach to discussing space with a classroom exercise and software. The alternative approach, an active model for spatial representation, introduced here was developed by adapting classroom…

  19. From Resource-Adaptive Navigation Assistance to Augmented Cognition

    Science.gov (United States)

    Zimmer, Hubert D.; Münzer, Stefan; Baus, Jörg

    In an assistance scenario, a computer provides purposive information supporting a human user in an everyday situation. Wayfinding with navigation assistance is a prototypical assistance scenario. The present chapter analyzes the interplay of the resources of the assistance system and the resources of the user. The navigation assistance system provides geographic knowledge, positioning information, route planning, spatial overview information, and route commands at decision points. The user's resources encompass spatial knowledge, spatial abilities and visuo-spatial working memory, orientation strategies, and cultural habit. Flexible adaptations of the assistance system to available resources of the user are described, taking different wayfinding goals, situational constraints, and individual differences into account. Throughout the chapter, the idea is pursued that the available resources of the user should be kept active.

  20. Video quality pooling adaptive to perceptual distortion severity.

    Science.gov (United States)

    Park, Jincheol; Seshadrinathan, Kalpana; Lee, Sanghoon; Bovik, Alan Conrad

    2013-02-01

    It is generally recognized that severe video distortions that are transient in space and/or time have a large effect on overall perceived video quality. In order to understand this phenomena, we study the distribution of spatio-temporally local quality scores obtained from several video quality assessment (VQA) algorithms on videos suffering from compression and lossy transmission over communication channels. We propose a content adaptive spatial and temporal pooling strategy based on the observed distribution. Our method adaptively emphasizes "worst" scores along both the spatial and temporal dimensions of a video sequence and also considers the perceptual effect of large-area cohesive motion flow such as egomotion. We demonstrate the efficacy of the method by testing it using three different VQA algorithms on the LIVE Video Quality database and the EPFL-PoliMI video quality database.

  1. Climate Change Adaptation via U.S. Land Use Transitions: A Spatial Econometric Analysis

    OpenAIRE

    Cho, Sung Ju; McCarl, Bruce A.; Wu, Ximing

    2015-01-01

    Climate change, coupled with biofuels development and other factors may well be changing US land usage patterns. We use a spatial econometric approach to estimate the drivers of US land use transitions in recent years. We consider transitions between six major land uses: agricultural land, forest, grassland, water, urban, and other uses. To examine drivers, we use a two-step linearized, spatial, multinomial logit model and estimate land use transition probabilities. Our results indicate that ...

  2. How urban system vulnerabilities to flooding could be assessed to improve resilience and adaptation in spatial planning

    Science.gov (United States)

    Pasi, Riccardo; Viavattene, Christophe; La Loggia, Goffredo

    2016-04-01

    Natural hazards damage assets and infrastructure inducing disruptions to urban functions and key daily services. These disruptions may be short or long with a variable spatial scale of impact. From an urban planning perspective, measuring these disruptions and their consequences at an urban scale is fundamental in order to develop more resilient cities. Whereas the assessment of physical vulnerabilities and direct damages is commonly addressed, new methodologies for assessing the systemic vulnerability at the urban scale are required to reveal these disruptions and their consequences. Physical and systemic vulnerability should be measured in order to reflect the multifaceted fragility of cities in the face of external stress, both in terms of the natural/built environment and socio-economic sphere. Additionally, a systemic approach allows the consideration of vulnerability across different spatial scales, as impacts may vary and be transmitted across local, regional or national levels. Urban systems are spatially distributed and the nature of this can have significant effects on flood impacts. The proposed approach identifies the vulnerabilities of flooding within urban contexts, including both in terms of single elementary units (buildings, infrastructures, people, etc.) and systemic functioning (urban functions and daily life networks). Direct losses are appraised initially using conventional methodologies (e.g. depth-damage functions). This aims to both understand the spatial distribution of physical vulnerability and associated losses and, secondly, to identify the most vulnerable building types and ways to improve the physical adaptation of our cities, proposing changes to building codes, design principles and other municipal regulation tools. The subsequent systemic approach recognises the city as a collection of sub-systems or functional units (such as neighbourhoods and suburbs) providing key daily services for inhabitants (e.g. healthcare facilities

  3. Global optimization in the adaptive assay of subterranean uranium nodules

    International Nuclear Information System (INIS)

    Vulkan, U.; Ben-Haim, Y.

    1989-01-01

    An adaptive assay is one in which the design of the assay system is modified during operation in response to measurements obtained on-line. The present work has two aims: to design an adaptive system for borehole assay of isolated subterranean uranium nodules, and to investigate globality of optimal design in adaptive assay. It is shown experimentally that reasonably accurate estimates of uranium mass are obtained for a wide range of nodule shapes, on the basis of an adaptive assay system based on a simple geomorphological model. Furthermore, two concepts are identified which underlie the optimal design of the assay system. The adaptive assay approach shows promise for successful measurement of spatially random material in many geophysical applications. (author)

  4. On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels

    KAUST Repository

    Park, Kihong

    2013-04-01

    In this paper, we consider resource allocation method in the visible light communication. It is challenging to achieve high data rate due to the limited bandwidth of the optical sources. In order to increase the spectral efficiency, we design a suitable multiple-input multiple-output (MIMO) system utilizing spatial multiplexing based on singular value decomposition and adaptive modulation. More specifically, after explaining why the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels, we theoretically derive a power allocation method for an arbitrary number of transmit and receive antennas for optical wireless MIMO systems. Based on three key constraints: the nonnegativity of the intensity-modulated signal, the aggregate optical power budget, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size. Based on some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency at the expense of an increased computational complexity in comparison to a simple method that allocates the optical power equally among all the data streams. © 2013 IEEE.

  5. On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels

    KAUST Repository

    Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim

    2013-01-01

    In this paper, we consider resource allocation method in the visible light communication. It is challenging to achieve high data rate due to the limited bandwidth of the optical sources. In order to increase the spectral efficiency, we design a suitable multiple-input multiple-output (MIMO) system utilizing spatial multiplexing based on singular value decomposition and adaptive modulation. More specifically, after explaining why the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels, we theoretically derive a power allocation method for an arbitrary number of transmit and receive antennas for optical wireless MIMO systems. Based on three key constraints: the nonnegativity of the intensity-modulated signal, the aggregate optical power budget, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size. Based on some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency at the expense of an increased computational complexity in comparison to a simple method that allocates the optical power equally among all the data streams. © 2013 IEEE.

  6. Adaptive Numerical Algorithms in Space Weather Modeling

    Science.gov (United States)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  7. How will climate change affect spatial planning in agricultural and natural environments? Examples from three Dutch case study regions

    International Nuclear Information System (INIS)

    Blom-Zandstra, Margaretha; Schaap, Ben; Paulissen, Maurice; Agricola, Herman

    2009-01-01

    Climate change will place increasing pressure on the functioning of agricultural and natural areas in the Netherlands. Strategies to adapt these areas to stress are likely to require changes in landscape structure and management. In densely populated countries such as the Netherlands, the increased pressure of climate change on agricultural and natural areas will inevitably lead, through the necessity of spatial adaptation measures, to spatial conflicts between the sectors of agriculture and nature. An integrated approach to climate change adaptation may therefore be beneficial in limiting such sectoral conflicts. We explored the conflicting and synergistic properties of different climate adaptation strategies for agricultural and natural environments in the Netherlands. To estimate the feasibility and effectiveness of the strategies, we focussed on three case study regions with contrasting landscape structural, natural and agricultural characteristics. For each region, we estimated the expected climate-related threats and associated trade-offs for arable farming and natural areas for 2040. We describe a number of spatial and integrated adaptation strategies to mitigate these threats. Formulating adaptation strategies requires consultation of different stakeholders and deliberation between different interests. We discuss some trade-offs involved in this decision-making.

  8. Genetic surfing, not allopatric divergence, explains spatial sorting of mitochondrial haplotypes in venomous coralsnakes.

    Science.gov (United States)

    Streicher, Jeffrey W; McEntee, Jay P; Drzich, Laura C; Card, Daren C; Schield, Drew R; Smart, Utpal; Parkinson, Christopher L; Jezkova, Tereza; Smith, Eric N; Castoe, Todd A

    2016-07-01

    Strong spatial sorting of genetic variation in contiguous populations is often explained by local adaptation or secondary contact following allopatric divergence. A third explanation, spatial sorting by stochastic effects of range expansion, has been considered less often though theoretical models suggest it should be widespread, if ephemeral. In a study designed to delimit species within a clade of venomous coralsnakes, we identified an unusual pattern within the Texas coral snake (Micrurus tener): strong spatial sorting of divergent mitochondrial (mtDNA) lineages over a portion of its range, but weak sorting of these lineages elsewhere. We tested three alternative hypotheses to explain this pattern-local adaptation, secondary contact following allopatric divergence, and range expansion. Collectively, near panmixia of nuclear DNA, the signal of range expansion associated sampling drift, expansion origins in the Gulf Coast of Mexico, and species distribution modeling suggest that the spatial sorting of divergent mtDNA lineages within M. tener has resulted from genetic surfing of standing mtDNA variation-not local adaptation or allopatric divergence. Our findings highlight the potential for the stochastic effects of recent range expansion to mislead estimations of population divergence made from mtDNA, which may be exacerbated in systems with low vagility, ancestral mtDNA polymorphism, and male-biased dispersal. © 2016 The Author(s).

  9. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands

    Science.gov (United States)

    Jian Yang; Hong S. He; Stephen R. Shifley

    2008-01-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of...

  10. The Hitchhiker’s Guide to Adaptive Dynamics

    Directory of Open Access Journals (Sweden)

    Jacob Johansson

    2013-06-01

    Full Text Available Adaptive dynamics is a mathematical framework for studying evolution. It extends evolutionary game theory to account for more realistic ecological dynamics and it can incorporate both frequency- and density-dependent selection. This is a practical guide to adaptive dynamics that aims to illustrate how the methodology can be applied to the study of specific systems. The theory is presented in detail for a single, monomorphic, asexually reproducing population. We explain the necessary terminology to understand the basic arguments in models based on adaptive dynamics, including invasion fitness, the selection gradient, pairwise invasibility plots (PIP, evolutionarily singular strategies, and the canonical equation. The presentation is supported with a worked-out example of evolution of arrival times in migratory birds. We show how the adaptive dynamics methodology can be extended to study evolution in polymorphic populations using trait evolution plots (TEPs. We give an overview of literature that generalises adaptive dynamics techniques to other scenarios, such as sexual, diploid populations, and spatially-structured populations. We conclude by discussing how adaptive dynamics relates to evolutionary game theory and how adaptive-dynamics techniques can be used in speciation research.

  11. Scalable space-time adaptive simulation tools for computational electrocardiology

    OpenAIRE

    Krause, Dorian; Krause, Rolf

    2013-01-01

    This work is concerned with the development of computational tools for the solution of reaction-diffusion equations from the field of computational electrocardiology. We designed lightweight spatially and space-time adaptive schemes for large-scale parallel simulations. We propose two different adaptive schemes based on locally structured meshes, managed either via a conforming coarse tessellation or a forest of shallow trees. A crucial ingredient of our approach is a non-conforming morta...

  12. A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential.

    Science.gov (United States)

    Euler, André; Solomon, Justin; Marin, Daniele; Nelson, Rendon C; Samei, Ehsan

    2018-06-01

    The purpose of this study was to assess image noise, spatial resolution, lesion detectability, and the dose reduction potential of a proprietary third-generation adaptive statistical iterative reconstruction (ASIR-V) technique. A phantom representing five different body sizes (12-37 cm) and a contrast-detail phantom containing lesions of five low-contrast levels (5-20 HU) and three sizes (2-6 mm) were deployed. Both phantoms were scanned on a 256-MDCT scanner at six different radiation doses (1.25-10 mGy). Images were reconstructed with filtered back projection (FBP), ASIR-V with 50% blending with FBP (ASIR-V 50%), and ASIR-V without blending (ASIR-V 100%). In the first phantom, noise properties were assessed by noise power spectrum analysis. Spatial resolution properties were measured by use of task transfer functions for objects of different contrasts. Noise magnitude, noise texture, and resolution were compared between the three groups. In the second phantom, low-contrast detectability was assessed by nine human readers independently for each condition. The dose reduction potential of ASIR-V was estimated on the basis of a generalized linear statistical regression model. On average, image noise was reduced 37.3% with ASIR-V 50% and 71.5% with ASIR-V 100% compared with FBP. ASIR-V shifted the noise power spectrum toward lower frequencies compared with FBP. The spatial resolution of ASIR-V was equivalent or slightly superior to that of FBP, except for the low-contrast object, which had lower resolution. Lesion detection significantly increased with both ASIR-V levels (p = 0.001), with an estimated radiation dose reduction potential of 15% ± 5% (SD) for ASIR-V 50% and 31% ± 9% for ASIR-V 100%. ASIR-V reduced image noise and improved lesion detection compared with FBP and had potential for radiation dose reduction while preserving low-contrast detectability.

  13. Adaptive therapy.

    Science.gov (United States)

    Gatenby, Robert A; Silva, Ariosto S; Gillies, Robert J; Frieden, B Roy

    2009-06-01

    A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the "cost" of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant

  14. Face adaptation does not improve performance on search or discrimination tasks.

    Science.gov (United States)

    Ng, Minna; Boynton, Geoffrey M; Fine, Ione

    2008-01-04

    The face adaptation effect, as described by M. A. Webster and O. H. MacLin (1999), is a robust perceptual shift in the appearance of faces after a brief adaptation period. For example, prolonged exposure to Asian faces causes a Eurasian face to appear distinctly Caucasian. This adaptation effect has been documented for general configural effects, as well as for the facial properties of gender, ethnicity, expression, and identity. We began by replicating the finding that adaptation to ethnicity, gender, and a combination of both features induces selective shifts in category appearance. We then investigated whether this adaptation has perceptual consequences beyond a shift in the perceived category boundary by measuring the effects of adaptation on RSVP, spatial search, and discrimination tasks. Adaptation had no discernable effect on performance for any of these tasks.

  15. Quasi-CW diode-pumped self-starting adaptive laser with self-Q-switched output.

    Science.gov (United States)

    Smith, G; Damzen, M J

    2007-05-14

    An investigation is made into a quasi-CW (QCW) diode-pumped holographic adaptive laser utilising an ultra high gain (approximately 10(4)) Nd:YVO(4) bounce amplifier. The laser produces pulses at 1064 nm with energy approximately 0.6 mJ, duration laser configuration, the output was amplified to obtain pulses of approximately 5.6 mJ energy, approximately 7 ns duration and approximately 1 MW peak power. The output spatial quality is also M(2)diode-pumped self-adaptive holographic lasers can provide a useful source of high peak power, short duration pulses with excellent spatial quality and narrow linewidth spectrum.

  16. Liquid-crystal intraocular adaptive lens with wireless control

    NARCIS (Netherlands)

    Simonov, A.N.; Vdovine, G.V.; Loktev, M.

    2007-01-01

    We present a prototype of an adaptive intraocular lens based on a modal liquid-crystal spatial phase modulator with wireless control. The modal corrector consists of a nematic liquid-crystal layer sandwiched between two glass substrates with transparent low- and high-ohmic electrodes, respectively.

  17. Large-field-of-view imaging by multi-pupil adaptive optics.

    Science.gov (United States)

    Park, Jung-Hoon; Kong, Lingjie; Zhou, Yifeng; Cui, Meng

    2017-06-01

    Adaptive optics can correct for optical aberrations. We developed multi-pupil adaptive optics (MPAO), which enables simultaneous wavefront correction over a field of view of 450 × 450 μm 2 and expands the correction area to nine times that of conventional methods. MPAO's ability to perform spatially independent wavefront control further enables 3D nonplanar imaging. We applied MPAO to in vivo structural and functional imaging in the mouse brain.

  18. Spatial structure increases the waiting time for cancer

    Science.gov (United States)

    Martens, Erik A.; Kostadinov, Rumen; Maley, Carlo C.; Hallatschek, Oskar

    2011-11-01

    Cancer results from a sequence of genetic and epigenetic changes that lead to a variety of abnormal phenotypes including increased proliferation and survival of somatic cells and thus to a selective advantage of pre-cancerous cells. The notion of cancer progression as an evolutionary process has been attracting increasing interest in recent years. A great deal of effort has been made to better understand and predict the progression to cancer using mathematical models; these mostly consider the evolution of a well-mixed cell population, even though pre-cancerous cells often evolve in highly structured epithelial tissues. In this study, we propose a novel model of cancer progression that considers a spatially structured cell population where clones expand via adaptive waves. This model is used to assess two different paradigms of asexual evolution that have been suggested to delineate the process of cancer progression. The standard scenario of periodic selection assumes that driver mutations are accumulated strictly sequentially over time. However, when the mutation supply is sufficiently high, clones may arise simultaneously on distinct genetic backgrounds, and clonal adaptation waves interfere with each other. We find that in the presence of clonal interference, spatial structure increases the waiting time for cancer, leads to a patchwork structure of non-uniformly sized clones and decreases the survival probability of virtually neutral (passenger) mutations, and that genetic distance begins to increase over a characteristic length scale Lc. These characteristic features of clonal interference may help us to predict the onset of cancers with pronounced spatial structure and to interpret spatially sampled genetic data obtained from biopsies. Our estimates suggest that clonal interference likely occurs in the progression of colon cancer and possibly other cancers where spatial structure matters.

  19. Organizational values and the implications for mainstreaming climate adaptation in Dutch municipalities : Using Q methodology

    NARCIS (Netherlands)

    Uittenbroek, Caroline J.; Janssen-Jansen, Leonie B.; Spit, Tejo J M; Runhaar, Hens A C

    2014-01-01

    Mainstreaming climate adaptation requires the inclusion of climate adaptation in the policies of various policy domains such as water management and spatial planning. This paper investigates the organizational values present in several municipal policy departments in order to explore their

  20. Dynamic changes in brain activity during prism adaptation.

    Science.gov (United States)

    Luauté, Jacques; Schwartz, Sophie; Rossetti, Yves; Spiridon, Mona; Rode, Gilles; Boisson, Dominique; Vuilleumier, Patrik

    2009-01-07

    Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space. We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms. Participants performed a pointing task before, during, and after prism exposure. Measures of trial-by-trial pointing errors and corrections allowed parametric analyses of brain activity as a function of performance. We show that during the earliest phase of prism exposure, anterior intraparietal sulcus was primarily implicated in error detection, whereas parieto-occipital sulcus was implicated in error correction. Cerebellum activity showed progressive increases during prism exposure, in accordance with a key role for spatial realignment. This time course further suggests that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations.

  1. Dynamic Channel Selection for Cognitive Femtocells

    DEFF Research Database (Denmark)

    Da Costa, Gustavo Wagner Oliveira; Cattoni, Andrea Fabio; Mogensen, Preben

    2014-01-01

    on state-of-art techniques to manage the radio resources in order to cope with inter-cell interference in cognitive femtocells. Different techniques are presented as examples of gradually increasing sophistication of the cognitive femtocells, allowing for dynamic channel allocation, dynamic reuse......, but not least, the possibility of having closed-subscriber-groups aggravates the inter-cell interference problems. In order to tackle these issues we consider the implementation of some aspects of cognitive radio technology into femtocells, leading to the concept of cognitive femtocells. This chapter focuses...

  2. Basis adaptation and domain decomposition for steady-state partial differential equations with random coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    2017-12-01

    We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.

  3. Reference Device-Assisted Adaptive Location Fingerprinting

    Directory of Open Access Journals (Sweden)

    Dongjin Wu

    2016-06-01

    Full Text Available Location fingerprinting suffers in dynamic environments and needs recalibration from time to time to maintain system performance. This paper proposes an adaptive approach for location fingerprinting. Based on real-time received signal strength indicator (RSSI samples measured by a group of reference devices, the approach applies a modified Universal Kriging (UK interpolant to estimate adaptive temporal and environmental radio maps. The modified UK can take the spatial distribution characteristics of RSSI into account. In addition, the issue of device heterogeneity caused by multiple reference devices is further addressed. To compensate the measuring differences of heterogeneous reference devices, differential RSSI metric is employed. Extensive experiments were conducted in an indoor field and the results demonstrate that the proposed approach not only adapts to dynamic environments and the situation of changing APs’ positions, but it is also robust toward measuring differences of heterogeneous reference devices.

  4. A quantitative method for determining spatial discriminative capacity

    Directory of Open Access Journals (Sweden)

    Dennis Robert G

    2008-03-01

    Full Text Available Abstract Background The traditional two-point discrimination (TPD test, a widely used tactile spatial acuity measure, has been criticized as being imprecise because it is based on subjective criteria and involves a number of non-spatial cues. The results of a recent study showed that as two stimuli were delivered simultaneously, vibrotactile amplitude discrimination became worse when the two stimuli were positioned relatively close together and was significantly degraded when the probes were within a subject's two-point limen. The impairment of amplitude discrimination with decreasing inter-probe distance suggested that the metric of amplitude discrimination could possibly provide a means of objective and quantitative measurement of spatial discrimination capacity. Methods A two alternative forced-choice (2AFC tracking procedure was used to assess a subject's ability to discriminate the amplitude difference between two stimuli positioned at near-adjacent skin sites. Two 25 Hz flutter stimuli, identical except for a constant difference in amplitude, were delivered simultaneously to the hand dorsum. The stimuli were initially spaced 30 mm apart, and the inter-stimulus distance was modified on a trial-by-trial basis based on the subject's performance of discriminating the stimulus with higher intensity. The experiment was repeated via sequential, rather than simultaneous, delivery of the same vibrotactile stimuli. Results Results obtained from this study showed that the performance of the amplitude discrimination task was significantly degraded when the stimuli were delivered simultaneously and were near a subject's two-point limen. In contrast, subjects were able to correctly discriminate between the amplitudes of the two stimuli when they were sequentially delivered at all inter-probe distances (including those within the two-point limen, and improved when an adapting stimulus was delivered prior to simultaneously delivered stimuli. Conclusion

  5. Use of a dynamic grid adaptation in the asymmetric weighted residual method

    International Nuclear Information System (INIS)

    Graf, V.; Romstedt, P.; Werner, W.

    1986-01-01

    A dynamic grid adaptive method has been developed for use with the asymmetric weighted residual method. The method automatically adapts the number and position of the spatial mesh points as the solution of hyperbolic or parabolic vector partial differential equations progresses in time. The mesh selection algorithm is based on the minimization of the L 2 norm of the spatial discretization error. The method permits the accurate calculation of the evolution of inhomogeneities, like wave fronts, shock layers, and other sharp transitions, while generally using a coarse computational grid. The number of required mesh points is significantly reduced, relative to a fixed Eulerian grid. Since the mesh selection algorithm is computationally inexpensive, a corresponding reduction of computing time results

  6. Spatial Programming for Industrial Robots through Task Demonstration

    Directory of Open Access Journals (Sweden)

    Jens Lambrecht

    2013-05-01

    Full Text Available Abstract We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward the programming of an assembly sequence consisting of several pick-and-place tasks. A scene reconstruction provides pose estimation of known objects with the help of the 2D camera of the handheld. Therefore, the programmer is able to define the program through natural bare-hand manipulation of these objects with the help of direct visual feedback in the augmented reality application. The program can be adapted by gestures and transmitted subsequently to an arbitrary industrial robot controller using a unified interface. Finally, we discuss an application of the presented spatial programming approach toward robot-based welding tasks.

  7. Influence of Lumbar Muscle Fatigue on Trunk Adaptations during Sudden External Perturbations

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Lardon, Arnaud; Dugas, Claude; Descarreaux, Martin

    2016-01-01

    Introduction: When the spine is subjected to perturbations, neuromuscular responses such as reflex muscle contractions contribute to the overall balance control and spinal stabilization mechanisms. These responses are influenced by muscle fatigue, which has been shown to trigger changes in muscle recruitment patterns. Neuromuscular adaptations, e.g., attenuation of reflex activation and/or postural oscillations following repeated unexpected external perturbations, have also been described. However, the characterization of these adaptations still remains unclear. Using high-density electromyography (EMG) may help understand how the nervous system chooses to deal with an unknown perturbation in different physiological and/or mechanical perturbation environments. Aim: To characterize trunk neuromuscular adaptations following repeated sudden external perturbations after a back muscle fatigue task using high-density EMG. Methods: Twenty-five healthy participants experienced a series of 15 sudden external perturbations before and after back muscle fatigue. Erector spinae muscle activity was recorded using high-density EMG. Trunk kinematics during perturbation trials were collected using a 3-D motion analysis system. A two-way repeated measure ANOVA was conducted to assess: (1) the adaptation effect across trials; (2) the fatigue effect; and (3) the interaction effect (fatigue × adaptation) for the baseline activity, the reflex latency, the reflex peak and trunk kinematic variables (flexion angle, velocity and time to peak velocity). Muscle activity spatial distribution before and following the fatigue task was also compared using t-tests for dependent samples. Results: An attenuation of muscle reflex peak was observed across perturbation trials before the fatigue task, but not after. The spatial distribution of muscle activity was significantly higher before the fatigue task compared to post-fatigue trials. Baseline activity showed a trend to higher values after muscle

  8. Influence of lumbar muscle fatigue on trunk adaptations during sudden external perturbations

    Directory of Open Access Journals (Sweden)

    Jacques Abboud

    2016-11-01

    Full Text Available IntroductionWhen the spine is subjected to perturbations, neuromuscular responses such as reflex muscle contractions contribute to the overall balance control and spinal stabilization mechanisms. These responses are influenced by muscle fatigue, which has been shown to trigger changes in muscle recruitment patterns. Neuromuscular adaptations, e.g. attenuation of reflex activation and/or postural oscillations following repeated unexpected external perturbations, have also been described. However, the characterization of these adaptations still remains unclear. Using high-density electromyography (EMG may help understand how the nervous system chooses to deal with an unknown perturbation in different physiological and/or mechanical perturbation environments. AimTo characterize trunk neuromuscular adaptations following repeated sudden external perturbations after a back muscle fatigue task using high-density EMG.MethodsTwenty-five healthy participants experienced a series of 15 sudden external perturbations before and after back muscle fatigue. Erector spinae muscle activity was recorded using high-density EMG. Trunk kinematics during perturbation trials were collected using a 3-D motion analysis system. A two-way repeated measure ANOVA was conducted to assess 1 the adaptation effect across trials, 2 the fatigue effect, and 3 the interaction effect (fatigue x adaptation for the baseline activity, the reflex latency, the reflex peak and trunk kinematic variables (flexion angle, velocity and time to peak velocity. Muscle activity spatial distribution before and following the fatigue task was also compared using t-tests for dependent samples. ResultsAn attenuation of muscle reflex peak was observed across perturbation trials before the fatigue task, but not after. The spatial distribution of muscle activity was significantly higher before the fatigue task compared to post-fatigue trials. Baseline activity showed a trend to higher values after muscle

  9. New adaptive differencing strategy in the PENTRAN 3-d parallel Sn code

    International Nuclear Information System (INIS)

    Sjoden, G.E.; Haghighat, A.

    1996-01-01

    It is known that three-dimensional (3-D) discrete ordinates (S n ) transport problems require an immense amount of storage and computational effort to solve. For this reason, parallel codes that offer a capability to completely decompose the angular, energy, and spatial domains among a distributed network of processors are required. One such code recently developed is PENTRAN, which iteratively solves 3-D multi-group, anisotropic S n problems on distributed-memory platforms, such as the IBM-SP2. Because large problems typically contain several different material zones with various properties, available differencing schemes should automatically adapt to the transport physics in each material zone. To minimize the memory and message-passing overhead required for massively parallel S n applications, available differencing schemes in an adaptive strategy should also offer reasonable accuracy and positivity, yet require only the zeroth spatial moment of the transport equation; differencing schemes based on higher spatial moments, in spite of their greater accuracy, require at least twice the amount of storage and communication cost for implementation in a massively parallel transport code. This paper discusses a new adaptive differencing strategy that uses increasingly accurate schemes with low parallel memory and communication overhead. This strategy, implemented in PENTRAN, includes a new scheme, exponential directional averaged (EDA) differencing

  10. Adaptive Robot to Person Encounter by Motion Patterns

    DEFF Research Database (Denmark)

    Andersen, Hans Jørgen; Bak, Thomas; Svenstrup, Mikael

    2009-01-01

    This paper introduces a new method for adaptive control of a robot approaching a person controlled by the person's interest in interaction. For adjustment of the robot behavior a cost function centered in the person is adapted according to an introduced person evaluator method relying on the three...... variables: the distance between the person and the robot, the relative velocity between the two, and position of the person. The person evaluator method determine the person's interest by evaluating the spatial relationship between robot and person in a Case Based Reasoning (CBR) system that is trained...... to determine to which degree the person is interested in interaction. The outcome of the CBR system is used to adapt the cost function around the person, so that the robot's behavior is adapted to the expressed interest. The proposed methods are evaluated by a number of physical experiments that demonstrate...

  11. Locomotor adaptability in persons with unilateral transtibial amputation.

    Science.gov (United States)

    Darter, Benjamin J; Bastian, Amy J; Wolf, Erik J; Husson, Elizabeth M; Labrecque, Bethany A; Hendershot, Brad D

    2017-01-01

    Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb.

  12. Moving target detection based on temporal-spatial information fusion for infrared image sequences

    Science.gov (United States)

    Toing, Wu-qin; Xiong, Jin-yu; Zeng, An-jun; Wu, Xiao-ping; Xu, Hao-peng

    2009-07-01

    Moving target detection and localization is one of the most fundamental tasks in visual surveillance. In this paper, through analyzing the advantages and disadvantages of the traditional approaches about moving target detection, a novel approach based on temporal-spatial information fusion is proposed for moving target detection. The proposed method combines the spatial feature in single frame and the temporal properties within multiple frames of an image sequence of moving target. First, the method uses the spatial image segmentation for target separation from background and uses the local temporal variance for extracting targets and wiping off the trail artifact. Second, the logical "and" operator is used to fuse the temporal and spatial information. In the end, to the fusion image sequence, the morphological filtering and blob analysis are used to acquire exact moving target. The algorithm not only requires minimal computation and memory but also quickly adapts to the change of background and environment. Comparing with other methods, such as the KDE, the Mixture of K Gaussians, etc., the simulation results show the proposed method has better validity and higher adaptive for moving target detection, especially in infrared image sequences with complex illumination change, noise change, and so on.

  13. Evaluating Motion. Spatial User Behavior in Virtual Environments

    DEFF Research Database (Denmark)

    Drachen, Anders; Canossa, Alessandro

    2011-01-01

    User-behaviour analysis has only recently been adapted to the context of the virtual world domain and remains limited in its application. Behaviour analysis is based on instrumentation data, automated, detailed, quantitative information about user behaviour within the virtual environment (VE......) of digital games. A key advantage of the method in comparison with existing user-research methods, such as usability- and playability-testing is that it permits very large sample sizes. Furthermore, games are in the vast majority of cases based on spatial, VEs within which the players operate and through...... which they experience the games. Therefore, spatial behaviour analyses are useful to game research and design. In this paper, spatial analysis methods are introduced and arguments posed for their use in user-behaviour analysis. Case studies involving data from thousands of players are used to exemplify...

  14. Wavefront measurement using computational adaptive optics.

    Science.gov (United States)

    South, Fredrick A; Liu, Yuan-Zhi; Bower, Andrew J; Xu, Yang; Carney, P Scott; Boppart, Stephen A

    2018-03-01

    In many optical imaging applications, it is necessary to correct for aberrations to obtain high quality images. Optical coherence tomography (OCT) provides access to the amplitude and phase of the backscattered optical field for three-dimensional (3D) imaging samples. Computational adaptive optics (CAO) modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations without using a deformable mirror, as is commonly done in hardware-based adaptive optics (AO). This provides improvement of image quality throughout the 3D volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, the CAO aberration correction has a complicated relation to the imaging pupil and is not a direct measurement of the pupil aberrations. Here we present new methods for recovering the wavefront aberrations directly from the OCT data without the use of hardware adaptive optics. This enables both computational measurement and correction of optical aberrations.

  15. Self-adaptive phosphor coating technology for wafer-level scale chip packaging

    International Nuclear Information System (INIS)

    Zhou Linsong; Rao Haibo; Wang Wei; Wan Xianlong; Liao Junyuan; Wang Xuemei; Zhou Da; Lei Qiaolin

    2013-01-01

    A new self-adaptive phosphor coating technology has been successfully developed, which adopted a slurry method combined with a self-exposure process. A phosphor suspension in the water-soluble photoresist was applied and exposed to LED blue light itself and developed to form a conformal phosphor coating with self-adaptability to the angular distribution of intensity of blue light and better-performing spatial color uniformity. The self-adaptive phosphor coating technology had been successfully adopted in the wafer surface to realize a wafer-level scale phosphor conformal coating. The first-stage experiments show satisfying results and give an adequate demonstration of the flexibility of self-adaptive coating technology on application of WLSCP. (semiconductor devices)

  16. Quality based approach for adaptive face recognition

    Science.gov (United States)

    Abboud, Ali J.; Sellahewa, Harin; Jassim, Sabah A.

    2009-05-01

    Recent advances in biometric technology have pushed towards more robust and reliable systems. We aim to build systems that have low recognition errors and are less affected by variation in recording conditions. Recognition errors are often attributed to the usage of low quality biometric samples. Hence, there is a need to develop new intelligent techniques and strategies to automatically measure/quantify the quality of biometric image samples and if necessary restore image quality according to the need of the intended application. In this paper, we present no-reference image quality measures in the spatial domain that have impact on face recognition. The first is called symmetrical adaptive local quality index (SALQI) and the second is called middle halve (MH). Also, an adaptive strategy has been developed to select the best way to restore the image quality, called symmetrical adaptive histogram equalization (SAHE). The main benefits of using quality measures for adaptive strategy are: (1) avoidance of excessive unnecessary enhancement procedures that may cause undesired artifacts, and (2) reduced computational complexity which is essential for real time applications. We test the success of the proposed measures and adaptive approach for a wavelet-based face recognition system that uses the nearest neighborhood classifier. We shall demonstrate noticeable improvements in the performance of adaptive face recognition system over the corresponding non-adaptive scheme.

  17. "I know, therefore I adapt?" Complexities of individual adaptation to climate-induced forest dieback in Alaska

    Directory of Open Access Journals (Sweden)

    Lauren E. Oakes

    2016-06-01

    Full Text Available Individual actions to avoid, benefit from, or cope with climate change impacts partly shape adaptation; much research on adaptation has focused at the systems level, overlooking drivers of individual responses. Theoretical frameworks and empirical studies of environmental behavior identify a complex web of cognitive, affective, and evaluative factors that motivate stewardship. We explore the relationship between knowledge of, and adaptation to, widespread, climate-induced tree mortality to understand the cognitive (i.e., knowledge and learning, affective (i.e., attitudes and place attachment, and evaluative (i.e., use values factors that influence how individuals respond to climate-change impacts. From 43 semistructured interviews with forest managers and users in a temperate forest, we identified distinct responses to local, climate-induced environmental changes that we then categorized as either behavioral or psychological adaptations. Interviewees developed a depth of knowledge about the dieback through a combination of direct, place-based experiences and indirect, mediated learning through social interactions. Knowing that the dieback was associated with climate change led to different adaptive responses among the interviewees, although knowledge alone did not explain this variation. Forest users reported psychological adaptations to process negative attitudes; these adaptations were spurred by knowledge of the causes, losses of intangible values, and impacts to a species to which they held attachment. Behavioral adaptations exclusive to a high level of knowledge included actions such as using the forests to educate others or changing transportation behaviors to reduce personal energy consumption. Managers integrated awareness of the dieback and its dynamics across spatial scales into current management objectives. Our findings suggest that adaptive management may occur from the bottom up, as individual managers implement new practices in

  18. Development of an adaptive bilateral filter for evaluating color image difference

    Science.gov (United States)

    Wang, Zhaohui; Hardeberg, Jon Yngve

    2012-04-01

    Spatial filtering, which aims to mimic the contrast sensitivity function (CSF) of the human visual system (HVS), has previously been combined with color difference formulae for measuring color image reproduction errors. These spatial filters attenuate imperceptible information in images, unfortunately including high frequency edges, which are believed to be crucial in the process of scene analysis by the HVS. The adaptive bilateral filter represents a novel approach, which avoids the undesirable loss of edge information introduced by CSF-based filtering. The bilateral filter employs two Gaussian smoothing filters in different domains, i.e., spatial domain and intensity domain. We propose a method to decide the parameters, which are designed to be adaptive to the corresponding viewing conditions, and the quantity and homogeneity of information contained in an image. Experiments and discussions are given to support the proposal. A series of perceptual experiments were conducted to evaluate the performance of our approach. The experimental sample images were reproduced with variations in six image attributes: lightness, chroma, hue, compression, noise, and sharpness/blurriness. The Pearson's correlation values between the model-predicted image difference and the observed difference were employed to evaluate the performance, and compare it with that of spatial CIELAB and image appearance model.

  19. Adaptive Generation and Diagnostics of Linear Few-Cycle Light Bullets

    Directory of Open Access Journals (Sweden)

    Martin Bock

    2013-02-01

    Full Text Available Recently we introduced the class of highly localized wavepackets (HLWs as a generalization of optical Bessel-like needle beams. Here we report on the progress in this field. In contrast to pulsed Bessel beams and Airy beams, ultrashort-pulsed HLWs propagate with high stability in both spatial and temporal domain, are nearly paraxial (supercollimated, have fringe-less spatial profiles and thus represent the best possible approximation to linear “light bullets”. Like Bessel beams and Airy beams, HLWs show self-reconstructing behavior. Adaptive HLWs can be shaped by ultraflat three-dimensional phase profiles (generalized axicons which are programmed via calibrated grayscale maps of liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs. Light bullets of even higher complexity can either be freely formed from quasi-continuous phase maps or discretely composed from addressable arrays of identical nondiffracting beams. The characterization of few-cycle light bullets requires spatially resolved measuring techniques. In our experiments, wavefront, pulse and phase were detected with a Shack-Hartmann wavefront sensor, 2D-autocorrelation and spectral phase interferometry for direct electric-field reconstruction (SPIDER. The combination of the unique propagation properties of light bullets with the flexibility of adaptive optics opens new prospects for applications of structured light like optical tweezers, microscopy, data transfer and storage, laser fusion, plasmon control or nonlinear spectroscopy.

  20. Time scales in evolutionary game on adaptive networks

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Rui, E-mail: congrui0000@126.com [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Wu, Te; Qiu, Yuan-Ying [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Wang, Long [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing (China)

    2014-02-01

    Most previous studies concerning spatial games have assumed strategy updating occurs with a fixed ratio relative to interactions. We here set up a coevolutionary model to investigate how different ratio affects the evolution of cooperation on adaptive networks. Simulation results demonstrate that cooperation can be significantly enhanced under our rewiring mechanism, especially with slower natural selection. Meanwhile, slower selection induces larger network heterogeneity. Strong selection contracts the parameter area where cooperation thrives. Therefore, cooperation prevails whenever individuals are offered enough chances to adapt to the environment. Robustness of the results has been checked under rewiring cost or varied networks.

  1. Adaptation measures and pathways for flood risk in Dordrecht

    NARCIS (Netherlands)

    Gersonius, B.; Kelder, E.; Anema, K.; van Herk, S.; Zevenbergen, C.

    2014-01-01

    In line with the Adaptive Delta Management approach of the Dutch Delta Programme, Dordrecht has developed a multi-layer safety strategy to meet the future tasking for flood risk management. This strategy puts greater emphasis on limiting the consequences of floods through spatial planning (layer 2)

  2. Monitor of spatial plans. Feasibility study

    International Nuclear Information System (INIS)

    Bollen, M.J.S.; Ritsema van Eck, J.; Farjon, J.M.J.

    2008-01-01

    The national government needs assessments of consequences of building projects in relation to spatial policy objectives such as the prevention of urban sprawl or the development of landscape qualities. Normally the effects of spatial policies appear after several years. Spatial plans can possibly indicate these effects earlier. To allow policies to be adapted to unwanted developments, the assessments should be available in the early planning stages of these building projects. The Dutch Minister of VROM has asked the Netherlands Environmental Assessment Agency to investigate the feasibility of a monitoring system based on building plans. As building projects take a long period from conception until realization, a monitoring system for these projects should include all plans for the next ten to fifteen years with an indication of the chance that these plans are realized. The existing databases in the Netherlands provide sufficient information to assess consequences of plans for those objectives that are directly related to the urbanization pattern. However, an improvement of these databases is necessary, amongst other things by coordination of these databases [nl

  3. Toward an integrated theory of spatial morphology and resilient urban systems

    Directory of Open Access Journals (Sweden)

    Lars Marcus

    2014-12-01

    Full Text Available We take the first step in the development of a new field of research with the aim of merging spatial morphology and resilience science. This involves a revisiting and reunderstanding of the meaning of sustainable urban form. We briefly describe the fields of resilience science and spatial morphology. Drawing on a selected set of propositions in both fields, we put urban form in the context of the adaptive renewal cycle, a dynamic framework model used in resilience science to capture the dynamics of complex adaptive systems, of which urban systems are prime examples. We discuss the insights generated in this endeavor, dealing with some key morphological aspects in relation to four key attributes of resilience, i.e., "change," "diversity," "self-organization," and "learning." We discuss and relate these to urban form and other social variables, with special attention paid to the "backloop phase" of the adaptive renewal cycle. We conclude by postulating ways in which resilience thinking could contribute to the development of a new research frontier for addressing designs for resilient urban social-ecological systems, and end by proposing three strategic areas of research in such a field.

  4. Gauge freedom in perfect fluid spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Jantzen, R.T.

    1983-01-01

    The class of reference systems compatible with the symmetry of a spatially homogeneous perfect fluid spacetime is discussed together with the associated class of symmetry adapted comoving ADM frames (or computational frames). The fluid equations of motion are related to the four functions on the space of fluid flow lines discovered by Taub and which characterize an isentropic flow. (Auth.)

  5. Toward an integrated theory of spatial morphology and resilient urban systems

    OpenAIRE

    Lars Marcus; Johan Colding

    2014-01-01

    We take the first step in the development of a new field of research with the aim of merging spatial morphology and resilience science. This involves a revisiting and reunderstanding of the meaning of sustainable urban form. We briefly describe the fields of resilience science and spatial morphology. Drawing on a selected set of propositions in both fields, we put urban form in the context of the adaptive renewal cycle, a dynamic framework model used in resilience science to capture the dynam...

  6. Gyroaveraging operations using adaptive matrix operators

    Science.gov (United States)

    Dominski, Julien; Ku, Seung-Hoe; Chang, Choong-Seock

    2018-05-01

    A new adaptive scheme to be used in particle-in-cell codes for carrying out gyroaveraging operations with matrices is presented. This new scheme uses an intermediate velocity grid whose resolution is adapted to the local thermal Larmor radius. The charge density is computed by projecting marker weights in a field-line following manner while preserving the adiabatic magnetic moment μ. These choices permit to improve the accuracy of the gyroaveraging operations performed with matrices even when strong spatial variation of temperature and magnetic field is present. Accuracy of the scheme in different geometries from simple 2D slab geometry to realistic 3D toroidal equilibrium has been studied. A successful implementation in the gyrokinetic code XGC is presented in the delta-f limit.

  7. S3-2: Colorfulness Perception Adapting to Natural Scenes

    Directory of Open Access Journals (Sweden)

    Yoko Mizokami

    2012-10-01

    Full Text Available Our visual system has the ability to adapt to the color characteristics of environment and maintain stable color appearance. Many researches on chromatic adaptation and color constancy suggested that the different levels of visual processes involve the adaptation mechanism. In the case of colorfulness perception, it has been shown that the perception changes with adaptation to chromatic contrast modulation and to surrounding chromatic variance. However, it is still not clear how the perception changes in natural scenes and what levels of visual mechanisms contribute to the perception. Here, I will mainly present our recent work on colorfulness-adaptation in natural images. In the experiment, we examined whether the colorfulness perception of an image was influenced by the adaptation to natural images with different degrees of saturation. Natural and unnatural (shuffled or phase-scrambled images are used for adapting and test images, and all combinations of adapting and test images were tested (e.g., the combination of natural adapting images and a shuffled test image. The results show that colorfulness perception was influenced by adaptation to the saturation of images. A test image appeared less colorful after adaptation to saturated images, and vice versa. The effect of colorfulness adaptation was the strongest for the combination of natural adapting and natural test images. The fact that the naturalness of the spatial structure in an image affects the strength of the adaptation effect implies that the recognition of natural scene would play an important role in the adaptation mechanism.

  8. Behavioral training promotes multiple adaptive processes following acute hearing loss.

    Science.gov (United States)

    Keating, Peter; Rosenior-Patten, Onayomi; Dahmen, Johannes C; Bell, Olivia; King, Andrew J

    2016-03-23

    The brain possesses a remarkable capacity to compensate for changes in inputs resulting from a range of sensory impairments. Developmental studies of sound localization have shown that adaptation to asymmetric hearing loss can be achieved either by reinterpreting altered spatial cues or by relying more on those cues that remain intact. Adaptation to monaural deprivation in adulthood is also possible, but appears to lack such flexibility. Here we show, however, that appropriate behavioral training enables monaurally-deprived adult humans to exploit both of these adaptive processes. Moreover, cortical recordings in ferrets reared with asymmetric hearing loss suggest that these forms of plasticity have distinct neural substrates. An ability to adapt to asymmetric hearing loss using multiple adaptive processes is therefore shared by different species and may persist throughout the lifespan. This highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders.

  9. Measuring spatial patterns in floodplains: A step towards understanding the complexity of floodplain ecosystems: Chapter 6

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.

    2016-01-01

    Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to

  10. Evaluating Successful Livelihood Adaptation to Climate Variability and Change in Southern Africa

    Directory of Open Access Journals (Sweden)

    Henny Osbahr

    2010-06-01

    Full Text Available This paper examines the success of small-scale farming livelihoods in adapting to climate variability and change. We represent adaptation actions as choices within a response space that includes coping but also longer-term adaptation actions, and define success as those actions which promote system resilience, promote legitimate institutional change, and hence generate and sustain collective action. We explore data on social responses from four regions across South Africa and Mozambique facing a variety of climate risks. The analysis suggests that some collective adaptation actions enhance livelihood resilience to climate change and variability but others have negative spillover effects to other scales. Any assessment of successful adaptation is, however, constrained by the scale of analysis in terms of the temporal and spatial boundaries on the system being investigated. In addition, the diversity of mechanisms by which rural communities in southern Africa adapt to risks suggests that external interventions to assist adaptation will need to be sensitive to the location-specific nature of adaptation.

  11. Adaptive method of lines

    CERN Document Server

    Saucez, Ph

    2001-01-01

    The general Method of Lines (MOL) procedure provides a flexible format for the solution of all the major classes of partial differential equations (PDEs) and is particularly well suited to evolutionary, nonlinear wave PDEs. Despite its utility, however, there are relatively few texts that explore it at a more advanced level and reflect the method''s current state of development.Written by distinguished researchers in the field, Adaptive Method of Lines reflects the diversity of techniques and applications related to the MOL. Most of its chapters focus on a particular application but also provide a discussion of underlying philosophy and technique. Particular attention is paid to the concept of both temporal and spatial adaptivity in solving time-dependent PDEs. Many important ideas and methods are introduced, including moving grids and grid refinement, static and dynamic gridding, the equidistribution principle and the concept of a monitor function, the minimization of a functional, and the moving finite elem...

  12. High-Resolution Adaptive Optics Test-Bed for Vision Science

    International Nuclear Information System (INIS)

    Wilks, S.C.; Thomspon, C.A.; Olivier, S.S.; Bauman, B.J.; Barnes, T.; Werner, J.S.

    2001-01-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed

  13. Reactivity perturbation formulation for a discontinuous Galerkin-based transport solver and its use with adaptive mesh refinement

    International Nuclear Information System (INIS)

    Le Tellier, R.; Fournier, D.; Suteau, C.

    2011-01-01

    Within the framework of a Discontinuous Galerkin spatial approximation of the multigroup discrete ordinates transport equation, we present a generalization of the exact standard perturbation formula that takes into account spatial discretization-induced reactivity changes. It encompasses in two separate contributions the nuclear data-induced reactivity change and the reactivity modification induced by two different spatial discretizations. The two potential uses of such a formulation when considering adaptive mesh refinement are discussed, and numerical results on a simple two-group Cartesian two-dimensional benchmark are provided. In particular, such a formulation is shown to be useful to filter out a more accurate estimate of nuclear data-related reactivity effects from initial and perturbed calculations based on independent adaptation processes. (authors)

  14. Vulnerability Assessment, Climate Change Impacts and Adaptation Measures in Slovenia

    Science.gov (United States)

    Cegnar, T.

    2010-09-01

    In relation to the priority tasks of the climate change measures, the Republic of Slovenia estimates that special attention needs to be devoted to the following sectors in general: - sectors that currently indicate a strong vulnerability for the current climate variability (for instance, agriculture), - sectors where the vulnerability for climate change is increased by current trends (for instance, urban development, use of space), - sectors where the adaptation time is the longest and the subsequent development changes are connected with the highest costs (for instance, use of space, infrastructural objects, forestry, urban development, building stock). Considering the views of Slovenia to the climate change problem in Europe and Slovenia, priority measures and emphasis on future adaptation to climate change, the Republic of Slovenia has especially exposed the following action areas: - sustainable and integrated management of water sources for water power production, prevention of floods, provision of water for the enrichment of low flow rates, and preservation of environmental function as well as provision of water for other needs; - sustainable management of forest ecosystems, adjusted to changes, for the provision of their environmental function as well as being a source of biomass, wood for products for the conservation of carbon, and carbon sinks; - spatial planning as one of the important preventive instruments for the adaptation to climate change through the processes of integral planning of spatial and urban development; - sustainable use and preservation of natural wealth and the preservation of biodiversity as well as ecosystem services with measures and policies that enable an enhanced resistance of ecosystems to climate change, and the role of biological diversity in integral adaptation measures; - informing and awareness on the consequences of climate change and adaptation possibilities. For years, the most endangered sectors have been agriculture and

  15. Optimization of Decision-Making for Spatial Sampling in the North China Plain, Based on Remote-Sensing a Priori Knowledge

    Science.gov (United States)

    Feng, J.; Bai, L.; Liu, S.; Su, X.; Hu, H.

    2012-07-01

    In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scalefitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys.

  16. Role of high-order aberrations in senescent changes in spatial vision

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, S; Choi, S S; Doble, N; Hardy, J L; Evans, J W; Werner, J S

    2009-01-06

    The contributions of optical and neural factors to age-related losses in spatial vision are not fully understood. We used closed-loop adaptive optics to test the visual benefit of correcting monochromatic high-order aberrations (HOAs) on spatial vision for observers ranging in age from 18-81 years. Contrast sensitivity was measured monocularly using a two-alternative forced choice (2AFC) procedure for sinusoidal gratings over 6 mm and 3 mm pupil diameters. Visual acuity was measured using a spatial 4AFC procedure. Over a 6 mm pupil, young observers showed a large benefit of AO at high spatial frequencies, whereas older observers exhibited the greatest benefit at middle spatial frequencies, plus a significantly larger increase in visual acuity. When age-related miosis is controlled, young and old observers exhibited a similar benefit of AO for spatial vision. An increase in HOAs cannot account for the complete senescent decline in spatial vision. These results may indicate a larger role of additional optical factors when the impact of HOAs is removed, but also lend support for the importance of neural factors in age-related changes in spatial vision.

  17. Stochastic and Spatial Equivalences for PALOMA

    Directory of Open Access Journals (Sweden)

    Paul Piho

    2016-07-01

    Full Text Available We concentrate our study on a recent process algebra – PALOMA – intended to capture interactions between spatially distributed agents, for example in collective adaptive systems. New agent-based semantic rules for deriving the underlying continuous time Markov chain are given in terms of State to Function Labelled Transition Systems. Furthermore we define a bisimulation with respect to an isometric transformation of space allowing us to compare PALOMA models with respect to their relative rather than absolute locations.

  18. Designing Dynamic Adaptive Policy Pathways using Many-Objective Robust Decision Making

    Science.gov (United States)

    Kwakkel, Jan; Haasnoot, Marjolijn

    2017-04-01

    Dealing with climate risks in water management requires confronting a wide variety of deeply uncertain factors, while navigating a many dimensional space of trade-offs amongst objectives. There is an emerging body of literature on supporting this type of decision problem, under the label of decision making under deep uncertainty. Two approaches within this literature are Many-Objective Robust Decision Making, and Dynamic Adaptive Policy Pathways. In recent work, these approaches have been compared. One of the main conclusions of this comparison was that they are highly complementary. Many-Objective Robust Decision Making is a model based decision support approach, while Dynamic Adaptive Policy Pathways is primarily a conceptual framework for the design of flexible strategies that can be adapted over time in response to how the future is actually unfolding. In this research we explore this complementarity in more detail. Specifically, we demonstrate how Many-Objective Robust Decision Making can be used to design adaptation pathways. We demonstrate this combined approach using a water management problem, in the Netherlands. The water level of Lake IJselmeer, the main fresh water resource of the Netherlands, is currently managed through discharge by gravity. Due to climate change, this won't be possible in the future, unless water levels are changed. Changing the water level has undesirable flood risk and spatial planning consequences. The challenge is to find promising adaptation pathways that balance objectives related to fresh water supply, flood risk, and spatial issues, while accounting for uncertain climatic and land use change. We conclude that the combination of Many-Objective Robust Decision Making and Dynamic Adaptive Policy Pathways is particularly suited for dealing with deeply uncertain climate risks.

  19. Spatio-Temporal Video Object Segmentation via Scale-Adaptive 3D Structure Tensor

    Directory of Open Access Journals (Sweden)

    Hai-Yun Wang

    2004-06-01

    Full Text Available To address multiple motions and deformable objects' motions encountered in existing region-based approaches, an automatic video object (VO segmentation methodology is proposed in this paper by exploiting the duality of image segmentation and motion estimation such that spatial and temporal information could assist each other to jointly yield much improved segmentation results. The key novelties of our method are (1 scale-adaptive tensor computation, (2 spatial-constrained motion mask generation without invoking dense motion-field computation, (3 rigidity analysis, (4 motion mask generation and selection, and (5 motion-constrained spatial region merging. Experimental results demonstrate that these novelties jointly contribute much more accurate VO segmentation both in spatial and temporal domains.

  20. Study on Adaptive Parameter Determination of Cluster Analysis in Urban Management Cases

    Science.gov (United States)

    Fu, J. Y.; Jing, C. F.; Du, M. Y.; Fu, Y. L.; Dai, P. P.

    2017-09-01

    The fine management for cities is the important way to realize the smart city. The data mining which uses spatial clustering analysis for urban management cases can be used in the evaluation of urban public facilities deployment, and support the policy decisions, and also provides technical support for the fine management of the city. Aiming at the problem that DBSCAN algorithm which is based on the density-clustering can not realize parameter adaptive determination, this paper proposed the optimizing method of parameter adaptive determination based on the spatial analysis. Firstly, making analysis of the function Ripley's K for the data set to realize adaptive determination of global parameter MinPts, which means setting the maximum aggregation scale as the range of data clustering. Calculating every point object's highest frequency K value in the range of Eps which uses K-D tree and setting it as the value of clustering density to realize the adaptive determination of global parameter MinPts. Then, the R language was used to optimize the above process to accomplish the precise clustering of typical urban management cases. The experimental results based on the typical case of urban management in XiCheng district of Beijing shows that: The new DBSCAN clustering algorithm this paper presents takes full account of the data's spatial and statistical characteristic which has obvious clustering feature, and has a better applicability and high quality. The results of the study are not only helpful for the formulation of urban management policies and the allocation of urban management supervisors in XiCheng District of Beijing, but also to other cities and related fields.

  1. STUDY ON ADAPTIVE PARAMETER DETERMINATION OF CLUSTER ANALYSIS IN URBAN MANAGEMENT CASES

    Directory of Open Access Journals (Sweden)

    J. Y. Fu

    2017-09-01

    Full Text Available The fine management for cities is the important way to realize the smart city. The data mining which uses spatial clustering analysis for urban management cases can be used in the evaluation of urban public facilities deployment, and support the policy decisions, and also provides technical support for the fine management of the city. Aiming at the problem that DBSCAN algorithm which is based on the density-clustering can not realize parameter adaptive determination, this paper proposed the optimizing method of parameter adaptive determination based on the spatial analysis. Firstly, making analysis of the function Ripley's K for the data set to realize adaptive determination of global parameter MinPts, which means setting the maximum aggregation scale as the range of data clustering. Calculating every point object’s highest frequency K value in the range of Eps which uses K-D tree and setting it as the value of clustering density to realize the adaptive determination of global parameter MinPts. Then, the R language was used to optimize the above process to accomplish the precise clustering of typical urban management cases. The experimental results based on the typical case of urban management in XiCheng district of Beijing shows that: The new DBSCAN clustering algorithm this paper presents takes full account of the data’s spatial and statistical characteristic which has obvious clustering feature, and has a better applicability and high quality. The results of the study are not only helpful for the formulation of urban management policies and the allocation of urban management supervisors in XiCheng District of Beijing, but also to other cities and related fields.

  2. Microgeographical population structure and adaptation in Atlantic cod Gadus morhua: spatio-temporal insights from gene-associated DNA markers

    DEFF Research Database (Denmark)

    Poulsen, Nina Aagaard; Hemmer-Hansen, Jakob; Loeschcke, V.

    2011-01-01

    levels of genetic differentiation. Interestingly, these loci were identical to loci previously found to display signals of adaptive evolution on larger spatial scales. Analysis of historical samples revealed long-term temporally stable patterns of both neutral and adaptive divergence between some...

  3. Interference-robust Air Interface for 5G Small Cells

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão

    the existing wireless network infrastructure to the limit. Mobile network operators must invest in network expansion to deal with this problem, but the predicted network requirements show that a new Radio Access Technology (RAT) standard will be fundamental to reach the future target performance. This new 5th...... to the fundamental role of inter-cell interference in this type of networks, the inter-cell interference problem must be addressed since the beginning of the design of the new standard. This Ph.D. thesis deals with the design of an interference-robust air interface for 5G small cell networks. The interference...

  4. FPGA implementation of adaptive beamforming in hearing aids.

    Science.gov (United States)

    Samtani, Kartik; Thomas, Jobin; Varma, G Abhinav; Sumam, David S; Deepu, S P

    2017-07-01

    Beamforming is a spatial filtering technique used in hearing aids to improve target sound reception by reducing interference from other directions. In this paper we propose improvements in an existing architecture present for two omnidirectional microphone array based adaptive beamforming for hearing aid applications and implement the same on Xilinx Artix 7 FPGA using VHDL coding and Xilinx Vivado ® 2015.2. The nulls are introduced in particular directions by combination of two fixed polar patterns. This combination can be adaptively controlled to steer the null in the direction of noise. The beamform patterns and improvements in SNR values obtained from experiments in a conference room environment are analyzed.

  5. Hypercell : A bio-inspired information design framework for real-time adaptive spatial components

    NARCIS (Netherlands)

    Biloria, N.M.; Chang, J.R.

    2012-01-01

    Contemporary explorations within the evolutionary computational domain have been heavily instrumental in exploring biological processes of adaptation, growth and mutation. On the other hand a plethora of designers owing to the increasing sophistication in computer aided design software are equally

  6. Content adaptive illumination for Fourier ptychography.

    Science.gov (United States)

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Zheng, Guoan; Chen, Feng; Dai, Qionghai

    2014-12-01

    Fourier ptychography (FP) is a recently reported technique, for large field-of-view and high-resolution imaging. Specifically, FP captures a set of low-resolution images, under angularly varying illuminations, and stitches them together in the Fourier domain. One of FP's main disadvantages is its long capturing process, due to the requisite large number of incident illumination angles. In this Letter, utilizing the sparsity of natural images in the Fourier domain, we propose a highly efficient method, termed adaptive Fourier ptychography (AFP), which applies content adaptive illumination for FP, to capture the most informative parts of the scene's spatial spectrum. We validate the effectiveness and efficiency of the reported framework, with both simulated and real experiments. Results show that the proposed AFP could shorten the acquisition time of conventional FP, by around 30%-60%.

  7. Multi-conjugate adaptive optics observations of the Orion Trapezium Cluster

    International Nuclear Information System (INIS)

    Petr-Gotzens, M G; Kolb, J; Marchetti, E; Sterzik, M F; Ivanov, V D; Nuernberger, D; Koehler, R; Bouy, H; MartIn, E L; Huelamo, N; Navascues, D Barrado y

    2008-01-01

    We obtained very deep and high spatial resolution near-infrared images of the Orion Trapezium Cluster using the Multi-Conjugate Adaptive Optics Demonstrator (MAD) instrument at the VLT. The goal of these observations has been to search for objects at the very low-mass end of the IMF down to the planetary-mass regime. Three fields in the innermost dense part of the Trapezium Cluster, with a total area of 3.5 sq.arcmin have been surveyed at 1.65μm and 2.2μm. Several new candidate planetary mass objects with potential masses Jup have been detected based on their photometry and on their location in the colour-magnitude diagram. The performance of the multi-conjugate adaptive optics correction is excellent over a large field-of-view of ∼ 1'. The final data has a spatial resolution of Jup ), however, must await future confirmation by spectroscopic and/or photometric observations.

  8. Temporal-Spatial Analysis of Traffic Congestion Based on Modified CTM

    Directory of Open Access Journals (Sweden)

    Chenglong Chu

    2015-01-01

    Full Text Available A modified cell transmission model (CTM is proposed to depict the temporal-spatial evolution of traffic congestion on urban freeways. Specifically, drivers’ adaptive behaviors and the corresponding influence on traffic flows are emphasized. Two piecewise linear regression models are proposed to describe the relationship of flow and density (occupancy. Several types of cellular connections are designed to depict urban rapid roads with on/off-ramps and junctions. Based on the data collected on freeway of Queen Elizabeth, Ontario, Canada, we show that the new model provides a relatively higher accuracy of temporal-spatial evolution of traffic congestions.

  9. Wavelet methods in multi-conjugate adaptive optics

    International Nuclear Information System (INIS)

    Helin, T; Yudytskiy, M

    2013-01-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory. (paper)

  10. Adaptive [theta]-methods for pricing American options

    Science.gov (United States)

    Khaliq, Abdul Q. M.; Voss, David A.; Kazmi, Kamran

    2008-12-01

    We develop adaptive [theta]-methods for solving the Black-Scholes PDE for American options. By adding a small, continuous term, the Black-Scholes PDE becomes an advection-diffusion-reaction equation on a fixed spatial domain. Standard implementation of [theta]-methods would require a Newton-type iterative procedure at each time step thereby increasing the computational complexity of the methods. Our linearly implicit approach avoids such complications. We establish a general framework under which [theta]-methods satisfy a discrete version of the positivity constraint characteristic of American options, and numerically demonstrate the sensitivity of the constraint. The positivity results are established for the single-asset and independent two-asset models. In addition, we have incorporated and analyzed an adaptive time-step control strategy to increase the computational efficiency. Numerical experiments are presented for one- and two-asset American options, using adaptive exponential splitting for two-asset problems. The approach is compared with an iterative solution of the two-asset problem in terms of computational efficiency.

  11. Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum.

    Science.gov (United States)

    Rico, Y; Wagner, H H

    2016-11-01

    Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations.

  12. Adaptive resummation of Markovian quantum dynamics

    International Nuclear Information System (INIS)

    Lucas, Felix

    2014-01-01

    In this thesis we derive a highly convergent, nonperturbative expansion of Markovian open quantum dynamics. It is based on a splitting of the incoherent dynamics into periods of continuous evolution and abrupt jumps and attains its favorable convergence properties from an adaptive resummation of this so-called jump expansion. By means of the long-standing problems of spatial particle detection and Landau-Zener tunneling in the presence of dephasing, we show that this adaptive resummation technique facilitates new highly accurate analytic approximations of Markovian open systems. The open Landau-Zener model leads us to propose an efficient and robust incoherent control technique for the isomerization reaction of the visual pigment protein rhodopsin. Besides leading to approximate analytic descriptions of Markovian open quantum dynamics, the adaptive resummation of the jump expansion implies an efficient numerical simulation method. We spell out the corresponding numerical algorithm by means of Monte Carlo integration of the relevant terms in the jump expansion and demonstrate it in a set of paradigmatic open quantum systems.

  13. Design and validation of dynamic hierarchies and adaptive layouts using spatial graph grammars

    NARCIS (Netherlands)

    Liao, K.; Kong, J.; Zhang, K.; de Vries, B.; Griffth, D.A.; Chun, Y.; Dean, D.J.

    2017-01-01

    With the thinking paradigm shifting on the evolution of complex adaptive systems, a pattern-based design approach is reviewed and reinterpreted. Although a variety of long-term and lasting explorations on patterns in geographical analysis, environmental planning, and design exist, in-depth

  14. Using Spatial Clustering in Forecasting Groundwater Quality Parameters by ANFIS

    Directory of Open Access Journals (Sweden)

    MohammadTaghi Alami

    2016-07-01

    Full Text Available Groundwater is a major source of water supply for domestic, agricultural, and industrial uses; hence, its quality modeling is an important task in hydro-environmental studies. While many data-based models have been developed for this purpose, the performance of such data-based models can be drastically enhanced if they are based on temporal and spatial pre-processing. In this study, geostatistics tools (e.g., Co-Kriging, as spatial estimators, and self-organizing map (SOM, as a clustering technique, were employed in conjunction with Adaptive Neuro-Fuzzy Inference System (ANFIS for the temporal forecasting of such quality parameters as electrical conductivity (EC and total dissolved solids (TDS of the groundwater in Ardabil Plain. Using the results thus obtained, the impact of spatial data clustering was also investigated on the same parameters. The results showed that, if propoer input data are selected, the proposed spatial clustering technique is capable of imporving groundwater quality forecasts made by ANFIS.

  15. Spatial and Temporal Flood Risk Assessment for Decision Making Approach

    Science.gov (United States)

    Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan

    2018-03-01

    Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.

  16. Context-dependent spatially periodic activity in the human entorhinal cortex.

    Science.gov (United States)

    Nadasdy, Zoltan; Nguyen, T Peter; Török, Ágoston; Shen, Jason Y; Briggs, Deborah E; Modur, Pradeep N; Buchanan, Robert J

    2017-04-25

    The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency.

  17. Transformation of Space in the Adaptation of La straniera

    Directory of Open Access Journals (Sweden)

    Mahmoud Jaran

    2012-11-01

    Full Text Available The article aims to examine the transformations of space in the adaptation of La straniera, the novel of the Iraqi writer Younis Tawfik, made by the Italian director Marco Turco. The importance of these two works, which have recently won the Med Agora Award, sponsored by the Mediterranean Observatory and Suq Festival, comes from an historical value, since the film La straniera is one of the first film adaptations of Italian Narrative of Migration. From a textual analysis that highlights the differences between the themes in the novel and the screenplay, the article passes to the transformations of space, with the purpose of illustrating a series of reports linking the spatial coordinates with their geo-cultural values. The textual analysis leads also to consider the gap between the intercultural project of Tawfik and multicultural one of Turco. In conclusion, the article demonstrates, through an “the image of Italy” provided by the Iraqi author and the Italian director, how the spatial transformation may give rise to new interpretations of space, impacting on the original message of the literary text.

  18. Conservative adaptivity and two-way self-nesting using discrete wavelets

    Science.gov (United States)

    Dubos, Thomas

    2010-05-01

    In simulating atmosphere and oceans, multiscale modelling is desirable to track high-intensity weather patterns, to investigate the interactions between the various spatio-temporal scales of the climate system, and to perform assessments of climate change at scales small enough to derive impacts on society and ecosystems. The mainstream approach to multiscale modelling is to nest a fine, limited-area model into a coarse, global model. These models are then coupled, either one-way or two-way, in order to combine the global coverage of the global model and the fine details of the fine model. In the long simulations typical of climate studies, initial conditions are unimportant, except for the few quantities like mass that are exactly conserved. In this context it is crucial that numerical models conserve at least mass exactly at the discrete level. However even with elaborate strategies like adaptive mesh refinement (AMR) conservation is not straightforwardly achieved. Although the continuous wavelet transform has become a standard tool of geophysical data analysis, it is less known that discrete wavelets and the associated transforms provide the basis for spatially adaptive numerical methods. Such methods are now well-developed in the fluid dynamics community. Since they allow spatial adaptivity, they can also be seen as two-way self-nesting methods. However since they are not specifically designed for geophysical purposes they are usually not exactly conservative. I present a fairly general framework in which a wavelet-based layer is added to an existing conservative scheme (finite-volume or finite-difference) to make it spatially adaptive without breaking the exact conservation of linear invariants. Discrete wavelet transforms involve an upscaling operation by which fields are transferred from a fine grid to a coarser grid with half the resolution. The method requires that mass fluxes be upscaled in a way that is consistent with the upscaling of mass. This

  19. Tactile spatial resolution in blind braille readers.

    Science.gov (United States)

    Van Boven, R W; Hamilton, R H; Kauffman, T; Keenan, J P; Pascual-Leone, A

    2000-06-27

    To determine if blind people have heightened tactile spatial acuity. Recently, studies using magnetic source imaging and somatosensory evoked potentials have shown that the cortical representation of the reading fingers of blind Braille readers is expanded compared to that of fingers of sighted subjects. Furthermore, the visual cortex is activated during certain tactile tasks in blind subjects but not sighted subjects. The authors hypothesized that the expanded cortical representation of fingers used in Braille reading may reflect an enhanced fidelity in the neural transmission of spatial details of a stimulus. If so, the quantitative limit of spatial acuity would be superior in blind people. The authors employed a grating orientation discrimination task in which threshold performance is accounted for by the spatial resolution limits of the neural image evoked by a stimulus. The authors quantified the psychophysical limits of spatial acuity at the middle and index fingers of 15 blind Braille readers and 15 sighted control subjects. The mean grating orientation threshold was significantly (p = 0.03) lower in the blind group (1.04 mm) compared to the sighted group (1.46 mm). The self-reported dominant reading finger in blind subjects had a mean grating orientation threshold of 0.80 mm, which was significantly better than other fingers tested. Thresholds at non-Braille reading fingers in blind subjects averaged 1.12 mm, which were also superior to sighted subjects' performances. Superior tactile spatial acuity in blind Braille readers may represent an adaptive, behavioral correlate of cortical plasticity.

  20. Spatial working memory deficits represent a core challenge for rehabilitating neglect.

    Directory of Open Access Journals (Sweden)

    Christopher eStriemer

    2013-06-01

    Full Text Available Left neglect following right hemisphere injury is a debilitating disorder that has proven extremely difficult to rehabilitate. Traditional models of neglect have focused on impaired spatial attention as the core deficit and as such, most rehabilitation methods have tried to improve attentional processes. However, many of these techniques (e.g., visual scanning training, caloric stimulation, neck muscle vibration produce only short-lived effects, or are too uncomfortable to use as a routine treatment. More recently, many investigators have begun examining the beneficial effects of prism adaptation for the treatment of neglect. Although prism adaptation has been shown to have some beneficial effects on both overt and covert spatial attention, it does not reliably alter many of the perceptual biases evident in neglect. One of the challenges of neglect rehabilitation may lie in the heterogeneous nature of the deficits. Most notably, a number of researchers have shown that neglect patients present with severe deficits in spatial working memory (SWM in addition to their attentional impairment. Given that SWM can be seen as a foundational cognitive mechanism, critical for a wide range of other functions, any deficit in SWM memory will undoubtedly have severe consequences. In the current review we examine the evidence for SWM deficits in neglect and propose that it constitutes a core component of the syndrome. We present preliminary data which suggest that at least one current rehabilitation method (prism adaptation has no effect on SWM deficits in neglect. Finally, we end by reviewing recent work that examines the effectiveness of SWM training and how SWM training may prove to be a useful avenue for future rehabilitative efforts in patients with neglect.

  1. Temporal acceleration of spatially distributed kinetic Monte Carlo simulations

    International Nuclear Information System (INIS)

    Chatterjee, Abhijit; Vlachos, Dionisios G.

    2006-01-01

    The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial τ-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based τ-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial τ-leap method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1

  2. Partial discharge signal denoising with spatially adaptive wavelet thresholding and support vector machines

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Hilton de Oliveira; Rocha, Leonardo Chaves Dutra da [Department of Computer Science, Federal University of Sao Joao del-Rei, Visconde do Rio Branco Ave., Colonia do Bengo, Sao Joao del-Rei, MG, 36301-360 (Brazil); Salles, Thiago Cunha de Moura [Department of Computer Science, Federal University of Minas Gerais, 6627 Antonio Carlos Ave., Pampulha, Belo Horizonte, MG, 31270-901 (Brazil); Vasconcelos, Flavio Henrique [Department of Electrical Engineering, Federal University of Minas Gerais, 6627 Antonio Carlos Ave., Pampulha, Belo Horizonte, MG, 31270-901 (Brazil)

    2011-02-15

    In this paper an improved method to denoise partial discharge (PD) signals is presented. The method is based on the wavelet transform (WT) and support vector machines (SVM) and is distinct from other WT-based denoising strategies in the sense that it exploits the high spatial correlations presented by PD wavelet decompositions as a way to identify and select the relevant coefficients. PD spatial correlations are characterized by WT modulus maxima propagation along decomposition levels (scales), which are a strong indicative of the their time-of-occurrence. Denoising is performed by identification and separation of PD-related maxima lines by an SVM pattern classifier. The results obtained confirm that this method has superior denoising capabilities when compared to other WT-based methods found in the literature for the processing of Gaussian and discrete spectral interferences. Moreover, its greatest advantages become clear when the interference has a pulsating or localized shape, situation in which traditional methods usually fail. (author)

  3. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model.

    Science.gov (United States)

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander

    2015-04-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.

  4. Individual differences in multitasking ability and adaptability.

    Science.gov (United States)

    Morgan, Brent; D'Mello, Sidney; Abbott, Robert; Radvansky, Gabriel; Haass, Michael; Tamplin, Andrea

    2013-08-01

    The aim of this study was to identify the cognitive factors that predictability and adaptability during multitasking with a flight simulator. Multitasking has become increasingly prevalent as most professions require individuals to perform multiple tasks simultaneously. Considerable research has been undertaken to identify the characteristics of people (i.e., individual differences) that predict multitasking ability. Although working memory is a reliable predictor of general multitasking ability (i.e., performance in normal conditions), there is the question of whether different cognitive faculties are needed to rapidly respond to changing task demands (adaptability). Participants first completed a battery of cognitive individual differences tests followed by multitasking sessions with a flight simulator. After a baseline condition, difficulty of the flight simulator was incrementally increased via four experimental manipulations, and performance metrics were collected to assess multitasking ability and adaptability. Scholastic aptitude and working memory predicted general multitasking ability (i.e., performance at baseline difficulty), but spatial manipulation (in conjunction with working memory) was a major predictor of adaptability (performance in difficult conditions after accounting for baseline performance). Multitasking ability and adaptability may be overlapping but separate constructs that draw on overlapping (but not identical) sets of cognitive abilities. The results of this study are applicable to practitioners and researchers in human factors to assess multitasking performance in real-world contexts and with realistic task constraints. We also present a framework for conceptualizing multitasking adaptability on the basis of five adaptability profiles derived from performance on tasks with consistent versus increased difficulty.

  5. Adapting California’s ecosystems to a changing climate

    Science.gov (United States)

    Elizabeth Chornesky,; David Ackerly,; Paul Beier,; Frank Davis,; Flint, Lorraine E.; Lawler, Joshua J.; Moyle, Peter B.; Moritz, Max A.; Scoonover, Mary; Byrd, Kristin B.; Alvarez, Pelayo; Heller, Nicole E.; Micheli, Elisabeth; Weiss, Stuart

    2017-01-01

    Significant efforts are underway to translate improved understanding of how climate change is altering ecosystems into practical actions for sustaining ecosystem functions and benefits. We explore this transition in California, where adaptation and mitigation are advancing relatively rapidly, through four case studies that span large spatial domains and encompass diverse ecological systems, institutions, ownerships, and policies. The case studies demonstrate the context specificity of societal efforts to adapt ecosystems to climate change and involve applications of diverse scientific tools (e.g., scenario analyses, downscaled climate projections, ecological and connectivity models) tailored to specific planning and management situations (alternative energy siting, wetland management, rangeland management, open space planning). They illustrate how existing institutional and policy frameworks provide numerous opportunities to advance adaptation related to ecosystems and suggest that progress is likely to be greatest when scientific knowledge is integrated into collective planning and when supportive policies and financing enable action.

  6. High resolution crop growth simulation for identification of potential adaptation strategies under climate change

    Science.gov (United States)

    Kim, K. S.; Yoo, B. H.

    2016-12-01

    Impact assessment of climate change on crop production would facilitate planning of adaptation strategies. Because socio-environmental conditions would differ by local areas, it would be advantageous to assess potential adaptation measures at a specific area. The objectives of this study was to develop a crop growth simulation system at a very high spatial resolution, e.g., 30 m, and to assess different adaptation options including shift of planting date and use of different cultivars. The Decision Support System for Agrotechnology Transfer (DSSAT) model was used to predict yields of soybean and maize in Korea. Gridded data for climate and soil were used to prepare input data for the DSSAT model. Weather input data were prepared at the resolution of 30 m using bilinear interpolation from gridded climate scenario data. Those climate data were obtained from Korean Meteorology Administration. Spatial resolution of temperature and precipitation was 1 km whereas that of solar radiation was 12.5 km. Soil series data at the 30 m resolution were obtained from the soil database operated by Rural Development Administration, Korea. The SOL file, which is a soil input file for the DSSAT model was prepared using physical and chemical properties of a given soil series, which were available from the soil database. Crop yields were predicted by potential adaptation options based on planting date and cultivar. For example, 10 planting dates and three cultivars were used to identify ideal management options for climate change adaptation. In prediction of maize yield, combination of 20 planting dates and two cultivars was used as management options. Predicted crop yields differed by site even within a relatively small region. For example, the maximum of average yields for 2001-2010 seasons differed by sites In a county of which areas is 520 km2 (Fig. 1). There was also spatial variation in the ideal management option in the region (Fig. 2). These results suggested that local

  7. Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2015-01-01

    Full Text Available The key problem of computer-aided diagnosis (CAD of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO pulmonary nodules than other typical algorithms.

  8. Reliability Analysis of 6-Component Star Markov Repairable System with Spatial Dependence

    Directory of Open Access Journals (Sweden)

    Liying Wang

    2017-01-01

    Full Text Available Star repairable systems with spatial dependence consist of a center component and several peripheral components. The peripheral components are arranged around the center component, and the performance of each component depends on its spatial “neighbors.” Vector-Markov process is adapted to describe the performance of the system. The state space and transition rate matrix corresponding to the 6-component star Markov repairable system with spatial dependence are presented via probability analysis method. Several reliability indices, such as the availability, the probabilities of visiting the safety, the degradation, the alert, and the failed state sets, are obtained by Laplace transform method and a numerical example is provided to illustrate the results.

  9. Image reconstruction with an adaptive threshold technique in electrical resistance tomography

    International Nuclear Information System (INIS)

    Kim, Bong Seok; Khambampati, Anil Kumar; Kim, Sin; Kim, Kyung Youn

    2011-01-01

    In electrical resistance tomography, electrical currents are injected through the electrodes placed on the surface of a domain and the corresponding voltages are measured. Based on these currents and voltage data, the cross-sectional resistivity distribution is reconstructed. Electrical resistance tomography shows high temporal resolution for monitoring fast transient processes, but it still remains a challenging problem to improve the spatial resolution of the reconstructed images. In this paper, a novel image reconstruction technique is proposed to improve the spatial resolution by employing an adaptive threshold method to the iterative Gauss–Newton method. Numerical simulations and phantom experiments have been performed to illustrate the superior performance of the proposed scheme in the sense of spatial resolution

  10. A sequential adaptation technique and its application to the Mark 12 IFF system

    Science.gov (United States)

    Bailey, John S.; Mallett, John D.; Sheppard, Duane J.; Warner, F. Neal; Adams, Robert

    1986-07-01

    Sequential adaptation uses only two sets of receivers, correlators, and A/D converters which are time multiplexed to effect spatial adaptation in a system with (N) adaptive degrees of freedom. This technique can substantially reduce the hardware cost over what is realizable in a parallel architecture. A three channel L-band version of the sequential adapter was built and tested for use with the MARK XII IFF (identify friend or foe) system. In this system the sequentially determined adaptive weights were obtained digitally but implemented at RF. As a result, many of the post RF hardware induced sources of error that normally limit cancellation, such as receiver mismatch, are removed by the feedback property. The result is a system that can yield high levels of cancellation and be readily retrofitted to currently fielded equipment.

  11. The Spatial Politics of Spatial Representation

    DEFF Research Database (Denmark)

    Olesen, Kristian; Richardson, Tim

    2011-01-01

    spatial planning in Denmark reveals how fuzzy spatial representations and relational spatial concepts are being used to depoliticise strategic spatial planning processes and to camouflage spatial politics. The paper concludes that, while relational geography might play an important role in building......This paper explores the interplay between the spatial politics of new governance landscapes and innovations in the use of spatial representations in planning. The central premise is that planning experiments with new relational approaches become enmeshed in spatial politics. The case of strategic...

  12. Stability of bumps in piecewise smooth neural fields with nonlinear adaptation

    KAUST Repository

    Kilpatrick, Zachary P.

    2010-06-01

    We study the linear stability of stationary bumps in piecewise smooth neural fields with local negative feedback in the form of synaptic depression or spike frequency adaptation. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Discontinuities in the adaptation variable associated with a bump solution means that bump stability cannot be analyzed by constructing the Evans function for a network with a sigmoidal gain function and then taking the high-gain limit. In the case of synaptic depression, we show that linear stability can be formulated in terms of solutions to a system of pseudo-linear equations. We thus establish that sufficiently strong synaptic depression can destabilize a bump that is stable in the absence of depression. These instabilities are dominated by shift perturbations that evolve into traveling pulses. In the case of spike frequency adaptation, we show that for a wide class of perturbations the activity and adaptation variables decouple in the linear regime, thus allowing us to explicitly determine stability in terms of the spectrum of a smooth linear operator. We find that bumps are always unstable with respect to this class of perturbations, and destabilization of a bump can result in either a traveling pulse or a spatially localized breather. © 2010 Elsevier B.V. All rights reserved.

  13. A Statistical Toolbox For Mining And Modeling Spatial Data

    Directory of Open Access Journals (Sweden)

    D’Aubigny Gérard

    2016-12-01

    Full Text Available Most data mining projects in spatial economics start with an evaluation of a set of attribute variables on a sample of spatial entities, looking for the existence and strength of spatial autocorrelation, based on the Moran’s and the Geary’s coefficients, the adequacy of which is rarely challenged, despite the fact that when reporting on their properties, many users seem likely to make mistakes and to foster confusion. My paper begins by a critical appraisal of the classical definition and rational of these indices. I argue that while intuitively founded, they are plagued by an inconsistency in their conception. Then, I propose a principled small change leading to corrected spatial autocorrelation coefficients, which strongly simplifies their relationship, and opens the way to an augmented toolbox of statistical methods of dimension reduction and data visualization, also useful for modeling purposes. A second section presents a formal framework, adapted from recent work in statistical learning, which gives theoretical support to our definition of corrected spatial autocorrelation coefficients. More specifically, the multivariate data mining methods presented here, are easily implementable on the existing (free software, yield methods useful to exploit the proposed corrections in spatial data analysis practice, and, from a mathematical point of view, whose asymptotic behavior, already studied in a series of papers by Belkin & Niyogi, suggests that they own qualities of robustness and a limited sensitivity to the Modifiable Areal Unit Problem (MAUP, valuable in exploratory spatial data analysis.

  14. Improvement of neutronic calculations on a Masurca core using adaptive mesh refinement capabilities

    International Nuclear Information System (INIS)

    Fournier, D.; Archier, P.; Le Tellier, R.; Suteau, C.

    2011-01-01

    The simulation of 3D cores with homogenized assemblies in transport theory remains time and memory consuming for production calculations. With a multigroup discretization for the energy variable and a discrete ordinate method for the angle, a system of about 10"4 coupled hyperbolic transport equations has to be solved. For these equations, we intend to optimize the spatial discretization. In the framework of the SNATCH solver used in this study, the spatial problem is dealt with by using a structured hexahedral mesh and applying a Discontinuous Galerkin Finite Element Method (DGFEM). This paper shows the improvements due to the development of Adaptive Mesh Refinement (AMR) methods. As the SNATCH solver uses a hierarchical polynomial basis, p−refinement is possible but also h−refinement thanks to non conforming capabilities. Besides, as the flux spatial behavior is highly dependent on the energy, we propose to adapt differently the spatial discretization according to the energy group. To avoid dealing with too many meshes, some energy groups are joined and share the same mesh. The different energy-dependent AMR strategies are compared to each other but also with the classical approach of a conforming and highly refined spatial mesh. This comparison is carried out on different quantities such as the multiplication factor, the flux or the current. The gain in time and memory is shown for 2D and 3D benchmarks coming from the ZONA2B experimental core configuration of the MASURCA mock-up at CEA Cadarache. (author)

  15. Selective Extraction of Entangled Textures via Adaptive PDE Transform

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2012-01-01

    Full Text Available Texture and feature extraction is an important research area with a wide range of applications in science and technology. Selective extraction of entangled textures is a challenging task due to spatial entanglement, orientation mixing, and high-frequency overlapping. The partial differential equation (PDE transform is an efficient method for functional mode decomposition. The present work introduces adaptive PDE transform algorithm to appropriately threshold the statistical variance of the local variation of functional modes. The proposed adaptive PDE transform is applied to the selective extraction of entangled textures. Successful separations of human face, clothes, background, natural landscape, text, forest, camouflaged sniper and neuron skeletons have validated the proposed method.

  16. Spatial Programming for Industrial Robots Through Task Demonstration

    OpenAIRE

    Jens Lambrecht; Martin Kleinsorge; Martin Rosenstrauch; Jörg Krüger

    2013-01-01

    Abstract We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward ...

  17. Adaptive discrete cosine transform coding algorithm for digital mammography

    Science.gov (United States)

    Baskurt, Atilla M.; Magnin, Isabelle E.; Goutte, Robert

    1992-09-01

    The need for storage, transmission, and archiving of medical images has led researchers to develop adaptive and efficient data compression techniques. Among medical images, x-ray radiographs of the breast are especially difficult to process because of their particularly low contrast and very fine structures. A block adaptive coding algorithm based on the discrete cosine transform to compress digitized mammograms is described. A homogeneous repartition of the degradation in the decoded images is obtained using a spatially adaptive threshold. This threshold depends on the coding error associated with each block of the image. The proposed method is tested on a limited number of pathological mammograms including opacities and microcalcifications. A comparative visual analysis is performed between the original and the decoded images. Finally, it is shown that data compression with rather high compression rates (11 to 26) is possible in the mammography field.

  18. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous

  19. Error estimation for goal-oriented spatial adaptivity for the SN equations on triangular meshes

    International Nuclear Information System (INIS)

    Lathouwers, D.

    2011-01-01

    In this paper we investigate different error estimation procedures for use within a goal oriented adaptive algorithm for the S N equations on unstructured meshes. The method is based on a dual-weighted residual approach where an appropriate adjoint problem is formulated and solved in order to obtain the importance of residual errors in the forward problem on the specific goal of interest. The forward residuals and the adjoint function are combined to obtain both economical finite element meshes tailored to the solution of the target functional as well as providing error estimates. Various approximations made to make the calculation of the adjoint angular flux more economically attractive are evaluated by comparing the performance of the resulting adaptive algorithm and the quality of the error estimators when applied to two shielding-type test problems. (author)

  20. Adaptive Multi-Layered Space-Time Block Coded Systems in Wireless Environments

    KAUST Repository

    Al-Ghadhban, Samir

    2014-12-23

    © 2014, Springer Science+Business Media New York. Multi-layered space-time block coded systems (MLSTBC) strike a balance between spatial multiplexing and transmit diversity. In this paper, we analyze the block error rate performance of MLSTBC. In addition, we propose an adaptive MLSTBC schemes that are capable of accommodating the channel signal-to-noise ratio variation of wireless systems by near instantaneously adapting the uplink transmission configuration. The main results demonstrate that significant effective throughput improvements can be achieved while maintaining a certain target bit error rate.

  1. Climate change adaptation benefits of potential conservation partnerships.

    Science.gov (United States)

    Monahan, William B; Theobald, David M

    2018-01-01

    We evaluate the world terrestrial network of protected areas (PAs) for its partnership potential in responding to climate change. That is, if a PA engaged in collaborative, trans-boundary management of species, by investing in conservation partnerships with neighboring areas, what climate change adaptation benefits might accrue? We consider core tenets of conservation biology related to protecting large areas with high environmental heterogeneity and low climate change velocity and ask how a series of biodiversity adaptation indicators change across spatial scales encompassing potential PA and non-PA partners. Less than 1% of current world terrestrial PAs equal or exceed the size of established and successful conservation partnerships. Partnering at this scale would increase the biodiversity adaptation indicators by factors up to two orders of magnitude, compared to a null model in which each PA is isolated. Most partnership area surrounding PAs is comprised of non-PAs (70%), indicating the importance of looking beyond the current network of PAs when promoting climate change adaptation. Given monumental challenges with PA-based species conservation in the face of climate change, partnerships provide a logical and achievable strategy for helping areas adapt. Our findings identify where strategic partnering efforts in highly vulnerable areas of the world may prove critical in safeguarding biodiversity.

  2. Spatially-Explicit Bayesian Information Entropy Metrics for Calibrating Landscape Transformation Models

    Directory of Open Access Journals (Sweden)

    Kostas Alexandridis

    2013-06-01

    Full Text Available Assessing spatial model performance often presents challenges related to the choice and suitability of traditional statistical methods in capturing the true validity and dynamics of the predicted outcomes. The stochastic nature of many of our contemporary spatial models of land use change necessitate the testing and development of new and innovative methodologies in statistical spatial assessment. In many cases, spatial model performance depends critically on the spatially-explicit prior distributions, characteristics, availability and prevalence of the variables and factors under study. This study explores the statistical spatial characteristics of statistical model assessment of modeling land use change dynamics in a seven-county study area in South-Eastern Wisconsin during the historical period of 1963–1990. The artificial neural network-based Land Transformation Model (LTM predictions are used to compare simulated with historical land use transformations in urban/suburban landscapes. We introduce a range of Bayesian information entropy statistical spatial metrics for assessing the model performance across multiple simulation testing runs. Bayesian entropic estimates of model performance are compared against information-theoretic stochastic entropy estimates and theoretically-derived accuracy assessments. We argue for the critical role of informational uncertainty across different scales of spatial resolution in informing spatial landscape model assessment. Our analysis reveals how incorporation of spatial and landscape information asymmetry estimates can improve our stochastic assessments of spatial model predictions. Finally our study shows how spatially-explicit entropic classification accuracy estimates can work closely with dynamic modeling methodologies in improving our scientific understanding of landscape change as a complex adaptive system and process.

  3. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology.

    Science.gov (United States)

    Bittig, Arne T; Uhrmacher, Adelinde M

    2017-01-01

    Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.

  4. Ready or Not: Microbial Adaptive Responses in Dynamic Symbiosis Environments.

    Science.gov (United States)

    Cao, Mengyi; Goodrich-Blair, Heidi

    2017-08-01

    In mutually beneficial and pathogenic symbiotic associations, microbes must adapt to the host environment for optimal fitness. Both within an individual host and during transmission between hosts, microbes are exposed to temporal and spatial variation in environmental conditions. The phenomenon of phenotypic variation, in which different subpopulations of cells express distinctive and potentially adaptive characteristics, can contribute to microbial adaptation to a lifestyle that includes rapidly changing environments. The environments experienced by a symbiotic microbe during its life history can be erratic or predictable, and each can impact the evolution of adaptive responses. In particular, the predictability of a rhythmic or cyclical series of environments may promote the evolution of signal transduction cascades that allow preadaptive responses to environments that are likely to be encountered in the future, a phenomenon known as adaptive prediction. In this review, we summarize environmental variations known to occur in some well-studied models of symbiosis and how these may contribute to the evolution of microbial population heterogeneity and anticipatory behavior. We provide details about the symbiosis between Xenorhabdus bacteria and Steinernema nematodes as a model to investigate the concept of environmental adaptation and adaptive prediction in a microbial symbiosis. Copyright © 2017 American Society for Microbiology.

  5. Spatial analysis and modeling to assess and map current vulnerability to extreme weather events in the Grijalva - Usumacinta watershed, Mexico

    International Nuclear Information System (INIS)

    Lopez L, D

    2009-01-01

    One of the major concerns over a potential change in climate is that it will cause an increase in extreme weather events. In Mexico, the exposure factors as well as the vulnerability to the extreme weather events have increased during the last three or four decades. In this study spatial analysis and modeling were used to assess and map settlement and crop systems vulnerability to extreme weather events in the Grijalva - Usumacinta watershed. Sensitivity and coping adaptive capacity maps were constructed using decision models; these maps were then combined to produce vulnerability maps. The most vulnerable area in terms of both settlement and crop systems is the highlands, where the sensitivity is high and the adaptive capacity is low. In lowlands, despite the very high sensitivity, the higher adaptive capacity produces only moderate vulnerability. I conclude that spatial analysis and modeling are powerful tools to assess and map vulnerability. These preliminary results can guide the formulation of adaptation policies to an increasing risk of extreme weather events.

  6. Spatial analysis and modeling to assess and map current vulnerability to extreme weather events in the Grijalva - Usumacinta watershed, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez L, D, E-mail: dlopez@centrogeo.org.m [Centro de Investigacion en GeografIa y Geomatica, Ing. Jorge L. Tamayo A.C., Contoy 137, col. Lomas de Padierna, del Tlalpan, Maxico D.F (Mexico)

    2009-11-01

    One of the major concerns over a potential change in climate is that it will cause an increase in extreme weather events. In Mexico, the exposure factors as well as the vulnerability to the extreme weather events have increased during the last three or four decades. In this study spatial analysis and modeling were used to assess and map settlement and crop systems vulnerability to extreme weather events in the Grijalva - Usumacinta watershed. Sensitivity and coping adaptive capacity maps were constructed using decision models; these maps were then combined to produce vulnerability maps. The most vulnerable area in terms of both settlement and crop systems is the highlands, where the sensitivity is high and the adaptive capacity is low. In lowlands, despite the very high sensitivity, the higher adaptive capacity produces only moderate vulnerability. I conclude that spatial analysis and modeling are powerful tools to assess and map vulnerability. These preliminary results can guide the formulation of adaptation policies to an increasing risk of extreme weather events.

  7. Single image super-resolution using locally adaptive multiple linear regression.

    Science.gov (United States)

    Yu, Soohwan; Kang, Wonseok; Ko, Seungyong; Paik, Joonki

    2015-12-01

    This paper presents a regularized superresolution (SR) reconstruction method using locally adaptive multiple linear regression to overcome the limitation of spatial resolution of digital images. In order to make the SR problem better-posed, the proposed method incorporates the locally adaptive multiple linear regression into the regularization process as a local prior. The local regularization prior assumes that the target high-resolution (HR) pixel is generated by a linear combination of similar pixels in differently scaled patches and optimum weight parameters. In addition, we adapt a modified version of the nonlocal means filter as a smoothness prior to utilize the patch redundancy. Experimental results show that the proposed algorithm better restores HR images than existing state-of-the-art methods in the sense of the most objective measures in the literature.

  8. Adapting environmental management to uncertain but inevitable change.

    Science.gov (United States)

    Nicol, Sam; Fuller, Richard A; Iwamura, Takuya; Chadès, Iadine

    2015-06-07

    Implementation of adaptation actions to protect biodiversity is limited by uncertainty about the future. One reason for this is the fear of making the wrong decisions caused by the myriad future scenarios presented to decision-makers. We propose an adaptive management (AM) method for optimally managing a population under uncertain and changing habitat conditions. Our approach incorporates multiple future scenarios and continually learns the best management strategy from observations, even as conditions change. We demonstrate the performance of our AM approach by applying it to the spatial management of migratory shorebird habitats on the East Asian-Australasian flyway, predicted to be severely impacted by future sea-level rise. By accounting for non-stationary dynamics, our solution protects 25,000 more birds per year than the current best stationary approach. Our approach can be applied to many ecological systems that require efficient adaptation strategies for an uncertain future. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. New adaptive sampling method in particle image velocimetry

    International Nuclear Information System (INIS)

    Yu, Kaikai; Xu, Jinglei; Tang, Lan; Mo, Jianwei

    2015-01-01

    This study proposes a new adaptive method to enable the number of interrogation windows and their positions in a particle image velocimetry (PIV) image interrogation algorithm to become self-adapted according to the seeding density. The proposed method can relax the constraint of uniform sampling rate and uniform window size commonly adopted in the traditional PIV algorithm. In addition, the positions of the sampling points are redistributed on the basis of the spring force generated by the sampling points. The advantages include control of the number of interrogation windows according to the local seeding density and smoother distribution of sampling points. The reliability of the adaptive sampling method is illustrated by processing synthetic and experimental images. The synthetic example attests to the advantages of the sampling method. Compared with that of the uniform interrogation technique in the experimental application, the spatial resolution is locally enhanced when using the proposed sampling method. (technical design note)

  10. Adaptive Modulation and Coding for LTE Wireless Communication

    Science.gov (United States)

    Hadi, S. S.; Tiong, T. C.

    2015-04-01

    Long Term Evolution (LTE) is the new upgrade path for carrier with both GSM/UMTS networks and CDMA2000 networks. The LTE is targeting to become the first global mobile phone standard regardless of the different LTE frequencies and bands use in other countries barrier. Adaptive Modulation and Coding (AMC) is used to increase the network capacity or downlink data rates. Various modulation types are discussed such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM). Spatial multiplexing techniques for 4×4 MIMO antenna configuration is studied. With channel station information feedback from the mobile receiver to the base station transmitter, adaptive modulation and coding can be applied to adapt to the mobile wireless channels condition to increase spectral efficiencies without increasing bit error rate in noisy channels. In High-Speed Downlink Packet Access (HSDPA) in Universal Mobile Telecommunications System (UMTS), AMC can be used to choose modulation types and forward error correction (FEC) coding rate.

  11. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro- but not micro-geographical scale.

    Science.gov (United States)

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat; Song, Minshu; Shulgina, Irina

    2015-01-01

    Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.

  12. Logarithmic Adaptive Neighborhood Image Processing (LANIP): Introduction, Connections to Human Brightness Perception, and Application Issues

    OpenAIRE

    J. Debayle; J.-C. Pinoli

    2007-01-01

    A new framework for image representation, processing, and analysis is introduced and exposed through practical applications. The proposed approach is called logarithmic adaptive neighborhood image processing (LANIP) since it is based on the logarithmic image processing (LIP) and on the general adaptive neighborhood image processing (GANIP) approaches, that allow several intensity and spatial properties of the human brightness perception to be mathematically modeled and operationalized, and c...

  13. Transitions from Trees to Cycles in Adaptive Flow Networks

    Directory of Open Access Journals (Sweden)

    Erik A. Martens

    2017-11-01

    Full Text Available Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances. We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins.

  14. Evaluation of single and two-stage adaptive sampling designs for estimation of density and abundance of freshwater mussels in a large river

    Science.gov (United States)

    Smith, D.R.; Rogala, J.T.; Gray, B.R.; Zigler, S.J.; Newton, T.J.

    2011-01-01

    Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non-adaptive versions of single and two-stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two-stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers.

  15. Data-adaptive harmonic analysis and prediction of sea level change in North Atlantic region

    Science.gov (United States)

    Kondrashov, D. A.; Chekroun, M.

    2017-12-01

    This study aims to characterize North Atlantic sea level variability across the temporal and spatial scales. We apply recently developed data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) stochastic modeling techniques [Chekroun and Kondrashov, 2017] to monthly 1993-2017 dataset of Combined TOPEX/Poseidon, Jason-1 and Jason-2/OSTM altimetry fields over North Atlantic region. The key numerical feature of the DAH relies on the eigendecomposition of a matrix constructed from time-lagged spatial cross-correlations. In particular, eigenmodes form an orthogonal set of oscillating data-adaptive harmonic modes (DAHMs) that come in pairs and in exact phase quadrature for a given temporal frequency. Furthermore, the pairs of data-adaptive harmonic coefficients (DAHCs), obtained by projecting the dataset onto associated DAHMs, can be very efficiently modeled by a universal parametric family of simple nonlinear stochastic models - coupled Stuart-Landau oscillators stacked per frequency, and synchronized across different frequencies by the stochastic forcing. Despite the short record of altimetry dataset, developed DAH-MSLM model provides for skillful prediction of key dynamical and statistical features of sea level variability. References M. D. Chekroun and D. Kondrashov, Data-adaptive harmonic spectra and multilayer Stuart-Landau models. HAL preprint, 2017, https://hal.archives-ouvertes.fr/hal-01537797

  16. Implementing European climate adaptation policy. How local policymakers react to European policy

    Directory of Open Access Journals (Sweden)

    Thomas Hartmann

    2015-04-01

    Full Text Available EU policy and projects have an increasing influence on policymaking for climate adaptation. This is especially evident in the development of new climate adaptation policies in transnational city networks. Until now, climate adaptation literature has paid little attention to the influence that these EU networks have on the adaptive capacity in cities. This paper uses two Dutch cities as an empirical base to evaluate the influence of two EU climate adaptation projects on both the experience of local public officials and the adaptive capacity in the respective cities. The main conclusion is that EU climate adaptation projects do not automatically lead to an increased adaptive capacity in the cities involved. This is due to the political opportunistic use of EU funding, which hampers the implementation of climate adaptation policies. Furthermore, these EU projects draw attention away from local network building focused on the development and implementation of climate adaptation policies. These factors have a negative cumulative impact on the performance of these transnational policy networks at the adaptive capacity level in the cities involved. Therefore, in order to strengthen the adaptive capacity in today’s European cities, a context-specific, integrative approach in urban planning is needed at all spatial levels. Hence, policy entrepreneurs should aim to create linkage between the issues in the transnational city network and the concerns in local politics and local networks.

  17. Multireference adaptive noise canceling applied to the EEG.

    Science.gov (United States)

    James, C J; Hagan, M T; Jones, R D; Bones, P J; Carroll, G J

    1997-08-01

    The technique of multireference adaptive noise canceling (MRANC) is applied to enhance transient nonstationarities in the electroeancephalogram (EEG), with the adaptation implemented by means of a multilayer-perception artificial neural network (ANN). The method was applied to recorded EEG segments and the performance on documented nonstationarities recorded. The results show that the neural network (nonlinear) gives an improvement in performance (i.e., signal-to-noise ratio (SNR) of the nonstationarities) compared to a linear implementation of MRANC. In both cases an improvement in the SNR was obtained. The advantage of the spatial filtering aspect of MRANC is highlighted when the performance of MRANC is compared to that of the inverse auto-regressive filtering of the EEG, a purely temporal filter.

  18. Eye and Hand Movements during Reconstruction of Spatial Memory

    Directory of Open Access Journals (Sweden)

    Melanie Rose Burke

    2012-05-01

    Full Text Available Recent behavioural and biological evidence indicates common mechanisms serving working memory and attention (eg, Awh et al 2006, Trends in Cognitive Sciences 10, 124–130. This study explored the role of spatial attention and visual search in an adapted Corsi spatial memory task. Eye movements and touch responses were recorded from participants who recalled locations (signalled by colour or shape change from an array presented either simultaneously or sequentially. The time delay between target presentation and recall (0, 5, or 10s and the number of locations to be remembered (2–5 were also manipulated. Analysis of the response phase revealed subjects were less accurate (touch data and fixated longer (eye data when responding to sequentially presented targets. Fixation duration was also influenced by whether spatial location was initially signalled by colour or shape change. We conclude that attention and temporal delays during retention of a target play a minor role in motor behaviour during a corsi spatial memory task. In contrast, the type of memory required (ie, location and/or memory and number of items plays a key role on subject performance and behaviour.

  19. Optimization of spatial light distribution through genetic algorithms for vision systems applied to quality control

    International Nuclear Information System (INIS)

    Castellini, P; Cecchini, S; Stroppa, L; Paone, N

    2015-01-01

    The paper presents an adaptive illumination system for image quality enhancement in vision-based quality control systems. In particular, a spatial modulation of illumination intensity is proposed in order to improve image quality, thus compensating for different target scattering properties, local reflections and fluctuations of ambient light. The desired spatial modulation of illumination is obtained by a digital light projector, used to illuminate the scene with an arbitrary spatial distribution of light intensity, designed to improve feature extraction in the region of interest. The spatial distribution of illumination is optimized by running a genetic algorithm. An image quality estimator is used to close the feedback loop and to stop iterations once the desired image quality is reached. The technique proves particularly valuable for optimizing the spatial illumination distribution in the region of interest, with the remarkable capability of the genetic algorithm to adapt the light distribution to very different target reflectivity and ambient conditions. The final objective of the proposed technique is the improvement of the matching score in the recognition of parts through matching algorithms, hence of the diagnosis of machine vision-based quality inspections. The procedure has been validated both by a numerical model and by an experimental test, referring to a significant problem of quality control for the washing machine manufacturing industry: the recognition of a metallic clamp. Its applicability to other domains is also presented, specifically for the visual inspection of shoes with retro-reflective tape and T-shirts with paillettes. (paper)

  20. Adaptive Surface Modeling of Soil Properties in Complex Landforms

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-06-01

    Full Text Available Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the surface modeling of soil properties in complex geomorphic areas. Here we present a method for adaptive surface modeling of combined secondary variables to improve prediction accuracy during the interpolation of soil properties (ASM-SP. Using various secondary variables and multiple base interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex geomorphic area (Qinghai Lake Basin, China. Five methods, including inverse distance weighting (IDW, ordinary kriging (OK, and OK combined with different secondary variables (e.g., OK-Landuse, OK-Geology, and OK-Soil, were used to validate the proposed method. The mean error (ME, mean absolute error (MAE, root mean square error (RMSE, mean relative error (MRE, and accuracy (AC were used as evaluation indicators. Results showed that: (1 The OK interpolation result is spatially smooth and has a weak bull's-eye effect, and the IDW has a stronger ‘bull’s-eye’ effect, relatively. They both have obvious deficiencies in depicting spatial variability of soil K+. (2 The methods incorporating combinations of different secondary variables (e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil were associated with lower estimation bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and OK-Soil, the accuracy of ASM-SP increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively. Furthermore, ASM-SP was more stable, with lower MEs, MAEs, RMSEs, and MREs. (3 ASM-SP presents more details than others in the abrupt boundary, which can render the result consistent with the true secondary variables. In conclusion, ASM-SP can not only consider the nonlinear relationship between secondary variables and soil properties, but can also adaptively combine the advantages of multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.

  1. Spatial Tuning of a RF Frequency Selective Surface through Origami (Postprint)

    Science.gov (United States)

    2016-05-12

    computational tools to systematically predict optimal folds. 15. SUBJECT TERMS origami, frequency selective surface, tuning, radio frequency 16...experimental study and motivates the development of computational tools to systematically predict optimal fold patterns for targeted frequency response...folding motions. The precise mapping of origami presents a novel method to spatially tune radio frequency (RF) devices, including adaptive antennas

  2. A meta-analysis of local adaptation in plants.

    Directory of Open Access Journals (Sweden)

    Roosa Leimu

    Full Text Available Local adaptation is of fundamental importance in evolutionary, population, conservation, and global-change biology. The generality of local adaptation in plants and whether and how it is influenced by specific species, population and habitat characteristics have, however, not been quantitatively reviewed. Therefore, we examined published data on the outcomes of reciprocal transplant experiments using two approaches. We conducted a meta-analysis to compare the performance of local and foreign plants at all transplant sites. In addition, we analysed frequencies of pairs of plant origin to examine whether local plants perform better than foreign plants at both compared transplant sites. In both approaches, we also examined the effects of population size, and of the habitat and species characteristics that are predicted to affect local adaptation. We show that, overall, local plants performed significantly better than foreign plants at their site of origin: this was found to be the case in 71.0% of the studied sites. However, local plants performed better than foreign plants at both sites of a pair-wise comparison (strict definition of local adaption only in 45.3% of the 1032 compared population pairs. Furthermore, we found local adaptation much more common for large plant populations (>1000 flowering individuals than for small populations (<1000 flowering individuals for which local adaptation was very rare. The degree of local adaptation was independent of plant life history, spatial or temporal habitat heterogeneity, and geographic scale. Our results suggest that local adaptation is less common in plant populations than generally assumed. Moreover, our findings reinforce the fundamental importance of population size for evolutionary theory. The clear role of population size for the ability to evolve local adaptation raises considerable doubt on the ability of small plant populations to cope with changing environments.

  3. Traveling Companions Add Complexity and Hinder Performance in the Spatial Behavior of Rats

    DEFF Research Database (Denmark)

    Dorfman, Alex; Nielbo, Kristoffer Laigaard; Eilam, David

    2016-01-01

    -mate. It was found that the presence of another rat substantially altered the rats' spatial behavior. Lone rats collected the food items faster while traveling a shorter distance, reflecting a higher efficiency of task completion. When accompanied by a partner, however, the rats traveled together, visiting the same......We sought to uncover the impact of the social environment on the spatial behavior of rats. Food-deprived rats were trained in a spatial task of collecting food items from 16 equispaced objects. Following training, they were tested, first alone and then with a similarly-trained cage...... of rats’ natural behavior. Revisiting an object following food depletion implies that searching for food was not the main driving force in the rats' spatial behavior. Specifically, despite food deprivation, rats were more attentive to one another than to the food. This could be adaptive, since foraging...

  4. GeoSpark SQL: An Effective Framework Enabling Spatial Queries on Spark

    Directory of Open Access Journals (Sweden)

    Zhou Huang

    2017-09-01

    Full Text Available In the era of big data, Internet-based geospatial information services such as various LBS apps are deployed everywhere, followed by an increasing number of queries against the massive spatial data. As a result, the traditional relational spatial database (e.g., PostgreSQL with PostGIS and Oracle Spatial cannot adapt well to the needs of large-scale spatial query processing. Spark is an emerging outstanding distributed computing framework in the Hadoop ecosystem. This paper aims to address the increasingly large-scale spatial query-processing requirement in the era of big data, and proposes an effective framework GeoSpark SQL, which enables spatial queries on Spark. On the one hand, GeoSpark SQL provides a convenient SQL interface; on the other hand, GeoSpark SQL achieves both efficient storage management and high-performance parallel computing through integrating Hive and Spark. In this study, the following key issues are discussed and addressed: (1 storage management methods under the GeoSpark SQL framework, (2 the spatial operator implementation approach in the Spark environment, and (3 spatial query optimization methods under Spark. Experimental evaluation is also performed and the results show that GeoSpark SQL is able to achieve real-time query processing. It should be noted that Spark is not a panacea. It is observed that the traditional spatial database PostGIS/PostgreSQL performs better than GeoSpark SQL in some query scenarios, especially for the spatial queries with high selectivity, such as the point query and the window query. In general, GeoSpark SQL performs better when dealing with compute-intensive spatial queries such as the kNN query and the spatial join query.

  5. Adaptive solution of the multigroup diffusion equation on irregular structured grids using a conforming finite element method formulation

    International Nuclear Information System (INIS)

    Ragusa, J. C.

    2004-01-01

    In this paper, a method for performing spatially adaptive computations in the framework of multigroup diffusion on 2-D and 3-D Cartesian grids is investigated. The numerical error, intrinsic to any computer simulation of physical phenomena, is monitored through an a posteriori error estimator. In a posteriori analysis, the computed solution itself is used to assess the accuracy. By efficiently estimating the spatial error, the entire computational process is controlled through successively adapted grids. Our analysis is based on a finite element solution of the diffusion equation. Bilinear test functions are used. The derived a posteriori error estimator is therefore based on the Hessian of the numerical solution. (authors)

  6. Spatial Resolution Assessment of the Telops Airborne TIR Imagery

    Science.gov (United States)

    Mousakhani, S.; Eslami, M.; Saadatseresht, M.

    2017-09-01

    Having a high spatial resolution of Thermal InfraRed (TIR) Sensors is a challenge in remote sensing applications. Airborne high spatial resolution TIR is a novel source of data that became available lately. Recent developments in spatial resolution of the TIR sensors have been an interesting topic for scientists. TIR sensors are very sensitive to the energies emitted from objects. Past researches have been shown that increasing the spatial resolution of an airborne image will decrease the spectral content of the data and will reduce the Signal to Noise Ratio (SNR). Therefore, in this paper a comprehensive assessment is adapted to estimate an appropriate spatial resolution of the TIR data (TELOPS TIR data), in consideration of the SNR. So, firstly, a low-pass filter is applied on TIR data and the achieved products fed to a classification method for analysing of the accuracy improvement. The obtained results show that, there is no significant change in classification accuracy by applying low-pass filter. Furthermore, estimation of the appropriate spatial resolution of the TIR data is evaluated for obtaining higher spectral content and SNR. For this purpose, different resolutions of the TIR data are created and fed to the maximum likelihood classification method separately. The results illustrated in the case of using images with ground pixel size four times greater than the original image, the classification accuracy is not reduced. Also, SNR and spectral contents are improved. But the corners sharpening is declined.

  7. Avoid, attack or do both? Behavioral and physiological adaptations in natural enemies faced with novel hosts

    Directory of Open Access Journals (Sweden)

    Brown Sam P

    2005-11-01

    Full Text Available Abstract Background Confronted with well-defended, novel hosts, should an enemy invest in avoidance of these hosts (behavioral adaptation, neutralization of the defensive innovation (physiological adaptation or both? Although simultaneous investment in both adaptations may first appear to be redundant, several empirical studies have suggested a reinforcement of physiological resistance to host defenses with additional avoidance behaviors. To explain this paradox, we develop a mathematical model describing the joint evolution of behavioral and physiological adaptations on the part of natural enemies to their host defenses. Our specific goals are (i to derive the conditions that may favor the simultaneous investment in avoidance and physiological resistance and (ii to study the factors that govern the relative investment in each adaptation mode. Results Our results show that (i a simultaneous investment may be optimal if the fitness costs of the adaptive traits are accelerating and the probability of encountering defended hosts is low. When (i holds, we find that (ii the more that defended hosts are rare and/or spatially aggregated, the more behavioral adaptation is favored. Conclusion Despite their interference, physiological resistance to host defensive innovations and avoidance of these same defenses are two strategies in which it may be optimal for an enemy to invest in simultaneously. The relative allocation to each strategy greatly depends on host spatial structure. We discuss the implications of our findings for the management of invasive plant species and the management of pest resistance to new crop protectants or varieties.

  8. Translating disaster resilience into spatial planning practice in South Africa: Challenges and champions

    Directory of Open Access Journals (Sweden)

    Willemien van Niekerk

    2013-03-01

    Full Text Available It is highly likely that hazards and extreme climatic events will occur more frequently in the future and will become more severe – increasing the vulnerability and risk of millions of poor urbanites in developing countries. Disaster resilience aims to reduce disaster losses by equipping cities to withstand, absorb, adapt to or recover from external shocks. This paper questions whether disaster resilience is likely to be taken up in spatial planning practices in South Africa, given its immediate developmental priorities and challenges. In South Africa, issues of development take precedence over issues of sustainability, environmental management and disaster reduction. This is illustrated by the priority given to ‘servicing’ settlements compared to the opportunities offered by ‘transforming’ spaces through post-apartheid spatial planning. The City of Durban’s quest in adapting to climate change demonstrates hypothetically that if disaster resilience were to be presented as an issue distinct from what urban planners are already doing, then planners would see it as insignificant as compared to addressing the many developmental backlogs and challenges. If, however, it is regarded as a means to secure a city’s development path whilst simultaneously addressing sustainability, then disaster resilience is more likely to be translated into spatial planning practices in South Africa.

  9. For a better understanding of adaptive capacity to climate change: a research framework

    International Nuclear Information System (INIS)

    Magnan, Alexandre

    2010-05-01

    It is generally accepted that there exists a systematic link between a low level of adaptive capacity and a low level of development, which thus implies that the poor inevitably have low adaptive capacities. We argue here that this viewpoint is biased because adaptation to climate change is not solely determined by economic and technological capacities. Many other characteristics of a community can play a major role in its ability to react to and anticipate climate changes (e.g. the territorial identity or the social relationships). From our point of view, this limited view of adaptive capacity is related to a relative immaturity of the science of adaptation, a discipline that analyses the processes and determinants of adaptive capacity. This can be explained by the fact that there are currently few existing frameworks for studying adaptive capacity. This paper consists in a proposal for a research framework which is based upon four main fields of investigation: (i) the influential factors of adaptive capacity and their interactions, (ii) the relevant spatial and temporal scales of adaptive capacity, (iii) the links between adaptive capacity, vulnerability and the level of development and (iv) the theoretical links between adaptation and sustainability. These four fields of research should bring new knowledge on adaptive capacity and feed a more general reflection on the adaptation pathways for dealing with climate change. (author)

  10. Modeling adaptation of carbon use efficiency in microbial communities

    Directory of Open Access Journals (Sweden)

    Steven D Allison

    2014-10-01

    Full Text Available In new microbial-biogeochemical models, microbial carbon use efficiency (CUE is often assumed to decline with increasing temperature. Under this assumption, soil carbon losses under warming are small because microbial biomass declines. Yet there is also empirical evidence that CUE may adapt (i.e. become less sensitive to warming, thereby mitigating negative effects on microbial biomass. To analyze potential mechanisms of CUE adaptation, I used two theoretical models to implement a tradeoff between microbial uptake rate and CUE. This rate-yield tradeoff is based on thermodynamic principles and suggests that microbes with greater investment in resource acquisition should have lower CUE. Microbial communities or individuals could adapt to warming by reducing investment in enzymes and uptake machinery. Consistent with this idea, a simple analytical model predicted that adaptation can offset 50% of the warming-induced decline in CUE. To assess the ecosystem implications of the rate-yield tradeoff, I quantified CUE adaptation in a spatially-structured simulation model with 100 microbial taxa and 12 soil carbon substrates. This model predicted much lower CUE adaptation, likely due to additional physiological and ecological constraints on microbes. In particular, specific resource acquisition traits are needed to maintain stoichiometric balance, and taxa with high CUE and low enzyme investment rely on low-yield, high-enzyme neighbors to catalyze substrate degradation. In contrast to published microbial models, simulations with greater CUE adaptation also showed greater carbon storage under warming. This pattern occurred because microbial communities with stronger CUE adaptation produced fewer degradative enzymes, despite increases in biomass. Thus the rate-yield tradeoff prevents CUE adaptation from driving ecosystem carbon loss under climate warming.

  11. The computational worm: spatial orientation and its neuronal basis in C. elegans.

    Science.gov (United States)

    Lockery, Shawn R

    2011-10-01

    Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. An investigation of the spatial selectivity of the duration after-effect.

    Science.gov (United States)

    Maarseveen, Jim; Hogendoorn, Hinze; Verstraten, Frans A J; Paffen, Chris L E

    2017-01-01

    Adaptation to the duration of a visual stimulus causes the perceived duration of a subsequently presented stimulus with a slightly different duration to be skewed away from the adapted duration. This pattern of repulsion following adaptation is similar to that observed for other visual properties, such as orientation, and is considered evidence for the involvement of duration-selective mechanisms in duration encoding. Here, we investigated whether the encoding of duration - by duration-selective mechanisms - occurs early on in the visual processing hierarchy. To this end, we investigated the spatial specificity of the duration after-effect in two experiments. We measured the duration after-effect at adapter-test distances ranging between 0 and 15° of visual angle and for within- and between-hemifield presentations. We replicated the duration after-effect: the test stimulus was perceived to have a longer duration following adaptation to a shorter duration, and a shorter duration following adaptation to a longer duration. Importantly, this duration after-effect occurred at all measured distances, with no evidence for a decrease in the magnitude of the after-effect at larger distances or across hemifields. This shows that adaptation to duration does not result from adaptation occurring early on in the visual processing hierarchy. Instead, it seems likely that duration information is a high-level stimulus property that is encoded later on in the visual processing hierarchy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Evolutionary advantages of adaptive rewarding

    International Nuclear Information System (INIS)

    Szolnoki, Attila; Perc, Matjaž

    2012-01-01

    Our well-being depends on both our personal success and the success of our society. The realization of this fact makes cooperation an essential trait. Experiments have shown that rewards can elevate our readiness to cooperate, but since giving a reward inevitably entails paying a cost for it, the emergence and stability of such behavior remains elusive. Here we show that allowing for the act of rewarding to self-organize in dependence on the success of cooperation creates several evolutionary advantages that instill new ways through which collaborative efforts are promoted. Ranging from indirect territorial battle to the spontaneous emergence and destruction of coexistence, phase diagrams and the underlying spatial patterns reveal fascinatingly rich social dynamics that explain why this costly behavior has evolved and persevered. Comparisons with adaptive punishment, however, uncover an Achilles heel of adaptive rewarding, coming from over-aggression, which in turn hinders optimal utilization of network reciprocity. This may explain why, despite its success, rewarding is not as firmly embedded into our societal organization as punishment. (paper)

  14. Early handling effect on female rat spatial and non-spatial learning and memory.

    Science.gov (United States)

    Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla

    2014-03-01

    This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Longitudinal Trajectories of Intellectual and Adaptive Functioning in Adolescents and Adults with Williams Syndrome

    Science.gov (United States)

    Fisher, M. H.; Lense, M. D.; Dykens, E. M.

    2016-01-01

    Background: Williams syndrome (WS) is associated with a distinct cognitive-behavioural phenotype including mild to moderate intellectual disability, visual-spatial deficits, hypersociability, inattention and anxiety. Researchers typically characterise samples of individuals with WS by their intellectual functioning and adaptive behaviour. Because…

  16. Performance analysis of coordination strategies in two-tier Heterogeneous Networks

    KAUST Repository

    Boukhedimi, Ikram; Kammoun, Abla; Alouini, Mohamed-Slim

    2016-01-01

    Large scale multi-tier Heterogeneous Networks (HetNets) are expected to ensure a consistent quality of service (QoS) in 5G systems. Such networks consist of a macro base station (BS) equipped with a large number of antennas and a dense overlay of small cells. The small cells could be deployed within the same coverage of the macro-cell BS, thereby causing high levels of inter-cell interference. In this regard, coordinated beamforming techniques are considered as a viable solution to counteract the arising interference. The goal of this work is to analyze the efficiency of coordinated beamforming techniques in mitigating both intra-cell and inter-cell interference. In particular, we consider the downlink of a Time-division duplexing (TDD) massive multiple-input-multiple-output (MIMO) tier-HetNet and analyze different beamforming schemes together with different degrees of coordination between the BSs. We exploit random matrix theory tools in order to provide, in explicit form, deterministic equivalents for the average achievable rates in the macro-cell and the micro-cells. We prove that our theoretical derivations allow us to draw some conclusions regarding the role played by coordination strategies in reducing the inter-cell interference. These findings are finally validated by a selection of some numerical results. © 2016 IEEE.

  17. Performance analysis of coordination strategies in two-tier Heterogeneous Networks

    KAUST Repository

    Boukhedimi, Ikram

    2016-08-11

    Large scale multi-tier Heterogeneous Networks (HetNets) are expected to ensure a consistent quality of service (QoS) in 5G systems. Such networks consist of a macro base station (BS) equipped with a large number of antennas and a dense overlay of small cells. The small cells could be deployed within the same coverage of the macro-cell BS, thereby causing high levels of inter-cell interference. In this regard, coordinated beamforming techniques are considered as a viable solution to counteract the arising interference. The goal of this work is to analyze the efficiency of coordinated beamforming techniques in mitigating both intra-cell and inter-cell interference. In particular, we consider the downlink of a Time-division duplexing (TDD) massive multiple-input-multiple-output (MIMO) tier-HetNet and analyze different beamforming schemes together with different degrees of coordination between the BSs. We exploit random matrix theory tools in order to provide, in explicit form, deterministic equivalents for the average achievable rates in the macro-cell and the micro-cells. We prove that our theoretical derivations allow us to draw some conclusions regarding the role played by coordination strategies in reducing the inter-cell interference. These findings are finally validated by a selection of some numerical results. © 2016 IEEE.

  18. An extension of the classification of evolutionary singular strategies in Adaptive Dynamics

    NARCIS (Netherlands)

    Boldin, Barbara; Diekmann, Odo

    2014-01-01

    The existing classification of evolutionarily singular strategies in Adaptive Dynamics (Geritz et al. in Evol Ecol 12:35–57, 1998; Metz et al. in Stochastic and spatial structures of dynamical systems, pp 183–231, 1996) assumes an invasion exponent that is differentiable twice as a function of both

  19. Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics

    Science.gov (United States)

    Guo, Qiang

    Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of

  20. A three-dimensional point process model for the spatial distribution of disease occurrence in relation to an exposure source

    DEFF Research Database (Denmark)

    Grell, Kathrine; Diggle, Peter J; Frederiksen, Kirsten

    2015-01-01

    We study methods for how to include the spatial distribution of tumours when investigating the relation between brain tumours and the exposure from radio frequency electromagnetic fields caused by mobile phone use. Our suggested point process model is adapted from studies investigating spatial...... the Interphone Study, a large multinational case-control study on the association between brain tumours and mobile phone use....

  1. Adaptive partial volume classification of MRI data

    International Nuclear Information System (INIS)

    Chiverton, John P; Wells, Kevin

    2008-01-01

    Tomographic biomedical images are commonly affected by an imaging artefact known as the partial volume (PV) effect. The PV effect produces voxels composed of a mixture of tissues in anatomical magnetic resonance imaging (MRI) data resulting in a continuity of these tissue classes. Anatomical MRI data typically consist of a number of contiguous regions of tissues or even contiguous regions of PV voxels. Furthermore discontinuities exist between the boundaries of these contiguous image regions. The work presented here probabilistically models the PV effect using spatial regularization in the form of continuous Markov random fields (MRFs) to classify anatomical MRI brain data, simulated and real. A unique approach is used to adaptively control the amount of spatial regularization imposed by the MRF. Spatially derived image gradient magnitude is used to identify the discontinuities between image regions of contiguous tissue voxels and PV voxels, imposing variable amounts of regularization determined by simulation. Markov chain Monte Carlo (MCMC) is used to simulate the posterior distribution of the probabilistic image model. Promising quantitative results are presented for PV classification of simulated and real MRI data of the human brain.

  2. Aberration compensation using a spatial light modulator LCD

    International Nuclear Information System (INIS)

    Amezquita, R; Rincon, O; Torres, Y M

    2011-01-01

    The dynamic correction of aberrations introduced in optical systems have been a widely discussed topic in the past 10 years. Adaptive optics is the most important developed field where the Shack-Hartmann sensors and deformable mirrors are used for the measurement and correction of wavefronts. In this paper, an interferometric set-up which uses a Spatial Light Modulator (SLM) as an active element is proposed. Using this SLM a procedure for the compensation of all phase aberrations present in the experimental setup is shown.

  3. Spatial Modulation Improves Performance in CTIS

    Science.gov (United States)

    Bearman, Gregory H.; Wilson, Daniel W.; Johnson, William R.

    2009-01-01

    Suitably formulated spatial modulation of a scene imaged by a computed-tomography imaging spectrometer (CTIS) has been found to be useful as a means of improving the imaging performance of the CTIS. As used here, "spatial modulation" signifies the imposition of additional, artificial structure on a scene from within the CTIS optics. The basic principles of a CTIS were described in "Improvements in Computed- Tomography Imaging Spectrometry" (NPO-20561) NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 38 and "All-Reflective Computed-Tomography Imaging Spectrometers" (NPO-20836), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 7a. To recapitulate: A CTIS offers capabilities for imaging a scene with spatial, spectral, and temporal resolution. The spectral disperser in a CTIS is a two-dimensional diffraction grating. It is positioned between two relay lenses (or on one of two relay mirrors) in a video imaging system. If the disperser were removed, the system would produce ordinary images of the scene in its field of view. In the presence of the grating, the image on the focal plane of the system contains both spectral and spatial information because the multiple diffraction orders of the grating give rise to multiple, spectrally dispersed images of the scene. By use of algorithms adapted from computed tomography, the image on the focal plane can be processed into an image cube a three-dimensional collection of data on the image intensity as a function of the two spatial dimensions (x and y) in the scene and of wavelength (lambda). Thus, both spectrally and spatially resolved information on the scene at a given instant of time can be obtained, without scanning, from a single snapshot; this is what makes the CTIS such a potentially powerful tool for spatially, spectrally, and temporally resolved imaging. A CTIS performs poorly in imaging some types of scenes in particular, scenes that contain little spatial or spectral variation. The computed spectra of

  4. Optimal and adaptive methods of processing hydroacoustic signals (review)

    Science.gov (United States)

    Malyshkin, G. S.; Sidel'nikov, G. B.

    2014-09-01

    Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.

  5. Effects of cue types on sex differences in human spatial memory.

    Science.gov (United States)

    Chai, Xiaoqian J; Jacobs, Lucia F

    2010-04-02

    We examined the effects of cue types on human spatial memory in 3D virtual environments adapted from classical animal and human tasks. Two classes of cues of different functions were investigated: those that provide directional information, and those that provide positional information. Adding a directional cue (geographical slant) to the spatial delayed-match-to-sample task improved performance in males but not in females. When the slant directional cue was removed in a hidden-target location task, male performance was impaired but female performance was unaffected. The removal of positional cues, on the other hand, impaired female performance but not male performance. These results are consistent with results from laboratory rodents and thus support the hypothesis that sex differences in spatial memory arise from the dissociation between a preferential reliance on directional cues in males and on positional cues in females. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Lossless medical image compression using geometry-adaptive partitioning and least square-based prediction.

    Science.gov (United States)

    Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao

    2018-06-01

    To improve the compression rates for lossless compression of medical images, an efficient algorithm, based on irregular segmentation and region-based prediction, is proposed in this paper. Considering that the first step of a region-based compression algorithm is segmentation, this paper proposes a hybrid method by combining geometry-adaptive partitioning and quadtree partitioning to achieve adaptive irregular segmentation for medical images. Then, least square (LS)-based predictors are adaptively designed for each region (regular subblock or irregular subregion). The proposed adaptive algorithm not only exploits spatial correlation between pixels but it utilizes local structure similarity, resulting in efficient compression performance. Experimental results show that the average compression performance of the proposed algorithm is 10.48, 4.86, 3.58, and 0.10% better than that of JPEG 2000, CALIC, EDP, and JPEG-LS, respectively. Graphical abstract ᅟ.

  7. An adaptive algorithm for simulation of stochastic reaction-diffusion processes

    International Nuclear Information System (INIS)

    Ferm, Lars; Hellander, Andreas; Loetstedt, Per

    2010-01-01

    We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.

  8. Competition for marine space: modelling the Baltic Sea fisheries and effort displacement under spatial restrictions

    DEFF Research Database (Denmark)

    Bastardie, Francois; Nielsen, J. Rasmus; Eigaard, Ole Ritzau

    2015-01-01

    DISPLACE model) to combine stochastic variations in spatial fishing activities with harvested resource dynamics in scenario projections. The assessment computes economic and stock status indicators by modelling the activity of Danish, Swedish, and German vessels (.12 m) in the international western Baltic...... Sea commercial fishery, together with the underlying size-based distribution dynamics of the main fishery resources of sprat, herring, and cod. The outcomes of alternative scenarios for spatial effort displacement are exemplified by evaluating the fishers’s abilities to adapt to spatial plans under...... various constraints. Interlinked spatial, technical, and biological dynamics of vessels and stocks in the scenarios result in stable profits, which compensate for the additional costs from effort displacement and release pressure on the fish stocks. The effort is further redirected away from sensitive...

  9. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    Science.gov (United States)

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  10. Vision, spatial cognition and intellectual disability.

    Science.gov (United States)

    Giuliani, Fabienne; Schenk, Françoise

    2015-02-01

    Vision is the most synthetic sensory channel and it provides specific information about the relative position of distant landmarks during visual exploration. In this paper we propose that visual exploration, as assessed by the recording of eye movements, offers an original method to analyze spatial cognition and to reveal alternative adaptation strategies in people with intellectual disabilities (ID). Our general assumption is that eye movement exploration may simultaneously reveal whether, why, and how, compensatory strategies point to specific difficulties related to neurological symptoms. An understanding of these strategies will also help in the development of optimal rehabilitation procedures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  12. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    International Nuclear Information System (INIS)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  13. Road map towards a climate-proof Netherlands. Quickscan. Knowledge supply and gaps in climate stability. Effects, adaptation strategies and societal embedding

    International Nuclear Information System (INIS)

    Veraart, J.; Makaske, B.; Opdam, P.; Nijburg, C.

    2006-12-01

    This quick scan provides an overview of knowledge development with regard to adaptation to climate change within the Dutch BSIK schemes (Investing in Knowledge Infrastructure Scheme) and related research at knowledge institutes. This is done for the National Programme 'Spatial Planning and Adaptation to Climate Change' (ARK). [mk] [nl

  14. Is adaptation. Truly an adaptation? Is adaptation. Truly an adaptation?

    Directory of Open Access Journals (Sweden)

    Thais Flores Nogueira Diniz

    2008-04-01

    Full Text Available The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition, joined with the study of recycling, remaking, and every form of retelling. The film deals with the attempt by the scriptwriter Charles Kaufman, cast by Nicholas Cage, to adapt/translate a non-fictional book to the cinema, but ends up with a kind of film which is by no means what it intended to be: a film of action in the model of Hollywood productions. During the process of creation, Charles and his twin brother, Donald, undergo a series of adventures involving some real persons from the world of film, the author and the protagonist of the book, all of them turning into fictional characters in the film. In the film, adaptation then signifies something different from itstraditional meaning. The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition

  15. Rethinking climate change adaptation and place through a situated pathways framework: A case study from the Big Hole Valley, USA

    Science.gov (United States)

    Daniel J. Murphy; Laurie Yung; Carina Wyborn; Daniel R. Williams

    2017-01-01

    This paper critically examines the temporal and spatial dynamics of adaptation in climate change science and explores how dynamic notions of 'place' elucidate novel ways of understanding community vulnerability and adaptation. Using data gathered from a narrative scenario-building process carried out among communities of the Big Hole Valley in Montana, the...

  16. Societal transformation and adaptation necessary to manage dynamics in flood hazard and risk mitigation (TRANS-ADAPT)

    Science.gov (United States)

    Fuchs, Sven; Thaler, Thomas; Bonnefond, Mathieu; Clarke, Darren; Driessen, Peter; Hegger, Dries; Gatien-Tournat, Amandine; Gralepois, Mathilde; Fournier, Marie; Mees, Heleen; Murphy, Conor; Servain-Courant, Sylvie

    2015-04-01

    Facing the challenges of climate change, this project aims to analyse and to evaluate the multiple use of flood alleviation schemes with respect to social transformation in communities exposed to flood hazards in Europe. The overall goals are: (1) the identification of indicators and parameters necessary for strategies to increase societal resilience, (2) an analysis of the institutional settings needed for societal transformation, and (3) perspectives of changing divisions of responsibilities between public and private actors necessary to arrive at more resilient societies. This proposal assesses societal transformations from the perspective of changing divisions of responsibilities between public and private actors necessary to arrive at more resilient societies. Yet each risk mitigation measure is built on a narrative of exchanges and relations between people and therefore may condition the outputs. As such, governance is done by people interacting and defining risk mitigation measures as well as climate change adaptation are therefore simultaneously both outcomes of, and productive to, public and private responsibilities. Building off current knowledge this project will focus on different dimensions of adaptation and mitigation strategies based on social, economic and institutional incentives and settings, centring on the linkages between these different dimensions and complementing existing flood risk governance arrangements. The policy dimension of adaptation, predominantly decisions on the societal admissible level of vulnerability and risk, will be evaluated by a human-environment interaction approach using multiple methods and the assessment of social capacities of stakeholders across scales. As such, the challenges of adaptation to flood risk will be tackled by converting scientific frameworks into practical assessment and policy advice. In addressing the relationship between these dimensions of adaptation on different temporal and spatial scales, this

  17. Adaptive pathways and coupled infrastructure: seven centuries of adaptation to water risk and the production of vulnerability in Mexico City

    Directory of Open Access Journals (Sweden)

    Beth Tellman

    2018-03-01

    Full Text Available Infrastructure development is central to the processes that abate and produce vulnerabilities in cities. Urban actors, especially those with power and authority, perceive and interpret vulnerability and decide when and how to adapt. When city managers use infrastructure to reduce urban risk in the complex, interconnected city system, new fragilities are introduced because of inherent system feedbacks. We trace the interactions between system dynamics and decision-making processes over 700 years of Mexico City's adaptations to water risks, focusing on the decision cycles of public infrastructure providers (in this case, government authorities. We bring together two lenses in examining this history: robustness-vulnerability trade-offs to explain the evolution of systemic risk dynamics mediated by feedback control, and adaptation pathways to focus on the evolution of decision cycles that motivate significant infrastructure investments. Drawing from historical accounts, archeological evidence, and original research on water, engineering, and cultural history, we examine adaptation pathways of humans settlement, water supply, and flood risk. Mexico City's history reveals insights that expand the theory of coupled infrastructure and lessons salient to contemporary urban risk management: (1 adapting by spatially externalizing risks can backfire: as cities expand, such risks become endogenous; (2 over time, adaptation pathways initiated to address specific risks may begin to intersect, creating complex trade-offs in risk management; and (3 city authorities are agents of risk production: even in the face of new exogenous risks (climate change, acknowledging and managing risks produced endogenously may prove more adaptive. History demonstrates that the very best solutions today may present critical challenges for tomorrow, and that collectively people have far more agency in and influence over the complex systems we live in than is often acknowledged.

  18. An Matching Method for Vehicle-borne Panoramic Image Sequence Based on Adaptive Structure from Motion Feature

    Directory of Open Access Journals (Sweden)

    ZHANG Zhengpeng

    2015-10-01

    Full Text Available Panoramic image matching method with the constraint condition of local structure from motion similarity feature is an important method, the process requires multivariable kernel density estimations for the structure from motion feature used nonparametric mean shift. Proper selection of the kernel bandwidth is a critical step for convergence speed and accuracy of matching method. Variable bandwidth with adaptive structure from motion feature for panoramic image matching method has been proposed in this work. First the bandwidth matrix is defined using the locally adaptive spatial structure of the sampling point in spatial domain and optical flow domain. The relaxation diffusion process of structure from motion similarity feature is described by distance weighting method of local optical flow feature vector. Then the expression form of adaptive multivariate kernel density function is given out, and discusses the solution of the mean shift vector, termination conditions, and the seed point selection method. The final fusions of multi-scale SIFT the features and structure features to establish a unified panoramic image matching framework. The sphere panoramic images from vehicle-borne mobile measurement system are chosen such that a comparison analysis between fixed bandwidth and adaptive bandwidth is carried out in detail. The results show that adaptive bandwidth is good for case with the inlier ratio changes and the object space scale changes. The proposed method can realize the adaptive similarity measure of structure from motion feature, improves the correct matching points and matching rate, experimental results have shown our method to be robust.

  19. An adaptive mesh refinement approach for average current nodal expansion method in 2-D rectangular geometry

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► A new adaptive h-refinement approach has been developed for a class of nodal method. ► The resulting system of nodal equations is more amenable to efficient numerical solution. ► The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. ► Spatially adaptive approach greatly enhances the accuracy of the solution. - Abstract: The aim of this work is to develop a spatially adaptive coarse mesh strategy that progressively refines the nodes in appropriate regions of domain to solve the neutron balance equation by zeroth order nodal expansion method. A flux gradient based a posteriori estimation scheme has been utilized for checking the approximate solutions for various nodes. The relative surface net leakage of nodes has been considered as an assessment criterion. In this approach, the core module is called in by adaptive mesh generator to determine gradients of node surfaces flux to explore the possibility of node refinements in appropriate regions and directions of the problem. The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. For this purpose, a computer program ANRNE-2D, Adaptive Node Refinement Nodal Expansion, has been developed to solve neutron diffusion equation using average current nodal expansion method for 2D rectangular geometries. Implementing the adaptive algorithm confirms its superiority in enhancing the accuracy of the solution without using fine nodes throughout the domain and increasing the number of unknown solution. Some well-known benchmarks have been investigated and improvements are reported

  20. Link adaptation performance evaluation for a MIMO-OFDM physical layer in a realistic outdoor environment

    OpenAIRE

    Han, C; Armour, SMD; Doufexi, A; Ng, KH; McGeehan, JP

    2006-01-01

    This paper presents a downlink performance analysis of a link adaptation (LA) algorithm applied to a MIMO-OFDM Physical Layer (PHY) which is a popular candidate for future generation cellular communication systems. The new LA algorithm attempts to maximize throughput and adaptation between various modulation and coding schemes in combination with both space-time block codes (STBC) and spatial multiplexing (SM) is based on knowledge of SNR and H matrix determinant; the parameters which are fou...

  1. Software abstractions and computational issues in parallel structure adaptive mesh methods for electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1997-05-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.

  2. A method for online verification of adapted fields using an independent dose monitor

    International Nuclear Information System (INIS)

    Chang Jina; Norrlinger, Bernhard D.; Heaton, Robert K.; Jaffray, David A.; Cho, Young-Bin; Islam, Mohammad K.; Mahon, Robert

    2013-01-01

    Purpose: Clinical implementation of online adaptive radiotherapy requires generation of modified fields and a method of dosimetric verification in a short time. We present a method of treatment field modification to account for patient setup error, and an online method of verification using an independent monitoring system.Methods: The fields are modified by translating each multileaf collimator (MLC) defined aperture in the direction of the patient setup error, and magnifying to account for distance variation to the marked isocentre. A modified version of a previously reported online beam monitoring system, the integral quality monitoring (IQM) system, was investigated for validation of adapted fields. The system consists of a large area ion-chamber with a spatial gradient in electrode separation to provide a spatially sensitive signal for each beam segment, mounted below the MLC, and a calculation algorithm to predict the signal. IMRT plans of ten prostate patients have been modified in response to six randomly chosen setup errors in three orthogonal directions.Results: A total of approximately 49 beams for the modified fields were verified by the IQM system, of which 97% of measured IQM signal agree with the predicted value to within 2%.Conclusions: The modified IQM system was found to be suitable for online verification of adapted treatment fields

  3. The Influence of Auditory Information on Visual Size Adaptation.

    Science.gov (United States)

    Tonelli, Alessia; Cuturi, Luigi F; Gori, Monica

    2017-01-01

    Size perception can be influenced by several visual cues, such as spatial (e.g., depth or vergence) and temporal contextual cues (e.g., adaptation to steady visual stimulation). Nevertheless, perception is generally multisensory and other sensory modalities, such as auditory, can contribute to the functional estimation of the size of objects. In this study, we investigate whether auditory stimuli at different sound pitches can influence visual size perception after visual adaptation. To this aim, we used an adaptation paradigm (Pooresmaeili et al., 2013) in three experimental conditions: visual-only, visual-sound at 100 Hz and visual-sound at 9,000 Hz. We asked participants to judge the size of a test stimulus in a size discrimination task. First, we obtained a baseline for all conditions. In the visual-sound conditions, the auditory stimulus was concurrent to the test stimulus. Secondly, we repeated the task by presenting an adapter (twice as big as the reference stimulus) before the test stimulus. We replicated the size aftereffect in the visual-only condition: the test stimulus was perceived smaller than its physical size. The new finding is that we found the auditory stimuli have an effect on the perceived size of the test stimulus after visual adaptation: low frequency sound decreased the effect of visual adaptation, making the stimulus perceived bigger compared to the visual-only condition, and contrarily, the high frequency sound had the opposite effect, making the test size perceived even smaller.

  4. SPATIAL ANALYSIS TO SUPPORT GEOGRAPHIC TARGETING OF GENOTYPES TO ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Glenn eHyman

    2013-03-01

    Full Text Available Crop improvement efforts have benefited greatly from advances in available data, computing technology and methods for targeting genotypes to environments. These advances support the analysis of genotype by environment interactions to understand how well a genotype adapts to environmental conditions. This paper reviews the use of spatial analysis to support crop improvement research aimed at matching genotypes to their most appropriate environmental niches. Better data sets are now available on soils, weather and climate, elevation, vegetation, crop distribution and local conditions where genotypes are tested in experimental trial sites. The improved data are now combined with spatial analysis methods to compare environmental conditions across sites, create agro-ecological region maps and assess environment change. Climate, elevation and vegetation data sets are now widely available, supporting analyses that were much more difficult even five or ten years ago. While detailed soil data for many parts of the world remains difficult to acquire for crop improvement studies, new advances in digital soil mapping are likely to improve our capacity. Site analysis and matching and regional targeting methods have advanced in parallel to data and technology improvements. All these developments have increased our capacity to link genotype to phenotype and point to a vast potential to improve crop adaptation efforts.

  5. Clonal interference and Muller's ratchet in spatial habitats

    International Nuclear Information System (INIS)

    Otwinowski, Jakub; Krug, Joachim

    2014-01-01

    Competition between independently arising beneficial mutations is enhanced in spatial populations due to the linear rather than exponential growth of clones. Recent theoretical studies have pointed out that the resulting fitness dynamics is analogous to a surface growth process, where new layers nucleate and spread stochastically, leading to the build up of scale-invariant roughness. This scenario differs qualitatively from the standard view of adaptation in that the speed of adaptation becomes independent of population size while the fitness variance does not. Here we exploit recent progress in the understanding of surface growth processes to obtain precise predictions for the universal, non-Gaussian shape of the fitness distribution for one-dimensional habitats, which are verified by simulations. When the mutations are deleterious rather than beneficial the problem becomes a spatial version of Muller's ratchet. In contrast to the case of well-mixed populations, the rate of fitness decline remains finite even in the limit of an infinite habitat, provided the ratio U d /s 2 between the deleterious mutation rate and the square of the (negative) selection coefficient is sufficiently large. Using, again, an analogy to surface growth models we show that the transition between the stationary and the moving state of the ratchet is governed by directed percolation. (paper)

  6. Spatial filtring and thermocouple spatial filter

    International Nuclear Information System (INIS)

    Han Bing; Tong Yunxian

    1989-12-01

    The design and study on thermocouple spatial filter have been conducted for the flow measurement of integrated reactor coolant. The fundamental principle of spatial filtring, mathematical descriptions and analyses of thermocouple spatial filter are given

  7. Understanding extreme sea levels for coastal impact and adaptation analysis

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Hinkel, J.; Dangendorf, S.; Slangen, A.

    2016-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels, because increasing damage due to extreme events, such as storm surges and tropical cyclones, is one of the major consequences of sea level rise and climate change. In fact, the IPCC has highlighted in its AR4 report that "societal impacts of sea level change primarily occur via the extreme levels rather than as a direct consequence of mean sea level changes". Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future mean sea level; different scenarios were developed with process-based or semi-empirical models and used for coastal impact assessments at various spatial scales to guide coastal management and adaptation efforts. The uncertainties in future sea level rise are typically accounted for by analyzing the impacts associated with a range of scenarios leading to a vertical displacement of the distribution of extreme sea-levels. And indeed most regional and global studies find little or no evidence for changes in storminess with climate change, although there is still low confidence in the results. However, and much more importantly, there is still a limited understanding of present-day extreme sea-levels which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of extreme sea-levels. The bias of these models varies spatially and can reach values much larger than the expected sea level rise; but it can be accounted for in most regions making use of in-situ measurements; (2) Statistical models used for determining present-day extreme sea-level exceedance probabilities. There is no universally accepted approach to obtain such values for flood risk assessments and while substantial research has explored inter-model uncertainties for mean sea level, we explore here, for the first time, inter

  8. Automatically tuned adaptive differencing algorithm for 3-D SN implemented in PENTRAN

    International Nuclear Information System (INIS)

    Sjoden, G.; Courau, T.; Manalo, K.; Yi, C.

    2009-01-01

    We present an adaptive algorithm with an automated tuning feature to augment optimum differencing scheme selection for 3-D S N computations in Cartesian geometry. This adaptive differencing scheme has been implemented in the PENTRAN parallel S N code. Individual fixed zeroth spatial transport moment based schemes, including Diamond Zero (DZ), Directional Theta Weighted (DTW), and Exponential Directional Iterative (EDI) 3-D S N methods were evaluated and compared with solutions generated using a code-tuned adaptive algorithm. Model problems considered include a fixed source slab problem (using reflected y- and z-axes) which contained mixed shielding and diffusive regions, and a 17 x 17 PWR assembly eigenvalue test problem; these problems were benchmarked against multigroup MCNP5 Monte Carlo computations. Both problems were effective in highlighting the performance of the adaptive scheme compared to single schemes, and demonstrated that the adaptive tuning handles exceptions to the standard DZ-DTW-EDI adaptive strategy. The tuning feature includes special scheme selection provisions for optically thin cells, and incorporates the ratio of the angular source density relative to the total angular collision density to best select the differencing method. Overall, the adaptive scheme demonstrated the best overall solution accuracy in the test problems. (authors)

  9. Community and Institutional Adaptation to Riverbank Erosion along the Jamuna River, Bangladesh

    Science.gov (United States)

    Ali, F. M. M.

    2009-04-01

    The paper examines adaptation to the river erosion hazard in Bangladesh through its most exacting river, the braided Jamuna. The Jamuna River has destroyed and continues to threaten significant areas of settlements, farmed land and infrastructure. Local communities experience a social disintegration and pauperisation which lasts for generations. Although advanced for several decades, the public engineering effort to mitigate the erosion is piecemeal and has had limited success to date. The research takes an interdisciplinary approach to the hazard, in both content and method. Using Remote Sensing data to distinguish regions of dormant, explosive, minimal and constant erosion, the physical morphology of the river is linked to the community adaptation through the creation of PPGIS mapping depicting historical institutional displacement. This spatial information is linked to the qualitative investigation focusing on the expression of values in adaptation by examining social structures and investigating technological development. Drawing on Bourdieu's ideas of fields, capital and habitus, interview data is gathered from: displacees; local elites; the engineering-science community; and the political-administrative structure. The analysis is conducted along four themes; the spatial history of community displacement; social values; institutional operation; and learning in practice. Findings show the marked persistence of displaced local institutions. Dormant erosion zones host the most displaced institutions, acting as refuges once the risk is lowered through engineering or serendipity. The non-material values deeply impacted by the hazard underpin the strong local aspiration for engineering intervention. However, political discontinuity, associated institutional instability and spatial biasing of construction hinders the success of erosion mitigation and the development of appropriate national technological expertise. The small national economic resource base

  10. An Adaptive Approach to Variational Nodal Diffusion Problems

    International Nuclear Information System (INIS)

    Zhang Hui; Lewis, E.E.

    2001-01-01

    An adaptive grid method is presented for the solution of neutron diffusion problems in two dimensions. The primal hybrid finite elements employed in the variational nodal method are used to reduce the diffusion equation to a coupled set of elemental response matrices. An a posteriori error estimator is developed to indicate the magnitude of local errors stemming from the low-order elemental interface approximations. An iterative procedure is implemented in which p refinement is applied locally by increasing the polynomial order of the interface approximations. The automated algorithm utilizes the a posteriori estimator to achieve local error reductions until an acceptable level of accuracy is reached throughout the problem domain. Application to a series of X-Y benchmark problems indicates the reduction of computational effort achievable by replacing uniform with adaptive refinement of the spatial approximations

  11. Cooperation among mobile individuals with payoff expectations in the spatial prisoner's dilemma game

    International Nuclear Information System (INIS)

    Lin Hai; Yang Dongping; Shuai, J.W.

    2011-01-01

    Research highlights: → We model the evolution of cooperation in mobile individuals with payoff expectation. → Dissatisfied players in prisoner's dilemma game will migrate or change strategies. → Migration promotes cooperation in individuals with relatively low expectation. → Some interesting spatiotemporal patterns emerge under appropriate parameters. → Constant expectations induce higher cooperation levels than adaptive aspirations. - Abstract: We propose a model to address the problem how the evolution of cooperation in a social system depends on the spatial motion and the payoff expectation. In the model, if the actual payoff of an individual is smaller than its payoff expectation, the individual will either move to a new site or simply reverse its current strategy. It turns out that migration of dissatisfied individuals with relatively low expectation level leads to the aggregation of cooperators and promotion of cooperation. Moreover, under appropriate parameters migration leads to some interesting spatiotemporal patterns which seems not to have been reported in previously studied spatial games. Furthermore, it also found that a population with constant expectation can better favor cooperative behavior than a population with adaptive aspiration.

  12. Computed Tomography Image Quality Evaluation of a New Iterative Reconstruction Algorithm in the Abdomen (Adaptive Statistical Iterative Reconstruction-V) a Comparison With Model-Based Iterative Reconstruction, Adaptive Statistical Iterative Reconstruction, and Filtered Back Projection Reconstructions.

    Science.gov (United States)

    Goodenberger, Martin H; Wagner-Bartak, Nicolaus A; Gupta, Shiva; Liu, Xinming; Yap, Ramon Q; Sun, Jia; Tamm, Eric P; Jensen, Corey T

    The purpose of this study was to compare abdominopelvic computed tomography images reconstructed with adaptive statistical iterative reconstruction-V (ASIR-V) with model-based iterative reconstruction (Veo 3.0), ASIR, and filtered back projection (FBP). Abdominopelvic computed tomography scans for 36 patients (26 males and 10 females) were reconstructed using FBP, ASIR (80%), Veo 3.0, and ASIR-V (30%, 60%, 90%). Mean ± SD patient age was 32 ± 10 years with mean ± SD body mass index of 26.9 ± 4.4 kg/m. Images were reviewed by 2 independent readers in a blinded, randomized fashion. Hounsfield unit, noise, and contrast-to-noise ratio (CNR) values were calculated for each reconstruction algorithm for further comparison. Phantom evaluation of low-contrast detectability (LCD) and high-contrast resolution was performed. Adaptive statistical iterative reconstruction-V 30%, ASIR-V 60%, and ASIR 80% were generally superior qualitatively compared with ASIR-V 90%, Veo 3.0, and FBP (P ASIR-V 60% with respective CNR values of 5.54 ± 2.39, 8.78 ± 3.15, and 3.49 ± 1.77 (P ASIR 80% had the best and worst spatial resolution, respectively. Adaptive statistical iterative reconstruction-V 30% and ASIR-V 60% provided the best combination of qualitative and quantitative performance. Adaptive statistical iterative reconstruction 80% was equivalent qualitatively, but demonstrated inferior spatial resolution and LCD.

  13. Are conservation organizations configured for effective adaptation to global change?

    Science.gov (United States)

    Armsworth, Paul R.; Larson, Eric R.; Jackson, Stephen T.; Sax, Dov F.; Simonin, Paul W.; Blossey, Bernd; Green, Nancy; Lester, Liza; Klein, Mary L.; Ricketts, Taylor H.; Runge, Michael C.; Shaw, M. Rebecca

    2015-01-01

    Conservation organizations must adapt to respond to the ecological impacts of global change. Numerous changes to conservation actions (eg facilitated ecological transitions, managed relocations, or increased corridor development) have been recommended, but some institutional restructuring within organizations may also be needed. Here we discuss the capacity of conservation organizations to adapt to changing environmental conditions, focusing primarily on public agencies and nonprofits active in land protection and management in the US. After first reviewing how these organizations anticipate and detect impacts affecting target species and ecosystems, we then discuss whether they are sufficiently flexible to prepare and respond by reallocating funding, staff, or other resources. We raise new hypotheses about how the configuration of different organizations enables them to protect particular conservation targets and manage for particular biophysical changes that require coordinated management actions over different spatial and temporal scales. Finally, we provide a discussion resource to help conservation organizations assess their capacity to adapt.

  14. Diversification and intensification of agricultural adaptation from global to local scales.

    Directory of Open Access Journals (Sweden)

    Minjie Chen

    Full Text Available Smallholder farming systems are vulnerable to a number of challenges, including continued population growth, urbanization, income disparities, land degradation, decreasing farm size and productivity, all of which are compounded by uncertainty of climatic patterns. Understanding determinants of smallholder farming practices is critical for designing and implementing successful interventions, including climate change adaptation programs. We examine two dimensions wherein smallholder farmers may adapt agricultural practices; through intensification (i.e., adopt more practices or diversification (i.e. adopt different practices. We use data on 5314 randomly sampled households located in 38 sites in 15 countries across four regions (East and West Africa, South Asia, and Central America. We estimate empirical models designed to assess determinants of both intensification and diversification of adaptation activities at global scales. Aspects of adaptive capacity that are found to increase intensification of adaptation globally include variables associated with access to information and human capital, financial considerations, assets, household infrastructure and experience. In contrast, there are few global drivers of adaptive diversification, with a notable exception being access to weather information, which also increases adaptive intensification. Investigating reasons for adaptation indicate that conditions present in underdeveloped markets provide the primary impetus for adaptation, even in the context of climate change. We also compare determinants across spatial scales, which reveals a variety of local avenues through which policy interventions can relax economic constraints and boost agricultural adaptation for both intensification and diversification. For example, access to weather information does not affect intensification adaptation in Africa, but is significant at several sites in Bangladesh and India. Moreover, this information leads to

  15. Diversification and intensification of agricultural adaptation from global to local scales

    Science.gov (United States)

    Chen, Minjie; Wichmann, Bruno; Luckert, Marty; Winowiecki, Leigh; Förch, Wiebke

    2018-01-01

    Smallholder farming systems are vulnerable to a number of challenges, including continued population growth, urbanization, income disparities, land degradation, decreasing farm size and productivity, all of which are compounded by uncertainty of climatic patterns. Understanding determinants of smallholder farming practices is critical for designing and implementing successful interventions, including climate change adaptation programs. We examine two dimensions wherein smallholder farmers may adapt agricultural practices; through intensification (i.e., adopt more practices) or diversification (i.e. adopt different practices). We use data on 5314 randomly sampled households located in 38 sites in 15 countries across four regions (East and West Africa, South Asia, and Central America). We estimate empirical models designed to assess determinants of both intensification and diversification of adaptation activities at global scales. Aspects of adaptive capacity that are found to increase intensification of adaptation globally include variables associated with access to information and human capital, financial considerations, assets, household infrastructure and experience. In contrast, there are few global drivers of adaptive diversification, with a notable exception being access to weather information, which also increases adaptive intensification. Investigating reasons for adaptation indicate that conditions present in underdeveloped markets provide the primary impetus for adaptation, even in the context of climate change. We also compare determinants across spatial scales, which reveals a variety of local avenues through which policy interventions can relax economic constraints and boost agricultural adaptation for both intensification and diversification. For example, access to weather information does not affect intensification adaptation in Africa, but is significant at several sites in Bangladesh and India. Moreover, this information leads to diversification of

  16. Empirical Mode Decomposition on the sphere: application to the spatial scales of surface temperature variations

    Directory of Open Access Journals (Sweden)

    N. Fauchereau

    2008-06-01

    Full Text Available Empirical Mode Decomposition (EMD is applied here in two dimensions over the sphere to demonstrate its potential as a data-adaptive method of separating the different scales of spatial variability in a geophysical (climatological/meteorological field. After a brief description of the basics of the EMD in 1 then 2 dimensions, the principles of its application on the sphere are explained, in particular via the use of a zonal equal area partitioning. EMD is first applied to an artificial dataset, demonstrating its capability in extracting the different (known scales embedded in the field. The decomposition is then applied to a global mean surface temperature dataset, and we show qualitatively that it extracts successively larger scales of temperature variations related, for example, to topographic and large-scale, solar radiation forcing. We propose that EMD can be used as a global data-adaptive filter, which will be useful in analysing geophysical phenomena that arise as the result of forcings at multiple spatial scales.

  17. Adaptive subdomain modeling: A multi-analysis technique for ocean circulation models

    Science.gov (United States)

    Altuntas, Alper; Baugh, John

    2017-07-01

    Many coastal and ocean processes of interest operate over large temporal and geographical scales and require a substantial amount of computational resources, particularly when engineering design and failure scenarios are also considered. This study presents an adaptive multi-analysis technique that improves the efficiency of these computations when multiple alternatives are being simulated. The technique, called adaptive subdomain modeling, concurrently analyzes any number of child domains, with each instance corresponding to a unique design or failure scenario, in addition to a full-scale parent domain providing the boundary conditions for its children. To contain the altered hydrodynamics originating from the modifications, the spatial extent of each child domain is adaptively adjusted during runtime depending on the response of the model. The technique is incorporated in ADCIRC++, a re-implementation of the popular ADCIRC ocean circulation model with an updated software architecture designed to facilitate this adaptive behavior and to utilize concurrent executions of multiple domains. The results of our case studies confirm that the method substantially reduces computational effort while maintaining accuracy.

  18. Transitions from Trees to Cycles in Adaptive Flow Networks

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Klemm, Konstantin

    2017-01-01

    -world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization...... principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances). We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable......Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real...

  19. Transitions from Trees to Cycles in Adaptive Flow Networks

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Klemm, Konstantin

    2017-01-01

    . The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two......Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real......-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization...

  20. Coastal Adaptation Planning for Sea Level Rise and Extremes: A Global Model for Adaptation Decision-making at the Local Level Given Uncertain Climate Projections

    Science.gov (United States)

    Turner, D.

    2014-12-01

    Understanding the potential economic and physical impacts of climate change on coastal resources involves evaluating a number of distinct adaptive responses. This paper presents a tool for such analysis, a spatially-disaggregated optimization model for adaptation to sea level rise (SLR) and storm surge, the Coastal Impact and Adaptation Model (CIAM). This decision-making framework fills a gap between very detailed studies of specific locations and overly aggregate global analyses. While CIAM is global in scope, the optimal adaptation strategy is determined at the local level, evaluating over 12,000 coastal segments as described in the DIVA database (Vafeidis et al. 2006). The decision to pursue a given adaptation measure depends on local socioeconomic factors like income, population, and land values and how they develop over time, relative to the magnitude of potential coastal impacts, based on geophysical attributes like inundation zones and storm surge. For example, the model's decision to protect or retreat considers the costs of constructing and maintaining coastal defenses versus those of relocating people and capital to minimize damages from land inundation and coastal storms. Uncertain storm surge events are modeled with a generalized extreme value distribution calibrated to data on local surge extremes. Adaptation is optimized for the near-term outlook, in an "act then learn then act" framework that is repeated over the model time horizon. This framework allows the adaptation strategy to be flexibly updated, reflecting the process of iterative risk management. CIAM provides new estimates of the economic costs of SLR; moreover, these detailed results can be compactly represented in a set of adaptation and damage functions for use in integrated assessment models. Alongside the optimal result, CIAM evaluates suboptimal cases and finds that global costs could increase by an order of magnitude, illustrating the importance of adaptive capacity and coastal policy.

  1. Genome-wide signatures of flowering adaptation to climate temperature: Regional analyses in a highly diverse native range of Arabidopsis thaliana.

    Science.gov (United States)

    Tabas-Madrid, Daniel; Méndez-Vigo, Belén; Arteaga, Noelia; Marcer, Arnald; Pascual-Montano, Alberto; Weigel, Detlef; Xavier Picó, F; Alonso-Blanco, Carlos

    2018-03-08

    Current global change is fueling an interest to understand the genetic and molecular mechanisms of plant adaptation to climate. In particular, altered flowering time is a common strategy for escape from unfavourable climate temperature. In order to determine the genomic bases underlying flowering time adaptation to this climatic factor, we have systematically analysed a collection of 174 highly diverse Arabidopsis thaliana accessions from the Iberian Peninsula. Analyses of 1.88 million single nucleotide polymorphisms provide evidence for a spatially heterogeneous contribution of demographic and adaptive processes to geographic patterns of genetic variation. Mountains appear to be allele dispersal barriers, whereas the relationship between flowering time and temperature depended on the precise temperature range. Environmental genome-wide associations supported an overall genome adaptation to temperature, with 9.4% of the genes showing significant associations. Furthermore, phenotypic genome-wide associations provided a catalogue of candidate genes underlying flowering time variation. Finally, comparison of environmental and phenotypic genome-wide associations identified known (Twin Sister of FT, FRIGIDA-like 1, and Casein Kinase II Beta chain 1) and new (Epithiospecifer Modifier 1 and Voltage-Dependent Anion Channel 5) genes as candidates for adaptation to climate temperature by altered flowering time. Thus, this regional collection provides an excellent resource to address the spatial complexity of climate adaptation in annual plants. © 2018 John Wiley & Sons Ltd.

  2. Adaptively smoothed seismicity earthquake forecasts for Italy

    Directory of Open Access Journals (Sweden)

    Yan Y. Kagan

    2010-11-01

    Full Text Available We present a model for estimation of the probabilities of future earthquakes of magnitudes m ≥ 4.95 in Italy. This model is a modified version of that proposed for California, USA, by Helmstetter et al. [2007] and Werner et al. [2010a], and it approximates seismicity using a spatially heterogeneous, temporally homogeneous Poisson point process. The temporal, spatial and magnitude dimensions are entirely decoupled. Magnitudes are independently and identically distributed according to a tapered Gutenberg-Richter magnitude distribution. We have estimated the spatial distribution of future seismicity by smoothing the locations of past earthquakes listed in two Italian catalogs: a short instrumental catalog, and a longer instrumental and historic catalog. The bandwidth of the adaptive spatial kernel is estimated by optimizing the predictive power of the kernel estimate of the spatial earthquake density in retrospective forecasts. When available and reliable, we used small earthquakes of m ≥ 2.95 to reveal active fault structures and 29 probable future epicenters. By calibrating the model with these two catalogs of different durations to create two forecasts, we intend to quantify the loss (or gain of predictability incurred when only a short, but recent, data record is available. Both forecasts were scaled to five and ten years, and have been submitted to the Italian prospective forecasting experiment of the global Collaboratory for the Study of Earthquake Predictability (CSEP. An earlier forecast from the model was submitted by Helmstetter et al. [2007] to the Regional Earthquake Likelihood Model (RELM experiment in California, and with more than half of the five-year experimental period over, the forecast has performed better than the others.

  3. Value of Information for Optimal Adaptive Routing in Stochastic Time-Dependent Traffic Networks: Algorithms and Computational Tools

    Science.gov (United States)

    2010-10-25

    Real-time information is important for travelers' routing decisions in uncertain networks by enabling online adaptation to revealed traffic conditions. Usually there are spatial and/or temporal limitations in traveler information. In this research, a...

  4. Spatially Informed Plant PRA Models for Security Assessment

    International Nuclear Information System (INIS)

    Wheeler, Timothy A.; Thomas, Willard; Thornsbury, Eric

    2006-01-01

    Traditional risk models can be adapted to evaluate plant response for situations where plant systems and structures are intentionally damaged, such as from sabotage or terrorism. This paper describes a process by which traditional risk models can be spatially informed to analyze the effects of compound and widespread harsh environments through the use of 'damage footprints'. A 'damage footprint' is a spatial map of regions of the plant (zones) where equipment could be physically destroyed or disabled as a direct consequence of an intentional act. The use of 'damage footprints' requires that the basic events from the traditional probabilistic risk assessment (PRA) be spatially transformed so that the failure of individual components can be linked to the destruction of or damage to specific spatial zones within the plant. Given the nature of intentional acts, extensive modifications must be made to the risk models to account for the special nature of the 'initiating events' associated with deliberate adversary actions. Intentional acts might produce harsh environments that in turn could subject components and structures to one or more insults, such as structural, fire, flood, and/or vibration and shock damage. Furthermore, the potential for widespread damage from some of these insults requires an approach that addresses the impacts of these potentially severe insults even when they occur in locations distant from the actual physical location of a component or structure modeled in the traditional PRA. (authors)

  5. GIS and Geodatabase Disaster Risk for Spatial Planning

    Science.gov (United States)

    Hendriawan Nur, Wawan; Kumoro, Yugo; Susilowati, Yuliana

    2018-02-01

    The spatial planning in Indonesia needs to consider the information on the potential disaster. That is because disaster is a serious and detrimental problem that often occurs and causes casualties in some areas in Indonesia as well as inhibits the development. Various models and research were developed to calculate disaster risk assessment. GIS is a system for assembling, storing, analyzing, and displaying geographically referenced disaster. The information can be collaborated with geodatabases to model and to estimate disaster risk in an automated way. It also offers the possibility to customize most of the parameters used in the models. This paper describes a framework which can improve GIS and Geodatabase for the vulnerability, capacity or disaster risk assessment to support the spatial planning activities so they can be more adaptable. By using this framework, GIS application can be used in any location by adjusting variables or calculation methods without changing or rebuilding system from scratch.

  6. Adapting forest to climate change in drylands: the Portuguese case-study

    Science.gov (United States)

    Branquinho, Cristina; Príncipe, Adriana; Nunes, Alice; Kobel, Melanie; Soares, Cristina; Vizinho, André; Serrano, Helena Cristina; Pinho, Pedro

    2017-04-01

    The recent expansion of the semiarid climate to all the region of the south of Portugal and the growing impact of climate change demands local adaptation. The growth of the native forest represents a strategy at the ecosystem level to adapt to climate change since it increases resilience and increases also de delivery of ecosystem services such as the increment of organic matter in the soil, carbon and nitrogen, biodiversity, water infiltration, etc. Moreover, decreases susceptibility to desertification. For that reason, large areas have been reforested in the south of Portugal with the native species holm oak and cork oak but with a low rate of effectiveness. Our goal in this work is to show how the cost-benefit relation of the actions intended to expand the forest of the Portuguese semiarid can be lowered by taking into account the microclimatic conditions and high spatial resolution management. The potential of forest regeneration was modelled at the local and regional level in the semiarid area using information concerning the Potential Solar Radiation. This model gives us the rate of native forest regeneration after a disturbance with high spatial resolution. Based on this model the territory was classified in: i) easy regeneration areas; ii) areas with the need of assisted reforestation, using methods that increase water and soil conservation; iii) areas of difficult reforestation because of the costs. Additionally, a summary of the success of reforestations was made in the historical semiarid since the 60s based on the evaluation of a series of case studies, where we quantified the ecosystem services currently delivered by the reforested ecosystems. We will discuss and propose a strategy for forests to adapt to climate change scenario in dryland Portugal. Acknowledgement: Programa Adapt: financed by EEA Grants and Fundo Português de Carbono and by FCT-MEC project PTDC/AAG-GLO/0045/2014.

  7. Temperature uniformity control in RTP using multivariable adaptive control

    Energy Technology Data Exchange (ETDEWEB)

    Morales, S.; Dahhou, B.; Dilhac, J.M. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Morales, S.

    1995-12-31

    In Rapid Thermal Processing (RTP) control of the wafer temperature during all processing to get good trajectory following, together with spatial temperature uniformity, is essential. It is well know as RTP process is nonlinear, classical control laws are not very efficient. In this work, the authors aim at studying the applicability of MIMO (Multiple Inputs Multiple Outputs) adaptive techniques to solve the temperature control problems in RTP. A multivariable linear discrete time CARIMA (Controlled Auto Regressive Integrating Moving Average) model of the highly non-linear process is identified on-line using a robust identification technique. The identified model is used to compute an infinite time LQ (Linear Quadratic) based control law, with a partial state reference model. This reference model smooths the original setpoint sequence, and at the same time gives a tracking capability to the LQ control law. After an experimental open-loop investigation, the results of the application of the adaptive control law are presented. Finally, some comments on the future difficulties and developments of the application of adaptive control in RTP are given. (author) 13 refs.

  8. Advances in risk assessment for climate change adaptation policy

    Science.gov (United States)

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-01-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712800

  9. Advances in risk assessment for climate change adaptation policy.

    Science.gov (United States)

    Adger, W Neil; Brown, Iain; Surminski, Swenja

    2018-06-13

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  10. Advances in risk assessment for climate change adaptation policy

    Science.gov (United States)

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-06-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  11. Robust adaptive multichannel SAR processing based on covariance matrix reconstruction

    Science.gov (United States)

    Tan, Zhen-ya; He, Feng

    2018-04-01

    With the combination of digital beamforming (DBF) processing, multichannel synthetic aperture radar(SAR) systems in azimuth promise well in high-resolution and wide-swath imaging, whereas conventional processing methods don't take the nonuniformity of scattering coefficient into consideration. This paper brings up a robust adaptive Multichannel SAR processing method which utilizes the Capon spatial spectrum estimator to obtain the spatial spectrum distribution over all ambiguous directions first, and then the interference-plus-noise covariance Matrix is reconstructed based on definition to acquire the Multichannel SAR processing filter. The performance of processing under nonuniform scattering coefficient is promoted by this novel method and it is robust again array errors. The experiments with real measured data demonstrate the effectiveness and robustness of the proposed method.

  12. An assessment of the impact of climate adaptation measures to reduce flood risk on ecosystem services.

    Science.gov (United States)

    Verburg, Peter H; Koomen, Eric; Hilferink, Maarten; Pérez-Soba, Marta; Lesschen, Jan Peter

    Measures of climate change adaptation often involve modification of land use and land use planning practices. Such changes in land use affect the provision of various ecosystem goods and services. Therefore, it is likely that adaptation measures may result in synergies and trade-offs between a range of ecosystems goods and services. An integrative land use modelling approach is presented to assess such impacts for the European Union. A reference scenario accounts for current trends in global drivers and includes a number of important policy developments that correspond to on-going changes in European policies. The reference scenario is compared to a policy scenario in which a range of measures is implemented to regulate flood risk and protect soils under conditions of climate change. The impacts of the simulated land use dynamics are assessed for four key indicators of ecosystem service provision: flood risk, carbon sequestration, habitat connectivity and biodiversity. The results indicate a large spatial variation in the consequences of the adaptation measures on the provisioning of ecosystem services. Synergies are frequently observed at the location of the measures itself, whereas trade-offs are found at other locations. Reducing land use intensity in specific parts of the catchment may lead to increased pressure in other regions, resulting in trade-offs. Consequently, when aggregating the results to larger spatial scales the positive and negative impacts may be off-set, indicating the need for detailed spatial assessments. The modelled results indicate that for a careful planning and evaluation of adaptation measures it is needed to consider the trade-offs accounting for the negative effects of a measure at locations distant from the actual measure. Integrated land use modelling can help land use planning in such complex trade-off evaluation by providing evidence on synergies and trade-offs between ecosystem services, different policy fields and societal

  13. Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation.

    Science.gov (United States)

    Memmolo, P; Finizio, A; Paturzo, M; Ferraro, P; Javidi, B

    2012-05-01

    A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.

  14. A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use.

    Directory of Open Access Journals (Sweden)

    Junguo Liu

    Full Text Available Food security and water scarcity have become two major concerns for future human's sustainable development, particularly in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s (short term and the 2090s (long term, respectively. Our findings show that impact uncertainties are higher on larger spatial scales (e.g., global and continental but lower on smaller spatial scales (e.g., national and grid cell. Such patterns allow decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global level. Short-term gains in crop production from climate change are projected for many regions, particularly in African countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and water security.

  15. A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use

    Science.gov (United States)

    Liu, Junguo; Folberth, Christian; Yang, Hong; Röckström, Johan; Abbaspour, Karim; Zehnder, Alexander J. B.

    2013-01-01

    Food security and water scarcity have become two major concerns for future human's sustainable development, particularly in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s (short term) and the 2090s (long term), respectively. Our findings show that impact uncertainties are higher on larger spatial scales (e.g., global and continental) but lower on smaller spatial scales (e.g., national and grid cell). Such patterns allow decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global level. Short-term gains in crop production from climate change are projected for many regions, particularly in African countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and water security. PMID:23460901

  16. Potential Mechanisms Driving Population Variation in Spatial Memory and the Hippocampus in Food-caching Chickadees.

    Science.gov (United States)

    Croston, Rebecca; Branch, Carrie L; Kozlovsky, Dovid Y; Roth, Timothy C; LaDage, Lara D; Freas, Cody A; Pravosudov, Vladimir V

    2015-09-01

    Harsh environments and severe winters have been hypothesized to favor improvement of the cognitive abilities necessary for successful foraging. Geographic variation in winter climate, then, is likely associated with differences in selection pressures on cognitive ability, which could lead to evolutionary changes in cognition and its neural mechanisms, assuming that variation in these traits is heritable. Here, we focus on two species of food-caching chickadees (genus Poecile), which rely on stored food for survival over winter and require the use of spatial memory to recover their stores. These species also exhibit extensive climate-related population level variation in spatial memory and the hippocampus, including volume, the total number and size of neurons, and adults' rates of neurogenesis. Such variation could be driven by several mechanisms within the context of natural selection, including independent, population-specific selection (local adaptation), environment experience-based plasticity, developmental differences, and/or epigenetic differences. Extensive data on cognition, brain morphology, and behavior in multiple populations of these two species of chickadees along longitudinal, latitudinal, and elevational gradients in winter climate are most consistent with the hypothesis that natural selection drives the evolution of local adaptations associated with spatial memory differences among populations. Conversely, there is little support for the hypotheses that environment-induced plasticity or developmental differences are the main causes of population differences across climatic gradients. Available data on epigenetic modifications of memory ability are also inconsistent with the observed patterns of population variation, with birds living in more stressful and harsher environments having better spatial memory associated with a larger hippocampus and a larger number of hippocampal neurons. Overall, the existing data are most consistent with the

  17. Lossless Authentication Watermarking Based on Adaptive Modular Arithmetic

    Directory of Open Access Journals (Sweden)

    H. Yang

    2010-04-01

    Full Text Available Reversible watermarking schemes based on modulo-256 addition may cause annoying salt-and-pepper noise. To avoid the salt-and-pepper noise, a reversible watermarking scheme using human visual perception characteristics and adaptive modular arithmetic is proposed. First, a high-bit residual image is obtained by extracting the most significant bits (MSB of the original image, and a new spatial visual perception model is built according to the high-bit residual image features. Second, the watermark strength and the adaptive divisor of modulo operation for each pixel are determined by the visual perception model. Finally, the watermark is embedded into different least significant bits (LSB of original image with adaptive modulo addition. The original image can be losslessly recovered if the stego-image has not been altered. Extensive experiments show that the proposed algorithm eliminates the salt-and-pepper noise effectively, and the visual quality of the stego-image with the proposed algorithm has been dramatically improved over some existing reversible watermarking algorithms. Especially, the stegoimage of this algorithm has about 9.9864 dB higher PSNR value than that of modulo-256 addition based reversible watermarking scheme.

  18. The Effect of Spatial Working Memory Deterioration on Strategic Visuomotor Learning across Aging.

    Science.gov (United States)

    Uresti-Cabrera, Luis A; Diaz, Rosalinda; Vaca-Palomares, Israel; Fernandez-Ruiz, Juan

    2015-01-01

    To evaluate the effect of age-related cognitive changes in a visuomotor learning task that depends on strategic control and contrast it with the effect in a task principally depending on visuomotor recalibration. Participants performed a ball throwing task while donning either a reversing dove prism or a displacement wedge prism, which mainly depend on strategic control or visuomotor recalibration, respectively. Visuomotor performance was then analysed in relation to rule acquisition and reversal, recognition memory, visual memory, spatial planning, and spatial working memory with tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB). The results confirmed previous works showing a detrimental effect of age on visuomotor learning. The analyses of the cognitive changes observed across age showed that both strategic control and visuomotor recalibration had significant negative correlations only with the number of errors in the spatial working memory task. However, when the effect of aging was controlled, the only significant correlation remaining was between the reversal adaptation magnitude and spatial working memory. These results suggest that spatial working memory decline across aging could contribute to age-dependent deterioration in both visuomotor learning processes. However, spatial working memory integrity seems to affect strategic learning decline even after controlling for aging.

  19. The Effect of Spatial Working Memory Deterioration on Strategic Visuomotor Learning across Aging

    Directory of Open Access Journals (Sweden)

    Luis A. Uresti-Cabrera

    2015-01-01

    Full Text Available Objective. To evaluate the effect of age-related cognitive changes in a visuomotor learning task that depends on strategic control and contrast it with the effect in a task principally depending on visuomotor recalibration. Methods. Participants performed a ball throwing task while donning either a reversing dove prism or a displacement wedge prism, which mainly depend on strategic control or visuomotor recalibration, respectively. Visuomotor performance was then analysed in relation to rule acquisition and reversal, recognition memory, visual memory, spatial planning, and spatial working memory with tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB. Results. The results confirmed previous works showing a detrimental effect of age on visuomotor learning. The analyses of the cognitive changes observed across age showed that both strategic control and visuomotor recalibration had significant negative correlations only with the number of errors in the spatial working memory task. However, when the effect of aging was controlled, the only significant correlation remaining was between the reversal adaptation magnitude and spatial working memory. Discussion. These results suggest that spatial working memory decline across aging could contribute to age-dependent deterioration in both visuomotor learning processes. However, spatial working memory integrity seems to affect strategic learning decline even after controlling for aging.

  20. Intelligent judgements over health risks in a spatial agent-based model.

    Science.gov (United States)

    Abdulkareem, Shaheen A; Augustijn, Ellen-Wien; Mustafa, Yaseen T; Filatova, Tatiana

    2018-03-20

    Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed. We present a spatial disease agent-based model (ABM) with agents' behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior). We run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of

  1. Amplitude modulation reduces loudness adaptation to high-frequency tones.

    Science.gov (United States)

    Wynne, Dwight P; George, Sahara E; Zeng, Fan-Gang

    2015-07-01

    Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.

  2. Prism adaptation does not alter configural processing of faces [v1; ref status: indexed, http://f1000r.es/1wk

    Directory of Open Access Journals (Sweden)

    Janet H. Bultitude

    2013-10-01

    Full Text Available Patients with hemispatial neglect (‘neglect’ following a brain lesion show difficulty responding or orienting to objects and events on the left side of space. Substantial evidence supports the use of a sensorimotor training technique called prism adaptation as a treatment for neglect. Reaching for visual targets viewed through prismatic lenses that induce a rightward shift in the visual image results in a leftward recalibration of reaching movements that is accompanied by a reduction of symptoms in patients with neglect. The understanding of prism adaptation has also been advanced through studies of healthy participants, in whom adaptation to leftward prismatic shifts results in temporary neglect-like performance. Interestingly, prism adaptation can also alter aspects of non-lateralised spatial attention. We previously demonstrated that prism adaptation alters the extent to which neglect patients and healthy participants process local features versus global configurations of visual stimuli. Since deficits in non-lateralised spatial attention are thought to contribute to the severity of neglect symptoms, it is possible that the effect of prism adaptation on these deficits contributes to its efficacy. This study examines the pervasiveness of the effects of prism adaptation on perception by examining the effect of prism adaptation on configural face processing using a composite face task. The composite face task is a persuasive demonstration of the automatic global-level processing of faces: the top and bottom halves of two familiar faces form a seemingly new, unknown face when viewed together. Participants identified the top or bottom halves of composite faces before and after prism adaptation. Sensorimotor adaptation was confirmed by significant pointing aftereffect, however there was no significant change in the extent to which the irrelevant face half interfered with processing. The results support the proposal that the therapeutic effects

  3. Non-standard spatial statistics and spatial econometrics

    CERN Document Server

    Griffith, Daniel A

    2011-01-01

    Spatial statistics and spatial econometrics are recent sprouts of the tree "spatial analysis with measurement". Still, several general themes have emerged. Exploring selected fields of possible interest is tantalizing, and this is what the authors aim here.

  4. A method for the deliberate and deliberative selection of policy instrument mixes for climate change adaptation

    Directory of Open Access Journals (Sweden)

    Heleen L. P. Mees

    2014-06-01

    Full Text Available Policy instruments can help put climate adaptation plans into action. Here, we propose a method for the systematic assessment and selection of policy instruments for stimulating adaptation action. The multi-disciplinary set of six assessment criteria is derived from economics, policy, and legal studies. These criteria are specified for the purpose of climate adaptation by taking into account four challenges to the governance of climate adaptation: uncertainty, spatial diversity, controversy, and social complexity. The six criteria and four challenges are integrated into a step-wise method that enables the selection of instruments starting from a generic assessment and ending with a specific assessment of policy instrument mixes for the stimulation of a specific adaptation measure. We then apply the method to three examples of adaptation measures. The method's merits lie in enabling deliberate choices through a holistic and comprehensive set of adaptation specific criteria, as well as deliberative choices by offering a stepwise method that structures an informed dialog on instrument selection. Although the method was created and applied by scientific experts, policy-makers can also use the method.

  5. Past the hype. Climate change as a structural spatial planning problem

    International Nuclear Information System (INIS)

    2007-01-01

    Adaptation to climate change is not only a physical or spatial issue, but also a social and political-administrative issue. This advice especially focuses on the following aspects: How is the problem tackled from an administrative viewpoint. Which issues receive sufficient focus and which parts of the problem remain underexposed? How is the tuning among and within managing bodies? Who feels responsible? How is society involved in the issue? The central question is how the Dutch government can best anticipate the spatial consequences of climate change. Chapter 2 provides a short overview of certainties and uncertainties of the climate system and the spatial consequences of climate change for the Netherlands. The societal perception of the climate change problem is described in Chapter 3. Chapter 4 addresses administrative aspects. The recommendations of the VROM council (the Netherlands Council of Housing, Spatial Planning and the Environment) are provided in Chapter 5, in which the elements of a spatial strategy are discussed. The VROM council started this advice trajectory with an extensive literature analysis of the climate system and current knowledge of climate change. Next the implementation of this knowledge in policy is examined. In that process, the authors were confronted with a number of fallacies (thinking errors) that could hamper a sensible approach to climate change. (mk) [nl

  6. Urban Adaptation to Climate Change Plans and Policies – the Conceptual Framework of a Methodological Approach

    Directory of Open Access Journals (Sweden)

    Julianna Kiełkowska

    2018-03-01

    Full Text Available The adaptation of urbanised areas to climate change is currently one of the key challenges in the domain of urban policy. The diversity of environmental determinants requires the formulation of individual plans dedicated to the most significant local issues. This article serves as a methodic proposition for the stage of retrieving data (with the PESTEL and the Delphic method, systemic diagnosis (evaluation of risk and susceptibility, prognosis (goal trees, goal intensity map and the formulation of urban adaptation plans. The suggested solution complies with Polish guidelines for establishing adaptation plans. The proposed methodological approach guarantees the participation of various groups of stakeholders in the process of working on urban adaptation plans, which is in accordance with the current tendencies to strengthen the role of public participation in spatial management.

  7. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    Science.gov (United States)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  8. Climate Change Adaptation in Urban Planning in African Cities

    DEFF Research Database (Denmark)

    Jørgensen, Gertrud; Herslund, Lise Byskov; Lund, Dorthe Hedensted

    2014-01-01

    Resilience of urban structures towards impacts of a changing climate is one of the emerging tasks that cities all over the world are facing at present. Effects of climate change take many forms, depending on local climate, spatial patterns, and socioeconomic structures. Cities are only just...... beginning to be aware of the task, and some time will pass before it is integrated into mainstream urban governance. This chapter is based on work in progress. It covers urban governance and planning aspects of climate change adaptation as studied in the CLUVA project (CLimate change and Urban Vulnerability...... in Africa), as well as some experiences from Denmark. Focus is on the responses and capacities of urban authorities, strengths and weaknesses of the efforts, data needs and possible ways forward. The chapter concludes that many adaptation activities are taking place in the CLUVA case cities...

  9. Adaptive template generation for amyloid PET using a deep learning approach.

    Science.gov (United States)

    Kang, Seung Kwan; Seo, Seongho; Shin, Seong A; Byun, Min Soo; Lee, Dong Young; Kim, Yu Kyeong; Lee, Dong Soo; Lee, Jae Sung

    2018-05-11

    Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research. © 2018 Wiley Periodicals, Inc.

  10. Patient-adapted reconstruction and acquisition dynamic imaging method (PARADIGM) for MRI

    International Nuclear Information System (INIS)

    Aggarwal, Nitin; Bresler, Yoram

    2008-01-01

    Dynamic magnetic resonance imaging (MRI) is a challenging problem because the MR data acquisition is often not fast enough to meet the combined spatial and temporal Nyquist sampling rate requirements. Current approaches to this problem include hardware-based acceleration of the acquisition, and model-based image reconstruction techniques. In this paper we propose an alternative approach, called PARADIGM, which adapts both the acquisition and reconstruction to the spatio-temporal characteristics of the imaged object. The approach is based on time-sequential sampling theory, addressing the problem of acquiring a spatio-temporal signal under the constraint that only a limited amount of data can be acquired at a time instant. PARADIGM identifies a model class for the particular imaged object using a scout MR scan or auxiliary data. This object-adapted model is then used to optimize MR data acquisition, such that the imaging constraints are met, acquisition speed requirements are minimized, essentially perfect reconstruction of any object in the model class is guaranteed, and the inverse problem of reconstructing the dynamic object has a condition number of one. We describe spatio-temporal object models for various dynamic imaging applications including cardiac imaging. We present the theory underlying PARADIGM and analyze its performance theoretically and numerically. We also propose a practical MR imaging scheme for 2D dynamic cardiac imaging based on the theory. For this application, PARADIGM is predicted to provide a 10–25 × acceleration compared to the optimal non-adaptive scheme. Finally we present generalized optimality criteria and extend the scheme to dynamic imaging with three spatial dimensions

  11. An assessment of the spatial scale of local adaptation in brown trout (Salmo trutta L.): footprints of selection at microsatellite DNA loci

    DEFF Research Database (Denmark)

    Meier, Kristian; Hansen, Michael Møller; Bekkevold, Dorte

    2011-01-01

    Local adaptation is considered a paradigm in studies of salmonid fish populations. Yet, little is known about the geographical scale of local adaptation. Is adaptive divergence primarily evident at the scale of regions or individual populations? Also, many salmonid populations are subject to spaw...

  12. Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images

    Directory of Open Access Journals (Sweden)

    Inhye Yoon

    2015-03-01

    Full Text Available Since incoming light to an unmanned aerial vehicle (UAV platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i image segmentation based on geometric classes; (ii generation of the context-adaptive transmission map; and (iii intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  13. Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.

    Science.gov (United States)

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-03-19

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  14. Spatial Frequency Discrimination: Effects of Age, Reward, and Practice.

    Directory of Open Access Journals (Sweden)

    Carlijn van den Boomen

    Full Text Available Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed in a higher spatial frequency (reference frequency: 6 cycles per degree discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135. Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28 punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be

  15. Spatial Frequency Discrimination: Effects of Age, Reward, and Practice.

    Science.gov (United States)

    van den Boomen, Carlijn; Peters, Judith Carolien

    2017-01-01

    Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed) in a higher spatial frequency (reference frequency: 6 cycles per degree) discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135). Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28) punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials) and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be used in future

  16. Selected annotated bibliographies for adaptive filtering of digital image data

    Science.gov (United States)

    Mayers, Margaret; Wood, Lynnette

    1988-01-01

    Digital spatial filtering is an important tool both for enhancing the information content of satellite image data and for implementing cosmetic effects which make the imagery more interpretable and appealing to the eye. Spatial filtering is a context-dependent operation that alters the gray level of a pixel by computing a weighted average formed from the gray level values of other pixels in the immediate vicinity.Traditional spatial filtering involves passing a particular filter or set of filters over an entire image. This assumes that the filter parameter values are appropriate for the entire image, which in turn is based on the assumption that the statistics of the image are constant over the image. However, the statistics of an image may vary widely over the image, requiring an adaptive or "smart" filter whose parameters change as a function of the local statistical properties of the image. Then a pixel would be averaged only with more typical members of the same population. This annotated bibliography cites some of the work done in the area of adaptive filtering. The methods usually fall into two categories, (a) those that segment the image into subregions, each assumed to have stationary statistics, and use a different filter on each subregion, and (b) those that use a two-dimensional "sliding window" to continuously estimate the filter either the spatial or frequency domain, or may utilize both domains. They may be used to deal with images degraded by space variant noise, to suppress undesirable local radiometric statistics while enforcing desirable (user-defined) statistics, to treat problems where space-variant point spread functions are involved, to segment images into regions of constant value for classification, or to "tune" images in order to remove (nonstationary) variations in illumination, noise, contrast, shadows, or haze.Since adpative filtering, like nonadaptive filtering, is used in image processing to accomplish various goals, this bibliography

  17. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change

    Science.gov (United States)

    Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A

    2014-01-01

    Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data. PMID:24454550

  18. Adaptive-network models of collective dynamics

    Science.gov (United States)

    Zschaler, G.

    2012-09-01

    Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge

  19. Spatial distribution of detrital resources determines the outcome of competition between bacteria and a facultative detritivorous worm

    NARCIS (Netherlands)

    Van Nugteren, P.; Herman, P.M.J.; Moodley, L.; Middelburg, J.J.; Vos, M.; Heip, C.H.R.

    2009-01-01

    Macrobenthic deposit feeders and bacteria compete for the same detrital food resources. We hypothesize that the spatial scale at which food is distributed in the sediment is an important factor determining the outcome of this competition. Macrobenthic deposit feeders are better adapted for fast

  20. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  1. Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy

    KAUST Repository

    Hussain, Aftab M.; Lizardo, Ernesto B.; Sevilla, Galo T.; Nassar, Joanna M.; Hussain, Muhammad Mustafa

    2014-01-01

    Unprecedented 800% stretchable, non-polymeric, widely used, low-cost, naturally rigid, metallic thin-film copper (Cu)-based flexible and non-invasive, spatially tunable, mobile thermal patch with wireless controllability, adaptability (tunes the amount of heat based on the temperature of the swollen portion), reusability, and affordability due to low-cost complementary metal oxide semiconductor (CMOS) compatible integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy

    KAUST Repository

    Hussain, Aftab M.

    2014-12-03

    Unprecedented 800% stretchable, non-polymeric, widely used, low-cost, naturally rigid, metallic thin-film copper (Cu)-based flexible and non-invasive, spatially tunable, mobile thermal patch with wireless controllability, adaptability (tunes the amount of heat based on the temperature of the swollen portion), reusability, and affordability due to low-cost complementary metal oxide semiconductor (CMOS) compatible integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The spatial decision-supporting system combination of RBR & CBR based on artificial neural network and association rules

    Science.gov (United States)

    Tian, Yangge; Bian, Fuling

    2007-06-01

    The technology of artificial intelligence should be imported on the basis of the geographic information system to bring up the spatial decision-supporting system (SDSS). The paper discusses the structure of SDSS, after comparing the characteristics of RBR and CBR, the paper brings up the frame of a spatial decisional system that combines RBR and CBR, which has combined the advantages of them both. And the paper discusses the CBR in agriculture spatial decisions, the application of ANN (Artificial Neural Network) in CBR, and enriching the inference rule base based on association rules, etc. And the paper tests and verifies the design of this system with the examples of the evaluation of the crops' adaptability.

  4. Sensory-Motor Adaptation to Space Flight: Human Balance Control and Artificial Gravity

    Science.gov (United States)

    Paloski, William H.

    2004-01-01

    Gravity, which is sensed directly by the otolith organs and indirectly by proprioceptors and exteroceptors, provides the CNS a fundamental reference for estimating spatial orientation and coordinating movements in the terrestrial environment. The sustained absence of gravity during orbital space flight creates a unique environment that cannot be reproduced on Earth. Loss of this fundamental CNS reference upon insertion into orbit triggers neuro-adaptive processes that optimize performance for the microgravity environment, while its reintroduction upon return to Earth triggers neuro-adaptive processes that return performance to terrestrial norms. Five pioneering symposia on The Role of the Vestibular Organs in the Exploration of Space were convened between 1965 and 1970. These innovative meetings brought together the top physicians, physiologists, and engineers in the vestibular field to discuss and debate the challenges associated with human vestibular system adaptation to the then novel environment of space flight. These highly successful symposia addressed the perplexing problem of how to understand and ameliorate the adverse physiological effects on humans resulting from the reduction of gravitational stimulation of the vestibular receptors in space. The series resumed in 2002 with the Sixth Symposium, which focused on the microgravity environment as an essential tool for the study of fundamental vestibular functions. The three day meeting included presentations on historical perspectives, vestibular neurobiology, neurophysiology, neuroanatomy, neurotransmitter systems, theoretical considerations, spatial orientation, psychophysics, motor integration, adaptation, autonomic function, space motion sickness, clinical issues, countermeasures, and rehabilitation. Scientists and clinicians entered into lively exchanges on how to design and perform mutually productive research and countermeasure development projects in the future. The problems posed by long duration

  5. Adapting agriculture to climate change: a review

    Science.gov (United States)

    Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina

    2013-07-01

    The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short

  6. Spatial vision in older adults: perceptual changes and neural bases.

    Science.gov (United States)

    McKendrick, Allison M; Chan, Yu Man; Nguyen, Bao N

    2018-05-17

    The number of older adults is rapidly increasing internationally, leading to a significant increase in research on how healthy ageing impacts vision. Most clinical assessments of spatial vision involve simple detection (letter acuity, grating contrast sensitivity, perimetry). However, most natural visual environments are more spatially complicated, requiring contrast discrimination, and the delineation of object boundaries and contours, which are typically present on non-uniform backgrounds. In this review we discuss recent research that reports on the effects of normal ageing on these more complex visual functions, specifically in the context of recent neurophysiological studies. Recent research has concentrated on understanding the effects of healthy ageing on neural responses within the visual pathway in animal models. Such neurophysiological research has led to numerous, subsequently tested, hypotheses regarding the likely impact of healthy human ageing on specific aspects of spatial vision. Healthy normal ageing impacts significantly on spatial visual information processing from the retina through to visual cortex. Some human data validates that obtained from studies of animal physiology, however some findings indicate that rethinking of presumed neural substrates is required. Notably, not all spatial visual processes are altered by age. Healthy normal ageing impacts significantly on some spatial visual processes (in particular centre-surround tasks), but leaves contrast discrimination, contrast adaptation, and orientation discrimination relatively intact. The study of older adult vision contributes to knowledge of the brain mechanisms altered by the ageing process, can provide practical information regarding visual environments that older adults may find challenging, and may lead to new methods of assessing visual performance in clinical environments. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.

  7. Linking Climate Risk, Policy Networks and Adaptation Planning in Public Lands

    Science.gov (United States)

    Lubell, M.; Schwartz, M.; Peters, C.

    2014-12-01

    Federal public land management agencies in the United States have engaged a variety of planning efforts to address climate adaptation. A major goal of these efforts is to build policy networks that enable land managers to access information and expertise needed for responding to local climate risks. This paper investigates whether the perceived and modeled climate risk faced by different land managers is leading to larger networks or more participating in climate adaptation. In theory, the benefits of climate planning networks are larger when land managers are facing more potential changes. The basic hypothesis is tested with a survey of public land managers from hundreds of local and regional public lands management units in the Southwestern United States, as well as other stakeholders involved with climate adaptation planning. All survey respondents report their perceptions of climate risk along a variety of dimensions, as well as their participation in climate adaptation planning and information sharing networks. For a subset of respondents, we have spatially explicity GIS data about their location, which will be linked with downscaled climate model data. With the focus on climate change, the analysis is a subset of the overall idea of linking social and ecological systems.

  8. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations

    Science.gov (United States)

    van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.

    2018-02-01

    We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

  9. Visual Information Processing Based on Spatial Filters Constrained by Biological Data.

    Science.gov (United States)

    1978-12-01

    was provided by Pantie and Sekuler ( 19681. They found that the detection (if gratings was affected most by adapting isee Section 6.1. 11 to square...evidence for certain eye scans being directed by spatial information in filtered images is given. Eye scan paths of a portrait of a young girl I Figure 08...multistable objects to more complex objects such as the man- girl figure of Fisher 119681, decision boundaries that are a natural concomitant to any pattern

  10. An Evaluation of Spatial Organization of the Church Architecture of Kerala during the Sixteenth to Seventeenth Centuries

    Science.gov (United States)

    Panjikaran, S.; Vedamuthu, R.

    2013-05-01

    The churches of Kerala of the sixteenth to seventeenth centuries exhibits an architectural character which is different from that of the indigenous Church Architecture of Kerala. Preliminary studies show that the spatial organization of these churches also varied from that of the indigenous churches of Kerala. Did these variations in spatial organization arise of any change in functional requirements of churches? How did the indigenous Architectural character adapt to these changes or did it give way to a new style? The objective of this study is to understand the spatial organization of the indigenous Church Architecture of Kerala and to evaluate the changes in spatial organization during the sixteenth to seventeenth centuries. This study is primarily based on field survey and documentation, evaluation is done by relying on the Rapoport's theory. It is concluded that the church architecture of this period is a fusion of the Western and Eastern ecclesiastical traditions in terms of spatial organization and planning.

  11. Eye and hand movements during reconstruction of spatial memory.

    Science.gov (United States)

    Burke, Melanie R; Allen, Richard J; Gonzalez, Claudia

    2012-01-01

    Recent behavioural and biological evidence indicates common mechanisms serving working memory and attention (e.g., Awh et al, 2006 Neuroscience 139 201-208). This study explored the role of spatial attention and visual search in an adapted Corsi spatial memory task. Eye movements and touch responses were recorded from participants who recalled locations (signalled by colour or shape change) from an array presented either simultaneously or sequentially. The time delay between target presentation and recall (0, 5, or 10 s) and the number of locations to be remembered (2-5) were also manipulated. Analysis of the response phase revealed subjects were less accurate (touch data) and fixated longer (eye data) when responding to sequentially presented targets suggesting higher cognitive effort. Fixation duration on target at recall was also influenced by whether spatial location was initially signalled by colour or shape change. Finally, we found that the sequence tasks encouraged longer fixations on the signalled targets than simultaneous viewing during encoding, but no difference was observed during recall. We conclude that the attentional manipulations (colour/shape) mainly affected the eye movement parameters, whereas the memory manipulation (sequential versus simultaneous, number of items) mainly affected the performance of the hand during recall, and thus the latter is more important for ascertaining if an item is remembered or forgotten. In summary, the nature of the stimuli that is used and how it is presented play key roles in determining subject performance and behaviour during spatial memory tasks.

  12. Single Canonical Model of Reflexive Memory and Spatial Attention

    Science.gov (United States)

    Patel, Saumil S.; Red, Stuart; Lin, Eric; Sereno, Anne B.

    2015-01-01

    Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey’s task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes. PMID:26493949

  13. Single Canonical Model of Reflexive Memory and Spatial Attention.

    Science.gov (United States)

    Patel, Saumil S; Red, Stuart; Lin, Eric; Sereno, Anne B

    2015-10-23

    Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey's task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes.

  14. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    Science.gov (United States)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  15. Spatial correlation analysis of urban traffic state under a perspective of community detection

    Science.gov (United States)

    Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan

    2018-05-01

    Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.

  16. Adaptive comanagement of a marine protected area network in Fiji.

    Science.gov (United States)

    Weeks, Rebecca; Jupiter, Stacy D

    2013-12-01

    Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9-year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well-defined resource-access rights; community respect for a flexible system of customary governance; long-term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district-wide coordination, which provided a broader spatial context for adaptive-management decision making. Co-Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  17. [Characteristics of temporal-spatial differentiation in landscape pattern vulnerability in Nansihu Lake wetland, China.

    Science.gov (United States)

    Liang, Jia Xin; Li, Xin Ju

    2018-02-01

    With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.

  18. Intelligent Optical Systems Using Adaptive Optics

    Science.gov (United States)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  19. The Spatial Extent of Epiretinal Electrical Stimulation in the Healthy Mouse Retina

    Directory of Open Access Journals (Sweden)

    Zohreh Hosseinazdeh

    2017-07-01

    Full Text Available Background/Aims: Retinal prostheses use electrical stimulation to restore functional vision to patients blinded by retinitis pigmentosa. A key detail is the spatial pattern of ganglion cells activated by stimulation. Therefore, we characterized the spatial extent of network-mediated electrical activation of retinal ganglion cells (RGCs in the epiretinal monopolar electrode configuration. Methods: Healthy mouse RGC activities were recorded with a micro-electrode array (MEA. The stimuli consisted of monophasic rectangular cathodic voltage pulses and cycling full-field light flashes. Results: Voltage tuning curves exhibited significant hysteresis, reflecting adaptation to electrical stimulation on the time scale of seconds. Responses decreased from 0 to 300 µm, and were also dependent on the strength of stimulation. Applying the Rayleigh criterion to the half-width at half-maximum of the electrical point spread function suggests a visual acuity limit of no better than 20/946. Threshold voltage showed only a modest increase across these distances. Conclusion: The existence of significant hysteresis requires that future investigations of electrical retinal stimulation control for such long-memory adaptation. The spread of electrical activation beyond 200 µm suggests that neighbouring electrodes in epiretinal implants based on indirect stimulation of RGCs may be indiscriminable at interelectrode spacings as large as 400 µm.

  20. The Object Context-place-location Paradigm for Testing Spatial Memory in Mice.

    Science.gov (United States)

    Lesburguères, Edith; Tsokas, Panayiotis; Sacktor, Todd Charlton; Fenton, André Antonio

    2017-04-20

    This protocol was originally designed to examine long-term spatial memory in PKMζ knockout ( i.e ., PKMζ-null) mice (Tsokas et al ., 2016). Our main goal was to test whether the ability of these animals to maintain previously acquired spatial information was sensitive to the type and complexity of the spatial information that needs to be remembered. Accordingly, we modified and combined into a single protocol, three novelty-preference tests, specifically the object-in-context, object-in-place and object-in-location tests, adapted from previous studies in rodents (Mumby et al ., 2002; Langston and Wood, 2010; Barker and Warburton, 2011). During the training (learning) phase of the procedure, mice are repeatedly exposed to three different environments in which they learn the spatial arrangement of an environment-specific set of non-identical objects. After this learning phase is completed, each mouse receives three different memory tests configured as environment mismatches, in which the previously learned objects-in-space configurations have been modified from the original training situation. The mismatch tests differ in their cognitive demands due to the type of spatial association that is manipulated, specifically evaluating memory for object-context and object-place associations. During each memory test, the time differential spent exploring the novel (misplaced) and familiar objects is computed as an index of novelty discrimination. This index is the behavioral measure of memory recall of the previously acquired spatial associations.

  1. Adaptive Rationality, Adaptive Behavior and Institutions

    Directory of Open Access Journals (Sweden)

    Volchik Vyacheslav, V.

    2015-12-01

    Full Text Available The economic literature focused on understanding decision-making and choice processes reveals a vast collection of approaches to human rationality. Theorists’ attention has moved from absolutely rational, utility-maximizing individuals to boundedly rational and adaptive ones. A number of economists have criticized the concepts of adaptive rationality and adaptive behavior. One of the recent trends in the economic literature is to consider humans irrational. This paper offers an approach which examines adaptive behavior in the context of existing institutions and constantly changing institutional environment. It is assumed that adaptive behavior is a process of evolutionary adjustment to fundamental uncertainty. We emphasize the importance of actors’ engagement in trial and error learning, since if they are involved in this process, they obtain experience and are able to adapt to existing and new institutions. The paper aims at identifying relevant institutions, adaptive mechanisms, informal working rules and practices that influence actors’ behavior in the field of Higher Education in Russia (Rostov Region education services market has been taken as an example. The paper emphasizes the application of qualitative interpretative methods (interviews and discourse analysis in examining actors’ behavior.

  2. Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods.

    Science.gov (United States)

    Arcos-García, Álvaro; Álvarez-García, Juan A; Soria-Morillo, Luis M

    2018-03-01

    This paper presents a Deep Learning approach for traffic sign recognition systems. Several classification experiments are conducted over publicly available traffic sign datasets from Germany and Belgium using a Deep Neural Network which comprises Convolutional layers and Spatial Transformer Networks. Such trials are built to measure the impact of diverse factors with the end goal of designing a Convolutional Neural Network that can improve the state-of-the-art of traffic sign classification task. First, different adaptive and non-adaptive stochastic gradient descent optimisation algorithms such as SGD, SGD-Nesterov, RMSprop and Adam are evaluated. Subsequently, multiple combinations of Spatial Transformer Networks placed at distinct positions within the main neural network are analysed. The recognition rate of the proposed Convolutional Neural Network reports an accuracy of 99.71% in the German Traffic Sign Recognition Benchmark, outperforming previous state-of-the-art methods and also being more efficient in terms of memory requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Detection of User Independent Single Trial ERPs in Brain Computer Interfaces: An Adaptive Spatial Filtering Approach

    DEFF Research Database (Denmark)

    Leza, Cristina; Puthusserypady, Sadasivan

    2017-01-01

    Brain Computer Interfaces (BCIs) use brain signals to communicate with the external world. The main challenges to address are speed, accuracy and adaptability. Here, a novel algorithm for P300 based BCI spelling system is presented, specifically suited for single-trial detection of Event...

  4. Pervasive Adaptive Evolution in Primate Seminal Proteins.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Seminal fluid proteins show striking effects on reproduction, involving manipulation of female behavior and physiology, mechanisms of sperm competition, and pathogen defense. Strong adaptive pressures are expected for such manifestations of sexual selection and host defense, but the extent of positive selection in seminal fluid proteins from divergent taxa is unknown. We identified adaptive evolution in primate seminal proteins using genomic resources in a tissue-specific study. We found extensive signatures of positive selection when comparing 161 human seminal fluid proteins and 2,858 prostate-expressed genes to those in chimpanzee. Seven of eight outstanding genes yielded statistically significant evidence of positive selection when analyzed in divergent primates. Functional clues were gained through divergent analysis, including several cases of species-specific loss of function in copulatory plug genes, and statistically significant spatial clustering of positively selected sites near the active site of kallikrein 2. This study reveals previously unidentified positive selection in seven primate seminal proteins, and when considered with findings in Drosophila, indicates that extensive positive selection is found in seminal fluid across divergent taxonomic groups.

  5. An Adaptive Landscape Classification Procedure using Geoinformatics and Artificial Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Andre Michael [Vrije Univ., Amsterdam (Netherlands)

    2008-06-01

    The Adaptive Landscape Classification Procedure (ALCP), which links the advanced geospatial analysis capabilities of Geographic Information Systems (GISs) and Artificial Neural Networks (ANNs) and particularly Self-Organizing Maps (SOMs), is proposed as a method for establishing and reducing complex data relationships. Its adaptive and evolutionary capability is evaluated for situations where varying types of data can be combined to address different prediction and/or management needs such as hydrologic response, water quality, aquatic habitat, groundwater recharge, land use, instrumentation placement, and forecast scenarios. The research presented here documents and presents favorable results of a procedure that aims to be a powerful and flexible spatial data classifier that fuses the strengths of geoinformatics and the intelligence of SOMs to provide data patterns and spatial information for environmental managers and researchers. This research shows how evaluation and analysis of spatial and/or temporal patterns in the landscape can provide insight into complex ecological, hydrological, climatic, and other natural and anthropogenic-influenced processes. Certainly, environmental management and research within heterogeneous watersheds provide challenges for consistent evaluation and understanding of system functions. For instance, watersheds over a range of scales are likely to exhibit varying levels of diversity in their characteristics of climate, hydrology, physiography, ecology, and anthropogenic influence. Furthermore, it has become evident that understanding and analyzing these diverse systems can be difficult not only because of varying natural characteristics, but also because of the availability, quality, and variability of spatial and temporal data. Developments in geospatial technologies, however, are providing a wide range of relevant data, and in many cases, at a high temporal and spatial resolution. Such data resources can take the form of high

  6. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    Science.gov (United States)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  7. Vulnerability and adaptation of US shellfisheries to ocean acidification

    Science.gov (United States)

    Ekstrom, Julia A.; Suatoni, Lisa; Cooley, Sarah R.; Pendleton, Linwood H.; Waldbusser, George G.; Cinner, Josh E.; Ritter, Jessica; Langdon, Chris; van Hooidonk, Ruben; Gledhill, Dwight; Wellman, Katharine; Beck, Michael W.; Brander, Luke M.; Rittschof, Dan; Doherty, Carolyn; Edwards, Peter E. T.; Portela, Rosimeiry

    2015-03-01

    Ocean acidification is a global, long-term problem whose ultimate solution requires carbon dioxide reduction at a scope and scale that will take decades to accomplish successfully. Until that is achieved, feasible and locally relevant adaptation and mitigation measures are needed. To help to prioritize societal responses to ocean acidification, we present a spatially explicit, multidisciplinary vulnerability analysis of coastal human communities in the United States. We focus our analysis on shelled mollusc harvests, which are likely to be harmed by ocean acidification. Our results highlight US regions most vulnerable to ocean acidification (and why), important knowledge and information gaps, and opportunities to adapt through local actions. The research illustrates the benefits of integrating natural and social sciences to identify actions and other opportunities while policy, stakeholders and scientists are still in relatively early stages of developing research plans and responses to ocean acidification.

  8. Adaptive multiparameter control: application to a Rapid Thermal Processing process; Commande Adaptative Multivariable: Application a un Procede de Traitement Thermique Rapide

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mago, S J

    1995-12-20

    In this work the problem of temperature uniformity control in rapid thermal processing is addressed by means of multivariable adaptive control. Rapid Thermal Processing (RTP) is a set of techniques proposed for semiconductor fabrication processes such as annealing, oxidation, chemical vapour deposition and others. The product quality depends on two mains issues: precise trajectory following and spatial temperature uniformity. RTP is a fabrication technique that requires a sophisticated real-time multivariable control system to achieve acceptable results. Modelling of the thermal behaviour of the process leads to very complex mathematical models. These are the reasons why adaptive control techniques are chosen. A multivariable linear discrete time model of the highly non-linear process is identified on-line, using an identification scheme which includes supervisory actions. This identified model, combined with a multivariable predictive control law allows to prevent the controller from systems variations. The control laws are obtained by minimization of a quadratic cost function or by pole placement. In some of these control laws, a partial state reference model was included. This reference model allows to incorporate an appropriate tracking capability into the control law. Experimental results of the application of the involved multivariable adaptive control laws on a RTP system are presented. (author) refs

  9. Using brain potentials to understand prism adaptation: the error-related negativity and the P300

    Directory of Open Access Journals (Sweden)

    Stephane Joseph Maclean

    2015-06-01

    Full Text Available Prism adaptation (PA is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN – a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuo-motor responding is shifted to the opposite direction of that initially induced by the prisms. This visuo-motor aftereffect has been used to study visuo-motor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided space. In order to optimize PA’s use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs were recorded at the termination of each reach (screen-touch, then binned according to accuracy (hit vs. miss and phase of exposure block (early, middle, late. Results show that two ERP components were evoked by screen-touch: an early error-related negativity (ERN, and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN.

  10. Using brain potentials to understand prism adaptation: the error-related negativity and the P300.

    Science.gov (United States)

    MacLean, Stephane J; Hassall, Cameron D; Ishigami, Yoko; Krigolson, Olav E; Eskes, Gail A

    2015-01-01

    Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)-a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN.

  11. Neptune’s zonal winds from near-IR Keck adaptive optics imaging in August 2001

    NARCIS (Netherlands)

    Martin, S.C.; De Pater, I.; Marcus, P.

    2011-01-01

    We present H-band (1.4–1.8 ?m) images of Neptune with a spatial resolution of ?0.06?, taken with the W.M. Keck II telescope using the slit-viewing camera (SCAM) of the NIRSPEC instrument backed with Adaptive Optics. Images with 60-second integration times span 4 hours each on UT 20 and 21 August,

  12. Spatial encoding in spinal sensorimotor circuits differs in different wild type mice strains

    Directory of Open Access Journals (Sweden)

    Schouenborg Jens

    2008-05-01

    Full Text Available Abstract Background Previous studies in the rat have shown that the spatial organisation of the receptive fields of nociceptive withdrawal reflex (NWR system are functionally adapted through experience dependent mechanisms, termed somatosensory imprinting, during postnatal development. Here we wanted to clarify 1 if mice exhibit a similar spatial encoding of sensory input to NWR as previously found in the rat and 2 if mice strains with a poor learning capacity in various behavioural tests, associated with deficient long term potention, also exhibit poor adaptation of NWR. The organisation of the NWR system in two adult wild type mouse strains with normal long term potentiation (LTP in hippocampus and two adult wild type mouse strains exhibiting deficiencies in corresponding LTP were used and compared to previous results in the rat. Receptive fields of reflexes in single hindlimb muscles were mapped with CO2 laser heat pulses. Results While the spatial organisation of the nociceptive receptive fields in mice with normal LTP were very similar to those in rats, the LTP impaired strains exhibited receptive fields of NWRs with aberrant sensitivity distributions. However, no difference was found in NWR thresholds or onset C-fibre latencies suggesting that the mechanisms determining general reflex sensitivity and somatosensory imprinting are different. Conclusion Our results thus confirm that sensory encoding in mice and rat NWR is similar, provided that mice strains with a good learning capability are studied and raise the possibility that LTP like mechanisms are involved in somatosensory imprinting.

  13. Towards a New Policy for Climate Adaptive Water Management in Flanders: The Concept of Signal Areas

    Directory of Open Access Journals (Sweden)

    Peter De Smedt

    2014-05-01

    Full Text Available In Flanders, the Government has recently established an innovative policy framework to preserve the water storage capacity in flood-prone areas. In this context, the concept of ‘Signal Areas’ (signaalgebieden has been created. These areas are still undeveloped areas with a hard planning destination (residential and industrial areas located in flood-prone areas. The framework outlines in what way one needs to deal with the flood risk in these areas. The intention is to work with tailor-made solutions for each separate area. For this purpose, a comprehensive tool-box is available, such as land reparcelling, spatial destination or zoning swapping (bestemmingsruil, regulations regarding appropriate construction methods and land use in urban planning regulations or in public utility servitudes, and the application of a sharpened Water Test. The final objective is to create an efficacious, area-oriented adaptation strategy for climate-proof spatial planning. In this contribution, the author will provide an insight into the legal design of the above-mentioned concepts and instruments, how they can contribute to a stronger linkage between water management and spatial planning and therefore to a solid climate change adaptation strategy, as well as the factors of success and failure of this new policy framework.

  14. Chromostereopsis in "virtual reality" adapters with electrically tuneable liquid lens oculars

    Science.gov (United States)

    Ozolinsh, Maris; Muizniece, Kristine; Berzinsh, Janis

    2016-10-01

    Chromostereopsis can be sight and feel in "Virtual Reality" adapters, that induces the appearance of color dependant depth sense and, finally, combines this sense with the source conceived depth scenario. Present studies are devoted to investigation the induced chromastereopsis when using adapted "Virtual Reality" frame together with mobile devices as smartphones. We did observation of composite visual stimuli presented on the high spatial resolution screen of the mobile phone placed inside a portable "Virtual Reality" adapter. Separated for the left and right eyes stimuli consisted of two areas: a) identical for both eyes color chromostereopsis part, and b) additional conventional color neutral random-dot stereopsis part with a stereodisparity based on the horizontal shift of a random-dot segment in images for the left and right eyes, correspondingly. The observer task was to equalize the depth sense for neutral and colored stimuli areas. Such scheme allows to determine actual observed chromostereopsis disparity value versus eye stimuli color difference. At standard observation conditions for adapter with +2D ocular lenses for mobile red-blue stimuli, the perceptual chromostereopsis depth sensitivity on color difference was linearly approximated with a slope SChS ≈ 2.1[arcmin/(Labcolor difference)] for red-blue pairs. Additional to standard application in adapter the tuneable "Varioptic" liquid lens oculars were incorporated, that allowed stimuli eye magnification, vergence and disparity values control electrically.

  15. Learning to Adapt. Organisational Adaptation to Climate Change Impacts

    International Nuclear Information System (INIS)

    Berkhout, F.; Hertin, J.; Gann, D.M.

    2006-01-01

    Analysis of human adaptation to climate change should be based on realistic models of adaptive behaviour at the level of organisations and individuals. The paper sets out a framework for analysing adaptation to the direct and indirect impacts of climate change in business organisations with new evidence presented from empirical research into adaptation in nine case-study companies. It argues that adaptation to climate change has many similarities with processes of organisational learning. The paper suggests that business organisations face a number of obstacles in learning how to adapt to climate change impacts, especially in relation to the weakness and ambiguity of signals about climate change and the uncertainty about benefits flowing from adaptation measures. Organisations rarely adapt 'autonomously', since their adaptive behaviour is influenced by policy and market conditions, and draws on resources external to the organisation. The paper identifies four adaptation strategies that pattern organisational adaptive behaviour

  16. Encouraging Spatial Talk: Using Children's Museums to Bolster Spatial Reasoning

    Science.gov (United States)

    Polinsky, Naomi; Perez, Jasmin; Grehl, Mora; McCrink, Koleen

    2017-01-01

    Longitudinal spatial language intervention studies have shown that greater exposure to spatial language improves children's performance on spatial tasks. Can short naturalistic, spatial language interactions also evoke improved spatial performance? In this study, parents were asked to interact with their child at a block wall exhibit in a…

  17. Adaptive Rates of High-Spectral-Efficiency WDM/SDM Channels Using PDM-1024-QAM Probabilistic Shaping

    DEFF Research Database (Denmark)

    Hu, Hao; Yankov, Metodi Plamenov; Da Ros, Francesco

    2017-01-01

    We demonstrate adaptive rates and spectral efficiencies in WDM/SDM transmission using probabilistically shaped PDM-1024-QAM signals, achieving up to 7-Tbit/s data rates per spatial-superchannel and up to 297.8-bit/s/Hz aggregate spectral efficiency using a 30-core fiber on 12.5 and 25GHz WDM grids...

  18. On the impact of D2D traffic offloading on energy efficiency in green LTE-A HetNets

    KAUST Repository

    Yaacoub, Elias E.; Ghazzai, Hakim; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2014-01-01

    multiple access-based state-of-the-art LTE cellular networks, while taking resource allocation and intercell interference into account. Results show that the proposed approach leads to energy savings for both the operator and the MTs, while leading

  19. Statistical learning as a tool for rehabilitation in spatial neglect.

    Directory of Open Access Journals (Sweden)

    Albulena eShaqiri

    2013-05-01

    Full Text Available We propose that neglect includes a disorder of representational updating. Representational updating refers to our ability to build mental models and adapt those models to changing experience. This updating ability depends on the processes of priming, working memory, and statistical learning. These processes in turn interact with our capabilities for sustained attention and precise temporal processing. We review evidence showing that all these non-spatial abilities are impaired in neglect, and we discuss how recognition of such deficits can lead to novel approaches for rehabilitating neglect.

  20. Adaptive algorithm based on antenna arrays for radio communication systems

    Directory of Open Access Journals (Sweden)

    Fedosov Valentin

    2017-01-01

    Full Text Available Trends in the modern world increasingly lead to the growing popularity of wireless technologies. This is possible due to the rapid development of mobile communications, the Internet gaining high popularity, using wireless networks at enterprises, offices, buildings, etc. It requires advanced network technologies with high throughput capacity to meet the needs of users. To date, a popular destination is the development of spatial signal processing techniques allowing to increase spatial bandwidth of communication channels. The most popular method is spatial coding MIMO to increase data transmission speed which is carried out due to several spatial streams emitted by several antennas. Another advantage of this technology is the bandwidth increase to be achieved without expanding the specified frequency range. Spatial coding methods are even more attractive due to a limited frequency resource. Currently, there is an increasing use of wireless communications (for example, WiFi and WiMAX in information transmission networks. One of the main problems of evolving wireless systems is the need to increase bandwidth and improve the quality of service (reducing the error probability. Bandwidth can be increased by expanding the bandwidth or increasing the radiated power. Nevertheless, the application of these methods has some drawbacks, due to the requirements of biological protection and electromagnetic compatibility, the increase of power and the expansion of the frequency band is limited. This problem is especially relevant in mobile (cellular communication systems and wireless networks operating in difficult signal propagation conditions. One of the most effective ways to solve this problem is to use adaptive antenna arrays with weakly correlated antenna elements. Communication systems using such antennas are called MIMO systems (Multiple Input Multiple Output multiple input - multiple outputs. At the moment, existing MIMO-idea implementations do not

  1. Children's Spatial Thinking: Does Talk about the Spatial World Matter?

    Science.gov (United States)

    Pruden, Shannon M.; Levine, Susan C.; Huttenlocher, Janellen

    2011-01-01

    In this paper we examine the relations between parent spatial language input, children's own production of spatial language, and children's later spatial abilities. Using a longitudinal study design, we coded the use of spatial language (i.e. words describing the spatial features and properties of objects; e.g. big, tall, circle, curvy, edge) from…

  2. Strategies for spatial and technological flexibility

    Directory of Open Access Journals (Sweden)

    Cristiana Cellucci

    2014-10-01

    Full Text Available The design of housing sys- tems is today challenged by a highly uncertain context, dominated by the rapid development of functional and technological obsolescence in inherited housing models. The design of housing systems should first and foremost optimise the longevity of the sub-systems and be able to offset the process of obsolescence which is concomitant to both the current use of materials and components devised to fail after a short period, and to rigid spatial models that are incapable of adapting to changes in the household’s needs over time. This research examines flexibility as a fundamental requirement to be incorporated in the Life Cycle of the house, through the use of strategies that affect both the form and the technological system that governs its structure.

  3. The limits of adaptation: humans and the predator-prey arms race.

    Science.gov (United States)

    Vermeij, Geerat J

    2012-07-01

    In the history of life, species have adapted to their consumers by evolving a wide variety of defenses. By contrast, animal species harvested in the wild by humans have not adapted structurally. Nonhuman predators have high failure rates at one or more stages of an attack, indicating that victim species have spatial refuges or phenotypic defenses that permit further functional improvement. A new compilation confirms that species in the wild cannot achieve immunity from human predation with structural defenses. The only remaining options are to become undesirable or to live in or escape to places where harvesting by people is curtailed. Escalation between prey defenses and predators' weapons may be restricted under human dominance to interactions involving those low-level predators that have benefited from human overexploitation of top consumers. © 2012 The Author.

  4. A Spatial Frequency Account of the Detriment that Local Processing of Navon Letters Has on Face Recognition

    Science.gov (United States)

    Hills, Peter J.; Lewis, Michael B.

    2009-01-01

    Five minutes of processing the local features of a Navon letter causes a detriment in subsequent face-recognition performance (Macrae & Lewis, 2002). We hypothesize a perceptual after effect explanation of this effect in which face recognition is less accurate after adapting to high-spatial frequencies at high contrasts. Five experiments were…

  5. The effects of transient attention on spatial resolution and the size of the attentional cue.

    Science.gov (United States)

    Yeshurun, Yaffa; Carrasco, Marisa

    2008-01-01

    It has been shown that transient attention enhances spatial resolution, but is the effect of transient attention on spatial resolution modulated by the size of the attentional cue? Would a gradual increase in the size of the cue lead to a gradual decrement in spatial resolution? To test these hypotheses, we used a texture segmentation task in which performance depends on spatial resolution, and systematically manipulated the size of the attentional cue: A bar of different lengths (Experiment 1) or a frame of different sizes (Experiments 2-3) indicated the target region in a texture segmentation display. Observers indicated whether a target patch region (oriented line elements in a background of an orthogonal orientation), appearing at a range of eccentricities, was present in the first or the second interval. We replicated the attentional enhancement of spatial resolution found with small cues; attention improved performance at peripheral locations but impaired performance at central locations. However, there was no evidence of gradual resolution decrement with large cues. Transient attention enhanced spatial resolution at the attended location when it was attracted to that location by a small cue but did not affect resolution when it was attracted by a large cue. These results indicate that transient attention cannot adapt its operation on spatial resolution on the basis of the size of the attentional cue.

  6. Prism adaptation does not alter object-based attention in healthy participants

    Science.gov (United States)

    Bultitude, Janet H.

    2013-01-01

    Hemispatial neglect (‘neglect’) is a disabling condition that can follow damage to the right side of the brain, in which patients show difficulty in responding to or orienting towards objects and events that occur on the left side of space. Symptoms of neglect can manifest in both space- and object-based frames of reference. Although patients can show a combination of these two forms of neglect, they are considered separable and have distinct neurological bases. In recent years considerable evidence has emerged to demonstrate that spatial symptoms of neglect can be reduced by an intervention called prism adaptation. Patients point towards objects viewed through prismatic lenses that shift the visual image to the right. Approximately five minutes of repeated pointing results in a leftward recalibration of pointing and improved performance on standard clinical tests for neglect. The understanding of prism adaptation has also been advanced through studies of healthy participants, in whom adaptation to leftward prismatic shifts results in temporary neglect-like performance. Here we examined the effect of prism adaptation on the performance of healthy participants who completed a computerised test of space- and object-based attention. Participants underwent adaptation to leftward- or rightward-shifting prisms, or performed neutral pointing according to a between-groups design. Significant pointing after-effects were found for both prism groups, indicating successful adaptation. In addition, the results of the computerised test revealed larger reaction-time costs associated with shifts of attention between two objects compared to shifts of attention within the same object, replicating previous work. However there were no differences in the performance of the three groups, indicating that prism adaptation did not influence space- or object-based attention for this task. When combined with existing literature, the results are consistent with the proposal that prism

  7. Analysis and Evaluation of Performance Gains and Tradeoffs for Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Saba Qasim Jabbar

    2016-09-01

    Full Text Available Massive MIMO technique offers significant performance gains for the future of wireless communications via improving the spectral efficiency, energy efficiency and the channel quality with simple linear processing such as maximum-ratio transmission (MRT or zero-forcing (ZF by providing each user a large degree of freedom. In this paper, the system performance gains are studied in a multi-cell downlink massive MIMO system under the main considerations such as perfect channel estimation, imperfect channel estimation and the effect of interference among cells due to pilot sequences contamination. Then, mathematical expressions are derived for these gains i.e., spatial multiplexing gain, array gain and spatial diversity gain. After that, essential tradeoffs among these gains are considered under the effect of non-orthogonal interference, these tradeoffs are: spatial diversity gain vs. spatial multiplexing gain and array gain vs. spatial multiplexing gain. Simulation results show that the unbounded number of base station antennas boosts the array gain through concentrating the energy to spatial directions where users are sited, hence diminishing loss in array gain due to pilot contamination. The simulation results reveal also that massive MIMO strengthens the spatial multiplexing gain through increasing the number of served users via the same system resources in spite the effect of inter-cell interference. Finally, the spatial diversity gain is measured in term of outage probability and the simulation results show that raising the number of antennas will improve the outage probability. Meanwhile increasing the number of served users will lead to degrade the outage probability per user due to non-orthogonal interference from other cells.

  8. Flexible spatial perspective-taking: conversational partners weigh multiple cues in collaborative tasks.

    Science.gov (United States)

    Galati, Alexia; Avraamides, Marios N

    2013-01-01

    Research on spatial perspective-taking often focuses on the cognitive processes of isolated individuals as they adopt or maintain imagined perspectives. Collaborative studies of spatial perspective-taking typically examine speakers' linguistic choices, while overlooking their underlying processes and representations. We review evidence from two collaborative experiments that examine the contribution of social and representational cues to spatial perspective choices in both language and the organization of spatial memory. Across experiments, speakers organized their memory representations according to the convergence of various cues. When layouts were randomly configured and did not afford intrinsic cues, speakers encoded their partner's viewpoint in memory, if available, but did not use it as an organizing direction. On the other hand, when the layout afforded an intrinsic structure, speakers organized their spatial memories according to the person-centered perspective reinforced by the layout's structure. Similarly, in descriptions, speakers considered multiple cues whether available a priori or at the interaction. They used partner-centered expressions more frequently (e.g., "to your right") when the partner's viewpoint was misaligned by a small offset or coincided with the layout's structure. Conversely, they used egocentric expressions more frequently when their own viewpoint coincided with the intrinsic structure or when the partner was misaligned by a computationally difficult, oblique offset. Based on these findings we advocate for a framework for flexible perspective-taking: people weigh multiple cues (including social ones) to make attributions about the relative difficulty of perspective-taking for each partner, and adapt behavior to minimize their collective effort. This framework is not specialized for spatial reasoning but instead emerges from the same principles and memory-depended processes that govern perspective-taking in non-spatial tasks.

  9. H2-optimal control of an adaptive optics system : Part I, data-driven modeling of the wavefront disturbance

    NARCIS (Netherlands)

    Hinnen, K.; Verhaegen, M.; Doelman, N.

    2005-01-01

    Even though the wavefront distortion introduced by atmospheric turbulence is a dynamic process, its temporal evolution is usually neglected in the adaptive optics (AO) control design. Most AO control systems consider only the spatial correlation in a separate wavefront reconstruction step. By

  10. Non-equilibrium physics and evolution—adaptation, extinction, and ecology: a Key Issues review

    International Nuclear Information System (INIS)

    Kussell, E; Vucelja, M

    2014-01-01

    Evolutionary dynamics in nature constitute an immensely complex non-equilibrium process. We review the application of physical models of evolution, by focusing on adaptation, extinction, and ecology. In each case, we examine key concepts by working through examples. Adaptation is discussed in the context of bacterial evolution, with a view toward the relationship between growth rates, mutation rates, selection strength, and environmental changes. Extinction dynamics for an isolated population are reviewed, with emphasis on the relation between timescales of extinction, population size, and temporally correlated noise. Ecological models are discussed by focusing on the effect of spatial interspecies interactions on diversity. Connections between physical processes—such as diffusion, turbulence, and localization—and evolutionary phenomena are highlighted. (key issues reviews)

  11. A spatial neural fuzzy network for estimating pan evaporation at ungauged sites

    Directory of Open Access Journals (Sweden)

    C.-H. Chung

    2012-01-01

    Full Text Available Evaporation is an essential reference to the management of water resources. In this study, a hybrid model that integrates a spatial neural fuzzy network with the kringing method is developed to estimate pan evaporation at ungauged sites. The adaptive network-based fuzzy inference system (ANFIS can extract the nonlinear relationship of observations, while kriging is an excellent geostatistical interpolator. Three-year daily data collected from nineteen meteorological stations covering the whole of Taiwan are used to train and test the constructed model. The pan evaporation (Epan at ungauged sites can be obtained through summing up the outputs of the spatially weighted ANFIS and the residuals adjusted by kriging. Results indicate that the proposed AK model (hybriding ANFIS and kriging can effectively improve the accuracy of Epan estimation as compared with that of empirical formula. This hybrid model demonstrates its reliability in estimating the spatial distribution of Epan and consequently provides precise Epan estimation by taking geographical features into consideration.

  12. Sum rate maximization in the uplink of multi-cell OFDMA networks

    KAUST Repository

    Tabassum, Hina; Alouini, Mohamed-Slim; Dawy, Zaher

    2012-01-01

    of each cell, while ignoring the significant effect of inter-cell interference. This paper investigates the problem of resource allocation (i.e., subcarriers and powers) in the uplink of a multi-cell OFDMA network. The problem has a non

  13. Physically-based modeling of topographic effects on spatial evapotranspiration and soil moisture patterns through radiation and wind

    Directory of Open Access Journals (Sweden)

    M. Liu

    2012-02-01

    Full Text Available In this paper, simulations with the Soil Water Atmosphere Plant (SWAP model are performed to quantify the spatial variability of both potential and actual evapotranspiration (ET, and soil moisture content (SMC caused by topography-induced spatial wind and radiation differences. To obtain the spatially distributed ET/SMC patterns, the field scale SWAP model is applied in a distributed way for both pointwise and catchment wide simulations. An adapted radiation model from r.sun and the physically-based meso-scale wind model METRAS PC are applied to obtain the spatial radiation and wind patterns respectively, which show significant spatial variation and correlation with aspect and elevation respectively. Such topographic dependences and spatial variations further propagate to ET/SMC. A strong spatial, seasonal-dependent, scale-relevant intra-catchment variability in daily/annual ET and less variability in SMC can be observed from the numerical experiments. The study concludes that topography has a significant effect on ET/SMC in the humid region where ET is a energy limited rather than water availability limited process. It affects the spatial runoff generation through spatial radiation and wind, therefore should be applied to inform hydrological model development. In addition, the methodology used in the study can serve as a general method for physically-based ET estimation for data sparse regions.

  14. Deconstructing visual scenes in cortex: gradients of object and spatial layout information.

    Science.gov (United States)

    Harel, Assaf; Kravitz, Dwight J; Baker, Chris I

    2013-04-01

    Real-world visual scenes are complex cluttered, and heterogeneous stimuli engaging scene- and object-selective cortical regions including parahippocampal place area (PPA), retrosplenial complex (RSC), and lateral occipital complex (LOC). To understand the unique contribution of each region to distributed scene representations, we generated predictions based on a neuroanatomical framework adapted from monkey and tested them using minimal scenes in which we independently manipulated both spatial layout (open, closed, and gradient) and object content (furniture, e.g., bed, dresser). Commensurate with its strong connectivity with posterior parietal cortex, RSC evidenced strong spatial layout information but no object information, and its response was not even modulated by object presence. In contrast, LOC, which lies within the ventral visual pathway, contained strong object information but no background information. Finally, PPA, which is connected with both the dorsal and the ventral visual pathway, showed information about both objects and spatial backgrounds and was sensitive to the presence or absence of either. These results suggest that 1) LOC, PPA, and RSC have distinct representations, emphasizing different aspects of scenes, 2) the specific representations in each region are predictable from their patterns of connectivity, and 3) PPA combines both spatial layout and object information as predicted by connectivity.

  15. Driving Meaningful Adaptation Action through an Adaptation Market Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Butzengeiger-Geyer, Sonja; Koehler, Michel; Michaelowa, Axel

    2011-07-01

    Approaches and criteria for allocating adaptation funds vary significantly among current sources - UN-backed funds and bilateral cooperation - and to some extent lack transparency and consistency. Such funding risks being spent in a haphazard way that repeats many of the mistakes made in development assistance over the past decades. An Adaptation Market Mechanism (AMM) could contribute to efficient allocation of adaptation funds, promote adaptation activities by private and public actors through additional financial incentives, and raise additional and reliable adaptation money. This would help to avoid future public criticism of the effectiveness and efficiency of spending adaptation funding.The proposed AMM would specify mandatory adaptation targets, on international, regional or domestic level. Participants who achieve their targets either by generating adaptation units or by buying them in the market would incentivize private, commercial and institutional actors to develop adaptation projects that create verified adaptation units. A universally accepted and verifiable trading unit applicable to all types of adaptation activities would help to maximize the cost reduction potential for the AMM. We suggest applying net present value (NPV) for property saved; Disability Adjusted Life Years Saved (DALYS) for health benefits; and potentially a separate unit to consider the environmental benefits of an adaptation activity.(Author)

  16. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    Science.gov (United States)

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems

  17. Adaptive Optics for Industry and Medicine

    Science.gov (United States)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  18. Relational Database Extension Oriented, Self-adaptive Imagery Pyramid Model

    Directory of Open Access Journals (Sweden)

    HU Zhenghua

    2015-06-01

    Full Text Available With the development of remote sensing technology, especially the improvement of sensor resolution, the amount of image data is increasing. This puts forward higher requirements to manage huge amount of data efficiently and intelligently. And how to access massive remote sensing data with efficiency and smartness becomes an increasingly popular topic. In this paper, against current development status of Spatial Data Management System, we proposed a self-adaptive strategy for image blocking and a method for LoD(level of detailmodel construction that adapts, with the combination of database storage, network transmission and the hardware of the client. Confirmed by experiments, this imagery management mechanism can achieve intelligent and efficient storage and access in a variety of different conditions of database, network and client. This study provides a feasible idea and method for efficient image data management, contributing to the efficient access and management for remote sensing image data which are based on database technology under network environment of C/S architecture.

  19. Final Report: Symposium on Adaptive Methods for Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Pernice, M.; Johnson, C.R.; Smith, P.J.; Fogelson, A.

    1998-12-10

    OAK-B135 Final Report: Symposium on Adaptive Methods for Partial Differential Equations. Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.

  20. Sustainable and Smart City Planning Using Spatial Data in Wallonia

    Science.gov (United States)

    Stephenne, N.; Beaumont, B.; Hallot, E.; Wolff, E.; Poelmans, L.; Baltus, C.

    2016-09-01

    Simulating population distribution and land use changes in space and time offer opportunities for smart city planning. It provides a holistic and dynamic vision of fast changing urban environment to policy makers. Impacts, such as environmental and health risks or mobility issues, of policies can be assessed and adapted consequently. In this paper, we suppose that "Smart" city developments should be sustainable, dynamic and participative. This paper addresses these three smart objectives in the context of urban risk assessment in Wallonia, Belgium. The sustainable, dynamic and participative solution includes (i) land cover and land use mapping using remote sensing and GIS, (ii) population density mapping using dasymetric mapping, (iii) predictive modelling of land use changes and population dynamics and (iv) risk assessment. The comprehensive and long-term vision of the territory should help to draw sustainable spatial planning policies, to adapt remote sensing acquisition, to update GIS data and to refine risk assessment from regional to city scale.

  1. HDR Image Quality Enhancement Based on Spatially Variant Retinal Response

    Directory of Open Access Journals (Sweden)

    Horiuchi Takahiko

    2010-01-01

    Full Text Available There is a growing demand for being able to display high dynamic range (HDR images on low dynamic range (LDR devices. Tone mapping is a process for enhancing HDR image quality on an LDR device by converting the tonal values of the original image from HDR to LDR. This paper proposes a new tone mapping algorithm for enhancing image quality by deriving a spatially-variant operator for imitating S-potential response in human retina, which efficiently improves local contrasts while conserving good global appearance. The proposed tone mapping operator is studied from a system construction point of view. It is found that the operator is regarded as a natural extension of the Retinex algorithm by adding a global adaptation process to the local adaptation. The feasibility of the proposed algorithm is examined in detail on experiments using standard HDR images and real HDR scene images, comparing with conventional tone mapping algorithms.

  2. Non-Orthogonal Multiple Access for Large-Scale 5G Networks: Interference Aware Design

    KAUST Repository

    Ali, Konpal S.; Elsawy, Hesham; Chaaban, Anas; Alouini, Mohamed-Slim

    2017-01-01

    the cell), which is a major performance limiting parameter in 5G networks. This article sheds light on the drastic negative-impact of intercell interference on the NOMA performance and advocates interference-aware NOMA design that jointly accounts for both

  3. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    Science.gov (United States)

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  4. Spatial features register: toward standardization of spatial features

    Science.gov (United States)

    Cascio, Janette

    1994-01-01

    As the need to share spatial data increases, more than agreement on a common format is needed to ensure that the data is meaningful to both the importer and the exporter. Effective data transfer also requires common definitions of spatial features. To achieve this, part 2 of the Spatial Data Transfer Standard (SDTS) provides a model for a spatial features data content specification and a glossary of features and attributes that fit this model. The model provides a foundation for standardizing spatial features. The glossary now contains only a limited subset of hydrographic and topographic features. For it to be useful, terms and definitions must be included for other categories, such as base cartographic, bathymetric, cadastral, cultural and demographic, geodetic, geologic, ground transportation, international boundaries, soils, vegetation, water, and wetlands, and the set of hydrographic and topographic features must be expanded. This paper will review the philosophy of the SDTS part 2 and the current plans for creating a national spatial features register as one mechanism for maintaining part 2.

  5. Using a spatially-distributed hydrologic biogeochemistry model with nitrogen transport to study the spatial variation of carbon stocks and fluxes in a Critical Zone Observatory

    Science.gov (United States)

    Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.

    2017-12-01

    Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation

  6. Opportunistic Adaptive Transmission for Network Coding Using Nonbinary LDPC Codes

    Directory of Open Access Journals (Sweden)

    Cocco Giuseppe

    2010-01-01

    Full Text Available Network coding allows to exploit spatial diversity naturally present in mobile wireless networks and can be seen as an example of cooperative communication at the link layer and above. Such promising technique needs to rely on a suitable physical layer in order to achieve its best performance. In this paper, we present an opportunistic packet scheduling method based on physical layer considerations. We extend channel adaptation proposed for the broadcast phase of asymmetric two-way bidirectional relaying to a generic number of sinks and apply it to a network context. The method consists of adapting the information rate for each receiving node according to its channel status and independently of the other nodes. In this way, a higher network throughput can be achieved at the expense of a slightly higher complexity at the transmitter. This configuration allows to perform rate adaptation while fully preserving the benefits of channel and network coding. We carry out an information theoretical analysis of such approach and of that typically used in network coding. Numerical results based on nonbinary LDPC codes confirm the effectiveness of our approach with respect to previously proposed opportunistic scheduling techniques.

  7. Plasmids foster diversification and adaptation of bacterial populations in soil.

    Science.gov (United States)

    Heuer, Holger; Smalla, Kornelia

    2012-11-01

    It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Adapting Activity and Participation (The ADAPT intervention program)

    DEFF Research Database (Denmark)

    von Bülow, Cecilie

    Præsentation af et ergoterapeutisk gruppebaseret program, ADAPT programmet. ADAPT programmet er designet på baggrund af evidens samt understøttet af ergoterapeutiske teorier og modeller......Præsentation af et ergoterapeutisk gruppebaseret program, ADAPT programmet. ADAPT programmet er designet på baggrund af evidens samt understøttet af ergoterapeutiske teorier og modeller...

  9. Model-based scenario planning to develop climate change adaptation strategies for rare plant populations in grassland reserves

    Science.gov (United States)

    Laura Phillips-Mao; Susan M. Galatowitsch; Stephanie A. Snyder; Robert G. Haight

    2016-01-01

    Incorporating climate change into conservation decision-making at site and population scales is challenging due to uncertainties associated with localized climate change impacts and population responses to multiple interacting impacts and adaptation strategies. We explore the use of spatially explicit population models to facilitate scenario analysis, a conservation...

  10. Differentiating Spatial Memory from Spatial Transformations

    Science.gov (United States)

    Street, Whitney N.; Wang, Ranxiao Frances

    2014-01-01

    The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…

  11. The (Spatial) Memory Game: Testing the Relationship Between Spatial Language, Object Knowledge, and Spatial Cognition.

    Science.gov (United States)

    Gudde, Harmen B; Griffiths, Debra; Coventry, Kenny R

    2018-02-19

    The memory game paradigm is a behavioral procedure to explore the relationship between language, spatial memory, and object knowledge. Using two different versions of the paradigm, spatial language use and memory for object location are tested under different, experimentally manipulated conditions. This allows us to tease apart proposed models explaining the influence of object knowledge on spatial language (e.g., spatial demonstratives), and spatial memory, as well as understanding the parameters that affect demonstrative choice and spatial memory more broadly. Key to the development of the method was the need to collect data on language use (e.g., spatial demonstratives: "this/that") and spatial memory data under strictly controlled conditions, while retaining a degree of ecological validity. The language version (section 3.1) of the memory game tests how conditions affect language use. Participants refer verbally to objects placed at different locations (e.g., using spatial demonstratives: "this/that red circle"). Different parameters can be experimentally manipulated: the distance from the participant, the position of a conspecific, and for example whether the participant owns, knows, or sees the object while referring to it. The same parameters can be manipulated in the memory version of the memory game (section 3.2). This version tests the effects of the different conditions on object-location memory. Following object placement, participants get 10 seconds to memorize the object's location. After the object and location cues are removed, participants verbally direct the experimenter to move a stick to indicate where the object was. The difference between the memorized and the actual location shows the direction and strength of the memory error, allowing comparisons between the influences of the respective parameters.

  12. Analysis of Spatial Concepts, Spatial Skills and Spatial Representations in New York State Regents Earth Science Examinations

    Science.gov (United States)

    Kastens, Kim A.; Pistolesi, Linda; Passow, Michael J.

    2014-01-01

    Research has shown that spatial thinking is important in science in general, and in Earth Science in particular, and that performance on spatially demanding tasks can be fostered through instruction. Because spatial thinking is rarely taught explicitly in the U.S. education system, improving spatial thinking may be "low-hanging fruit" as…

  13. Light adaptation alters the source of inhibition to the mouse retinal OFF pathway

    Science.gov (United States)

    Mazade, Reece E.

    2013-01-01

    Sensory systems must avoid saturation to encode a wide range of stimulus intensities. One way the retina accomplishes this is by using both dim-light-sensing rod and bright-light-sensing cone photoreceptor circuits. OFF cone bipolar cells are a key point in this process, as they receive both excitatory input from cones and inhibitory input from AII amacrine cells via the rod pathway. However, in addition to AII amacrine cell input, other inhibitory inputs from cone pathways also modulate OFF cone bipolar cell light signals. It is unknown how these inhibitory inputs to OFF cone bipolar cells change when switching between rod and cone pathways or whether all OFF cone bipolar cells receive rod pathway input. We found that one group of OFF cone bipolar cells (types 1, 2, and 4) receive rod-mediated inhibitory inputs that likely come from the rod-AII amacrine cell pathway, while another group of OFF cone bipolar cells (type 3) do not. In both cases, dark-adapted rod-dominant light responses showed a significant contribution of glycinergic inhibition, which decreased with light adaptation and was, surprisingly, compensated by an increase in GABAergic inhibition. As GABAergic input has distinct timing and spatial spread from glycinergic input, a shift from glycinergic to GABAergic inhibition could significantly alter OFF cone bipolar cell signaling to downstream OFF ganglion cells. Larger GABAergic input could reflect an adjustment of OFF bipolar cell spatial inhibition, which may be one mechanism that contributes to retinal spatial sensitivity in the light. PMID:23926034

  14. Beyond the sensorimotor plasticity: cognitive expansion of prism adaptation in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Carine eMICHEL

    2016-01-01

    Full Text Available Sensorimotor plasticity allows us to maintain an efficient motor behavior in reaction to environmental changes. One of the classical models for the study of sensorimotor plasticity is prism adaptation. It consists of pointing to visual targets while wearing prismatic lenses that shift the visual field laterally. The conditions of the development of the plasticity and the sensorimotor after-effects have been extensively studied for more than a century. However, the interest taken in this phenomenon was considerably increased since the demonstration of neglect rehabilitation following prism adaptation by Rossetti and his colleagues in 1998. Mirror effects, i.e. simulation of neglect in healthy individuals, were observed for the first time by Colent and collaborators in 2000. The present review focuses on the expansion of prism adaptation to cognitive functions in healthy individuals during the last 15 years. Cognitive after-effects have been shown in numerous tasks even in those that are not intrinsically spatial in nature. Altogether, these results suggest the existence of a strong link between low-level sensorimotor plasticity and high-level cognitive functions and raise important questions about the mechanisms involved in producing unexpected cognitive effects following prism adaptation. Implications for the functional mechanisms and neuroanatomical network of prism adaptation are discussed to explain how sensorimotor plasticity may affect cognitive processes.

  15. Rapid Auditory System Adaptation Using a Virtual Auditory Environment

    Directory of Open Access Journals (Sweden)

    Gaëtan Parseihian

    2011-10-01

    Full Text Available Various studies have highlighted plasticity of the auditory system from visual stimuli, limiting the trained field of perception. The aim of the present study is to investigate auditory system adaptation using an audio-kinesthetic platform. Participants were placed in a Virtual Auditory Environment allowing the association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues or Head-Related Transfer Function (HRTF through the use of a tracked ball manipulated by the subject. This set-up has the advantage to be not being limited to the visual field while also offering a natural perception-action coupling through the constant awareness of one's hand position. Adaptation process to non-individualized HRTF was realized through a spatial search game application. A total of 25 subjects participated, consisting of subjects presented with modified cues using non-individualized HRTF and a control group using individual measured HRTFs to account for any learning effect due to the game itself. The training game lasted 12 minutes and was repeated over 3 consecutive days. Adaptation effects were measured with repeated localization tests. Results showed a significant performance improvement for vertical localization and a significant reduction in the front/back confusion rate after 3 sessions.

  16. Optimal spectral tracking--adapting to dynamic regime change.

    Science.gov (United States)

    Brittain, John-Stuart; Halliday, David M

    2011-01-30

    Real world data do not always obey the statistical restraints imposed upon them by sophisticated analysis techniques. In spectral analysis for instance, an ergodic process--the interchangeability of temporal for spatial averaging--is assumed for a repeat-trial design. Many evolutionary scenarios, such as learning and motor consolidation, do not conform to such linear behaviour and should be approached from a more flexible perspective. To this end we previously introduced the method of optimal spectral tracking (OST) in the study of trial-varying parameters. In this extension to our work we modify the OST routines to provide an adaptive implementation capable of reacting to dynamic transitions in the underlying system state. In so doing, we generalise our approach to characterise both slow-varying and rapid fluctuations in time-series, simultaneously providing a metric of system stability. The approach is first applied to a surrogate dataset and compared to both our original non-adaptive solution and spectrogram approaches. The adaptive OST is seen to display fast convergence and desirable statistical properties. All three approaches are then applied to a neurophysiological recording obtained during a study on anaesthetic monitoring. Local field potentials acquired from the posterior hypothalamic region of a deep brain stimulation patient undergoing anaesthesia were analysed. The characterisation of features such as response delay, time-to-peak and modulation brevity are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.

    Science.gov (United States)

    Armao, Joseph J; Lehn, Jean-Marie

    2016-10-17

    Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    Science.gov (United States)

    Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  19. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    Energy Technology Data Exchange (ETDEWEB)

    Anninos, Peter; Lau, Cheuk [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550 (United States); Bryant, Colton [Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208 (United States); Fragile, P. Chris [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Holgado, A. Miguel [Department of Astronomy and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 (United States); Nemergut, Daniel [Operations and Engineering Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  20. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    International Nuclear Information System (INIS)

    Anninos, Peter; Lau, Cheuk; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Nemergut, Daniel

    2017-01-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.