DEFF Research Database (Denmark)
Hansen, Lars Kai; Rasmussen, Carl Edward; Svarer, C.
1994-01-01
Regularization, e.g., in the form of weight decay, is important for training and optimization of neural network architectures. In this work the authors provide a tool based on asymptotic sampling theory, for iterative estimation of weight decay parameters. The basic idea is to do a gradient desce...
Adaptive L1/2 Shooting Regularization Method for Survival Analysis Using Gene Expression Data
Directory of Open Access Journals (Sweden)
Xiao-Ying Liu
2013-01-01
Full Text Available A new adaptive L1/2 shooting regularization method for variable selection based on the Cox’s proportional hazards mode being proposed. This adaptive L1/2 shooting algorithm can be easily obtained by the optimization of a reweighed iterative series of L1 penalties and a shooting strategy of L1/2 penalty. Simulation results based on high dimensional artificial data show that the adaptive L1/2 shooting regularization method can be more accurate for variable selection than Lasso and adaptive Lasso methods. The results from real gene expression dataset (DLBCL also indicate that the L1/2 regularization method performs competitively.
Adaptive Regularization of Neural Classifiers
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Larsen, Jan; Hansen, Lars Kai
1997-01-01
We present a regularization scheme which iteratively adapts the regularization parameters by minimizing the validation error. It is suggested to use the adaptive regularization scheme in conjunction with optimal brain damage pruning to optimize the architecture and to avoid overfitting. Furthermo......, we propose an improved neural classification architecture eliminating an inherent redundancy in the widely used SoftMax classification network. Numerical results demonstrate the viability of the method...
A self-adapting and altitude-dependent regularization method for atmospheric profile retrievals
Directory of Open Access Journals (Sweden)
M. Ridolfi
2009-03-01
Full Text Available MIPAS is a Fourier transform spectrometer, operating onboard of the ENVISAT satellite since July 2002. The online retrieval algorithm produces geolocated profiles of temperature and of volume mixing ratios of six key atmospheric constituents: H_{2}O, O_{3}, HNO_{3}, CH_{4}, N_{2}O and NO_{2}. In the validation phase, oscillations beyond the error bars were observed in several profiles, particularly in CH_{4} and N_{2}O.
To tackle this problem, a Tikhonov regularization scheme has been implemented in the retrieval algorithm. The applied regularization is however rather weak in order to preserve the vertical resolution of the profiles.
In this paper we present a self-adapting and altitude-dependent regularization approach that detects whether the analyzed observations contain information about small-scale profile features, and determines the strength of the regularization accordingly. The objective of the method is to smooth out artificial oscillations as much as possible, while preserving the fine detail features of the profile when related information is detected in the observations.
The proposed method is checked for self consistency, its performance is tested on MIPAS observations and compared with that of some other regularization schemes available in the literature. In all the considered cases the proposed scheme achieves a good performance, thanks to its altitude dependence and to the constraints employed, which are specific of the inversion problem under consideration. The proposed method is generally applicable to iterative Gauss-Newton algorithms for the retrieval of vertical distribution profiles from atmospheric remote sounding measurements.
Yong, Peng; Liao, Wenyuan; Huang, Jianping; Li, Zhenchuan
2018-04-01
Full waveform inversion is an effective tool for recovering the properties of the Earth from seismograms. However, it suffers from local minima caused mainly by the limited accuracy of the starting model and the lack of a low-frequency component in the seismic data. Because of the high velocity contrast between salt and sediment, the relation between the waveform and velocity perturbation is strongly nonlinear. Therefore, salt inversion can easily get trapped in the local minima. Since the velocity of salt is nearly constant, we can make the most of this characteristic with total variation regularization to mitigate the local minima. In this paper, we develop an adaptive primal dual hybrid gradient method to implement total variation regularization by projecting the solution onto a total variation norm constrained convex set, through which the total variation norm constraint is satisfied at every model iteration. The smooth background velocities are first inverted and the perturbations are gradually obtained by successively relaxing the total variation norm constraints. Numerical experiment of the projection of the BP model onto the intersection of the total variation norm and box constraints has demonstrated the accuracy and efficiency of our adaptive primal dual hybrid gradient method. A workflow is designed to recover complex salt structures in the BP 2004 model and the 2D SEG/EAGE salt model, starting from a linear gradient model without using low-frequency data below 3 Hz. The salt inversion processes demonstrate that wavefield reconstruction inversion with a total variation norm and box constraints is able to overcome local minima and inverts the complex salt velocity layer by layer.
Low-Rank Matrix Factorization With Adaptive Graph Regularizer.
Lu, Gui-Fu; Wang, Yong; Zou, Jian
2016-05-01
In this paper, we present a novel low-rank matrix factorization algorithm with adaptive graph regularizer (LMFAGR). We extend the recently proposed low-rank matrix with manifold regularization (MMF) method with an adaptive regularizer. Different from MMF, which constructs an affinity graph in advance, LMFAGR can simultaneously seek graph weight matrix and low-dimensional representations of data. That is, graph construction and low-rank matrix factorization are incorporated into a unified framework, which results in an automatically updated graph rather than a predefined one. The experimental results on some data sets demonstrate that the proposed algorithm outperforms the state-of-the-art low-rank matrix factorization methods.
Regularized Adaptive Notch Filters for Acoustic Howling Suppression
DEFF Research Database (Denmark)
Gil-Cacho, Pepe; van Waterschoot, Toon; Moonen, Marc
2009-01-01
In this paper, a method for the suppression of acoustic howling is developed, based on adaptive notch filters (ANF) with regularization (RANF). The method features three RANFs working in parallel to achieve frequency tracking, howling detection and suppression. The ANF-based approach to howling...
Regularization methods in Banach spaces
Schuster, Thomas; Hofmann, Bernd; Kazimierski, Kamil S
2012-01-01
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the B
An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography
Energy Technology Data Exchange (ETDEWEB)
Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China) and School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China)
2011-11-15
Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used
Adaptive regularization of noisy linear inverse problems
DEFF Research Database (Denmark)
Hansen, Lars Kai; Madsen, Kristoffer Hougaard; Lehn-Schiøler, Tue
2006-01-01
In the Bayesian modeling framework there is a close relation between regularization and the prior distribution over parameters. For prior distributions in the exponential family, we show that the optimal hyper-parameter, i.e., the optimal strength of regularization, satisfies a simple relation: T......: The expectation of the regularization function, i.e., takes the same value in the posterior and prior distribution. We present three examples: two simulations, and application in fMRI neuroimaging....
On the equivalence of different regularization methods
International Nuclear Information System (INIS)
Brzezowski, S.
1985-01-01
The R-circunflex-operation preceded by the regularization procedure is discussed. Some arguments are given, according to which the results may depend on the method of regularization, introduced in order to avoid divergences in perturbation calculations. 10 refs. (author)
Application of Turchin's method of statistical regularization
Zelenyi, Mikhail; Poliakova, Mariia; Nozik, Alexander; Khudyakov, Alexey
2018-04-01
During analysis of experimental data, one usually needs to restore a signal after it has been convoluted with some kind of apparatus function. According to Hadamard's definition this problem is ill-posed and requires regularization to provide sensible results. In this article we describe an implementation of the Turchin's method of statistical regularization based on the Bayesian approach to the regularization strategy.
Iterative Regularization with Minimum-Residual Methods
DEFF Research Database (Denmark)
Jensen, Toke Koldborg; Hansen, Per Christian
2007-01-01
subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....
Iterative regularization with minimum-residual methods
DEFF Research Database (Denmark)
Jensen, Toke Koldborg; Hansen, Per Christian
2006-01-01
subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES - their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....
Adaptive Regularization of Neural Networks Using Conjugate Gradient
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...
Diagrammatic methods in phase-space regularization
International Nuclear Information System (INIS)
Bern, Z.; Halpern, M.B.; California Univ., Berkeley
1987-11-01
Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)
Wavelet domain image restoration with adaptive edge-preserving regularization.
Belge, M; Kilmer, M E; Miller, E L
2000-01-01
In this paper, we consider a wavelet based edge-preserving regularization scheme for use in linear image restoration problems. Our efforts build on a collection of mathematical results indicating that wavelets are especially useful for representing functions that contain discontinuities (i.e., edges in two dimensions or jumps in one dimension). We interpret the resulting theory in a statistical signal processing framework and obtain a highly flexible framework for adapting the degree of regularization to the local structure of the underlying image. In particular, we are able to adapt quite easily to scale-varying and orientation-varying features in the image while simultaneously retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic algorithm for obtaining the restorations from observed data.
International Nuclear Information System (INIS)
Kaltenbacher, Barbara; Kirchner, Alana; Vexler, Boris
2011-01-01
Parameter identification problems for partial differential equations usually lead to nonlinear inverse problems. A typical property of such problems is their instability, which requires regularization techniques, like, e.g., Tikhonov regularization. The main focus of this paper will be on efficient methods for determining a suitable regularization parameter by using adaptive finite element discretizations based on goal-oriented error estimators. A well-established method for the determination of a regularization parameter is the discrepancy principle where the residual norm, considered as a function i of the regularization parameter, should equal an appropriate multiple of the noise level. We suggest to solve the resulting scalar nonlinear equation by an inexact Newton method, where in each iteration step, a regularized problem is solved at a different discretization level. The proposed algorithm is an extension of the method suggested in Griesbaum A et al (2008 Inverse Problems 24 025025) for linear inverse problems, where goal-oriented error estimators for i and its derivative are used for adaptive refinement strategies in order to keep the discretization level as coarse as possible to save computational effort but fine enough to guarantee global convergence of the inexact Newton method. This concept leads to a highly efficient method for determining the Tikhonov regularization parameter for nonlinear ill-posed problems. Moreover, we prove that with the so-obtained regularization parameter and an also adaptively discretized Tikhonov minimizer, usual convergence and regularization results from the continuous setting can be recovered. As a matter of fact, it is shown that it suffices to use stationary points of the Tikhonov functional. The efficiency of the proposed method is demonstrated by means of numerical experiments. (paper)
Optimal Design of the Adaptive Normalized Matched Filter Detector using Regularized Tyler Estimators
Kammoun, Abla; Couillet, Romain; Pascal, Frederic; Alouini, Mohamed-Slim
2017-01-01
This article addresses improvements on the design of the adaptive normalized matched filter (ANMF) for radar detection. It is well-acknowledged that the estimation of the noise-clutter covariance matrix is a fundamental step in adaptive radar detection. In this paper, we consider regularized estimation methods which force by construction the eigenvalues of the covariance estimates to be greater than a positive regularization parameter ρ. This makes them more suitable for high dimensional problems with a limited number of secondary data samples than traditional sample covariance estimates. The motivation behind this work is to understand the effect and properly set the value of ρthat improves estimate conditioning while maintaining a low estimation bias. More specifically, we consider the design of the ANMF detector for two kinds of regularized estimators, namely the regularized sample covariance matrix (RSCM), the regularized Tyler estimator (RTE). The rationale behind this choice is that the RTE is efficient in mitigating the degradation caused by the presence of impulsive noises while inducing little loss when the noise is Gaussian. Based on asymptotic results brought by recent tools from random matrix theory, we propose a design for the regularization parameter that maximizes the asymptotic detection probability under constant asymptotic false alarm rates. Provided Simulations support the efficiency of the proposed method, illustrating its gain over conventional settings of the regularization parameter.
Optimal Design of the Adaptive Normalized Matched Filter Detector using Regularized Tyler Estimators
Kammoun, Abla
2017-10-25
This article addresses improvements on the design of the adaptive normalized matched filter (ANMF) for radar detection. It is well-acknowledged that the estimation of the noise-clutter covariance matrix is a fundamental step in adaptive radar detection. In this paper, we consider regularized estimation methods which force by construction the eigenvalues of the covariance estimates to be greater than a positive regularization parameter ρ. This makes them more suitable for high dimensional problems with a limited number of secondary data samples than traditional sample covariance estimates. The motivation behind this work is to understand the effect and properly set the value of ρthat improves estimate conditioning while maintaining a low estimation bias. More specifically, we consider the design of the ANMF detector for two kinds of regularized estimators, namely the regularized sample covariance matrix (RSCM), the regularized Tyler estimator (RTE). The rationale behind this choice is that the RTE is efficient in mitigating the degradation caused by the presence of impulsive noises while inducing little loss when the noise is Gaussian. Based on asymptotic results brought by recent tools from random matrix theory, we propose a design for the regularization parameter that maximizes the asymptotic detection probability under constant asymptotic false alarm rates. Provided Simulations support the efficiency of the proposed method, illustrating its gain over conventional settings of the regularization parameter.
An iterative method for Tikhonov regularization with a general linear regularization operator
Hochstenbach, M.E.; Reichel, L.
2010-01-01
Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan
Wang, Jim Jing-Yan
2014-09-20
Nonnegative matrix factorization (NMF), a popular part-based representation technique, does not capture the intrinsic local geometric structure of the data space. Graph regularized NMF (GNMF) was recently proposed to avoid this limitation by regularizing NMF with a nearest neighbor graph constructed from the input data set. However, GNMF has two main bottlenecks. First, using the original feature space directly to construct the graph is not necessarily optimal because of the noisy and irrelevant features and nonlinear distributions of data samples. Second, one possible way to handle the nonlinear distribution of data samples is by kernel embedding. However, it is often difficult to choose the most suitable kernel. To solve these bottlenecks, we propose two novel graph-regularized NMF methods, AGNMFFS and AGNMFMK, by introducing feature selection and multiple-kernel learning to the graph regularized NMF, respectively. Instead of using a fixed graph as in GNMF, the two proposed methods learn the nearest neighbor graph that is adaptive to the selected features and learned multiple kernels, respectively. For each method, we propose a unified objective function to conduct feature selection/multi-kernel learning, NMF and adaptive graph regularization simultaneously. We further develop two iterative algorithms to solve the two optimization problems. Experimental results on two challenging pattern classification tasks demonstrate that the proposed methods significantly outperform state-of-the-art data representation methods.
Adapting the curriculum of a student in the regular classroom
Directory of Open Access Journals (Sweden)
Cindy Lorena Rodríguez
2015-02-01
Full Text Available This article is based on a research, adapting the curriculum of a student in the regular classroom, based on a multi-skilled inclusive education whose data was collected between 2010 and 2011 from Colegio Real de los Andes. The study was based on the author’s personal experience with student population inside their regular classroom activities. The author was motivated by the desire to know how one could contribute to society’s expectations on an inclusive and integrated education that takes into account the human being as a unique being endowed with different potentials, great expectations, and dreams that nurture him or her into a major player in his or her dignified project of life that will, in turn, contribute towards their full personality growth and hence strengthen their academic skills. Similarly, this will be of great value towards commitment and devotion for inclusion, construed as a paramount import to educational formation. Hence, the dedication of educators in this inclusivity is a fundamental feature not only from the conceptual point of view, but more importantly, as a fundamental element in the essence of an educator, which must be, a human being formed in the richness of values openly projected on a pedagogy without any prejudice and preconceptions during a pedagogical dispensation.
METHOD OF ADAPTIVE MAGNETOTHERAPY
Rudyk, Valentine Yu.; Tereshchenko, Mykola F.; Rudyk, Tatiana A.
2016-01-01
Practical realization of adaptive control in magnetotherapy apparatus acquires an actual importance on the modern stage of development of magnetotherapy.The structural scheme of method of adaptive impulsive magnetotherapy and algorithm of adaptive control of feed-back signal during procedure of magnetotherapy is represented.A feed-back in magnetotherapy complex will be realized with control of magnetic induction and analysis of man's physiological indexes (temperature, pulse, blood prassure, ...
Directory of Open Access Journals (Sweden)
Rail M Shamionov
2017-12-01
Full Text Available The article discusses the results of a study on the socio-psychological adaptation predictors of the unemployed in relation to people with regular employment. It is assumed that adaptation of the employed and the unemployed is determined by various socio-psychological phenomena; definition of the phenomena will allow to develop programmes of adaptation for the unemployed with preservation of motivation for self-realization. In total, 362 people (33% of whom were male took part in the study, including 196 unemployed. Standardized methods and scales developed by the authors for assessing the subject position characteristics and adaptive readiness of a person were used. It was found that the unemployed are characterized by lower indicators of socio-psychological adaptation and characteristics that are of paramount importance for adaptation - self-acceptance, acceptance of others, emotional comfort. Socio-demographic characteristics, scales of subjective position, adaptive readiness, subjective well-being and values were consistently introduced to the regression equation. It is shown that adaptive readiness and values are the strongest predictors for the employed, while indicators of subjective well-being and value are more significant for the unemployed. The general predictors of adaptation are the level of education, happiness (positively and negative affect (negatively. In other cases, the predictors are strictly differentiated.
Multiple Kernel Learning for adaptive graph regularized nonnegative matrix factorization
Wang, Jim Jing-Yan; AbdulJabbar, Mustafa Abdulmajeed
2012-01-01
Nonnegative Matrix Factorization (NMF) has been continuously evolving in several areas like pattern recognition and information retrieval methods. It factorizes a matrix into a product of 2 low-rank non-negative matrices that will define parts-based, and linear representation of non-negative data. Recently, Graph regularized NMF (GrNMF) is proposed to find a compact representation, which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In GNMF, an affinity graph is constructed from the original data space to encode the geometrical information. In this paper, we propose a novel idea which engages a Multiple Kernel Learning approach into refining the graph structure that reflects the factorization of the matrix and the new data space. The GrNMF is improved by utilizing the graph refined by the kernel learning, and then a novel kernel learning method is introduced under the GrNMF framework. Our approach shows encouraging results of the proposed algorithm in comparison to the state-of-the-art clustering algorithms like NMF, GrNMF, SVD etc.
L1-norm locally linear representation regularization multi-source adaptation learning.
Tao, Jianwen; Wen, Shiting; Hu, Wenjun
2015-09-01
In most supervised domain adaptation learning (DAL) tasks, one has access only to a small number of labeled examples from target domain. Therefore the success of supervised DAL in this "small sample" regime needs the effective utilization of the large amounts of unlabeled data to extract information that is useful for generalization. Toward this end, we here use the geometric intuition of manifold assumption to extend the established frameworks in existing model-based DAL methods for function learning by incorporating additional information about the target geometric structure of the marginal distribution. We would like to ensure that the solution is smooth with respect to both the ambient space and the target marginal distribution. In doing this, we propose a novel L1-norm locally linear representation regularization multi-source adaptation learning framework which exploits the geometry of the probability distribution, which has two techniques. Firstly, an L1-norm locally linear representation method is presented for robust graph construction by replacing the L2-norm reconstruction measure in LLE with L1-norm one, which is termed as L1-LLR for short. Secondly, considering the robust graph regularization, we replace traditional graph Laplacian regularization with our new L1-LLR graph Laplacian regularization and therefore construct new graph-based semi-supervised learning framework with multi-source adaptation constraint, which is coined as L1-MSAL method. Moreover, to deal with the nonlinear learning problem, we also generalize the L1-MSAL method by mapping the input data points from the input space to a high-dimensional reproducing kernel Hilbert space (RKHS) via a nonlinear mapping. Promising experimental results have been obtained on several real-world datasets such as face, visual video and object. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Wei Gao
2016-01-01
Full Text Available According to the regularization method in the inverse problem of load identification, a new method for determining the optimal regularization parameter is proposed. Firstly, quotient function (QF is defined by utilizing the regularization parameter as a variable based on the least squares solution of the minimization problem. Secondly, the quotient function method (QFM is proposed to select the optimal regularization parameter based on the quadratic programming theory. For employing the QFM, the characteristics of the values of QF with respect to the different regularization parameters are taken into consideration. Finally, numerical and experimental examples are utilized to validate the performance of the QFM. Furthermore, the Generalized Cross-Validation (GCV method and the L-curve method are taken as the comparison methods. The results indicate that the proposed QFM is adaptive to different measuring points, noise levels, and types of dynamic load.
Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data.
Dazard, Jean-Eudes; Rao, J Sunil
2012-07-01
The paper addresses a common problem in the analysis of high-dimensional high-throughput "omics" data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel "similarity statistic"-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called 'MVR' ('Mean-Variance Regularization'), downloadable from the CRAN website.
Saucez, Ph
2001-01-01
The general Method of Lines (MOL) procedure provides a flexible format for the solution of all the major classes of partial differential equations (PDEs) and is particularly well suited to evolutionary, nonlinear wave PDEs. Despite its utility, however, there are relatively few texts that explore it at a more advanced level and reflect the method''s current state of development.Written by distinguished researchers in the field, Adaptive Method of Lines reflects the diversity of techniques and applications related to the MOL. Most of its chapters focus on a particular application but also provide a discussion of underlying philosophy and technique. Particular attention is paid to the concept of both temporal and spatial adaptivity in solving time-dependent PDEs. Many important ideas and methods are introduced, including moving grids and grid refinement, static and dynamic gridding, the equidistribution principle and the concept of a monitor function, the minimization of a functional, and the moving finite elem...
Laplacian manifold regularization method for fluorescence molecular tomography
He, Xuelei; Wang, Xiaodong; Yi, Huangjian; Chen, Yanrong; Zhang, Xu; Yu, Jingjing; He, Xiaowei
2017-04-01
Sparse regularization methods have been widely used in fluorescence molecular tomography (FMT) for stable three-dimensional reconstruction. Generally, ℓ1-regularization-based methods allow for utilizing the sparsity nature of the target distribution. However, in addition to sparsity, the spatial structure information should be exploited as well. A joint ℓ1 and Laplacian manifold regularization model is proposed to improve the reconstruction performance, and two algorithms (with and without Barzilai-Borwein strategy) are presented to solve the regularization model. Numerical studies and in vivo experiment demonstrate that the proposed Gradient projection-resolved Laplacian manifold regularization method for the joint model performed better than the comparative algorithm for ℓ1 minimization method in both spatial aggregation and location accuracy.
Ridolfi, Marco; Sgheri, Luca
2011-12-19
In this paper we present the IVS (Iterative Variable Strength) method, an altitude-dependent, self-adapting Tikhonov regularization scheme for atmospheric profile retrievals. The method is based on a similar scheme we proposed in 2009. The new method does not need any specifically tuned minimization routine, hence it is more robust and faster. We test the self-consistency of the method using simulated observations of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We then compare the new method with both our previous scheme and the scalar method currently implemented in the MIPAS on-line processor, using both synthetic and real atmospheric limb measurements. The IVS method shows very good performances.
Regularization method for solving the inverse scattering problem
International Nuclear Information System (INIS)
Denisov, A.M.; Krylov, A.S.
1985-01-01
The inverse scattering problem for the Schroedinger radial equation consisting in determining the potential according to the scattering phase is considered. The problem of potential restoration according to the phase specified with fixed error in a finite range is solved by the regularization method based on minimization of the Tikhonov's smoothing functional. The regularization method is used for solving the problem of neutron-proton potential restoration according to the scattering phases. The determined potentials are given in the table
Lavrentiev regularization method for nonlinear ill-posed problems
International Nuclear Information System (INIS)
Kinh, Nguyen Van
2002-10-01
In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x 0 of non ill-posed problems F(x)=y o , where instead of y 0 noisy data y δ is an element of X with absolut(y δ -y 0 ) ≤ δ are given and F:X→X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x α δ are obtained by solving the singularly perturbed nonlinear operator equation F(x)+α(x-x*)=y δ with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter α has been chosen properly. (author)
The regularized monotonicity method: detecting irregular indefinite inclusions
DEFF Research Database (Denmark)
Garde, Henrik; Staboulis, Stratos
2018-01-01
inclusions, where the conductivity distribution has both more and less conductive parts relative to the background conductivity; one such method is the monotonicity method of Harrach, Seo, and Ullrich. We formulate the method for irregular indefinite inclusions, meaning that we make no regularity assumptions...
R package MVR for Joint Adaptive Mean-Variance Regularization and Variance Stabilization.
Dazard, Jean-Eudes; Xu, Hua; Rao, J Sunil
2011-01-01
We present an implementation in the R language for statistical computing of our recent non-parametric joint adaptive mean-variance regularization and variance stabilization procedure. The method is specifically suited for handling difficult problems posed by high-dimensional multivariate datasets ( p ≫ n paradigm), such as in 'omics'-type data, among which are that the variance is often a function of the mean, variable-specific estimators of variances are not reliable, and tests statistics have low powers due to a lack of degrees of freedom. The implementation offers a complete set of features including: (i) normalization and/or variance stabilization function, (ii) computation of mean-variance-regularized t and F statistics, (iii) generation of diverse diagnostic plots, (iv) synthetic and real 'omics' test datasets, (v) computationally efficient implementation, using C interfacing, and an option for parallel computing, (vi) manual and documentation on how to setup a cluster. To make each feature as user-friendly as possible, only one subroutine per functionality is to be handled by the end-user. It is available as an R package, called MVR ('Mean-Variance Regularization'), downloadable from the CRAN.
Summation of Divergent Series and Zeldovich's Regularization Method
International Nuclear Information System (INIS)
Mur, V.D.; Pozdnyakov, S.G.; Popruzhenko, S.V.; Popov, V.S.
2005-01-01
A method for summing divergent series, including perturbation-theory series, is considered. This method is an analog of Zeldovich's regularization method in the theory of quasistationary states. It is shown that the method in question is more powerful than the well-known Abel and Borel methods, but that it is compatible with them (that is, it leads to the same value for the sum of a series). The constraints on the parameter domain that arise upon the removal of the regularization of divergent integrals by this method are discussed. The dynamical Stark shifts and widths of loosely bound s states in the field of a circularly polarized electromagnetic wave are calculated at various values of the Keldysh adiabaticity parameter and the multiquantum parameter
REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM
DEFF Research Database (Denmark)
Knudsen, Kim; Lassas, Matti; Mueller, Jennifer
2009-01-01
A strategy for regularizing the inversion procedure for the two-dimensional D-bar reconstruction algorithm based on the global uniqueness proof of Nachman [Ann. Math. 143 (1996)] for the ill-posed inverse conductivity problem is presented. The strategy utilizes truncation of the boundary integral...... the convergence of the reconstructed conductivity to the true conductivity as the noise level tends to zero. The results provide a link between two traditions of inverse problems research: theory of regularization and inversion methods based on complex geometrical optics. Also, the procedure is a novel...
Method of transferring regular shaped vessel into cell
International Nuclear Information System (INIS)
Murai, Tsunehiko.
1997-01-01
The present invention concerns a method of transferring regular shaped vessels from a non-contaminated area to a contaminated cell. A passage hole for allowing the regular shaped vessels to pass in the longitudinal direction is formed to a partitioning wall at the bottom of the contaminated cell. A plurality of regular shaped vessel are stacked in multiple stages in a vertical direction from the non-contaminated area present below the passage hole, allowed to pass while being urged and transferred successively into the contaminated cell. As a result, since they are transferred while substantially closing the passage hole by the regular shaped vessels, radiation rays or contaminated materials are prevented from discharging from the contaminated cell to the non-contaminated area. Since there is no requirement to open/close an isolation door frequently, the workability upon transfer can be improved remarkably. In addition, the sealing member for sealing the gap between the regular shaped vessel passing through the passage hole and the partitioning wall of the bottom is disposed to the passage hole, the contaminated materials in the contaminated cells can be prevented from discharging from the gap to the non-contaminated area. (N.H.)
Summation of divergent series and Zel'dovich's regularization method
International Nuclear Information System (INIS)
Mur, V.D.; Pozdnyakov, S.G.; Popruzhenko, S.V.; Popov, V.S.
2005-01-01
The method of summation of divergent series, including series of a perturbation theory, which is an analog of the Zel'dovich regularization procedure in the theory of quasistationary states is considered. It is shown that this method is more powerful than the well-known Abel and Borel methods, but compatible with them (i. e., gives the same value for the sum of the series). The restrictions to the range of parameters which appear after removal of the regularization of integrals by this method are discussed. The dynamical Stark shifts and widths of weakly bound s states in a field of circularly polarized electromagnetic wave are calculated at different values of the Keldysh adiabaticity parameter and multiquantum parameter [ru
The Validity of Dimensional Regularization Method on Fractal Spacetime
Directory of Open Access Journals (Sweden)
Yong Tao
2013-01-01
Full Text Available Svozil developed a regularization method for quantum field theory on fractal spacetime (1987. Such a method can be applied to the low-order perturbative renormalization of quantum electrodynamics but will depend on a conjectural integral formula on non-integer-dimensional topological spaces. The main purpose of this paper is to construct a fractal measure so as to guarantee the validity of the conjectural integral formula.
Regularization of the double period method for experimental data processing
Belov, A. A.; Kalitkin, N. N.
2017-11-01
In physical and technical applications, an important task is to process experimental curves measured with large errors. Such problems are solved by applying regularization methods, in which success depends on the mathematician's intuition. We propose an approximation based on the double period method developed for smooth nonperiodic functions. Tikhonov's stabilizer with a squared second derivative is used for regularization. As a result, the spurious oscillations are suppressed and the shape of an experimental curve is accurately represented. This approach offers a universal strategy for solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear reactions important for controlled thermonuclear fusion. Tables recommended as reference data are obtained. These results are used to calculate the reaction rates, which are approximated in a way convenient for gasdynamic codes. These approximations are superior to previously known formulas in the covered temperature range and accuracy.
Use of regularized algebraic methods in tomographic reconstruction
International Nuclear Information System (INIS)
Koulibaly, P.M.; Darcourt, J.; Blanc-Ferraud, L.; Migneco, O.; Barlaud, M.
1997-01-01
The algebraic methods are used in emission tomography to facilitate the compensation of attenuation and of Compton scattering. We have tested on a phantom the use of a regularization (a priori introduction of information), as well as the taking into account of spatial resolution variation with the depth (SRVD). Hence, we have compared the performances of the two methods by back-projection filtering (BPF) and of the two algebraic methods (AM) in terms of FWHM (by means of a point source), of the reduction of background noise (σ/m) on the homogeneous part of Jaszczak's phantom and of reconstruction speed (time unit = BPF). The BPF methods make use of a grade filter (maximal resolution, no noise treatment), single or associated with a Hann's low-pass (f c = 0.4), as well as of an attenuation correction. The AM which embody attenuation and scattering corrections are, on one side, the OS EM (Ordered Subsets, partitioning and rearranging of the projection matrix; Expectation Maximization) without regularization or SRVD correction, and, on the other side, the OS MAP EM (Maximum a posteriori), regularized and embodying the SRVD correction. A table is given containing for each used method (grade, Hann, OS EM and OS MAP EM) the values of FWHM, σ/m and time, respectively. One can observe that the OS MAP EM algebraic method allows ameliorating both the resolution, by taking into account the SRVD in the reconstruction process and noise treatment by regularization. In addition, due to the OS technique the reconstruction times are acceptable
Regularization by fractional filter methods and data smoothing
International Nuclear Information System (INIS)
Klann, E; Ramlau, R
2008-01-01
This paper is concerned with the regularization of linear ill-posed problems by a combination of data smoothing and fractional filter methods. For the data smoothing, a wavelet shrinkage denoising is applied to the noisy data with known error level δ. For the reconstruction, an approximation to the solution of the operator equation is computed from the data estimate by fractional filter methods. These fractional methods are based on the classical Tikhonov and Landweber method, but avoid, at least partially, the well-known drawback of oversmoothing. Convergence rates as well as numerical examples are presented
A two-way regularization method for MEG source reconstruction
Tian, Tian Siva; Huang, Jianhua Z.; Shen, Haipeng; Li, Zhimin
2012-01-01
The MEG inverse problem refers to the reconstruction of the neural activity of the brain from magnetoencephalography (MEG) measurements. We propose a two-way regularization (TWR) method to solve the MEG inverse problem under the assumptions that only a small number of locations in space are responsible for the measured signals (focality), and each source time course is smooth in time (smoothness). The focality and smoothness of the reconstructed signals are ensured respectively by imposing a sparsity-inducing penalty and a roughness penalty in the data fitting criterion. A two-stage algorithm is developed for fast computation, where a raw estimate of the source time course is obtained in the first stage and then refined in the second stage by the two-way regularization. The proposed method is shown to be effective on both synthetic and real-world examples. © Institute of Mathematical Statistics, 2012.
A regularization method for extrapolation of solar potential magnetic fields
Gary, G. A.; Musielak, Z. E.
1992-01-01
The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.
A two-way regularization method for MEG source reconstruction
Tian, Tian Siva
2012-09-01
The MEG inverse problem refers to the reconstruction of the neural activity of the brain from magnetoencephalography (MEG) measurements. We propose a two-way regularization (TWR) method to solve the MEG inverse problem under the assumptions that only a small number of locations in space are responsible for the measured signals (focality), and each source time course is smooth in time (smoothness). The focality and smoothness of the reconstructed signals are ensured respectively by imposing a sparsity-inducing penalty and a roughness penalty in the data fitting criterion. A two-stage algorithm is developed for fast computation, where a raw estimate of the source time course is obtained in the first stage and then refined in the second stage by the two-way regularization. The proposed method is shown to be effective on both synthetic and real-world examples. © Institute of Mathematical Statistics, 2012.
Sound Attenuation in Elliptic Mufflers Using a Regular Perturbation Method
Banerjee, Subhabrata; Jacobi, Anthony M.
2012-01-01
The study of sound attenuation in an elliptical chamber involves the solution of the Helmholtz equation in elliptic coordinate systems. The Eigen solutions for such problems involve the Mathieu and the modified Mathieu functions. The computation of such functions poses considerable challenge. An alternative method to solve such problems had been proposed in this paper. The elliptical cross-section of the muffler has been treated as a perturbed circle, enabling the use of a regular perturbatio...
Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images.
Kang, Wonseok; Yu, Soohwan; Ko, Seungyong; Paik, Joonki
2015-05-22
In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures.
Global regularization method for planar restricted three-body problem
Directory of Open Access Journals (Sweden)
Sharaf M.A.
2015-01-01
Full Text Available In this paper, global regularization method for planar restricted three-body problem is purposed by using the transformation z = x+iy = ν cos n(u+iv, where i = √−1, 0 < ν ≤ 1 and n is a positive integer. The method is developed analytically and computationally. For the analytical developments, analytical solutions in power series of the pseudotime τ are obtained for positions and velocities (u, v, u', v' and (x, y, x˙, y˙ in both regularized and physical planes respectively, the physical time t is also obtained as power series in τ. Moreover, relations between the coefficients of the power series are obtained for two consequent values of n. Also, we developed analytical solutions in power series form for the inverse problem of finding τ in terms of t. As typical examples, three symbolic expressions for the coefficients of the power series were developed in terms of initial values. As to the computational developments, the global regularized equations of motion are developed together with their initial values in forms suitable for digital computations using any differential equations solver. On the other hand, for numerical evolutions of power series, an efficient method depending on the continued fraction theory is provided.
Directory of Open Access Journals (Sweden)
Abdul-Razak Kuyini Alhassan
2014-01-01
Full Text Available Ghana education system has failed to effectively address the needs of pupils with learning difficulties (LDs in regular classrooms. Underachievement, school dropout, streetism, and antisocial behaviors are the consequences. Teachers’ lack of adequate competence in adaptive instruction is one of the fundamental reasons responsible for this anomaly. This study aims to examine teachers’ competence in adapting instructions to teach pupils with LDs in the regular classroom in Ghana. The data were gathered from 387 sampled teachers in a cross-sectional survey using questionnaires and structured observation methods. We analyzed the data using descriptive statistic, chi-square test, correlation, t test, and ANOVA. The results show that (a teachers have limited to moderate competence in adaptive instruction, (b adaptive teaching is strongly associated with teachers’ competence in teaching pupils with LDs in the regular classroom, and (c apart from gender and class size, teachers’ background variables such as school location and teaching experience differ significantly. The study has serious implications for Ghana’s inclusive education policy and teaching practice.
Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.
Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme
2017-02-01
The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.
GLOBAL OPTIMIZATION METHODS FOR GRAVITATIONAL LENS SYSTEMS WITH REGULARIZED SOURCES
International Nuclear Information System (INIS)
Rogers, Adam; Fiege, Jason D.
2012-01-01
Several approaches exist to model gravitational lens systems. In this study, we apply global optimization methods to find the optimal set of lens parameters using a genetic algorithm. We treat the full optimization procedure as a two-step process: an analytical description of the source plane intensity distribution is used to find an initial approximation to the optimal lens parameters; the second stage of the optimization uses a pixelated source plane with the semilinear method to determine an optimal source. Regularization is handled by means of an iterative method and the generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) functions that are commonly used in standard image deconvolution problems. This approach simultaneously estimates the optimal regularization parameter and the number of degrees of freedom in the source. Using the GCV and UPRE functions, we are able to justify an estimation of the number of source degrees of freedom found in previous work. We test our approach by applying our code to a subset of the lens systems included in the SLACS survey.
Recursive regularization step for high-order lattice Boltzmann methods
Coreixas, Christophe; Wissocq, Gauthier; Puigt, Guillaume; Boussuge, Jean-François; Sagaut, Pierre
2017-09-01
A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 104 to 106, and where a thorough analysis of the case at Re=3 ×104 is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.
Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization.
Wang, Changqing; Zhang, Xinyuan; Liu, Xiaoyun; He, Taigang; Chen, Wufan; Feng, Qianjin; Feng, Yanqiu
2018-08-01
To improve liver R2* mapping by incorporating adaptive neighborhood regularization into pixel-wise curve fitting. Magnetic resonance imaging R2* mapping remains challenging because of the serial images with low signal-to-noise ratio. In this study, we proposed to exploit the neighboring pixels as regularization terms and adaptively determine the regularization parameters according to the interpixel signal similarity. The proposed algorithm, called the pixel-wise curve fitting with adaptive neighborhood regularization (PCANR), was compared with the conventional nonlinear least squares (NLS) and nonlocal means filter-based NLS algorithms on simulated, phantom, and in vivo data. Visually, the PCANR algorithm generates R2* maps with significantly reduced noise and well-preserved tiny structures. Quantitatively, the PCANR algorithm produces R2* maps with lower root mean square errors at varying R2* values and signal-to-noise-ratio levels compared with the NLS and nonlocal means filter-based NLS algorithms. For the high R2* values under low signal-to-noise-ratio levels, the PCANR algorithm outperforms the NLS and nonlocal means filter-based NLS algorithms in the accuracy and precision, in terms of mean and standard deviation of R2* measurements in selected region of interests, respectively. The PCANR algorithm can reduce the effect of noise on liver R2* mapping, and the improved measurement precision will benefit the assessment of hepatic iron in clinical practice. Magn Reson Med 80:792-801, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Backtracking-Based Iterative Regularization Method for Image Compressive Sensing Recovery
Directory of Open Access Journals (Sweden)
Lingjun Liu
2017-01-01
Full Text Available This paper presents a variant of the iterative shrinkage-thresholding (IST algorithm, called backtracking-based adaptive IST (BAIST, for image compressive sensing (CS reconstruction. For increasing iterations, IST usually yields a smoothing of the solution and runs into prematurity. To add back more details, the BAIST method backtracks to the previous noisy image using L2 norm minimization, i.e., minimizing the Euclidean distance between the current solution and the previous ones. Through this modification, the BAIST method achieves superior performance while maintaining the low complexity of IST-type methods. Also, BAIST takes a nonlocal regularization with an adaptive regularizor to automatically detect the sparsity level of an image. Experimental results show that our algorithm outperforms the original IST method and several excellent CS techniques.
Hu, Han; Ding, Yulin; Zhu, Qing; Wu, Bo; Lin, Hui; Du, Zhiqiang; Zhang, Yeting; Zhang, Yunsheng
2014-06-01
The filtering of point clouds is a ubiquitous task in the processing of airborne laser scanning (ALS) data; however, such filtering processes are difficult because of the complex configuration of the terrain features. The classical filtering algorithms rely on the cautious tuning of parameters to handle various landforms. To address the challenge posed by the bundling of different terrain features into a single dataset and to surmount the sensitivity of the parameters, in this study, we propose an adaptive surface filter (ASF) for the classification of ALS point clouds. Based on the principle that the threshold should vary in accordance to the terrain smoothness, the ASF embeds bending energy, which quantitatively depicts the local terrain structure to self-adapt the filter threshold automatically. The ASF employs a step factor to control the data pyramid scheme in which the processing window sizes are reduced progressively, and the ASF gradually interpolates thin plate spline surfaces toward the ground with regularization to handle noise. Using the progressive densification strategy, regularization and self-adaption, both performance improvement and resilience to parameter tuning are achieved. When tested against the benchmark datasets provided by ISPRS, the ASF performs the best in comparison with all other filtering methods, yielding an average total error of 2.85% when optimized and 3.67% when using the same parameter set.
Directory of Open Access Journals (Sweden)
Shkvarko Yuriy
2006-01-01
Full Text Available We address a new approach to solve the ill-posed nonlinear inverse problem of high-resolution numerical reconstruction of the spatial spectrum pattern (SSP of the backscattered wavefield sources distributed over the remotely sensed scene. An array or synthesized array radar (SAR that employs digital data signal processing is considered. By exploiting the idea of combining the statistical minimum risk estimation paradigm with numerical descriptive regularization techniques, we address a new fused statistical descriptive regularization (SDR strategy for enhanced radar imaging. Pursuing such an approach, we establish a family of the SDR-related SSP estimators, that encompass a manifold of existing beamforming techniques ranging from traditional matched filter to robust and adaptive spatial filtering, and minimum variance methods.
International Nuclear Information System (INIS)
Jin Qinian
2008-01-01
In this paper we consider the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed inverse problems. Under merely the Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense
Robust Optimal Adaptive Control Method with Large Adaptive Gain
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Adaptive scalarization methods in multiobjective optimization
Eichfelder, Gabriele
2008-01-01
This book presents adaptive solution methods for multiobjective optimization problems based on parameter dependent scalarization approaches. Readers will benefit from the new adaptive methods and ideas for solving multiobjective optimization.
Online Adaptive Replanning Method for Prostate Radiotherapy
International Nuclear Information System (INIS)
Ahunbay, Ergun E.; Peng Cheng; Holmes, Shannon; Godley, Andrew; Lawton, Colleen; Li, X. Allen
2010-01-01
Purpose: To report the application of an adaptive replanning technique for prostate cancer radiotherapy (RT), consisting of two steps: (1) segment aperture morphing (SAM), and (2) segment weight optimization (SWO), to account for interfraction variations. Methods and Materials: The new 'SAM+SWO' scheme was retroactively applied to the daily CT images acquired for 10 prostate cancer patients on a linear accelerator and CT-on-Rails combination during the course of RT. Doses generated by the SAM+SWO scheme based on the daily CT images were compared with doses generated after patient repositioning using the current planning target volume (PTV) margin (5 mm, 3 mm toward rectum) and a reduced margin (2 mm), along with full reoptimization scans based on the daily CT images to evaluate dosimetry benefits. Results: For all cases studied, the online replanning method provided significantly better target coverage when compared with repositioning with reduced PTV (13% increase in minimum prostate dose) and improved organ sparing when compared with repositioning with regular PTV (13% decrease in the generalized equivalent uniform dose of rectum). The time required to complete the online replanning process was 6 ± 2 minutes. Conclusion: The proposed online replanning method can be used to account for interfraction variations for prostate RT with a practically acceptable time frame (5-10 min) and with significant dosimetric benefits. On the basis of this study, the developed online replanning scheme is being implemented in the clinic for prostate RT.
International Nuclear Information System (INIS)
Soussaline, F.; Bidaut, L.; Raynaud, C.; Le Coq, G.
1983-06-01
An analytical solution to the SPECT reconstruction problem, where the actual attenuation effect can be included, was developped using a regularizing iterative method (RIM). The potential of this approach in quantitative brain studies when using a tracer for cerebrovascular disorders is now under evaluation. Mathematical simulations for a distributed activity in the brain surrounded by the skull and physical phantom studies were performed, using a rotating camera based SPECT system, allowing the calibration of the system and the evaluation of the adapted method to be used. On the simulation studies, the contrast obtained along a profile, was less than 5%, the standard deviation 8% and the quantitative accuracy 13%, for a uniform emission distribution of mean = 100 per pixel and a double attenuation coefficient of μ = 0.115 cm -1 and 0.5 cm -1 . Clinical data obtained after injection of 123 I (AMPI) were reconstructed using the RIM without and with cerebrovascular diseases or lesion defects. Contour finding techniques were used for the delineation of the brain and the skull, and measured attenuation coefficients were assumed within these two regions. Using volumes of interest, selected on homogeneous regions on an hemisphere and reported symetrically, the statistical uncertainty for 300 K events in the tomogram was found to be 12%, the index of symetry was of 4% for normal distribution. These results suggest that quantitative SPECT reconstruction for brain distribution is feasible, and that combined with an adapted tracer and an adequate model physiopathological parameters could be extracted
On multiple level-set regularization methods for inverse problems
International Nuclear Information System (INIS)
DeCezaro, A; Leitão, A; Tai, X-C
2009-01-01
We analyze a multiple level-set method for solving inverse problems with piecewise constant solutions. This method corresponds to an iterated Tikhonov method for a particular Tikhonov functional G α based on TV–H 1 penalization. We define generalized minimizers for our Tikhonov functional and establish an existence result. Moreover, we prove convergence and stability results of the proposed Tikhonov method. A multiple level-set algorithm is derived from the first-order optimality conditions for the Tikhonov functional G α , similarly as the iterated Tikhonov method. The proposed multiple level-set method is tested on an inverse potential problem. Numerical experiments show that the method is able to recover multiple objects as well as multiple contrast levels
Relaxation Methods for Strictly Convex Regularizations of Piecewise Linear Programs
International Nuclear Information System (INIS)
Kiwiel, K. C.
1998-01-01
We give an algorithm for minimizing the sum of a strictly convex function and a convex piecewise linear function. It extends several dual coordinate ascent methods for large-scale linearly constrained problems that occur in entropy maximization, quadratic programming, and network flows. In particular, it may solve exact penalty versions of such (possibly inconsistent) problems, and subproblems of bundle methods for nondifferentiable optimization. It is simple, can exploit sparsity, and in certain cases is highly parallelizable. Its global convergence is established in the recent framework of B -functions (generalized Bregman functions)
Smoothing-Norm Preconditioning for Regularizing Minimum-Residual Methods
DEFF Research Database (Denmark)
Hansen, Per Christian; Jensen, Toke Koldborg
2006-01-01
take into account a smoothing norm for the solution. This technique is well established for CGLS, but it does not immediately carry over to minimum-residual methods when the smoothing norm is a seminorm or a Sobolev norm. We develop a new technique which works for any smoothing norm of the form $\\|L...
Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation
International Nuclear Information System (INIS)
Bardsley, Johnathan M; Goldes, John
2009-01-01
In image processing applications, image intensity is often measured via the counting of incident photons emitted by the object of interest. In such cases, image data noise is accurately modeled by a Poisson distribution. This motivates the use of Poisson maximum likelihood estimation for image reconstruction. However, when the underlying model equation is ill-posed, regularization is needed. Regularized Poisson likelihood estimation has been studied extensively by the authors, though a problem of high importance remains: the choice of the regularization parameter. We will present three statistically motivated methods for choosing the regularization parameter, and numerical examples will be presented to illustrate their effectiveness
Regularization methods for inferential sensing in nuclear power plants
International Nuclear Information System (INIS)
Hines, J.W.; Gribok, A.V.; Attieh, I.; Uhrig, R.E.
2000-01-01
Inferential sensing is the use of information related to a plant parameter to infer its actual value. The most common method of inferential sensing uses a mathematical model to infer a parameter value from correlated sensor values. Collinearity in the predictor variables leads to an ill-posed problem that causes inconsistent results when data based models such as linear regression and neural networks are used. This chapter presents several linear and non-linear inferential sensing methods including linear regression and neural networks. Both of these methods can be modified from their original form to solve ill-posed problems and produce more consistent results. We will compare these techniques using data from Florida Power Corporation's Crystal River Nuclear Power Plant to predict the drift in a feedwater flow sensor. According to a report entitled 'Feedwater Flow Measurement in U.S. Nuclear Power Generation Stations' that was commissioned by the Electric Power Research Institute, venturi meter fouling is 'the single most frequent cause' for derating in Pressurized Water Reactors. This chapter presents several viable solutions to this problem. (orig.)
An adaptive method for γ spectra smoothing
International Nuclear Information System (INIS)
Xiao Gang; Zhou Chunlin; Li Tiantuo; Han Feng; Di Yuming
2001-01-01
Adaptive wavelet method and multinomial fitting gliding method are used for smoothing γ spectra, respectively, and then FWHM of 1332 keV peak of 60 Co and activities of 238 U standard specimen are calculated. Calculated results show that adaptive wavelet method is better than the other
Adaptive Methods for Permeability Estimation and Smart Well Management
Energy Technology Data Exchange (ETDEWEB)
Lien, Martha Oekland
2005-04-01
The main focus of this thesis is on adaptive regularization methods. We consider two different applications, the inverse problem of absolute permeability estimation and the optimal control problem of estimating smart well management. Reliable estimates of absolute permeability are crucial in order to develop a mathematical description of an oil reservoir. Due to the nature of most oil reservoirs, mainly indirect measurements are available. In this work, dynamic production data from wells are considered. More specifically, we have investigated into the resolution power of pressure data for permeability estimation. The inversion of production data into permeability estimates constitutes a severely ill-posed problem. Hence, regularization techniques are required. In this work, deterministic regularization based on adaptive zonation is considered, i.e. a solution approach with adaptive multiscale estimation in conjunction with level set estimation is developed for coarse scale permeability estimation. A good mathematical reservoir model is a valuable tool for future production planning. Recent developments within well technology have given us smart wells, which yield increased flexibility in the reservoir management. In this work, we investigate into the problem of finding the optimal smart well management by means of hierarchical regularization techniques based on multiscale parameterization and refinement indicators. The thesis is divided into two main parts, where Part I gives a theoretical background for a collection of research papers that has been written by the candidate in collaboration with others. These constitutes the most important part of the thesis, and are presented in Part II. A brief outline of the thesis follows below. Numerical aspects concerning calculations of derivatives will also be discussed. Based on the introduction to regularization given in Chapter 2, methods for multiscale zonation, i.e. adaptive multiscale estimation and refinement
Li, Yunyi; Zhang, Jie; Fan, Shangang; Yang, Jie; Xiong, Jian; Cheng, Xiefeng; Sari, Hikmet; Adachi, Fumiyuki; Gui, Guan
2017-12-15
Both L 1/2 and L 2/3 are two typical non-convex regularizations of L p (0dictionary sparse transform strategies for the two typical cases p∈{1/2, 2/3} based on an iterative Lp thresholding algorithm and then proposes a sparse adaptive iterative-weighted L p thresholding algorithm (SAITA). Moreover, a simple yet effective regularization parameter is proposed to weight each sub-dictionary-based L p regularizer. Simulation results have shown that the proposed SAITA not only performs better than the corresponding L₁ algorithms but can also obtain a better recovery performance and achieve faster convergence than the conventional single-dictionary sparse transform-based L p case. Moreover, we conduct some applications about sparse image recovery and obtain good results by comparison with relative work.
International Nuclear Information System (INIS)
Kowsary, F.; Pooladvand, K.; Pourshaghaghy, A.
2007-01-01
In this paper, an appropriate distribution of the heating elements' strengths in a radiation furnace is estimated using inverse methods so that a pre-specified temperature and heat flux distribution is attained on the design surface. Minimization of the sum of the squares of the error function is performed using the variable metric method (VMM), and the results are compared with those obtained by the conjugate gradient method (CGM) established previously in the literature. It is shown via test cases and a well-founded validation procedure that the VMM, when using a 'regularized' estimator, is more accurate and is able to reach at a higher quality final solution as compared to the CGM. The test cases used in this study were two-dimensional furnaces filled with an absorbing, emitting, and scattering gas
International Nuclear Information System (INIS)
Shieh, Chun-Chien; Kipritidis, John; O'Brien, Ricky T; Cooper, Benjamin J; Keall, Paul J; Kuncic, Zdenka
2015-01-01
Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp–Davis–Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan and was compared to FDK, ASD-POCS and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS and
Adaptive multiresolution method for MAP reconstruction in electron tomography
Energy Technology Data Exchange (ETDEWEB)
Acar, Erman, E-mail: erman.acar@tut.fi [Department of Signal Processing, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere (Finland); BioMediTech, Tampere University of Technology, Biokatu 10, 33520 Tampere (Finland); Peltonen, Sari; Ruotsalainen, Ulla [Department of Signal Processing, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere (Finland); BioMediTech, Tampere University of Technology, Biokatu 10, 33520 Tampere (Finland)
2016-11-15
3D image reconstruction with electron tomography holds problems due to the severely limited range of projection angles and low signal to noise ratio of the acquired projection images. The maximum a posteriori (MAP) reconstruction methods have been successful in compensating for the missing information and suppressing noise with their intrinsic regularization techniques. There are two major problems in MAP reconstruction methods: (1) selection of the regularization parameter that controls the balance between the data fidelity and the prior information, and (2) long computation time. One aim of this study is to provide an adaptive solution to the regularization parameter selection problem without having additional knowledge about the imaging environment and the sample. The other aim is to realize the reconstruction using sequences of resolution levels to shorten the computation time. The reconstructions were analyzed in terms of accuracy and computational efficiency using a simulated biological phantom and publically available experimental datasets of electron tomography. The numerical and visual evaluations of the experiments show that the adaptive multiresolution method can provide more accurate results than the weighted back projection (WBP), simultaneous iterative reconstruction technique (SIRT), and sequential MAP expectation maximization (sMAPEM) method. The method is superior to sMAPEM also in terms of computation time and usability since it can reconstruct 3D images significantly faster without requiring any parameter to be set by the user. - Highlights: • An adaptive multiresolution reconstruction method is introduced for electron tomography. • The method provides more accurate results than the conventional reconstruction methods. • The missing wedge and noise problems can be compensated by the method efficiently.
Adaptive Method Using Controlled Grid Deformation
Directory of Open Access Journals (Sweden)
Florin FRUNZULICA
2011-09-01
Full Text Available The paper presents an adaptive method using the controlled grid deformation over an elastic, isotropic and continuous domain. The adaptive process is controlled with the principal strains and principal strain directions and uses the finite elements method. Numerical results are presented for several test cases.
Directory of Open Access Journals (Sweden)
Jinping Tang
2017-01-01
Full Text Available Optical tomography is an emerging and important molecular imaging modality. The aim of optical tomography is to reconstruct optical properties of human tissues. In this paper, we focus on reconstructing the absorption coefficient based on the radiative transfer equation (RTE. It is an ill-posed parameter identification problem. Regularization methods have been broadly applied to reconstruct the optical coefficients, such as the total variation (TV regularization and the L1 regularization. In order to better reconstruct the piecewise constant and sparse coefficient distributions, TV and L1 norms are combined as the regularization. The forward problem is discretized with the discontinuous Galerkin method on the spatial space and the finite element method on the angular space. The minimization problem is solved by a Jacobian-based Levenberg-Marquardt type method which is equipped with a split Bregman algorithms for the L1 regularization. We use the adjoint method to compute the Jacobian matrix which dramatically improves the computation efficiency. By comparing with the other imaging reconstruction methods based on TV and L1 regularizations, the simulation results show the validity and efficiency of the proposed method.
Directory of Open Access Journals (Sweden)
Yunyi Li
2017-12-01
Full Text Available Both L 1 / 2 and L 2 / 3 are two typical non-convex regularizations of L p ( 0 < p < 1 , which can be employed to obtain a sparser solution than the L 1 regularization. Recently, the multiple-state sparse transformation strategy has been developed to exploit the sparsity in L 1 regularization for sparse signal recovery, which combines the iterative reweighted algorithms. To further exploit the sparse structure of signal and image, this paper adopts multiple dictionary sparse transform strategies for the two typical cases p ∈ { 1 / 2 , 2 / 3 } based on an iterative L p thresholding algorithm and then proposes a sparse adaptive iterative-weighted L p thresholding algorithm (SAITA. Moreover, a simple yet effective regularization parameter is proposed to weight each sub-dictionary-based L p regularizer. Simulation results have shown that the proposed SAITA not only performs better than the corresponding L 1 algorithms but can also obtain a better recovery performance and achieve faster convergence than the conventional single-dictionary sparse transform-based L p case. Moreover, we conduct some applications about sparse image recovery and obtain good results by comparison with relative work.
A New Method for Determining Optimal Regularization Parameter in Near-Field Acoustic Holography
Directory of Open Access Journals (Sweden)
Yue Xiao
2018-01-01
Full Text Available Tikhonov regularization method is effective in stabilizing reconstruction process of the near-field acoustic holography (NAH based on the equivalent source method (ESM, and the selection of the optimal regularization parameter is a key problem that determines the regularization effect. In this work, a new method for determining the optimal regularization parameter is proposed. The transfer matrix relating the source strengths of the equivalent sources to the measured pressures on the hologram surface is augmented by adding a fictitious point source with zero strength. The minimization of the norm of this fictitious point source strength is as the criterion for choosing the optimal regularization parameter since the reconstructed value should tend to zero. The original inverse problem in calculating the source strengths is converted into a univariate optimization problem which is solved by a one-dimensional search technique. Two numerical simulations with a point driven simply supported plate and a pulsating sphere are investigated to validate the performance of the proposed method by comparison with the L-curve method. The results demonstrate that the proposed method can determine the regularization parameter correctly and effectively for the reconstruction in NAH.
International Nuclear Information System (INIS)
Cao, A.
1981-07-01
This study is concerned with the transverse axial gamma emission tomography. The problem of self-attenuation of radiations in biologic tissues is raised. The regularizing iterative method is developed, as a reconstruction method of 3 dimensional images. The different steps from acquisition to results, necessary to its application, are described. Organigrams relative to each step are explained. Comparison notion between two reconstruction methods is introduced. Some methods used for the comparison or to bring about the characteristics of a reconstruction technique are defined. The studies realized to test the regularizing iterative method are presented and results are analyzed [fr
Burman, Erik; Hansbo, Peter; Larson, Mats G.
2018-03-01
Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.
Wang, Jim Jing-Yan; Huang, Jianhua Z.; Sun, Yijun; Gao, Xin
2014-01-01
by regularizing NMF with a nearest neighbor graph constructed from the input data set. However, GNMF has two main bottlenecks. First, using the original feature space directly to construct the graph is not necessarily optimal because of the noisy and irrelevant
The Method of Adaptive Comparative Judgement
Pollitt, Alastair
2012-01-01
Adaptive Comparative Judgement (ACJ) is a modification of Thurstone's method of comparative judgement that exploits the power of adaptivity, but in scoring rather than testing. Professional judgement by teachers replaces the marking of tests; a judge is asked to compare the work of two students and simply to decide which of them is the better.…
Adaptative mixed methods to axisymmetric shells
International Nuclear Information System (INIS)
Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.
1989-09-01
The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt
Adaptive Control Methods for Soft Robots
National Aeronautics and Space Administration — I propose to develop methods for soft and inflatable robots that will allow the control system to adapt and change control parameters based on changing conditions...
Analysis of the iteratively regularized Gauss-Newton method under a heuristic rule
Jin, Qinian; Wang, Wei
2018-03-01
The iteratively regularized Gauss-Newton method is one of the most prominent regularization methods for solving nonlinear ill-posed inverse problems when the data is corrupted by noise. In order to produce a useful approximate solution, this iterative method should be terminated properly. The existing a priori and a posteriori stopping rules require accurate information on the noise level, which may not be available or reliable in practical applications. In this paper we propose a heuristic selection rule for this regularization method, which requires no information on the noise level. By imposing certain conditions on the noise, we derive a posteriori error estimates on the approximate solutions under various source conditions. Furthermore, we establish a convergence result without using any source condition. Numerical results are presented to illustrate the performance of our heuristic selection rule.
Directory of Open Access Journals (Sweden)
Fairouz Zouyed
2015-01-01
Full Text Available This paper discusses the inverse problem of determining an unknown source in a second order differential equation from measured final data. This problem is ill-posed; that is, the solution (if it exists does not depend continuously on the data. In order to solve the considered problem, an iterative method is proposed. Using this method a regularized solution is constructed and an a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method.
Iterative Method of Regularization with Application of Advanced Technique for Detection of Contours
International Nuclear Information System (INIS)
Niedziela, T.; Stankiewicz, A.
2000-01-01
This paper proposes a novel iterative method of regularization with application of an advanced technique for detection of contours. To eliminate noises, the properties of convolution of functions are utilized. The method can be accomplished in a simple neural cellular network, which creates the possibility of extraction of contours by automatic image recognition equipment. (author)
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
Directory of Open Access Journals (Sweden)
S. Ceccherini
2007-01-01
Full Text Available The retrieval of concentration vertical profiles of atmospheric constituents from spectroscopic measurements is often an ill-conditioned problem and regularization methods are frequently used to improve its stability. Recently a new method, that provides a good compromise between precision and vertical resolution, was proposed to determine analytically the value of the regularization parameter. This method is applied for the first time to real measurements with its implementation in the operational retrieval code of the satellite limb-emission measurements of the MIPAS instrument and its performances are quantitatively analyzed. The adopted regularization improves the stability of the retrieval providing smooth profiles without major degradation of the vertical resolution. In the analyzed measurements the retrieval procedure provides a vertical resolution that, in the troposphere and low stratosphere, is smaller than the vertical field of view of the instrument.
Learning Unknown Structure in CRFs via Adaptive Gradient Projection Method
Directory of Open Access Journals (Sweden)
Wei Xue
2016-08-01
Full Text Available We study the problem of fitting probabilistic graphical models to the given data when the structure is not known. More specifically, we focus on learning unknown structure in conditional random fields, especially learning both the structure and parameters of a conditional random field model simultaneously. To do this, we first formulate the learning problem as a convex minimization problem by adding an l_2-regularization to the node parameters and a group l_1-regularization to the edge parameters, and then a gradient-based projection method is proposed to solve it which combines an adaptive stepsize selection strategy with a nonmonotone line search. Extensive simulation experiments are presented to show the performance of our approach in solving unknown structure learning problems.
Use of regularization method in the determination of ring parameters and orbit correction
International Nuclear Information System (INIS)
Tang, Y.N.; Krinsky, S.
1993-01-01
We discuss applying the regularization method of Tikhonov to the solution of inverse problems arising in accelerator operations. This approach has been successfully used for orbit correction on the NSLS storage rings, and is presently being applied to the determination of betatron functions and phases from the measured response matrix. The inverse problem of differential equation often leads to a set of integral equations of the first kind which are ill-conditioned. The regularization method is used to combat the ill-posedness
Directory of Open Access Journals (Sweden)
Ahmed Elazab
2015-01-01
Full Text Available An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.
Yang, Fwu-Lin; Lee, Chia-Chi; Subeq, Yi-Maun; Lee, Chung-Jen; Ke, Chun-Yen; Lee, Ru-Ping
2017-10-01
Hot-water immersion (HWI) is a type of thermal therapy for treating various diseases. In our study, the physiological responses to occasional and regular HWI have been explored. The rats were divided into a control group, occasional group (1D), and regular group (7D). The 1D and 7D groups received 42°C during 15mins HWI for 1 and 7 days, respectively. The blood samples were collected for proinflammatory cytokines examinations, the heart, liver and kidney were excised for subsequent IHC analysis to measure the level of heat shock protein 70 (HSP70). The results revealed that the body temperature increased significantly during HWI on Day 3 and significantly declined on Days 6 and 7. For the 7D group, body weight, heart rate, hematocrit, platelet, osmolarity, and lactate level were lower than those in the 1D group. Furthermore, the levels of granulocyte counts, tumor necrosis factor-α, and interleukin-6 were lower in the 7D group than in the 1D group. The induction of HSP70 in the 1D group was higher than in the other groups. Physiological responses to occasional HWI are disadvantageous because of heat stress. However, adaptation to heat from regular HWI resulted in decreased proinflammatory responses and physical heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Information operator approach and iterative regularization methods for atmospheric remote sensing
International Nuclear Information System (INIS)
Doicu, A.; Hilgers, S.; Bargen, A. von; Rozanov, A.; Eichmann, K.-U.; Savigny, C. von; Burrows, J.P.
2007-01-01
In this study, we present the main features of the information operator approach for solving linear inverse problems arising in atmospheric remote sensing. This method is superior to the stochastic version of the Tikhonov regularization (or the optimal estimation method) due to its capability to filter out the noise-dominated components of the solution generated by an inappropriate choice of the regularization parameter. We extend this approach to iterative methods for nonlinear ill-posed problems and derive the truncated versions of the Gauss-Newton and Levenberg-Marquardt methods. Although the paper mostly focuses on discussing the mathematical details of the inverse method, retrieval results have been provided, which exemplify the performances of the methods. These results correspond to the NO 2 retrieval from SCIAMACHY limb scatter measurements and have been obtained by using the retrieval processors developed at the German Aerospace Center Oberpfaffenhofen and Institute of Environmental Physics of the University of Bremen
Directory of Open Access Journals (Sweden)
Zhao-Qing Wang
2014-01-01
Full Text Available Embedding the irregular doubly connected domain into an annular regular region, the unknown functions can be approximated by the barycentric Lagrange interpolation in the regular region. A highly accurate regular domain collocation method is proposed for solving potential problems on the irregular doubly connected domain in polar coordinate system. The formulations of regular domain collocation method are constructed by using barycentric Lagrange interpolation collocation method on the regular domain in polar coordinate system. The boundary conditions are discretized by barycentric Lagrange interpolation within the regular domain. An additional method is used to impose the boundary conditions. The least square method can be used to solve the overconstrained equations. The function values of points in the irregular doubly connected domain can be calculated by barycentric Lagrange interpolation within the regular domain. Some numerical examples demonstrate the effectiveness and accuracy of the presented method.
A regularization method for solving the Poisson equation for mixed unbounded-periodic domains
DEFF Research Database (Denmark)
Spietz, Henrik Juul; Mølholm Hejlesen, Mads; Walther, Jens Honoré
2018-01-01
the regularized unbounded-periodic Green's functions can be implemented in an FFT-based Poisson solver to obtain a convergence rate corresponding to the regularization order of the Green's function. The high order is achieved without any additional computational cost from the conventional FFT-based Poisson solver...... and enables the calculation of the derivative of the solution to the same high order by direct spectral differentiation. We illustrate an application of the FFT-based Poisson solver by using it with a vortex particle mesh method for the approximation of incompressible flow for a problem with a single periodic...
Regularization methods for ill-posed problems in multiple Hilbert scales
International Nuclear Information System (INIS)
Mazzieri, Gisela L; Spies, Ruben D
2012-01-01
Several convergence results in Hilbert scales under different source conditions are proved and orders of convergence and optimal orders of convergence are derived. Also, relations between those source conditions are proved. The concept of a multiple Hilbert scale on a product space is introduced, and regularization methods on these scales are defined, both for the case of a single observation and for the case of multiple observations. In the latter case, it is shown how vector-valued regularization functions in these multiple Hilbert scales can be used. In all cases, convergence is proved and orders and optimal orders of convergence are shown. Finally, some potential applications and open problems are discussed. (paper)
Wang, Xinrui; Fitts, Robert H
2017-08-01
Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K + (K ATP ) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6-8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca 2+ transient durations reflected the changes in APD, while Ca 2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β 1 -AR blocker atenolol, but not the β 2 -AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β 1 -AR. At 10 Hz, the K ATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β 1 -AR responsiveness and K ATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca 2+ influx; during exercise, an increase in K ATP channel activity would shorten APD and, thus, protect the heart against Ca 2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca 2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the
Does Vitamin C and E Supplementation Impair the Favorable Adaptations of Regular Exercise?
Directory of Open Access Journals (Sweden)
Michalis G. Nikolaidis
2012-01-01
Full Text Available The detrimental outcomes associated with unregulated and excessive production of free radicals remains a physiological concern that has implications to health, medicine and performance. Available evidence suggests that physiological adaptations to exercise training can enhance the body’s ability to quench free radicals and circumstantial evidence exists to suggest that key vitamins and nutrients may provide additional support to mitigate the untoward effects associated with increased free radical production. However, controversy has risen regarding the potential outcomes associated with vitamins C and E, two popular antioxidant nutrients. Recent evidence has been put forth suggesting that exogenous administration of these antioxidants may be harmful to performance making interpretations regarding the efficacy of antioxidants challenging. The available studies that employed both animal and human models provided conflicting outcomes regarding the efficacy of vitamin C and E supplementation, at least partly due to methodological differences in assessing oxidative stress and training adaptations. Based on the contradictory evidence regarding the effects of higher intakes of vitamin C and/or E on exercise performance and redox homeostasis, a permanent intake of non-physiological dosages of vitamin C and/or E cannot be recommended to healthy, exercising individuals.
New method for minimizing regular functions with constraints on parameter region
International Nuclear Information System (INIS)
Kurbatov, V.S.; Silin, I.N.
1993-01-01
The new method of function minimization is developed. Its main features are considered. It is possible minimization of regular function with the arbitrary structure. For χ 2 -like function the usage of simplified second derivatives is possible with the control of correctness. The constraints of arbitrary structure can be used. The means for fast movement along multidimensional valleys are used. The method is tested on real data of K π2 decay of the experiment on rare K - -decays. 6 refs
On Landweber–Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces
International Nuclear Information System (INIS)
Leitão, A; Alves, M Marques
2012-01-01
In this paper, iterative regularization methods of Landweber–Kaczmarz type are considered for solving systems of ill-posed equations modeled (finitely many) by operators acting between Banach spaces. Using assumptions of uniform convexity and smoothness on the parameter space, we are able to prove a monotony result for the proposed method, as well as to establish convergence (for exact data) and stability results (in the noisy data case). (paper)
Houborg, Rasmus
2016-08-20
A regularized canopy reflectance model (REGFLEC) is applied over a dryland irrigated agricultural system in Saudi Arabia for the purpose of retrieving leaf area index (LAI) and leaf chlorophyll content (Chll). To improve the robustness of the retrieved properties, REGFLEC was modified to 1) correct for aerosol and adjacency effects, 2) consider foliar dust effects on modeled canopy reflectances, 3) include spectral information in the red-edge wavelength region, and 4) exploit empirical LAI estimates in the model inversion. Using multi-spectral RapidEye imagery allowed Chll to be retrieved with a Mean Absolute Deviation (MAD) of 7.9 μg cm− 2 (16%), based upon in-situ measurements conducted in fields of alfalfa, Rhodes grass and maize over the course of a growing season. LAI and Chll compensation effects on canopy reflectance were largely avoided by informing the inversion process with ancillary LAI inputs established empirically on the basis of a statistical machine learning technique. As a result, LAI was reproduced with good accuracy, with an overall MAD of 0.42 m2 m− 2 (12.5%). Results highlighted the considerable challenges associated with the translation of at-sensor radiance observations to surface bidirectional reflectances in dryland environments, where issues such as high aerosol loadings and large spatial gradients in surface reflectance from bright desert soils to dark vegetated fields are often present. Indeed, surface reflectances in the visible bands were reduced by up to 60% after correction for such adjacency effects. In addition, dust deposition on leaves required explicit modification of the reflectance sub-model to account for its influence. By implementing these model refinements, REGFLEC demonstrated its utility for within-field characterization of vegetation conditions over the challenging landscapes typical of dryland agricultural regions, offering a means through which improvements can be made in the management of these globally
International Nuclear Information System (INIS)
Xu, Yanbin; Pei, Yang; Dong, Feng
2016-01-01
The L-curve method is a popular regularization parameter choice method for the ill-posed inverse problem of electrical resistance tomography (ERT). However the method cannot always determine a proper parameter for all situations. An investigation into those situations where the L-curve method failed show that a new corner point appears on the L-curve and the parameter corresponding to the new corner point can obtain a satisfactory reconstructed solution. Thus an extended L-curve method, which determines the regularization parameter associated with either global corner or the new corner, is proposed. Furthermore, two strategies are provided to determine the new corner–one is based on the second-order differential of L-curve, and the other is based on the curvature of L-curve. The proposed method is examined by both numerical simulations and experimental tests. And the results indicate that the extended method can handle the parameter choice problem even in the case where the typical L-curve method fails. Finally, in order to reduce the running time of the method, the extended method is combined with a projection method based on the Krylov subspace, which was able to boost the extended L-curve method. The results verify that the speed of the extended L-curve method is distinctly improved. The proposed method extends the application of the L-curve in the field of choosing regularization parameter with an acceptable running time and can also be used in other kinds of tomography. (paper)
Output regularization of SVM seizure predictors: Kalman Filter versus the "Firing Power" method.
Teixeira, Cesar; Direito, Bruno; Bandarabadi, Mojtaba; Dourado, António
2012-01-01
Two methods for output regularization of support vector machines (SVMs) classifiers were applied for seizure prediction in 10 patients with long-term annotated data. The output of the classifiers were regularized by two methods: one based on the Kalman Filter (KF) and other based on a measure called the "Firing Power" (FP). The FP is a quantification of the rate of the classification in the preictal class in a past time window. In order to enable the application of the KF, the classification problem was subdivided in a two two-class problem, and the real-valued output of SVMs was considered. The results point that the FP method raise less false alarms than the KF approach. However, the KF approach presents an higher sensitivity, but the high number of false alarms turns their applicability negligible in some situations.
Directory of Open Access Journals (Sweden)
Liquan Mei
2014-01-01
Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.
Kulkarni, Ankur H; Ghosh, Prasenjit; Seetharaman, Ashwin; Kondaiah, Paturu; Gundiah, Namrata
2018-05-09
Traction forces exerted by adherent cells are quantified using displacements of embedded markers on polyacrylamide substrates due to cell contractility. Fourier Transform Traction Cytometry (FTTC) is widely used to calculate tractions but has inherent limitations due to errors in the displacement fields; these are mitigated through a regularization parameter (γ) in the Reg-FTTC method. An alternate finite element (FE) approach computes tractions on a domain using known boundary conditions. Robust verification and recovery studies are lacking but essential in assessing the accuracy and noise sensitivity of the traction solutions from the different methods. We implemented the L2 regularization method and defined a maximum curvature point in the traction with γ plot as the optimal regularization parameter (γ*) in the Reg-FTTC approach. Traction reconstructions using γ* yield accurate values of low and maximum tractions (Tmax) in the presence of up to 5% noise. Reg-FTTC is hence a clear improvement over the FTTC method but is inadequate to reconstruct low stresses such as those at nascent focal adhesions. FE, implemented using a node-by-node comparison, showed an intermediate reconstruction compared to Reg-FTTC. We performed experiments using mouse embryonic fibroblast (MEF) and compared results between these approaches. Tractions from FTTC and FE showed differences of ∼92% and 22% as compared to Reg-FTTC. Selection of an optimum value of γ for each cell reduced variability in the computed tractions as compared to using a single value of γ for all the MEF cells in this study.
Energy Technology Data Exchange (ETDEWEB)
Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Yang, Defu; Zhang, Qitan; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [School of Life Science and Technology, Xidian University, Xi' an 710071 (China); Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education (China)
2014-05-14
Even though bioluminescence tomography (BLT) exhibits significant potential and wide applications in macroscopic imaging of small animals in vivo, the inverse reconstruction is still a tough problem that has plagued researchers in a related area. The ill-posedness of inverse reconstruction arises from insufficient measurements and modeling errors, so that the inverse reconstruction cannot be solved directly. In this study, an l{sub 1/2} regularization based numerical method was developed for effective reconstruction of BLT. In the method, the inverse reconstruction of BLT was constrained into an l{sub 1/2} regularization problem, and then the weighted interior-point algorithm (WIPA) was applied to solve the problem through transforming it into obtaining the solution of a series of l{sub 1} regularizers. The feasibility and effectiveness of the proposed method were demonstrated with numerical simulations on a digital mouse. Stability verification experiments further illustrated the robustness of the proposed method for different levels of Gaussian noise.
Regularization of DT-MRI Using 3D Median Filtering Methods
Directory of Open Access Journals (Sweden)
Soondong Kwon
2014-01-01
Full Text Available DT-MRI (diffusion tensor magnetic resonance imaging tractography is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of the principal eigenvectors obtained from tensor matrix, which is different from the conventional isotropic MRI. Tractography based on DT-MRI is known to need many computations and is highly sensitive to noise. Hence, adequate regularization methods, such as image processing techniques, are in demand. Among many regularization methods we are interested in the median filtering method. In this paper, we extended two-dimensional median filters already developed to three-dimensional median filters. We compared four median filtering methods which are two-dimensional simple median method (SM2D, two-dimensional successive Fermat method (SF2D, three-dimensional simple median method (SM3D, and three-dimensional successive Fermat method (SF3D. Three kinds of synthetic data with different altitude angles from axial slices and one kind of human data from MR scanner are considered for numerical implementation by the four filtering methods.
Energy Technology Data Exchange (ETDEWEB)
Mory, Cyril, E-mail: cyril.mory@philips.com [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Auvray, Vincent; Zhang, Bo [Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Grass, Michael; Schäfer, Dirk [Philips Research, Röntgenstrasse 24–26, D-22335 Hamburg (Germany); Chen, S. James; Carroll, John D. [Department of Medicine, Division of Cardiology, University of Colorado Denver, 12605 East 16th Avenue, Aurora, Colorado 80045 (United States); Rit, Simon [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Centre Léon Bérard, 28 rue Laënnec, F-69373 Lyon (France); Peyrin, Françoise [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); X-ray Imaging Group, European Synchrotron, Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Douek, Philippe; Boussel, Loïc [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Hospices Civils de Lyon, 28 Avenue du Doyen Jean Lépine, 69500 Bron (France)
2014-02-15
Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.
International Nuclear Information System (INIS)
Mory, Cyril; Auvray, Vincent; Zhang, Bo; Grass, Michael; Schäfer, Dirk; Chen, S. James; Carroll, John D.; Rit, Simon; Peyrin, Françoise; Douek, Philippe; Boussel, Loïc
2014-01-01
Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection
Phase reconstruction by a multilevel iteratively regularized Gauss–Newton method
International Nuclear Information System (INIS)
Langemann, Dirk; Tasche, Manfred
2008-01-01
In this paper we consider the numerical solution of a phase retrieval problem for a compactly supported, linear spline f : R → C with the Fourier transform f-circumflex, where values of |f| and |f-circumflex| at finitely many equispaced nodes are given. The unknown phases of complex spline coefficients fulfil a well-structured system of nonlinear equations. Thus the phase reconstruction leads to a nonlinear inverse problem, which is solved by a multilevel strategy and iterative Tikhonov regularization. The multilevel strategy concentrates the main effort of the solution of the phase retrieval problem in the coarse, less expensive levels and provides convenient initial guesses at the next finer level. On each level, the corresponding nonlinear system is solved by an iteratively regularized Gauss–Newton method. The multilevel strategy is motivated by convergence results of IRGN. This method is applicable to a wide range of examples as shown in several numerical tests for noiseless and noisy data
2016-11-22
structure of the graph, we replace the ℓ1- norm by the nonconvex Capped -ℓ1 norm , and obtain the Generalized Capped -ℓ1 regularized logistic regression...X. M. Yuan. Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 82(281):301...better approximations of ℓ0- norm theoretically and computationally beyond ℓ1- norm , for example, the compressive sensing (Xiao et al., 2011). The
On the evaluation of X-ray diffraction experiments by the regularization method
Energy Technology Data Exchange (ETDEWEB)
Trubin, V.A.; Szasz, A. (Lab. of Surface and Interface Physics, Eoetvoes Univ., Budapest (Hungary))
1991-05-16
The characteristic property of diffractometers as the presence of occasional and systematic errors in measured patterns requires such an evaluation which is as informative as possible. This circumstance gives rise to the problem of optimal planning of the experiment. The X-ray diffraction optimization problem with application of the regularization method is studied. The proposal permits to determine more accurately the unknown true characteristics of the X-ray diffraction experiment. (orig.).
On the evaluation of X-ray diffraction experiments by the regularization method
International Nuclear Information System (INIS)
Trubin, V.A.; Szasz, A.
1991-01-01
The characteristic property of diffractometers as the presence of occasional and systematic errors in measured patterns requires such an evaluation which is as informative as possible. This circumstance gives rise to the problem of optimal planning of the experiment. The X-ray diffraction optimization problem with application of the regularization method is studied. The proposal permits to determine more accurately the unknown true characteristics of the X-ray diffraction experiment. (orig.)
A regularized vortex-particle mesh method for large eddy simulation
DEFF Research Database (Denmark)
Spietz, Henrik Juul; Walther, Jens Honore; Hejlesen, Mads Mølholm
We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible ﬂuid ﬂow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green’s function...... solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the ﬁltered Navier Stokes equations, hence we use the method for Large Eddy...
Fibonacci-regularization method for solving Cauchy integral equations of the first kind
Directory of Open Access Journals (Sweden)
Mohammad Ali Fariborzi Araghi
2017-09-01
Full Text Available In this paper, a novel scheme is proposed to solve the first kind Cauchy integral equation over a finite interval. For this purpose, the regularization method is considered. Then, the collocation method with Fibonacci base function is applied to solve the obtained second kind singular integral equation. Also, the error estimate of the proposed scheme is discussed. Finally, some sample Cauchy integral equations stem from the theory of airfoils in fluid mechanics are presented and solved to illustrate the importance and applicability of the given algorithm. The tables in the examples show the efficiency of the method.
Application of L1/2 regularization logistic method in heart disease diagnosis.
Zhang, Bowen; Chai, Hua; Yang, Ziyi; Liang, Yong; Chu, Gejin; Liu, Xiaoying
2014-01-01
Heart disease has become the number one killer of human health, and its diagnosis depends on many features, such as age, blood pressure, heart rate and other dozens of physiological indicators. Although there are so many risk factors, doctors usually diagnose the disease depending on their intuition and experience, which requires a lot of knowledge and experience for correct determination. To find the hidden medical information in the existing clinical data is a noticeable and powerful approach in the study of heart disease diagnosis. In this paper, sparse logistic regression method is introduced to detect the key risk factors using L(1/2) regularization on the real heart disease data. Experimental results show that the sparse logistic L(1/2) regularization method achieves fewer but informative key features than Lasso, SCAD, MCP and Elastic net regularization approaches. Simultaneously, the proposed method can cut down the computational complexity, save cost and time to undergo medical tests and checkups, reduce the number of attributes needed to be taken from patients.
Ma, Denglong; Tan, Wei; Zhang, Zaoxiao; Hu, Jun
2017-03-05
In order to identify the parameters of hazardous gas emission source in atmosphere with less previous information and reliable probability estimation, a hybrid algorithm coupling Tikhonov regularization with particle swarm optimization (PSO) was proposed. When the source location is known, the source strength can be estimated successfully by common Tikhonov regularization method, but it is invalid when the information about both source strength and location is absent. Therefore, a hybrid method combining linear Tikhonov regularization and PSO algorithm was designed. With this method, the nonlinear inverse dispersion model was transformed to a linear form under some assumptions, and the source parameters including source strength and location were identified simultaneously by linear Tikhonov-PSO regularization method. The regularization parameters were selected by L-curve method. The estimation results with different regularization matrixes showed that the confidence interval with high-order regularization matrix is narrower than that with zero-order regularization matrix. But the estimation results of different source parameters are close to each other with different regularization matrixes. A nonlinear Tikhonov-PSO hybrid regularization was also designed with primary nonlinear dispersion model to estimate the source parameters. The comparison results of simulation and experiment case showed that the linear Tikhonov-PSO method with transformed linear inverse model has higher computation efficiency than nonlinear Tikhonov-PSO method. The confidence intervals from linear Tikhonov-PSO are more reasonable than that from nonlinear method. The estimation results from linear Tikhonov-PSO method are similar to that from single PSO algorithm, and a reasonable confidence interval with some probability levels can be additionally given by Tikhonov-PSO method. Therefore, the presented linear Tikhonov-PSO regularization method is a good potential method for hazardous emission
Adaptive finite element method for shape optimization
Morin, Pedro; Nochetto, Ricardo H.; Pauletti, Miguel S.; Verani, Marco
2012-01-01
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
The Translation and Adaptation of Agile Methods
DEFF Research Database (Denmark)
Pries-Heje, Jan; Baskerville, Richard
2017-01-01
Purpose The purpose of this paper is to use translation theory to develop a framework (called FTRA) that explains how companies adopt agile methods in a discourse of fragmentation and articulation. Design/methodology/approach A qualitative multiple case study of six firms using the Scrum agile...... (Scrum). This limits the confidence that the framework is suitable for other kinds of methodologies. Practical implications The FTRA framework and the technological rules are promising for use in practice as a prescriptive or even normative frame for governing methodology adaptation. Social implications....../value The use of translation theory and the FTRA framework to explain how agile adaptation (in particular Scrum) emerges continuously in a process where method fragments are articulated and re-articulated to momentarily suit the local setting. Complete agility that rapidly and elegantly changes its own...
Directory of Open Access Journals (Sweden)
Stefania Munaretto
2014-06-01
Full Text Available Climate adaptation is a dynamic social and institutional process where the governance dimension is receiving growing attention. Adaptive governance is an approach that promises to reduce uncertainty by improving the knowledge base for decision making. As uncertainty is an inherent feature of climate adaptation, adaptive governance seems to be a promising approach for improving climate adaptation governance. However, the adaptive governance literature has so far paid little attention to decision-making tools and methods, and the literature on the governance of adaptation is in its infancy in this regard. We argue that climate adaptation governance would benefit from systematic and yet flexible decision-making tools and methods such as participatory multicriteria methods for the evaluation of adaptation options, and that these methods can be linked to key adaptive governance principles. Moving from these premises, we propose a framework that integrates key adaptive governance features into participatory multicriteria methods for the governance of climate adaptation.
Bai, Bing
2012-03-01
There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.
Manifold Regularized Reinforcement Learning.
Li, Hongliang; Liu, Derong; Wang, Ding
2018-04-01
This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.
Numerical simulation of the regularized long wave equation by He's homotopy perturbation method
Energy Technology Data Exchange (ETDEWEB)
Inc, Mustafa [Department of Mathematics, Firat University, 23119 Elazig (Turkey)], E-mail: minc@firat.edu.tr; Ugurlu, Yavuz [Department of Mathematics, Firat University, 23119 Elazig (Turkey)
2007-09-17
In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions.
Numerical simulation of the regularized long wave equation by He's homotopy perturbation method
International Nuclear Information System (INIS)
Inc, Mustafa; Ugurlu, Yavuz
2007-01-01
In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions
A regularized vortex-particle mesh method for large eddy simulation
Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.
2017-11-01
We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.
Optimized star sensors laboratory calibration method using a regularization neural network.
Zhang, Chengfen; Niu, Yanxiong; Zhang, Hao; Lu, Jiazhen
2018-02-10
High-precision ground calibration is essential to ensure the performance of star sensors. However, the complex distortion and multi-error coupling have brought great difficulties to traditional calibration methods, especially for large field of view (FOV) star sensors. Although increasing the complexity of models is an effective way to improve the calibration accuracy, it significantly increases the demand for calibration data. In order to achieve high-precision calibration of star sensors with large FOV, a novel laboratory calibration method based on a regularization neural network is proposed. A multi-layer structure neural network is designed to represent the mapping of the star vector and the corresponding star point coordinate directly. To ensure the generalization performance of the network, regularization strategies are incorporated into the net structure and the training algorithm. Simulation and experiment results demonstrate that the proposed method can achieve high precision with less calibration data and without any other priori information. Compared with traditional methods, the calibration error of the star sensor decreased by about 30%. The proposed method can satisfy the precision requirement for large FOV star sensors.
A blind deconvolution method based on L1/L2 regularization prior in the gradient space
Cai, Ying; Shi, Yu; Hua, Xia
2018-02-01
In the process of image restoration, the result of image restoration is very different from the real image because of the existence of noise, in order to solve the ill posed problem in image restoration, a blind deconvolution method based on L1/L2 regularization prior to gradient domain is proposed. The method presented in this paper first adds a function to the prior knowledge, which is the ratio of the L1 norm to the L2 norm, and takes the function as the penalty term in the high frequency domain of the image. Then, the function is iteratively updated, and the iterative shrinkage threshold algorithm is applied to solve the high frequency image. In this paper, it is considered that the information in the gradient domain is better for the estimation of blur kernel, so the blur kernel is estimated in the gradient domain. This problem can be quickly implemented in the frequency domain by fast Fast Fourier Transform. In addition, in order to improve the effectiveness of the algorithm, we have added a multi-scale iterative optimization method. This paper proposes the blind deconvolution method based on L1/L2 regularization priors in the gradient space can obtain the unique and stable solution in the process of image restoration, which not only keeps the edges and details of the image, but also ensures the accuracy of the results.
Differential regularization and renormalization: a new method of calculation in quantum field theory
International Nuclear Information System (INIS)
Freedman, D.Z.; Johnson, K.; Latorre, J.I.
1992-01-01
Most primitively divergent Feynman diagrams are well defined in x-space but too singular at short distances for transformation to p-space. A new method of regularization is developed in which singular functions are written as derivatives of less singular functions which contain a logarithmic mass scale. The Fourier transform is then defined by formal integration by parts. The procedure is extended to graphs with divergent subgraphs. No explicit cutoff or counterterms are required, and the method automatically delivers renormalized amplitudes which satisfy Callan-Symanzik equations. These features are thoroughly explored in massless φ 4 theory through 3-loop order, and the method yields explicit functional forms for all amplitudes with less difficulty than conventional methods which use dimensional regularization in p-space. The procedure also appears to be compatible with gauge invariance and the chiral structure of the standard model. This aspect is tested in extensive 1-loop calculations which include the Ward identity in quantum electrodynamics, the chiral anomaly, and the background field algorithm in non-abelian gauge theories. (orig.)
Tikhonov regularization method for the numerical inversion of Mellin transforms using splines
International Nuclear Information System (INIS)
Iqbal, M.
2005-01-01
Mellin transform is an ill-posed problem. These problems arise in many branches of science and engineering. In the typical situation one is interested in recovering the original function, given a finite number of noisy measurements of data. In this paper, we shall convert Mellin transform to Laplace transform and then an integral equation of the first kind of convolution type. We solve the integral equation using Tikhonov regularization with splines as basis function. The method is applied to various test examples in the literature and results are shown in the table
Regularization of the Fourier series of discontinuous functions by various summation methods
Energy Technology Data Exchange (ETDEWEB)
Ahmad, S.S.; Beghi, L. (Padua Univ. (Italy). Seminario Matematico)
1983-07-01
In this paper the regularization by various summation methods of the Fourier series of functions containing discontinuities of the first and second kind are studied and the results of the numerical analyses referring to some typical periodic functions are presented. In addition to the Cesaro and Lanczos weightings, a new (i.e. cosine) weighting for accelerating the convergence rate is proposed. A comparison with the results obtained by Garibotti and Massaro with the punctual Pade approximants (PPA) technique in case of a periodic step function is also carried out.
Pride, David T; Salzman, Julia; Relman, David A
2012-09-01
Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13 977 streptococcal CRISPR sequences and compared them with 2 588 172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR-virus analyses are likely to provide insight into the forces shaping the human microbiome. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg
2007-01-01
This paper describes new extensions to the previously published multivariate alteration detection (MAD) method for change detection in bi-temporal, multi- and hypervariate data such as remote sensing imagery. Much like boosting methods often applied in data mining work, the iteratively reweighted...... to observations that show little change, i.e., for which the sum of squared, standardized MAD variates is small, and small weights are assigned to observations for which the sum is large. Like the original MAD method, the iterative extension is invariant to linear (affine) transformations of the original...... an agricultural region in Kenya, and hyperspectral airborne HyMap data from a small rural area in southeastern Germany are given. The latter case demonstrates the need for regularization....
The analytic regularization ζ function method and the cut-off method in Casimir effect
International Nuclear Information System (INIS)
Svaiter, N.F.; Svaiter, B.F.
1990-01-01
The zero point energy associated to a hermitian massless scalar field in the presence of perfectly reflecting plates in a three dimensional flat space-time is discussed. A new technique to unify two different methods - the ζ function and a variant of the cut-off method - used to obtain the so called Casimir energy is presented, and the proof of the analytic equivalence between both methods is given. (author)
International Nuclear Information System (INIS)
Soussaline, F.; LeCoq, C.; Raynaud, C.; Kellershohn
1982-01-01
The potential of the Regularizing Iterative Method (RIM), when used in brain studies, is evaluated. RIM is designed to provide fast and accurate reconstruction of tomographic images when non-uniform attenuation is to be accounted for. As indicated by phantom studies, this method improves the contrast and the signal-to-noise ratio as compared to those obtained with Filtered Back Projection (FBP) technique. Preliminary results obtained in brain studies using isopropil-amphetamine I-123 (AMPI-123) are very encouraging in terms of quantitative regional cellular activity. However, the clinical usefulness of this mathematically accurate reconstruction procedure is going to be demonstrated, in comparing quantitative data in heart or liver studies where control values can be obtained
Directory of Open Access Journals (Sweden)
H. O. Bakodah
2013-01-01
Full Text Available A method of lines approach to the numerical solution of nonlinear wave equations typified by the regularized long wave (RLW is presented. The method developed uses a finite differences discretization to the space. Solution of the resulting system was obtained by applying fourth Runge-Kutta time discretization method. Using Von Neumann stability analysis, it is shown that the proposed method is marginally stable. To test the accuracy of the method some numerical experiments on test problems are presented. Test problems including solitary wave motion, two-solitary wave interaction, and the temporal evaluation of a Maxwellian initial pulse are studied. The accuracy of the present method is tested with and error norms and the conservation properties of mass, energy, and momentum under the RLW equation.
AN AUTOMATED METHOD FOR 3D ROOF OUTLINE GENERATION AND REGULARIZATION IN AIRBONE LASER SCANNER DATA
Directory of Open Access Journals (Sweden)
S. N. Perera
2012-07-01
Full Text Available In this paper, an automatic approach for the generation and regularization of 3D roof boundaries in Airborne Laser scanner data is presented. The workflow is commenced by segmentation of the point clouds. A classification step and a rule based roof extraction step are followed the planar segmentation. Refinement on roof extraction is performed in order to minimize the effect due to urban vegetation. Boundary points of the connected roof planes are extracted and fitted series of straight line segments. Each line is then regularized with respect to the dominant building orientation. We introduce the usage of cycle graphs for the best use of topological information. Ridge-lines and step-edges are basically extracted to recognise correct topological relationships among the roof faces. Inner roof corners are geometrically fitted based on the closed cycle graphs. Outer boundary is reconstructed using the same concept but with the outer most cycle graph. In here, union of the sub cycles is taken. Intermediate line segments (outer bounds are intersected to reconstruct the roof eave lines. Two test areas with two different point densities are tested with the developed approach. Performance analysis of the test results is provided to demonstrate the applicability of the method.
Hermite regularization of the lattice Boltzmann method for open source computational aeroacoustics.
Brogi, F; Malaspinas, O; Chopard, B; Bonadonna, C
2017-10-01
The lattice Boltzmann method (LBM) is emerging as a powerful engineering tool for aeroacoustic computations. However, the LBM has been shown to present accuracy and stability issues in the medium-low Mach number range, which is of interest for aeroacoustic applications. Several solutions have been proposed but are often too computationally expensive, do not retain the simplicity and the advantages typical of the LBM, or are not described well enough to be usable by the community due to proprietary software policies. An original regularized collision operator is proposed, based on the expansion of Hermite polynomials, that greatly improves the accuracy and stability of the LBM without significantly altering its algorithm. The regularized LBM can be easily coupled with both non-reflective boundary conditions and a multi-level grid strategy, essential ingredients for aeroacoustic simulations. Excellent agreement was found between this approach and both experimental and numerical data on two different benchmarks: the laminar, unsteady flow past a 2D cylinder and the 3D turbulent jet. Finally, most of the aeroacoustic computations with LBM have been done with commercial software, while here the entire theoretical framework is implemented using an open source library (palabos).
Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods
Energy Technology Data Exchange (ETDEWEB)
Volentic, J [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)
1998-12-31
Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.
Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods
Energy Technology Data Exchange (ETDEWEB)
Volentic, J. [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)
1997-12-31
Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.
Provencher, Stephen W.
1982-09-01
CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.
Generalized Bregman distances and convergence rates for non-convex regularization methods
International Nuclear Information System (INIS)
Grasmair, Markus
2010-01-01
We generalize the notion of Bregman distance using concepts from abstract convexity in order to derive convergence rates for Tikhonov regularization with non-convex regularization terms. In particular, we study the non-convex regularization of linear operator equations on Hilbert spaces, showing that the conditions required for the application of the convergence rates results are strongly related to the standard range conditions from the convex case. Moreover, we consider the setting of sparse regularization, where we show that a rate of order δ 1/p holds, if the regularization term has a slightly faster growth at zero than |t| p
Bukhari, Hassan J.
2017-12-01
In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.
Nararidh, Niti
2013-11-01
Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. We investigated the role of the microvilli in the feeding and swimming behavior of the organism using a three-dimensional model based on the method of regularized Stokeslets. This model allows us to examine the velocity generated around the feeding organism tethered in place, as well as to predict the paths of surrounding free flowing particles. In particular, we can depict the effective capture of nutritional particles and bacteria in the fluid, showing the hydrodynamic cooperation between the cell, flagellum, and microvilli of the organism. Funding Source: Murchison Undergraduate Research Fellowship.
REGULAR METHOD FOR SYNTHESIS OF BASIC BENT-SQUARES OF RANDOM ORDER
Directory of Open Access Journals (Sweden)
A. V. Sokolov
2016-01-01
Full Text Available The paper is devoted to the class construction of the most non-linear Boolean bent-functions of any length N = 2k (k = 2, 4, 6…, on the basis of their spectral representation – Agievich bent squares. These perfect algebraic constructions are used as a basis to build many new cryptographic primitives, such as generators of pseudo-random key sequences, crypto graphic S-boxes, etc. Bent-functions also find their application in the construction of C-codes in the systems with code division multiple access (CDMA to provide the lowest possible value of Peak-to-Average Power Ratio (PAPR k = 1, as well as for the construction of error-correcting codes and systems of orthogonal biphasic signals. All the numerous applications of bent-functions relate to the theory of their synthesis. However, regular methods for complete class synthesis of bent-functions of any length N = 2k are currently unknown. The paper proposes a regular synthesis method for the basic Agievich bent squares of any order n, based on a regular operator of dyadic shift. Classification for a complete set of spectral vectors of lengths (l = 8, 16, … based on a criterion of the maximum absolute value and set of absolute values of spectral components has been carried out in the paper. It has been shown that any spectral vector can be a basis for building bent squares. Results of the synthesis for the Agievich bent squares of order n = 8 have been generalized and it has been revealed that there are only 3 basic bent squares for this order, while the other 5 can be obtained with help the operation of step-cyclic shift. All the basic bent squares of order n = 16 have been synthesized that allows to construct the bent-functions of length N = 256. The obtained basic bent squares can be used either for direct synthesis of bent-functions and their practical application or for further research in order to synthesize new structures of bent squares of orders n = 16, 32, 64, …
Zhu, Xiaofeng; Suk, Heung-Il; Wang, Li; Lee, Seong-Whan; Shen, Dinggang
2017-05-01
In this paper, we focus on joint regression and classification for Alzheimer's disease diagnosis and propose a new feature selection method by embedding the relational information inherent in the observations into a sparse multi-task learning framework. Specifically, the relational information includes three kinds of relationships (such as feature-feature relation, response-response relation, and sample-sample relation), for preserving three kinds of the similarity, such as for the features, the response variables, and the samples, respectively. To conduct feature selection, we first formulate the objective function by imposing these three relational characteristics along with an ℓ 2,1 -norm regularization term, and further propose a computationally efficient algorithm to optimize the proposed objective function. With the dimension-reduced data, we train two support vector regression models to predict the clinical scores of ADAS-Cog and MMSE, respectively, and also a support vector classification model to determine the clinical label. We conducted extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to validate the effectiveness of the proposed method. Our experimental results showed the efficacy of the proposed method in enhancing the performances of both clinical scores prediction and disease status identification, compared to the state-of-the-art methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Stochastic methods of data modeling: application to the reconstruction of non-regular data
International Nuclear Information System (INIS)
Buslig, Leticia
2014-01-01
This research thesis addresses two issues or applications related to IRSN studies. The first one deals with the mapping of measurement data (the IRSN must regularly control the radioactivity level in France and, for this purpose, uses a network of sensors distributed among the French territory). The objective is then to predict, by means of reconstruction model which used observations, maps which will be used to inform the population. The second application deals with the taking of uncertainties into account in complex computation codes (the IRSN must perform safety studies to assess the risks of loss of integrity of a nuclear reactor in case of hypothetical accidents, and for this purpose, codes are used which simulate physical phenomena occurring within an installation). Some input parameters are not precisely known, and the author therefore tries to assess the impact of some uncertainties on simulated values. She notably aims at seeing whether variations of input parameters may push the system towards a behaviour which is very different from that obtained with parameters having a reference value, or even towards a state in which safety conditions are not met. The precise objective of this second part is then to a reconstruction model which is not costly (in terms of computation time) and to perform simulation in relevant areas (strong gradient areas, threshold overrun areas, so on). Two issues are then important: the choice of the approximation model and the construction of the experiment plan. The model is based on a kriging-type stochastic approach, and an important part of the work addresses the development of new numerical techniques of experiment planning. The first part proposes a generic criterion of adaptive planning, and reports its analysis and implementation. In the second part, an alternative to error variance addition is developed. Methodological developments are tested on analytic functions, and then applied to the cases of measurement mapping and
International Nuclear Information System (INIS)
Chetvertkov, Mikhail A.; Siddiqui, Farzan; Chetty, Indrin; Kumarasiri, Akila; Liu, Chang; Gordon, J. James; Kim, Jinkoo
2016-01-01
Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more
Energy Technology Data Exchange (ETDEWEB)
Chetvertkov, Mikhail A., E-mail: chetvertkov@wayne.edu [Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201 and Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Siddiqui, Farzan; Chetty, Indrin; Kumarasiri, Akila; Liu, Chang; Gordon, J. James [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Kim, Jinkoo [Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, New York 11794 (United States)
2016-10-15
Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more
Response matrix of regular moderator volumes with 3He detector using Monte Carlo methods
International Nuclear Information System (INIS)
Baltazar R, A.; Vega C, H. R.; Ortiz R, J. M.; Solis S, L. O.; Castaneda M, R.; Soto B, T. G.; Medina C, D.
2017-10-01
In the last three decades the uses of Monte Carlo methods, for the estimation of physical phenomena associated with the interaction of radiation with matter, have increased considerably. The reason is due to the increase in computing capabilities and the reduction of computer prices. Monte Carlo methods allow modeling and simulating real systems before their construction, saving time and costs. The interaction mechanisms between neutrons and matter are diverse and range from elastic dispersion to nuclear fission; to facilitate the neutrons detection, is necessary to moderate them until reaching electronic equilibrium with the medium at standard conditions of pressure and temperature, in this state the total cross section of the 3 He is large. The objective of the present work was to estimate the response matrix of a proportional detector of 3 He using regular volumes of moderator through Monte Carlo methods. Neutron monoenergetic sources with energies of 10 -9 to 20 MeV and polyethylene moderators of different sizes were used. The calculations were made with the MCNP5 code; the number of stories for each detector-moderator combination was large enough to obtain errors less than 1.5%. We found that for small moderators the highest response is obtained for lower energy neutrons, when increasing the moderator dimension we observe that the response decreases for neutrons of lower energy and increases for higher energy neutrons. The total sum of the responses of each moderator allows obtaining a response close to a constant function. (Author)
Implementing Adaptive Educational Methods with IMS Learning Design
Specht, Marcus; Burgos, Daniel
2006-01-01
Please, cite this publication as: Specht, M. & Burgos, D. (2006). Implementing Adaptive Educational Methods with IMS Learning Design. Proceedings of Adaptive Hypermedia. June, Dublin, Ireland. Retrieved June 30th, 2006, from http://dspace.learningnetworks.org
International Nuclear Information System (INIS)
Soussaline, Francoise; Cao, A.; Lecoq, G.
1981-06-01
An analytically exact solution to the attenuated tomographic operator is proposed. Such a technique called Regularizing Iterative Method (RIM) belongs to the iterative class of procedures where a priori knowledge can be introduced on the evaluation of the size and shape of the activity domain to be reconstructed, and on the exact attenuation distribution. The relaxation factor used is so named because it leads to fast convergence and provides noise filtering for a small number of iteractions. The effectiveness of such a method was tested in the Single Photon Emission Computed Tomography (SPECT) reconstruction problem, with the goal of precise correction for attenuation before quantitative study. Its implementation involves the use of a rotating scintillation camera based SPECT detector connected to a mini computer system. Mathematical simulations of cylindical uniformly attenuated phantoms indicate that in the range of a priori calculated relaxation factor a fast converging solution can always be found with a (contrast) accuracy of the order of 0.2 to 4% given that numerical errors and noise are or not, taken into account. The sensitivity of the (RIM) algorithm to errors in the size of the reconstructed object and in the value of the attenuation coefficient μ was studied, using the same simulation data. Extreme variations of +- 15% in these parameters will lead to errors of the order of +- 20% in the quantitative results. Physical phantoms representing a variety of geometrical situations were also studied
Regularization and computational methods for precise solution of perturbed orbit transfer problems
Woollands, Robyn Michele
The author has developed a suite of algorithms for solving the perturbed Lambert's problem in celestial mechanics. These algorithms have been implemented as a parallel computation tool that has broad applicability. This tool is composed of four component algorithms and each provides unique benefits for solving a particular type of orbit transfer problem. The first one utilizes a Keplerian solver (a-iteration) for solving the unperturbed Lambert's problem. This algorithm not only provides a "warm start" for solving the perturbed problem but is also used to identify which of several perturbed solvers is best suited for the job. The second algorithm solves the perturbed Lambert's problem using a variant of the modified Chebyshev-Picard iteration initial value solver that solves two-point boundary value problems. This method converges over about one third of an orbit and does not require a Newton-type shooting method and thus no state transition matrix needs to be computed. The third algorithm makes use of regularization of the differential equations through the Kustaanheimo-Stiefel transformation and extends the domain of convergence over which the modified Chebyshev-Picard iteration two-point boundary value solver will converge, from about one third of an orbit to almost a full orbit. This algorithm also does not require a Newton-type shooting method. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver to solve the perturbed two-impulse Lambert problem over multiple revolutions. The method of particular solutions is a shooting method but differs from the Newton-type shooting methods in that it does not require integration of the state transition matrix. The mathematical developments that underlie these four algorithms are derived in the chapters of this dissertation. For each of the algorithms, some orbit transfer test cases are included to provide insight on accuracy and efficiency of these
Void Structures in Regularly Patterned ZnO Nanorods Grown with the Hydrothermal Method
Directory of Open Access Journals (Sweden)
Yu-Feng Yao
2014-01-01
Full Text Available The void structures and related optical properties after thermal annealing with ambient oxygen in regularly patterned ZnO nanrorod (NR arrays grown with the hydrothermal method are studied. In increasing the thermal annealing temperature, void distribution starts from the bottom and extends to the top of an NR in the vertical (c-axis growth region. When the annealing temperature is higher than 400°C, void distribution spreads into the lateral (m-axis growth region. Photoluminescence measurement shows that the ZnO band-edge emission, in contrast to defect emission in the yellow-red range, is the strongest under the n-ZnO NR process conditions of 0.003 M in Ga-doping concentration and 300°C in thermal annealing temperature with ambient oxygen. Energy dispersive X-ray spectroscopy data indicate that the concentration of hydroxyl groups in the vertical growth region is significantly higher than that in the lateral growth region. During thermal annealing, hydroxyl groups are desorbed from the NR leaving anion vacancies for reacting with cation vacancies to form voids.
International Nuclear Information System (INIS)
Jiang Li; Shi Tielin; Xuan Jianping
2012-01-01
Generally, the vibration signals of fault bearings are non-stationary and highly nonlinear under complicated operating conditions. Thus, it's a big challenge to extract optimal features for improving classification and simultaneously decreasing feature dimension. Kernel Marginal Fisher analysis (KMFA) is a novel supervised manifold learning algorithm for feature extraction and dimensionality reduction. In order to avoid the small sample size problem in KMFA, we propose regularized KMFA (RKMFA). A simple and efficient intelligent fault diagnosis method based on RKMFA is put forward and applied to fault recognition of rolling bearings. So as to directly excavate nonlinear features from the original high-dimensional vibration signals, RKMFA constructs two graphs describing the intra-class compactness and the inter-class separability, by combining traditional manifold learning algorithm with fisher criteria. Therefore, the optimal low-dimensional features are obtained for better classification and finally fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories of bearings. The experimental results demonstrate that the proposed approach improves the fault classification performance and outperforms the other conventional approaches.
3D DC Resistivity Inversion with Topography Based on Regularized Conjugate Gradient Method
Directory of Open Access Journals (Sweden)
Jian-ke Qiang
2013-01-01
Full Text Available During the past decades, we observed a strong interest in 3D DC resistivity inversion and imaging with complex topography. In this paper, we implemented 3D DC resistivity inversion based on regularized conjugate gradient method with FEM. The Fréchet derivative is assembled with the electric potential in order to speed up the inversion process based on the reciprocity theorem. In this study, we also analyzed the sensitivity of the electric potential on the earth’s surface to the conductivity in each cell underground and introduced an optimized weighting function to produce new sensitivity matrix. The synthetic model study shows that this optimized weighting function is helpful to improve the resolution of deep anomaly. By incorporating topography into inversion, the artificial anomaly which is actually caused by topography can be eliminated. As a result, this algorithm potentially can be applied to process the DC resistivity data collected in mountain area. Our synthetic model study also shows that the convergence and computation speed are very stable and fast.
Adaptive design methods in clinical trials – a review
Directory of Open Access Journals (Sweden)
Chang Mark
2008-05-01
Full Text Available Abstract In recent years, the use of adaptive design methods in clinical research and development based on accrued data has become very popular due to its flexibility and efficiency. Based on adaptations applied, adaptive designs can be classified into three categories: prospective, concurrent (ad hoc, and retrospective adaptive designs. An adaptive design allows modifications made to trial and/or statistical procedures of ongoing clinical trials. However, it is a concern that the actual patient population after the adaptations could deviate from the originally target patient population and consequently the overall type I error (to erroneously claim efficacy for an infective drug rate may not be controlled. In addition, major adaptations of trial and/or statistical procedures of on-going trials may result in a totally different trial that is unable to address the scientific/medical questions the trial intends to answer. In this article, several commonly considered adaptive designs in clinical trials are reviewed. Impacts of ad hoc adaptations (protocol amendments, challenges in by design (prospective adaptations, and obstacles of retrospective adaptations are described. Strategies for the use of adaptive design in clinical development of rare diseases are discussed. Some examples concerning the development of Velcade intended for multiple myeloma and non-Hodgkin's lymphoma are given. Practical issues that are commonly encountered when implementing adaptive design methods in clinical trials are also discussed.
A multiresolution method for solving the Poisson equation using high order regularization
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Walther, Jens Honore
2016-01-01
We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches and regulari......We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches...... and regularized Green's functions corresponding to the difference in the spatial resolution between the patches. The full solution is obtained utilizing the linearity of the Poisson equation enabling super-position of solutions. We show that the multiresolution Poisson solver produces convergence rates...
Hesford, Andrew J.; Waag, Robert C.
2010-10-01
The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.
On the Adaptation of an Agile Information Systems Development Method
Aydin, M.N.; Harmsen, F.; van Slooten, C.; Stegwee, R.A.
2005-01-01
Little specific research has been conducted to date on the adaptation of agile information systems development (ISD) methods. This article presents the work practice in dealing with the adaptation of such a method in the ISD department of one of the leading financial institutes in Europe. Two forms
Adaptation of an Agile Information System Development Method
Aydin, M.N.; Harmsen, A.F.; van Hillegersberg, Jos; Stegwee, R.A.; Siau, K.
2007-01-01
Little specific research has been conducted to date on the adaptation of agile information systems development (ISD) methods. This chapter presents the work practice in dealing with the adaptation of such a method in the ISD department of one of the leading financial institutes in Europe. The
Adaptive integral equation methods in transport theory
International Nuclear Information System (INIS)
Kelley, C.T.
1992-01-01
In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented
International Nuclear Information System (INIS)
Zhong Jian; Huang Si-Xun; Fei Jian-Fang; Du Hua-Dong; Zhang Liang
2011-01-01
According to the conclusion of the simulation experiments in paper I, the Tikhonov regularization method is applied to cyclone wind retrieval with a rain-effect-considering geophysical model function (called GMF+Rain). The GMF+Rain model which is based on the NASA scatterometer-2 (NSCAT2) GMF is presented to compensate for the effects of rain on cyclone wind retrieval. With the multiple solution scheme (MSS), the noise of wind retrieval is effectively suppressed, but the influence of the background increases. It will cause a large wind direction error in ambiguity removal when the background error is large. However, this can be mitigated by the new ambiguity removal method of Tikhonov regularization as proved in the simulation experiments. A case study on an extratropical cyclone of hurricane observed with SeaWinds at 25-km resolution shows that the retrieved wind speed for areas with rain is in better agreement with that derived from the best track analysis for the GMF+Rain model, but the wind direction obtained with the two-dimensional variational (2DVAR) ambiguity removal is incorrect. The new method of Tikhonov regularization effectively improves the performance of wind direction ambiguity removal through choosing appropriate regularization parameters and the retrieved wind speed is almost the same as that obtained from the 2DVAR. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Point-splitting as a regularization method for λφ4-type vertices: Abelian case
International Nuclear Information System (INIS)
Moura-Melo, Winder A.; Helayel Neto, J.A.
1998-11-01
We obtained regularized Abelian Lagrangians containing λφ 4 -type vertices by means of a suitable point-splitting procedure. The calculation is developed in details for a general Lagrangian, whose fields (gauge and matter ones) satisfy certain conditions. We illustrates our results by considering some special cases, such as the Abelian Higgs, the (ψ-barψ) 2 and the Avdeev-Chizov (real rank-2 antisymmetric tensor as matter fields) models. We also discuss some features of the obtained Lagrangian such as the regularity and non-locality of its new integrating terms. Moreover, the resolution of the Abelian case may teach us some useful technical aspects when dealing with the non-Abelian one. (author)
International Nuclear Information System (INIS)
Lee, H.C.; Milgram, M.S.
1984-07-01
A hybrid of dimensional and analytic regularization is used to regulate and uncover a Meijer's G-function representation for a class of massless, divergent Feynman integrals in an axial gauge. Integrals in the covariant gauge belong to a subclass and those in the light-cone gauge are reached by analytic continuation. The method decouples the physical ultraviolet and infrared singularities from the spurious axial gauge singularity but regulates all three simultaneously. For the axial gauge singularity, the new analytic method is more powerful and elegant than the old principal value prescription, but the two methods yield identical infinite as well as regular parts. It is shown that dimensional and analytic regularization can be made equivalent, implying that the former method is free from spurious γ5-anomalies and the latter preserves gauge invariance. The hybrid method permits the evaluation of integrals containing arbritrary integer powers of logarithms in the integrand by differentiation with respect to exponents. Such 'exponent derivatives' generate the same set of 'polylogs' as that generated in multi-loop integrals in perturbation theories and may be useful for solving equations in nonperturbation theories. The close relation between the method of exponent derivatives and the prescription of 't Hooft and Veltman for treating overlapping divergencies is pointed out. It is demonstrated that both methods generate functions that are free from unrecognizable logarithmic infinite parts. Nonperturbation theories expressed in terms of exponent derivatives are thus renormalizable. Some intriguing connections between nonperturbation theories and nonintegral exponents are pointed out
A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer.
Hwang, Seong Jae; Collins, Maxwell D; Ravi, Sathya N; Ithapu, Vamsi K; Adluru, Nagesh; Johnson, Sterling C; Singh, Vikas
2015-12-01
Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation. Few other linear algebra problems have a more mature set of numerical routines available and many computer vision libraries leverage such tools extensively. However, the ability to call the underlying solver only as a "black box" can often become restrictive. Many 'human in the loop' settings in vision frequently exploit supervision from an expert, to the extent that the user can be considered a subroutine in the overall system. In other cases, there is additional domain knowledge, side or even partial information that one may want to incorporate within the formulation. In general, regularizing a (generalized) eigenvalue problem with such side information remains difficult. Motivated by these needs, this paper presents an optimization scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We start from an alternative formulation of GEP where the feasibility set of the model involves the Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for the resultant problem. We show how this general algorithm enables improved statistical analysis of brain imaging data where the regularizer is derived from other 'views' of the disease pathology, involving clinical measurements and other image-derived representations.
Designing adaptive intensive interventions using methods from engineering.
Lagoa, Constantino M; Bekiroglu, Korkut; Lanza, Stephanie T; Murphy, Susan A
2014-10-01
Adaptive intensive interventions are introduced, and new methods from the field of control engineering for use in their design are illustrated. A detailed step-by-step explanation of how control engineering methods can be used with intensive longitudinal data to design an adaptive intensive intervention is provided. The methods are evaluated via simulation. Simulation results illustrate how the designed adaptive intensive intervention can result in improved outcomes with less treatment by providing treatment only when it is needed. Furthermore, the methods are robust to model misspecification as well as the influence of unobserved causes. These new methods can be used to design adaptive interventions that are effective yet reduce participant burden. PsycINFO Database Record (c) 2014 APA, all rights reserved.
International Nuclear Information System (INIS)
Zhong Jian; Huang Si-Xun; Du Hua-Dong; Zhang Liang
2011-01-01
Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated ‘true’ NRCS is calculated from the simulated ‘true’ wind through the geophysical model function NSCAT2. The simulated background field is configured by adding a noise to the simulated ‘true’ wind with the non-divergence constraint. Also, the simulated ‘measured’ NRCS is formed by adding a noise to the simulated ‘true’ NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Examining Key Notions for Method Adaption
Aydin, Mehmet N.; Ralyté, Jolita; Brinkkemper, Sjaak; Henderson-Sellers, Brian
2007-01-01
It is a well-known fact that IS development methods are not used as prescribed in actual development projects. That is, every ISD method in a development project is subject to its modifications because its peculiarities and emerging situations cannot be understood adequately in a prescribed manner.
Adaptive and non-adaptive data hiding methods for grayscale images based on modulus function
Directory of Open Access Journals (Sweden)
Najme Maleki
2014-07-01
Full Text Available This paper presents two adaptive and non-adaptive data hiding methods for grayscale images based on modulus function. Our adaptive scheme is based on the concept of human vision sensitivity, so the pixels in edge areas than to smooth areas can tolerate much more changes without making visible distortion for human eyes. In our adaptive scheme, the average differencing value of four neighborhood pixels into a block via a threshold secret key determines whether current block is located in edge or smooth area. Pixels in the edge areas are embedded by Q-bit of secret data with a larger value of Q than that of pixels placed in smooth areas. Also in this scholar, we represent one non-adaptive data hiding algorithm. Our non-adaptive scheme, via an error reduction procedure, produces a high visual quality for stego-image. The proposed schemes present several advantages. 1-of aspects the embedding capacity and visual quality of stego-image are scalable. In other words, the embedding rate as well as the image quality can be scaled for practical applications 2-the high embedding capacity with minimal visual distortion can be achieved, 3-our methods require little memory space for secret data embedding and extracting phases, 4-secret keys have used to protect of the embedded secret data. Thus, level of security is high, 5-the problem of overflow or underflow does not occur. Experimental results indicated that the proposed adaptive scheme significantly is superior to the currently existing scheme, in terms of stego-image visual quality, embedding capacity and level of security and also our non-adaptive method is better than other non-adaptive methods, in view of stego-image quality. Results show which our adaptive algorithm can resist against the RS steganalysis attack.
Danish pedagogical methodics: adaption on Belarusian ground
DEFF Research Database (Denmark)
Andryieuski, Andrei; Skryhan, K.; Andryieuskaya, M.
2009-01-01
On the basis of our experience of studies and work at Danish universities and Belarusian State University we present a range of methodics that can be easily applied to Belarusian higher school education system to increase its efficiency....
Prot, Olivier; SantolíK, OndřEj; Trotignon, Jean-Gabriel; Deferaudy, Hervé
2006-06-01
An entropy regularization algorithm (ERA) has been developed to compute the wave-energy density from electromagnetic field measurements. It is based on the wave distribution function (WDF) concept. To assess its suitability and efficiency, the algorithm is applied to experimental data that has already been analyzed using other inversion techniques. The FREJA satellite data that is used consists of six spectral matrices corresponding to six time-frequency points of an ELF hiss-event spectrogram. The WDF analysis is performed on these six points and the results are compared with those obtained previously. A statistical stability analysis confirms the stability of the solutions. The WDF computation is fast and without any prespecified parameters. The regularization parameter has been chosen in accordance with the Morozov's discrepancy principle. The Generalized Cross Validation and L-curve criterions are then tentatively used to provide a fully data-driven method. However, these criterions fail to determine a suitable value of the regularization parameter. Although the entropy regularization leads to solutions that agree fairly well with those already published, some differences are observed, and these are discussed in detail. The main advantage of the ERA is to return the WDF that exhibits the largest entropy and to avoid the use of a priori models, which sometimes seem to be more accurate but without any justification.
Adaptive BDDC Deluxe Methods for H(curl)
Zampini, Stefano
2017-01-01
The work presents numerical results using adaptive BDDC deluxe methods for preconditioning the linear systems arising from finite element discretizations of the time-domain, quasi-static approximation of the Maxwell’s equations. The provided results
Sandhu, Ali Imran; Desmal, Abdulla; Bagci, Hakan
2016-01-01
A sparsity-regularized Born iterative method (BIM) is proposed for efficiently reconstructing two-dimensional piecewise-continuous inhomogeneous dielectric profiles. Such profiles are typically not spatially sparse, which reduces the efficiency of the sparsity-promoting regularization. To overcome this problem, scattered fields are represented in terms of the spatial derivative of the dielectric profile and reconstruction is carried out over samples of the dielectric profile's derivative. Then, like the conventional BIM, the nonlinear problem is iteratively converted into a sequence of linear problems (in derivative samples) and sparsity constraint is enforced on each linear problem using the thresholded Landweber iterations. Numerical results, which demonstrate the efficiency and accuracy of the proposed method in reconstructing piecewise-continuous dielectric profiles, are presented.
Sandhu, Ali Imran
2016-04-10
A sparsity-regularized Born iterative method (BIM) is proposed for efficiently reconstructing two-dimensional piecewise-continuous inhomogeneous dielectric profiles. Such profiles are typically not spatially sparse, which reduces the efficiency of the sparsity-promoting regularization. To overcome this problem, scattered fields are represented in terms of the spatial derivative of the dielectric profile and reconstruction is carried out over samples of the dielectric profile\\'s derivative. Then, like the conventional BIM, the nonlinear problem is iteratively converted into a sequence of linear problems (in derivative samples) and sparsity constraint is enforced on each linear problem using the thresholded Landweber iterations. Numerical results, which demonstrate the efficiency and accuracy of the proposed method in reconstructing piecewise-continuous dielectric profiles, are presented.
Sun, Qi; Fu, Shujun
2017-09-20
Fringe orientation is an important feature of fringe patterns and has a wide range of applications such as guiding fringe pattern filtering, phase unwrapping, and abstraction. Estimating fringe orientation is a basic task for subsequent processing of fringe patterns. However, various noise, singular and obscure points, and orientation data degeneration lead to inaccurate calculations of fringe orientation. Thus, to deepen the understanding of orientation estimation and to better guide orientation estimation in fringe pattern processing, some advanced gradient-field-based orientation estimation methods are compared and analyzed. At the same time, following the ideas of smoothing regularization and computing of bigger gradient fields, a regularized singular-value decomposition (RSVD) technique is proposed for fringe orientation estimation. To compare the performance of these gradient-field-based methods, quantitative results and visual effect maps of orientation estimation are given on simulated and real fringe patterns that demonstrate that the RSVD produces the best estimation results at a cost of relatively less time.
Adaptive upscaling with the dual mesh method
Energy Technology Data Exchange (ETDEWEB)
Guerillot, D.; Verdiere, S.
1997-08-01
The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.
Lestari, D.; Raharjo, D.; Bustamam, A.; Abdillah, B.; Widhianto, W.
2017-07-01
Dengue virus consists of 10 different constituent proteins and are classified into 4 major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering against 30 protein sequences of dengue virus taken from Virus Pathogen Database and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL) algorithm and then we analyze the result. By using Python program 3.4, R-MCL algorithm produces 8 clusters with more than one centroid in several clusters. The number of centroid shows the density level of interaction. Protein interactions that are connected in a tissue, form a complex protein that serves as a specific biological process unit. The analysis of result shows the R-MCL clustering produces clusters of dengue virus family based on the similarity role of their constituent protein, regardless of serotypes.
International Nuclear Information System (INIS)
Itagaki, Masafumi; Miyoshi, Yoshinori; Hirose, Hideyuki
1993-01-01
A procedure is presented for the determination of geometric buckling for regular polygons. A new computation technique, the multiple reciprocity boundary element method (MRBEM), has been applied to solve the one-group neutron diffusion equation. The main difficulty in applying the ordinary boundary element method (BEM) to neutron diffusion problems has been the need to compute a domain integral, resulting from the fission source. The MRBEM has been developed for transforming this type of domain integral into an equivalent boundary integral. The basic idea of the MRBEM is to apply repeatedly the reciprocity theorem (Green's second formula) using a sequence of higher order fundamental solutions. The MRBEM requires discretization of the boundary only rather than of the domain. This advantage is useful for extensive survey analyses of buckling for complex geometries. The results of survey analyses have indicated that the general form of geometric buckling is B g 2 = (a n /R c ) 2 , where R c represents the radius of the circumscribed circle of the regular polygon under consideration. The geometric constant A n depends on the type of regular polygon and takes the value of π for a square and 2.405 for a circle, an extreme case that has an infinite number of sides. Values of a n for a triangle, pentagon, hexagon, and octagon have been calculated as 4.190, 2.281, 2.675, and 2.547, respectively
Adaptive grouping for the higher-order multilevel fast multipole method
DEFF Research Database (Denmark)
Borries, Oscar Peter; Jørgensen, Erik; Meincke, Peter
2014-01-01
An alternative parameter-free adaptive approach for the grouping of the basis function patterns in the multilevel fast multipole method is presented, yielding significant memory savings compared to the traditional Octree grouping for most discretizations, particularly when using higher-order basis...... functions. Results from both a uniformly and nonuniformly meshed scatterer are presented, showing how the technique is worthwhile even for regular meshes, and demonstrating that there is no loss of accuracy in spite of the large reduction in memory requirements and the relatively low computational cost....
An Adaptive Reordered Method for Computing PageRank
Directory of Open Access Journals (Sweden)
Yi-Ming Bu
2013-01-01
Full Text Available We propose an adaptive reordered method to deal with the PageRank problem. It has been shown that one can reorder the hyperlink matrix of PageRank problem to calculate a reduced system and get the full PageRank vector through forward substitutions. This method can provide a speedup for calculating the PageRank vector. We observe that in the existing reordered method, the cost of the recursively reordering procedure could offset the computational reduction brought by minimizing the dimension of linear system. With this observation, we introduce an adaptive reordered method to accelerate the total calculation, in which we terminate the reordering procedure appropriately instead of reordering to the end. Numerical experiments show the effectiveness of this adaptive reordered method.
New adaptive sampling method in particle image velocimetry
International Nuclear Information System (INIS)
Yu, Kaikai; Xu, Jinglei; Tang, Lan; Mo, Jianwei
2015-01-01
This study proposes a new adaptive method to enable the number of interrogation windows and their positions in a particle image velocimetry (PIV) image interrogation algorithm to become self-adapted according to the seeding density. The proposed method can relax the constraint of uniform sampling rate and uniform window size commonly adopted in the traditional PIV algorithm. In addition, the positions of the sampling points are redistributed on the basis of the spring force generated by the sampling points. The advantages include control of the number of interrogation windows according to the local seeding density and smoother distribution of sampling points. The reliability of the adaptive sampling method is illustrated by processing synthetic and experimental images. The synthetic example attests to the advantages of the sampling method. Compared with that of the uniform interrogation technique in the experimental application, the spatial resolution is locally enhanced when using the proposed sampling method. (technical design note)
Directory of Open Access Journals (Sweden)
Shuang Liu
2018-01-01
Full Text Available In this paper, the eigenmode linear superposition (ELS method based on the regularization is used to discuss the distributions of all eigenmodes and the role of their instability to the intensity and structure change in TC-like vortex. Results show that the regularization approach can overcome the ill-posed problem occurring in solving mode weight coefficients as the ELS method are applied to analyze the impacts of dynamic instability on the intensity and structure change of TC-like vortex. The Generalized Cross-validation (GCV method and the L curve method are used to determine the regularization parameters, and the results of the two approaches are compared. It is found that the results based on the GCV method are closer to the given initial condition in the solution of the inverse problem of the vortex system. Then, the instability characteristic of the hollow vortex as the basic state are examined based on the linear barotropic shallow water equations. It is shown that the wavenumber distribution of system instability obtained from the ELS method is well consistent with that of the numerical analysis based on the norm mode. On the other hand, the evolution of the hollow vortex are discussed using the product of each eigenmode and its corresponding weight coefficient. Results show that the intensity and structure change of the system are mainly affected by the dynamic instability in the early stage of disturbance development, and the most unstable mode has a dominant role in the growth rate and the horizontal distribution of intense disturbance in the near-core region. Moreover, the wave structure of the most unstable mode possesses typical characteristics of mixed vortex Rossby-inertio-gravity waves (VRIGWs.
3D Inversion of Magnetic Data through Wavelet based Regularization Method
Directory of Open Access Journals (Sweden)
Maysam Abedi
2015-06-01
Full Text Available This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp boundaries of model parameters. A pre-selected basis namely wavelet can recover the region of smooth behaviour of susceptibility distribution while Haar or finite-difference (FD domains yield a solution with rough boundaries. Therefore, a regularizer function which can benefit from the advantages of both wavelets and Haar/FD operators in representation of the 3D magnetic susceptibility distributionwas chosen as a candidate for modeling magnetic anomalies. The optimum wavelet and parameter β which controls the weight of the two sparsifying operators were also considered. The algorithm assumed that there was no remanent magnetization and observed that magnetometry data represent only induced magnetization effect. The proposed approach is applied to a noise-corrupted synthetic data in order to demonstrate its suitability for 3D inversion of magnetic data. On obtaining satisfactory results, a case study pertaining to the ground based measurement of magnetic anomaly over a porphyry-Cu deposit located in Kerman providence of Iran. Now Chun deposit was presented to be 3D inverted. The low susceptibility in the constructed model coincides with the known location of copper ore mineralization.
Track and vertex reconstruction: From classical to adaptive methods
International Nuclear Information System (INIS)
Strandlie, Are; Fruehwirth, Rudolf
2010-01-01
This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.
Olafsen, Kåre S; Ulvund, Stein Erik; Torgersen, Anne Mari; Wentzel-Larsen, Tore; Smith, Lars; Moe, Vibeke
2018-03-01
There is a need for standardized measures of infant temperament to strengthen current practices in prevention and early intervention. The present study provides Norwegian data on the Cameron-Rice Infant Temperament Questionnaire (CRITQ; J.R. Cameron & D.C. Rice, 1986a), which comprises 46 items and is used within a U.S. health maintenance organization. The CRITQ was filled out by mothers and fathers at 6 and again at 12 months as part of a longitudinal study of mental health during the first years of life (the "Little in Norway" study, N = 1,041 families enrolled; V. Moe & L. Smith, 2010). Results showed that internal consistencies were comparable with U.S. The temperament dimensions of persistence, adaptability, and regularity had acceptable or close-to-acceptable reliabilities in the U.S. study as well as in this study, and also were unifactorial in confirmatory factor analysis. These dimensions are the focus in this article. Findings concerning parents' differential ratings of their infants on the three dimensions are reported, as is the stability of parents' ratings of temperament from 6 to 12 months. In addition, results on the relation between temperament and parenting stress are presented. The study suggests that temperamental adaptability, persistence, and regularity may be relevant when assessing infant behavior, and may be applied in systematic prevention trials for families with infants. The inclusion of concepts related to individual differences in response tendencies and regulatory efforts may broaden the understanding of parent-infant transactions, and thus enrich prevention and sensitizing interventions with the aim of assisting infants' development. © 2018 Michigan Association for Infant Mental Health.
Directory of Open Access Journals (Sweden)
Özkan Güner
2014-01-01
Full Text Available We apply the functional variable method, exp-function method, and (G′/G-expansion method to establish the exact solutions of the nonlinear fractional partial differential equation (NLFPDE in the sense of the modified Riemann-Liouville derivative. As a result, some new exact solutions for them are obtained. The results show that these methods are very effective and powerful mathematical tools for solving nonlinear fractional equations arising in mathematical physics. As a result, these methods can also be applied to other nonlinear fractional differential equations.
Capillary Electrophoresis Sensitivity Enhancement Based on Adaptive Moving Average Method.
Drevinskas, Tomas; Telksnys, Laimutis; Maruška, Audrius; Gorbatsova, Jelena; Kaljurand, Mihkel
2018-06-05
In the present work, we demonstrate a novel approach to improve the sensitivity of the "out of lab" portable capillary electrophoretic measurements. Nowadays, many signal enhancement methods are (i) underused (nonoptimal), (ii) overused (distorts the data), or (iii) inapplicable in field-portable instrumentation because of a lack of computational power. The described innovative migration velocity-adaptive moving average method uses an optimal averaging window size and can be easily implemented with a microcontroller. The contactless conductivity detection was used as a model for the development of a signal processing method and the demonstration of its impact on the sensitivity. The frequency characteristics of the recorded electropherograms and peaks were clarified. Higher electrophoretic mobility analytes exhibit higher-frequency peaks, whereas lower electrophoretic mobility analytes exhibit lower-frequency peaks. On the basis of the obtained data, a migration velocity-adaptive moving average algorithm was created, adapted, and programmed into capillary electrophoresis data-processing software. Employing the developed algorithm, each data point is processed depending on a certain migration time of the analyte. Because of the implemented migration velocity-adaptive moving average method, the signal-to-noise ratio improved up to 11 times for sampling frequency of 4.6 Hz and up to 22 times for sampling frequency of 25 Hz. This paper could potentially be used as a methodological guideline for the development of new smoothing algorithms that require adaptive conditions in capillary electrophoresis and other separation methods.
Regularization of DT-MR images using a successive Fermat median filtering method.
Kwon, Kiwoon; Kim, Dongyoun; Kim, Sunghee; Park, Insung; Jeong, Jaewon; Kim, Taehwan; Hong, Cheolpyo; Han, Bongsoo
2008-05-21
Tractography using diffusion tensor magnetic resonance imaging (DT-MRI) is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of greatest diffusion in the white matter of the brain. To reduce the noise in DT-MRI measurements, a tensor-valued median filter, which is reported to be denoising and structure preserving in the tractography, is applied. In this paper, we proposed the successive Fermat (SF) method, successively using Fermat point theory for a triangle contained in the two-dimensional plane, as a median filtering method. We discussed the error analysis and numerical study about the SF method for phantom and experimental data. By considering the computing time and the image quality aspects of the numerical study simultaneously, we showed that the SF method is much more efficient than the simple median (SM) and gradient descents (GD) methods.
Regularization of DT-MR images using a successive Fermat median filtering method
International Nuclear Information System (INIS)
Kwon, Kiwoon; Kim, Dongyoun; Kim, Sunghee; Park, Insung; Jeong, Jaewon; Kim, Taehwan; Hong, Cheolpyo; Han, Bongsoo
2008-01-01
Tractography using diffusion tensor magnetic resonance imaging (DT-MRI) is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of greatest diffusion in the white matter of the brain. To reduce the noise in DT-MRI measurements, a tensor-valued median filter, which is reported to be denoising and structure preserving in the tractography, is applied. In this paper, we proposed the successive Fermat (SF) method, successively using Fermat point theory for a triangle contained in the two-dimensional plane, as a median filtering method. We discussed the error analysis and numerical study about the SF method for phantom and experimental data. By considering the computing time and the image quality aspects of the numerical study simultaneously, we showed that the SF method is much more efficient than the simple median (SM) and gradient descents (GD) methods
Regularization of DT-MR images using a successive Fermat median filtering method
Energy Technology Data Exchange (ETDEWEB)
Kwon, Kiwoon; Kim, Dongyoun; Kim, Sunghee; Park, Insung; Jeong, Jaewon; Kim, Taehwan [Department of Biomedical Engineering, Yonsei University, Wonju, 220-710 (Korea, Republic of); Hong, Cheolpyo; Han, Bongsoo [Department of Radiological Science, Yonsei University, Wonju, 220-710 (Korea, Republic of)], E-mail: bshan@yonsei.ac.kr
2008-05-21
Tractography using diffusion tensor magnetic resonance imaging (DT-MRI) is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of greatest diffusion in the white matter of the brain. To reduce the noise in DT-MRI measurements, a tensor-valued median filter, which is reported to be denoising and structure preserving in the tractography, is applied. In this paper, we proposed the successive Fermat (SF) method, successively using Fermat point theory for a triangle contained in the two-dimensional plane, as a median filtering method. We discussed the error analysis and numerical study about the SF method for phantom and experimental data. By considering the computing time and the image quality aspects of the numerical study simultaneously, we showed that the SF method is much more efficient than the simple median (SM) and gradient descents (GD) methods.
The adaptive collision source method for discrete ordinates radiation transport
International Nuclear Information System (INIS)
Walters, William J.; Haghighat, Alireza
2017-01-01
Highlights: • A new adaptive quadrature method to solve the discrete ordinates transport equation. • The adaptive collision source (ACS) method splits the flux into n’th collided components. • Uncollided flux requires high quadrature; this is lowered with number of collisions. • ACS automatically applies appropriate quadrature order each collided component. • The adaptive quadrature is 1.5–4 times more efficient than uniform quadrature. - Abstract: A novel collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order used for each. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This method allows for an optimal use of processing power, by using a high order quadrature for the first iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and is referred to as the adaptive collision source (ACS) method. The ACS methodology has been implemented in the 3-D, parallel, multigroup discrete ordinates code TITAN. This code was tested on a several simple and complex fixed-source problems. The ACS implementation in TITAN has shown a reduction in computation time by a factor of 1.5–4 on the fixed-source test problems, for the same desired level of accuracy, as compared to the standard TITAN code.
Cockrell, C. R.
1989-01-01
Numerical solutions of the differential equation which describe the electric field within an inhomogeneous layer of permittivity, upon which a perpendicularly-polarized plane wave is incident, are considered. Richmond's method and the Runge-Kutta method are compared for linear and exponential profiles of permittivities. These two approximate solutions are also compared with the exact solutions.
Directory of Open Access Journals (Sweden)
Domingues M. O.
2013-12-01
Full Text Available We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.
Cultural adaptation and translation of measures: an integrated method.
Sidani, Souraya; Guruge, Sepali; Miranda, Joyal; Ford-Gilboe, Marilyn; Varcoe, Colleen
2010-04-01
Differences in the conceptualization and operationalization of health-related concepts may exist across cultures. Such differences underscore the importance of examining conceptual equivalence when adapting and translating instruments. In this article, we describe an integrated method for exploring conceptual equivalence within the process of adapting and translating measures. The integrated method involves five phases including selection of instruments for cultural adaptation and translation; assessment of conceptual equivalence, leading to the generation of a set of items deemed to be culturally and linguistically appropriate to assess the concept of interest in the target community; forward translation; back translation (optional); and pre-testing of the set of items. Strengths and limitations of the proposed integrated method are discussed. (c) 2010 Wiley Periodicals, Inc.
Adaptive Subband Filtering Method for MEMS Accelerometer Noise Reduction
Directory of Open Access Journals (Sweden)
Piotr PIETRZAK
2008-12-01
Full Text Available Silicon microaccelerometers can be considered as an alternative to high-priced piezoelectric sensors. Unfortunately, relatively high noise floor of commercially available MEMS (Micro-Electro-Mechanical Systems sensors limits the possibility of their usage in condition monitoring systems of rotating machines. The solution of this problem is the method of signal filtering described in the paper. It is based on adaptive subband filtering employing Adaptive Line Enhancer. For filter weights adaptation, two novel algorithms have been developed. They are based on the NLMS algorithm. Both of them significantly simplify its software and hardware implementation and accelerate the adaptation process. The paper also presents the software (Matlab and hardware (FPGA implementation of the proposed noise filter. In addition, the results of the performed tests are reported. They confirm high efficiency of the solution.
Energy Technology Data Exchange (ETDEWEB)
Li, L; Tan, S [Huazhong University of Science and Technology, Wuhan, Hubei (China); Lu, W [University of Maryland School of Medicine, Baltimore, MD (United States)
2015-06-15
Purpose: To propose a new variational method which couples image restoration with tumor segmentation for PET images using multiple regularizations. Methods: Partial volume effect (PVE) is a major degrading factor impacting tumor segmentation accuracy in PET imaging. The existing segmentation methods usually need to take prior calibrations to compensate PVE and they are highly system-dependent. Taking into account that image restoration and segmentation can promote each other and they are tightly coupled, we proposed a variational method to solve the two problems together. Our method integrated total variation (TV) semi-blind deconvolution and Mumford-Shah (MS) segmentation. The TV norm was used on edges to protect the edge information, and the L{sub 2} norm was used to avoid staircase effect in the no-edge area. The blur kernel was constrained to the Gaussian model parameterized by its variance and we assumed that the variances in the X-Y and Z directions are different. The energy functional was iteratively optimized by an alternate minimization algorithm. Segmentation performance was tested on eleven patients with non-Hodgkin’s lymphoma, and evaluated by Dice similarity index (DSI) and classification error (CE). For comparison, seven other widely used methods were also tested and evaluated. Results: The combination of TV and L{sub 2} regularizations effectively improved the segmentation accuracy. The average DSI increased by around 0.1 than using either the TV or the L{sub 2} norm. The proposed method was obviously superior to other tested methods. It has an average DSI and CE of 0.80 and 0.41, while the FCM method — the second best one — has only an average DSI and CE of 0.66 and 0.64. Conclusion: Coupling image restoration and segmentation can handle PVE and thus improves tumor segmentation accuracy in PET. Alternate use of TV and L2 regularizations can further improve the performance of the algorithm. This work was supported in part by National Natural
A parallel direct solver for the self-adaptive hp Finite Element Method
Paszyński, Maciej R.; Pardo, David; Torres-Verdí n, Carlos; Demkowicz, Leszek F.; Calo, Victor M.
2010-01-01
measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements
Final Report: Symposium on Adaptive Methods for Partial Differential Equations
Energy Technology Data Exchange (ETDEWEB)
Pernice, M.; Johnson, C.R.; Smith, P.J.; Fogelson, A.
1998-12-10
OAK-B135 Final Report: Symposium on Adaptive Methods for Partial Differential Equations. Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Spietz, Henrik J.; Walther, Jens Honore
2014-01-01
, unbounded particle-mesh based vortex method is used to simulate the instability, transition to turbulence and eventual destruction of a single vortex ring. From the simulation data a novel method on analyzing the dynamics of the enstrophy is presented based on the alignment of the vorticity vector...... with the principal axis of the strain rate tensor. We find that the dynamics of the enstrophy density is dominated by the local flow deformation and axis of rotation, which is used to infer some concrete tendencies related to the topology of the vorticity field....
Quantification of organ motion based on an adaptive image-based scale invariant feature method
Energy Technology Data Exchange (ETDEWEB)
Paganelli, Chiara [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133 (Italy); Peroni, Marta [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Paul Scherrer Institut, Zentrum für Protonentherapie, WMSA/C15, CH-5232 Villigen PSI (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, strada Campeggi 53, Pavia 27100 (Italy)
2013-11-15
Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT
Wavelet methods in multi-conjugate adaptive optics
International Nuclear Information System (INIS)
Helin, T; Yudytskiy, M
2013-01-01
The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory. (paper)
International Nuclear Information System (INIS)
Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist
2007-01-01
This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable
A comparative analysis of the EEDF obtained by Regularization and by Least square fit methods
International Nuclear Information System (INIS)
Gutierrez T, C.; Flores Ll, H.
2004-01-01
The second derived of the characteristic curve current-voltage (I - V) of a Langmuir probe (I - V) is numerically calculated using the Tikhonov method for to determine the distribution function of the electrons energy (EEDF). One comparison of the obtained EEDF and a fit by least square are discussed (LS). The I - V experimental curve is obtained in a plasma source in the electron cyclotron resonance (ECR) using a cylindrical probe. The parameters of plasma are determined of the EEDF by means of the Laframboise theory. For the case of the LS fit, the obtained results are similar to those obtained by the Tikhonov method, but in the first case the procedure is slow to achieve the best fit. (Author)
International Nuclear Information System (INIS)
Soussaline, F.; LeCoq, C.; Raynaud, C.; Kellershohn, C.
1982-09-01
The aim of this study is to evaluate the potential of the RIM technique when used in brain studies. The analytical Regulatorizing Iterative Method (RIM) is designed to provide fast and accurate reconstruction of tomographic images when non-uniform attenuation is to be accounted for. As indicated by phantom studies, this method improves the contrast and the signal-to-noise ratio as compared to those obtained with FBP (Filtered Back Projection) technique. Preliminary results obtained in brain studies using AMPI-123 (isopropil-amphetamine I-123) are very encouraging in terms of quantitative regional cellular activity. However, the clinical usefulness of this mathematically accurate reconstruction procedure is going to be demonstrated in our Institution, in comparing quantitative data in heart or liver studies where control values can be obtained
Kursun, Zerrin; Cali, Sanda; Sakarya, Sibel
2014-06-01
To evaluate the demand, efficacy, and satisfaction concerning the Standard Days Method(®) (SDM; a fertility awareness method) as an option presented among other contraceptive methods at regular service delivery settings. The survey group consisted of 993 women who presented at the primary care units in Umraniye District of Istanbul, Turkey, between 1 October 2006 and 31 March 2008, and started to use a new method. Women were enrolled until reaching a limit of 250 new users for each method, or expiration of the six-month registration period. Participants were followed for up to one year of method use. The characteristics of women who chose the SDM were similar to those of participants who opted for other methods. The most common reasons for selecting it were that it is natural and causes no side effects. Fifty-one percent used the SDM for the full year, compared to 71% who chose an intrauterine device (IUD). Continuation rates were significantly lower for all other methods. During the one-year follow-up period, 12% of SDM-, 7% of pill-, 7% of condom-, 3% of monthly injection-, 1% of quarterly injection-, and 0.5% of IUD users became pregnant. The SDM had relatively high continuation rates and relatively good levels of satisfaction among participants and their husbands. It should be mentioned among the routinely offered contraceptive methods.
Directory of Open Access Journals (Sweden)
Kuzmichev Andrey A.
2017-01-01
Full Text Available Due to the active step of urbanization and rapid development of industry the external appearance of buildings and architectural monuments of urban environment from visual ecology position requires special attention. Dust deposition by polluted atmospheric air is one of the key aspects of degradation of the facades of buildings. With the help of modern computer modeling methods it is possible to evaluate the impact of polluted atmospheric air on the external facades of the buildings in order to save them.
An Adaptively Accelerated Bayesian Deblurring Method with Entropy Prior
Directory of Open Access Journals (Sweden)
Yong-Hoon Kim
2008-05-01
Full Text Available The development of an efficient adaptively accelerated iterative deblurring algorithm based on Bayesian statistical concept has been reported. Entropy of an image has been used as a Ã¢Â€ÂœpriorÃ¢Â€Â distribution and instead of additive form, used in conventional acceleration methods an exponent form of relaxation constant has been used for acceleration. Thus the proposed method is called hereafter as adaptively accelerated maximum a posteriori with entropy prior (AAMAPE. Based on empirical observations in different experiments, the exponent is computed adaptively using first-order derivatives of the deblurred image from previous two iterations. This exponent improves speed of the AAMAPE method in early stages and ensures stability at later stages of iteration. In AAMAPE method, we also consider the constraint of the nonnegativity and flux conservation. The paper discusses the fundamental idea of the Bayesian image deblurring with the use of entropy as prior, and the analytical analysis of superresolution and the noise amplification characteristics of the proposed method. The experimental results show that the proposed AAMAPE method gives lower RMSE and higher SNR in 44% lesser iterations as compared to nonaccelerated maximum a posteriori with entropy prior (MAPE method. Moreover, AAMAPE followed by wavelet wiener filtering gives better result than the state-of-the-art methods.
On Self-Adaptive Method for General Mixed Variational Inequalities
Directory of Open Access Journals (Sweden)
Abdellah Bnouhachem
2008-01-01
Full Text Available We suggest and analyze a new self-adaptive method for solving general mixed variational inequalities, which can be viewed as an improvement of the method of (Noor 2003. Global convergence of the new method is proved under the same assumptions as Noor's method. Some preliminary computational results are given to illustrate the efficiency of the proposed method. Since the general mixed variational inequalities include general variational inequalities, quasivariational inequalities, and nonlinear (implicit complementarity problems as special cases, results proved in this paper continue to hold for these problems.
Adaptive decoupled power control method for inverter connected DG
DEFF Research Database (Denmark)
Sun, Xiaofeng; Tian, Yanjun; Chen, Zhe
2014-01-01
an adaptive droop control method based on online evaluation of power decouple matrix for inverter connected distributed generations in distribution system. Traditional decoupled power control is simply based on line impedance parameter, but the load characteristics also cause the power coupling, and alter...
Use of dynamic grid adaption in the ASWR-method
International Nuclear Information System (INIS)
Graf, U.; Romstedt, P.; Werner, W.
1985-01-01
A dynamic grid adaption method has been developed for use with the ASWR-method. The method automatically adapts the number and position of the spatial meshpoints as the solution of hyperbolic or parabolic vector partial differential equations progresses in time. The mesh selection algorithm is based on the minimization of the L 2 -norm of the spatial discretization error. The method permits accurate calculation of the evolution of inhomogenities like wave fronts, shock layers and other sharp transitions, while generally using a coarse computational grid. The number of required mesh points is significantly reduced, relative to a fixed Eulerian grid. Since the mesh selection algorithm is computationally inexpensive, a corresponding reduction of computing time results
Discrete linear canonical transform computation by adaptive method.
Zhang, Feng; Tao, Ran; Wang, Yue
2013-07-29
The linear canonical transform (LCT) describes the effect of quadratic phase systems on a wavefield and generalizes many optical transforms. In this paper, the computation method for the discrete LCT using the adaptive least-mean-square (LMS) algorithm is presented. The computation approaches of the block-based discrete LCT and the stream-based discrete LCT using the LMS algorithm are derived, and the implementation structures of these approaches by the adaptive filter system are considered. The proposed computation approaches have the inherent parallel structures which make them suitable for efficient VLSI implementations, and are robust to the propagation of possible errors in the computation process.
Panchromatic cooperative hyperspectral adaptive wide band deletion repair method
Jiang, Bitao; Shi, Chunyu
2018-02-01
In the hyperspectral data, the phenomenon of stripe deletion often occurs, which seriously affects the efficiency and accuracy of data analysis and application. Narrow band deletion can be directly repaired by interpolation, and this method is not ideal for wide band deletion repair. In this paper, an adaptive spectral wide band missing restoration method based on panchromatic information is proposed, and the effectiveness of the algorithm is verified by experiments.
An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism
DEFF Research Database (Denmark)
Zhang, Tian; Tremblay, Pier-Luc
2018-01-01
Adaptive laboratory evolution (ALE) is an approach enabling the development of novel characteristics in microbial strains via the application of a constant selection pressure. This method is also an efficient tool to acquire insights on molecular mechanisms responsible for specific phenotypes. ALE...... autotrophically and reducing CO2 into acetate more efficiently. Strains developed via this ALE method were also used to gain knowledge on the autotrophic metabolism of S. ovata as well as other acetogenic bacteria....
Method and system for environmentally adaptive fault tolerant computing
Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)
2010-01-01
A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.
Adaptive sampling method in deep-penetration particle transport problem
International Nuclear Information System (INIS)
Wang Ruihong; Ji Zhicheng; Pei Lucheng
2012-01-01
Deep-penetration problem has been one of the difficult problems in shielding calculation with Monte Carlo method for several decades. In this paper, a kind of particle transport random walking system under the emission point as a sampling station is built. Then, an adaptive sampling scheme is derived for better solution with the achieved information. The main advantage of the adaptive scheme is to choose the most suitable sampling number from the emission point station to obtain the minimum value of the total cost in the process of the random walk. Further, the related importance sampling method is introduced. Its main principle is to define the importance function due to the particle state and to ensure the sampling number of the emission particle is proportional to the importance function. The numerical results show that the adaptive scheme under the emission point as a station could overcome the difficulty of underestimation of the result in some degree, and the adaptive importance sampling method gets satisfied results as well. (authors)
An adaptive sampling and windowing interrogation method in PIV
Theunissen, R.; Scarano, F.; Riethmuller, M. L.
2007-01-01
This study proposes a cross-correlation based PIV image interrogation algorithm that adapts the number of interrogation windows and their size to the image properties and to the flow conditions. The proposed methodology releases the constraint of uniform sampling rate (Cartesian mesh) and spatial resolution (uniform window size) commonly adopted in PIV interrogation. Especially in non-optimal experimental conditions where the flow seeding is inhomogeneous, this leads either to loss of robustness (too few particles per window) or measurement precision (too large or coarsely spaced interrogation windows). Two criteria are investigated, namely adaptation to the local signal content in the image and adaptation to local flow conditions. The implementation of the adaptive criteria within a recursive interrogation method is described. The location and size of the interrogation windows are locally adapted to the image signal (i.e., seeding density). Also the local window spacing (commonly set by the overlap factor) is put in relation with the spatial variation of the velocity field. The viability of the method is illustrated over two experimental cases where the limitation of a uniform interrogation approach appears clearly: a shock-wave-boundary layer interaction and an aircraft vortex wake. The examples show that the spatial sampling rate can be adapted to the actual flow features and that the interrogation window size can be arranged so as to follow the spatial distribution of seeding particle images and flow velocity fluctuations. In comparison with the uniform interrogation technique, the spatial resolution is locally enhanced while in poorly seeded regions the level of robustness of the analysis (signal-to-noise ratio) is kept almost constant.
Final Report: Symposium on Adaptive Methods for Partial Differential Equations
Energy Technology Data Exchange (ETDEWEB)
Pernice, Michael; Johnson, Christopher R.; Smith, Philip J.; Fogelson, Aaron
1998-12-08
Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.
Garmroodi Asil, A.; Nakhaei Pour, A.; Mirzaei, Sh.
2018-04-01
In the present article, generalization performances of regularization network (RN) and optimize adaptive neuro-fuzzy inference system (ANFIS) are compared with a conventional software for prediction of heat transfer coefficient (HTC) as a function of superficial gas velocity (5-25 cm/s) and solid fraction (0-40 wt%) at different axial and radial locations. The networks were trained by resorting several sets of experimental data collected from a specific system of air/hydrocarbon liquid phase/silica particle in a slurry bubble column reactor (SBCR). A special convection HTC measurement probe was manufactured and positioned in an axial distance of 40 and 130 cm above the sparger at center and near the wall of SBCR. The simulation results show that both in-house RN and optimized ANFIS due to powerful noise filtering capabilities provide superior performances compared to the conventional software of MATLAB ANFIS and ANN toolbox. For the case of 40 and 130 cm axial distance from center of sparger, at constant superficial gas velocity of 25 cm/s, adding 40 wt% silica particles to liquid phase leads to about 66% and 69% increasing in HTC respectively. The HTC in the column center for all the cases studied are about 9-14% larger than those near the wall region.
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel
Adaptive [theta]-methods for pricing American options
Khaliq, Abdul Q. M.; Voss, David A.; Kazmi, Kamran
2008-12-01
We develop adaptive [theta]-methods for solving the Black-Scholes PDE for American options. By adding a small, continuous term, the Black-Scholes PDE becomes an advection-diffusion-reaction equation on a fixed spatial domain. Standard implementation of [theta]-methods would require a Newton-type iterative procedure at each time step thereby increasing the computational complexity of the methods. Our linearly implicit approach avoids such complications. We establish a general framework under which [theta]-methods satisfy a discrete version of the positivity constraint characteristic of American options, and numerically demonstrate the sensitivity of the constraint. The positivity results are established for the single-asset and independent two-asset models. In addition, we have incorporated and analyzed an adaptive time-step control strategy to increase the computational efficiency. Numerical experiments are presented for one- and two-asset American options, using adaptive exponential splitting for two-asset problems. The approach is compared with an iterative solution of the two-asset problem in terms of computational efficiency.
Optimal and adaptive methods of processing hydroacoustic signals (review)
Malyshkin, G. S.; Sidel'nikov, G. B.
2014-09-01
Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.
A NDVI assisted remote sensing image adaptive scale segmentation method
Zhang, Hong; Shen, Jinxiang; Ma, Yanmei
2018-03-01
Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.
HAM-Based Adaptive Multiscale Meshless Method for Burgers Equation
Directory of Open Access Journals (Sweden)
Shu-Li Mei
2013-01-01
Full Text Available Based on the multilevel interpolation theory, we constructed a meshless adaptive multiscale interpolation operator (MAMIO with the radial basis function. Using this operator, any nonlinear partial differential equations such as Burgers equation can be discretized adaptively in physical spaces as a nonlinear matrix ordinary differential equation. In order to obtain the analytical solution of the system of ODEs, the homotopy analysis method (HAM proposed by Shijun Liao was developed to solve the system of ODEs by combining the precise integration method (PIM which can be employed to get the analytical solution of linear system of ODEs. The numerical experiences show that HAM is not sensitive to the time step, and so the arithmetic error is mainly derived from the discrete in physical space.
Adaptive-mesh zoning by the equipotential method
Energy Technology Data Exchange (ETDEWEB)
Winslow, A.M.
1981-04-01
An adaptive mesh method is proposed for the numerical solution of differential equations which causes the mesh lines to move closer together in regions where higher resolution in some physical quantity T is desired. A coefficient D > 0 is introduced into the equipotential zoning equations, where D depends on the gradient of T . The equations are inverted, leading to nonlinear elliptic equations for the mesh coordinates with source terms which depend on the gradient of D. A functional form of D is proposed.
A novel adaptive force control method for IPMC manipulation
International Nuclear Information System (INIS)
Hao, Lina; Sun, Zhiyong; Su, Yunquan; Gao, Jianchao; Li, Zhi
2012-01-01
IPMC is a type of electro-active polymer material, also called artificial muscle, which can generate a relatively large deformation under a relatively low input voltage (generally speaking, less than 5 V), and can be implemented in a water environment. Due to these advantages, IPMC can be used in many fields such as biomimetics, service robots, bio-manipulation, etc. Until now, most existing methods for IPMC manipulation are displacement control not directly force control, however, under most conditions, the success rate of manipulations for tiny fragile objects is limited by the contact force, such as using an IPMC gripper to fix cells. Like most EAPs, a creep phenomenon exists in IPMC, of which the generated force will change with time and the creep model will be influenced by the change of the water content or other environmental factors, so a proper force control method is urgently needed. This paper presents a novel adaptive force control method (AIPOF control—adaptive integral periodic output feedback control), based on employing a creep model of which parameters are obtained by using the FRLS on-line identification method. The AIPOF control method can achieve an arbitrary pole configuration as long as the plant is controllable and observable. This paper also designs the POF and IPOF controller to compare their test results. Simulation and experiments of micro-force-tracking tests are carried out, with results confirming that the proposed control method is viable. (paper)
Successful adaptation of a research methods course in South America.
Tamariz, Leonardo; Vasquez, Diego; Loor, Cecilia; Palacio, Ana
2017-01-01
South America has low research productivity. The lack of a structured research curriculum is one of the barriers to conducting research. To report our experience adapting an active learning-based research methods curriculum to improve research productivity at a university in Ecuador. We used a mixed-method approach to test the adaptation of the research curriculum at Universidad Catolica Santiago de Guayaquil. The curriculum uses a flipped classroom and active learning approach to teach research methods. When adapted, it was longitudinal and had 16-hour programme of in-person teaching and a six-month follow-up online component. Learners were organized in theme groups according to interest, and each group had a faculty leader. Our primary outcome was research productivity, which was measured by the succesful presentation of the research project at a national meeting, or publication in a peer-review journal. Our secondary outcomes were knowledge and perceived competence before and after course completion. We conducted qualitative interviews of faculty members and students to evaluate themes related to participation in research. Fifty university students and 10 faculty members attended the course. We had a total of 15 groups. Both knowledge and perceived competence increased by 17 and 18 percentage points, respectively. The presentation or publication rate for the entire group was 50%. The qualitative analysis showed that a lack of research culture and curriculum were common barriers to research. A US-based curriculum can be successfully adapted in low-middle income countries. A research curriculum aids in achieving pre-determined milestones. UCSG: Universidad Catolica Santiago de Guayaquil; UM: University of Miami.
A multilevel adaptive reaction-splitting method for SRNs
Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro
2016-01-01
In [5], we present a novel multilevel Monte Carlo method for kinetic simulation of stochastic reaction networks (SRNs) specifically designed for systems in which the set of reaction channels can be adaptively partitioned into two subsets characterized by either high or low activity. To estimate expected values of observables of the system, our method bounds the global computational error to be below a prescribed tolerance, TOL, within a given confidence level. This is achieved with a computational complexity of order O(TOL-2). We also present a novel control variate technique which may dramatically reduce the variance of the coarsest level at a negligible computational cost.
Adaptive BDDC Deluxe Methods for H(curl)
Zampini, Stefano
2017-03-17
The work presents numerical results using adaptive BDDC deluxe methods for preconditioning the linear systems arising from finite element discretizations of the time-domain, quasi-static approximation of the Maxwell’s equations. The provided results, obtained using the BDDC implementation of the PETSc library, show that these methods are poly-logarithmic in the polynomial degree of the Nédélec elements of first and second kind, and robust with respect to arbitrary distributions of the magnetic permeability and the conductivity of the medium.
A multilevel adaptive reaction-splitting method for SRNs
Moraes, Alvaro
2016-01-06
In [5], we present a novel multilevel Monte Carlo method for kinetic simulation of stochastic reaction networks (SRNs) specifically designed for systems in which the set of reaction channels can be adaptively partitioned into two subsets characterized by either high or low activity. To estimate expected values of observables of the system, our method bounds the global computational error to be below a prescribed tolerance, TOL, within a given confidence level. This is achieved with a computational complexity of order O(TOL-2). We also present a novel control variate technique which may dramatically reduce the variance of the coarsest level at a negligible computational cost.
3D CSEM inversion based on goal-oriented adaptive finite element method
Zhang, Y.; Key, K.
2016-12-01
We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with
Computer prediction of subsurface radionuclide transport: an adaptive numerical method
International Nuclear Information System (INIS)
Neuman, S.P.
1983-01-01
Radionuclide transport in the subsurface is often modeled with the aid of the advection-dispersion equation. A review of existing computer methods for the solution of this equation shows that there is need for improvement. To answer this need, a new adaptive numerical method is proposed based on an Eulerian-Lagrangian formulation. The method is based on a decomposition of the concentration field into two parts, one advective and one dispersive, in a rigorous manner that does not leave room for ambiguity. The advective component of steep concentration fronts is tracked forward with the aid of moving particles clustered around each front. Away from such fronts the advection problem is handled by an efficient modified method of characteristics called single-step reverse particle tracking. When a front dissipates with time, its forward tracking stops automatically and the corresponding cloud of particles is eliminated. The dispersion problem is solved by an unconventional Lagrangian finite element formulation on a fixed grid which involves only symmetric and diagonal matrices. Preliminary tests against analytical solutions of ne- and two-dimensional dispersion in a uniform steady state velocity field suggest that the proposed adaptive method can handle the entire range of Peclet numbers from 0 to infinity, with Courant numbers well in excess of 1
Adaptive implicit method for thermal compositional reservoir simulation
Energy Technology Data Exchange (ETDEWEB)
Agarwal, A.; Tchelepi, H.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Stanford Univ., Palo Alto (United States)
2008-10-15
As the global demand for oil increases, thermal enhanced oil recovery techniques are becoming increasingly important. Numerical reservoir simulation of thermal methods such as steam assisted gravity drainage (SAGD) is complex and requires a solution of nonlinear mass and energy conservation equations on a fine reservoir grid. The most currently used technique for solving these equations is the fully IMplicit (FIM) method which is unconditionally stable, allowing for large timesteps in simulation. However, it is computationally expensive. On the other hand, the method known as IMplicit pressure explicit saturations, temperature and compositions (IMPEST) is computationally inexpensive, but it is only conditionally stable and restricts the timestep size. To improve the balance between the timestep size and computational cost, the thermal adaptive IMplicit (TAIM) method uses stability criteria and a switching algorithm, where some simulation variables such as pressure, saturations, temperature, compositions are treated implicitly while others are treated with explicit schemes. This presentation described ongoing research on TAIM with particular reference to thermal displacement processes such as the stability criteria that dictate the maximum allowed timestep size for simulation based on the von Neumann linear stability analysis method; the switching algorithm that adapts labeling of reservoir variables as implicit or explicit as a function of space and time; and, complex physical behaviors such as heat and fluid convection, thermal conduction and compressibility. Key numerical results obtained by enhancing Stanford's General Purpose Research Simulator (GPRS) were also presented along with a list of research challenges. 14 refs., 2 tabs., 11 figs., 1 appendix.
Czech Academy of Sciences Publication Activity Database
Branda, Martin; Bucher, M.; Červinka, Michal; Schwartz, A.
2018-01-01
Roč. 70, č. 2 (2018), s. 503-530 ISSN 0926-6003 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : Cardinality constraints * Regularization method * Scholtes regularization * Strong stationarity * Sparse portfolio optimization * Robust portfolio optimization Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 1.520, year: 2016 http://library.utia.cas.cz/separaty/2018/MTR/branda-0489264.pdf
A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.
Caldas, Rafael; Mundt, Marion; Potthast, Wolfgang; Buarque de Lima Neto, Fernando; Markert, Bernd
2017-09-01
The conventional methods to assess human gait are either expensive or complex to be applied regularly in clinical practice. To reduce the cost and simplify the evaluation, inertial sensors and adaptive algorithms have been utilized, respectively. This paper aims to summarize studies that applied adaptive also called artificial intelligence (AI) algorithms to gait analysis based on inertial sensor data, verifying if they can support the clinical evaluation. Articles were identified through searches of the main databases, which were encompassed from 1968 to October 2016. We have identified 22 studies that met the inclusion criteria. The included papers were analyzed due to their data acquisition and processing methods with specific questionnaires. Concerning the data acquisition, the mean score is 6.1±1.62, what implies that 13 of 22 papers failed to report relevant outcomes. The quality assessment of AI algorithms presents an above-average rating (8.2±1.84). Therefore, AI algorithms seem to be able to support gait analysis based on inertial sensor data. Further research, however, is necessary to enhance and standardize the application in patients, since most of the studies used distinct methods to evaluate healthy subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Highly accurate adaptive TOF determination method for ultrasonic thickness measurement
Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing
2018-04-01
Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.
A convergent blind deconvolution method for post-adaptive-optics astronomical imaging
International Nuclear Information System (INIS)
Prato, M; Camera, A La; Bertero, M; Bonettini, S
2013-01-01
In this paper, we propose a blind deconvolution method which applies to data perturbed by Poisson noise. The objective function is a generalized Kullback–Leibler (KL) divergence, depending on both the unknown object and unknown point spread function (PSF), without the addition of regularization terms; constrained minimization, with suitable convex constraints on both unknowns, is considered. The problem is non-convex and we propose to solve it by means of an inexact alternating minimization method, whose global convergence to stationary points of the objective function has been recently proved in a general setting. The method is iterative and each iteration, also called outer iteration, consists of alternating an update of the object and the PSF by means of a fixed number of iterations, also called inner iterations, of the scaled gradient projection (SGP) method. Therefore, the method is similar to other proposed methods based on the Richardson–Lucy (RL) algorithm, with SGP replacing RL. The use of SGP has two advantages: first, it allows one to prove global convergence of the blind method; secondly, it allows the introduction of different constraints on the object and the PSF. The specific constraint on the PSF, besides non-negativity and normalization, is an upper bound derived from the so-called Strehl ratio (SR), which is the ratio between the peak value of an aberrated versus a perfect wavefront. Therefore, a typical application, but not a unique one, is to the imaging of modern telescopes equipped with adaptive optics systems for the partial correction of the aberrations due to atmospheric turbulence. In the paper, we describe in detail the algorithm and we recall the results leading to its convergence. Moreover, we illustrate its effectiveness by means of numerical experiments whose results indicate that the method, pushed to convergence, is very promising in the reconstruction of non-dense stellar clusters. The case of more complex astronomical targets
Vested Madsen, Matias; Macario, Alex; Yamamoto, Satoshi; Tanaka, Pedro
2016-06-01
In this study, we examined the regularly scheduled, formal teaching sessions in a single anesthesiology residency program to (1) map the most common primary instructional methods, (2) map the use of 10 known teaching techniques, and (3) assess if residents scored sessions that incorporated active learning as higher quality than sessions with little or no verbal interaction between teacher and learner. A modified Delphi process was used to identify useful teaching techniques. A representative sample of each of the formal teaching session types was mapped, and residents anonymously completed a 5-question written survey rating the session. The most common primary instructional methods were computer slides-based classroom lectures (66%), workshops (15%), simulations (5%), and journal club (5%). The number of teaching techniques used per formal teaching session averaged 5.31 (SD, 1.92; median, 5; range, 0-9). Clinical applicability (85%) and attention grabbers (85%) were the 2 most common teaching techniques. Thirty-eight percent of the sessions defined learning objectives, and one-third of sessions engaged in active learning. The overall survey response rate equaled 42%, and passive sessions had a mean score of 8.44 (range, 5-10; median, 9; SD, 1.2) compared with a mean score of 8.63 (range, 5-10; median, 9; SD, 1.1) for active sessions (P = 0.63). Slides-based classroom lectures were the most common instructional method, and faculty used an average of 5 known teaching techniques per formal teaching session. The overall education scores of the sessions as rated by the residents were high.
ECG-derived respiration methods: adapted ICA and PCA.
Tiinanen, Suvi; Noponen, Kai; Tulppo, Mikko; Kiviniemi, Antti; Seppänen, Tapio
2015-05-01
Respiration is an important signal in early diagnostics, prediction, and treatment of several diseases. Moreover, a growing trend toward ambulatory measurements outside laboratory environments encourages developing indirect measurement methods such as ECG derived respiration (EDR). Recently, decomposition techniques like principal component analysis (PCA), and its nonlinear version, kernel PCA (KPCA), have been used to derive a surrogate respiration signal from single-channel ECG. In this paper, we propose an adapted independent component analysis (AICA) algorithm to obtain EDR signal, and extend the normal linear PCA technique based on the best principal component (PC) selection (APCA, adapted PCA) to improve its performance further. We also demonstrate that the usage of smoothing spline resampling and bandpass-filtering improve the performance of all EDR methods. Compared with other recent EDR methods using correlation coefficient and magnitude squared coherence, the proposed AICA and APCA yield a statistically significant improvement with correlations 0.84, 0.82, 0.76 and coherences 0.90, 0.91, 0.85 between reference respiration and AICA, APCA and KPCA, respectively. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Gil-Cacho, Jose M.; van Waterschoot, Toon; Moonen, Marc
2014-01-01
to the FDAF-PEM-AFROW algorithm. We show that FDAF-PEM-AFROW is by construction related to the best linear unbiased estimate (BLUE) of the echo path. We depart from this framework to show an improvement in performance with respect to other adaptive filters minimizing the BLUE criterion, namely the PEM......In this paper, we propose a new framework to tackle the double-talk (DT) problem in acoustic echo cancellation (AEC). It is based on a frequency-domain adaptive filter (FDAF) implementation of the so-called prediction error method adaptive filtering using row operations (PEM-AFROW) leading...... regularization (VR) algorithms. The FDAF-PEM-AFROW versions significantly outperform the original versions in every simulation. In terms of computational complexity, the FDAF-PEM-AFROW versions are themselves about two orders of magnitude cheaper than the original versions....
A Fast Adaptive Receive Antenna Selection Method in MIMO System
Directory of Open Access Journals (Sweden)
Chaowei Wang
2013-01-01
Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.
A multilevel adaptive reaction-splitting method for SRNs
Moraes, Alvaro
2015-01-07
In this work, we present a novel multilevel Monte Carlo method for kinetic simulation of stochastic reaction networks specifically designed for systems in which the set of reaction channels can be adaptively partitioned into two subsets characterized by either “high” or “low” activity. To estimate expected values of observables of the system, our method bounds the global computational error to be below a prescribed tolerance, within a given confidence level. This is achieved with a computational complexity of order O (TOL-2).We also present a novel control variate technique which may dramatically reduce the variance of the coarsest level at a negligible computational cost. Our numerical examples show substantial gains with respect to the standard Stochastic Simulation Algorithm (SSA) by Gillespie and also our previous hybrid Chernoff tau-leap method.
Multiple centroid method to evaluate the adaptability of alfalfa genotypes
Directory of Open Access Journals (Sweden)
Moysés Nascimento
2015-02-01
Full Text Available This study aimed to evaluate the efficiency of multiple centroids to study the adaptability of alfalfa genotypes (Medicago sativa L.. In this method, the genotypes are compared with ideotypes defined by the bissegmented regression model, according to the researcher's interest. Thus, genotype classification is carried out as determined by the objective of the researcher and the proposed recommendation strategy. Despite the great potential of the method, it needs to be evaluated under the biological context (with real data. In this context, we used data on the evaluation of dry matter production of 92 alfalfa cultivars, with 20 cuttings, from an experiment in randomized blocks with two repetitions carried out from November 2004 to June 2006. The multiple centroid method proved efficient for classifying alfalfa genotypes. Moreover, it showed no unambiguous indications and provided that ideotypes were defined according to the researcher's interest, facilitating data interpretation.
MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.
Tuta, Jure; Juric, Matjaz B
2018-03-24
This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.
MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method
Directory of Open Access Journals (Sweden)
Jure Tuta
2018-03-01
Full Text Available This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method, a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.. Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.
Adaptive designs based on the truncated product method
Directory of Open Access Journals (Sweden)
Neuhäuser Markus
2005-09-01
Full Text Available Abstract Background Adaptive designs are becoming increasingly important in clinical research. One approach subdivides the study into several (two or more stages and combines the p-values of the different stages using Fisher's combination test. Methods Alternatively to Fisher's test, the recently proposed truncated product method (TPM can be applied to combine the p-values. The TPM uses the product of only those p-values that do not exceed some fixed cut-off value. Here, these two competing analyses are compared. Results When an early termination due to insufficient effects is not appropriate, such as in dose-response analyses, the probability to stop the trial early with the rejection of the null hypothesis is increased when the TPM is applied. Therefore, the expected total sample size is decreased. This decrease in the sample size is not connected with a loss in power. The TPM turns out to be less advantageous, when an early termination of the study due to insufficient effects is possible. This is due to a decrease of the probability to stop the trial early. Conclusion It is recommended to apply the TPM rather than Fisher's combination test whenever an early termination due to insufficient effects is not suitable within the adaptive design.
A parallel direct solver for the self-adaptive hp Finite Element Method
Paszyński, Maciej R.
2010-03-01
In this paper we present a new parallel multi-frontal direct solver, dedicated for the hp Finite Element Method (hp-FEM). The self-adaptive hp-FEM generates in a fully automatic mode, a sequence of hp-meshes delivering exponential convergence of the error with respect to the number of degrees of freedom (d.o.f.) as well as the CPU time, by performing a sequence of hp refinements starting from an arbitrary initial mesh. The solver constructs an initial elimination tree for an arbitrary initial mesh, and expands the elimination tree each time the mesh is refined. This allows us to keep track of the order of elimination for the solver. The solver also minimizes the memory usage, by de-allocating partial LU factorizations computed during the elimination stage of the solver, and recomputes them for the backward substitution stage, by utilizing only about 10% of the computational time necessary for the original computations. The solver has been tested on 3D Direct Current (DC) borehole resistivity measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements of various sizes and polynomial orders of approximation varying from p = 1 to p = 9. From the presented experiments it follows that the parallel solver scales well up to the maximum number of utilized processors. The limit for the solver scalability is the maximum sequential part of the algorithm: the computations of the partial LU factorizations over the longest path, coming from the root of the elimination tree down to the deepest leaf. © 2009 Elsevier Inc. All rights reserved.
Numerical and adaptive grid methods for ideal magnetohydrodynamics
Loring, Burlen
2008-02-01
In this thesis numerical finite difference methods for ideal magnetohydrodynamics(MHD) are investigated. A review of the relevant physics, essential for interpreting the results of numerical solutions and constructing validation cases, is presented. This review includes a discusion of the propagation of small amplitude waves in the MHD system as well as a thorough discussion of MHD shocks, contacts and rarefactions and how they can be piece together to obtain a solutions to the MHD Riemann problem. Numerical issues relevant to the MHD system such as: the loss of nonlinear numerical stability in the presence of discontinuous solutions, the introduction of spurious forces due to the growth of the divergence of the magnetic flux density, the loss of pressure positivity, and the effects of non-conservative numerical methods are discussed, along with the practical approaches which can be used to remedy or minimize the negative consequences of each. The use of block structured adaptive mesh refinement is investigated in the context of a divergence free MHD code. A new method for conserving magnetic flux across AMR grid interfaces is developed and a detailed discussion of our implementation of this method using the CHOMBO AMR framework is given. A preliminary validation of the new method for conserving magnetic flux density across AMR grid interfaces illustrates that the method works. Finally a number of code validation cases are examined spurring a discussion of the strengths and weaknesses of the numerics employed.
Adaptive discontinuous Galerkin methods for non-linear reactive flows
Uzunca, Murat
2016-01-01
The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence. As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.
International Nuclear Information System (INIS)
Nam, H; Guo, M; Lee, K; Li, R; Xing, L; Gao, H
2014-01-01
Purpose: Inspired by compressive sensing, sparsity regularized iterative reconstruction method has been extensively studied. However, its utility pertinent to multislice helical 4D CT for radiotherapy with respect to imaging quality, dose, and time has not been thoroughly addressed. As the beginning of such an investigation, this work carries out the initial comparison of reconstructed imaging quality between sparsity regularized iterative method and analytic method through static phantom studies using a state-of-art 128-channel multi-slice Siemens helical CT scanner. Methods: In our iterative method, tensor framelet (TF) is chosen as the regularization method for its superior performance from total variation regularization in terms of reduced piecewise-constant artifacts and improved imaging quality that has been demonstrated in our prior work. On the other hand, X-ray transforms and its adjoints are computed on-the-fly through GPU implementation using our previous developed fast parallel algorithms with O(1) complexity per computing thread. For comparison, both FDK (approximate analytic method) and Katsevich algorithm (exact analytic method) are used for multislice helical CT image reconstruction. Results: The phantom experimental data with different imaging doses were acquired using a state-of-art 128-channel multi-slice Siemens helical CT scanner. The reconstructed image quality was compared between TF-based iterative method, FDK and Katsevich algorithm with the quantitative analysis for characterizing signal-to-noise ratio, image contrast, and spatial resolution of high-contrast and low-contrast objects. Conclusion: The experimental results suggest that our tensor framelet regularized iterative reconstruction algorithm improves the helical CT imaging quality from FDK and Katsevich algorithm for static experimental phantom studies that have been performed
[The Confusion Assessment Method: Transcultural adaptation of a French version].
Antoine, V; Belmin, J; Blain, H; Bonin-Guillaume, S; Goldsmith, L; Guerin, O; Kergoat, M-J; Landais, P; Mahmoudi, R; Morais, J A; Rataboul, P; Saber, A; Sirvain, S; Wolfklein, G; de Wazieres, B
2018-04-03
The Confusion Assessment Method (CAM) is a validated key tool in clinical practice and research programs to diagnose delirium and assess its severity. There is no validated French version of the CAM training manual and coding guide (Inouye SK). The aim of this study was to establish a consensual French version of the CAM and its manual. Cross-cultural adaptation to achieve equivalence between the original version and a French adapted version of the CAM manual. A rigorous process was conducted including control of cultural adequacy of the tool's components, double forward and back translations, reconciliation, expert committee review (including bilingual translators with different nationalities, a linguist, highly qualified clinicians, methodologists) and pretesting. A consensual French version of the CAM was achieved. Implementation of the CAM French version in daily clinical practice will enable optimal diagnosis of delirium diagnosis and enhance communication between health professionals in French speaking countries. Validity and psychometric properties are being tested in a French multicenter cohort, opening up new perspectives for improved quality of care and research programs in French speaking countries. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Adaptive and dynamic meshing methods for numerical simulations
Acikgoz, Nazmiye
-hoc application of the simulated annealing technique, which improves the likelihood of removing poor elements from the grid. Moreover, a local implementation of the simulated annealing is proposed to reduce the computational cost. Many challenging multi-physics and multi-field problems that are unsteady in nature are characterized by moving boundaries and/or interfaces. When the boundary displacements are large, which typically occurs when implicit time marching procedures are used, degenerate elements are easily formed in the grid such that frequent remeshing is required. To deal with this problem, in the second part of this work, we propose a new r-adaptation methodology. The new technique is valid for both simplicial (e.g., triangular, tet) and non-simplicial (e.g., quadrilateral, hex) deforming grids that undergo large imposed displacements at their boundaries. A two- or three-dimensional grid is deformed using a network of linear springs composed of edge springs and a set of virtual springs. The virtual springs are constructed in such a way as to oppose element collapsing. This is accomplished by confining each vertex to its ball through springs that are attached to the vertex and its projection on the ball entities. The resulting linear problem is solved using a preconditioned conjugate gradient method. The new method is compared with the classical spring analogy technique in two- and three-dimensional examples, highlighting the performance improvements achieved by the new method. Meshes are an important part of numerical simulations. Depending on the geometry and flow conditions, the most suitable mesh for each particular problem is different. Meshes are usually generated by either using a suitable software package or solving a PDE. In both cases, engineering intuition plays a significant role in deciding where clusterings should take place. In addition, for unsteady problems, the gradients vary for each time step, which requires frequent remeshing during simulations
A method of camera calibration with adaptive thresholding
Gao, Lei; Yan, Shu-hua; Wang, Guo-chao; Zhou, Chun-lei
2009-07-01
In order to calculate the parameters of the camera correctly, we must figure out the accurate coordinates of the certain points in the image plane. Corners are the important features in the 2D images. Generally speaking, they are the points that have high curvature and lie in the junction of different brightness regions of images. So corners detection has already widely used in many fields. In this paper we use the pinhole camera model and SUSAN corner detection algorithm to calibrate the camera. When using the SUSAN corner detection algorithm, we propose an approach to retrieve the gray difference threshold, adaptively. That makes it possible to pick up the right chessboard inner comers in all kinds of gray contrast. The experiment result based on this method was proved to be feasible.
An adaptive finite element method for steady and transient problems
International Nuclear Information System (INIS)
Benner, R.E. Jr.; Davis, H.T.; Scriven, L.E.
1987-01-01
Distributing integral error uniformly over variable subdomains, or finite elements, is an attractive criterion by which to subdivide a domain for the Galerkin/finite element method when localized steep gradients and high curvatures are to be resolved. Examples are fluid interfaces, shock fronts and other internal layers, as well as fluid mechanical and other boundary layers, e.g. thin-film states at solid walls. The uniform distribution criterion is developed into an adaptive technique for one-dimensional problems. Nodal positions can be updated simultaneously with nodal values during Newton iteration, but it is usually better to adopt nearly optimal nodal positions during Newton iteration upon nodal values. Three illustrative problems are solved: steady convection with diffusion, gradient theory of fluid wetting on a solid surface and Buckley-Leverett theory of two phase Darcy flow in porous media
Adaptive mesh refinement and adjoint methods in geophysics simulations
Burstedde, Carsten
2013-04-01
It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times
Adaptive Elastic Net for Generalized Methods of Moments.
Caner, Mehmet; Zhang, Hao Helen
2014-01-30
Model selection and estimation are crucial parts of econometrics. This paper introduces a new technique that can simultaneously estimate and select the model in generalized method of moments (GMM) context. The GMM is particularly powerful for analyzing complex data sets such as longitudinal and panel data, and it has wide applications in econometrics. This paper extends the least squares based adaptive elastic net estimator of Zou and Zhang (2009) to nonlinear equation systems with endogenous variables. The extension is not trivial and involves a new proof technique due to estimators lack of closed form solutions. Compared to Bridge-GMM of Caner (2009), we allow for the number of parameters to diverge to infinity as well as collinearity among a large number of variables, also the redundant parameters set to zero via a data dependent technique. This method has the oracle property, meaning that we can estimate nonzero parameters with their standard limit and the redundant parameters are dropped from the equations simultaneously. Numerical examples are used to illustrate the performance of the new method.
An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems
Directory of Open Access Journals (Sweden)
Mohammad Maleki
2012-01-01
Full Text Available An adaptive pseudospectral method is presented for solving a class of multiterm fractional boundary value problems (FBVP which involve Caputo-type fractional derivatives. The multiterm FBVP is first converted into a singular Volterra integrodifferential equation (SVIDE. By dividing the interval of the problem to subintervals, the unknown function is approximated using a piecewise interpolation polynomial with unknown coefficients which is based on shifted Legendre-Gauss (ShLG collocation points. Then the problem is reduced to a system of algebraic equations, thus greatly simplifying the problem. Further, some additional conditions are considered to maintain the continuity of the approximate solution and its derivatives at the interface of subintervals. In order to convert the singular integrals of SVIDE into nonsingular ones, integration by parts is utilized. In the method developed in this paper, the accuracy can be improved either by increasing the number of subintervals or by increasing the degree of the polynomial on each subinterval. Using several examples including Bagley-Torvik equation the proposed method is shown to be efficient and accurate.
Higher order total variation regularization for EIT reconstruction.
Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Zhang, Fan; Mueller-Lisse, Ullrich; Moeller, Knut
2018-01-08
Electrical impedance tomography (EIT) attempts to reveal the conductivity distribution of a domain based on the electrical boundary condition. This is an ill-posed inverse problem; its solution is very unstable. Total variation (TV) regularization is one of the techniques commonly employed to stabilize reconstructions. However, it is well known that TV regularization induces staircase effects, which are not realistic in clinical applications. To reduce such artifacts, modified TV regularization terms considering a higher order differential operator were developed in several previous studies. One of them is called total generalized variation (TGV) regularization. TGV regularization has been successively applied in image processing in a regular grid context. In this study, we adapted TGV regularization to the finite element model (FEM) framework for EIT reconstruction. Reconstructions using simulation and clinical data were performed. First results indicate that, in comparison to TV regularization, TGV regularization promotes more realistic images. Graphical abstract Reconstructed conductivity changes located on selected vertical lines. For each of the reconstructed images as well as the ground truth image, conductivity changes located along the selected left and right vertical lines are plotted. In these plots, the notation GT in the legend stands for ground truth, TV stands for total variation method, and TGV stands for total generalized variation method. Reconstructed conductivity distributions from the GREIT algorithm are also demonstrated.
Methods used in adaptation of health-related guidelines: A systematic survey.
Abdul-Khalek, Rima A; Darzi, Andrea J; Godah, Mohammad W; Kilzar, Lama; Lakis, Chantal; Agarwal, Arnav; Abou-Jaoude, Elias; Meerpohl, Joerg J; Wiercioch, Wojtek; Santesso, Nancy; Brax, Hneine; Schünemann, Holger; Akl, Elie A
2017-12-01
Adaptation refers to the systematic approach for considering the endorsement or modification of recommendations produced in one setting for application in another as an alternative to de novo development. To describe and assess the methods used for adapting health-related guidelines published in peer-reviewed journals, and to assess the quality of the resulting adapted guidelines. We searched Medline and Embase up to June 2015. We assessed the method of adaptation, and the quality of included guidelines. Seventy-two papers were eligible. Most adapted guidelines and their source guidelines were published by professional societies (71% and 68% respectively), and in high-income countries (83% and 85% respectively). Of the 57 adapted guidelines that reported any detail about adaptation method, 34 (60%) did not use a published adaptation method. The number (and percentage) of adapted guidelines fulfilling each of the ADAPTE steps ranged between 2 (4%) and 57 (100%). The quality of adapted guidelines was highest for the "scope and purpose" domain and lowest for the "editorial independence" domain (respective mean percentages of the maximum possible scores were 93% and 43%). The mean score for "rigor of development" was 57%. Most adapted guidelines published in peer-reviewed journals do not report using a published adaptation method, and their adaptation quality was variable.
Evaluation framework based on fuzzy measured method in adaptive learning systems
Houda Zouari Ounaies, ,; Yassine Jamoussi; Henda Hajjami Ben Ghezala
2008-01-01
Currently, e-learning systems are mainly web-based applications and tackle a wide range of users all over the world. Fitting learners’ needs is considered as a key issue to guaranty the success of these systems. Many researches work on providing adaptive systems. Nevertheless, evaluation of the adaptivity is still in an exploratory phase. Adaptation methods are a basic factor to guaranty an effective adaptation. This issue is referred as meta-adaptation in numerous researches. In our research...
Quiroz Saavedra, Rodrigo; Brunson, Liesette; Bigras, Nathalie
2017-06-01
This paper presents an in-depth case study of the dynamic processes of mutual adjustment that occurred between two professional teams participating in a multicomponent community-based intervention (CBI). Drawing on the concept of social regularities, we focus on patterns of social interaction within and across the two microsystems involved in delivering the intervention. Two research strategies, narrative analysis and structural network analysis, were used to reveal the social regularities linking the two microsystems. Results document strategies and actions undertaken by the professionals responsible for the intervention to modify intersetting social regularities to deal with a problem situation that arose during the course of one intervention cycle. The results illustrate how key social regularities were modified in order to resolve the problem situation and allow the intervention to continue to function smoothly. We propose that these changes represent a transition to a new state of the ecological intervention system. This transformation appeared to be the result of certain key intervening mechanisms: changing key role relationships, boundary spanning, and synergy. The transformation also appeared to be linked to positive setting-level and individual-level outcomes: confidence of key team members, joint planning, decision-making and intervention activities, and the achievement of desired intervention objectives. © Society for Community Research and Action 2017.
Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Bonito, Andrea; DeVore, Ronald A.; Nochetto, Ricardo H.
2013-01-01
Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.
Adaptive two-regime method: Application to front propagation
Energy Technology Data Exchange (ETDEWEB)
Robinson, Martin, E-mail: martin.robinson@maths.ox.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk [Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG (United Kingdom); Flegg, Mark, E-mail: mark.flegg@monash.edu [School of Mathematical Sciences, Faculty of Science, Monash University Wellington Road, Clayton, Victoria 3800 (Australia)
2014-03-28
The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in terms of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.
An adaptative finite element method for turbulent flow simulations
International Nuclear Information System (INIS)
Arnoux-Guisse, F.; Bonnin, O.; Leal de Sousa, L.; Nicolas, G.
1995-05-01
After outlining the space and time discretization methods used in the N3S thermal hydraulic code developed at EDF/NHL, we describe the possibilities of the peripheral version, the Adaptative Mesh, which comprises two separate parts: the error indicator computation and the development of a module subdividing elements usable by the solid dynamics code ASTER and the electromagnetism code TRIFOU also developed by R and DD. The error indicators implemented in N3S are described. They consist of a projection indicator quantifying the space error in laminar or turbulent flow calculations and a Navier-Stokes residue indicator calculated on each element. The method for subdivision of triangles into four sub-triangles and tetrahedra into eight sub-tetrahedra is then presented with its advantages and drawbacks. It is illustrated by examples showing the efficiency of the module. The last concerns the 2 D case of flow behind a backward-facing step. (authors). 9 refs., 5 figs., 1 tab
A novel partitioning method for block-structured adaptive meshes
Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-07-01
We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.
A novel partitioning method for block-structured adaptive meshes
Energy Technology Data Exchange (ETDEWEB)
Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de
2017-07-15
We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.
International Nuclear Information System (INIS)
Zhao, Zhanqi; Möller, Knut; Guttmann, Josef
2012-01-01
The objective of this paper is to introduce and evaluate the adaptive SLICE method (ASM) for continuous determination of intratidal nonlinear dynamic compliance and resistance. The tidal volume is subdivided into a series of volume intervals called slices. For each slice, one compliance and one resistance are calculated by applying a least-squares-fit method. The volume window (width) covered by each slice is determined based on the confidence interval of the parameter estimation. The method was compared to the original SLICE method and evaluated using simulation and animal data. The ASM was also challenged with separate analysis of dynamic compliance during inspiration. If the signal-to-noise ratio (SNR) in the respiratory data decreased from +∞ to 10 dB, the relative errors of compliance increased from 0.1% to 22% for the ASM and from 0.2% to 227% for the SLICE method. Fewer differences were found in resistance. When the SNR was larger than 40 dB, the ASM delivered over 40 parameter estimates (42.2 ± 1.3). When analyzing the compliance during inspiration separately, the estimates calculated with the ASM were more stable. The adaptive determination of slice bounds results in consistent and reliable parameter values. Online analysis of nonlinear respiratory mechanics will profit from such an adaptive selection of interval size. (paper)
Munaretto, S.; Siciliano, G.; Turvani, M.
2014-01-01
Climate adaptation is a dynamic social and institutional process where the governance dimension is receiving growing attention. Adaptive governance is an approach that promises to reduce uncertainty by improving the knowledge base for decision making. As uncertainty is an inherent feature of climate
Selection of regularization parameter for l1-regularized damage detection
Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing
2018-06-01
The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.
UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA
Directory of Open Access Journals (Sweden)
IONIŢĂ Elena
2015-06-01
Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.
Object-Oriented Support for Adaptive Methods on Paranel Machines
Directory of Open Access Journals (Sweden)
Sandeep Bhatt
1993-01-01
Full Text Available This article reports on experiments from our ongoing project whose goal is to develop a C++ library which supports adaptive and irregular data structures on distributed memory supercomputers. We demonstrate the use of our abstractions in implementing "tree codes" for large-scale N-body simulations. These algorithms require dynamically evolving treelike data structures, as well as load-balancing, both of which are widely believed to make the application difficult and cumbersome to program for distributed-memory machines. The ease of writing the application code on top of our C++ library abstractions (which themselves are application independent, and the low overhead of the resulting C++ code (over hand-crafted C code supports our belief that object-oriented approaches are eminently suited to programming distributed-memory machines in a manner that (to the applications programmer is architecture-independent. Our contribution in parallel programming methodology is to identify and encapsulate general classes of communication and load-balancing strategies useful across applications and MIMD architectures. This article reports experimental results from simulations of half a million particles using multiple methods.
The Student with Albinism in the Regular Classroom.
Ashley, Julia Robertson
This booklet, intended for regular education teachers who have children with albinism in their classes, begins with an explanation of albinism, then discusses the special needs of the student with albinism in the classroom, and presents information about adaptations and other methods for responding to these needs. Special social and emotional…
Data mining methods application in reflexive adaptation realization in e-learning systems
Directory of Open Access Journals (Sweden)
A. S. Bozhday
2017-01-01
Full Text Available In recent years, e-learning technologies are rapidly gaining momentum in their evolution. In this regard, issues related to improving the quality of software for virtual educational systems are becoming topical: increasing the period of exploitation of programs, increasing their reliability and flexibility. The above characteristics directly depend on the ability of the software system to adapt to changes in the domain, environment and user characteristics. In some cases, this ability is reduced to the timely optimization of the program’s own interfaces and data structure. At present, several approaches to creating mechanisms for self-optimization of software systems are known, but all of them have an insufficient degree of formalization and, as a consequence, weak universality. The purpose of this work is to develop the basics of the technology of self-optimization of software systems in the structure of e-learning. The proposed technology is based on the formulated and formalized principle of reflexive adaptation of software, applicable to a wide class of software systems and based on the discovery of new knowledge in the behavioral products of the system.To solve this problem, methods of data mining were applied. Data mining allows finding regularities in the functioning of software systems, which may not be obvious at the stage of their development. Finding such regularities and their subsequent analysis will make it possible to reorganize the structure of the system in a more optimal way and without human intervention, which will prolong the life cycle of the software and reduce the costs of its maintenance. Achieving this effect is important for e-learning systems, since they are quite expensive.The main results of the work include: the proposed classification of software adaptation mechanisms, taking into account the latest trends in the IT field in general and in the field of e-learning in particular; Formulation and formalization of
LDRD Final Report: Adaptive Methods for Laser Plasma Simulation
International Nuclear Information System (INIS)
Dorr, M R; Garaizar, F X; Hittinger, J A
2003-01-01
The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an
Energy Technology Data Exchange (ETDEWEB)
Baltazar R, A.; Vega C, H. R.; Ortiz R, J. M.; Solis S, L. O.; Castaneda M, R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, Av. Lopez Velarde s/n, 98000 Zacatecas, Zac. (Mexico); Soto B, T. G.; Medina C, D., E-mail: raigosa.antonio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas (Ciencias Nucleares), Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)
2017-10-15
In the last three decades the uses of Monte Carlo methods, for the estimation of physical phenomena associated with the interaction of radiation with matter, have increased considerably. The reason is due to the increase in computing capabilities and the reduction of computer prices. Monte Carlo methods allow modeling and simulating real systems before their construction, saving time and costs. The interaction mechanisms between neutrons and matter are diverse and range from elastic dispersion to nuclear fission; to facilitate the neutrons detection, is necessary to moderate them until reaching electronic equilibrium with the medium at standard conditions of pressure and temperature, in this state the total cross section of the {sup 3}He is large. The objective of the present work was to estimate the response matrix of a proportional detector of {sup 3}He using regular volumes of moderator through Monte Carlo methods. Neutron monoenergetic sources with energies of 10{sup -9} to 20 MeV and polyethylene moderators of different sizes were used. The calculations were made with the MCNP5 code; the number of stories for each detector-moderator combination was large enough to obtain errors less than 1.5%. We found that for small moderators the highest response is obtained for lower energy neutrons, when increasing the moderator dimension we observe that the response decreases for neutrons of lower energy and increases for higher energy neutrons. The total sum of the responses of each moderator allows obtaining a response close to a constant function. (Author)
Incompressible Navier-Stokes inverse design method based on adaptive unstructured meshes
International Nuclear Information System (INIS)
Rahmati, M.T.; Charlesworth, D.; Zangeneh, M.
2005-01-01
An inverse method for blade design based on Navier-Stokes equations on adaptive unstructured meshes has been developed. In the method, unlike the method based on inviscid equations, the effect of viscosity is directly taken into account. In the method, the pressure (or pressure loading) is prescribed. The design method then computes the blade shape that would accomplish the target prescribed pressure distribution. The method is implemented using a cell-centered finite volume method, which solves the incompressible Navier-Stokes equations on unstructured meshes. An adaptive unstructured mesh method based on grid subdivision and local adaptive mesh method is utilized for increasing the accuracy. (author)
The Economics of Adaptation: Concepts, Methods and Examples
DEFF Research Database (Denmark)
Callaway, John MacIntosh; Naswa, Prakriti; Trærup, Sara Lærke Meltofte
and sectoral level strategies, plans and policies. Furthermore, we see it at the local level, where people are already adapting to the early impacts of climate change that affect livelihoods through, for example, changing rainfall patterns, drought, and frequency and intensity of extreme events. Analyses...... of the costs and benefits of climate change impacts and adaptation measures are important to inform future action. Despite the growth in the volume of research and studies on the economics of climate change adaptation over the past 10 years, there are still important gaps and weaknesses in the existing...... knowledge that limit effective and efficient decision-making and implementation of adaptation measures. Much of the literature to date has focussed on aggregate (national, regional and global) estimates of the economic costs of climate change impacts. There has been much less attention to the economics...
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
International Nuclear Information System (INIS)
Berthiau, G.
1995-10-01
The circuit design problem consists in determining acceptable parameter values (resistors, capacitors, transistors geometries ...) which allow the circuit to meet various user given operational criteria (DC consumption, AC bandwidth, transient times ...). This task is equivalent to a multidimensional and/or multi objective optimization problem: n-variables functions have to be minimized in an hyper-rectangular domain ; equality constraints can be eventually specified. A similar problem consists in fitting component models. In this way, the optimization variables are the model parameters and one aims at minimizing a cost function built on the error between the model response and the data measured on the component. The chosen optimization method for this kind of problem is the simulated annealing method. This method, provided by the combinatorial optimization domain, has been adapted and compared with other global optimization methods for the continuous variables problems. An efficient strategy of variables discretization and a set of complementary stopping criteria have been proposed. The different parameters of the method have been adjusted with analytical functions of which minima are known, classically used in the literature. Our simulated annealing algorithm has been coupled with an open electrical simulator SPICE-PAC of which the modular structure allows the chaining of simulations required by the circuit optimization process. We proposed, for high-dimensional problems, a partitioning technique which ensures proportionality between CPU-time and variables number. To compare our method with others, we have adapted three other methods coming from combinatorial optimization domain - the threshold method, a genetic algorithm and the Tabu search method - The tests have been performed on the same set of test functions and the results allow a first comparison between these methods applied to continuous optimization variables. Finally, our simulated annealing program
International Development Research Centre (IDRC) Digital Library (Canada)
building skills, knowledge or networks on adaptation, ... the African partners leading the AfricaAdapt network, together with the UK-based Institute of Development Studies; and ... UNCCD Secretariat, Regional Coordination Unit for Africa, Tunis, Tunisia .... 26 Rural–urban Cooperation on Water Management in the Context of.
Coordinate-invariant regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-01-01
A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc
An Adaptive Multiobjective Particle Swarm Optimization Based on Multiple Adaptive Methods.
Han, Honggui; Lu, Wei; Qiao, Junfei
2017-09-01
Multiobjective particle swarm optimization (MOPSO) algorithms have attracted much attention for their promising performance in solving multiobjective optimization problems (MOPs). In this paper, an adaptive MOPSO (AMOPSO) algorithm, based on a hybrid framework of the solution distribution entropy and population spacing (SP) information, is developed to improve the search performance in terms of convergent speed and precision. First, an adaptive global best (gBest) selection mechanism, based on the solution distribution entropy, is introduced to analyze the evolutionary tendency and balance the diversity and convergence of nondominated solutions in the archive. Second, an adaptive flight parameter adjustment mechanism, using the population SP information, is proposed to obtain the distribution of particles with suitable diversity and convergence, which can balance the global exploration and local exploitation abilities of the particles. Third, based on the gBest selection mechanism and the adaptive flight parameter mechanism, this proposed AMOPSO algorithm not only has high accuracy, but also attain a set of optimal solutions with better diversity. Finally, the performance of the proposed AMOPSO algorithm is validated and compared with other five state-of-the-art algorithms on a number of benchmark problems and water distribution system. The experimental results validate the effectiveness of the proposed AMOPSO algorithm, as well as demonstrate that AMOPSO outperforms other MOPSO algorithms in solving MOPs.
The use of the spectral method within the fast adaptive composite grid method
Energy Technology Data Exchange (ETDEWEB)
McKay, S.M.
1994-12-31
The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.
Regularization in Matrix Relevance Learning
Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael
A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can
A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system
International Nuclear Information System (INIS)
Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendruecker, Eric; Bertrand, Pierre
2008-01-01
In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to
High Resolution DNS of Turbulent Flows using an Adaptive, Finite Volume Method
Trebotich, David
2014-11-01
We present a new computational capability for high resolution simulation of incompressible viscous flows. Our approach is based on cut cell methods where an irregular geometry such as a bluff body is intersected with a rectangular Cartesian grid resulting in cut cells near the boundary. In the cut cells we use a conservative discretization based on a discrete form of the divergence theorem to approximate fluxes for elliptic and hyperbolic terms in the Navier-Stokes equations. Away from the boundary the method reduces to a finite difference method. The algorithm is implemented in the Chombo software framework which supports adaptive mesh refinement and massively parallel computations. The code is scalable to 200,000 + processor cores on DOE supercomputers, resulting in DNS studies at unprecedented scale and resolution. For flow past a cylinder in transition (Re = 300) we observe a number of secondary structures in the far wake in 2D where the wake is over 120 cylinder diameters in length. These are compared with the more regularized wake structures in 3D at the same scale. For flow past a sphere (Re = 600) we resolve an arrowhead structure in the velocity in the near wake. The effectiveness of AMR is further highlighted in a simulation of turbulent flow (Re = 6000) in the contraction of an oil well blowout preventer. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Contract Number DE-AC02-05-CH11231.
Online co-regularized algorithms
Ruijter, T. de; Tsivtsivadze, E.; Heskes, T.
2012-01-01
We propose an online co-regularized learning algorithm for classification and regression tasks. We demonstrate that by sequentially co-regularizing prediction functions on unlabeled data points, our algorithm provides improved performance in comparison to supervised methods on several UCI benchmarks
Selecting protein families for environmental features based on manifold regularization.
Jiang, Xingpeng; Xu, Weiwei; Park, E K; Li, Guangrong
2014-06-01
Recently, statistics and machine learning have been developed to identify functional or taxonomic features of environmental features or physiological status. Important proteins (or other functional and taxonomic entities) to environmental features can be potentially used as biosensors. A major challenge is how the distribution of protein and gene functions embodies the adaption of microbial communities across environments and host habitats. In this paper, we propose a novel regularization method for linear regression to adapt the challenge. The approach is inspired by local linear embedding (LLE) and we call it a manifold-constrained regularization for linear regression (McRe). The novel regularization procedure also has potential to be used in solving other linear systems. We demonstrate the efficiency and the performance of the approach in both simulation and real data.
Contour Propagation With Riemannian Elasticity Regularization
DEFF Research Database (Denmark)
Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.
2011-01-01
Purpose/Objective(s): Adaptive techniques allow for correction of spatial changes during the time course of the fractionated radiotherapy. Spatial changes include tumor shrinkage and weight loss, causing tissue deformation and residual positional errors even after translational and rotational image...... the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...... on the original delineation and tissue deformation in the time course between scans form a better starting point than rigid propagation. There was no significant difference of locally and globally defined regularization. The method used in the present study suggests that deformed contours need to be reviewed...
Adaptive Maneuvering Frequency Method of Current Statistical Model
Institute of Scientific and Technical Information of China (English)
Wei Sun; Yongjian Yang
2017-01-01
Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.
Beyond Low Rank: A Data-Adaptive Tensor Completion Method
Zhang, Lei; Wei, Wei; Shi, Qinfeng; Shen, Chunhua; Hengel, Anton van den; Zhang, Yanning
2017-01-01
Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explicitly represents both the low-rank and non-low-rank structures in a latent tensor. Representing the no...
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
International Nuclear Information System (INIS)
Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.
2014-01-01
A numerical inversion method known from the analysis of light scattering by colloidal dispersions is now applied to magnetization curves of ferrofluids. The distribution of magnetic particle sizes or dipole moments is determined without assuming that the distribution is unimodal or of a particular shape. The inversion method enforces positive number densities via a non-negative least squares procedure. It is tested successfully on experimental and simulated data for ferrofluid samples with known multimodal size distributions. The created computer program MINORIM is made available on the web. - Highlights: • A method from light scattering is applied to analyze ferrofluid magnetization curves. • A magnetic size distribution is obtained without prior assumption of its shape. • The method is tested successfully on ferrofluids with a known size distribution. • The practical limits of the method are explored with simulated data including noise. • This method is implemented in the program MINORIM, freely available online
Effort variation regularization in sound field reproduction
DEFF Research Database (Denmark)
Stefanakis, Nick; Jacobsen, Finn; Sarris, Ioannis
2010-01-01
In this paper, active control is used in order to reproduce a given sound field in an extended spatial region. A method is proposed which minimizes the reproduction error at a number of control positions with the reproduction sources holding a certain relation within their complex strengths......), and adaptive wave field synthesis (AWFS), both under free-field conditions and in reverberant rooms. It is shown that effort variation regularization overcomes the problems associated with small spaces and with a low ratio of direct to reverberant energy, improving thus the reproduction accuracy...
Directory of Open Access Journals (Sweden)
R. MEDEIROS
Full Text Available ABSTRACT This study was conducted with the aim of evaluating the influence of different methods for end surface preparation of compressive strength test specimens. Four different methods were compared: a mechanical wear method through grinding using a diamond wheel established by NBR 5738; a mechanical wear method using a diamond saw which is established by NM 77; an unbonded system using neoprene pads in metal retainer rings established by C1231 and a bonded capping method with sulfur mortar established by NBR 5738 and by NM 77. To develop this research, 4 concrete mixes were determined with different strength levels, 2 of group 1 and 2 of group 2 strength levels established by NBR 8953. Group 1 consists of classes C20 to C50, 5 in 5MPa, also known as normal strength concrete. Group 2 is comprised of class C55, C60 to C100, 10 in 10 MPa, also known as high strength concrete. Compression tests were carried out at 7 and 28 days for the 4 surface preparation methods. The results of this study indicate that the method established by NBR 5738 is the most effective among the 4 strengths considered, once it presents lower dispersion of values obtained from the tests, measured by the coefficient of variation and, in almost all cases, it demonstrates the highest mean of rupture test. The method described by NBR 5738 achieved the expected strength level in all tests.
Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification
Winokur, J.; Kim, D.; Bisetti, Fabrizio; Le Maî tre, O. P.; Knio, Omar
2015-01-01
We investigate two methods to build a polynomial approximation of a model output depending on some parameters. The two approaches are based on pseudo-spectral projection (PSP) methods on adaptively constructed sparse grids, and aim at providing a
Adaptive calibration method with on-line growing complexity
Directory of Open Access Journals (Sweden)
Šika Z.
2011-12-01
Full Text Available This paper describes a modified variant of a kinematical calibration algorithm. In the beginning, a brief review of the calibration algorithm and its simple modification are described. As the described calibration modification uses some ideas used by the Lolimot algorithm, the algorithm is described and explained. Main topic of this paper is a description of a synthesis of the Lolimot-based calibration that leads to an adaptive algorithm with an on-line growing complexity. The paper contains a comparison of simple examples results and a discussion. A note about future research topics is also included.
Mitigation and adaptation cost assessment: Concepts, methods and appropriate use
Energy Technology Data Exchange (ETDEWEB)
NONE
1999-12-31
The present report on mitigation and adaptation costs addresses the complex issue of identifying synergies and tradeoffs between national priorities and mitigation policies, an issue that requires the integration of various disciplines so as to provide a comprehensive overview of future development trends, available technologies and economic policies. Further, the report suggests a new conceptual framework for treating the social aspects in assessing mitigation and adaptation costs in climate change studies. The impacts of certain sustainability indicators such as employment and poverty reduction on mitigation costing are also discussed in the report. Among the topics to be considered by over 120 distinguished international experts, are the elements of costing methodologies at both the micro and macro levels. Special effort will be made to include the impacts of such parameters as income, equity, poverty, employment and trade. Hence, the contents of this report are highly relevant to the authors of the Third Working Group in the development of the TAR. The report contains a chapter on Special Issues and Problems Related to Cost Assessment for Developing Countries. This chapter will provide valuable background in the further development of these concepts in the TAR because it is an area that has not received due attention in previous work. (au)
Mitigation and adaptation cost assessment: Concepts, methods and appropriate use
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-31
The present report on mitigation and adaptation costs addresses the complex issue of identifying synergies and tradeoffs between national priorities and mitigation policies, an issue that requires the integration of various disciplines so as to provide a comprehensive overview of future development trends, available technologies and economic policies. Further, the report suggests a new conceptual framework for treating the social aspects in assessing mitigation and adaptation costs in climate change studies. The impacts of certain sustainability indicators such as employment and poverty reduction on mitigation costing are also discussed in the report. Among the topics to be considered by over 120 distinguished international experts, are the elements of costing methodologies at both the micro and macro levels. Special effort will be made to include the impacts of such parameters as income, equity, poverty, employment and trade. Hence, the contents of this report are highly relevant to the authors of the Third Working Group in the development of the TAR. The report contains a chapter on Special Issues and Problems Related to Cost Assessment for Developing Countries. This chapter will provide valuable background in the further development of these concepts in the TAR because it is an area that has not received due attention in previous work. (au)
Mitigation and adaptation cost assessment: Concepts, methods and appropriate use
International Nuclear Information System (INIS)
1998-01-01
The present report on mitigation and adaptation costs addresses the complex issue of identifying synergies and tradeoffs between national priorities and mitigation policies, an issue that requires the integration of various disciplines so as to provide a comprehensive overview of future development trends, available technologies and economic policies. Further, the report suggests a new conceptual framework for treating the social aspects in assessing mitigation and adaptation costs in climate change studies. The impacts of certain sustainability indicators such as employment and poverty reduction on mitigation costing are also discussed in the report. Among the topics to be considered by over 120 distinguished international experts, are the elements of costing methodologies at both the micro and macro levels. Special effort will be made to include the impacts of such parameters as income, equity, poverty, employment and trade. Hence, the contents of this report are highly relevant to the authors of the Third Working Group in the development of the TAR. The report contains a chapter on Special Issues and Problems Related to Cost Assessment for Developing Countries. This chapter will provide valuable background in the further development of these concepts in the TAR because it is an area that has not received due attention in previous work. (au)
International Nuclear Information System (INIS)
Malykhin, V.M.; Ivanova, N.I.
1981-01-01
It is shown that when assessing the necessary periodicity of internal irradiation monitoring, it is required to take account of the nature (rhythm) of radionuclide intake to the organism during the monitoring period, the effective period of radionuclide biological half-life, its activity in the organism, sensitivity of the technique applied and the labour-consumig character of the monitoring method [ru
Ganzherli, N. M.; Gulyaev, S. N.; Gurin, A. S.; Kramushchenko, D. D.; Maurer, I. A.; Chernykh, D. F.
2009-07-01
The formation of diffusers and microlens rasters on silver halide emulsions by holographic methods is considered. Two techniques for converting amplitude holographic recording to relief-phase recording, selective curing and irradiation of the emulsion gelatin by short-wavelength UV radiation, are compared.
Condition Number Regularized Covariance Estimation.
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2013-06-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.
Condition Number Regularized Covariance Estimation*
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2012-01-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197
Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model
Kim, Sangjo; Kim, Kuisoon; Son, Changmin
2018-04-01
An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.
Regularizing portfolio optimization
International Nuclear Information System (INIS)
Still, Susanne; Kondor, Imre
2010-01-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Regularizing portfolio optimization
Still, Susanne; Kondor, Imre
2010-07-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Directory of Open Access Journals (Sweden)
Heleen L. P. Mees
2014-06-01
Full Text Available Policy instruments can help put climate adaptation plans into action. Here, we propose a method for the systematic assessment and selection of policy instruments for stimulating adaptation action. The multi-disciplinary set of six assessment criteria is derived from economics, policy, and legal studies. These criteria are specified for the purpose of climate adaptation by taking into account four challenges to the governance of climate adaptation: uncertainty, spatial diversity, controversy, and social complexity. The six criteria and four challenges are integrated into a step-wise method that enables the selection of instruments starting from a generic assessment and ending with a specific assessment of policy instrument mixes for the stimulation of a specific adaptation measure. We then apply the method to three examples of adaptation measures. The method's merits lie in enabling deliberate choices through a holistic and comprehensive set of adaptation specific criteria, as well as deliberative choices by offering a stepwise method that structures an informed dialog on instrument selection. Although the method was created and applied by scientific experts, policy-makers can also use the method.
On Round-off Error for Adaptive Finite Element Methods
Alvarez-Aramberri, J.
2012-06-02
Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called ‘radical meshes’. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.
On Round-off Error for Adaptive Finite Element Methods
Alvarez-Aramberri, J.; Pardo, David; Paszynski, Maciej; Collier, Nathan; Dalcin, Lisandro; Calo, Victor M.
2012-01-01
Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called ‘radical meshes’. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.
Adaptation of chemical methods of analysis to the matrix of pyrite-acidified mining lakes
International Nuclear Information System (INIS)
Herzsprung, P.; Friese, K.
2000-01-01
Owing to the unusual matrix of pyrite-acidified mining lakes, the analysis of chemical parameters may be difficult. A number of methodological improvements have been developed so far, and a comprehensive validation of methods is envisaged. The adaptation of the available methods to small-volume samples of sediment pore waters and the adaptation of sensitivity to the expected concentration ranges is an important element of the methods applied in analyses of biogeochemical processes in mining lakes [de
Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh
International Nuclear Information System (INIS)
Zhang Dier; Shen Lihua; Zhou Aihui; Gong Xingao
2008-01-01
A finite element (FE) method with self-adaptive mesh-refinement technique is developed for solving the density functional Kohn-Sham equations. The FE method adopts local piecewise polynomials basis functions, which produces sparsely structured matrices of Hamiltonian. The method is well suitable for parallel implementation without using Fourier transform. In addition, the self-adaptive mesh-refinement technique can control the computational accuracy and efficiency with optimal mesh density in different regions
An adaptive EFG-FE coupling method for elasto-plastic contact of rough surfaces
International Nuclear Information System (INIS)
Liu Lan; Liu Geng; Tong Ruiting; Jin Saiying
2010-01-01
Differing from Finite Element Method, the meshless method does not need any mesh information and can arrange nodes freely which is perfectly suitable for adaptive analysis. In order to simulate the contact condition factually and improve computational efficiency, an adaptive procedure for Element-free Galerkin-Finite Element (EFG-FE) coupling contact model is established and developed to investigate the elastoplastic contact performance for engineering rough surfaces. The local adaptive refinement strategy combined with the strain energy gradient-based error estimation model is employed. The schemes, including principle explanation, arithmetic analysis and programming realization, are introduced and discussed. Furthermore, some related parameters on adaptive convergence criterion are researched emphatically, including adaptation-stop criterion, refinement or coarsening criterion which are guided by the relative error in total strain energy with two adjacent stages. Based on pioneering works of the EFG-FE coupling method for contact problems, an adaptive EFG-FE model for asperity contact is studied. Compared with the solutions obtained from the uniform refinement model, the adaptation results indicate that the adaptive method presented in this paper is capable of solving asperity contact problems with excellent calculation accuracy and computational efficiency.
von Larcher, Thomas; Blome, Therese; Klein, Rupert; Schneider, Reinhold; Wolf, Sebastian; Huber, Benjamin
2016-04-01
Handling high-dimensional data sets like they occur e.g. in turbulent flows or in multiscale behaviour of certain types in Geosciences are one of the big challenges in numerical analysis and scientific computing. A suitable solution is to represent those large data sets in an appropriate compact form. In this context, tensor product decomposition methods currently emerge as an important tool. One reason is that these methods often enable one to attack high-dimensional problems successfully, another that they allow for very compact representations of large data sets. We follow the novel Tensor-Train (TT) decomposition method to support the development of improved understanding of the multiscale behavior and the development of compact storage schemes for solutions of such problems. One long-term goal of the project is the construction of a self-consistent closure for Large Eddy Simulations (LES) of turbulent flows that explicitly exploits the tensor product approach's capability of capturing self-similar structures. Secondly, we focus on a mixed deterministic-stochastic subgrid scale modelling strategy currently under development for application in Finite Volume Large Eddy Simulation (LES) codes. Advanced methods of time series analysis for the databased construction of stochastic models with inherently non-stationary statistical properties and concepts of information theory based on a modified Akaike information criterion and on the Bayesian information criterion for the model discrimination are used to construct surrogate models for the non-resolved flux fluctuations. Vector-valued auto-regressive models with external influences form the basis for the modelling approach [1], [2], [4]. Here, we present the reconstruction capabilities of the two modeling approaches tested against 3D turbulent channel flow data computed by direct numerical simulation (DNS) for an incompressible, isothermal fluid at Reynolds number Reτ = 590 (computed by [3]). References [1] I
A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy
Directory of Open Access Journals (Sweden)
Ge Jianjun
2017-12-01
Full Text Available Nowadays, the battlefield environment has become much more complex and variable. This paper presents a quantitative method and lower bound for the amount of target information acquired from multiple radar observations to adaptively and dynamically organize the detection of battlefield resources based on the principle of information entropy. Furthermore, for minimizing the given information entropy’s lower bound for target measurement at every moment, a method to dynamically and adaptively select radars with a high amount of information for target tracking is proposed. The simulation results indicate that the proposed method has higher tracking accuracy than that of tracking without adaptive radar selection based on entropy.
Adaptive ACMS: A robust localized Approximated Component Mode Synthesis Method
Madureira, Alexandre L.; Sarkis, Marcus
2017-01-01
We consider finite element methods of multiscale type to approximate solutions for two-dimensional symmetric elliptic partial differential equations with heterogeneous $L^\\infty$ coefficients. The methods are of Galerkin type and follows the Variational Multiscale and Localized Orthogonal Decomposition--LOD approaches in the sense that it decouples spaces into multiscale and fine subspaces. In a first method, the multiscale basis functions are obtained by mapping coarse basis functions, based...
Directory of Open Access Journals (Sweden)
Renata Bujak
2016-07-01
Full Text Available Non-targeted metabolomics constitutes a part of systems biology and aims to determine many metabolites in complex biological samples. Datasets obtained in non-targeted metabolomics studies are multivariate and high-dimensional due to the sensitivity of mass spectrometry-based detection methods as well as complexity of biological matrices. Proper selection of variables which contribute into group classification is a crucial step, especially in metabolomics studies which are focused on searching for disease biomarker candidates. In the present study, three different statistical approaches were tested using two metabolomics datasets (RH and PH study. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA without and with multiple testing correction as well as least absolute shrinkage and selection operator (LASSO were tested and compared. For the RH study, OPLS-DA model built without multiple testing correction, selected 46 and 218 variables based on VIP criteria using Pareto and UV scaling, respectively. In the case of the PH study, 217 and 320 variables were selected based on VIP criteria using Pareto and UV scaling, respectively. In the RH study, OPLS-DA model built with multiple testing correction, selected 4 and 19 variables as statistically significant in terms of Pareto and UV scaling, respectively. For PH study, 14 and 18 variables were selected based on VIP criteria in terms of Pareto and UV scaling, respectively. Additionally, the concept and fundaments of the least absolute shrinkage and selection operator (LASSO with bootstrap procedure evaluating reproducibility of results, was demonstrated. In the RH and PH study, the LASSO selected 14 and 4 variables with reproducibility between 99.3% and 100%. However, apart from the popularity of PLS-DA and OPLS-DA methods in metabolomics, it should be highlighted that they do not control type I or type II error, but only arbitrarily establish a cut-off value for PLS-DA loadings
Mixed Methods in Intervention Research: Theory to Adaptation
Nastasi, Bonnie K.; Hitchcock, John; Sarkar, Sreeroopa; Burkholder, Gary; Varjas, Kristen; Jayasena, Asoka
2007-01-01
The purpose of this article is to demonstrate the application of mixed methods research designs to multiyear programmatic research and development projects whose goals include integration of cultural specificity when generating or translating evidence-based practices. The authors propose a set of five mixed methods designs related to different…
LEACH-A: An Adaptive Method for Improving LEACH Protocol
Directory of Open Access Journals (Sweden)
Jianli ZHAO
2014-01-01
Full Text Available Energy has become one of the most important constraints on wireless sensor networks. Hence, many researchers in this field focus on how to design a routing protocol to prolong the lifetime of the network. The classical hierarchical protocols such as LEACH and LEACH-C have better performance in saving the energy consumption. However, the choosing strategy only based on the largest residue energy or shortest distance will still consume more energy. In this paper an adaptive routing protocol named “LEACH-A” which has an energy threshold E0 is proposed. If there are cluster nodes whose residual energy are greater than E0, the node of largest residual energy is selected to communicated with the base station; When all the cluster nodes energy are less than E0, the node nearest to the base station is select to communication with the base station. Simulations show that our improved protocol LEACH-A performs better than the LEACH and the LEACH-C.
Comparison of parameter-adapted segmentation methods for fluorescence micrographs.
Held, Christian; Palmisano, Ralf; Häberle, Lothar; Hensel, Michael; Wittenberg, Thomas
2011-11-01
Interpreting images from fluorescence microscopy is often a time-consuming task with poor reproducibility. Various image processing routines that can help investigators evaluate the images are therefore useful. The critical aspect for a reliable automatic image analysis system is a robust segmentation algorithm that can perform accurate segmentation for different cell types. In this study, several image segmentation methods were therefore compared and evaluated in order to identify the most appropriate segmentation schemes that are usable with little new parameterization and robustly with different types of fluorescence-stained cells for various biological and biomedical tasks. The study investigated, compared, and enhanced four different methods for segmentation of cultured epithelial cells. The maximum-intensity linking (MIL) method, an improved MIL, a watershed method, and an improved watershed method based on morphological reconstruction were used. Three manually annotated datasets consisting of 261, 817, and 1,333 HeLa or L929 cells were used to compare the different algorithms. The comparisons and evaluations showed that the segmentation performance of methods based on the watershed transform was significantly superior to the performance of the MIL method. The results also indicate that using morphological opening by reconstruction can improve the segmentation of cells stained with a marker that exhibits the dotted surface of cells. Copyright © 2011 International Society for Advancement of Cytometry.
An adaptation of Krylov subspace methods to path following
Energy Technology Data Exchange (ETDEWEB)
Walker, H.F. [Utah State Univ., Logan, UT (United States)
1996-12-31
Krylov subspace methods at present constitute a very well known and highly developed class of iterative linear algebra methods. These have been effectively applied to nonlinear system solving through Newton-Krylov methods, in which Krylov subspace methods are used to solve the linear systems that characterize steps of Newton`s method (the Newton equations). Here, we will discuss the application of Krylov subspace methods to path following problems, in which the object is to track a solution curve as a parameter varies. Path following methods are typically of predictor-corrector form, in which a point near the solution curve is {open_quotes}predicted{close_quotes} by some easy but relatively inaccurate means, and then a series of Newton-like corrector iterations is used to return approximately to the curve. The analogue of the Newton equation is underdetermined, and an additional linear condition must be specified to determine corrector steps uniquely. This is typically done by requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-determined system with this orthogonality condition in a straightforward way typically works well if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with this approach. We will discuss recent work in which this orthogonality condition is imposed directly as a constraint on the corrector steps in a certain way. The means of doing this preserves problem conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has certain other advantages. Experiments on standard PDE continuation test problems indicate that this approach is effective.
Directory of Open Access Journals (Sweden)
M. Madheswaran
2012-06-01
Full Text Available Modern fighter aircrafts, ships, missiles etc need to be very low Radar Cross Section (RCS designs, to avoid detection by hostile radars. Hence accurate prediction of RCS of complex objects like aircrafts is essential to meet this requirement. A simple and efficient numerical procedure for treating problems of wide band RCS prediction Perfect Electric Conductor (PEC objects is developed using Method of Moment (MoM. Implementation of MoM for prediction of RCS involves solving Electric Field Integral Equation (EFIE for electric current using the vector and scalar potential solutions, which satisfy the boundary condition that the tangential electric field at the boundary of the PEC body is zero. For numerical purposes, the objects are modeled using planar triangular surfaces patches. Set of special sub-domain type basis functions are defined on pairs of adjacent triangular patches. These basis functions yield a current representation free of line or point charges at sub-domain boundaries. Once the current distribution is obtained, dipole model is used to find Scattering field in free space. RCS can be calculated from the scattered and incident fields. Numerical results for a square plate, a cube, and a sphere are presented over a bandwidth.
Adapting Western research methods to indigenous ways of knowing.
Simonds, Vanessa W; Christopher, Suzanne
2013-12-01
Indigenous communities have long experienced exploitation by researchers and increasingly require participatory and decolonizing research processes. We present a case study of an intervention research project to exemplify a clash between Western research methodologies and Indigenous methodologies and how we attempted reconciliation. We then provide implications for future research based on lessons learned from Native American community partners who voiced concern over methods of Western deductive qualitative analysis. Decolonizing research requires constant reflective attention and action, and there is an absence of published guidance for this process. Continued exploration is needed for implementing Indigenous methods alone or in conjunction with appropriate Western methods when conducting research in Indigenous communities. Currently, examples of Indigenous methods and theories are not widely available in academic texts or published articles, and are often not perceived as valid.
Adaptive Coarse Spaces for FETI-DP and BDDC Methods
Radtke, Patrick
2015-01-01
Iterative substructuring methods are well suited for the parallel iterative solution of elliptic partial differential equations. These methods are based on subdividing the computational domain into smaller nonoverlapping subdomains and solving smaller problems on these subdomains. The solutions are then joined to a global solution in an iterative process. In case of a scalar diffusion equation or the equations of linear elasticity with a diffusion coefficient or Young modulus, respectively, ...
Sparse regularization for force identification using dictionaries
Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng
2016-04-01
The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.
The adaptation of methods in multilayer optics for the calculation of specular neutron reflection
International Nuclear Information System (INIS)
Penfold, J.
1988-10-01
The adaptation of standard methods in multilayer optics to the calculation of specular neutron reflection is described. Their application is illustrated with examples which include a glass optical flat and a deuterated Langmuir-Blodgett film. (author)
NEURAL NETWORKS CONTROL OF THE HYBRID POWER UNIT BASED ON THE METHOD OF ADAPTIVE CRITICS
Directory of Open Access Journals (Sweden)
S. Serikov
2012-01-01
Full Text Available The formal statement of the optimization problem of hybrid vehicle power unit control is given. Its solving by neural networks method application on the basis of adaptive critic is considered.
Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality.
Gosling, Simon N; Hondula, David M; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer
2017-08-16
Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to "adaptation uncertainty" (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. This study had three aims: a ) Compare the range in projected impacts that arises from using different adaptation modeling methods; b ) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c ) recommend modeling method(s) to use in future impact assessments. We estimated impacts for 2070-2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634.
Robust and Adaptive Block Tracking Method Based on Particle Filter
Directory of Open Access Journals (Sweden)
Bin Sun
2015-10-01
Full Text Available In the field of video analysis and processing, object tracking is attracting more and more attention especially in traffic management, digital surveillance and so on. However problems such as objects’ abrupt motion, occlusion and complex target structures would bring difficulties to academic study and engineering application. In this paper, a fragmentsbased tracking method using the block relationship coefficient is proposed. In this method, we use particle filter algorithm and object region is divided into blocks initially. The contribution of this method is that object features are not extracted just from a single block, the relationship between current block and its neighbor blocks are extracted to describe the variation of the block. Each block is weighted according to the block relationship coefficient when the block is voted on the most matched region in next frame. This method can make full use of the relationship between blocks. The experimental results demonstrate that our method can provide good performance in condition of occlusion and abrupt posture variation.
A two-dimensional adaptive numerical grids generation method and its realization
International Nuclear Information System (INIS)
Xu Tao; Shui Hongshou
1998-12-01
A two-dimensional adaptive numerical grids generation method and its particular realization is discussed. This method is effective and easy to realize if the control functions are given continuously, and the grids for some regions is showed in this case. For Computational Fluid Dynamics, because the control values of adaptive grids-numerical solution is given in dispersed form, it is needed to interpolate these values to get the continuous control functions. These interpolation techniques are discussed, and some efficient adaptive grids are given. A two-dimensional fluid dynamics example was also given
International Nuclear Information System (INIS)
Budrick, R.G.; Nolen, R.L. Jr.; Solomon, D.E.; King, F.T.
1975-01-01
The invention relates to the manufacture of glass microspheres. It refers to a method according to which a sintered glass-powder, whose particles are calibrated, is introduced into a blow-pipe adapted to project said glass-powder particles into a heated flue, said sintered glass-powder containing a pore-forming agent adapted to expand the glass particles into microspheres which are collected in a chamber situated abode said flue. The method can be applied to the manufacture of microspheres adapted to contain a thermonuclear fuel [fr
Adaptive cluster sampling: An efficient method for assessing inconspicuous species
Andrea M. Silletti; Joan Walker
2003-01-01
Restorationistis typically evaluate the success of a project by estimating the population sizes of species that have been planted or seeded. Because total census is raely feasible, they must rely on sampling methods for population estimates. However, traditional random sampling designs may be inefficient for species that, for one reason or another, are challenging to...
Solving delay differential equations in S-ADAPT by method of steps.
Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech
2013-09-01
S-ADAPT is a version of the ADAPT program that contains additional simulation and optimization abilities such as parametric population analysis. S-ADAPT utilizes LSODA to solve ordinary differential equations (ODEs), an algorithm designed for large dimension non-stiff and stiff problems. However, S-ADAPT does not have a solver for delay differential equations (DDEs). Our objective was to implement in S-ADAPT a DDE solver using the methods of steps. The method of steps allows one to solve virtually any DDE system by transforming it to an ODE system. The solver was validated for scalar linear DDEs with one delay and bolus and infusion inputs for which explicit analytic solutions were derived. Solutions of nonlinear DDE problems coded in S-ADAPT were validated by comparing them with ones obtained by the MATLAB DDE solver dde23. The estimation of parameters was tested on the MATLB simulated population pharmacodynamics data. The comparison of S-ADAPT generated solutions for DDE problems with the explicit solutions as well as MATLAB produced solutions which agreed to at least 7 significant digits. The population parameter estimates from using importance sampling expectation-maximization in S-ADAPT agreed with ones used to generate the data. Published by Elsevier Ireland Ltd.
Jin, Yulin; Lu, Kuan; Hou, Lei; Chen, Yushu
2017-12-01
The proper orthogonal decomposition (POD) method is a main and efficient tool for order reduction of high-dimensional complex systems in many research fields. However, the robustness problem of this method is always unsolved, although there are some modified POD methods which were proposed to solve this problem. In this paper, a new adaptive POD method called the interpolation Grassmann manifold (IGM) method is proposed to address the weakness of local property of the interpolation tangent-space of Grassmann manifold (ITGM) method in a wider parametric region. This method is demonstrated here by a nonlinear rotor system of 33-degrees of freedom (DOFs) with a pair of liquid-film bearings and a pedestal looseness fault. The motion region of the rotor system is divided into two parts: simple motion region and complex motion region. The adaptive POD method is compared with the ITGM method for the large and small spans of parameter in the two parametric regions to present the advantage of this method and disadvantage of the ITGM method. The comparisons of the responses are applied to verify the accuracy and robustness of the adaptive POD method, as well as the computational efficiency is also analyzed. As a result, the new adaptive POD method has a strong robustness and high computational efficiency and accuracy in a wide scope of parameter.
Manifold Regularized Correlation Object Tracking
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2017-01-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped fr...
Directory of Open Access Journals (Sweden)
Seyed Bahram Beheshti-Aval
2015-06-01
Full Text Available Displacement Coefficient Method (DCM stipulated in the ASCE 41-06 standard is becoming the preferred method for seismic rehabilitation of buildings in many high-seismic-hazard countries. Applications of the method for non-building constructions such as bridges are beyond the scope of this standard. Thus its application to this kind of structure should be approached with care. Target displacement has reasonable accuracy for buildings with strong columns and weak beams, where there is the development of plastic hinges. Due to high stiffness and strength of the deck relative to the piers in most bridges, this mechanism does not occur, and it is necessary to evaluate the accuracy of DCM for such structures. In this research, an attempt is made to evaluate the credibility of DCM in the ASCE/SEI 41-06 standard for estimating target drifts in concrete regular bridges under strong ground motions. To apply the extension of the method to bridge structures, the definition of new correction factor CB, which should be multiplied to previous coefficients, is required. This novel coefficient can improve the accuracy of the mentioned method in accessing seismic displacement demands. The coefficient is presented for soil types A to D based on NEHRP soil classification. The validity of the modified DCM is examined for several bridges with use of nonlinear dynamic analysis. Good correlation is found between both procedures.
A high-throughput multiplex method adapted for GMO detection.
Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique
2008-12-24
A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.
The Pilates method and cardiorespiratory adaptation to training.
Tinoco-Fernández, Maria; Jiménez-Martín, Miguel; Sánchez-Caravaca, M Angeles; Fernández-Pérez, Antonio M; Ramírez-Rodrigo, Jesús; Villaverde-Gutiérrez, Carmen
2016-01-01
Although all authors report beneficial health changes following training based on the Pilates method, no explicit analysis has been performed of its cardiorespiratory effects. The objective of this study was to evaluate possible changes in cardiorespiratory parameters with the Pilates method. A total of 45 university students aged 18-35 years (77.8% female and 22.2% male), who did not routinely practice physical exercise or sports, volunteered for the study and signed informed consent. The Pilates training was conducted over 10 weeks, with three 1-hour sessions per week. Physiological cardiorespiratory responses were assessed using a MasterScreen CPX apparatus. After the 10-week training, statistically significant improvements were observed in mean heart rate (135.4-124.2 beats/min), respiratory exchange ratio (1.1-0.9) and oxygen equivalent (30.7-27.6) values, among other spirometric parameters, in submaximal aerobic testing. These findings indicate that practice of the Pilates method has a positive influence on cardiorespiratory parameters in healthy adults who do not routinely practice physical exercise activities.
The adaptive problems of female teenage refugees and their behavioral adjustment methods for coping
Directory of Open Access Journals (Sweden)
Mhaidat F
2016-04-01
Full Text Available Fatin Mhaidat Department of Educational Psychology, Faculty of Educational Sciences, The Hashemite University, Zarqa, Jordan Abstract: This study aimed at identifying the levels of adaptive problems among teenage female refugees in the government schools and explored the behavioral methods that were used to cope with the problems. The sample was composed of 220 Syrian female students (seventh to first secondary grades enrolled at government schools within the Zarqa Directorate and who came to Jordan due to the war conditions in their home country. The study used the scale of adaptive problems that consists of four dimensions (depression, anger and hostility, low self-esteem, and feeling insecure and a questionnaire of the behavioral adjustment methods for dealing with the problem of asylum. The results indicated that the Syrian teenage female refugees suffer a moderate degree of adaptation problems, and the positive adjustment methods they have used are more than the negatives. Keywords: adaptive problems, female teenage refugees, behavioral adjustment
Directory of Open Access Journals (Sweden)
Banna Hasanul
2016-03-01
Full Text Available This paper assesses farmers’ willingness to pay for an efficient adaptation programme to climate change for Malaysian agriculture. We used the contingent valuation method to determine the monetary assessment of farmers’ preferences for an adaptation programme. We distributed a structured questionnaire to farmers in Selangor, Malaysia. Based on the survey, 74% of respondents are willing to pay for the adaptation programme with several factors such as socio-economic and motivational factors exerting greater influences over their willingness to pay. However, a significant number of respondents are not willing to pay for the adaptation programme. The Malaysian government, along with social institutions, banks, NGOs, and media could come up with fruitful awareness programmes to motivate financing the programme. Financial institutions such as banks, insurances, leasing firms, etc. along with government and farmers could also donate a substantial portion for the adaptation programme as part of their corporate social responsibility (CSR.
van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime
2016-01-01
This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,
Nijholt, Antinus
1980-01-01
Culik II and Cogen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this paper we consider an analogous extension of the LL(k) grammars called the LL-regular grammars. The relation of this class of grammars to other classes of grammars will be shown. Any LL-regular
Denoising imaging polarimetry by adapted BM3D method.
Tibbs, Alexander B; Daly, Ilse M; Roberts, Nicholas W; Bull, David R
2018-04-01
In addition to the visual information contained in intensity and color, imaging polarimetry allows visual information to be extracted from the polarization of light. However, a major challenge of imaging polarimetry is image degradation due to noise. This paper investigates the mitigation of noise through denoising algorithms and compares existing denoising algorithms with a new method, based on BM3D (Block Matching 3D). This algorithm, Polarization-BM3D (PBM3D), gives visual quality superior to the state of the art across all images and noise standard deviations tested. We show that denoising polarization images using PBM3D allows the degree of polarization to be more accurately calculated by comparing it with spectral polarimetry measurements.
Directory of Open Access Journals (Sweden)
Humin Lei
2017-01-01
Full Text Available An adaptive mesh iteration method based on Hermite-Pseudospectral is described for trajectory optimization. The method uses the Legendre-Gauss-Lobatto points as interpolation points; then the state equations are approximated by Hermite interpolating polynomials. The method allows for changes in both number of mesh points and the number of mesh intervals and produces significantly smaller mesh sizes with a higher accuracy tolerance solution. The derived relative error estimate is then used to trade the number of mesh points with the number of mesh intervals. The adaptive mesh iteration method is applied successfully to the examples of trajectory optimization of Maneuverable Reentry Research Vehicle, and the simulation experiment results show that the adaptive mesh iteration method has many advantages.
An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST
Hang, Xu; Jun, Zhao
2018-05-01
Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.
Impedance adaptation methods of the piezoelectric energy harvesting
Kim, Hyeoungwoo
In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling
Regular Expression Pocket Reference
Stubblebine, Tony
2007-01-01
This handy little book offers programmers a complete overview of the syntax and semantics of regular expressions that are at the heart of every text-processing application. Ideal as a quick reference, Regular Expression Pocket Reference covers the regular expression APIs for Perl 5.8, Ruby (including some upcoming 1.9 features), Java, PHP, .NET and C#, Python, vi, JavaScript, and the PCRE regular expression libraries. This concise and easy-to-use reference puts a very powerful tool for manipulating text and data right at your fingertips. Composed of a mixture of symbols and text, regular exp
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-01-01
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824
Directory of Open Access Journals (Sweden)
Qi Huang
2017-06-01
Full Text Available Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC, by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC. We compared PAC performance with incremental support vector classifier (ISVC and non-adapting SVC (NSVC in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05 and ISVC (13.38% ± 2.62%, p = 0.001, and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle.
Directory of Open Access Journals (Sweden)
Hussein Abdel-jaber
2015-10-01
Full Text Available Congestion control is one of the hot research topics that helps maintain the performance of computer networks. This paper compares three Active Queue Management (AQM methods, namely, Adaptive Gentle Random Early Detection (Adaptive GRED, Random Early Dynamic Detection (REDD, and GRED Linear analytical model with respect to different performance measures. Adaptive GRED and REDD are implemented based on simulation, whereas GRED Linear is implemented as a discrete-time analytical model. Several performance measures are used to evaluate the effectiveness of the compared methods mainly mean queue length, throughput, average queueing delay, overflow packet loss probability, and packet dropping probability. The ultimate aim is to identify the method that offers the highest satisfactory performance in non-congestion or congestion scenarios. The first comparison results that are based on different packet arrival probability values show that GRED Linear provides better mean queue length; average queueing delay and packet overflow probability than Adaptive GRED and REDD methods in the presence of congestion. Further and using the same evaluation measures, Adaptive GRED offers a more satisfactory performance than REDD when heavy congestion is present. When the finite capacity of queue values varies the GRED Linear model provides the highest satisfactory performance with reference to mean queue length and average queueing delay and all the compared methods provide similar throughput performance. However, when the finite capacity value is large, the compared methods have similar results in regard to probabilities of both packet overflowing and packet dropping.
The method of adaptation under the parameters of the subject of the information interaction
Directory of Open Access Journals (Sweden)
Инесса Анатольевна Воробьёва
2014-12-01
Full Text Available To ensure the effectiveness of settings (adaptation created software and hardware on the particular subject of the method was developed for adaptation under the parameters of the subject of information interaction in the form of a set of operations to build a network dialog procedures on the basis of accounting for entry-level qualification of the subject, assessment of the current level of skills and operational restructuring of the network in accordance with the assessment of his level.
Hoel, Hakon
2016-06-13
A formal mean square error expansion (MSE) is derived for Euler-Maruyama numerical solutions of stochastic differential equations (SDE). The error expansion is used to construct a pathwise, a posteriori, adaptive time-stepping Euler-Maruyama algorithm for numerical solutions of SDE, and the resulting algorithm is incorporated into a multilevel Monte Carlo (MLMC) algorithm for weak approximations of SDE. This gives an efficient MSE adaptive MLMC algorithm for handling a number of low-regularity approximation problems. In low-regularity numerical example problems, the developed adaptive MLMC algorithm is shown to outperform the uniform time-stepping MLMC algorithm by orders of magnitude, producing output whose error with high probability is bounded by TOL > 0 at the near-optimal MLMC cost rate б(TOL log(TOL)) that is achieved when the cost of sample generation is б(1).
Research on Adaptive Optics Image Restoration Algorithm by Improved Expectation Maximization Method
Directory of Open Access Journals (Sweden)
Lijuan Zhang
2014-01-01
Full Text Available To improve the effect of adaptive optics images’ restoration, we put forward a deconvolution algorithm improved by the EM algorithm which joints multiframe adaptive optics images based on expectation-maximization theory. Firstly, we need to make a mathematical model for the degenerate multiframe adaptive optics images. The function model is deduced for the points that spread with time based on phase error. The AO images are denoised using the image power spectral density and support constraint. Secondly, the EM algorithm is improved by combining the AO imaging system parameters and regularization technique. A cost function for the joint-deconvolution multiframe AO images is given, and the optimization model for their parameter estimations is built. Lastly, the image-restoration experiments on both analog images and the real AO are performed to verify the recovery effect of our algorithm. The experimental results show that comparing with the Wiener-IBD or RL-IBD algorithm, our iterations decrease 14.3% and well improve the estimation accuracy. The model distinguishes the PSF of the AO images and recovers the observed target images clearly.
Adaptive variational mode decomposition method for signal processing based on mode characteristic
Lian, Jijian; Liu, Zhuo; Wang, Haijun; Dong, Xiaofeng
2018-07-01
Variational mode decomposition is a completely non-recursive decomposition model, where all the modes are extracted concurrently. However, the model requires a preset mode number, which limits the adaptability of the method since a large deviation in the number of mode set will cause the discard or mixing of the mode. Hence, a method called Adaptive Variational Mode Decomposition (AVMD) was proposed to automatically determine the mode number based on the characteristic of intrinsic mode function. The method was used to analyze the simulation signals and the measured signals in the hydropower plant. Comparisons have also been conducted to evaluate the performance by using VMD, EMD and EWT. It is indicated that the proposed method has strong adaptability and is robust to noise. It can determine the mode number appropriately without modulation even when the signal frequencies are relatively close.
Regularity effect in prospective memory during aging
Directory of Open Access Journals (Sweden)
Geoffrey Blondelle
2016-10-01
Full Text Available Background: Regularity effect can affect performance in prospective memory (PM, but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults. Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30, 16 intermediate adults (40–55, and 25 older adults (65–80. The task, adapted from the Virtual Week, was designed to manipulate the regularity of the various activities of daily life that were to be recalled (regular repeated activities vs. irregular non-repeated activities. We examine the role of several cognitive functions including certain dimensions of executive functions (planning, inhibition, shifting, and binding, short-term memory, and retrospective episodic memory to identify those involved in PM, according to regularity and age. Results: A mixed-design ANOVA showed a main effect of task regularity and an interaction between age and regularity: an age-related difference in PM performances was found for irregular activities (older < young, but not for regular activities. All participants recalled more regular activities than irregular ones with no age effect. It appeared that recalling of regular activities only involved planning for both intermediate and older adults, while recalling of irregular ones were linked to planning, inhibition, short-term memory, binding, and retrospective episodic memory. Conclusion: Taken together, our data suggest that planning capacities seem to play a major role in remembering to perform intended actions with advancing age. Furthermore, the age-PM-paradox may be attenuated when the experimental design is adapted by implementing a familiar context through the use of activities of daily living. The clinical
Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids
Directory of Open Access Journals (Sweden)
Sudi Mungkasi
2016-01-01
Full Text Available This paper presents a numerical entropy production (NEP scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.
Energy Technology Data Exchange (ETDEWEB)
Webster, Clayton G [ORNL; Zhang, Guannan [ORNL; Gunzburger, Max D [ORNL
2012-10-01
Accurate predictive simulations of complex real world applications require numerical approximations to first, oppose the curse of dimensionality and second, converge quickly in the presence of steep gradients, sharp transitions, bifurcations or finite discontinuities in high-dimensional parameter spaces. In this paper we present a novel multi-dimensional multi-resolution adaptive (MdMrA) sparse grid stochastic collocation method, that utilizes hierarchical multiscale piecewise Riesz basis functions constructed from interpolating wavelets. The basis for our non-intrusive method forms a stable multiscale splitting and thus, optimal adaptation is achieved. Error estimates and numerical examples will used to compare the efficiency of the method with several other techniques.
Models, methods and software tools for building complex adaptive traffic systems
International Nuclear Information System (INIS)
Alyushin, S.A.
2011-01-01
The paper studies the modern methods and tools to simulate the behavior of complex adaptive systems (CAS), the existing systems of traffic modeling in simulators and their characteristics; proposes requirements for assessing the suitability of the system to simulate the CAS behavior in simulators. The author has developed a model of adaptive agent representation and its functioning environment to meet certain requirements set above, and has presented methods of agents' interactions and methods of conflict resolution in simulated traffic situations. A simulation system realizing computer modeling for simulating the behavior of CAS in traffic situations has been created [ru
The adaptation method in the Monte Carlo simulation for computed tomography
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyoung Gun; Yoon, Chang Yeon; Lee, Won Ho [Dept. of Bio-convergence Engineering, Korea University, Seoul (Korea, Republic of); Cho, Seung Ryong [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sung Ho [Dept. of Neurosurgery, Ulsan University Hospital, Ulsan (Korea, Republic of)
2015-06-15
The patient dose incurred from diagnostic procedures during advanced radiotherapy has become an important issue. Many researchers in medical physics are using computational simulations to calculate complex parameters in experiments. However, extended computation times make it difficult for personal computers to run the conventional Monte Carlo method to simulate radiological images with high-flux photons such as images produced by computed tomography (CT). To minimize the computation time without degrading imaging quality, we applied a deterministic adaptation to the Monte Carlo calculation and verified its effectiveness by simulating CT image reconstruction for an image evaluation phantom (Catphan; Phantom Laboratory, New York NY, USA) and a human-like voxel phantom (KTMAN-2) (Los Alamos National Laboratory, Los Alamos, NM, USA). For the deterministic adaptation, the relationship between iteration numbers and the simulations was estimated and the option to simulate scattered radiation was evaluated. The processing times of simulations using the adaptive method were at least 500 times faster than those using a conventional statistical process. In addition, compared with the conventional statistical method, the adaptive method provided images that were more similar to the experimental images, which proved that the adaptive method was highly effective for a simulation that requires a large number of iterations-assuming no radiation scattering in the vicinity of detectors minimized artifacts in the reconstructed image.
International Nuclear Information System (INIS)
Nahavandi, N.; Minuchehr, A.; Zolfaghari, A.; Abbasi, M.
2015-01-01
Highlights: • Powerful hp-SEM refinement approach for P N neutron transport equation has been presented. • The method provides great geometrical flexibility and lower computational cost. • There is a capability of using arbitrary high order and non uniform meshes. • Both posteriori and priori local error estimation approaches have been employed. • High accurate results are compared against other common adaptive and uniform grids. - Abstract: In this work we presented the adaptive hp-SEM approach which is obtained from the incorporation of Spectral Element Method (SEM) and adaptive hp refinement. The SEM nodal discretization and hp adaptive grid-refinement for even-parity Boltzmann neutron transport equation creates powerful grid refinement approach with high accuracy solutions. In this regard a computer code has been developed to solve multi-group neutron transport equation in one-dimensional geometry using even-parity transport theory. The spatial dependence of flux has been developed via SEM method with Lobatto orthogonal polynomial. Two commonly error estimation approaches, the posteriori and the priori has been implemented. The incorporation of SEM nodal discretization method and adaptive hp grid refinement leads to high accurate solutions. Coarser meshes efficiency and significant reduction of computer program runtime in comparison with other common refining methods and uniform meshing approaches is tested along several well-known transport benchmarks
Investigation of the Adaptability of Transient Stability Assessment Methods to Real-Time Operation
Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Sommer, Stefan; Østergaard, Jacob
2012-01-01
In this paper, an investigation of the adaptability of available transient stability assessment methods to real-time operation and their real-time performance is carried out. Two approaches based on Lyapunov’s method and the equal area criterion are analyzed. The results allow to determine the runtime of each method with respect to the number of inputs. Furthermore, it allows to identify, which method is preferable in case of changes in the power system such as the integration of distributed ...
On the limitations of fixed-step-size adaptive methods with response confidence.
Hsu, Yung-Fong; Chin, Ching-Lan
2014-05-01
The family of (non-parametric, fixed-step-size) adaptive methods, also known as 'up-down' or 'staircase' methods, has been used extensively in psychophysical studies for threshold estimation. Extensions of adaptive methods to non-binary responses have also been proposed. An example is the three-category weighted up-down (WUD) method (Kaernbach, 2001) and its four-category extension (Klein, 2001). Such an extension, however, is somewhat restricted, and in this paper we discuss its limitations. To facilitate the discussion, we characterize the extension of WUD by an algorithm that incorporates response confidence into a family of adaptive methods. This algorithm can also be applied to two other adaptive methods, namely Derman's up-down method and the biased-coin design, which are suitable for estimating any threshold quantiles. We then discuss via simulations of the above three methods the limitations of the algorithm. To illustrate, we conduct a small scale of experiment using the extended WUD under different response confidence formats to evaluate the consistency of threshold estimation. © 2013 The British Psychological Society.
Wang, Ze; Rohrer, David; Chuang, Chi-ching; Fujiki, Mayo; Herman, Keith; Reinke, Wendy
2015-01-01
This study compared 5 scoring methods in terms of their statistical assumptions. They were then used to score the Teacher Observation of Classroom Adaptation Checklist, a measure consisting of 3 subscales and 21 Likert-type items. The 5 methods used were (a) sum/average scores of items, (b) latent factor scores with continuous indicators, (c)…
Investigation of the Adaptability of Transient Stability Assessment Methods to Real-Time Operation
DEFF Research Database (Denmark)
Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Sommer, Stefan
2012-01-01
In this paper, an investigation of the adaptability of available transient stability assessment methods to real-time operation and their real-time performance is carried out. Two approaches based on Lyapunov’s method and the equal area criterion are analyzed. The results allow to determine...
Adapting the mode profile of planar waveguides to single-mode fibers : a novel method
Smit, M.K.; Vreede, De A.H.
1991-01-01
A novel method for coupling single-mode fibers to planar optical circuits with small waveguide dimensions is proposed. The method eliminates the need to apply microoptics or to adapt the waveguide dimensions within the planar circuit to the fiber dimensions. Alignment tolerances are comparable to
Adaptation of the TCLP and SW-846 methods to radioactive mixed waste
International Nuclear Information System (INIS)
Griest, W.H.; Schenley, R.L.; Caton, J.E.; Wolfe, P.F.
1994-01-01
Modifications of conventional sample preparation and analytical methods are necessary to provide radiation protection and to meet sensitivity requirements for regulated constituents when working with radioactive samples. Adaptations of regulatory methods for determining ''total'' Toxicity Characteristic Leaching Procedure (TCLP) volatile and semivolatile organics and pesticides, and for conducting aqueous leaching are presented
Solving point reactor kinetic equations by time step-size adaptable numerical methods
International Nuclear Information System (INIS)
Liao Chaqing
2007-01-01
Based on the analysis of effects of time step-size on numerical solutions, this paper showed the necessity of step-size adaptation. Based on the relationship between error and step-size, two-step adaptation methods for solving initial value problems (IVPs) were introduced. They are Two-Step Method and Embedded Runge-Kutta Method. PRKEs were solved by implicit Euler method with step-sizes optimized by using Two-Step Method. It was observed that the control error has important influence on the step-size and the accuracy of solutions. With suitable control errors, the solutions of PRKEs computed by the above mentioned method are accurate reasonably. The accuracy and usage of MATLAB built-in ODE solvers ode23 and ode45, both of which adopt Runge-Kutta-Fehlberg method, were also studied and discussed. (authors)
A multilevel correction adaptive finite element method for Kohn-Sham equation
Hu, Guanghui; Xie, Hehu; Xu, Fei
2018-02-01
In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.
Liang, Yong; Chai, Hua; Liu, Xiao-Ying; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak
2016-03-01
One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients' gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or survival time prediction for the patients' clinical treatment. Nevertheless, two main dilemmas limit the accuracy of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model for the survival time prediction is limited when such biological differences of the diseases have not been previously identified. To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients. Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select the relevant genes, which are significantly associated with the disease. The results of the simulation experiments show that the semi-supervised learning model can significant improve the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully applied to four real microarray gene expression and artificial evaluation datasets. The advantages of our proposed semi-supervised learning method include: 1) significantly increase the available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox model; 3) high predictive accuracy for patients' survival time in AFT model; 4) strong capability of the relevant biomarker selection. Consequently, our proposed semi
International Nuclear Information System (INIS)
Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok; Yi, Sun
2016-01-01
In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.
Energy Technology Data Exchange (ETDEWEB)
Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Yi, Sun [North Carolina A and T State Univ., Raleigh (United States)
2016-08-15
In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.
Regularization by External Variables
DEFF Research Database (Denmark)
Bossolini, Elena; Edwards, R.; Glendinning, P. A.
2016-01-01
Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind of regula......Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind...
Goyvaerts, Jan
2009-01-01
This cookbook provides more than 100 recipes to help you crunch data and manipulate text with regular expressions. Every programmer can find uses for regular expressions, but their power doesn't come worry-free. Even seasoned users often suffer from poor performance, false positives, false negatives, or perplexing bugs. Regular Expressions Cookbook offers step-by-step instructions for some of the most common tasks involving this tool, with recipes for C#, Java, JavaScript, Perl, PHP, Python, Ruby, and VB.NET. With this book, you will: Understand the basics of regular expressions through a
Manifold Regularized Correlation Object Tracking.
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2018-05-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped from both target and nontarget regions. Thus, the final classifier in our method is trained with positive, negative, and unlabeled base samples, which is a semisupervised learning framework. A block optimization strategy is further introduced to learn a manifold regularization-based correlation filter for efficient online tracking. Experiments on two public tracking data sets demonstrate the superior performance of our tracker compared with the state-of-the-art tracking approaches.
Control of beam halo-chaos using neural network self-adaptation method
International Nuclear Information System (INIS)
Fang Jinqing; Huang Guoxian; Luo Xiaoshu
2004-11-01
Taking the advantages of neural network control method for nonlinear complex systems, control of beam halo-chaos in the periodic focusing channels (network) of high intensity accelerators is studied by feed-forward back-propagating neural network self-adaptation method. The envelope radius of high-intensity proton beam is reached to the matching beam radius by suitably selecting the control structure of neural network and the linear feedback coefficient, adjusted the right-coefficient of neural network. The beam halo-chaos is obviously suppressed and shaking size is much largely reduced after the neural network self-adaptation control is applied. (authors)
The Adapted Ordering Method for Lie algebras and superalgebras and their generalizations
Energy Technology Data Exchange (ETDEWEB)
Gato-Rivera, Beatriz [Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); NIKHEF-H, Kruislaan 409, NL-1098 SJ Amsterdam (Netherlands)
2008-02-01
In 1998 the Adapted Ordering Method was developed for the representation theory of the superconformal algebras in two dimensions. It allows us to determine maximal dimensions for a given type of space of singular vectors, to identify all singular vectors by only a few coefficients, to spot subsingular vectors and to set the basis for constructing embedding diagrams. In this paper we present the Adapted Ordering Method for general Lie algebras and superalgebras and their generalizations, provided they can be triangulated. We also review briefly the results obtained for the Virasoro algebra and for the N = 2 and Ramond N = 1 superconformal algebras.
International Nuclear Information System (INIS)
Laucoin, E.
2008-10-01
Numerical resolution of partial differential equations can be made reliable and efficient through the use of adaptive numerical methods.We present here the work we have done for the design, the implementation and the validation of such a method within an industrial software platform with applications in thermohydraulics. From the geometric point of view, this method can deal both with mesh refinement and mesh coarsening, while ensuring the quality of the mesh cells. Numerically, we use the mortar elements formalism in order to extend the Finite Volumes-Elements method implemented in the Trio-U platform and to deal with the non-conforming meshes arising from the adaptation procedure. Finally, we present an implementation of this method using concepts from domain decomposition methods for ensuring its efficiency while running in a parallel execution context. (author)
Convergence acceleration of Navier-Stokes equation using adaptive wavelet method
International Nuclear Information System (INIS)
Kang, Hyung Min; Ghafoor, Imran; Lee, Do Hyung
2010-01-01
An efficient adaptive wavelet method is proposed for the enhancement of computational efficiency of the Navier-Stokes equations. The method is based on sparse point representation (SPR), which uses the wavelet decomposition and thresholding to obtain a sparsely distributed dataset. The threshold mechanism is modified in order to maintain the spatial accuracy of a conventional Navier-Stokes solver by adapting the threshold value to the order of spatial truncation error. The computational grid can be dynamically adapted to a transient solution to reflect local changes in the solution. The flux evaluation is then carried out only at the points of the adapted dataset, which reduces the computational effort and memory requirements. A stabilization technique is also implemented to avoid the additional numerical errors introduced by the threshold procedure. The numerical results of the adaptive wavelet method are compared with a conventional solver to validate the enhancement in computational efficiency of Navier-Stokes equations without the degeneration of the numerical accuracy of a conventional solver
A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES
Energy Technology Data Exchange (ETDEWEB)
Druckmueller, M., E-mail: druckmuller@fme.vutbr.cz [Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno (Czech Republic)
2013-08-15
A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.
Face Recognition by Bunch Graph Method Using a Group Based Adaptive Tolerant Neural Network
Aradhana D.; Girish H.; Karibasappa K.; Reddy A. Chennakeshava
2011-01-01
This paper presents a new method for feature extraction from the facial image by using bunch graph method. These extracted geometric features of the face are used subsequently for face recognition by utilizing the group based adaptive neural network. This method is suitable, when the facial images are rotation and translation invariant. Further the technique also free from size invariance of facial image and is capable of identifying the facial images correctly when corrupted w...
A simple method to adapt time sampling of the analog signal
International Nuclear Information System (INIS)
Kalinin, Yu.G.; Martyanov, I.S.; Sadykov, Kh.; Zastrozhnova, N.N.
2004-01-01
In this paper we briefly describe the time sampling method, which is adapted to the speed of the signal change. Principally, this method is based on a simple idea--the combination of discrete integration with differentiation of the analog signal. This method can be used in nuclear electronics research into the characteristics of detectors and the shape of the pulse signal, pulse and transitive characteristics of inertial systems of processing of signals, etc
Wilde-Piorko, M.; Polkowski, M.
2016-12-01
Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation final release of a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. Source code of pySeismicFMM will be published before Fall Meeting. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
An adaptive multi-element probabilistic collocation method for statistical EMC/EMI characterization
Yücel, Abdulkadir C.
2013-12-01
An adaptive multi-element probabilistic collocation (ME-PC) method for quantifying uncertainties in electromagnetic compatibility and interference phenomena involving electrically large, multi-scale, and complex platforms is presented. The method permits the efficient and accurate statistical characterization of observables (i.e., quantities of interest such as coupled voltages) that potentially vary rapidly and/or are discontinuous in the random variables (i.e., parameters that characterize uncertainty in a system\\'s geometry, configuration, or excitation). The method achieves its efficiency and accuracy by recursively and adaptively dividing the domain of the random variables into subdomains using as a guide the decay rate of relative error in a polynomial chaos expansion of the observables. While constructing local polynomial expansions on each subdomain, a fast integral-equation-based deterministic field-cable-circuit simulator is used to compute the observable values at the collocation/integration points determined by the adaptive ME-PC scheme. The adaptive ME-PC scheme requires far fewer (computationally costly) deterministic simulations than traditional polynomial chaos collocation and Monte Carlo methods for computing averages, standard deviations, and probability density functions of rapidly varying observables. The efficiency and accuracy of the method are demonstrated via its applications to the statistical characterization of voltages in shielded/unshielded microwave amplifiers and magnetic fields induced on car tire pressure sensors. © 2013 IEEE.
International Nuclear Information System (INIS)
Wen, Zhixun; Pei, Haiqing; Liu, Hai; Yue, Zhufeng
2016-01-01
The sequential Kriging reliability analysis (SKRA) method has been developed in recent years for nonlinear implicit response functions which are expensive to evaluate. This type of method includes EGRA: the efficient reliability analysis method, and AK-MCS: the active learning reliability method combining Kriging model and Monte Carlo simulation. The purpose of this paper is to improve SKRA by adaptive sampling regions and parallelizability. The adaptive sampling regions strategy is proposed to avoid selecting samples in regions where the probability density is so low that the accuracy of these regions has negligible effects on the results. The size of the sampling regions is adapted according to the failure probability calculated by last iteration. Two parallel strategies are introduced and compared, aimed at selecting multiple sample points at a time. The improvement is verified through several troublesome examples. - Highlights: • The ISKRA method improves the efficiency of SKRA. • Adaptive sampling regions strategy reduces the number of needed samples. • The two parallel strategies reduce the number of needed iterations. • The accuracy of the optimal value impacts the number of samples significantly.
[Comparative adaptation of crowns of selective laser melting and wax-lost-casting method].
Li, Guo-qiang; Shen, Qing-yi; Gao, Jian-hua; Wu, Xue-ying; Chen, Li; Dai, Wen-an
2012-07-01
To investigate the marginal adaptation of crowns fabricated by selective laser melting (SLM) and wax-lost-casting method, so as to provide an experimental basis for clinic. Co-Cr alloy full crown were fabricated by SLM and wax-lost-casting for 24 samples in each group. All crowns were cemented with zinc phosphate cement and cut along longitudinal axis by line cutting machine. The gap between crown tissue surface and die was measured by 6-point measuring method with scanning electron microscope (SEM). The marginal adaptation of crowns fabricated by SLM and wax-lost-casting were compared statistically. The gap between SLM crowns were (36.51 ± 2.94), (49.36 ± 3.31), (56.48 ± 3.35), (42.20 ± 3.60) µm, and wax-lost-casting crowns were (68.86 ± 5.41), (58.86 ± 6.10), (70.62 ± 5.79), (69.90 ± 6.00) µm. There were significant difference between two groups (P casting method and SLM method provide acceptable marginal adaptation in clinic, and the marginal adaptation of SLM is better than that of wax-lost-casting method.
Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo
2017-12-01
A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.
Zhou, Qiuling; Tang, Chen; Li, Biyuan; Wang, Linlin; Lei, Zhenkun; Tang, Shuwei
2018-01-01
The filtering of discontinuous optical fringe patterns is a challenging problem faced in this area. This paper is concerned with oriented partial differential equations (OPDEs)-based image filtering methods for discontinuous optical fringe patterns. We redefine a new controlling speed function to depend on the orientation coherence. The orientation coherence can be used to distinguish the continuous regions and the discontinuous regions, and can be calculated by utilizing fringe orientation. We introduce the new controlling speed function to the previous OPDEs and propose adaptive OPDEs filtering models. According to our proposed adaptive OPDEs filtering models, the filtering in the continuous and discontinuous regions can be selectively carried out. We demonstrate the performance of the proposed adaptive OPDEs via application to the simulated and experimental fringe patterns, and compare our methods with the previous OPDEs.
Adaptive wavelet method for pricing two-asset Asian options with floating strike
Černá, Dana
2017-12-01
Asian options are path-dependent option contracts which payoff depends on the average value of the asset price over some period of time. We focus on pricing of Asian options on two assets. The model for pricing these options is represented by a parabolic equation with time variable and three state variables, but using substitution it can be reduced to the equation with only two state variables. For time discretization we use the θ-scheme. We propose a wavelet basis that is adapted to boundary conditions and use an adaptive scheme with this basis for discretization on the given time level. The main advantage of this scheme is small number of degrees of freedom. We present numerical experiments for the Asian put option with floating strike and compare the results for the proposed adaptive method and the Galerkin method.
A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
Huang, Weizhang; Kamenski, Lennard; Lang, Jens
2010-03-01
A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.
Regularities of Multifractal Measures
Indian Academy of Sciences (India)
First, we prove the decomposition theorem for the regularities of multifractal Hausdorff measure and packing measure in R R d . This decomposition theorem enables us to split a set into regular and irregular parts, so that we can analyze each separately, and recombine them without affecting density properties. Next, we ...
Stochastic analytic regularization
International Nuclear Information System (INIS)
Alfaro, J.
1984-07-01
Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)
An adaptive phase space method with application to reflection traveltime tomography
International Nuclear Information System (INIS)
Chung, Eric; Qian, Jianliang; Uhlmann, Gunther; Zhao, Hongkai
2011-01-01
In this work, an adaptive strategy for the phase space method for traveltime tomography (Chung et al 2007 Inverse Problems 23 309–29) is developed. The method first uses those geodesics/rays that produce smaller mismatch with the measurements and continues on in the spirit of layer stripping without defining the layers explicitly. The adaptive approach improves stability, efficiency and accuracy. We then extend our method to reflection traveltime tomography by incorporating broken geodesics/rays for which a jump condition has to be imposed at the broken point for the geodesic flow. In particular, we show that our method can distinguish non-broken and broken geodesics in the measurement and utilize them accordingly in reflection traveltime tomography. We demonstrate that our method can recover the convex hull (with respect to the underlying metric) of unknown obstacles as well as the metric outside the convex hull. (paper)
A Least Square-Based Self-Adaptive Localization Method for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Baoguo Yu
2016-01-01
Full Text Available In the wireless sensor network (WSN localization methods based on Received Signal Strength Indicator (RSSI, it is usually required to determine the parameters of the radio signal propagation model before estimating the distance between the anchor node and an unknown node with reference to their communication RSSI value. And finally we use a localization algorithm to estimate the location of the unknown node. However, this localization method, though high in localization accuracy, has weaknesses such as complex working procedure and poor system versatility. Concerning these defects, a self-adaptive WSN localization method based on least square is proposed, which uses the least square criterion to estimate the parameters of radio signal propagation model, which positively reduces the computation amount in the estimation process. The experimental results show that the proposed self-adaptive localization method outputs a high processing efficiency while satisfying the high localization accuracy requirement. Conclusively, the proposed method is of definite practical value.
Development and evaluation of a method of calibrating medical displays based on fixed adaptation
Energy Technology Data Exchange (ETDEWEB)
Sund, Patrik, E-mail: patrik.sund@vgregion.se; Månsson, Lars Gunnar; Båth, Magnus [Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg SE-41345, Sweden and Department of Radiation Physics, University of Gothenburg, Gothenburg SE-41345 (Sweden)
2015-04-15
Purpose: The purpose of this work was to develop and evaluate a new method for calibration of medical displays that includes the effect of fixed adaptation and by using equipment and luminance levels typical for a modern radiology department. Methods: Low contrast sinusoidal test patterns were derived at nine luminance levels from 2 to 600 cd/m{sup 2} and used in a two alternative forced choice observer study, where the adaptation level was fixed at the logarithmic average of 35 cd/m{sup 2}. The contrast sensitivity at each luminance level was derived by establishing a linear relationship between the ten pattern contrast levels used at every luminance level and a detectability index (d′) calculated from the fraction of correct responses. A Gaussian function was fitted to the data and normalized to the adaptation level. The corresponding equation was used in a display calibration method that included the grayscale standard display function (GSDF) but compensated for fixed adaptation. In the evaluation study, the contrast of circular objects with a fixed pixel contrast was displayed using both calibration methods and was rated on a five-grade scale. Results were calculated using a visual grading characteristics method. Error estimations in both observer studies were derived using a bootstrap method. Results: The contrast sensitivities for the darkest and brightest patterns compared to the contrast sensitivity at the adaptation luminance were 37% and 56%, respectively. The obtained Gaussian fit corresponded well with similar studies. The evaluation study showed a higher degree of equally distributed contrast throughout the luminance range with the calibration method compensated for fixed adaptation than for the GSDF. The two lowest scores for the GSDF were obtained for the darkest and brightest patterns. These scores were significantly lower than the lowest score obtained for the compensated GSDF. For the GSDF, the scores for all luminance levels were statistically
Adaptive control method for core power control in TRIGA Mark II reactor
Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd
2018-01-01
The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.
Tariba, N.; Bouknadel, A.; Haddou, A.; Ikken, N.; Omari, Hafsa El; Omari, Hamid El
2017-01-01
The Photovoltaic Generator have a nonlinear characteristic function relating the intensity at the voltage I = f (U) and depend on the variation of solar irradiation and temperature, In addition, its point of operation depends directly on the load that it supplies. To fix this drawback, and to extract the maximum power available to the terminal of the generator, an adaptation stage is introduced between the generator and the load to couple the two elements as perfectly as possible. The adaptation stage is associated with a command called MPPT MPPT (Maximum Power Point Tracker) whose is used to force the PVG to operate at the MPP (Maximum Power Point) under variation of climatic conditions and load variation. This paper presents a comparative study between the adaptive controller for PV Systems using MIT rules and Lyapunov method to regulate the PV voltage. The Incremental Conductance (IC) algorithm is used to extract the maximum power from the PVG by calculating the voltage Vref, and the adaptive controller is used to regulate and track quickly the PV voltage. The two methods of the adaptive controller will be compared to prove their performance by using the PSIM tools and experimental test, and the mathematical model of step-up with PVG model will be presented.
Adaptive e-learning methods and IMS Learning Design. An integrated approach
Burgos, Daniel; Specht, Marcus
2006-01-01
Please, cite this publication as: Burgos, D., & Specht, M. (2006). Adaptive e-learning methods and IMS Learning Design. In Kinshuk, R. Koper, P. Kommers, P. Kirschner, D. G. Sampson & W. Didderen (Eds.), Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies (pp.
When Smokey says "No": Fire-less methods for growing plants adapted to cultural fire regimes
Daniela Shebitz; Justine E. James
2010-01-01
Two culturally-significant plants (sweetgrass [Anthoxanthum nitens] and beargrass [Xerophyllum tenax]) are used as case studies for investigating methods of restoring plant populations that are adapted to indigenous burning practices without using fire. Reports from tribal members that the plants of interest were declining in traditional gathering areas provided the...
Rackauckas, Christopher; Nie, Qing
2017-01-01
Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling provides efficient approaches for solving differential equations. While many such methods exist for solving deterministic systems, little progress has been made for stochastic variants. One challenge in developing adaptive methods for stochastic differential equations (SDEs) is the construction of embedded schemes with direct error estimates. We present a new class of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a natural embedding of strong order 1.0 methods. This allows for the derivation of an error estimate which requires no additional function evaluations. Next we derive a general method to reject the time steps without losing information about the future Brownian path termed Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to do rejection sampling, costing only a few floating point calculations. We show numerically that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we show that this form of adaptivity can be applied to systems of equations, and demonstrate that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms. Our approach only requires the solution to a bridging problem and thus lends itself to natural generalizations beyond SDEs.
International Nuclear Information System (INIS)
Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.
2013-01-01
Highlights: ► A new adaptive h-refinement approach has been developed for a class of nodal method. ► The resulting system of nodal equations is more amenable to efficient numerical solution. ► The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. ► Spatially adaptive approach greatly enhances the accuracy of the solution. - Abstract: The aim of this work is to develop a spatially adaptive coarse mesh strategy that progressively refines the nodes in appropriate regions of domain to solve the neutron balance equation by zeroth order nodal expansion method. A flux gradient based a posteriori estimation scheme has been utilized for checking the approximate solutions for various nodes. The relative surface net leakage of nodes has been considered as an assessment criterion. In this approach, the core module is called in by adaptive mesh generator to determine gradients of node surfaces flux to explore the possibility of node refinements in appropriate regions and directions of the problem. The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. For this purpose, a computer program ANRNE-2D, Adaptive Node Refinement Nodal Expansion, has been developed to solve neutron diffusion equation using average current nodal expansion method for 2D rectangular geometries. Implementing the adaptive algorithm confirms its superiority in enhancing the accuracy of the solution without using fine nodes throughout the domain and increasing the number of unknown solution. Some well-known benchmarks have been investigated and improvements are reported
Use of a dynamic grid adaptation in the asymmetric weighted residual method
International Nuclear Information System (INIS)
Graf, V.; Romstedt, P.; Werner, W.
1986-01-01
A dynamic grid adaptive method has been developed for use with the asymmetric weighted residual method. The method automatically adapts the number and position of the spatial mesh points as the solution of hyperbolic or parabolic vector partial differential equations progresses in time. The mesh selection algorithm is based on the minimization of the L 2 norm of the spatial discretization error. The method permits the accurate calculation of the evolution of inhomogeneities, like wave fronts, shock layers, and other sharp transitions, while generally using a coarse computational grid. The number of required mesh points is significantly reduced, relative to a fixed Eulerian grid. Since the mesh selection algorithm is computationally inexpensive, a corresponding reduction of computing time results
International Nuclear Information System (INIS)
Wang, Ruihong; Yang, Shulin; Pei, Lucheng
2011-01-01
Deep penetration problem has been one of the difficult problems in shielding calculation with Monte Carlo method for several decades. In this paper, an adaptive technique under the emission point as a sampling station is presented. The main advantage is to choose the most suitable sampling number from the emission point station to get the minimum value of the total cost in the process of the random walk. Further, the related importance sampling method is also derived. The main principle is to define the importance function of the response due to the particle state and ensure the sampling number of the emission particle is proportional to the importance function. The numerical results show that the adaptive method under the emission point as a station could overcome the difficulty of underestimation to the result in some degree, and the related importance sampling method gets satisfied results as well. (author)
Low-Complexity Regularization Algorithms for Image Deblurring
Alanazi, Abdulrahman
2016-11-01
Image restoration problems deal with images in which information has been degraded by blur or noise. In practice, the blur is usually caused by atmospheric turbulence, motion, camera shake, and several other mechanical or physical processes. In this study, we present two regularization algorithms for the image deblurring problem. We first present a new method based on solving a regularized least-squares (RLS) problem. This method is proposed to find a near-optimal value of the regularization parameter in the RLS problems. Experimental results on the non-blind image deblurring problem are presented. In all experiments, comparisons are made with three benchmark methods. The results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and structural similarity, as well as the visual quality of the deblurred images. To reduce the complexity of the proposed algorithm, we propose a technique based on the bootstrap method to estimate the regularization parameter in low and high-resolution images. Numerical results show that the proposed technique can effectively reduce the computational complexity of the proposed algorithms. In addition, for some cases where the point spread function (PSF) is separable, we propose using a Kronecker product so as to reduce the computations. Furthermore, in the case where the image is smooth, it is always desirable to replace the regularization term in the RLS problems by a total variation term. Therefore, we propose a novel method for adaptively selecting the regularization parameter in a so-called square root regularized total variation (SRTV). Experimental results demonstrate that our proposed method outperforms the other benchmark methods when applied to smooth images in terms of PSNR, SSIM and the restored image quality. In this thesis, we focus on the non-blind image deblurring problem, where the blur kernel is assumed to be known. However, we developed algorithms that also work
An h-adaptive finite element method for turbulent heat transfer
Energy Technology Data Exchange (ETDEWEB)
Carriington, David B [Los Alamos National Laboratory
2009-01-01
A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.
A regularized stationary mean-field game
Yang, Xianjin
2016-01-01
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
A regularized stationary mean-field game
Yang, Xianjin
2016-04-19
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
A class of discontinuous Petrov–Galerkin methods. Part III: Adaptivity
Demkowicz, Leszek
2012-04-01
We continue our theoretical and numerical study on the Discontinuous Petrov-Galerkin method with optimal test functions in context of 1D and 2D convection-dominated diffusion problems and hp-adaptivity. With a proper choice of the norm for the test space, we prove robustness (uniform stability with respect to the diffusion parameter) and mesh-independence of the energy norm of the FE error for the 1D problem. With hp-adaptivity and a proper scaling of the norms for the test functions, we establish new limits for solving convection-dominated diffusion problems numerically: ε=10 -11 for 1D and ε=10 -7 for 2D problems. The adaptive process is fully automatic and starts with a mesh consisting of few elements only. © 2011 IMACS. Published by Elsevier B.V. All rights reserved.
Sparse structure regularized ranking
Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin
2014-01-01
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse
Regular expression containment
DEFF Research Database (Denmark)
Henglein, Fritz; Nielsen, Lasse
2011-01-01
We present a new sound and complete axiomatization of regular expression containment. It consists of the conventional axiomatiza- tion of concatenation, alternation, empty set and (the singleton set containing) the empty string as an idempotent semiring, the fixed- point rule E* = 1 + E × E......* for Kleene-star, and a general coin- duction rule as the only additional rule. Our axiomatization gives rise to a natural computational inter- pretation of regular expressions as simple types that represent parse trees, and of containment proofs as coercions. This gives the axiom- atization a Curry......-Howard-style constructive interpretation: Con- tainment proofs do not only certify a language-theoretic contain- ment, but, under our computational interpretation, constructively transform a membership proof of a string in one regular expres- sion into a membership proof of the same string in another regular expression. We...
Supersymmetric dimensional regularization
International Nuclear Information System (INIS)
Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.
1980-01-01
There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed
Regularized maximum correntropy machine
Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin
2015-01-01
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin; Salama, Amgad; Sun, Shuyu
2016-01-01
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Data-adaptive Robust Optimization Method for the Economic Dispatch of Active Distribution Networks
DEFF Research Database (Denmark)
Zhang, Yipu; Ai, Xiaomeng; Fang, Jiakun
2018-01-01
Due to the restricted mathematical description of the uncertainty set, the current two-stage robust optimization is usually over-conservative which has drawn concerns from the power system operators. This paper proposes a novel data-adaptive robust optimization method for the economic dispatch...... of active distribution network with renewables. The scenario-generation method and the two-stage robust optimization are combined in the proposed method. To reduce the conservativeness, a few extreme scenarios selected from the historical data are used to replace the conventional uncertainty set....... The proposed extreme-scenario selection algorithm takes advantage of considering the correlations and can be adaptive to different historical data sets. A theoretical proof is given that the constraints will be satisfied under all the possible scenarios if they hold in the selected extreme scenarios, which...
Fuzzy adaptive Kalman filter for indoor mobile target positioning with INS/WSN integrated method
Institute of Scientific and Technical Information of China (English)
杨海; 李威; 罗成名
2015-01-01
Pure inertial navigation system (INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network (WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter (KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system (FIS), and the fuzzy adaptive Kalman filter (FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.
International Nuclear Information System (INIS)
Wang Baosheng; Wang Dongqing; Zhang Jianmin; Jiang Jing
2012-01-01
In order to estimate the functional failure probability of passive systems, an innovative adaptive importance sampling methodology is presented. In the proposed methodology, information of variables is extracted with some pre-sampling of points in the failure region. An important sampling density is then constructed from the sample distribution in the failure region. Taking the AP1000 passive residual heat removal system as an example, the uncertainties related to the model of a passive system and the numerical values of its input parameters are considered in this paper. And then the probability of functional failure is estimated with the combination of the response surface method and adaptive importance sampling method. The numerical results demonstrate the high computed efficiency and excellent computed accuracy of the methodology compared with traditional probability analysis methods. (authors)
A Remote Sensing Image Fusion Method based on adaptive dictionary learning
He, Tongdi; Che, Zongxi
2018-01-01
This paper discusses using a remote sensing fusion method, based on' adaptive sparse representation (ASP)', to provide improved spectral information, reduce data redundancy and decrease system complexity. First, the training sample set is formed by taking random blocks from the images to be fused, the dictionary is then constructed using the training samples, and the remaining terms are clustered to obtain the complete dictionary by iterated processing at each step. Second, the self-adaptive weighted coefficient rule of regional energy is used to select the feature fusion coefficients and complete the reconstruction of the image blocks. Finally, the reconstructed image blocks are rearranged and an average is taken to obtain the final fused images. Experimental results show that the proposed method is superior to other traditional remote sensing image fusion methods in both spectral information preservation and spatial resolution.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin
2016-09-21
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Energy Technology Data Exchange (ETDEWEB)
Berthiau, G
1995-10-01
The circuit design problem consists in determining acceptable parameter values (resistors, capacitors, transistors geometries ...) which allow the circuit to meet various user given operational criteria (DC consumption, AC bandwidth, transient times ...). This task is equivalent to a multidimensional and/or multi objective optimization problem: n-variables functions have to be minimized in an hyper-rectangular domain ; equality constraints can be eventually specified. A similar problem consists in fitting component models. In this way, the optimization variables are the model parameters and one aims at minimizing a cost function built on the error between the model response and the data measured on the component. The chosen optimization method for this kind of problem is the simulated annealing method. This method, provided by the combinatorial optimization domain, has been adapted and compared with other global optimization methods for the continuous variables problems. An efficient strategy of variables discretization and a set of complementary stopping criteria have been proposed. The different parameters of the method have been adjusted with analytical functions of which minima are known, classically used in the literature. Our simulated annealing algorithm has been coupled with an open electrical simulator SPICE-PAC of which the modular structure allows the chaining of simulations required by the circuit optimization process. We proposed, for high-dimensional problems, a partitioning technique which ensures proportionality between CPU-time and variables number. To compare our method with others, we have adapted three other methods coming from combinatorial optimization domain - the threshold method, a genetic algorithm and the Tabu search method - The tests have been performed on the same set of test functions and the results allow a first comparison between these methods applied to continuous optimization variables. (Abstract Truncated)
Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun
2018-05-17
This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.
Subcortical processing of speech regularities underlies reading and music aptitude in children
2011-01-01
Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input
Subcortical processing of speech regularities underlies reading and music aptitude in children
Directory of Open Access Journals (Sweden)
Strait Dana L
2011-10-01
Full Text Available Abstract Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to
Directory of Open Access Journals (Sweden)
Катерина Ігорівна Сізова
2015-03-01
Full Text Available Large-scale sinter plants at metallurgical enterprises incorporate highly productive transport-and-handling complexes (THC that receive and process mass iron-bearing raw materials. Such THCs as a rule include unloading facilities and freight railway station. The central part of the THC is a technological line that carries out operations of reception and unloading of unit trains with raw materials. The technological line consists of transport and freight modules. The latter plays a leading role and, in its turn, consists of rotary car dumpers and conveyor belts. This module represents a determinate system that carries out preparation and unloading operations. Its processing capacity is set in accordance with manufacturing capacity of the sinter plant. The research has shown that in existing operating conditions, which is characterized by “arrhythmia” of interaction between external transport operation and production, technological line of THC functions inefficiently. Thus, it secures just 18-20 % of instances of processing of inbound unit trains within set standard time. It was determined that duration of the cycle of processing of inbound unit train can play a role of regulator, under stochastic characteristics of intervals between inbound unit trains with raw materials on the one hand, and determined unloading system on the other hand. That is why evaluation of interdependence between these factors allows determination of duration of cycle of processing of inbound unit trains. Basing on the results of the study, the method of logistical management of the processing of inbound unit trains was offered. At the same time, real duration of processing of inbound unit train is taken as the regulated value. The regulation process implies regular evaluation and comparison of these values, and, taking into account different disturbances, decision-making concerning adaptation of functioning of technological line. According to the offered principles
Adapting a perinatal empathic training method from South Africa to Germany.
Knapp, Caprice; Honikman, Simone; Wirsching, Michael; Husni-Pascha, Gidah; Hänselmann, Eva
2018-01-01
Maternal mental health conditions are prevalent across the world. For women, the perinatal period is associated with increased rates of depression and anxiety. At the same time, there is widespread documentation of disrespectful care for women by maternity health staff. Improving the empathic engagement skills of maternity healthcare workers may enable them to respond to the mental health needs of their clients more effectively. In South Africa, a participatory empathic training method, the "Secret History" has been used as part of a national Department of Health training program with maternity staff and has showed promising results. For this paper, we aimed to describe an adaptation of the Secret History empathic training method from the South African to the German setting and to evaluate the adapted training. The pilot study occurred in an academic medical center in Germany. A focus group ( n = 8) was used to adapt the training by describing the local context and changing the materials to be relevant to Germany. After adapting the materials, the pilot training was conducted with a mixed group of professionals ( n = 15), many of whom were trainers themselves. A pre-post survey assessed the participants' empathy levels and attitudes towards the training method. In adapting the materials, the focus group discussion generated several experiences that were considered to be typical interpersonal and structural challenges facing healthcare workers in maternal care in Germany. These experiences were crafted into case scenarios that then formed the basis of the activities used in the Secret History empathic training pilot. Evaluation of the pilot training showed that although the participants had high levels of empathy in the pre-phase (100% estimated their empathic ability as high or very high), 69% became more aware of their own emotional experiences with patients and the need for self-care after the training. A majority, or 85%, indicated that the training
Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics
Guo, Qiang
Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of
3D spatially-adaptive canonical correlation analysis: Local and global methods.
Yang, Zhengshi; Zhuang, Xiaowei; Sreenivasan, Karthik; Mishra, Virendra; Curran, Tim; Byrd, Richard; Nandy, Rajesh; Cordes, Dietmar
2018-04-01
Local spatially-adaptive canonical correlation analysis (local CCA) with spatial constraints has been introduced to fMRI multivariate analysis for improved modeling of activation patterns. However, current algorithms require complicated spatial constraints that have only been applied to 2D local neighborhoods because the computational time would be exponentially increased if the same method is applied to 3D spatial neighborhoods. In this study, an efficient and accurate line search sequential quadratic programming (SQP) algorithm has been developed to efficiently solve the 3D local CCA problem with spatial constraints. In addition, a spatially-adaptive kernel CCA (KCCA) method is proposed to increase accuracy of fMRI activation maps. With oriented 3D spatial filters anisotropic shapes can be estimated during the KCCA analysis of fMRI time courses. These filters are orientation-adaptive leading to rotational invariance to better match arbitrary oriented fMRI activation patterns, resulting in improved sensitivity of activation detection while significantly reducing spatial blurring artifacts. The kernel method in its basic form does not require any spatial constraints and analyzes the whole-brain fMRI time series to construct an activation map. Finally, we have developed a penalized kernel CCA model that involves spatial low-pass filter constraints to increase the specificity of the method. The kernel CCA methods are compared with the standard univariate method and with two different local CCA methods that were solved by the SQP algorithm. Results show that SQP is the most efficient algorithm to solve the local constrained CCA problem, and the proposed kernel CCA methods outperformed univariate and local CCA methods in detecting activations for both simulated and real fMRI episodic memory data. Copyright © 2017 Elsevier Inc. All rights reserved.
A method for online verification of adapted fields using an independent dose monitor
International Nuclear Information System (INIS)
Chang Jina; Norrlinger, Bernhard D.; Heaton, Robert K.; Jaffray, David A.; Cho, Young-Bin; Islam, Mohammad K.; Mahon, Robert
2013-01-01
Purpose: Clinical implementation of online adaptive radiotherapy requires generation of modified fields and a method of dosimetric verification in a short time. We present a method of treatment field modification to account for patient setup error, and an online method of verification using an independent monitoring system.Methods: The fields are modified by translating each multileaf collimator (MLC) defined aperture in the direction of the patient setup error, and magnifying to account for distance variation to the marked isocentre. A modified version of a previously reported online beam monitoring system, the integral quality monitoring (IQM) system, was investigated for validation of adapted fields. The system consists of a large area ion-chamber with a spatial gradient in electrode separation to provide a spatially sensitive signal for each beam segment, mounted below the MLC, and a calculation algorithm to predict the signal. IMRT plans of ten prostate patients have been modified in response to six randomly chosen setup errors in three orthogonal directions.Results: A total of approximately 49 beams for the modified fields were verified by the IQM system, of which 97% of measured IQM signal agree with the predicted value to within 2%.Conclusions: The modified IQM system was found to be suitable for online verification of adapted treatment fields
An h-adaptive mesh method for Boltzmann-BGK/hydrodynamics coupling
International Nuclear Information System (INIS)
Cai Zhenning; Li Ruo
2010-01-01
We introduce a coupled method for hydrodynamic and kinetic equations on 2-dimensional h-adaptive meshes. We adopt the Euler equations with a fast kinetic solver in the region near thermodynamical equilibrium, while use the Boltzmann-BGK equation in kinetic regions where fluids are far from equilibrium. A buffer zone is created around the kinetic regions, on which a gradually varying numerical flux is adopted. Based on the property of a continuously discretized cut-off function which describes how the flux varies, the coupling will be conservative. In order for the conservative 2-dimensional specularly reflective boundary condition to be implemented conveniently, the discrete Maxwellian is approximated by a high order continuous formula with improved accuracy on a disc instead of on a square domain. The h-adaptive method can work smoothly with a time-split numerical scheme. Through h-adaptation, the cell number is greatly reduced. This method is particularly suitable for problems with hydrodynamics breakdown on only a small part of the whole domain, so that the total efficiency of the algorithm can be greatly improved. Three numerical examples are presented to validate the proposed method and demonstrate its efficiency.
Stabilized Conservative Level Set Method with Adaptive Wavelet-based Mesh Refinement
Shervani-Tabar, Navid; Vasilyev, Oleg V.
2016-11-01
This paper addresses one of the main challenges of the conservative level set method, namely the ill-conditioned behavior of the normal vector away from the interface. An alternative formulation for reconstruction of the interface is proposed. Unlike the commonly used methods which rely on the unit normal vector, Stabilized Conservative Level Set (SCLS) uses a modified renormalization vector with diminishing magnitude away from the interface. With the new formulation, in the vicinity of the interface the reinitialization procedure utilizes compressive flux and diffusive terms only in the normal direction to the interface, thus, preserving the conservative level set properties, while away from the interfaces the directional diffusion mechanism automatically switches to homogeneous diffusion. The proposed formulation is robust and general. It is especially well suited for use with adaptive mesh refinement (AMR) approaches due to need for a finer resolution in the vicinity of the interface in comparison with the rest of the domain. All of the results were obtained using the Adaptive Wavelet Collocation Method, a general AMR-type method, which utilizes wavelet decomposition to adapt on steep gradients in the solution while retaining a predetermined order of accuracy.
Vibration-Based Adaptive Novelty Detection Method for Monitoring Faults in a Kinematic Chain
Directory of Open Access Journals (Sweden)
Jesus Adolfo Cariño-Corrales
2016-01-01
Full Text Available This paper presents an adaptive novelty detection methodology applied to a kinematic chain for the monitoring of faults. The proposed approach has the premise that only information of the healthy operation of the machine is initially available and fault scenarios will eventually develop. This approach aims to cover some of the challenges presented when condition monitoring is applied under a continuous learning framework. The structure of the method is divided into two recursive stages: first, an offline stage for initialization and retraining of the feature reduction and novelty detection modules and, second, an online monitoring stage to continuously assess the condition of the machine. Contrary to classical static feature reduction approaches, the proposed method reformulates the features by employing first a Laplacian Score ranking and then the Fisher Score ranking for retraining. The proposed methodology is validated experimentally by monitoring the vibration measurements of a kinematic chain driven by an induction motor. Two faults are induced in the motor to validate the method performance to detect anomalies and adapt the feature reduction and novelty detection modules to the new information. The obtained results show the advantages of employing an adaptive approach for novelty detection and feature reduction making the proposed method suitable for industrial machinery diagnosis applications.
Adaptive EWMA Method Based on Abnormal Network Traffic for LDoS Attacks
Directory of Open Access Journals (Sweden)
Dan Tang
2014-01-01
Full Text Available The low-rate denial of service (LDoS attacks reduce network services capabilities by periodically sending high intensity pulse data flows. For their concealed performance, it is more difficult for traditional DoS detection methods to detect LDoS attacks; at the same time the accuracy of the current detection methods for LDoS attacks is relatively low. As the fact that LDoS attacks led to abnormal distribution of the ACK traffic, LDoS attacks can be detected by analyzing the distribution characteristics of ACK traffic. Then traditional EWMA algorithm which can smooth the accidental error while being the same as the exceptional mutation may cause some misjudgment; therefore a new LDoS detection method based on adaptive EWMA (AEWMA algorithm is proposed. The AEWMA algorithm which uses an adaptive weighting function instead of the constant weighting of EWMA algorithm can smooth the accidental error and retain the exceptional mutation. So AEWMA method is more beneficial than EWMA method for analyzing and measuring the abnormal distribution of ACK traffic. The NS2 simulations show that AEWMA method can detect LDoS attacks effectively and has a low false negative rate and a false positive rate. Based on DARPA99 datasets, experiment results show that AEWMA method is more efficient than EWMA method.
Kou, Jisheng; Sun, Shuyu
2014-01-01
The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton's method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.
Kou, Jisheng
2014-01-01
The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.
Janssen, Bä rbel; Kanschat, Guido
2011-01-01
A multilevel method on adaptive meshes with hanging nodes is presented, and the additional matrices appearing in the implementation are derived. Smoothers of overlapping Schwarz type are discussed; smoothing is restricted to the interior of the subdomains refined to the current level; thus it has optimal computational complexity. When applied to conforming finite element discretizations of elliptic problems and Maxwell equations, the method's convergence rates are very close to those for the nonadaptive version. Furthermore, the smoothers remain efficient for high order finite elements. We discuss the implementation in a general finite element code using the example of the deal.II library. © 2011 Societ y for Industrial and Applied Mathematics.
A projection-adapted cross entropy (PACE) method for transmission network planning
Energy Technology Data Exchange (ETDEWEB)
Eshragh, Ali; Filar, Jerzy [University of South Australia, School of Mathematics and Statistics, Mawson Lakes, SA (Australia); Nazar, Asef [University of South Australia, Institute for Sustainable Systems Technologies, School of Mathematics and Statistics, Mawson Lakes, SA (Australia)
2011-06-15
In this paper, we propose an adaptation of the cross entropy (CE) method called projection-adapted CE (PACE) to solve a transmission expansion problem that arises in management of national and provincial electricity grids. The aim of the problem is to find an expansion policy that is both economical and operational from the technical perspective. Often, the transmission network expansion problem is mathematically formulated as a mixed integer nonlinear program that is very challenging algorithmically. The challenge originates from the fact that a global optimum should be found despite the presence, of possibly a huge number, of local optima. The PACE method shows promise in solving global optimization problems regardless of continuity or other assumptions. In our approach, we sample the integer variables using the CE mechanism, and solve LPs to obtain matching continuous variables. Numerical results, on selected test systems, demonstrate the potential of this approach. (orig.)
Directory of Open Access Journals (Sweden)
Hui Liu
2015-01-01
Full Text Available The key problem of computer-aided diagnosis (CAD of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO pulmonary nodules than other typical algorithms.
An integration time adaptive control method for atmospheric composition detection of occultation
Ding, Lin; Hou, Shuai; Yu, Fei; Liu, Cheng; Li, Chao; Zhe, Lin
2018-01-01
When sun is used as the light source for atmospheric composition detection, it is necessary to image sun for accurate identification and stable tracking. In the course of 180 second of the occultation, the magnitude of sun light intensity through the atmosphere changes greatly. It is nearly 1100 times illumination change between the maximum atmospheric and the minimum atmospheric. And the process of light change is so severe that 2.9 times per second of light change can be reached. Therefore, it is difficult to control the integration time of sun image camera. In this paper, a novel adaptive integration time control method for occultation is presented. In this method, with the distribution of gray value in the image as the reference variable, and the concepts of speed integral PID control, the integration time adaptive control problem of high frequency imaging. The large dynamic range integration time automatic control in the occultation can be achieved.
An object-oriented decomposition of the adaptive-hp finite element method
Energy Technology Data Exchange (ETDEWEB)
Wiley, J.C.
1994-12-13
Adaptive-hp methods are those which use a refinement control strategy driven by a local error estimate to locally modify the element size, h, and polynomial order, p. The result is an unstructured mesh in which each node may be associated with a different polynomial order and which generally require complex data structures to implement. Object-oriented design strategies and languages which support them, e.g., C++, help control the complexity of these methods. Here an overview of the major classes and class structure of an adaptive-hp finite element code is described. The essential finite element structure is described in terms of four areas of computation each with its own dynamic characteristics. Implications of converting the code for a distributed-memory parallel environment are also discussed.
Directory of Open Access Journals (Sweden)
Hailun Wang
2017-01-01
Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.
Energy Technology Data Exchange (ETDEWEB)
Sheng, Qin, E-mail: Qin_Sheng@baylor.edu [Department of Mathematics and Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place, Waco, TX 76798-7328 (United States); Sun, Hai-wei, E-mail: hsun@umac.mo [Department of Mathematics, University of Macau (Macao)
2016-11-15
This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman–Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptive grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.
A fully general and adaptive inverse analysis method for cementitious materials
DEFF Research Database (Denmark)
Jepsen, Michael S.; Damkilde, Lars; Lövgren, Ingemar
2016-01-01
The paper presents an adaptive method for inverse determination of the tensile σ - w relationship, direct tensile strength and Young’s modulus of cementitious materials. The method facilitates an inverse analysis with a multi-linear σ - w function. Usually, simple bi- or tri-linear functions...... are applied when modeling the fracture mechanisms in cementitious materials, but the vast development of pseudo-strain hardening, fiber reinforced cementitious materials require inverse methods, capable of treating multi-linear σ - w functions. The proposed method is fully general in the sense that it relies...... of notched specimens and simulated data from a nonlinear hinge model. The paper shows that the results obtained by means of the proposed method is independent on the initial shape of the σ - w function and the initial guess of the tensile strength. The method provides very accurate fits, and the increased...
An Adaptive Privacy Protection Method for Smart Home Environments Using Supervised Learning
Directory of Open Access Journals (Sweden)
Jingsha He
2017-03-01
Full Text Available In recent years, smart home technologies have started to be widely used, bringing a great deal of convenience to people’s daily lives. At the same time, privacy issues have become particularly prominent. Traditional encryption methods can no longer meet the needs of privacy protection in smart home applications, since attacks can be launched even without the need for access to the cipher. Rather, attacks can be successfully realized through analyzing the frequency of radio signals, as well as the timestamp series, so that the daily activities of the residents in the smart home can be learnt. Such types of attacks can achieve a very high success rate, making them a great threat to users’ privacy. In this paper, we propose an adaptive method based on sample data analysis and supervised learning (SDASL, to hide the patterns of daily routines of residents that would adapt to dynamically changing network loads. Compared to some existing solutions, our proposed method exhibits advantages such as low energy consumption, low latency, strong adaptability, and effective privacy protection.
An Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems
Directory of Open Access Journals (Sweden)
Masoud Shafiei
2015-12-01
Full Text Available In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams. The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, adaptive points are determined using the wavelet theory. This part is done employing the Deslauries-Dubuc (D-D wavelets. By solving the problem in the first step, the domain of the problem is discretized by the same cells taking into consideration the load and characteristics of the structure. After the first trial solution, the D-D interpolation shows the lack and redundancy of points in the domain. These points will be added or eliminated for the next solution. This process may be repeated for obtaining an adaptive mesh for each step. Also, the smoothing spline fit is used to eliminate the noisy portion of the solution. Finally, the results of the proposed method are compared with the results available in the literature. The comparison shows excellent agreement between the obtained results and those already reported.
Cox-Davenport, Rebecca A; Phelan, Julia C
2015-05-01
First-time NCLEX-RN pass rates are an important indicator of nursing school success and quality. Nursing schools use different methods to anticipate NCLEX outcomes and help prevent student failure and possible threat to accreditation. This study evaluated the impact of a shift in NCLEX preparation policy at a BSN program in the southeast United States. The policy shifted from the use of predictor score thresholds to determine graduation eligibility to a more proactive remediation strategy involving adaptive quizzing. A descriptive correlational design evaluated the impact of an adaptive quizzing system designed to give students ongoing active practice and feedback and explored the relationship between predictor examinations and NCLEX success. Data from student usage of the system as well as scores on predictor tests were collected for three student cohorts. Results revealed a positive correlation between adaptive quizzing system usage and content mastery. Two of the 69 students in the sample did not pass the NCLEX. With so few students failing the NCLEX, predictability of any course variables could not be determined. The power of predictor examinations to predict NCLEX failure could also not be supported. The most consistent factor among students, however, was their content mastery level within the adaptive quizzing system. Implications of these findings are discussed.
Directory of Open Access Journals (Sweden)
Mehdi Neshat
2015-11-01
Full Text Available In this article, the objective was to present effective and optimal strategies aimed at improving the Swallow Swarm Optimization (SSO method. The SSO is one of the best optimization methods based on swarm intelligence which is inspired by the intelligent behaviors of swallows. It has been able to offer a relatively strong method for solving optimization problems. However, despite its many advantages, the SSO suffers from two shortcomings. Firstly, particles movement speed is not controlled satisfactorily during the search due to the lack of an inertia weight. Secondly, the variables of the acceleration coefficient are not able to strike a balance between the local and the global searches because they are not sufficiently flexible in complex environments. Therefore, the SSO algorithm does not provide adequate results when it searches in functions such as the Step or Quadric function. Hence, the fuzzy adaptive Swallow Swarm Optimization (FASSO method was introduced to deal with these problems. Meanwhile, results enjoy high accuracy which are obtained by using an adaptive inertia weight and through combining two fuzzy logic systems to accurately calculate the acceleration coefficients. High speed of convergence, avoidance from falling into local extremum, and high level of error tolerance are the advantages of proposed method. The FASSO was compared with eleven of the best PSO methods and SSO in 18 benchmark functions. Finally, significant results were obtained.
An adaptive reentry guidance method considering the influence of blackout zone
Wu, Yu; Yao, Jianyao; Qu, Xiangju
2018-01-01
Reentry guidance has been researched as a popular topic because it is critical for a successful flight. In view that the existing guidance methods do not take into account the accumulated navigation error of Inertial Navigation System (INS) in the blackout zone, in this paper, an adaptive reentry guidance method is proposed to obtain the optimal reentry trajectory quickly with the target of minimum aerodynamic heating rate. The terminal error in position and attitude can be also reduced with the proposed method. In this method, the whole reentry guidance task is divided into two phases, i.e., the trajectory updating phase and the trajectory planning phase. In the first phase, the idea of model predictive control (MPC) is used, and the receding optimization procedure ensures the optimal trajectory in the next few seconds. In the trajectory planning phase, after the vehicle has flown out of the blackout zone, the optimal reentry trajectory is obtained by online planning to adapt to the navigation information. An effective swarm intelligence algorithm, i.e. pigeon inspired optimization (PIO) algorithm, is applied to obtain the optimal reentry trajectory in both of the two phases. Compared to the trajectory updating method, the proposed method can reduce the terminal error by about 30% considering both the position and attitude, especially, the terminal error of height has almost been eliminated. Besides, the PIO algorithm performs better than the particle swarm optimization (PSO) algorithm both in the trajectory updating phase and the trajectory planning phases.
Errors in the estimation method for the rejection of vibrations in adaptive optics systems
Kania, Dariusz
2017-06-01
In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.
Removing damped sinusoidal vibrations in adaptive optics systems using a DFT-based estimation method
Kania, Dariusz
2017-06-01
The problem of a vibrations rejection in adaptive optics systems is still present in publications. These undesirable signals emerge because of shaking the system structure, the tracking process, etc., and they usually are damped sinusoidal signals. There are some mechanical solutions to reduce the signals but they are not very effective. One of software solutions are very popular adaptive methods. An AVC (Adaptive Vibration Cancellation) method has been presented and developed in recent years. The method is based on the estimation of three vibrations parameters and values of frequency, amplitude and phase are essential to produce and adjust a proper signal to reduce or eliminate vibrations signals. This paper presents a fast (below 10 ms) and accurate estimation method of frequency, amplitude and phase of a multifrequency signal that can be used in the AVC method to increase the AO system performance. The method accuracy depends on several parameters: CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, THD, b - number of A/D converter bits in a real time system, γ - the damping ratio of the tested signal, φ - the phase of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value of systematic error for γ = 0.1%, CiR = 1.1 and N = 32 is approximately 10^-4 Hz/Hz. This paper focuses on systematic errors of and effect of the signal phase and values of γ on the results.
Moving finite elements: A continuously adaptive method for computational fluid dynamics
International Nuclear Information System (INIS)
Glasser, A.H.; Miller, K.; Carlson, N.
1991-01-01
Moving Finite Elements (MFE), a recently developed method for computational fluid dynamics, promises major advances in the ability of computers to model the complex behavior of liquids, gases, and plasmas. Applications of computational fluid dynamics occur in a wide range of scientifically and technologically important fields. Examples include meteorology, oceanography, global climate modeling, magnetic and inertial fusion energy research, semiconductor fabrication, biophysics, automobile and aircraft design, industrial fluid processing, chemical engineering, and combustion research. The improvements made possible by the new method could thus have substantial economic impact. Moving Finite Elements is a moving node adaptive grid method which has a tendency to pack the grid finely in regions where it is most needed at each time and to leave it coarse elsewhere. It does so in a manner which is simple and automatic, and does not require a large amount of human ingenuity to apply it to each particular problem. At the same time, it often allows the time step to be large enough to advance a moving shock by many shock thicknesses in a single time step, moving the grid smoothly with the solution and minimizing the number of time steps required for the whole problem. For 2D problems (two spatial variables) the grid is composed of irregularly shaped and irregularly connected triangles which are very flexible in their ability to adapt to the evolving solution. While other adaptive grid methods have been developed which share some of these desirable properties, this is the only method which combines them all. In many cases, the method can save orders of magnitude of computing time, equivalent to several generations of advancing computer hardware
Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification
Winokur, J.
2015-12-19
We investigate two methods to build a polynomial approximation of a model output depending on some parameters. The two approaches are based on pseudo-spectral projection (PSP) methods on adaptively constructed sparse grids, and aim at providing a finer control of the resolution along two distinct subsets of model parameters. The control of the error along different subsets of parameters may be needed for instance in the case of a model depending on uncertain parameters and deterministic design variables. We first consider a nested approach where an independent adaptive sparse grid PSP is performed along the first set of directions only, and at each point a sparse grid is constructed adaptively in the second set of directions. We then consider the application of aPSP in the space of all parameters, and introduce directional refinement criteria to provide a tighter control of the projection error along individual dimensions. Specifically, we use a Sobol decomposition of the projection surpluses to tune the sparse grid adaptation. The behavior and performance of the two approaches are compared for a simple two-dimensional test problem and for a shock-tube ignition model involving 22 uncertain parameters and 3 design parameters. The numerical experiments indicate that whereas both methods provide effective means for tuning the quality of the representation along distinct subsets of parameters, PSP in the global parameter space generally requires fewer model evaluations than the nested approach to achieve similar projection error. In addition, the global approach is better suited for generalization to more than two subsets of directions.
A local adaptive method for the numerical approximation in seismic wave modelling
Directory of Open Access Journals (Sweden)
Galuzzi Bruno G.
2017-12-01
Full Text Available We propose a new numerical approach for the solution of the 2D acoustic wave equation to model the predicted data in the field of active-source seismic inverse problems. This method consists in using an explicit finite difference technique with an adaptive order of approximation of the spatial derivatives that takes into account the local velocity at the grid nodes. Testing our method to simulate the recorded seismograms in a marine seismic acquisition, we found that the low computational time and the low approximation error of the proposed approach make it suitable in the context of seismic inversion problems.
A wavelet domain adaptive image watermarking method based on chaotic encryption
Wei, Fang; Liu, Jian; Cao, Hanqiang; Yang, Jun
2009-10-01
A digital watermarking technique is a specific branch of steganography, which can be used in various applications, provides a novel way to solve security problems for multimedia information. In this paper, we proposed a kind of wavelet domain adaptive image digital watermarking method using chaotic stream encrypt and human eye visual property. The secret information that can be seen as a watermarking is hidden into a host image, which can be publicly accessed, so the transportation of the secret information will not attract the attention of illegal receiver. The experimental results show that the method is invisible and robust against some image processing.
An Adaptive Dense Matching Method for Airborne Images Using Texture Information
Directory of Open Access Journals (Sweden)
ZHU Qing
2017-01-01
Full Text Available Semi-global matching (SGM is essentially a discrete optimization for the disparity value of each pixel, under the assumption of disparity continuities. SGM overcomes the influence of the disparity discontinuities by a set of parameters. Using smaller parameters, the continuity constraint is weakened, which will cause significant noises in planar and textureless areas, reflected as the fluctuations on the final surface reconstruction. On the other hands, larger parameters will impose too much constraints on continuities, which may lead to losses of sharp features. To address this problem, this paper proposes an adaptive dense stereo matching methods for airborne images using with texture information. Firstly, the texture is quantified, and under the assumption that disparity variation is directly proportional to the texture information, the adaptive parameters are gauged accordingly. Second, SGM is adopted to optimize the discrete disparities using the adaptively tuned parameters. Experimental evaluations using the ISPRS benchmark dataset and images obtained by the SWDC-5 have revealed that the proposed method will significantly improve the visual qualities of the point clouds.
An adaptive segment method for smoothing lidar signal based on noise estimation
Wang, Yuzhao; Luo, Pingping
2014-10-01
An adaptive segmentation smoothing method (ASSM) is introduced in the paper to smooth the signal and suppress the noise. In the ASSM, the noise is defined as the 3σ of the background signal. An integer number N is defined for finding the changing positions in the signal curve. If the difference of adjacent two points is greater than 3Nσ, the position is recorded as an end point of the smoothing segment. All the end points detected as above are recorded and the curves between them will be smoothed separately. In the traditional method, the end points of the smoothing windows in the signals are fixed. The ASSM creates changing end points in different signals and the smoothing windows could be set adaptively. The windows are always set as the half of the segmentations and then the average smoothing method will be applied in the segmentations. The Iterative process is required for reducing the end-point aberration effect in the average smoothing method and two or three times are enough. In ASSM, the signals are smoothed in the spacial area nor frequent area, that means the frequent disturbance will be avoided. A lidar echo was simulated in the experimental work. The echo was supposed to be created by a space-born lidar (e.g. CALIOP). And white Gaussian noise was added to the echo to act as the random noise resulted from environment and the detector. The novel method, ASSM, was applied to the noisy echo to filter the noise. In the test, N was set to 3 and the Iteration time is two. The results show that, the signal could be smoothed adaptively by the ASSM, but the N and the Iteration time might be optimized when the ASSM is applied in a different lidar.
Janssen, Bärbel
2011-01-01
A multilevel method on adaptive meshes with hanging nodes is presented, and the additional matrices appearing in the implementation are derived. Smoothers of overlapping Schwarz type are discussed; smoothing is restricted to the interior of the subdomains refined to the current level; thus it has optimal computational complexity. When applied to conforming finite element discretizations of elliptic problems and Maxwell equations, the method\\'s convergence rates are very close to those for the nonadaptive version. Furthermore, the smoothers remain efficient for high order finite elements. We discuss the implementation in a general finite element code using the example of the deal.II library. © 2011 Societ y for Industrial and Applied Mathematics.
An accurate anisotropic adaptation method for solving the level set advection equation
International Nuclear Information System (INIS)
Bui, C.; Dapogny, C.; Frey, P.
2012-01-01
In the present paper, a mesh adaptation process for solving the advection equation on a fully unstructured computational mesh is introduced, with a particular interest in the case it implicitly describes an evolving surface. This process mainly relies on a numerical scheme based on the method of characteristics. However, low order, this scheme lends itself to a thorough analysis on the theoretical side. It gives rise to an anisotropic error estimate which enjoys a very natural interpretation in terms of the Hausdorff distance between the exact and approximated surfaces. The computational mesh is then adapted according to the metric supplied by this estimate. The whole process enjoys a good accuracy as far as the interface resolution is concerned. Some numerical features are discussed and several classical examples are presented and commented in two or three dimensions. (authors)
An adaptive two-stage dose-response design method for establishing proof of concept.
Franchetti, Yoko; Anderson, Stewart J; Sampson, Allan R
2013-01-01
We propose an adaptive two-stage dose-response design where a prespecified adaptation rule is used to add and/or drop treatment arms between the stages. We extend the multiple comparison procedures-modeling (MCP-Mod) approach into a two-stage design. In each stage, we use the same set of candidate dose-response models and test for a dose-response relationship or proof of concept (PoC) via model-associated statistics. The stage-wise test results are then combined to establish "global" PoC using a conditional error function. Our simulation studies showed good and more robust power in our design method compared to conventional and fixed designs.
A DAFT DL_POLY distributed memory adaptation of the Smoothed Particle Mesh Ewald method
Bush, I. J.; Todorov, I. T.; Smith, W.
2006-09-01
The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.
Solution verification, goal-oriented adaptive methods for stochastic advection–diffusion problems
Almeida, Regina C.
2010-08-01
A goal-oriented analysis of linear, stochastic advection-diffusion models is presented which provides both a method for solution verification as well as a basis for improving results through adaptation of both the mesh and the way random variables are approximated. A class of model problems with random coefficients and source terms is cast in a variational setting. Specific quantities of interest are specified which are also random variables. A stochastic adjoint problem associated with the quantities of interest is formulated and a posteriori error estimates are derived. These are used to guide an adaptive algorithm which adjusts the sparse probabilistic grid so as to control the approximation error. Numerical examples are given to demonstrate the methodology for a specific model problem. © 2010 Elsevier B.V.
Solution verification, goal-oriented adaptive methods for stochastic advection–diffusion problems
Almeida, Regina C.; Oden, J. Tinsley
2010-01-01
A goal-oriented analysis of linear, stochastic advection-diffusion models is presented which provides both a method for solution verification as well as a basis for improving results through adaptation of both the mesh and the way random variables are approximated. A class of model problems with random coefficients and source terms is cast in a variational setting. Specific quantities of interest are specified which are also random variables. A stochastic adjoint problem associated with the quantities of interest is formulated and a posteriori error estimates are derived. These are used to guide an adaptive algorithm which adjusts the sparse probabilistic grid so as to control the approximation error. Numerical examples are given to demonstrate the methodology for a specific model problem. © 2010 Elsevier B.V.
Adaptive collocation method for simultaneous heat and mass diffusion with phase change
International Nuclear Information System (INIS)
Chawla, T.C.; Leaf, G.; Minkowycz, W.J.; Pedersen, D.R.; Shouman, A.R.
1983-01-01
The present study is carried out to determine melting rates of a lead slab of various thicknesses by contact with sodium coolant and to evaluate the extent of penetration and the mixing rates of molten lead into liquid sodium by molecular diffusion alone. The study shows that these two calculations cannot be performed simultaneously without the use of adaptive coordinates which cause considerable stretching of the physical coordinates for mass diffusion. Because of the large difference in densities of these two liquid metals, the traditional constant density approximation for the calculation of mass diffusion cannot be used for studying their interdiffusion. The use of orthogonal collocation method along with adaptive coordinates produces extremely accurate results which are ascertained by comparing with the existing analytical solutions for concentration distribution for the case of constant density approximation and for melting rates for the case of infinite lead slab
Modeling of heterogeneous elastic materials by the multiscale hp-adaptive finite element method
Klimczak, Marek; Cecot, Witold
2018-01-01
We present an enhancement of the multiscale finite element method (MsFEM) by combining it with the hp-adaptive FEM. Such a discretization-based homogenization technique is a versatile tool for modeling heterogeneous materials with fast oscillating elasticity coefficients. No assumption on periodicity of the domain is required. In order to avoid direct, so-called overkill mesh computations, a coarse mesh with effective stiffness matrices is used and special shape functions are constructed to account for the local heterogeneities at the micro resolution. The automatic adaptivity (hp-type at the macro resolution and h-type at the micro resolution) increases efficiency of computation. In this paper details of the modified MsFEM are presented and a numerical test performed on a Fichera corner domain is presented in order to validate the proposed approach.
A novel ECG data compression method based on adaptive Fourier decomposition
Tan, Chunyu; Zhang, Liming
2017-12-01
This paper presents a novel electrocardiogram (ECG) compression method based on adaptive Fourier decomposition (AFD). AFD is a newly developed signal decomposition approach, which can decompose a signal with fast convergence, and hence reconstruct ECG signals with high fidelity. Unlike most of the high performance algorithms, our method does not make use of any preprocessing operation before compression. Huffman coding is employed for further compression. Validated with 48 ECG recordings of MIT-BIH arrhythmia database, the proposed method achieves the compression ratio (CR) of 35.53 and the percentage root mean square difference (PRD) of 1.47% on average with N = 8 decomposition times and a robust PRD-CR relationship. The results demonstrate that the proposed method has a good performance compared with the state-of-the-art ECG compressors.
A Cartesian Adaptive Level Set Method for Two-Phase Flows
Ham, F.; Young, Y.-N.
2003-01-01
In the present contribution we develop a level set method based on local anisotropic Cartesian adaptation as described in Ham et al. (2002). Such an approach should allow for the smallest possible Cartesian grid capable of resolving a given flow. The remainder of the paper is organized as follows. In section 2 the level set formulation for free surface calculations is presented and its strengths and weaknesses relative to the other free surface methods reviewed. In section 3 the collocated numerical method is described. In section 4 the method is validated by solving the 2D and 3D drop oscilation problem. In section 5 we present some results from more complex cases including the 3D drop breakup in an impulsively accelerated free stream, and the 3D immiscible Rayleigh-Taylor instability. Conclusions are given in section 6.
Adaptive moving grid methods for two-phase flow in porous media
Dong, Hao
2014-08-01
In this paper, we present an application of the moving mesh method for approximating numerical solutions of the two-phase flow model in porous media. The numerical schemes combine a mixed finite element method and a finite volume method, which can handle the nonlinearities of the governing equations in an efficient way. The adaptive moving grid method is then used to distribute more grid points near the sharp interfaces, which enables us to obtain accurate numerical solutions with fewer computational resources. The numerical experiments indicate that the proposed moving mesh strategy could be an effective way to approximate two-phase flows in porous media. © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Linhai Gan
2017-01-01
Full Text Available The random matrix (RM method is widely applied for group target tracking. The assumption that the group extension keeps invariant in conventional RM method is not yet valid, as the orientation of the group varies rapidly while it is maneuvering; thus, a new approach with group extension predicted is derived here. To match the group maneuvering, a best model augmentation (BMA method is introduced. The existing BMA method uses a fixed basic model set, which may lead to a poor performance when it could not ensure basic coverage of true motion modes. Here, a maneuvering group target tracking algorithm is proposed, where the group extension prediction and the BMA adaption are exploited. The performance of the proposed algorithm will be illustrated by simulation.
An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification.
Li, Fangmin; Yang, Chao; Xia, Yuqing; Ma, Xiaolin; Zhang, Tao; Zhou, Zhou
2017-11-29
In this paper, we propose the multiwindow Adaptive S-method (AS-method) distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM) trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference.
An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification
Directory of Open Access Journals (Sweden)
Fangmin Li
2017-11-01
Full Text Available In this paper, we propose the multiwindow Adaptive S-method (AS-method distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference.
Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar
2017-11-01
A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.
Maximum mutual information regularized classification
Wang, Jim Jing-Yan
2014-09-07
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Maximum mutual information regularized classification
Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin
2014-01-01
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Gupta, Joyeeta; Termeer, Catrien; Klostermann, Judith; Meijerink, Sander; van den Brink, Margo; Jong, Pieter; Nooteboom, Sibout; Bergsma, Emmy
2010-01-01
Climate change potentially brings continuous and unpredictable changes in weather patterns. Consequently, it calls for institutions that promote the adaptive capacity of society and allow society to modify its institutions at a rate commensurate with the rate of environmental change. Institutions,
Gupta, J.; Termeer, C.; Klostermann, J.; Meijerink, S.; van den Brink, M.; de Jong, P.; Nootebooms, S.; Bergsma, E.J.
2010-01-01
Climate change potentially brings continuous and unpredictable changes in weather patterns. Consequently, it calls for institutions that promote the adaptive capacity of society and allow society to modify its institutions at a rate commensurate with the rate of environmental change. Institutions,
Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling
Rastigejev, Y.
2011-12-01
Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems
Directory of Open Access Journals (Sweden)
González Delgado Ángel
2012-06-01
Full Text Available In the biodiesel production process from microalgae, the cell disruption and lipid extraction stages are important for obtaining triglycerides that can be transesterified to biodiesel and glycerol. In this work, the Bligh & Dyer method was adapted for lipid extraction from native microalgae using organosolv pretreatment or acid hydrolysis as cell disruption mechanism for improve the extraction process. Chloroform-methanol-water are the solvents employed in the Bligh & Dyer extraction method. The microalgae species Botryococcus braunii, Nannocloropsis, Closterium, Guinardia y Amphiprora were employed for the experimental part. Adaptation of the method was found the best extraction conditions, these were: 1:20 biomass/solvent ratio, initial ratio solvents CHCl3:CH3OH:H2O (1:2:0, stirring conditions of 5000 rpm for 14 minutes and centrifuge of 3400 rpm for 15 minutes. The cell disruption mechanisms allowed to obtain extracts with high lipid content after performing the extraction with Bligh & Dyer method, but decreases significantly the total extraction yield. Finally, the fatty acids profiles showed that Botryococcus braunii specie contains higher acylglycerol percentage area suitable for the production of biodiesel.
Patched based methods for adaptive mesh refinement solutions of partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Saltzman, J.
1997-09-02
This manuscript contains the lecture notes for a course taught from July 7th through July 11th at the 1997 Numerical Analysis Summer School sponsored by C.E.A., I.N.R.I.A., and E.D.F. The subject area was chosen to support the general theme of that year`s school which is ``Multiscale Methods and Wavelets in Numerical Simulation.`` The first topic covered in these notes is a description of the problem domain. This coverage is limited to classical PDEs with a heavier emphasis on hyperbolic systems and constrained hyperbolic systems. The next topic is difference schemes. These schemes are the foundation for the adaptive methods. After the background material is covered, attention is focused on a simple patched based adaptive algorithm and its associated data structures for square grids and hyperbolic conservation laws. Embellishments include curvilinear meshes, embedded boundary and overset meshes. Next, several strategies for parallel implementations are examined. The remainder of the notes contains descriptions of elliptic solutions on the mesh hierarchy, elliptically constrained flow solution methods and elliptically constrained flow solution methods with diffusion.
AK-SYS: An adaptation of the AK-MCS method for system reliability
International Nuclear Information System (INIS)
Fauriat, W.; Gayton, N.
2014-01-01
A lot of research work has been proposed over the last two decades to evaluate the probability of failure of a structure involving a very time-consuming mechanical model. Surrogate model approaches based on Kriging, such as the Efficient Global Reliability Analysis (EGRA) or the Active learning and Kriging-based Monte-Carlo Simulation (AK-MCS) methods, are very efficient and each has advantages of its own. EGRA is well suited to evaluating small probabilities, as the surrogate can be used to classify any population. AK-MCS is built in relation to a given population and requires no optimization program for the active learning procedure to be performed. It is therefore easier to implement and more likely to spend computational effort on areas with a significant probability content. When assessing system reliability, analytical approaches and first-order approximation are widely used in the literature. However, in the present paper we rather focus on sampling techniques and, considering the recent adaptation of the EGRA method for systems, a strategy is presented to adapt the AK-MCS method for system reliability. The AK-SYS method, “Active learning and Kriging-based SYStem reliability method”, is presented. Its high efficiency and accuracy are illustrated via various examples
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
Directory of Open Access Journals (Sweden)
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Data-adapted moving least squares method for 3-D image interpolation
International Nuclear Information System (INIS)
Jang, Sumi; Lee, Yeon Ju; Jeong, Byeongseon; Nam, Haewon; Lee, Rena; Yoon, Jungho
2013-01-01
In this paper, we present a nonlinear three-dimensional interpolation scheme for gray-level medical images. The scheme is based on the moving least squares method but introduces a fundamental modification. For a given evaluation point, the proposed method finds the local best approximation by reproducing polynomials of a certain degree. In particular, in order to obtain a better match to the local structures of the given image, we employ locally data-adapted least squares methods that can improve the classical one. Some numerical experiments are presented to demonstrate the performance of the proposed method. Five types of data sets are used: MR brain, MR foot, MR abdomen, CT head, and CT foot. From each of the five types, we choose five volumes. The scheme is compared with some well-known linear methods and other recently developed nonlinear methods. For quantitative comparison, we follow the paradigm proposed by Grevera and Udupa (1998). (Each slice is first assumed to be unknown then interpolated by each method. The performance of each interpolation method is assessed statistically.) The PSNR results for the estimated volumes are also provided. We observe that the new method generates better results in both quantitative and visual quality comparisons. (paper)
Grudinin , Sergei; Garkavenko , Maria; Kazennov , Andrei
2017-01-01
International audience; A new method called Pepsi-SAXS is presented that calculates small-angle X-ray scattering profiles from atomistic models. The method is based on the multipole expansion scheme and is significantly faster compared with other tested methods. In particular, using the Nyquist–Shannon–Kotelnikov sampling theorem, the multipole expansion order is adapted to the size of the model and the resolution of the experimental data. It is argued that by using the adaptive expansion ord...
Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J
2015-09-01
Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
SYSTEM ANALYSIS OF MAJOR TRENDS IN DEVELOPMENT OF ADAPTIVE TRAFFIC FLOW MANAGEMENT METHODS
Directory of Open Access Journals (Sweden)
A. N. Klimovich
2017-01-01
Full Text Available Adaptive algorithms, which current traffic systems are based on, exist for many decades. Information technologies have developed significantly over this period and it makes more relevant their application in the field of transport. This paper analyses modern trends in the development of adaptive traffic flow control methods. Reviewed the most perspective directions in the field of intelligent transport systems, such as high-speed wireless communication between vehicles and road infrastructure based on such technologies as DSRC and WAVE, traffic jams prediction having such features as traffic flow information, congestion, velocity of vehicles using machine learning, fuzzy logic rules and genetic algorithms, application of driver assistance systems to increase vehicle’s autonomy. Advantages of such technologies in safety, efficiency and usability of transport are shown. Described multi-agent approach, which uses V2I-communication between vehicles and intersection controller to improve efficiency of control due to more complete traffic flow information and possibility to give orders to separate vehicles. Presented number of algorithms which use such approach to create new generation of adaptive transport systems.
A Multilevel Adaptive Reaction-splitting Simulation Method for Stochastic Reaction Networks
Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro
2016-01-01
In this work, we present a novel multilevel Monte Carlo method for kinetic simulation of stochastic reaction networks characterized by having simultaneously fast and slow reaction channels. To produce efficient simulations, our method adaptively classifies the reactions channels into fast and slow channels. To this end, we first introduce a state-dependent quantity named level of activity of a reaction channel. Then, we propose a low-cost heuristic that allows us to adaptively split the set of reaction channels into two subsets characterized by either a high or a low level of activity. Based on a time-splitting technique, the increments associated with high-activity channels are simulated using the tau-leap method, while those associated with low-activity channels are simulated using an exact method. This path simulation technique is amenable for coupled path generation and a corresponding multilevel Monte Carlo algorithm. To estimate expected values of observables of the system at a prescribed final time, our method bounds the global computational error to be below a prescribed tolerance, TOL, within a given confidence level. This goal is achieved with a computational complexity of order O(TOL-2), the same as with a pathwise-exact method, but with a smaller constant. We also present a novel low-cost control variate technique based on the stochastic time change representation by Kurtz, showing its performance on a numerical example. We present two numerical examples extracted from the literature that show how the reaction-splitting method obtains substantial gains with respect to the standard stochastic simulation algorithm and the multilevel Monte Carlo approach by Anderson and Higham. © 2016 Society for Industrial and Applied Mathematics.
A Multilevel Adaptive Reaction-splitting Simulation Method for Stochastic Reaction Networks
Moraes, Alvaro
2016-07-07
In this work, we present a novel multilevel Monte Carlo method for kinetic simulation of stochastic reaction networks characterized by having simultaneously fast and slow reaction channels. To produce efficient simulations, our method adaptively classifies the reactions channels into fast and slow channels. To this end, we first introduce a state-dependent quantity named level of activity of a reaction channel. Then, we propose a low-cost heuristic that allows us to adaptively split the set of reaction channels into two subsets characterized by either a high or a low level of activity. Based on a time-splitting technique, the increments associated with high-activity channels are simulated using the tau-leap method, while those associated with low-activity channels are simulated using an exact method. This path simulation technique is amenable for coupled path generation and a corresponding multilevel Monte Carlo algorithm. To estimate expected values of observables of the system at a prescribed final time, our method bounds the global computational error to be below a prescribed tolerance, TOL, within a given confidence level. This goal is achieved with a computational complexity of order O(TOL-2), the same as with a pathwise-exact method, but with a smaller constant. We also present a novel low-cost control variate technique based on the stochastic time change representation by Kurtz, showing its performance on a numerical example. We present two numerical examples extracted from the literature that show how the reaction-splitting method obtains substantial gains with respect to the standard stochastic simulation algorithm and the multilevel Monte Carlo approach by Anderson and Higham. © 2016 Society for Industrial and Applied Mathematics.
PET regularization by envelope guided conjugate gradients
International Nuclear Information System (INIS)
Kaufman, L.; Neumaier, A.
1996-01-01
The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations
Diverse Regular Employees and Non-regular Employment (Japanese)
MORISHIMA Motohiro
2011-01-01
Currently there are high expectations for the introduction of policies related to diverse regular employees. These policies are a response to the problem of disparities between regular and non-regular employees (part-time, temporary, contract and other non-regular employees) and will make it more likely that workers can balance work and their private lives while companies benefit from the advantages of regular employment. In this paper, I look at two issues that underlie this discussion. The ...
Sparse structure regularized ranking
Wang, Jim Jing-Yan
2014-04-17
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.
Technical Note: A fast online adaptive replanning method for VMAT using flattening filter free beams
Energy Technology Data Exchange (ETDEWEB)
Ates, Ozgur; Ahunbay, Ergun E.; Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Moreau, Michel [Elekta, Inc., Maryland Heights, Missouri 63043 (United States)
2016-06-15
Purpose: To develop a fast replanning algorithm based on segment aperture morphing (SAM) for online replanning of volumetric modulated arc therapy (VMAT) with flattening filter free (FFF) beams. Methods: A software tool was developed to interface with a VMAT research planning system, which enables the input and output of beam and machine parameters of VMAT plans. The SAM algorithm was used to modify multileaf collimator positions for each segment aperture based on the changes of the target from the planning (CT/MR) to daily image [CT/CBCT/magnetic resonance imaging (MRI)]. The leaf travel distance was controlled for large shifts to prevent the increase of VMAT delivery time. The SAM algorithm was tested for 11 patient cases including prostate, pancreatic, and lung cancers. For each daily image set, three types of VMAT plans, image-guided radiation therapy (IGRT) repositioning, SAM adaptive, and full-scope reoptimization plans, were generated and compared. Results: The SAM adaptive plans were found to have improved the plan quality in target and/or critical organs when compared to the IGRT repositioning plans and were comparable to the reoptimization plans based on the data of planning target volume (PTV)-V100 (volume covered by 100% of prescription dose). For the cases studied, the average PTV-V100 was 98.85% ± 1.13%, 97.61% ± 1.45%, and 92.84% ± 1.61% with FFF beams for the reoptimization, SAM adaptive, and repositioning plans, respectively. The execution of the SAM algorithm takes less than 10 s using 16-CPU (2.6 GHz dual core) hardware. Conclusions: The SAM algorithm can generate adaptive VMAT plans using FFF beams with comparable plan qualities as those from the full-scope reoptimization plans based on daily CT/CBCT/MRI and can be used for online replanning to address interfractional variations.
Adaptive control system having hedge unit and related apparatus and methods
Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)
2007-01-01
The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.
'Regular' and 'emergency' repair
International Nuclear Information System (INIS)
Luchnik, N.V.
1975-01-01
Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)
Regularization of divergent integrals
Felder, Giovanni; Kazhdan, David
2016-01-01
We study the Hadamard finite part of divergent integrals of differential forms with singularities on submanifolds. We give formulae for the dependence of the finite part on the choice of regularization and express them in terms of a suitable local residue map. The cases where the submanifold is a complex hypersurface in a complex manifold and where it is a boundary component of a manifold with boundary, arising in string perturbation theory, are treated in more detail.
International Nuclear Information System (INIS)
Duan Liming; Ye Yong; Zhang Xia; Zuo Jian
2013-01-01
A self-adaptive identification method is proposed for realizing more accurate and efficient judgment about the inner and outer contours of industrial computed tomography (CT) slice images. The convexity-concavity of the single-pixel-wide closed contour is identified with angle method at first. Then, contours with concave vertices are distinguished to be inner or outer contours with ray method, and contours without concave vertices are distinguished with extreme coordinate value method. The method was chosen to automatically distinguish contours by means of identifying the convexity and concavity of the contours. Thus, the disadvantages of single distinguishing methods, such as ray method's time-consuming and extreme coordinate method's fallibility, can be avoided. The experiments prove the adaptability, efficiency, and accuracy of the self-adaptive method. (authors)
Planetary gearbox fault feature enhancement based on combined adaptive filter method
Directory of Open Access Journals (Sweden)
Shuangshu Tian
2015-12-01
Full Text Available The reliability of vibration signals acquired from a planetary gear system (the indispensable part of wind turbine gearbox is directly related to the accuracy of fault diagnosis. The complex operation environment leads to lots of interference signals which are included in the vibration signals. Furthermore, both multiple gears meshing with each other and the differences in transmission rout produce strong nonlinearity in the vibration signals, which makes it difficult to eliminate the noise. This article presents a combined adaptive filter method by taking a delayed signal as reference signal, the Self-Adaptive Noise Cancellation method is adopted to eliminate the white noise. In the meanwhile, by applying Gaussian function to transform the input signal into high-dimension feature-space signal, the kernel least mean square algorithm is used to cancel the nonlinear interference. Effectiveness of the method has been verified by simulation signals and test rig signals. By dealing with simulation signal, the signal-to-noise ratio can be improved around 30 dB (white noise and the amplitude of nonlinear interference signal can be depressed up to 50%. Experimental results show remarkable improvements and enhance gear fault features.
Directory of Open Access Journals (Sweden)
Taochang Li
2014-01-01
Full Text Available Automatic steering control is the key factor and essential condition in the realization of the automatic navigation control of agricultural vehicles. In order to get satisfactory steering control performance, an adaptive sliding mode control method based on a nonlinear integral sliding surface is proposed in this paper for agricultural vehicle steering control. First, the vehicle steering system is modeled as a second-order mathematic model; the system uncertainties and unmodeled dynamics as well as the external disturbances are regarded as the equivalent disturbances satisfying a certain boundary. Second, a transient process of the desired system response is constructed in each navigation control period. Based on the transient process, a nonlinear integral sliding surface is designed. Then the corresponding sliding mode control law is proposed to guarantee the fast response characteristics with no overshoot in the closed-loop steering control system. Meanwhile, the switching gain of sliding mode control is adaptively adjusted to alleviate the control input chattering by using the fuzzy control method. Finally, the effectiveness and the superiority of the proposed method are verified by a series of simulation and actual steering control experiments.
Comparison of an adaptive local thresholding method on CBCT and µCT endodontic images
Michetti, Jérôme; Basarab, Adrian; Diemer, Franck; Kouame, Denis
2018-01-01
Root canal segmentation on cone beam computed tomography (CBCT) images is difficult because of the noise level, resolution limitations, beam hardening and dental morphological variations. An image processing framework, based on an adaptive local threshold method, was evaluated on CBCT images acquired on extracted teeth. A comparison with high quality segmented endodontic images on micro computed tomography (µCT) images acquired from the same teeth was carried out using a dedicated registration process. Each segmented tooth was evaluated according to volume and root canal sections through the area and the Feret’s diameter. The proposed method is shown to overcome the limitations of CBCT and to provide an automated and adaptive complete endodontic segmentation. Despite a slight underestimation (-4, 08%), the local threshold segmentation method based on edge-detection was shown to be fast and accurate. Strong correlations between CBCT and µCT segmentations were found both for the root canal area and diameter (respectively 0.98 and 0.88). Our findings suggest that combining CBCT imaging with this image processing framework may benefit experimental endodontology, teaching and could represent a first development step towards the clinical use of endodontic CBCT segmentation during pulp cavity treatment.