WorldWideScience

Sample records for adaptive radiation model

  1. Two adaptive radiative transfer schemes for numerical weather prediction models

    Directory of Open Access Journals (Sweden)

    V. Venema

    2007-11-01

    Full Text Available Radiative transfer calculations in atmospheric models are computationally expensive, even if based on simplifications such as the δ-two-stream approximation. In most weather prediction models these parameterisation schemes are therefore called infrequently, accepting additional model error due to the persistence assumption between calls. This paper presents two so-called adaptive parameterisation schemes for radiative transfer in a limited area model: A perturbation scheme that exploits temporal correlations and a local-search scheme that mainly takes advantage of spatial correlations. Utilising these correlations and with similar computational resources, the schemes are able to predict the surface net radiative fluxes more accurately than a scheme based on the persistence assumption. An important property of these adaptive schemes is that their accuracy does not decrease much in case of strong reductions in the number of calls to the δ-two-stream scheme. It is hypothesised that the core idea can also be employed in parameterisation schemes for other processes and in other dynamical models.

  2. An adaptive radiation model for the origin of new genefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Francino, M. Pilar

    2004-10-18

    The evolution of new gene functions is one of the keys to evolutionary innovation. Most novel functions result from gene duplication followed by divergence. However, the models hitherto proposed to account for this process are not fully satisfactory. The classic model of neofunctionalization holds that the two paralogous gene copies resulting from a duplication are functionally redundant, such that one of them can evolve under no functional constraints and occasionally acquire a new function. This model lacks a convincing mechanism for the new gene copies to increase in frequency in the population and survive the mutational load expected to accumulate under neutrality, before the acquisition of the rare beneficial mutations that would confer new functionality. The subfunctionalization model has been proposed as an alternative way to generate genes with altered functions. This model also assumes that new paralogous gene copies are functionally redundant and therefore neutral, but it predicts that relaxed selection will affect both gene copies such that some of the capabilities of the parent gene will disappear in one of the copies and be retained in the other. Thus, the functions originally present in a single gene will be partitioned between the two descendant copies. However, although this model can explain increases in gene number, it does not really address the main evolutionary question, which is the development of new biochemical capabilities. Recently, a new concept has been introduced into the gene evolution literature which is most likely to help solve this dilemma. The key point is to allow for a period of natural selection for the duplication per se, before new function evolves, rather than considering gene duplication to be neutral as in the previous models. Here, I suggest a new model that draws on the advantage of postulating selection for gene duplication, and proposes that bursts of adaptive gene amplification in response to specific selection

  3. A goal-based angular adaptivity method for thermal radiation modelling in non grey media

    Science.gov (United States)

    Soucasse, Laurent; Dargaville, Steven; Buchan, Andrew G.; Pain, Christopher C.

    2017-10-01

    This paper investigates for the first time a goal-based angular adaptivity method for thermal radiation transport, suitable for non grey media when the radiation field is coupled with an unsteady flow field through an energy balance. Anisotropic angular adaptivity is achieved by using a Haar wavelet finite element expansion that forms a hierarchical angular basis with compact support and does not require any angular interpolation in space. The novelty of this work lies in (1) the definition of a target functional to compute the goal-based error measure equal to the radiative source term of the energy balance, which is the quantity of interest in the context of coupled flow-radiation calculations; (2) the use of different optimal angular resolutions for each absorption coefficient class, built from a global model of the radiative properties of the medium. The accuracy and efficiency of the goal-based angular adaptivity method is assessed in a coupled flow-radiation problem relevant for air pollution modelling in street canyons. Compared to a uniform Haar wavelet expansion, the adapted resolution uses 5 times fewer angular basis functions and is 6.5 times quicker, given the same accuracy in the radiative source term.

  4. Linearized Flux Evolution (LiFE): A technique for rapidly adapting fluxes from full-physics radiative transfer models

    Science.gov (United States)

    Robinson, Tyler D.; Crisp, David

    2018-05-01

    Solar and thermal radiation are critical aspects of planetary climate, with gradients in radiative energy fluxes driving heating and cooling. Climate models require that radiative transfer tools be versatile, computationally efficient, and accurate. Here, we describe a technique that uses an accurate full-physics radiative transfer model to generate a set of atmospheric radiative quantities which can be used to linearly adapt radiative flux profiles to changes in the atmospheric and surface state-the Linearized Flux Evolution (LiFE) approach. These radiative quantities describe how each model layer in a plane-parallel atmosphere reflects and transmits light, as well as how the layer generates diffuse radiation by thermal emission and by scattering light from the direct solar beam. By computing derivatives of these layer radiative properties with respect to dynamic elements of the atmospheric state, we can then efficiently adapt the flux profiles computed by the full-physics model to new atmospheric states. We validate the LiFE approach, and then apply this approach to Mars, Earth, and Venus, demonstrating the information contained in the layer radiative properties and their derivatives, as well as how the LiFE approach can be used to determine the thermal structure of radiative and radiative-convective equilibrium states in one-dimensional atmospheric models.

  5. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Deng, Chenguang; Wang, Ting; Wu, Jingjing; Xu, Wei; Li, Huasheng; Liu, Min

    2017-01-01

    Highlights: • The radio-adaptive response (RAR) of A. thaliana root growth is modulated in microgravity. • The DNA damage repairs in RAR are regulated by microgravity. • The phytohormone auxin plays a regulatory role in the modulation of microgravity on RAR of root growth. - Abstract: Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.

  6. TH-A-BRF-02: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - Modeling Tumor Evolution for Adaptive Radiation Therapy

    International Nuclear Information System (INIS)

    Liu, Y; Lee, CG; Chan, TCY; Cho, YB; Islam, MK

    2014-01-01

    Purpose: To develop mathematical models of tumor geometry changes under radiotherapy that may support future adaptive paradigms. Methods: A total of 29 cervical patients were scanned using MRI, once for planning and weekly thereafter for treatment monitoring. Using the tumor volumes contoured by a radiologist, three mathematical models were investigated based on the assumption of a stochastic process of tumor evolution. The “weekly MRI” model predicts tumor geometry for the following week from the last two consecutive MRI scans, based on the voxel transition probability. The other two models use only the first pair of consecutive MRI scans, and the transition probabilities were estimated via tumor type classified from the entire data set. The classification is based on either measuring the tumor volume (the “weekly volume” model), or implementing an auxiliary “Markov chain” model. These models were compared to a constant volume approach that represents the current clinical practice, using various model parameters; e.g., the threshold probability β converts the probability map into a tumor shape (larger threshold implies smaller tumor). Model performance was measured using volume conformity index (VCI), i.e., the union of the actual target and modeled target volume squared divided by product of these two volumes. Results: The “weekly MRI” model outperforms the constant volume model by 26% on average, and by 103% for the worst 10% of cases in terms of VCI under a wide range of β. The “weekly volume” and “Markov chain” models outperform the constant volume model by 20% and 16% on average, respectively. They also perform better than the “weekly MRI” model when β is large. Conclusion: It has been demonstrated that mathematical models can be developed to predict tumor geometry changes for cervical cancer undergoing radiotherapy. The models can potentially support adaptive radiotherapy paradigm by reducing normal tissue dose. This research

  7. Principal component analysis-based anatomical motion models for use in adaptive radiation therapy of head and neck cancer patients

    Science.gov (United States)

    Chetvertkov, Mikhail A.

    Purpose: To develop standard and regularized principal component analysis (PCA) models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients, assess their potential use in adaptive radiation therapy (ART), and to extract quantitative information for treatment response assessment. Methods: Planning CT (pCT) images of H&N patients were artificially deformed to create "digital phantom" images, which modeled systematic anatomical changes during Radiation Therapy (RT). Artificial deformations closely mirrored patients' actual deformations, and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms), and between pCT and clinical CBCTs. Patient-specific standard PCA (SPCA) and regularized PCA (RPCA) models were built from these synthetic and clinical DVF sets. Eigenvectors, or eigenDVFs (EDVFs), having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Modeled anatomies were used to assess the dose deviations with respect to the planned dose distribution. Results: PCA models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade SPCA's ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes, and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. For dose assessment it has been shown that the modeled dose distribution was different from the planned dose for the parotid glands due to their shrinkage and shift into

  8. Adaptive radiation within marine anisakid nematodes: a zoogeographical modeling of cosmopolitan, zoonotic parasites.

    Directory of Open Access Journals (Sweden)

    Thomas Kuhn

    Full Text Available Parasites of the nematode genus Anisakis are associated with aquatic organisms. They can be found in a variety of marine hosts including whales, crustaceans, fish and cephalopods and are known to be the cause of the zoonotic disease anisakiasis, a painful inflammation of the gastro-intestinal tract caused by the accidental consumptions of infectious larvae raw or semi-raw fishery products. Since the demand on fish as dietary protein source and the export rates of seafood products in general is rapidly increasing worldwide, the knowledge about the distribution of potential foodborne human pathogens in seafood is of major significance for human health. Studies have provided evidence that a few Anisakis species can cause clinical symptoms in humans. The aim of our study was to interpolate the species range for every described Anisakis species on the basis of the existing occurrence data. We used sequence data of 373 Anisakis larvae from 30 different hosts worldwide and previously published molecular data (n = 584 from 53 field-specific publications to model the species range of Anisakis spp., using a interpolation method that combines aspects of the alpha hull interpolation algorithm as well as the conditional interpolation approach. The results of our approach strongly indicate the existence of species-specific distribution patterns of Anisakis spp. within different climate zones and oceans that are in principle congruent with those of their respective final hosts. Our results support preceding studies that propose anisakid nematodes as useful biological indicators for their final host distribution and abundance as they closely follow the trophic relationships among their successive hosts. The modeling might although be helpful for predicting the likelihood of infection in order to reduce the risk of anisakiasis cases in a given area.

  9. Modeling UV Radiation Feedback from Massive Stars. I. Implementation of Adaptive Ray-tracing Method and Tests

    Science.gov (United States)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    We present an implementation of an adaptive ray-tracing (ART) module in the Athena hydrodynamics code that accurately and efficiently handles the radiative transfer involving multiple point sources on a three-dimensional Cartesian grid. We adopt a recently proposed parallel algorithm that uses nonblocking, asynchronous MPI communications to accelerate transport of rays across the computational domain. We validate our implementation through several standard test problems, including the propagation of radiation in vacuum and the expansions of various types of H II regions. Additionally, scaling tests show that the cost of a full ray trace per source remains comparable to that of the hydrodynamics update on up to ∼ {10}3 processors. To demonstrate application of our ART implementation, we perform a simulation of star cluster formation in a marginally bound, turbulent cloud, finding that its star formation efficiency is 12% when both radiation pressure forces and photoionization by UV radiation are treated. We directly compare the radiation forces computed from the ART scheme with those from the M 1 closure relation. Although the ART and M 1 schemes yield similar results on large scales, the latter is unable to resolve the radiation field accurately near individual point sources.

  10. Standard and reduced radiation dose liver CT images: adaptive statistical iterative reconstruction versus model-based iterative reconstruction-comparison of findings and image quality.

    Science.gov (United States)

    Shuman, William P; Chan, Keith T; Busey, Janet M; Mitsumori, Lee M; Choi, Eunice; Koprowicz, Kent M; Kanal, Kalpana M

    2014-12-01

    To investigate whether reduced radiation dose liver computed tomography (CT) images reconstructed with model-based iterative reconstruction ( MBIR model-based iterative reconstruction ) might compromise depiction of clinically relevant findings or might have decreased image quality when compared with clinical standard radiation dose CT images reconstructed with adaptive statistical iterative reconstruction ( ASIR adaptive statistical iterative reconstruction ). With institutional review board approval, informed consent, and HIPAA compliance, 50 patients (39 men, 11 women) were prospectively included who underwent liver CT. After a portal venous pass with ASIR adaptive statistical iterative reconstruction images, a 60% reduced radiation dose pass was added with MBIR model-based iterative reconstruction images. One reviewer scored ASIR adaptive statistical iterative reconstruction image quality and marked findings. Two additional independent reviewers noted whether marked findings were present on MBIR model-based iterative reconstruction images and assigned scores for relative conspicuity, spatial resolution, image noise, and image quality. Liver and aorta Hounsfield units and image noise were measured. Volume CT dose index and size-specific dose estimate ( SSDE size-specific dose estimate ) were recorded. Qualitative reviewer scores were summarized. Formal statistical inference for signal-to-noise ratio ( SNR signal-to-noise ratio ), contrast-to-noise ratio ( CNR contrast-to-noise ratio ), volume CT dose index, and SSDE size-specific dose estimate was made (paired t tests), with Bonferroni adjustment. Two independent reviewers identified all 136 ASIR adaptive statistical iterative reconstruction image findings (n = 272) on MBIR model-based iterative reconstruction images, scoring them as equal or better for conspicuity, spatial resolution, and image noise in 94.1% (256 of 272), 96.7% (263 of 272), and 99.3% (270 of 272), respectively. In 50 image sets, two reviewers

  11. Biological Bases for Radiation Adaptive Responses in the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby R. [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Lin, Yong [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Wilder, Julie [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Belinsky, Steven [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States)

    2015-03-01

    Our main research objective was to determine the biological bases for low-dose, radiation-induced adaptive responses in the lung, and use the knowledge gained to produce an improved risk model for radiation-induced lung cancer that accounts for activated natural protection, genetic influences, and the role of epigenetic regulation (epiregulation). Currently, low-dose radiation risk assessment is based on the linear-no-threshold hypothesis, which now is known to be unsupported by a large volume of data.

  12. Epigenomic Adaptation to Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Michael N. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  13. Direct aperture optimization for online adaptive radiation therapy

    International Nuclear Information System (INIS)

    Mestrovic, Ante; Milette, Marie-Pierre; Nichol, Alan; Clark, Brenda G.; Otto, Karl

    2007-01-01

    This paper is the first investigation of using direct aperture optimization (DAO) for online adaptive radiation therapy (ART). A geometrical model representing the anatomy of a typical prostate case was created. To simulate interfractional deformations, four different anatomical deformations were created by systematically deforming the original anatomy by various amounts (0.25, 0.50, 0.75, and 1.00 cm). We describe a series of techniques where the original treatment plan was adapted in order to correct for the deterioration of dose distribution quality caused by the anatomical deformations. We found that the average time needed to adapt the original plan to arrive at a clinically acceptable plan is roughly half of the time needed for a complete plan regeneration, for all four anatomical deformations. Furthermore, through modification of the DAO algorithm the optimization search space was reduced and the plan adaptation was significantly accelerated. For the first anatomical deformation (0.25 cm), the plan adaptation was six times more efficient than the complete plan regeneration. For the 0.50 and 0.75 cm deformations, the optimization efficiency was increased by a factor of roughly 3 compared to the complete plan regeneration. However, for the anatomical deformation of 1.00 cm, the reduction of the optimization search space during plan adaptation did not result in any efficiency improvement over the original (nonmodified) plan adaptation. The anatomical deformation of 1.00 cm demonstrates the limit of this approach. We propose an innovative approach to online ART in which the plan adaptation and radiation delivery are merged together and performed concurrently--adaptive radiation delivery (ARD). A fundamental advantage of ARD is the fact that radiation delivery can start almost immediately after image acquisition and evaluation. Most of the original plan adaptation is done during the radiation delivery, so the time spent adapting the original plan does not

  14. Evolution of Genetic Variance during Adaptive Radiation.

    Science.gov (United States)

    Walter, Greg M; Aguirre, J David; Blows, Mark W; Ortiz-Barrientos, Daniel

    2018-04-01

    Genetic correlations between traits can concentrate genetic variance into fewer phenotypic dimensions that can bias evolutionary trajectories along the axis of greatest genetic variance and away from optimal phenotypes, constraining the rate of evolution. If genetic correlations limit adaptation, rapid adaptive divergence between multiple contrasting environments may be difficult. However, if natural selection increases the frequency of rare alleles after colonization of new environments, an increase in genetic variance in the direction of selection can accelerate adaptive divergence. Here, we explored adaptive divergence of an Australian native wildflower by examining the alignment between divergence in phenotype mean and divergence in genetic variance among four contrasting ecotypes. We found divergence in mean multivariate phenotype along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with much of the divergence in phenotype among ecotypes associated with changes in trait combinations containing substantial levels of genetic variance. Overall, our results suggest that natural selection can alter the distribution of genetic variance underlying phenotypic traits, increasing the amount of genetic variance in the direction of natural selection and potentially facilitating rapid adaptive divergence during an adaptive radiation.

  15. Tissues may adapt to radiation exposure

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    French scientists discovered radioactivity and developed vaccination, so it is perhaps appropriate that a prominent French cancer specialist should be promoting the idea of a radiation vaccination effect - or radiation adaptation, as he prefers to call it. Raymond Latarjet, of the Institut Curie in Paris, maintains that recent studies at the gene level are showing evidence that with low doses of radiation, there is time for a cell repair mechanism to take effect, and that this seems to provide some protection against subsequent exposure to high doses. He cited experiments in his laboratory in which exposure to a dose of 4 Gy (400 rad) had, predictably, produced a large number of gene mutations in a specimen, but the number of mutations was less than half that number in a specimen that had been exposed to a dose of 0.02 Gy some six hours before exposure to the 4 Gy

  16. Tissues may adapt to radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-08-01

    French scientists discovered radioactivity and developed vaccination, so it is perhaps appropriate that a prominent French cancer specialist should be promoting the idea of a radiation vaccination effect - or radiation adaptation, as he prefers to call it. Raymond Latarjet, of the Institut Curie in Paris, maintains that recent studies at the gene level are showing evidence that with low doses of radiation, there is time for a cell repair mechanism to take effect, and that this seems to provide some protection against subsequent exposure to high doses. He cited experiments in his laboratory in which exposure to a dose of 4 Gy (400 rad) had, predictably, produced a large number of gene mutations in a specimen, but the number of mutations was less than half that number in a specimen that had been exposed to a dose of 0.02 Gy some six hours before exposure to the 4 Gy.

  17. Sparse adaptive finite elements for radiative transfer

    International Nuclear Information System (INIS)

    Widmer, G.; Hiptmair, R.; Schwab, Ch.

    2008-01-01

    The linear radiative transfer equation, a partial differential equation for the radiation intensity u(x,s), with independent variables x element of D is contained in R n in the physical domain D of dimension n=2,3, and angular variable s element of S 2 :={y element of R 3 :|y|=1}, is solved in the n+2-dimensional computational domain DxS 2 . We propose an adaptive multilevel Galerkin finite element method (FEM) for its numerical solution. Our approach is based on (a) a stabilized variational formulation of the transport operator, (b) on so-called sparse tensor products of two hierarchic families of finite element spaces in H 1 (D) and in L 2 (S 2 ), respectively, and (c) on wavelet thresholding techniques to adapt the discretization to the underlying problem. An a priori error analysis shows, under strong regularity assumptions on the solution, that the sparse tensor product method is clearly superior to a discrete ordinates method, as it converges with essentially optimal asymptotic rates while its complexity grows essentially only as that for a linear transport problem in R n . Numerical experiments for n=2 on a set of example problems agree with the convergence and complexity analysis of the method and show that introducing adaptivity can improve performance in terms of accuracy vs. number of degrees even further

  18. Analysis and adaptation of a mathematical model for the prediction of solar radiation; Analisis y adaptacion de un modelo matematico de prediccion de radiacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, Lorenzo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    There is an abundant, reliable, free, source of energy whose use can be planned and besides, practicably inexhaustible: the solar energy. In Mexico it constitutes an important resource, because of its geographical position; for this reason it is fundamental to know it well, either by means of measurements conducted for several years or by mathematical models. These last ones predict with meteorological variables, the values of the solar radiation with acceptable precision. At the Instituto de Investigaciones Electricas (IIE) a model is studied for the prediction of the solar radiation to be adapted to the local conditions of Mexico. It is used in simulation studies of the solar plants functioning and other solar systems. [Espanol] Existe una fuente de energia abundante, confiable, gratuita, cuyo uso puede planearse y, ademas, es practicamente inagotable: la solar. En Mexico constituye un recurso importante, por la posicion geografica del pais; por eso es fundamental conocerlo bien, ya mediante mediciones realizadas durante algunos anos, ya mediante modelos matematicos. Estos ultimos predicen, con datos de variables meteorologicas, los valores de la radiacion solar con precision aceptable. En el Instituto de Investigaciones Electricas (IIE) se estudia un modelo de prediccion de radiacion solar para adaptarlo a las condiciones locales de Mexico. Se usa en estudios de simulacion del funcionamiento de plantas helioelectricas y otros sistemas solares.

  19. Adaptive response to high LET radiations

    International Nuclear Information System (INIS)

    Dam, Annamaria; Bogdandi, E. Noemi; Polonyi, Istvan; Sardy, M. Marta; Balashazy, Imre; Palfalvy, Jozsef

    2001-01-01

    The biological consequences of exposure to ionizing radiation include gene mutation, chromosome aberrations, cellular transformation and cell death. These effects are attributed to the DNA damaging effects of the irradiation resulting in irreversible changes during DNA replication or during the processing of the DNA damage by enzymatic repair processes. These repair processes could initiate some adaptive mechanisms in the cell, which could lead to radioadaptive response (RAR). Adaptive responses have typically been detected by exposing cells to a low radiation dose (1-50 mGy) and then challenging the cells with a higher dose of radiation (2-4 Gy) and comparing the outcome to that seen with the challenge dose only. For adaptive response to be seen the challenge dose must be delivered within 24 hour of the inducing dose. Radio-adaptation is extensively studied for low LET radiation. Nevertheless, few data are available for high LET radiation at very low doses and dose rate. Our study was aimed to investigate the radioadaptive response to low-dose neutron irradiation by detection of the genotoxic damage i.e.: hprt-mutant colonies induced. Altered protein synthesis was also studied to identify stress proteins may responsible for radio-adaptation. New alpha particle irradiator system was also built up to study the biological effects of low dose alpha irradiation. The experiments were carried out on monolayers of human melanoma and CHO (Chines Hamster Ovary) cells irradiated by neutrons produced in the biological irradiation channel of the Research Reactor of Budapest Neutron Center. Cells were exposed to 0.5-50 mGy neutron doses with dose rates of 1.59-10 mGy/min. The challenge doses of 2-4 Gy gamma rays were administrated within 1-48 hours after priming treatment. The induced mutants at hprt locus were selected by adding 6-thioguanine and allow to grow for 10 days for expression of the phenotype. The protein synthesis was studied by PAGE, the molecular mass of specific

  20. Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. V. Insight into the Niche Specialist Fuzzy Spreader Compels Revision of the Model Pseudomonas Radiation

    Science.gov (United States)

    Ferguson, Gayle C.; Bertels, Frederic; Rainey, Paul B.

    2013-01-01

    Pseudomonas fluorescens is a model for the study of adaptive radiation. When propagated in a spatially structured environment, the bacterium rapidly diversifies into a range of niche specialist genotypes. Here we present a genetic dissection and phenotypic characterization of the fuzzy spreader (FS) morphotype—a type that arises repeatedly during the course of the P. fluorescens radiation and appears to colonize the bottom of static broth microcosms. The causal mutation is located within gene fuzY (pflu0478)—the fourth gene of the five-gene fuzVWXYZ operon. fuzY encodes a β-glycosyltransferase that is predicted to modify lipopolysaccharide (LPS) O antigens. The effect of the mutation is to cause cell flocculation. Analysis of 92 independent FS genotypes showed each to have arisen as the result of a loss-of-function mutation in fuzY, although different mutations have subtly different phenotypic and fitness effects. Mutations within fuzY were previously shown to suppress the phenotype of mat-forming wrinkly spreader (WS) types. This prompted a reinvestigation of FS niche preference. Time-lapse photography showed that FS colonizes the meniscus of broth microcosms, forming cellular rafts that, being too flimsy to form a mat, collapse to the vial bottom and then repeatably reform only to collapse. This led to a reassessment of the ecology of the P. fluorescens radiation. Finally, we show that ecological interactions between the three dominant emergent types (smooth, WS, and FS), combined with the interdependence of FS and WS on fuzY, can, at least in part, underpin an evolutionary arms race with bacteriophage SBW25Φ2, to which mutation in fuzY confers resistance. PMID:24077305

  1. Image quality in children with low-radiation chest CT using adaptive statistical iterative reconstruction and model-based iterative reconstruction.

    Directory of Open Access Journals (Sweden)

    Jihang Sun

    Full Text Available OBJECTIVE: To evaluate noise reduction and image quality improvement in low-radiation dose chest CT images in children using adaptive statistical iterative reconstruction (ASIR and a full model-based iterative reconstruction (MBIR algorithm. METHODS: Forty-five children (age ranging from 28 days to 6 years, median of 1.8 years who received low-dose chest CT scans were included. Age-dependent noise index (NI was used for acquisition. Images were retrospectively reconstructed using three methods: MBIR, 60% of ASIR and 40% of conventional filtered back-projection (FBP, and FBP. The subjective quality of the images was independently evaluated by two radiologists. Objective noises in the left ventricle (LV, muscle, fat, descending aorta and lung field at the layer with the largest cross-section area of LV were measured, with the region of interest about one fourth to half of the area of descending aorta. Optimized signal-to-noise ratio (SNR was calculated. RESULT: In terms of subjective quality, MBIR images were significantly better than ASIR and FBP in image noise and visibility of tiny structures, but blurred edges were observed. In terms of objective noise, MBIR and ASIR reconstruction decreased the image noise by 55.2% and 31.8%, respectively, for LV compared with FBP. Similarly, MBIR and ASIR reconstruction increased the SNR by 124.0% and 46.2%, respectively, compared with FBP. CONCLUSION: Compared with FBP and ASIR, overall image quality and noise reduction were significantly improved by MBIR. MBIR image could reconstruct eligible chest CT images in children with lower radiation dose.

  2. What Drives Business Model Adaptation?

    DEFF Research Database (Denmark)

    Saebi, Tina; Lien, Lasse B.; Foss, Nicolai Juul

    2017-01-01

    Business models change as managers not only innovate business models, but also engage in more mundane adaptation in response to external changes, such as changes in the level or composition of demand. However, little is known about what causes such business model adaptation. We employ threat......-rigidity as well as prospect theory to examine business model adaptation in response to external threats and opportunities. Additionally, drawing on the behavioural theory of the firm, we argue that the past strategic orientation of a firm creates path dependencies that influence the propensity of the firm...... to adapt its business model. We test our hypotheses on a sample of 1196 Norwegian companies, and find that firms are more likely to adapt their business model under conditions of perceived threats than opportunities, and that strategic orientation geared towards market development is more conducive...

  3. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    Science.gov (United States)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  4. Modeling Internal Radiation Therapy

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Theo E.; Pellegrini, M.; Fred, A.; Filipe, J.; Gamboa, H.

    2011-01-01

    A new technique is described to model (internal) radiation therapy. It is founded on morphological processing, in particular distance transforms. Its formal basis is presented as well as its implementation via the Fast Exact Euclidean Distance (FEED) transform. Its use for all variations of internal

  5. A fast and efficient adaptive parallel ray tracing based model for thermally coupled surface radiation in casting and heat treatment processes

    Science.gov (United States)

    Fainberg, J.; Schaefer, W.

    2015-06-01

    A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples.

  6. Automatic Organ Localization for Adaptive Radiation Therapy for Prostate Cancer

    National Research Council Canada - National Science Library

    Joshi, Sarang

    2004-01-01

    The focus of this study is adaptive radiation therapy (ART) for prostate cancer, in which the treatment is to be adjusted over time, based on CT images acquired on the treatment table before each daily treatment...

  7. Understanding the role of p53 in adaptive response to radiation-induced germline mutations

    International Nuclear Information System (INIS)

    Langlois, N.L.; Quinn, J.S.; Somers, C.M.; Boreham, D.R.; Mitchel, R.E.J.

    2003-01-01

    Full text: Radiation-induced adaptive response is now a widely studied area of radiation biology. Studies have demonstrated reduced levels of radiation-induced biological damage when an 'adaptive dose' is given before a higher 'challenge dose' compared to when the challenge dose is given alone. It has been shown in some systems to be a result of inducible cellular repair systems. The adaptive response has been clearly demonstrated in many model systems, however its impact on heritable effects in the mammalian germline has never been studied. Expanded Simple Tandem Repeat (ESTR) loci have been used as markers demonstrating that induced heritable mutations in mice follow a dose-response relationship. Recent data in our laboratory show preliminary evidence of radiation-induced adaptive response suppressing germline mutations at ESTR loci in wild type mice. The frequency of heritable mutations was significantly reduced when a priming dose of 0.1 Gy was given 24 hours prior to a 1 Gy acute challenging dose. We are now conducting a follow-up study to attempt to understand the mechanism of this adaptive response. P53 is known to play a significant role in governing apoptosis, DNA repair and cancer induction. In order to determine what function p53 has in the adaptive response for heritable mutations, we have mated radiation treated Trp53+/- male mice (C57Bl) to untreated, normal females (C57Bl). Using DNA fingerprinting, we are investigating the rate of inherited radiation-induced mutations on pre- and post-meiotic radiation-treated gametocytes by examining mutation frequencies in offspring DNA. If p53 is integral in the mechanism of adaptive response, we should not see an adaptive response in radiation-induced heritable mutations in these mice. This research is significant in that it will provide insight to understanding the mechanism behind radiation-induced adaptive response in the mammalian germline

  8. Reduced Radiation Dose with Model-based Iterative Reconstruction versus Standard Dose with Adaptive Statistical Iterative Reconstruction in Abdominal CT for Diagnosis of Acute Renal Colic.

    Science.gov (United States)

    Fontarensky, Mikael; Alfidja, Agaïcha; Perignon, Renan; Schoenig, Arnaud; Perrier, Christophe; Mulliez, Aurélien; Guy, Laurent; Boyer, Louis

    2015-07-01

    To evaluate the accuracy of reduced-dose abdominal computed tomographic (CT) imaging by using a new generation model-based iterative reconstruction (MBIR) to diagnose acute renal colic compared with a standard-dose abdominal CT with 50% adaptive statistical iterative reconstruction (ASIR). This institutional review board-approved prospective study included 118 patients with symptoms of acute renal colic who underwent the following two successive CT examinations: standard-dose ASIR 50% and reduced-dose MBIR. Two radiologists independently reviewed both CT examinations for presence or absence of renal calculi, differential diagnoses, and associated abnormalities. The imaging findings, radiation dose estimates, and image quality of the two CT reconstruction methods were compared. Concordance was evaluated by κ coefficient, and descriptive statistics and t test were used for statistical analysis. Intraobserver correlation was 100% for the diagnosis of renal calculi (κ = 1). Renal calculus (τ = 98.7%; κ = 0.97) and obstructive upper urinary tract disease (τ = 98.16%; κ = 0.95) were detected, and differential or alternative diagnosis was performed (τ = 98.87% κ = 0.95). MBIR allowed a dose reduction of 84% versus standard-dose ASIR 50% (mean volume CT dose index, 1.7 mGy ± 0.8 [standard deviation] vs 10.9 mGy ± 4.6; mean size-specific dose estimate, 2.2 mGy ± 0.7 vs 13.7 mGy ± 3.9; P < .001) without a conspicuous deterioration in image quality (reduced-dose MBIR vs ASIR 50% mean scores, 3.83 ± 0.49 vs 3.92 ± 0.27, respectively; P = .32) or increase in noise (reduced-dose MBIR vs ASIR 50% mean, respectively, 18.36 HU ± 2.53 vs 17.40 HU ± 3.42). Its main drawback remains the long time required for reconstruction (mean, 40 minutes). A reduced-dose protocol with MBIR allowed a dose reduction of 84% without increasing noise and without an conspicuous deterioration in image quality in patients suspected of having renal colic.

  9. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    Science.gov (United States)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  10. Ecological opportunity and sexual selection together predict adaptive radiation.

    Science.gov (United States)

    Wagner, Catherine E; Harmon, Luke J; Seehausen, Ole

    2012-07-19

    A fundamental challenge to our understanding of biodiversity is to explain why some groups of species undergo adaptive radiations, diversifying extensively into many and varied species, whereas others do not. Both extrinsic environmental factors (for example, resource availability, climate) and intrinsic lineage-specific traits (for example, behavioural or morphological traits, genetic architecture) influence diversification, but few studies have addressed how such factors interact. Radiations of cichlid fishes in the African Great Lakes provide some of the most dramatic cases of species diversification. However, most cichlid lineages in African lakes have not undergone adaptive radiations. Here we compile data on cichlid colonization and diversification in 46 African lakes, along with lake environmental features and information about the traits of colonizing cichlid lineages, to investigate why adaptive radiation does and does not occur. We find that extrinsic environmental factors related to ecological opportunity and intrinsic lineage-specific traits related to sexual selection both strongly influence whether cichlids radiate. Cichlids are more likely to radiate in deep lakes, in regions with more incident solar radiation and in lakes where there has been more time for diversification. Weak or negative associations between diversification and lake surface area indicate that cichlid speciation is not constrained by area, in contrast to diversification in many terrestrial taxa. Among the suite of intrinsic traits that we investigate, sexual dichromatism, a surrogate for the intensity of sexual selection, is consistently positively associated with diversification. Thus, for cichlids, it is the coincidence between ecological opportunity and sexual selection that best predicts whether adaptive radiation will occur. These findings suggest that adaptive radiation is predictable, but only when species traits and environmental factors are jointly considered.

  11. Adaptive search and detection of laser radiation

    International Nuclear Information System (INIS)

    Efendiev, F.A.; Kasimova, F.I.

    2008-01-01

    Formation of cosmic optical line connected with the solving of difficult problems, among which stand out spatial search task, detection and target tracking. Indeed, the main advantage of systems of the optical diapason, high radiation direction leads to a challenging task of entering in communication, consisting in mutual targeting antenna receiving and transmitting systems. Algorithm detection, obtained by solving the corresponding statistical optimal detection test synthesis tasks detector determines the structure and quality of his work which depend on the average characteristics of the signal and the background radiation of the thermal noise require full priori certainty about the conditions of observation. Algorithm of the optimal detector of laser light modulated on a sub carrier frequency of intensity assumes a priori known intensity and efficiency background radiation and internal noise power photo detector

  12. On the adaptive conception in radiation hygiene

    International Nuclear Information System (INIS)

    Shepelin, O.P.

    1993-01-01

    The article presents the assessments of human adoptation capabilities under extreme conditions as for instance, after the Chernobyl accident (1986). It is shown that the problem of comprehensive assessment of radiation factor impact on the human population shall take into account the scope of accident, heaviness of the after effects of medicobiological, socioeconomic and moral-psycological nature

  13. Shape Morphing Adaptive Radiator Technology (SMART) Updates to Techport Entry

    Science.gov (United States)

    Erickson, Lisa; Bertagne, Christopher; Hartl, Darren; Witcomb, John; Cognata, Thomas

    2017-01-01

    The Shape-Morphing Adaptive Radiator Technology (SMART) project builds off the FY16 research effort that developed a flexible composite radiator panel and demonstrated its ability to actuate from SMA's attached to it. The proposed FY17 Shape-Morphing Adaptive Radiator Technology (SMART) project's goal is to 1) develop a practical radiator design with shape memory alloys (SMAs) bonded to the radiator's panel, and 2) build a multi-panel radiator prototype for subsequent system level thermal vacuum tests. The morphing radiator employs SMA materials to passively change its shape to adapt its rate of heat rejection to vehicle requirements. Conceptually, the radiator panel has a naturally closed position (like a cylinder) in a cold environment. Whenever the radiator's temperature gradually rises, SMA's affixed to the face sheet will pull the face sheet open a commensurate amount - increasing the radiators view to space and causing it to reject more heat. In a vehicle, the radiator's variable heat rejection capabilities would reduce the number of additional heat rejection devices in a vehicle's thermal control system. This technology aims to help achieve the required maximum to minimum heat rejection ratio required for manned space vehicles to adopt a lighter, simpler, single loop thermal control architecture (ATCS). Single loop architectures are viewed as an attractive means to reduce mass and complexity over traditional dual-loop solutions. However, fluids generally considered safe enough to flow within crewed cabins (e.g. propylene glycol-water mixtures) have much higher freezing points and viscosities than those used in the external sides of dual loop ATCSs (e.g. Ammonia and HFE7000).

  14. Genotypic sex determination enabled adaptive radiations of extinct marine reptiles.

    Science.gov (United States)

    Organ, Chris L; Janes, Daniel E; Meade, Andrew; Pagel, Mark

    2009-09-17

    Adaptive radiations often follow the evolution of key traits, such as the origin of the amniotic egg and the subsequent radiation of terrestrial vertebrates. The mechanism by which a species determines the sex of its offspring has been linked to critical ecological and life-history traits but not to major adaptive radiations, in part because sex-determining mechanisms do not fossilize. Here we establish a previously unknown coevolutionary relationship in 94 amniote species between sex-determining mechanism and whether a species bears live young or lays eggs. We use that relationship to predict the sex-determining mechanism in three independent lineages of extinct Mesozoic marine reptiles (mosasaurs, sauropterygians and ichthyosaurs), each of which is known from fossils to have evolved live birth. Our results indicate that each lineage evolved genotypic sex determination before acquiring live birth. This enabled their pelagic radiations, where the relatively stable temperatures of the open ocean constrain temperature-dependent sex determination in amniote species. Freed from the need to move and nest on land, extreme physical adaptations to a pelagic lifestyle evolved in each group, such as the fluked tails, dorsal fins and wing-shaped limbs of ichthyosaurs. With the inclusion of ichthyosaurs, mosasaurs and sauropterygians, genotypic sex determination is present in all known fully pelagic amniote groups (sea snakes, sirenians and cetaceans), suggesting that this mode of sex determination and the subsequent evolution of live birth are key traits required for marine adaptive radiations in amniote lineages.

  15. Directions in Radiation Transport Modelling

    Directory of Open Access Journals (Sweden)

    P Nicholas Smith

    2016-12-01

    More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.

  16. The link between bacterial radiation resistance and cold adaptation

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 27; Issue 2. Clipboard: The link between bacterial radiation resistance and cold adaptation. M K Chattopadhyay. Volume 27 Issue 2 March 2002 pp 71-73. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/jbsc/027/02/0071-0073 ...

  17. Conserved sex chromosomes across adaptively radiated anolis lizards

    Czech Academy of Sciences Publication Activity Database

    Rovatsos, M.; Altmanová, M.; Pokorná, Martina; Kratochvíl, L.

    2014-01-01

    Roč. 68, č. 7 (2014), s. 2079-2085 ISSN 0014-3820 R&D Projects: GA ČR GAP506/10/0718 Institutional support: RVO:67985904 Keywords : adaptive radiation * Anolis * reptiles Subject RIV: EG - Zoology Impact factor: 4.612, year: 2014

  18. Adaptive numerical algorithms in space weather modeling

    Science.gov (United States)

    Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2012-02-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit

  19. Adaptive numerical algorithms in space weather modeling

    International Nuclear Information System (INIS)

    Tóth, Gábor; Holst, Bart van der; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2012-01-01

    Space weather describes the various processes in the Sun–Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit

  20. Adaptive Numerical Algorithms in Space Weather Modeling

    Science.gov (United States)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  1. Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. IV. Genetic Constraints Guide Evolutionary Trajectories in a Parallel Adaptive Radiation

    OpenAIRE

    McDonald, Michael J.; Gehrig, Stefanie M.; Meintjes, Peter L.; Zhang, Xue-Xian; Rainey, Paul B.

    2009-01-01

    The capacity for phenotypic evolution is dependent upon complex webs of functional interactions that connect genotype and phenotype. Wrinkly spreader (WS) genotypes arise repeatedly during the course of a model Pseudomonas adaptive radiation. Previous work showed that the evolution of WS variation was explained in part by spontaneous mutations in wspF, a component of the Wsp-signaling module, but also drew attention to the existence of unknown mutational causes. Here, we identify two new muta...

  2. Radiation protection concepts review with an adapted quiz commercial game

    International Nuclear Information System (INIS)

    Rodrigues Junior, Ary de Araujo

    2002-01-01

    Before a new employee starts working at EMBRARAD under a large irradiation operator supervision, he has to attend the first radiation protection training. After that all radiation protection subjects are revised every six months. In that half-yearly training the employees are chosen randomly to explain radiation protection subjects to other participants under an instructor supervision. After some years attending the same training, employees do not have motivation to participate in this kind of periodic event due to the same issues covered. Therefore something should be made to revival their interest and motivation to take part in this periodic training. The way chose was adapted a commercial game to revised radiation protection subjects and included it in the periodic training. The game was well accepted by the employees, it caused a competition among them because everybody wanted to win the game and consequently stimulated them to study. (author)

  3. Auto-propagation of contours for adaptive prostate radiation therapy

    International Nuclear Information System (INIS)

    Chao Ming; Xie Yaoqin; Xing Lei

    2008-01-01

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future

  4. Auto-propagation of contours for adaptive prostate radiation therapy

    Science.gov (United States)

    Chao, Ming; Xie, Yaoqin; Xing, Lei

    2008-09-01

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future.

  5. Adaptation of radiation shielding code to space environment

    International Nuclear Information System (INIS)

    Okuno, Koichi; Hara, Akihisa

    1992-01-01

    Recently, the trend to the development of space has heightened. To the development of space, many problems are related, and as one of them, there is the protection from cosmic ray. The cosmic ray is the radiation having ultrahigh energy, and there was not the radiation shielding design code that copes with cosmic ray so far. Therefore, the high energy radiation shielding design code for accelerators was improved so as to cope with the peculiarity that cosmic ray possesses. Moreover, the calculation of the radiation dose equivalent rate in the moon base to which the countermeasures against cosmic ray were taken was simulated by using the improved code. As the important countermeasures for the safety protection from radiation, the covering with regolith is carried out, and the effect of regolith was confirmed by using the improved code. Galactic cosmic ray, solar flare particles, radiation belt, the adaptation of the radiation shielding code HERMES to space environment, the improvement of the three-dimensional hadron cascade code HETCKFA-2 and the electromagnetic cascade code EGS 4-KFA, and the cosmic ray simulation are reported. (K.I.)

  6. A quantitative formulation of the dynamic behaviour of adaptation processes to ionizing radiation

    International Nuclear Information System (INIS)

    Pfandler, S.

    1999-12-01

    The discovery of adaptation processes in cells (i.e., increased resistance to effects of a challenge dose administered after a lower adapting dose) has fuelled the debate on possible cellular processes relevant for low dose exposures. However, numerous experiments on radioadaptive response do not provide a clear picture of the nature of adaptive response and the conditions under which it occurs. This work proposes a model that succeeds in modelling data obtained from various experiments on radioadaptation. The model assumes impaired DNA integrity as triggering signal for induction of adaptation. Induction of adaptive response is seen as two-phase process. First, ionizing radiation induces radicals by water radiolysis which give rise to specific DNA lesions. On the other hand, these lesions must be perceived and, in a way, processed by the cell, thereby creating the final signal necessary for the comprehensive adaptive response. This processing occurs through some event in S-phase and can be halted by local conformational changes of chromatin induced by ionizing radiation. Thus, the model assumes two counteracting processes that have to be balanced for the triggering signal of adaptation to occur, each of them related to different target volumes. This work comprises mathematical treatment of radical formation, DNA lesion induction and inhibition of local initiation of replication which finally provides functions that quantify the reduction of double strand breaks introduced by challenge doses in adapted cells as compared to non-adapted cells. Non-linear regression analyses based upon data from experiments on radioadaptation yield regression curves which describe existing data satisfactorily. Thus, it corroborates the existence of adaptive response as, in principle, universal feature of cells and specifies conditions which favor development of radioadaptation. (author)

  7. Model and Adaptive Operations of an Adaptive Component

    Science.gov (United States)

    Wei, Le; Zhao, Qiuyun; Shu, Hongping

    In order to keep up with the dynamical and open internet environment and in terms of component, an adaptive component model which is based on event mechanism and policy binding is proposed. Components of the model can sense external changes and give the explicit description of the external environment. According to preset policy, component also can take adaptive operations such as adding, deleting, replacing and updating when necessary, and adjust the behavior and structure of the internetware to provide better services.

  8. Extremely low doses of X-radiation can induce adaptive responses in mouse prostate

    International Nuclear Information System (INIS)

    Day, T.K.; Zeng, G.; Hooker, A.M.; Turner, D.R.; Sykes, P.J.; Baht, M.

    2006-01-01

    Full text: The pKZl mouse chromosomal inversion assay is the only assay which has detected modulation of a mutagenic endpoint after single whole body X-irradiation with doses lower than 1 mGy. A non-linear dose response for chromosomal inversion has been observed between 1 jaGy and 10 mGy with doses between 5-10 uGy causing an induction in inversions and doses between 1-10 mGy causing a reduction below endogenous inversion frequency (Hooker et al, 2004. Radiat. Res. 162:447-52.) An adaptive response is a decreased biological effect induced by a priming radiation dose given prior to a challenge dose. Adaptive responses contradict the linear-no-threshold model of risk estimation. pKZl mice were exposed to priming radiation doses which by themselves either induced or reduced inversion frequency. Four hours later mice received a challenge dose of 1000 mGy. The inversion frequency was quantified in prostate three days later. We demonstrated that very low (10 mGy, 1 mGy and 10 )J,Gy) priming doses of X-radiation induced a chromosomal inversion adaptive response. These are the lowest X-radiation doses reported to induce an adaptive response for any endpoint. Reverse adaptive response experiments will also be discussed where the challenge dose studied was lower than the priming dose. Analysis of the distribution of inversions in 50 prostatic glands screened/animal suggested that there are two types of damage induced by the high challenge dose and only one of these types of damage is modified by the priming dose. Identification of the modifying factors involved in the adaptive response may provide candidates for radioprotection. This work was funded by the Low Dose Radiation Research Program, U.S. Department of Energy, grant no. DE-FG02-01ER63227 and DE-FG02-05ER64104

  9. Preclinical models in radiation oncology

    International Nuclear Information System (INIS)

    Kahn, Jenna; Tofilon, Philip J; Camphausen, Kevin

    2012-01-01

    As the incidence of cancer continues to rise, the use of radiotherapy has emerged as a leading treatment modality. Preclinical models in radiation oncology are essential tools for cancer research and therapeutics. Various model systems have been used to test radiation therapy, including in vitro cell culture assays as well as in vivo ectopic and orthotopic xenograft models. This review aims to describe such models, their advantages and disadvantages, particularly as they have been employed in the discovery of molecular targets for tumor radiosensitization. Ultimately, any model system must be judged by its utility in developing more effective cancer therapies, which is in turn dependent on its ability to simulate the biology of tumors as they exist in situ. Although every model has its limitations, each has played a significant role in preclinical testing. Continued advances in preclinical models will allow for the identification and application of targets for radiation in the clinic

  10. Ecological opportunity and the origin of adaptive radiations.

    Science.gov (United States)

    Yoder, J B; Clancey, E; Des Roches, S; Eastman, J M; Gentry, L; Godsoe, W; Hagey, T J; Jochimsen, D; Oswald, B P; Robertson, J; Sarver, B A J; Schenk, J J; Spear, S F; Harmon, L J

    2010-08-01

    Ecological opportunity--through entry into a new environment, the origin of a key innovation or extinction of antagonists--is widely thought to link ecological population dynamics to evolutionary diversification. The population-level processes arising from ecological opportunity are well documented under the concept of ecological release. However, there is little consensus as to how these processes promote phenotypic diversification, rapid speciation and adaptive radiation. We propose that ecological opportunity could promote adaptive radiation by generating specific changes to the selective regimes acting on natural populations, both by relaxing effective stabilizing selection and by creating conditions that ultimately generate diversifying selection. We assess theoretical and empirical evidence for these effects of ecological opportunity and review emerging phylogenetic approaches that attempt to detect the signature of ecological opportunity across geological time. Finally, we evaluate the evidence for the evolutionary effects of ecological opportunity in the diversification of Caribbean Anolis lizards. Some of the processes that could link ecological opportunity to adaptive radiation are well documented, but others remain unsupported. We suggest that more study is required to characterize the form of natural selection acting on natural populations and to better describe the relationship between ecological opportunity and speciation rates.

  11. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    Science.gov (United States)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  12. Plant's adaptive response under UV-B-radiation influence

    International Nuclear Information System (INIS)

    Danil'chenko, O.A.; Grodzinskij, D.M.

    2002-01-01

    Reduction of ozone layer, owing to anthropogenic contamination of an atmosphere results in increase of intensity of UV-radiation and shift of its spectrum in the short-wave side that causes strengthening of various biological effects of irradiation. Consequences of these processes may include increase of injuring of plants and decrease of productivity of agricultural crops to increased UV levels. The important significance in the plant's adaptation to different unfavorable factors has the plant's radioadaptive answer. It has been shown that radioadaptation of plants occurred not only after irradiation with g-radiation in low doses but after UV-rays action . Reaction of radioadaptation it seems to be nonspecific phenomenon in relation to type radiations

  13. Ecological opportunity and predator-prey interactions: linking eco-evolutionary processes and diversification in adaptive radiations.

    Science.gov (United States)

    Pontarp, Mikael; Petchey, Owen L

    2018-03-14

    Much of life's diversity has arisen through ecological opportunity and adaptive radiations, but the mechanistic underpinning of such diversification is not fully understood. Competition and predation can affect adaptive radiations, but contrasting theoretical and empirical results show that they can both promote and interrupt diversification. A mechanistic understanding of the link between microevolutionary processes and macroevolutionary patterns is thus needed, especially in trophic communities. Here, we use a trait-based eco-evolutionary model to investigate the mechanisms linking competition, predation and adaptive radiations. By combining available micro-evolutionary theory and simulations of adaptive radiations we show that intraspecific competition is crucial for diversification as it induces disruptive selection, in particular in early phases of radiation. The diversification rate is however decreased in later phases owing to interspecific competition as niche availability, and population sizes are decreased. We provide new insight into how predation tends to have a negative effect on prey diversification through decreased population sizes, decreased disruptive selection and through the exclusion of prey from parts of niche space. The seemingly disparate effects of competition and predation on adaptive radiations, listed in the literature, may thus be acting and interacting in the same adaptive radiation at different relative strength as the radiation progresses. © 2018 The Authors.

  14. Widespread parallel population adaptation to climate variation across a radiation: implications for adaptation to climate change.

    Science.gov (United States)

    Thorpe, Roger S; Barlow, Axel; Malhotra, Anita; Surget-Groba, Yann

    2015-03-01

    Global warming will impact species in a number of ways, and it is important to know the extent to which natural populations can adapt to anthropogenic climate change by natural selection. Parallel microevolution within separate species can demonstrate natural selection, but several studies of homoplasy have not yet revealed examples of widespread parallel evolution in a generic radiation. Taking into account primary phylogeographic divisions, we investigate numerous quantitative traits (size, shape, scalation, colour pattern and hue) in anole radiations from the mountainous Lesser Antillean islands. Adaptation to climatic differences can lead to very pronounced differences between spatially close populations with all studied traits showing some evidence of parallel evolution. Traits from shape, scalation, pattern and hue (particularly the latter) show widespread evolutionary parallels within these species in response to altitudinal climate variation greater than extreme anthropogenic climate change predicted for 2080. This gives strong evidence of the ability to adapt to climate variation by natural selection throughout this radiation. As anoles can evolve very rapidly, it suggests anthropogenic climate change is likely to be less of a conservation threat than other factors, such as habitat loss and invasive species, in this, Lesser Antillean, biodiversity hot spot. © 2015 John Wiley & Sons Ltd.

  15. The adaptive collision source method for discrete ordinates radiation transport

    International Nuclear Information System (INIS)

    Walters, William J.; Haghighat, Alireza

    2017-01-01

    Highlights: • A new adaptive quadrature method to solve the discrete ordinates transport equation. • The adaptive collision source (ACS) method splits the flux into n’th collided components. • Uncollided flux requires high quadrature; this is lowered with number of collisions. • ACS automatically applies appropriate quadrature order each collided component. • The adaptive quadrature is 1.5–4 times more efficient than uniform quadrature. - Abstract: A novel collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order used for each. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This method allows for an optimal use of processing power, by using a high order quadrature for the first iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and is referred to as the adaptive collision source (ACS) method. The ACS methodology has been implemented in the 3-D, parallel, multigroup discrete ordinates code TITAN. This code was tested on a several simple and complex fixed-source problems. The ACS implementation in TITAN has shown a reduction in computation time by a factor of 1.5–4 on the fixed-source test problems, for the same desired level of accuracy, as compared to the standard TITAN code.

  16. Third-generation dual-source CT of the neck using automated tube voltage adaptation in combination with advanced modeled iterative reconstruction: evaluation of image quality and radiation dose

    International Nuclear Information System (INIS)

    Scholtz, Jan-Erik; Wichmann, Julian L.; Huesers, Kristina; Albrecht, Moritz H.; Beeres, Martin; Bauer, Ralf W.; Vogl, Thomas J.; Bodelle, Boris

    2016-01-01

    To evaluate image quality and radiation dose in third-generation dual-source computed tomography (DSCT) of the neck using automated tube voltage adaptation (TVA) with advanced modelled iterative reconstruction (ADMIRE) algorithm. One hundred and sixteen patients were retrospectively evaluated. Group A (n = 59) was examined on second-generation DSCT with automated TVA and filtered back projection. Group B (n = 57) was examined on a third-generation DSCT with automated TVA and ADMIRE. Age, body diameter, attenuation of several anatomic structures, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), radiation dose (CTDI vol ) and size-specific dose estimates (SSDE) were assessed. Diagnostic acceptability was rated by three readers. Age (p = 0.87) and body diameter (p = 0.075) did not differ significantly. Tube voltage in Group A was set automatically to 100 kV for all patients (n = 59), and to 70 kV (n = 2), 80 kV (n = 5), and 90 kV (n = 50) in Group B. Noise was reduced and CNR was increased significantly (p < 0.001). Diagnostic acceptability was rated high in both groups, with better ratings in Group B (p < 0.001). SSDE was reduced by 34 % in Group B (20.38 ± 1.63 mGy vs. 13.04 ± 1.50 mGy, p < 0.001). Combination of automated TVA and ADMIRE in neck CT using third-generation DSCT results in a substantial radiation dose reduction with low noise and increased CNR. (orig.)

  17. Deep reinforcement learning for automated radiation adaptation in lung cancer.

    Science.gov (United States)

    Tseng, Huan-Hsin; Luo, Yi; Cui, Sunan; Chien, Jen-Tzung; Ten Haken, Randall K; Naqa, Issam El

    2017-12-01

    To investigate deep reinforcement learning (DRL) based on historical treatment plans for developing automated radiation adaptation protocols for nonsmall cell lung cancer (NSCLC) patients that aim to maximize tumor local control at reduced rates of radiation pneumonitis grade 2 (RP2). In a retrospective population of 114 NSCLC patients who received radiotherapy, a three-component neural networks framework was developed for deep reinforcement learning (DRL) of dose fractionation adaptation. Large-scale patient characteristics included clinical, genetic, and imaging radiomics features in addition to tumor and lung dosimetric variables. First, a generative adversarial network (GAN) was employed to learn patient population characteristics necessary for DRL training from a relatively limited sample size. Second, a radiotherapy artificial environment (RAE) was reconstructed by a deep neural network (DNN) utilizing both original and synthetic data (by GAN) to estimate the transition probabilities for adaptation of personalized radiotherapy patients' treatment courses. Third, a deep Q-network (DQN) was applied to the RAE for choosing the optimal dose in a response-adapted treatment setting. This multicomponent reinforcement learning approach was benchmarked against real clinical decisions that were applied in an adaptive dose escalation clinical protocol. In which, 34 patients were treated based on avid PET signal in the tumor and constrained by a 17.2% normal tissue complication probability (NTCP) limit for RP2. The uncomplicated cure probability (P+) was used as a baseline reward function in the DRL. Taking our adaptive dose escalation protocol as a blueprint for the proposed DRL (GAN + RAE + DQN) architecture, we obtained an automated dose adaptation estimate for use at ∼2/3 of the way into the radiotherapy treatment course. By letting the DQN component freely control the estimated adaptive dose per fraction (ranging from 1-5 Gy), the DRL automatically favored dose

  18. Plant adaptive behaviour in hydrological models (Invited)

    Science.gov (United States)

    van der Ploeg, M. J.; Teuling, R.

    2013-12-01

    Models that will be able to cope with future precipitation and evaporation regimes need a solid base that describes the essence of the processes involved [1]. Micro-behaviour in the soil-vegetation-atmosphere system may have a large impact on patterns emerging at larger scales. A complicating factor in the micro-behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. As a result of environmental changes vegetation may wither and die, but such environmental changes may also trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [2-6]. Gene expression as a result of different environmental conditions may profoundly impact drought responses across the same plant species. Differences in response to an environmental stress, has consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant functional type. Assigning plant functional types does not allow for local plant adaptation to be reflected in the model parameters, nor does it allow for correlations that might exist between root parameters and soil type. Models potentially provide a means to link root water uptake and transport to large scale processes (e.g. Rosnay and Polcher 1998, Feddes et al. 2001, Jung 2010), especially when powered with an integrated hydrological, ecological and physiological base. We explore the experimental evidence from natural vegetation to formulate possible alternative modeling concepts. [1] Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215

  19. Evidence for adaptive radiation from a phylogenetic study of plant defenses

    Science.gov (United States)

    Agrawal, Anurag A.; Fishbein, Mark; Halitschke, Rayko; Hastings, Amy P.; Rabosky, Daniel L.; Rasmann, Sergio

    2009-01-01

    One signature of adaptive radiation is a high level of trait change early during the diversification process and a plateau toward the end of the radiation. Although the study of the tempo of evolution has historically been the domain of paleontologists, recently developed phylogenetic tools allow for the rigorous examination of trait evolution in a tremendous diversity of organisms. Enemy-driven adaptive radiation was a key prediction of Ehrlich and Raven's coevolutionary hypothesis [Ehrlich PR, Raven PH (1964) Evolution 18:586–608], yet has remained largely untested. Here we examine patterns of trait evolution in 51 North American milkweed species (Asclepias), using maximum likelihood methods. We study 7 traits of the milkweeds, ranging from seed size and foliar physiological traits to defense traits (cardenolides, latex, and trichomes) previously shown to impact herbivores, including the monarch butterfly. We compare the fit of simple random-walk models of trait evolution to models that incorporate stabilizing selection (Ornstein-Ulenbeck process), as well as time-varying rates of trait evolution. Early bursts of trait evolution were implicated for 2 traits, while stabilizing selection was implicated for several others. We further modeled the relationship between trait change and species diversification while allowing rates of trait evolution to vary during the radiation. Species-rich lineages underwent a proportionately greater decline in latex and cardenolides relative to species-poor lineages, and the rate of trait change was most rapid early in the radiation. An interpretation of this result is that reduced investment in defensive traits accelerated diversification, and disproportionately so, early in the adaptive radiation of milkweeds. PMID:19805160

  20. Optimal model distributions in supervisory adaptive control

    NARCIS (Netherlands)

    Ghosh, D.; Baldi, S.

    2017-01-01

    Several classes of multi-model adaptive control schemes have been proposed in literature: instead of one single parameter-varying controller, in this adaptive methodology multiple fixed-parameter controllers for different operating regimes (i.e. different models) are utilised. Despite advances in

  1. Adaptive Stereotactic Body Radiation Therapy Planning for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yujiao [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Zhang, Fan [Occupational and Environmental Safety Office, Duke University Medical Center, Durham, North Carolina (United States); Yoo, David S.; Kelsey, Chris R. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Cai, Jing, E-mail: jing.cai@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2013-09-01

    Purpose: To investigate the dosimetric effects of adaptive planning on lung stereotactic body radiation therapy (SBRT). Methods and Materials: Forty of 66 consecutive lung SBRT patients were selected for a retrospective adaptive planning study. CBCT images acquired at each fraction were used for treatment planning. Adaptive plans were created using the same planning parameters as the original CT-based plan, with the goal to achieve comparable comformality index (CI). For each patient, 2 cumulative plans, nonadaptive plan (P{sub NON}) and adaptive plan (P{sub ADP}), were generated and compared for the following organs-at-risks (OARs): cord, esophagus, chest wall, and the lungs. Dosimetric comparison was performed between P{sub NON} and P{sub ADP} for all 40 patients. Correlations were evaluated between changes in dosimetric metrics induced by adaptive planning and potential impacting factors, including tumor-to-OAR distances (d{sub T-OAR}), initial internal target volume (ITV{sub 1}), ITV change (ΔITV), and effective ITV diameter change (Δd{sub ITV}). Results: 34 (85%) patients showed ITV decrease and 6 (15%) patients showed ITV increase throughout the course of lung SBRT. Percentage ITV change ranged from −59.6% to 13.0%, with a mean (±SD) of −21.0% (±21.4%). On average of all patients, P{sub ADP} resulted in significantly (P=0 to .045) lower values for all dosimetric metrics. Δd{sub ITV}/d{sub T-OAR} was found to correlate with changes in dose to 5 cc (ΔD5cc) of esophagus (r=0.61) and dose to 30 cc (ΔD30cc) of chest wall (r=0.81). Stronger correlations between Δd{sub ITV}/d{sub T-OAR} and ΔD30cc of chest wall were discovered for peripheral (r=0.81) and central (r=0.84) tumors, respectively. Conclusions: Dosimetric effects of adaptive lung SBRT planning depend upon target volume changes and tumor-to-OAR distances. Adaptive lung SBRT can potentially reduce dose to adjacent OARs if patients present large tumor volume shrinkage during the treatment.

  2. Conserved sex chromosomes across adaptively radiated Anolis lizards.

    Science.gov (United States)

    Rovatsos, Michail; Altmanová, Marie; Pokorná, Martina; Kratochvíl, Lukáš

    2014-07-01

    Vertebrates possess diverse sex-determining systems, which differ in evolutionary stability among particular groups. It has been suggested that poikilotherms possess more frequent turnovers of sex chromosomes than homoiotherms, whose effective thermoregulation can prevent the emergence of the sex reversals induced by environmental temperature. Squamate reptiles used to be regarded as a group with an extensive variability in sex determination; however, we document how the rather old radiation of lizards from the genus Anolis, known for exceptional ecomorphological variability, was connected with stability in sex chromosomes. We found that 18 tested species, representing most of the phylogenetic diversity of the genus, share the gene content of their X chromosomes. Furthermore, we discovered homologous sex chromosomes in species of two genera (Sceloporus and Petrosaurus) from the family Phrynosomatidae, serving here as an outgroup to Anolis. We can conclude that the origin of sex chromosomes within iguanas largely predates the Anolis radiation and that the sex chromosomes of iguanas remained conserved for a significant part of their evolutionary history. Next to therian mammals and birds, Anolis lizards therefore represent another adaptively radiated amniote clade with conserved sex chromosomes. We argue that the evolutionary stability of sex-determining systems may reflect an advanced stage of differentiation of sex chromosomes rather than thermoregulation strategy. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  3. Radiation-induced adaptive response in fetal mice: a micro-array study

    International Nuclear Information System (INIS)

    Vares, G.; Bing, Wang; Mitsuru, Nenoi; Tetsuo, Nakajima; Kaoru, Tanaka; Isamu, Hayata

    2006-01-01

    Exposure of sublethal doses of ionizing radiation can induce protective mechanisms against a subsequent higher dose irradiation. This phenomenon called radio-adaptation (or adaptive response - AR), has been described in a wide range of biological models. In a series of studies, we demonstrated the existence of a radiation-induced AR in mice during late organogenesis. For better understanding of molecular mechanisms underlying AR in our model, we performed a global analysis of transcriptome regulations in cells collected from whole mouse fetuses. Using cDNA micro-arrays, we studied gene expression in these cells after in utero priming exposure to irradiation. Several combinations of radiation dose and dose-rate were applied to induce or not an AR in our system. Gene regulation was observed after exposure to priming radiation in each condition. Student's t-test was performed in order to identify genes whose expression modulation was specifically different in AR-inducing an( non-AR-inducing conditions. Genes were ranked according to their ability in discriminating AR-specific modulations. Since AR genes were implicated in variety of functions and cellular processes, we applied a functional classification algorithm, which clustered genes in a limited number of functionally related group: We established that AR genes are significantly enriched for specific keywords. Our results show a significant modulation of genes implicated in signal transduction pathways. No AR-specific alteration of DNA repair could be observed. Nevertheless, it is likely that modulation of DNA repair activity results, at least partly, from post-transcriptional regulation. One major hypothesis is that de-regulations of signal transduction pathways and apoptosis may be responsible for AR phenotype. In previous work, we demonstrated that radiation-induced AR in mice during organogenesis is related to Trp53 gene status and to the occurrence of radiation-induced apoptosis. Other work proposed that p53

  4. Unobtrusive user modeling for adaptive hypermedia

    NARCIS (Netherlands)

    Holz, H.J.; Hofmann, K.; Reed, C.; Uchyigit, G.; Ma, M.Y.

    2008-01-01

    We propose a technique for user modeling in Adaptive Hypermedia (AH) that is unobtrusive at both the level of observable behavior and that of cognition. Unobtrusive user modeling is complementary to transparent user modeling. Unobtrusive user modeling induces user models appropriate for Educational

  5. Modeling adaptive and non-adaptive responses to environmental change

    DEFF Research Database (Denmark)

    Coulson, Tim; Kendall, Bruce E; Barthold, Julia A.

    2017-01-01

    Understanding how the natural world will be impacted by environmental change over the coming decades is one of the most pressing challenges facing humanity. Addressing this challenge is difficult because environmental change can generate both population level plastic and evolutionary responses...... construct a number of example models to demonstrate that evolutionary responses to environmental change over the short-term will be considerably slower than plastic responses, and that the rate of adaptive evolution to a new environment depends upon whether plastic responses are adaptive or non...... machinery of the evolutionarily explicit models we develop will be needed to predict responses to environmental change, or whether simpler non-evolutionary models that are now widely constructed may be sufficient....

  6. Plasma ICR heating antennas: adaptation, radiated field structure, coupling

    International Nuclear Information System (INIS)

    Pegourie, B.

    1982-01-01

    The transmission line theory has been used to find the antenna adapattion improvement possibilities, so as to optimize the power transfer from generator to plasma. ICR heating antennas are described, radiated magnetic field is measured, and superstructures (diaphragms and electrostatic screen) is studied from a mock-up and a numerical model. Results about antenna radiation and electric property modifications due to superstructures, without plasma, are presented. At last, TFR antenna coupling properties, in terms of frequency, electromagnetic wave and plasma conditions, are studied. In the whole work, we tried to define, when possible the construction criteria fitted to cyclotron heating in the big tokamak experiments under construction [fr

  7. Adaptation of the present concept of dosimetric radiation protection quantities for external radiation to radiation protection practice

    International Nuclear Information System (INIS)

    Boehm, J.; Thompson, I. M. G.

    2004-01-01

    The present concept of dosimetric radiation protection quantities for external radiation is reviewed. For everyday application of the concept some adaptations are recommended. The check of the compliance with dose limits should be performed either by the comparison with values of the respective operational quantities directly or by the calculation of the protection quantity by means of the operational quantity, the appertaining conversion coefficient and additional information of the radiation field. Only four operational quantities are regarded to be sufficient for most applications in radiation protection practice. The term equivalent should be used in the connection dose equivalent only. Proposals are made for names of frequently used operational quantities which are denoted up to now by symbols only. (authors)

  8. Multiple factors participating in radiation-induced adaptive response

    International Nuclear Information System (INIS)

    Nenoi, Mitsuru; Vares, G.; Wang, Bing

    2009-01-01

    Radiation-induced adaptive response (RAR) is essentially the acquisition of radiation resistance by pre-exposed low dose radiation (priming). In this paper, in vitro findings on RAR-related factors are reviewed and authors' studies of RAR-related gene analysis in lethality and malformation of mouse fetus are described for future view. Studies on in vitro RAR have involved such participating factors as signal transduction, response appearance and bystander effect, and gene expression profiling. In RAR, DNA double strand break (DSB) by priming is conceivably the initial stimulation. In various cell systems including p53-knockout cells and in enzyme inhibition studies, intracellular signaling factors like protein kinase C, p38 MAPK, phospholipase C have been shown to participate. Increased activities of antioxidant and of damaged DNA repairing system, modulation of cell cycle, heat-shock reactions and apoptosis are suggested to concern to RAR appearance. Relationship between RAR and bystander effect is conceived to be important based on findings of cell lethality, mutagenesis, gap junction and NO radical. Genes relating to DSB repair, stress response, cell cycle and apoptosis have been shown to be specifically changed in RAR by their expression profile. Authors have conducted in vivo studies on RAR using embryogenetic system in the mouse. They have shown by gene profiling that signaling evoked by priming is important when the fetal lethality and malformation are used as RAR measures, and that in the subsequent process to RAR appearance, many signaling factors, particularly the transcription factor like p53, play a role. Database construction according to measures employed in individual studies, classification of living systems studied, radiation factors like linear energy transfer (LET), dose and dose rate, and functional genes concerned is thought useful for understanding the ultimate molecular mechanisms involved in ARA. (K.T.)

  9. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation

    Directory of Open Access Journals (Sweden)

    Salzburger Walter

    2011-04-01

    Full Text Available Abstract Background Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp. in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. Results We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. Conclusions The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated - among

  10. An adaptive crystal bender for high power synchrotron radiation beams

    International Nuclear Information System (INIS)

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  11. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs.

    Science.gov (United States)

    Wilson, Gregory P; Evans, Alistair R; Corfe, Ian J; Smits, Peter D; Fortelius, Mikael; Jernvall, Jukka

    2012-03-14

    The Cretaceous-Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, triggered ecological diversification of mammals. Although recent individual fossil discoveries have shown that some mammalian lineages diversified ecologically during the Mesozoic era, comprehensive ecological analyses of mammalian groups crossing the Cretaceous-Paleogene boundary are lacking. Such analyses are needed because diversification analyses of living taxa allow only indirect inferences of past ecosystems. Here we show that in arguably the most evolutionarily successful clade of Mesozoic mammals, the Multituberculata, an adaptive radiation began at least 20 million years before the extinction of non-avian dinosaurs and continued across the Cretaceous-Paleogene boundary. Disparity in dental complexity, which relates to the range of diets, rose sharply in step with generic richness and disparity in body size. Moreover, maximum dental complexity and body size demonstrate an adaptive shift towards increased herbivory. This dietary expansion tracked the ecological rise of angiosperms and suggests that the resources that were available to multituberculates were relatively unaffected by the Cretaceous-Paleogene mass extinction. Taken together, our results indicate that mammals were able to take advantage of new ecological opportunities in the Mesozoic and that at least some of these opportunities persisted through the Cretaceous-Paleogene mass extinction. Similar broad-scale ecomorphological inventories of other radiations may help to constrain the possible causes of mass extinctions.

  12. Fully Adaptive Radar Modeling and Simulation Development

    Science.gov (United States)

    2017-04-01

    AFRL-RY-WP-TR-2017-0074 FULLY ADAPTIVE RADAR MODELING AND SIMULATION DEVELOPMENT Kristine L. Bell and Anthony Kellems Metron, Inc...SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE I REPORT. Approved for public release; distribution unlimited. See additional restrictions...2017 4. TITLE AND SUBTITLE FULLY ADAPTIVE RADAR MODELING AND SIMULATION DEVELOPMENT 5a. CONTRACT NUMBER FA8650-16-M-1774 5b. GRANT NUMBER 5c

  13. Biophysical models in radiation oncology

    International Nuclear Information System (INIS)

    Cohen, L.

    1984-01-01

    The paper examines and describes dose-time relationships in clinical radiation oncology. Realistic models and parameters for specific tissues, organs, and tumor types are discussed in order to solve difficult problems which arise in radiation oncology. The computer programs presented were written to: derive parameters from experimental and clinical data; plot normal- and tumor-cell survival curves; generate iso-effect tables of tumor-curative doses; identify alternative, equally effective procedures for fraction numbers and treatment times; determine whether a proposed course of treatment is safe and adequate, and what adjustments are needed should results suggest that the procedure is unsafe or inadequate; combine the physical isodose distribution with computed cellular surviving fractions for the tumor and all normal tissues traversed by the beam, estimating the risks of recurrence or complications at various points in the irradiated volume, and adjusting the treatment plan and fractionation scheme to minimize these risks

  14. Unstructured mesh adaptivity for urban flooding modelling

    Science.gov (United States)

    Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.

    2018-05-01

    Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.

  15. From dinosaurs to modern bird diversity: extending the time scale of adaptive radiation.

    Science.gov (United States)

    Moen, Daniel; Morlon, Hélène

    2014-05-01

    What explains why some groups of organisms, like birds, are so species rich? And what explains their extraordinary ecological diversity, ranging from large, flightless birds to small migratory species that fly thousand of kilometers every year? These and similar questions have spurred great interest in adaptive radiation, the diversification of ecological traits in a rapidly speciating group of organisms. Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil record, rigorous attempts to identify adaptive radiation in the fossil record are still uncommon. Moreover, most studies of adaptive radiation concern groups that are less than 50 million years old. Thus, it is unclear how important adaptive radiation is over temporal scales that span much larger portions of the history of life. In this issue, Benson et al. test the idea of a "deep-time" adaptive radiation in dinosaurs, compiling and using one of the most comprehensive phylogenetic and body-size datasets for fossils. Using recent phylogenetic statistical methods, they find that in most clades of dinosaurs there is a strong signal of an "early burst" in body-size evolution, a predicted pattern of adaptive radiation in which rapid trait evolution happens early in a group's history and then slows down. They also find that body-size evolution did not slow down in the lineage leading to birds, hinting at why birds survived to the present day and diversified. This paper represents one of the most convincing attempts at understanding deep-time adaptive radiations.

  16. Optimization of adaptive radiation therapy in cervical cancer: Solutions for photon and proton therapy

    NARCIS (Netherlands)

    van de Schoot, A.J.A.J.

    2016-01-01

    In cervical cancer radiation therapy, an adaptive strategy is required to compensate for interfraction anatomical variations in order to achieve adequate dose delivery. In this thesis, we have aimed at optimizing adaptive radiation therapy in cervical cancer to improve treatment efficiency and

  17. Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes.

    Directory of Open Access Journals (Sweden)

    Emilie J Richards

    2017-08-01

    Full Text Available Rapid diversification often involves complex histories of gene flow that leave variable and conflicting signatures of evolutionary relatedness across the genome. Identifying the extent and source of variation in these evolutionary relationships can provide insight into the evolutionary mechanisms involved in rapid radiations. Here we compare the discordant evolutionary relationships associated with species phenotypes across 42 whole genomes from a sympatric adaptive radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas and several outgroup pupfish species in order to understand the rarity of these trophic specialists within the larger radiation of Cyprinodon. 82% of the genome depicts close evolutionary relationships among the San Salvador Island species reflecting their geographic proximity, but the vast majority of variants fixed between specialist species lie in regions with discordant topologies. Top candidate adaptive introgression regions include signatures of selective sweeps and adaptive introgression of genetic variation from a single population in the northwestern Bahamas into each of the specialist species. Hard selective sweeps of genetic variation on San Salvador Island contributed 5 times more to speciation of trophic specialists than adaptive introgression of Caribbean genetic variation; however, four of the 11 introgressed regions came from a single distant island and were associated with the primary axis of oral jaw divergence within the radiation. For example, standing variation in a proto-oncogene (ski known to have effects on jaw size introgressed into one San Salvador Island specialist from an island 300 km away approximately 10 kya. The complex emerging picture of the origins of adaptive radiation on San Salvador Island indicates that multiple sources of genetic variation contributed to the adaptive phenotypes of novel trophic specialists on the island. Our findings suggest that a suite of factors

  18. Adaptive Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rasmussen, Tage

    1996-01-01

    Partially Hidden Markov Models (PHMM) have recently been introduced. The transition and emission probabilities are conditioned on the past. In this report, the PHMM is extended with a multiple token version. The different versions of the PHMM are applied to bi-level image coding....

  19. The behaviour of adaptive boneremodeling simulation models

    NARCIS (Netherlands)

    Weinans, H.; Huiskes, R.; Grootenboer, H.J.

    1992-01-01

    The process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule applied to

  20. An adaptive stochastic model for financial markets

    International Nuclear Information System (INIS)

    Hernández, Juan Antonio; Benito, Rosa Marı´a; Losada, Juan Carlos

    2012-01-01

    An adaptive stochastic model is introduced to simulate the behavior of real asset markets. The model adapts itself by changing its parameters automatically on the basis of the recent historical data. The basic idea underlying the model is that a random variable uniformly distributed within an interval with variable extremes can replicate the histograms of asset returns. These extremes are calculated according to the arrival of new market information. This adaptive model is applied to the daily returns of three well-known indices: Ibex35, Dow Jones and Nikkei, for three complete years. The model reproduces the histograms of the studied indices as well as their autocorrelation structures. It produces the same fat tails and the same power laws, with exactly the same exponents, as in the real indices. In addition, the model shows a great adaptation capability, anticipating the volatility evolution and showing the same volatility clusters observed in the assets. This approach provides a novel way to model asset markets with internal dynamics which changes quickly with time, making it impossible to define a fixed model to fit the empirical observations.

  1. The Martian Energetic Radiation Environment Models

    Science.gov (United States)

    Gonçalves, Patrícia; Keating, Ana; Truscott, Pete; Lei, Fan; Desorgher, Laurent; Heynderickx, Daniel; Crosby, Norma Bock; Nieminen, Petteri; Santin, Giovanni

    The Martian Energetic Radiation Environment Models The high energy ionising radiation environment in the solar system consists of three main sources: the planetary radiation belts, galactic cosmic rays and solar energetic particles. Future Mars missions potentially carry significant risk from long-term exposure to ionising radiation. The Martian Energetic Radiation Environment Models, MEREM, were developed in order to simulate the Martian radiation environment. The models, eMEREM and dMEREM, respec-tively engineering and detailed Martian Energetic Radiation Environment Models, are based on the Geant4 and FLUKA radiation transport programs, combined with Mars Climate Database model for the atmosphere. MOLA (Mars Orbiter Laser Altimeter) data and gamma-ray spec-trometer data have been used to define surface topology and surface composition (including presence of water), respectively. Although the models are capable of operating on standalone mode, a SPENVIS (space envi-ronment information system) compatible, web-based user interface was developed to provide an integrated environment to predict the Martian radiation and greatly simplify the operation of the software by non-experts and by future mission developers. Results of the Mars Energetic Radiation Environment Models concerning the estimate of effec-tive doses and ambient dose equivalents for potential Martian landing sites having regard to the combined incidence, under solar minimum and solar maximum conditions, of flare related particle radiation and background galactic cosmic ray radiation are presented.

  2. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  3. Modeling of the Lunar Radiation Environment

    International Nuclear Information System (INIS)

    De Angelis, G.; Badavi, F.F.; Clem, J.M.; Blattnig, S.R.; Clowdsley, M.S.; Nealy, J.E.; Tripathi, R.K.; Wilson, J.W.

    2007-01-01

    In view of manned missions targeted to the Moon, for which radiation exposure is one of the greatest challenges to be tackled, it is of fundamental importance to have available a tool, which allows the determination of the particle flux and spectra at any time and at any point of the lunar surface. With this goal in mind, a new model of the Moon's radiation environment due to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) has been developed. Primary particles reach the lunar surface, and are transported all throughout the subsurface layers, with backscattering patterns taken into account. The surface itself has been modeled as regolith and bedrock, with composition taken from the results of the instruments flown on the Apollo missions. Subsurface environments like lava tubes have been considered in the analysis. Particle transport has been performed with both deterministic and Monte Carlo codes with an adaptation for planetary surface geometry. Results are given in terms of fluxes, doses and LET, for most kinds of particles for various kinds of soil and rock chemical compositions

  4. Optical solar energy adaptations and radiative temperature control of green leaves and tree barks

    Energy Technology Data Exchange (ETDEWEB)

    Henrion, Wolfgang; Tributsch, Helmut [Department of Si-Photovoltaik and Solare Energetik, Hahn-Meitner-Institut Berlin, 14109 Berlin (Germany)

    2009-01-15

    Trees have adapted to keep leaves and barks cool in sunshine and can serve as interesting bionic model systems for radiative cooling. Silicon solar cells, on the other hand, loose up to one third of their energy efficiency due to heating in intensive sunshine. It is shown that green leaves minimize absorption of useful radiation and allow efficient infrared thermal emission. Since elevated temperatures are detrimental for tensile water flow in the Xylem tissue below barks, the optical properties of barks should also have evolved so as to avoid excessive heating. This was tested by performing optical studies with tree bark samples from representative trees. It was found that tree barks have optimized their reflection of incoming sunlight between 0.7 and 2 {mu}m. This is approximately the optical window in which solar light is transmitted and reflected by green vegetation. Simultaneously, the tree bark is highly absorbing and thus radiation emitting between 6 and 10 {mu}m. These two properties, mainly provided by tannins, create optimal conditions for radiative temperature control. In addition, tannins seem to have adopted a function as mediators for excitation energy towards photo-antioxidative activity for control of radiation damage. The results obtained are used to discuss challenges for future solar cell optimization. (author)

  5. Does occupational exposure to ionizing radiation induce adaptation

    International Nuclear Information System (INIS)

    Djurovic, B.; Selakovic, V.; Radjen, S.; Radakovic, S.; Spasic-Jokic, V.

    2008-01-01

    Full text: Even the most of personnel occupationally exposed (OE) to ionizing radiation (IR) is exposed to very low doses (LD), some harmful effects can be noticed. IR can affect the cell structure in two ways: directly and indirectly-inducing radiolysis of water and production of reactive oxygen species (ROS) similar to endogenously induced. In the low- LET exposure almost 70 % of absorbed energy is spent for ROS production. Over-production of ROS can cause oxidative stress. DNA is the main target of induced ROS. It is also experimentally showed that many important cell protective mechanisms, such is adaptation, are dependent of ROS concentration produced by low doses. The aim of this paper is to investigate if occupational exposure to LD induce over-production of ROS, and influence the activity of protective enzymes and radiosensitivity as well as induce adaptation. Our subjects were medical workers occupationally exposed to IR (44) and not-exposed (33), matched in gender, age, habits-dietary, alcohol consumption, smoking. Occupational exposure was calculated on the basis of individual TL-dose records. Besides the standard medical examination, micronucleus test, superoxide production and lipid peroxidation index, expressed as malonaldehyde (MDA) production, were performed by standard procedures as well as measurements of activity of the superoxide dismutase (SOD) and glutathione (GSH). Half of each sample were put in a sterile plastic test-tube placed in a plexiglas container 15 x 15 cm, and irradiated by 60 Co source of γ-ray at room temperature. Employed radiation dose was 2 Gy, dose-rate 0.45 Gy/min and distance from the source 74 cm. All blood samples were frozen at -70 C degrees, and kept till analyses which were performed at the same time. Our results confirm: significantly higher incidence of micronuclei in OE (.31±10 vs 17±8, p=0.00) with significant increase after irradiation in each group and lack of differences in radiosensitivity between groups

  6. Hierarchical Adaptive Solution of Radiation Transport Problems on Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Cassiano R. E de Oliveira

    2008-06-30

    Computational radiation transport has steadily gained acceptance in the last decade as a viable modeling tool due to the rapid advancements in computer software and hardware technologies. It can be applied for the analysis of a wide range of problems which arise in nuclear reactor physics, medical physics, atmospheric physics, astrophysics and other areas of engineering physics. However, radiation transport is an extremely chanllenging computational problem since the governing equation is seven-deimensional (3 in space, 2 in direction, 1 in energy, and 1 in time) with a high degree of coupleing betwen these variables. If not careful, this relatively large number of independent variables when discretized can potentially lead to sets of linear equations of intractable size. Though parallel computing has allowed the solution of very large problems, avaliable computational resources will always be finite due to the fact that every more sophisticated multiphysics models are being demanded by industry. There is thus the pressing requirement to optimize the discretizations so as to minimize the effort and maximize the accuracy.

  7. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    International Nuclear Information System (INIS)

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  8. Multiple model adaptive control with mixing

    Science.gov (United States)

    Kuipers, Matthew

    Despite the remarkable theoretical accomplishments and successful applications of adaptive control, the field is not sufficiently mature to solve challenging control problems requiring strict performance and safety guarantees. Towards addressing these issues, a novel deterministic multiple-model adaptive control approach called adaptive mixing control is proposed. In this approach, adaptation comes from a high-level system called the supervisor that mixes into feedback a number of candidate controllers, each finely-tuned to a subset of the parameter space. The mixing signal, the supervisor's output, is generated by estimating the unknown parameters and, at every instant of time, calculating the contribution level of each candidate controller based on certainty equivalence. The proposed architecture provides two characteristics relevant to solving stringent, performance-driven applications. First, the full-suite of linear time invariant control tools is available. A disadvantage of conventional adaptive control is its restriction to utilizing only those control laws whose solutions can be feasibly computed in real-time, such as model reference and pole-placement type controllers. Because its candidate controllers are computed off line, the proposed approach suffers no such restriction. Second, the supervisor's output is smooth and does not necessarily depend on explicit a priori knowledge of the disturbance model. These characteristics can lead to improved performance by avoiding the unnecessary switching and chattering behaviors associated with some other multiple adaptive control approaches. The stability and robustness properties of the adaptive scheme are analyzed. It is shown that the mean-square regulation error is of the order of the modeling error. And when the parameter estimate converges to its true value, which is guaranteed if a persistence of excitation condition is satisfied, the adaptive closed-loop system converges exponentially fast to a closed

  9. SCROLL, a superconfiguration collisional radiative model with external radiation

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Klapisch, M.

    2000-01-01

    A collisional radiative model for calculating non-local thermodynamical-equilibrium (non-LTE) spectra of heavy atoms in hot plasmas has been developed. It takes into account the numerous excited an autoionizing states by using superconfigurations. These are split systematically until the populations converge. The influence of an impinging radiation field has recently been added to the model. The effect can be very important. (author)

  10. A 5-Year Investigation of Children's Adaptive Functioning Following Conformal Radiation Therapy for Localized Ependymoma

    International Nuclear Information System (INIS)

    Netson, Kelli L.; Conklin, Heather M.; Wu Shengjie; Xiong Xiaoping; Merchant, Thomas E.

    2012-01-01

    Purpose: Conformal and intensity modulated radiation therapies have the potential to preserve cognitive outcomes in children with ependymoma; however, functional behavior remains uninvestigated. This longitudinal investigation prospectively examined intelligence quotient (IQ) and adaptive functioning during the first 5 years after irradiation in children diagnosed with ependymoma. Methods and Materials: The study cohort consisted of 123 children with intracranial ependymoma. Mean age at irradiation was 4.60 years (95% confidence interval [CI], 3.85-5.35). Serial neurocognitive evaluations, including an age-appropriate IQ measure and the Vineland Adaptive Behavior Scales (VABS), were completed before irradiation, 6 months after treatment, and annually for 5 years. A total of 579 neurocognitive evaluations were included in these analyses. Results: Baseline IQ and VABS were below normative means (P<.05), although within the average range. Linear mixed models revealed stable IQ and VABS across the follow-up period, except for the VABS Communication Index, which declined significantly (P=.015). Annual change in IQ (−.04 points) did not correlate with annual change in VABS (−.90 to +.44 points). Clinical factors associated with poorer baseline performance (P<.05) included preirradiation chemotherapy, cerebrospinal fluid shunt placement, number and extent of surgical resections, and younger age at treatment. No clinical factors significantly affected the rate of change in scores. Conclusions: Conformal and intensity modulated radiation therapies provided relative sparing of functional outcomes including IQ and adaptive behaviors, even in very young children. Communication skills remained vulnerable and should be the target of preventive and rehabilitative interventions.

  11. Adaptive regression for modeling nonlinear relationships

    CERN Document Server

    Knafl, George J

    2016-01-01

    This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...

  12. Modeling Adaptive Behavior for Systems Design

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1994-01-01

    Field studies in modern work systems and analysis of recent major accidents have pointed to a need for better models of the adaptive behavior of individuals and organizations operating in a dynamic and highly competitive environment. The paper presents a discussion of some key characteristics...... of the predictive models required for the design of work supports systems, that is,information systems serving as the human-work interface. Three basic issues are in focus: 1.) Some fundamental problems in analysis and modeling modern dynamic work systems caused by the adaptive nature of human behavior; 2.......) The basic difference between the models of system functions used in engineering and design and those evolving from basic research within the various academic disciplines and finally 3.) The models and methods required for closed-loop, feedback system design....

  13. Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a

  14. Modeling Space Radiation with Bleomycin

    Data.gov (United States)

    National Aeronautics and Space Administration — Space radiation is a mixed field of solar particle events (proton) and particles of Galactic Cosmic Rays (GCR) with different energy levels. These radiation events...

  15. Error estimation and adaptive chemical transport modeling

    Directory of Open Access Journals (Sweden)

    Malte Braack

    2014-09-01

    Full Text Available We present a numerical method to use several chemical transport models of increasing accuracy and complexity in an adaptive way. In largest parts of the domain, a simplified chemical model may be used, whereas in certain regions a more complex model is needed for accuracy reasons. A mathematically derived error estimator measures the modeling error and provides information where to use more accurate models. The error is measured in terms of output functionals. Therefore, one has to consider adjoint problems which carry sensitivity information. This concept is demonstrated by means of ozone formation and pollution emission.

  16. Semantic models for adaptive interactive systems

    CERN Document Server

    Hussein, Tim; Lukosch, Stephan; Ziegler, Jürgen; Calvary, Gaëlle

    2013-01-01

    Providing insights into methodologies for designing adaptive systems based on semantic data, and introducing semantic models that can be used for building interactive systems, this book showcases many of the applications made possible by the use of semantic models.Ontologies may enhance the functional coverage of an interactive system as well as its visualization and interaction capabilities in various ways. Semantic models can also contribute to bridging gaps; for example, between user models, context-aware interfaces, and model-driven UI generation. There is considerable potential for using

  17. An explanatory model of underwater adaptation

    Directory of Open Access Journals (Sweden)

    Joaquín Colodro

    Full Text Available The underwater environment is an extreme environment that requires a process of human adaptation with specific psychophysiological demands to ensure survival and productive activity. From the standpoint of existing models of intelligence, personality and performance, in this explanatory study we have analyzed the contribution of individual differences in explaining the adaptation of military personnel in a stressful environment. Structural equation analysis was employed to verify a model representing the direct effects of psychological variables on individual adaptation to an adverse environment, and we have been able to confirm, during basic military diving courses, the structural relationships among these variables and their ability to predict a third of the variance of a criterion that has been studied very little to date. In this way, we have confirmed in a sample of professionals (N = 575 the direct relationship of emotional adjustment, conscientiousness and general mental ability with underwater adaptation, as well as the inverse relationship of emotional reactivity. These constructs are the psychological basis for working under water, contributing to an improved adaptation to this environment and promoting risk prevention and safety in diving activities.

  18. A model for optimal constrained adaptive testing

    NARCIS (Netherlands)

    van der Linden, Willem J.; Reese, Lynda M.

    1997-01-01

    A model for constrained computerized adaptive testing is proposed in which the information in the test at the ability estimate is maximized subject to a large variety of possible constraints on the contents of the test. At each item-selection step, a full test is first assembled to have maximum

  19. A model for optimal constrained adaptive testing

    NARCIS (Netherlands)

    van der Linden, Willem J.; Reese, Lynda M.

    2001-01-01

    A model for constrained computerized adaptive testing is proposed in which the information on the test at the ability estimate is maximized subject to a large variety of possible constraints on the contents of the test. At each item-selection step, a full test is first assembled to have maximum

  20. Radiation-induced adaptive response in human lymphoblast

    International Nuclear Information System (INIS)

    Yatagai, Fumio; Sugasawa, Kaoru

    2009-01-01

    Described are the genetic analysis of variant strains obtained by the optimal condition for radiation-induced adaptive response (AR), and molecular elucidation of the suppression of concomitant mutation. The TK6 cells (heterozygous thymidine kinase, +/-) were used for detection of mutation by loss of heterozygosity (LOH). The optimal conditions for reducing the mutation by subsequent irradiation (SI) to its rate of about 60% (vs control 100%, no PI) were found to be 5 cGy of pre-irradiation (PI) of X-ray and 2 Gy of SI with the interval of 6 hr, where mutated cells were of non-LOH type in around 25% and homo-LOH type by homologous recombination (HR) in 60%. By cDNA sequencing, the former cells having changed bases were found to be in variant strain ratio of 1/8 vs control 7/18, suggesting that the mutation was decreased mainly by suppression of base change. Expression of XPC protein, an important component for recognition of the base damage in global genome nucleotide excision repair, was studied by Western blotting as the possible mechanism of suppressing the mutation, which revealed different time dynamics of the protein in cells with PI+SI and SI alone (control). To see the effect of PI on the double strand break (DSB) repair, cells with PI were infected with restriction enzyme I-SceI vector to yield DSB instead of SI, which revealed more efficient repair (70% increase) by HR than control, without significant difference in non-homologous end-joining repair. Micro-array analysis to study the gene expression in the present experimental conditions for AR is in progress. The TK6 cells used here were thought useful for additional studies of the mechanism of AR as mutation by direct or indirect irradiation can be tested. (K.T.)

  1. Adaptive numerical modeling of dynamic crack propagation

    International Nuclear Information System (INIS)

    Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.

    2006-01-01

    We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)

  2. Model reference adaptive systems some examples.

    Science.gov (United States)

    Landau, I. D.; Sinner, E.; Courtiol, B.

    1972-01-01

    A direct design method is derived for several single-input single-output model reference adaptive systems (M.R.A.S.). The approach used helps to clarify the various steps involved in a design, which utilizes the hyperstability concept. An example of a multiinput, multioutput M.R.A.S. is also discussed. Attention is given to the problem of a series compensator. It is pointed out that a series compensator which contains derivative terms must generally be introduced in the adaptation mechanism in order to assure asymptotic hyperstability. Results obtained by the simulation of a M.R.A.S. on an analog computer are also presented.

  3. A Schelling model with adaptive tolerance.

    Science.gov (United States)

    Urselmans, Linda; Phelps, Steve

    2018-01-01

    We introduce a Schelling model in which people are modelled as agents following simple behavioural rules which dictate their tolerance to others, their corresponding preference for particular locations, and in turn their movement through a geographic or social space. Our innovation over previous work is to allow agents to adapt their tolerance to others in response to their local environment, in line with contemporary theories from social psychology. We show that adaptive tolerance leads to a polarization in tolerance levels, with distinct modes at either extreme of the distribution. Moreover, agents self-organize into communities of like-tolerance, just as they congregate with those of same colour. Our results are robust not only to variations in free parameters, but also experimental treatments in which migrants are dynamically introduced into the native population. We argue that this model provides one possible parsimonious explanation of the political landscape circa 2016.

  4. Studies of adaptive response and mutation induction in MCF-10A cells following exposure to chronic or acute ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Manesh, Sara Shakeri; Sangsuwan, Traimate; Wojcik, Andrzej; Haghdoost, Siamak, E-mail: Siamak.haghdoost@su.se

    2015-10-15

    Highlights: • 50 mGy at 1.4 mGy/h induces adaptive response in MCF-10A at mutation level. • Low dose rate γ-radiation does not induce adaptive response at survival level. • Overall, a dose rate effect is absent at the level of mutation in MCF-10A cells. - Abstract: A phenomenon in which exposure to a low adapting dose of radiation makes cells more resistant to the effects of a subsequent high dose exposure is termed radio-adaptive response. Adaptive response could hypothetically reduce the risk of late adverse effects of chronic or acute radiation exposures in humans. Understanding the underlying mechanisms of such responses is of relevance for radiation protection as well as for the clinical applications of radiation in medicine. However, due to the variability of responses depending on the model system and radiation condition, there is a need to further study under what conditions adaptive response can be induced. In this study, we analyzed if there is a dose rate dependence for the adapting dose, assuming that the adapting dose induces DNA response/repair pathways that are dose rate dependent. MCF-10A cells were exposed to a 50 mGy adapting dose administered acutely (0.40 Gy/min) or chronically (1.4 mGy/h or 4.1 mGy/h) and then irradiated by high acute challenging doses. The endpoints of study include clonogenic cell survival and mutation frequency at X-linked hprt locus. In another series of experiment, cells were exposed to 100 mGy and 1 Gy at different dose rates (acutely and chronically) and then the mutation frequencies were studied. Adaptive response was absent at the level of clonogenic survival. The mutation frequencies were significantly decreased in the cells pre-exposed to 50 mGy at 1.4 mGy/h followed by 1 Gy acute exposure as challenging dose. Importantly, at single dose exposures (1 Gy or 100 mGy), no differences at the level of mutation were found comparing different dose rates.

  5. The Adaptive Radiation of Cichlid Fish in Lake Tanganyika: A Morphological Perspective

    Directory of Open Access Journals (Sweden)

    Tetsumi Takahashi

    2011-01-01

    Full Text Available Lake Tanganyika is the oldest of the Great Ancient Lakes in the East Africa. This lake harbours about 250 species of cichlid fish, which are highly diverse in terms of morphology, behaviour, and ecology. Lake Tanganyika's cichlid diversity has evolved through explosive speciation and is treated as a textbook example of adaptive radiation, the rapid differentiation of a single ancestor into an array of species that differ in traits used to exploit their environments and resources. To elucidate the processes and mechanisms underlying the rapid speciation and adaptive radiation of Lake Tanganyika's cichlid species assemblage it is important to integrate evidence from several lines of research. Great efforts have been, are, and certainly will be taken to solve the mystery of how so many cichlid species evolved in so little time. In the present review, we summarize morphological studies that relate to the adaptive radiation of Lake Tanganyika's cichlids and highlight their importance for understanding the process of adaptive radiation.

  6. On-line Adaptive Radiation Treatment of Prostate Cancer

    National Research Council Canada - National Science Library

    Zhang, Tiezhi

    2008-01-01

    .... The specific aims of this project are to develop the key technical components for online adaptive treatment, which include parallel deformable image registration algorithm, parallel dose calculation...

  7. From dinosaurs to modern bird diversity: extending the time scale of adaptive radiation.

    Directory of Open Access Journals (Sweden)

    Daniel Moen

    2014-05-01

    Full Text Available What explains why some groups of organisms, like birds, are so species rich? And what explains their extraordinary ecological diversity, ranging from large, flightless birds to small migratory species that fly thousand of kilometers every year? These and similar questions have spurred great interest in adaptive radiation, the diversification of ecological traits in a rapidly speciating group of organisms. Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil record, rigorous attempts to identify adaptive radiation in the fossil record are still uncommon. Moreover, most studies of adaptive radiation concern groups that are less than 50 million years old. Thus, it is unclear how important adaptive radiation is over temporal scales that span much larger portions of the history of life. In this issue, Benson et al. test the idea of a "deep-time" adaptive radiation in dinosaurs, compiling and using one of the most comprehensive phylogenetic and body-size datasets for fossils. Using recent phylogenetic statistical methods, they find that in most clades of dinosaurs there is a strong signal of an "early burst" in body-size evolution, a predicted pattern of adaptive radiation in which rapid trait evolution happens early in a group's history and then slows down. They also find that body-size evolution did not slow down in the lineage leading to birds, hinting at why birds survived to the present day and diversified. This paper represents one of the most convincing attempts at understanding deep-time adaptive radiations.

  8. Adapting virtual camera behaviour through player modelling

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2015-01-01

    Research in virtual camera control has focused primarily on finding methods to allow designers to place cameras effectively and efficiently in dynamic and unpredictable environments, and to generate complex and dynamic plans for cinematography in virtual environments. In this article, we propose...... a novel approach to virtual camera control, which builds upon camera control and player modelling to provide the user with an adaptive point-of-view. To achieve this goal, we propose a methodology to model the player’s preferences on virtual camera movements and we employ the resulting models to tailor...

  9. Neural network models of learning and adaptation

    Science.gov (United States)

    Denker, John S.

    1986-10-01

    Recent work has applied ideas from many fields including biology, physics and computer science, in order to understand how a highly interconnected network of simple processing elements can perform useful computation. Such networks can be used as associative memories, or as analog computers to solve optimization problems. This article reviews the workings of a standard model with particular emphasis on various schemes for learning and adaptation.

  10. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  11. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  12. ADAPTATION MODEL FOR REDUCING THE MANAGERIAL STRESS

    Directory of Open Access Journals (Sweden)

    VIOLETA GLIGOROVSKI

    2017-12-01

    Full Text Available Changes are an inseparable component of the company's life cycle and they can contribute to its essential growth in the future. The purpose of this paper is to explain managerial stress caused by implementation of changes and creating an adaptation model to decrease managerial stress. How much the manager will successfully lead the project for implementation of a change and how much they will manage to amortize stress among employees, mostly depends on their expertise, knowledge and skills to accurately and comprehensively inform and integrate the employees in the overall process. The adaptation model is actually a new approach and recommendation for managers for dealing with stress when the changes are implemented. Methodology. For this purpose, the data presented, in fact, were collected through a questionnaire that was submitted to 61 respondents/ managers. The data were measured using the Likert scale from 1 to 7. Namely, with the help of the Likert scale, quantification of stress was made in relation to the various variables that were identified as the most important for the researched issues. An adaption model (new approach for amortizing changes was created using the DIA Diagram application, to show the relations between manager and the relevant amortization approaches.

  13. Adaptive response and split-dose effect of radiation on the survival ...

    Indian Academy of Sciences (India)

    Unknown

    The findings have been discussed from a mechanistic point of view. The possible biological implications, potential medical benefits, uncertainties and controversies related to adaptive response have also been addressed. [Tiku A B and Kale R K 2004 Adaptive response and split-dose effect of radiation on the survival of ...

  14. SRADLIB: A C Library for Solar Radiation Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui, J. L. [Ciemat. Madrid (Spain)

    2000-07-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As results of this study and revision, a C library (SRADLIB) is presented as a key for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs.

  15. Radiation, Ecology and the Invalid LNT Model: The Evolutionary Imperative

    OpenAIRE

    Parsons, Peter A.

    2006-01-01

    Metabolic and energetic efficiency, and hence fitness of organisms to survive, should be maximal in their habitats. This tenet of evolutionary biology invalidates the linear-nothreshold (LNT) model for the risk consequences of environmental agents. Hormesis in response to selection for maximum metabolic and energetic efficiency, or minimum metabolic imbalance, to adapt to a stressed world dominated by oxidative stress should therefore be universal. Radiation hormetic zones extending substanti...

  16. Adaptive radiation image enhancement based on different image quality evaluation standards

    International Nuclear Information System (INIS)

    Guo Xiaojing; Wu Zhifang

    2012-01-01

    Genetic algorithm based on incomplete Beta function was realized, and adaptive gray transform based on the said genetic algorithm was implemented, based as such, three image quality evaluation standards were applied in the adaptive gray transform of radiation images, and effects of processing time, stability, generation number and so on of the three standards were compared. The better algorithm scheme was applied in image processing module of container DR/CT inspection system to obtain effective adaptive image enhancement. (authors)

  17. Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches

    OpenAIRE

    Hendry, Andrew P; Grant, Peter R; Rosemary Grant, B; Ford, Hugh A; Brewer, Mark J; Podos, Jeffrey

    2006-01-01

    Adaptive radiation is facilitated by a rugged adaptive landscape, where fitness peaks correspond to trait values that enhance the use of distinct resources. Different species are thought to occupy the different peaks, with hybrids falling into low-fitness valleys between them. We hypothesize that human activities can smooth adaptive landscapes, increase hybrid fitness and hamper evolutionary diversification. We investigated this possibility by analysing beak size data for 1755 Geospiza fortis...

  18. Radiation, ecology and the invalid LNT model: the evolutionary imperative.

    Science.gov (United States)

    Parsons, Peter A

    2006-09-27

    Metabolic and energetic efficiency, and hence fitness of organisms to survive, should be maximal in their habitats. This tenet of evolutionary biology invalidates the linear-no threshold (LNT) model for the risk consequences of environmental agents. Hormesis in response to selection for maximum metabolic and energetic efficiency, or minimum metabolic imbalance, to adapt to a stressed world dominated by oxidative stress should therefore be universal. Radiation hormetic zones extending substantially beyond common background levels, can be explained by metabolic interactions among multiple abiotic stresses. Demographic and experimental data are mainly in accord with this expectation. Therefore, non-linearity becomes the primary model for assessing risks from low-dose ionizing radiation. This is the evolutionary imperative upon which risk assessment for radiation should be based.

  19. Niche evolution and adaptive radiation: Testing the order of trait divergence

    Science.gov (United States)

    Ackerly, D.D.; Schwilk, D.W.; Webb, C.O.

    2006-01-01

    In the course of an adaptive radiation, the evolution of niche parameters is of particular interest for understanding modes of speciation and the consequences for coexistence of related species within communities. We pose a general question: In the course of an evolutionary radiation, do traits related to within-community niche differences (?? niche) evolve before or after differentiation of macrohabitat affinity or climatic tolerances (?? niche)? Here we introduce a new test to address this question, based on a modification of the method of independent contrasts. The divergence order test (DOT) is based on the average age of the nodes on a tree, weighted by the absolute magnitude of the contrast at each node for a particular trait. The comparison of these weighted averages reveals whether large divergences for one trait have occurred earlier or later in the course of diversification, relative to a second trait; significance is determined by bootstrapping from maximum-likelihood ancestral state reconstructions. The method is applied to the evolution of Ceanothus, a woody plant group in California, in which co-occurring species exhibit significant differences in a key leaf trait (specific leaf area) associated with contrasting physiological and life history strategies. Co-occurring species differ more for this trait than expected under a null model of community assembly. This ?? niche difference evolved early in the divergence of two major subclades within Ceanothus, whereas climatic distributions (?? niche traits) diversified later within each of the subclades. However, rapid evolution of climate parameters makes inferences of early divergence events highly uncertain, and differentiation of the ?? niche might have taken place throughout the evolution of the group, without leaving a clear phylogenetic signal. Similar patterns observed in several plant and animal groups suggest that early divergence of ?? niche traits might be a common feature of niche evolution in

  20. The dynamic radiation environment assimilation model (DREAM)

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Tokar, Robert L [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory; Friedel, Reiner H [Los Alamos National Laboratory

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  1. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  2. Model reference adaptive control and adaptive stability augmentation

    DEFF Research Database (Denmark)

    Henningsen, Arne; Ravn, Ole

    1993-01-01

    A comparison of the standard concepts in MRAC design suggests that a combination of the implicit and the explicit design techniques may lead to an improvement of the overall system performance in the presence of unmodelled dynamics. Using the ideas of adaptive stability augmentation a combined...

  3. Adaptive thermal modeling of Li-ion batteries

    International Nuclear Information System (INIS)

    Shadman Rad, M.; Danilov, D.L.; Baghalha, M.; Kazemeini, M.; Notten, P.H.L.

    2013-01-01

    Highlights: • A simple, accurate and adaptive thermal model is proposed for Li-ion batteries. • Equilibrium voltages, overpotentials and entropy changes are quantified from experimental results. • Entropy changes are highly dependent on the battery State-of-Charge. • Good agreement between simulated and measured heat development is obtained under all conditions. • Radiation contributes to about 50% of heat dissipation at elevated temperatures. -- Abstract: An accurate thermal model to predict the heat generation in rechargeable batteries is an essential tool for advanced thermal management in high power applications, such as electric vehicles. For such applications, the battery materials’ details and cell design are normally not provided. In this work a simple, though accurate, thermal model for batteries has been developed, considering the temperature- and current-dependent overpotential heat generation and State-of-Charge dependent entropy contributions. High power rechargeable Li-ion (7.5 Ah) batteries have been experimentally investigated and the results are used for model verification. It is shown that the State-of-Charge dependent entropy is a significant heat source and is therefore essential to correctly predict the thermal behavior of Li-ion batteries under a wide variety of operating conditions. An adaptive model is introduced to obtain these entropy values. A temperature-dependent equation for heat transfer to the environment is also taken into account. Good agreement between the simulations and measurements is obtained in all cases. The parameters for both the heat generation and heat transfer processes can be applied to the thermal design of advanced battery packs. The proposed methodology is generic and independent on the cell chemistry and battery design. The parameters for the adaptive model can be determined by performing simple cell potential/current and temperature measurements for a limited number of charge/discharge cycles

  4. Modelling of ground-level UV radiation

    Science.gov (United States)

    Koepke, P.; Schwander, H.; Thomalla, E.

    1996-06-01

    A number of modifications were made on the STAR radiation transmission model for greater ease of use while keeping its fault liability low. The improvements concern the entire aerosol description function of the model, the option of radiation calculation for different receiver geometries, the option of switching off temperature-dependent ozone absorption, and simplications of the STAR menu. The assets of using STAR are documented in the studies on the accuracy of the radiation transmission model. One of these studies gives a detailed comparison of the present model with a simple radiation model which reveals the limitations of approximation models. The other examines the error margin of radiation transmission models as a function of the input parameters available. It was found here that errors can be expected to range between 5 and 15% depending on the quality of the input data sets. A comparative study on the values obtained by measurement and through the model proved this judgement correct, the relative errors lying within the predicted range. Attached to this final report is a comprehensive sensitivity study which quantifies the action of various atmospheric parameters relevant to UV radiation, thus contributing to an elucidation of the process.

  5. Determining appropriate timing of adaptive radiation therapy for nasopharyngeal carcinoma during intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Huang, Huixian; Lu, Heming; Feng, Guosheng; Jiang, Hailan; Chen, Jiaxin; Cheng, Jinjian; Pang, Qiang; Lu, Zhiping; Gu, Junzhao; Peng, Luxing; Deng, Shan; Mo, Ying; Wu, Danling; Wei, Yinglin

    2015-01-01

    To determine appropriate timing of an adaptive radiation therapy (ART) replan by evaluating anatomic and dosimetric changes of target volumes and organs at risk (OARs) during intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma (NPC). Nineteen NPC patients were recruited. Each patient had repeat computed tomography (CT) scans after each five fractions and at treatment completion. Automatic re-contouring the targets and OARs by using deformable registration algorithm was conducted through CT-CT fusion. Anatomic changes were assessed by comparing the initial CT and repeated CT. Hybrid plans with re-contouring were generated and the dose-volume histograms (DVH) of the hybrid plan and the original plan were compared. Progressive volume reductions in gross target volume for primary disease (GTVnx), gross target volume for involved lymph nodes (GTVnd), and parotids were observed over time. Comparing with the original plan, each hybrid plan had no significant difference in homogeneity index (HI) for all the targets. Some parameters for planning target volumes for primary disease and high-risk clinical target volume (PTVnx and PTV1, respectively) improved significantly, notably starting from the 10th fraction. These parameters included mean dose (Dmean), dose to 95 % of the volume (D95), percentage of the volume receiving 95 % of the prescription dose (V95), and conformity index (CI) for PTVnx, and Dmean, D95, and CI for PTV1. The dosimetric parameters for PTVnd remained the same in general except for D95 and V95 which had significant improvement at specific time points; whereas for PTV2, similar trend of dosimetric changes was also observed. Dose to some OARs increased significantly at some time points. There were significant anatomic and dosimetric changes in the targets and OARs. The target dose coverage in the hybrid plans did not get worse, but overdose occurred in some critical structures. Significant dosimetric changes should be considered as a

  6. Parasites contribute to ecologically dependent postmating isolation in the adaptive radiation of three-spined stickleback.

    Science.gov (United States)

    El Nagar, Aliya; MacColl, Andrew D C

    2016-08-17

    Spatial variation in parasitic infections is common, and has the potential to drive population divergence and the reproductive isolation of hosts. However, despite support from theory and model laboratory systems, little strong evidence has been forthcoming from the wild. Here, we show that parasites are likely to cause reproductive isolation in the adaptive radiation of three-spined stickleback. Adjacent wild populations on the Scottish island of North Uist differ greatly and consistently in the occurrence of different parasites that have substantial effects on fitness. Laboratory-reared fish are more resistant to experimental infection by parasite species from their own population. Furthermore, hybrid backcrosses between the host populations are more resistant to parasites from the parental population to which they are more closely related. These patterns provide strong evidence that parasites can cause ecological speciation, by contributing to selection against migrants and ecologically dependent postmating isolation. © 2016 The Author(s).

  7. Data-Adaptable Modeling and Optimization for Runtime Adaptable Systems

    Science.gov (United States)

    2016-06-08

    MONITOR’S REPORT NUMBER(S) 16. SECURITY CLASSIFICATION OF: 19b. TELEPHONE NUMBER (Include area code) The public reporting burden for this collection...often encounter situations in which it is unable to retrieve video or GPS data in remote areas . A data-adaptable approach should enable such an...Farrell, M. Okincha, M. Parmar, and B. Wandell, “Using visible SNR (vSNR) to compare the image quality of pixel binning and digital resizing ,” In Proc

  8. Modeling Adaptable Business Service for Enterprise Collaboration

    Science.gov (United States)

    Boukadi, Khouloud; Vincent, Lucien; Burlat, Patrick

    Nowadays, a Service Oriented Architecture (SOA) seems to be one of the most promising paradigms for leveraging enterprise information systems. SOA creates opportunities for enterprises to provide value added service tailored for on demand enterprise collaboration. With the emergence and rapid development of Web services technologies, SOA is being paid increasing attention and has become widespread. In spite of the popularity of SOA, a standardized framework for modeling and implementing business services are still in progress. For the purpose of supporting these service-oriented solutions, we adopt a model driven development approach. This paper outlines the Contextual Service Oriented Modeling and Analysis (CSOMA) methodology and presents UML profiles for the PIM level service-oriented architectural modeling, as well as its corresponding meta-models. The proposed PIM (Platform Independent Model) describes the business SOA at a high level of abstraction regardless of techniques involved in the application employment. In addition, all essential service-specific concerns required for delivering quality and context-aware service are covered. Some of the advantages of this approach are that it is generic and thus not closely allied with Web service technology as well as specifically treating the service adaptability during the design stage.

  9. European upper mantle tomography: adaptively parameterized models

    Science.gov (United States)

    Schäfer, J.; Boschi, L.

    2009-04-01

    We have devised a new algorithm for upper-mantle surface-wave tomography based on adaptive parameterization: i.e. the size of each parameterization pixel depends on the local density of seismic data coverage. The advantage in using this kind of parameterization is that a high resolution can be achieved in regions with dense data coverage while a lower (and cheaper) resolution is kept in regions with low coverage. This way, parameterization is everywhere optimal, both in terms of its computational cost, and of model resolution. This is especially important for data sets with inhomogenous data coverage, as it is usually the case for global seismic databases. The data set we use has an especially good coverage around Switzerland and over central Europe. We focus on periods from 35s to 150s. The final goal of the project is to determine a new model of seismic velocities for the upper mantle underlying Europe and the Mediterranean Basin, of resolution higher than what is currently found in the literature. Our inversions involve regularization via norm and roughness minimization, and this in turn requires that discrete norm and roughness operators associated with our adaptive grid be precisely defined. The discretization of the roughness damping operator in the case of adaptive parameterizations is not as trivial as it is for the uniform ones; important complications arise from the significant lateral variations in the size of pixels. We chose to first define the roughness operator in a spherical harmonic framework, and subsequently translate it to discrete pixels via a linear transformation. Since the smallest pixels we allow in our parameterization have a size of 0.625 °, the spherical-harmonic roughness operator has to be defined up to harmonic degree 899, corresponding to 810.000 harmonic coefficients. This results in considerable computational costs: we conduct the harmonic-pixel transformations on a small Beowulf cluster. We validate our implementation of adaptive

  10. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    Air temperature of monthly mean minimum temperature, maximum temperature and relative humidity obtained from Nigerian Meteorological Agency (NIMET) were used as inputs to the ANFIS model and monthly mean global solar radiation was used as out of the model. Statistical evaluation of the model was done based on ...

  11. Handbook of anatomical models for radiation dosimetry

    CERN Document Server

    Eckerman, Keith F

    2010-01-01

    Covering the history of human model development, this title presents the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. It explores how these models have evolved and the role that modern technologies have played in this development.

  12. Combined Radiation Belt - Plasma Sheet System Modeling

    Science.gov (United States)

    Aseev, Nikita; Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander; Zhu, Hui

    2017-04-01

    Recent years have given rise to numerous mathematical models of the Earth's radiation belt dynamics. Driven by observations at geosynchronous orbit (GEO) where satellites (e.g. GOES and LANL) provide extensive in-situ measurements, radiation belt models usually take into account only diffusion processes in the energetic electron belts (100 keV and greater), leaving aside the dynamics of colder source population (tens of keV). Such models are able to reconstruct the radiation belt state, but they are not capable of predicting the electron dynamics at GEO, where many communication and navigation satellites currently operate. In this work we present combined four-dimensional electron radiation belt - plasma sheet model accounting for adiabatic advective transport, radial diffusion due to interaction with ULF waves, local acceleration of electrons, scattering into the atmosphere, magnetopause shadowing, and adiabatic effects due to contraction and expansion of the magnetic field. The developed model is applicable to energetic, relativistic and ultrarelativistic electrons as well as to source electron population. The model provides spatial particle distribution allowing us to compare and validate the model with multiple satellite measurements at different MLT sectors (e.g. Van Allen Probes, GOES, LANL, THEMIS). The model can be helpful for the prediction of crucial for satellite operators geosynchronous electron fluxes and electron radiation belt dynamics including the heart of the outer belt, slot region and inner belt.

  13. Spatially adaptive radiation-hydrodynamical simulations of galaxy formation during cosmological reionization

    Science.gov (United States)

    Pawlik, Andreas H.; Schaye, Joop; Dalla Vecchia, Claudio

    2015-08-01

    We present a suite of cosmological radiation-hydrodynamical simulations of the assembly of galaxies driving the reionization of the intergalactic medium (IGM) at z ≳ 6. The simulations account for the hydrodynamical feedback from photoionization heating and the explosion of massive stars as supernovae (SNe). Our reference simulation, which was carried out in a box of size 25 h-1 comovingMpc using 2 × 5123 particles, produces a reasonable reionization history and matches the observed UV luminosity function of galaxies. Simulations with different box sizes and resolutions are used to investigate numerical convergence, and simulations in which either SNe or photoionization heating or both are turned off, are used to investigate the role of feedback from star formation. Ionizing radiation is treated using accurate radiative transfer at the high spatially adaptive resolution at which the hydrodynamics is carried out. SN feedback strongly reduces the star formation rates (SFRs) over nearly the full mass range of simulated galaxies and is required to yield SFRs in agreement with observations. Photoheating helps to suppress star formation in low-mass galaxies, but its impact on the cosmic SFR is small. Because the effect of photoheating is masked by the strong SN feedback, it does not imprint a signature on the UV galaxy luminosity function, although we note that our resolution is insufficient to model star-forming minihaloes cooling through molecular hydrogen transitions. Photoheating does provide a strong positive feedback on reionization because it smooths density fluctuations in the IGM, which lowers the IGM recombination rate substantially. Our simulations demonstrate a tight non-linear coupling of galaxy formation and reionization, motivating the need for the accurate and simultaneous inclusion of photoheating and SN feedback in models of the early Universe.

  14. The NIAID Radiation Countermeasures Program business model.

    Science.gov (United States)

    Hafer, Nathaniel; Maidment, Bert W; Hatchett, Richard J

    2010-12-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Radiation/Nuclear Medical Countermeasures Development Program has developed an integrated approach to providing the resources and expertise required for the research, discovery, and development of radiation/nuclear medical countermeasures (MCMs). These resources and services lower the opportunity costs and reduce the barriers to entry for companies interested in working in this area and accelerate translational progress by providing goal-oriented stewardship of promising projects. In many ways, the radiation countermeasures program functions as a "virtual pharmaceutical firm," coordinating the early and mid-stage development of a wide array of radiation/nuclear MCMs. This commentary describes the radiation countermeasures program and discusses a novel business model that has facilitated product development partnerships between the federal government and academic investigators and biopharmaceutical companies.

  15. Simulation of photosynthetically active radiation distribution in algal photobioreactors using a multidimensional spectral radiation model.

    Science.gov (United States)

    Kong, Bo; Vigil, R Dennis

    2014-04-01

    A numerical method for simulating the spectral light distribution in algal photobioreactors is developed by adapting the discrete ordinate method for solving the radiative transport equation. The technique, which was developed for two and three spatial dimensions, provides a detailed accounting for light absorption and scattering by algae in the culture medium. In particular, the optical properties of the algal cells and the radiative properties of the turbid culture medium were calculated using a method based on Mie theory and that makes use of information concerning algal pigmentation, shape, and size distribution. The model was validated using a small cylindrical bioreactor, and subsequently simulations were carried out for an annular photobioreactor configuration. It is shown that even in this relatively simple geometry, nontrivial photon flux distributions arise that cannot be predicted by one-dimensional models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Adaptation of vacuum-assisted mouthpiece head immobilization system for precision infant brain radiation therapy.

    Science.gov (United States)

    Wong, Kenneth; Cheng, Justine; Bowlin, Kristine; Olch, Arthur

    Our purpose was to describe an adaptation of a commercially available mouthpiece for vacuum-assisted mouthpiece immobilization for radiation therapy in infants. An infant diagnosed with a brain tumor required radiation therapy. After reviewing dental literature about obturators, we designed a modification for the smallest commercially available mouthpiece tray. The patient was simulated with the adapted mouthpiece tray. We achieved excellent immobilization and had small daily image guided treatment position shifts. Our patient tolerated treatment well without injury to oral cavity or mucosa. Head immobilization with a vacuum-assisted modified mouthpiece has not been described in infants. Our modification is a novel and safe and permits effective and accurate immobilization for infants for radiation therapy. New manufacturing technologies may allow creation of individualized mouthpieces. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  17. Integration of on-line imaging, plan adaptation and radiation delivery: proof of concept using digital tomosynthesis

    International Nuclear Information System (INIS)

    Mestrovic, Ante; Otto, Karl; Nichol, Alan; Clark, Brenda G

    2009-01-01

    The main objective of this manuscript is to propose a new approach to on-line adaptive radiation therapy (ART) in which daily image acquisition, plan adaptation and radiation delivery are integrated together and performed concurrently. A method is described in which on-line ART is performed based on intra-fractional digital tomosynthesis (DTS) images. Intra-fractional DTS images were reconstructed as the gantry rotated between treatment positions. An edge detection algorithm was used to automatically segment the DTS images as the gantry arrived at each treatment position. At each treatment position, radiation was delivered based on the treatment plan re-optimized for the most recent DTS image contours. To investigate the feasibility of this method, a model representing a typical prostate, bladder and rectum was used. To simulate prostate deformations, three clinically relevant, non-rigid deformations (small, medium and large) were modeled by systematically deforming the original anatomy. Using our approach to on-line ART, the original treatment plan was successfully adapted to arrive at a clinically acceptable plan for all three non-rigid deformations. In conclusion, we have proposed a new approach to on-line ART in which plan adaptation is performed based on intra-fractional DTS images. The study findings indicate that this approach can be used to re-optimize the original treatment plan to account for non-rigid anatomical deformations. The advantages of this approach are 1) image acquisition and radiation delivery are integrated in a single gantry rotation around the patient, reducing the treatment time, and 2) intra-fractional DTS images can be used to detect and correct for patient motion prior to the delivery of each beam (intra-fractional patient motion).

  18. Genome hypermethylation in Pinus silvestris of Chernobyl - a mechanism for radiation adaptation?

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, Olga; Burke, Paula; Arkhipov, Andrey; Kuchma, Nikolaj; James, S. Jill; Kovalchuk, Igor; Pogribny, Igor

    2003-08-28

    Adaptation is a complex process by which populations of organisms respond to long-term environmental stresses by permanent genetic change. Here we present data from the natural 'open-field' radiation adaptation experiment after the Chernobyl accident and provide the first evidence of the involvement of epigenetic changes in adaptation of a eukaryote-Scots pine (Pinus silvestris), to chronic radiation exposure. We have evaluated global genome methylation of control and radiation-exposed pine trees using a method based on cleavage by a methylation-sensitive HpaII restriction endonuclease that leaves a 5' guanine overhang and subsequent single nucleotide extension with labeled [{sup 3}H] dCTP. We have found that genomic DNA of exposed pine trees was considerably hypermethylated. Moreover, hypermethylation appeared to be dependent upon the radiation dose absorbed by the trees. Such hypermethylation may be viewed as a defense strategy of plants that prevents genome instability and reshuffling of the hereditary material, allowing survival in an extreme environment. Further studies are clearly needed to analyze in detail the involvement of DNA methylation and other epigenetic mechanisms in the complex process of radiation stress and adaptive response.

  19. Diversification rates indicate an early role of adaptive radiations at the origin of modern echinoid fauna.

    Directory of Open Access Journals (Sweden)

    Simon Boivin

    Full Text Available Evolutionary radiations are fascinating phenomena corresponding to a dramatic diversification of taxa and a burst of cladogenesis over short periods of time. Most evolutionary radiations have long been regarded as adaptive but this has seldom been demonstrated with large-scale comparative datasets including fossil data. Originating in the Early Jurassic, irregular echinoids are emblematic of the spectacular diversification of mobile marine faunas during the Mesozoic Marine Revolution. They diversified as they colonized various habitats, and now constitute the main component of echinoid fauna in modern seas. The evolutionary radiation of irregular echinoids has long been considered as adaptive but this hypothesis has never been tested. In the present work we analyze the evolution of echinoid species richness and morphological disparity over 37 million years based on an extensive fossil dataset. Our results demonstrate that morphological and functional diversifications in certain clades of irregular echinoids were exceptionally high compared to other clades and that they were associated with the evolution of new modes of life and so can be defined as adaptive radiations. The role played by ecological opportunities in the diversification of these clades was critical, with the evolution of the infaunal mode of life promoting the adaptive radiation of irregular echinoids.

  20. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers

    Science.gov (United States)

    Tokita, Masayoshi; Yano, Wataru; James, Helen F.

    2017-01-01

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994122

  1. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers.

    Science.gov (United States)

    Tokita, Masayoshi; Yano, Wataru; James, Helen F; Abzhanov, Arhat

    2017-02-05

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Authors.

  2. Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation.

    Science.gov (United States)

    Cicconardi, Francesco; Marcatili, Paolo; Arthofer, Wolfgang; Schlick-Steiner, Birgit C; Steiner, Florian M

    2017-07-01

    The growing genomic information on non-model organisms eases exploring the evolutionary history of biodiversity. This is particularly true for Drosophila flies, in which the number of sequenced species doubled recently. Because of its outstanding diversity of species, Drosophila has become one of the most important systems to study adaptive radiation. In this study, we performed a genome-wide analysis of positive diversifying selection on more than 2000 single-copy orthologous groups in 25 species using a recent method of increased accuracy for detecting positive diversifying selection. Adopting this novel approach enabled us to find a consistent selection signal throughout the genus Drosophila, and a total of 1342 single-copy orthologous groups were identified with a putative signal of positive diversifying selection, corresponding to 1.9% of all loci. Specifically, in lineages leading to D. grimshawi, a strong putative signal of positive diversifying selection was found related to cell, morphological, neuronal, and sensorial development and function. A recurrent signal of positive diversifying selection was found on genes related to aging and lifespan, suggesting that selection had shaped lifespan diversity in Drosophila, including extreme longevity. Our study, one of the largest and most comprehensive ones on genome-wide positive diversifying selection to date, shows that positive diversifying selection has promoted species-specific differentiation among evolutionary lineages throughout the Drosophila radiation. Acting on the same biological processes via different routes, positive diversifying selection has promoted diversity of functions and adaptive divergence. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Goal based mesh adaptivity for fixed source radiation transport calculations

    International Nuclear Information System (INIS)

    Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.S.; Goffin, M.A.; Merton, S.R.; Warner, P.

    2013-01-01

    Highlights: ► Derives an anisotropic goal based error measure for shielding problems. ► Reduces the error in the detector response by optimizing the finite element mesh. ► Anisotropic adaptivity captures material interfaces using fewer elements than AMR. ► A new residual based on the numerical scheme chosen forms the error measure. ► The error measure also combines the forward and adjoint metrics in a novel way. - Abstract: In this paper, the application of goal based error measures for anisotropic adaptivity applied to shielding problems in which a detector is present is explored. Goal based adaptivity is important when the response of a detector is required to ensure that dose limits are adhered to. To achieve this, a dual (adjoint) problem is solved which solves the neutron transport equation in terms of the response variables, in this case the detector response. The methods presented can be applied to general finite element solvers, however, the derivation of the residuals are dependent on the underlying finite element scheme which is also discussed in this paper. Once error metrics for the forward and adjoint solutions have been formed they are combined using a novel approach. The two metrics are combined by forming the minimum ellipsoid that covers both the error metrics rather than taking the maximum ellipsoid that is contained within the metrics. Another novel approach used within this paper is the construction of the residual. The residual, used to form the goal based error metrics, is calculated from the subgrid scale correction which is inherent in the underlying spatial discretisation employed

  4. Automated adaptive inference of phenomenological dynamical models

    Science.gov (United States)

    Daniels, Bryan

    Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.

  5. Prolonged stress induces adaptation of drosophila population to ionizing radiation

    International Nuclear Information System (INIS)

    Mosse, I. B.; Glushkova, I. V.; Aksyutik, T. V.

    2003-01-01

    We studied natural populations of Drosophila melanogaster from radio-contaminated area (Vetka district of Gomel region with 24 Ci/km 2 of 137 Cs and 0.5 Cu/km 2 of 90 Sr) and from Berezynski Natural Reserve as a control area (region of Chernobyl catastrophe). Population samples were caught in 2000-2001 years. Natural insect populations from radio-contaminated areas are more resistant to additional irradiation than control populations. Keeping of natural populations under laboratory or vivarium conditions is a strong stress (limited space, overpopulation, other than in nature temperature and light conditions), which increases mutation process and induces unspecific adaptation. (authors)

  6. The possible role of chromatin conformation changes in adaptive responses to ionizing radiation

    International Nuclear Information System (INIS)

    Ekhtiar, A.; Ammer, A.; Jbawi, A.; Othman, A.

    2012-05-01

    Organisms are affected by different DNA damaging agents naturally present in the environment or released as a result of human activity. Many defense mechanisms have evolved in organisms to minimize genotoxic damage. One of them is induced radioresistance or adaptive response. The adaptive response could be considered as a nonspecific phenomenon in which exposure to minimal stress could result in increased resistance to higher levels of the same or to other types of stress some hours later. A better understanding of the molecular mechanism underlying the adaptive response may lead to an improvement of cancer treatment, risk assessment and risk management strategies, radiation protection. The aim of current study was to study the possible role of chromatin conformation changes induced by ionizing radiation on the adaptive responses in human lymphocyte. For this aim the chromatin conformation have been studied in human lymphocytes from three non-smoking and three smoking healthy volunteers prior, and after espouser to gamma radiation (adaptive dose 0.1 Gy, challenge dose 1.5 Gy and adaptive + dose challenge). Chromosomal aberrations and micronucleus have been used as end point to study radio cytotoxicity and adaptive response. Our results indicated individual differences in radio adaptive response and the level of this response was dependent of chromatin de condensation induced by a adaptive small dose.The results showed that different dose of gamma rays induce a chromatin de condensation in human lymphocyte. The maximum chromatin relaxation were record when lymphocyte exposed to adaptive dose (0.1 Gy.). Results also showed that Adaptive dose have affected on the induction of challenge dose (1.5 Gy) of chromosome aberration and micronucleus . The comparison of results of chromatin de condensation induction as measured by flow cytometry and cytogenetic damages measured by chromosomal aberrations or micronucleus, was showed a proportionality of adaptive response with

  7. Replanning Criteria and Timing Definition for Parotid Protection-Based Adaptive Radiation Therapy in Nasopharyngeal Carcinoma

    Directory of Open Access Journals (Sweden)

    Wei-Rong Yao

    2015-01-01

    Full Text Available The goal of this study was to evaluate real-time volumetric and dosimetric changes of the parotid gland so as to determine replanning criteria and timing for parotid protection-based adaptive radiation therapy in nasopharyngeal carcinoma. Fifty NPC patients were treated with helical tomotherapy; volumetric and dosimetric (Dmean, V1, and D50 changes of the parotid gland at the 1st, 6th, 11th, 16th, 21st, 26th, 31st, and 33rd fractions were evaluated. The clinical parameters affecting these changes were studied by analyses of variance methods for repeated measures. Factors influencing the actual parotid dose were analyzed by a multivariate logistic regression model. The cut-off values predicting parotid overdose were developed from receiver operating characteristic curves and judged by combining them with a diagnostic test consistency check. The median absolute value and percentage of parotid volume reduction were 19.51 cm3 and 35%, respectively. The interweekly parotid volume varied significantly (p<0.05. The parotid Dmean, V1, and D50 increased by 22.13%, 39.42%, and 48.45%, respectively. The actual parotid dose increased by an average of 11.38% at the end of radiation therapy. Initial parotid volume, initial parotid Dmean, and weight loss rate are valuable indicators for parotid protection-based replanning.

  8. Radiation budget measurement/model interface

    Science.gov (United States)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  9. Adaptation of an empirical model for erythemal ultraviolet irradiance

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    2007-07-01

    Full Text Available In this work we adapt an empirical model to estimate ultraviolet erythemal irradiance (UVER using experimental measurements carried out at seven stations in Spain during four years (2000–2003. The measurements were taken in the framework of the Spanish UVB radiometric network operated and maintained by the Spanish Meteorological Institute. The UVER observations are recorded as half hour average values. The model is valid for all-sky conditions, estimating UVER from the ozone columnar content and parameters usually registered in radiometric networks, such as global broadband hemispherical transmittance and optical air mass. One data set was used to develop the model and another independent set was used to validate it. The model provides satisfactory results, with low mean bias error (MBE for all stations. In fact, MBEs are less than 4% and root mean square errors (RMSE are below 18% (except for one location. The model has also been evaluated to estimate the UV index. The percentage of cases with differences of 0 UVI units is in the range of 61.1% to 72.0%, while the percentage of cases with differences of ±1 UVI unit covers the range of 95.6% to 99.2%. This result confirms the applicability of the model to estimate UVER irradiance and the UV index at those locations in the Iberian Peninsula where there are no UV radiation measurements.

  10. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  11. Dynamic Radiation Environment Assimilation Model: DREAM

    Science.gov (United States)

    Reeves, G. D.; Chen, Y.; Cunningham, G. S.; Friedel, R. W. H.; Henderson, M. G.; Jordanova, V. K.; Koller, J.; Morley, S. K.; Thomsen, M. F.; Zaharia, S.

    2012-03-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) was developed to provide accurate, global specification of the Earth's radiation belts and to better understand the physical processes that control radiation belt structure and dynamics. DREAM is designed using a modular software approach in order to provide a computational framework that makes it easy to change components such as the global magnetic field model, radiation belt dynamics model, boundary conditions, etc. This paper provides a broad overview of the DREAM model and a summary of some of the principal results to date. We describe the structure of the DREAM model, describe the five major components, and illustrate the various options that are available for each component. We discuss how the data assimilation is performed and the data preprocessing and postprocessing that are required for producing the final DREAM outputs. We describe how we apply global magnetic field models for conversion between flux and phase space density and, in particular, the benefits of using a self-consistent, coupled ring current-magnetic field model. We discuss some of the results from DREAM including testing of boundary condition assumptions and effects of adding a source term to radial diffusion models. We also describe some of the testing and validation of DREAM and prospects for future development.

  12. The RAdiation transfer Model Intercomparison (RAMI) Exercise

    Science.gov (United States)

    Pinty, B.; Widlowski, J.-L.; Gobron, N.; Verstraete, M. M.; Taberner, M.; Rami-Participants, .

    2003-04-01

    The community involved in modeling radiation transfer over terrestrial surfaces has implemented the RAdiation transfer Model Intercomparison (RAMI) exercise. This benchmarking activity parallels a similar activity in the cloud radiation field known as I3RC. The purpose for such a model intercomparison is to provide benchmark cases and solutions which will be useful in the development and testing of models. The intercomparison exercise can also help to simply identify existing models and their respective regimes of applicability. The detailed RAMI Protocol has been designed as a series of precisely defined conditions under which the various models should be executed. These have been selected to represent a broad set of well-defined remote sensing problems for which the problem solutions can be easily compared. Specifically, two major series of experiments are currently scheduled: one for so-called homogeneous canopies, and the other for heterogeneous ones. In either case, the scene to be simulated is precisely described, and model results have been seeked for a limited number of conditions, such as two spectral wavelengths or a small number of radiation scattering conditions. This presentation will provide a general overview of RAMI and outline the results obtained during phase 2 which has just been completed.

  13. Radiation transfer model intercomparison (RAMI) exercise

    Science.gov (United States)

    Pinty, Bernard; Gobron, Nadine; Widlowski, Jean-Luc; Gerstl, Sigfried A. W.; Verstraete, Michel M.; Antunes, Mauro; Bacour, CéDric; Gascon, Ferran; Gastellu, Jean-Philippe; Goel, Narendra; Jacquemoud, StéPhane; North, Peter; Qin, Wenhan; Thompson, Richard

    2001-06-01

    The community involved in modeling radiation transfer over terrestrial surfaces designed and implemented the first phase of a radiation transfer model intercomparison (RAMI) exercise. This paper discusses the rationale and motivation for this endeavor, presents the intercomparison protocol as well as the evaluation procedures, and describes the principal results. Participants were asked to simulate the transfer of radiation for a variety of precisely defined terrestrial environments and illumination conditions. These were abstractions of typical terrestrial systems and included both homogeneous and heterogeneous scenes. The differences between the results generated by eight different models, including both one-dimensional and three-dimensional approaches, were then documented and analyzed. RAMI proposed a protocol to quantitatively assess the consequences of the model discrepancies with respect to application, such as those motivating the development of physically based inversion procedures. This first phase of model intercomparison has already proved useful in assessing the ability of the modeling community to generate similar radiation fields despite the large panoply of models that were tested. A detailed analysis of the results also permitted to identify apparent "outliers" and their main deficiencies. Future undertakings in this intercomparison framework must be oriented toward an expansion of RAMI into other and more complex geophysical systems as well as the focusing on actual inverse problems.

  14. Adaptive response and split-dose effect of radiation on the survival ...

    Indian Academy of Sciences (India)

    Unknown

    Although the importance of radiation-induced adaptive response has been recognized in human health, risk assessment and clinical application, the phenomenon has not been understood well in terms of survival of ani- mals. To examine this aspect Swiss albino mice were irradiated with different doses (2–10 Gy) at 0⋅015 ...

  15. Disentangling adaptive evolutionary radiations and the role of diet in promoting diversification on islands

    Science.gov (United States)

    DeMiguel, Daniel

    2016-01-01

    Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil data, rigorous attempts to identify this phenomenon in the fossil record are largely uncommon. Here I focus on direct evidence of the diet (through tooth-wear patterns) and ecologically-relevant traits of one of the most renowned fossil vertebrates-the Miocene ruminant Hoplitomeryx from the island of Gargano-to deepen our understanding of the most likely causal forces under which adaptive radiations emerge on islands. Results show how accelerated accumulation of species and early-bursts of ecological diversification occur after invading an island, and provide insights on the interplay between diet and demographic (population-density), ecological (competition/food requirements) and abiotic (climate-instability) factors, identified as drivers of adaptive diversification. A pronounced event of overpopulation and a phase of aridity determined most of the rate and magnitude of radiation, and pushed species to expand diets from soft-leafy foods to tougher-harder items. Unexpectedly, results show that herbivorous mammals are restricted to browsing habits on small-islands, even if bursts of ecological diversification and dietary divergence occur. This study deepens our understanding of the mechanisms promoting adaptive radiations, and forces us to reevaluate the role of diet in the origins and evolution of islands mammals. PMID:27405690

  16. Adaptive response and split-dose effect of radiation on the survival ...

    Indian Academy of Sciences (India)

    Although the importance of radiation-induced adaptive response has been recognized in human health, risk assessment and clinical application, the phenomenon has not been understood well in terms of survival of animals. To examine this aspect Swiss albino mice were irradiated with different doses (2–10 Gy) at 0.015 ...

  17. Radiation budget measurement/model interface research

    Science.gov (United States)

    Vonderhaar, T. H.

    1981-01-01

    The NIMBUS 6 data were analyzed to form an up to date climatology of the Earth radiation budget as a basis for numerical model definition studies. Global maps depicting infrared emitted flux, net flux and albedo from processed NIMBUS 6 data for July, 1977, are presented. Zonal averages of net radiation flux for April, May, and June and zonal mean emitted flux and net flux for the December to January period are also presented. The development of two models is reported. The first is a statistical dynamical model with vertical and horizontal resolution. The second model is a two level global linear balance model. The results of time integration of the model up to 120 days, to simulate the January circulation, are discussed. Average zonal wind, meridonal wind component, vertical velocity, and moisture budget are among the parameters addressed.

  18. Modeling of environmental adaptation versus pollution mitigation

    OpenAIRE

    YATSENKO, Yuri; HRITONENKO, Natali; BRECHET, Thierry

    2014-01-01

    The paper combines analytic and numeric tools to investigate a nonlinear optimal control problem relevant to the economics of climate change. The problem describes optimal investments into pollution mitigation and environmental adaptation at a macroeconomic level. The steady-state analysis of this problem focuses on the optimal ratio between adaptation and mitigation. In particular, we analytically prove that the long- term investments into adaptation are profitable only for economies above c...

  19. Threshold models in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Hoel, D.G.; Li, P.

    1998-01-01

    Cancer incidence and mortality data from the atomic bomb survivors cohort has been analyzed to allow for the possibility of a threshold dose response. The same dose-response models as used in the original papers were fit to the data. The estimated cancer incidence from the fitted models over-predicted the observed cancer incidence in the lowest exposure group. This is consistent with a threshold or nonlinear dose-response at low-doses. Thresholds were added to the dose-response models and the range of possible thresholds is shown for both solid tumor cancers as well as the different leukemia types. This analysis suggests that the A-bomb cancer incidence data agree more with a threshold or nonlinear dose-response model than a purely linear model although the linear model is statistically equivalent. This observation is not found with the mortality data. For both the incidence data and the mortality data the addition of a threshold term significantly improves the fit to the linear or linear-quadratic dose response for both total leukemias and also for the leukemia subtypes of ALL, AML, and CML

  20. [Benefits of breathing-adapted radiation therapy for breast cancer].

    Science.gov (United States)

    Vourch, S; Miglierini, P; Miranda, O; Malhaire, J-P; Boussion, N; Pradier, O; Schick, U

    2016-02-01

    The purpose of this study was to compare free-breathing radiotherapy, end-expiration gating and end-inspiration gating for left breast cancer, with respect to the target volume coverage and dose to organs at risk. Sixteen patients underwent 3D and 4D simulation CT. For each patient, five dosimetric plans were compared: free breathing, end-inspiration gating, end-expiration gating, and two optimised plans with a 3mm reduction of the posterior field edge to create optimised end-inspiration and end-expiration plans. Dose-volume parameters, including planning target volume coverage and dose to lung, heart and left anterior descending coronary artery were analysed. Planning target volume coverage was adequate and similar in the five dosimetric plans (P=0.49). Significant advantage was found for end-inspiration gating in sparing the ipsilateral lung, heart and left anterior descending coronary artery compared to free-breathing 3D radiotherapy. Optimised end-inspiration was even more favourable than end-inspiration gating (Pradiation therapy allowed for dose reduction to organs at risk (left lung, heart and left anterior descending coronary artery), while keeping the same planning target volume coverage. Therefore it can be considered as an interesting option for left breast cancer radiation treatment. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  1. Model reference adaptive control and adaptive stability augmentation

    DEFF Research Database (Denmark)

    Henningsen, Arne; Ravn, Ole

    1993-01-01

    stability augmented model reference design is proposed. By utilizing the closed-loop control error, a simple auxiliary controller is tuned, using a normalized MIT rule for the parameter adjustment. The MIT adjustment is protected against the effects of unmodelled dynamics by lowpass filtering...

  2. Adaptive radiation of island plants: Evidence from Aeonium (Crassulaceae) of the Canary Islands

    DEFF Research Database (Denmark)

    Jorgensen, T.H.; Olesen, J.M.

    2001-01-01

    The presence of diverse and species-rich plant lineages on oceanic islands is most often associated with adaptive radiation. Here we discuss the possible adaptive significance of some of the most prominent traits in island plants, including woodiness, monocarpy and sexual dimorphisms. Indirect...... evidence that such traits have been acquired through convergent evolution on islands comes from molecular phylogenies; however, direct evidence of their selective value rarely is obtained. The importance of hybridization in the evolution of island plants is also considered as part of a more general...... discussion of the mechanisms governing radiations on islands. Most examples are from the Hawaiian and Canarian floras, and in particular from studies on the morphological, ecological and molecular diversification of the genus Aeonium, the largest plant radiation of the Canarian Islands....

  3. Adaptive response in frogs chronically exposed to low doses of ionizing radiation in the environment

    International Nuclear Information System (INIS)

    Audette-Stuart, M.; Kim, S.B.; McMullin, D.; Festarini, A.; Yankovich, T.L.; Carr, J.; Mulpuru, S.

    2011-01-01

    Using the micronucleus assay, decreased levels of DNA damage were found after high dose ionizing radiation exposure of liver cells taken from frogs inhabiting a natural environment with above-background levels of ionizing radiation, compared to cells taken from frogs inhabiting background areas. The data obtained from a small number of animals suggest that stress present in the above-background environment could induce an adaptive response to ionizing radiation. This study did not reveal harmful effects of exposure to low levels of radioactivity. On the contrary, stress present in the above-background area may serve to enhance cellular defense mechanisms. - Highlights: → Frogs were collected from background and higher tritium level habitats. → The micronucleus assay was conducted on liver cells obtained from the frogs. → No detrimental effects were noted in frogs exposed to elevated tritium. → Adaptive responses were observed in frogs exposed to elevated tritium.

  4. Adaptive response in frogs chronically exposed to low doses of ionizing radiation in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Audette-Stuart, M., E-mail: stuartm@aecl.ca [Environmental Technologies Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1P0 (Canada); Kim, S.B.; McMullin, D.; Festarini, A.; Yankovich, T.L.; Carr, J.; Mulpuru, S. [Environmental Technologies Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1P0 (Canada)

    2011-06-15

    Using the micronucleus assay, decreased levels of DNA damage were found after high dose ionizing radiation exposure of liver cells taken from frogs inhabiting a natural environment with above-background levels of ionizing radiation, compared to cells taken from frogs inhabiting background areas. The data obtained from a small number of animals suggest that stress present in the above-background environment could induce an adaptive response to ionizing radiation. This study did not reveal harmful effects of exposure to low levels of radioactivity. On the contrary, stress present in the above-background area may serve to enhance cellular defense mechanisms. - Highlights: > Frogs were collected from background and higher tritium level habitats. > The micronucleus assay was conducted on liver cells obtained from the frogs. > No detrimental effects were noted in frogs exposed to elevated tritium. > Adaptive responses were observed in frogs exposed to elevated tritium.

  5. Radiative Transport Modelling of Thermal Barrier Coatings

    Science.gov (United States)

    2017-03-24

    derived by Thrane et al from Fresnel-Huygens diffraction theory .5 The Thrane model defines the normalized signal current as a function of integrated...problem is in part application-driven, namely based on the need to be able to extract the radiative properties from the shape the LCI signal . On the...walk model to test model approaches 75 June 2017 4 Apply the theory to experimental data on TBCs 20 June 2017 5 Report on results and future

  6. Regulation Of Nf=kb And Mnsod In Low Dose Radiation Induced Adaptive Protection Of Mouse And Human Skin Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jian Li

    2012-11-07

    A sampling of publications resulting from this grant is provided. One is on the subject of NF-κB-Mediated HER2 Overexpression in Radiation-Adaptive Resistance. Another is on NF-κB-mediated adaptive resistance to ionizing radiation.

  7. Benefits of adaptive radiation therapy in lung cancer as a function of replanning frequency.

    Science.gov (United States)

    Dial, Christian; Weiss, Elisabeth; Siebers, Jeffrey V; Hugo, Geoffrey D

    2016-04-01

    To quantify the potential benefit associated with daily replanning in lung cancer in terms of normal tissue dose sparing and to characterize the tradeoff between adaptive benefit and replanning frequency. A set of synthetic images and contours, derived from weekly active breathing control images of 12 patients who underwent radiation therapy treatment for nonsmall cell lung cancer, is generated for each fraction of treatment using principal component analysis in a way that preserves temporal anatomical trends (e.g., tumor regression). Daily synthetic images and contours are used to simulate four different treatment scenarios: (1) a "no-adapt" scenario that simulates delivery of an initial plan throughout treatment, (2) a "midadapt" scenario that implements a single replan for fraction 18, (3) a "weekly adapt" scenario that simulates weekly adaptations, and (4) a "full-adapt" scenario that simulates daily replanning. An initial intensity modulated radiation therapy plan is created for each patient and replanning is carried out in an automated fashion by reoptimizing beam apertures and weights. Dose is calculated on each image and accumulated to the first in the series using deformable mappings utilized in synthetic image creation for comparison between simulated treatments. Target coverage was maintained and cord tolerance was not exceeded for any of the adaptive simulations. Average reductions in mean lung dose (MLD) and volume of lung receiving 20 Gy or more (V20lung) were 65 ± 49 cGy (p = 0.000 01) and 1.1% ± 1.2% (p = 0.0006), respectively, for all patients. The largest reduction in MLD for a single patient was 162 cGy, which allowed an isotoxic escalation of the target dose of 1668 cGy. Average reductions in cord max dose, mean esophageal dose (MED), dose received by 66% of the heart (D66heart), and dose received by 33% of the heart (D33heart), were 158 ± 280, 117 ± 121, 37 ± 77, and 99 ± 120 cGy, respectively. Average incremental reductions in MLD for

  8. The ADAPT design model : towards instructional control of transfer

    NARCIS (Netherlands)

    Jelsma, Otto; van Merrienboer, Jeroen J.G.; van Merrienboer, J.J.G.; Bijlstra, Jim P.; Bijlstra, J.P.

    1990-01-01

    This paper presents a detailed description of the ADAPT (Apply Delayed Automatization for Positive Transfer) design model. ADAPT is based upon production system models of learning and provides guidelines for developing instructional systems that offer transfer of leamed skills. The model suggests

  9. Measurement and Modeling of Particle Radiation in Coal Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas Jerker

    2014-01-01

    flame. Spectral radiation, total radiative intensity, gas temperature, and gas composition were measured, and the radiative intensity in the furnace was modeled with an axisymmetric cylindrical radiation model using Mie theory for the particle properties and a statistical narrow-band model for the gas...

  10. Parametric modeling and optimization for adaptive architecture

    NARCIS (Netherlands)

    Turrin, M.; Von Buelow, P.; Kilian, A.; Stouffs, R.M.F.

    2011-01-01

    In this paper we address performance oriented design applied to adaptive architecture in order to satisfy the performance requirements for changing contextual conditions. The domain of adaptive architecture is defined and specific focus is given to form-active architecture, in which geometric

  11. Adaptable Authentication Model: Exploring Security with Weaker Attacker Models

    DEFF Research Database (Denmark)

    Ahmed, Naveed; Jensen, Christian D.

    2011-01-01

    Most methods for protocol analysis classify protocols as “broken” if they are vulnerable to attacks from a strong attacker, e.g., assuming the Dolev-Yao attacker model. In many cases, however, exploitation of existing vulnerabilities may not be practical and, moreover, not all applications may......; for each fine level authentication goal, we determine the “least strongest-attacker” for which the authentication goal can be satisfied. We demonstrate that this model can be used to reason about the security of supposedly insecure protocols. Such adaptability is particularly useful in those applications...

  12. Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation.

    Science.gov (United States)

    Burbrink, Frank T; Chen, Xin; Myers, Edward A; Brandley, Matthew C; Pyron, R Alexander

    2012-12-07

    Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification.

  13. Aerosol model selection and uncertainty modelling by adaptive MCMC technique

    Directory of Open Access Journals (Sweden)

    M. Laine

    2008-12-01

    Full Text Available We present a new technique for model selection problem in atmospheric remote sensing. The technique is based on Monte Carlo sampling and it allows model selection, calculation of model posterior probabilities and model averaging in Bayesian way.

    The algorithm developed here is called Adaptive Automatic Reversible Jump Markov chain Monte Carlo method (AARJ. It uses Markov chain Monte Carlo (MCMC technique and its extension called Reversible Jump MCMC. Both of these techniques have been used extensively in statistical parameter estimation problems in wide area of applications since late 1990's. The novel feature in our algorithm is the fact that it is fully automatic and easy to use.

    We show how the AARJ algorithm can be implemented and used for model selection and averaging, and to directly incorporate the model uncertainty. We demonstrate the technique by applying it to the statistical inversion problem of gas profile retrieval of GOMOS instrument on board the ENVISAT satellite. Four simple models are used simultaneously to describe the dependence of the aerosol cross-sections on wavelength. During the AARJ estimation all the models are used and we obtain a probability distribution characterizing how probable each model is. By using model averaging, the uncertainty related to selecting the aerosol model can be taken into account in assessing the uncertainty of the estimates.

  14. Radiation enhanced conduction in insulators: computer modelling

    International Nuclear Information System (INIS)

    Fisher, A.J.

    1986-10-01

    The report describes the implementation of the Klaffky-Rose-Goland-Dienes [Phys. Rev. B.21 3610,1980] model of radiation-enhanced conduction and describes the codes used. The approach is demonstrated for the data for alumina of Pells, Buckley, Hill and Murphy [AERE R.11715, 1985]. (author)

  15. Computer models for optimizing radiation therapy

    International Nuclear Information System (INIS)

    Duechting, W.

    1998-01-01

    The aim of this contribution is to outline how methods of system analysis, control therapy and modelling can be applied to simulate normal and malignant cell growth and to optimize cancer treatment as for instance radiation therapy. Based on biological observations and cell kinetic data, several types of models have been developed describing the growth of tumor spheroids and the cell renewal of normal tissue. The irradiation model is represented by the so-called linear-quadratic model describing the survival fraction as a function of the dose. Based thereon, numerous simulation runs for different treatment schemes can be performed. Thus, it is possible to study the radiation effect on tumor and normal tissue separately. Finally, this method enables a computer-assisted recommendation for an optimal patient-specific treatment schedule prior to clinical therapy. (orig.) [de

  16. p53-dependent adaptive responses in human cells exposed to space radiations.

    Science.gov (United States)

    Takahashi, Akihisa; Su, Xiaoming; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki; Iwasaki, Toshiyasu; Ohnishi, Takeo

    2010-11-15

    It has been reported that priming irradiation or conditioning irradiation with a low dose of X-rays in the range of 0.02-0.1 Gy induces a p53-dependent adaptive response in mammalian cells. The aim of the present study was to clarify the effect of space radiations on the adaptive response. Two human lymphoblastoid cell lines were used; one cell line bears a wild-type p53 (wtp53) gene, and another cell line bears a mutated p53 (mp53) gene. The cells were frozen during transportation on the space shuttle and while in orbit in the International Space Station freezer for 133 days between November 15, 2008 and March 29, 2009. After the frozen samples were returned to Earth, the cells were cultured for 6 h and then exposed to a challenging X-ray-irradiation (2 Gy). Cellular sensitivity, apoptosis, and chromosome aberrations were scored using dye-exclusion assays, Hoechst33342 staining assays, and chromosomal banding techniques, respectively. In cells exposed to space radiations, adaptive responses such as the induction of radioresistance and the depression of radiation-induced apoptosis and chromosome aberrations were observed in wtp53 cells but not in mp53 cells. These results have confirmed the hypothesis that p53-dependent adaptive responses are apparently induced by space radiations within a specific range of low doses. The cells exhibited this effect owing to space radiations exposure, even though the doses in space were very low. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning.

    Science.gov (United States)

    Ghose, Soumya; Holloway, Lois; Lim, Karen; Chan, Philip; Veera, Jacqueline; Vinod, Shalini K; Liney, Gary; Greer, Peter B; Dowling, Jason

    2015-06-01

    Manual contouring and registration for radiotherapy treatment planning and online adaptation for cervical cancer radiation therapy in computed tomography (CT) and magnetic resonance images (MRI) are often necessary. However manual intervention is time consuming and may suffer from inter or intra-rater variability. In recent years a number of computer-guided automatic or semi-automatic segmentation and registration methods have been proposed. Segmentation and registration in CT and MRI for this purpose is a challenging task due to soft tissue deformation, inter-patient shape and appearance variation and anatomical changes over the course of treatment. The objective of this work is to provide a state-of-the-art review of computer-aided methods developed for adaptive treatment planning and radiation therapy planning for cervical cancer radiation therapy. Segmentation and registration methods published with the goal of cervical cancer treatment planning and adaptation have been identified from the literature (PubMed and Google Scholar). A comprehensive description of each method is provided. Similarities and differences of these methods are highlighted and the strengths and weaknesses of these methods are discussed. A discussion about choice of an appropriate method for a given modality is provided. In the reviewed papers a Dice similarity coefficient of around 0.85 along with mean absolute surface distance of 2-4mm for the clinically treated volume were reported for transfer of contours from planning day to the treatment day. Most segmentation and non-rigid registration methods have been primarily designed for adaptive re-planning for the transfer of contours from planning day to the treatment day. The use of shape priors significantly improved segmentation and registration accuracy compared to other models. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The NSSDC trapped radiation model facility

    International Nuclear Information System (INIS)

    Gaffey, J.D. Jr.; Bilitza, D.

    1990-01-01

    The National Space Science Data Center (NSSDC) trapped radiation models calculate the integral and differential electron and proton flux for given values of the particle energy E, drift shell parameter L, and magnetic field strength B for either solar maximum or solar minimum. The most recent versions of the series of models, which have been developed and continuously improved over several decades by Dr. James Vette and coworkers at NSSDC, are AE-8 for electrons and AP-8 for protons. The present status of the NSSDC trapped particle models is discussed. The limits of validity of the models are described. 17 refs

  19. Convergence across a continent: adaptive diversification in a recent radiation of Australian lizards.

    Science.gov (United States)

    Blom, Mozes P K; Horner, Paul; Moritz, Craig

    2016-06-15

    Recent radiations are important to evolutionary biologists, because they provide an opportunity to study the mechanisms that link micro- and macroevolution. The role of ecological speciation during adaptive radiation has been intensively studied, but radiations can arise from a diversity of evolutionary processes; in particular, on large continental landmasses where allopatric speciation might frequently precede ecological differentiation. It is therefore important to establish a phylogenetic and ecological framework for recent continental-scale radiations that are species-rich and ecologically diverse. Here, we use a genomic (approx. 1 200 loci, exon capture) approach to fit branch lengths on a summary-coalescent species tree and generate a time-calibrated phylogeny for a recent and ecologically diverse radiation of Australian scincid lizards; the genus Cryptoblepharus We then combine the phylogeny with a comprehensive phenotypic dataset for over 800 individuals across the 26 species, and use comparative methods to test whether habitat specialization can explain current patterns of phenotypic variation in ecologically relevant traits. We find significant differences in morphology between species that occur in distinct environments and convergence in ecomorphology with repeated habitat shifts across the continent. These results suggest that isolated analogous habitats have provided parallel ecological opportunity and have repeatedly promoted adaptive diversification. By contrast, speciation processes within the same habitat have resulted in distinct lineages with relatively limited morphological variation. Overall, our study illustrates how alternative diversification processes might have jointly stimulated species proliferation across the continent and generated a remarkably diverse group of Australian lizards. © 2016 The Author(s).

  20. Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches.

    Science.gov (United States)

    Hendry, Andrew P; Grant, Peter R; Rosemary Grant, B; Ford, Hugh A; Brewer, Mark J; Podos, Jeffrey

    2006-08-07

    Adaptive radiation is facilitated by a rugged adaptive landscape, where fitness peaks correspond to trait values that enhance the use of distinct resources. Different species are thought to occupy the different peaks, with hybrids falling into low-fitness valleys between them. We hypothesize that human activities can smooth adaptive landscapes, increase hybrid fitness and hamper evolutionary diversification. We investigated this possibility by analysing beak size data for 1755 Geospiza fortis measured between 1964 and 2005 on the island of Santa Cruz, Galápagos. Some populations of this species can display a resource-based bimodality in beak size, which mirrors the greater beak size differences among species. We first show that an historically bimodal population at one site, Academy Bay, has lost this property in concert with a marked increase in local human population density. We next show that a nearby site with lower human impacts, El Garrapatero, currently manifests strong bimodality. This comparison suggests that bimodality can persist when human densities are low (Academy Bay in the past, El Garrapatero in the present), but not when they are high (Academy Bay in the present). Human activities may negatively impact diversification in 'young' adaptive radiations, perhaps by altering adaptive landscapes.

  1. Model-free adaptive sliding mode controller design for generalized ...

    Indian Academy of Sciences (India)

    L M WANG

    2017-08-16

    Aug 16, 2017 ... A novel model-free adaptive sliding mode strategy is proposed for a generalized projective synchronization (GPS) ... the neural network theory, a model-free adaptive sliding mode controller is designed to guarantee asymptotic stability of the generalized ..... following optimization parameters are needed: ⎧.

  2. A general hybrid radiation transport scheme for star formation simulations on an adaptive grid

    Energy Technology Data Exchange (ETDEWEB)

    Klassen, Mikhail; Pudritz, Ralph E. [Department of Physics and Astronomy, McMaster University 1280 Main Street W, Hamilton, ON L8S 4M1 (Canada); Kuiper, Rolf [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany); Peters, Thomas [Institut für Computergestützte Wissenschaften, Universität Zürich Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Banerjee, Robi; Buntemeyer, Lars, E-mail: klassm@mcmaster.ca [Hamburger Sternwarte, Universität Hamburg Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2014-12-10

    Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodyanmics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calculating gas and dust temperatures in the presence of multiple stellar sources. Our method enables radiation-hydrodynamic studies of young stellar objects, protostellar disks, and clustered star formation in magnetized, filamentary environments.

  3. DNA excision repair as a component of adaptation to low doses of ionizing radiation Escherichia coli

    International Nuclear Information System (INIS)

    Huang, H.; Claycamp, H.G.

    1993-01-01

    In this study the authors examined whether or not DNA excision repair is a component of adaptation induced by very low-dose ionizing radiation in Escherichia coli, a well-characterized prokaryote, and investigated the relationship between enhanced excision repair and the SOS response. Their data suggest that there seems to be narrow 'windows' of dose-effect for the induction of SOS-independent DNA excision repair. Being similar to mammalian cell studies, the dose range for this effect was about 200-fold less than D 37 for radiation survival. (author)

  4. Evaluation of Online/Offline Image Guidance/Adaptation Approaches for Prostate Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Qin, An; Sun, Ying; Liang, Jian; Yan, Di

    2015-01-01

    Purpose: To evaluate online/offline image-guided/adaptive treatment techniques for prostate cancer radiation therapy with daily cone-beam CT (CBCT) imaging. Methods and Materials: Three treatment techniques were evaluated retrospectively using daily pre- and posttreatment CBCT images on 22 prostate cancer patients. Prostate, seminal vesicles (SV), rectal wall, and bladder were delineated on all CBCT images. For each patient, a pretreatment intensity modulated radiation therapy plan with clinical target volume (CTV) = prostate + SV and planning target volume (PTV) = CTV + 3 mm was created. The 3 treatment techniques were as follows: (1) Daily Correction: The pretreatment intensity modulated radiation therapy plan was delivered after online CBCT imaging, and position correction; (2) Online Planning: Daily online inverse plans with 3-mm CTV-to-PTV margin were created using online CBCT images, and delivered; and (3) Hybrid Adaption: Daily Correction plus an offline adaptive inverse planning performed after the first week of treatment. The adaptive plan was delivered for all remaining 15 fractions. Treatment dose for each technique was constructed using the daily posttreatment CBCT images via deformable image registration. Evaluation was performed using treatment dose distribution in target and critical organs. Results: Treatment equivalent uniform dose (EUD) for the CTV was within [85.6%, 100.8%] of the pretreatment planned target EUD for Daily Correction; [98.7%, 103.0%] for Online Planning; and [99.2%, 103.4%] for Hybrid Adaptation. Eighteen percent of the 22 patients in Daily Correction had a target dose deficiency >5%. For rectal wall, the mean ± SD of the normalized EUD was 102.6% ± 2.7% for Daily Correction, 99.9% ± 2.5% for Online Planning, and 100.6% ± 2.1% for Hybrid Adaptation. The mean ± SD of the normalized bladder EUD was 108.7% ± 8.2% for Daily Correction, 92.7% ± 8.6% for Online Planning, and 89.4% ± 10.8% for Hybrid

  5. A modeling perspective on cloud radiative forcing

    International Nuclear Information System (INIS)

    Potter, G.L.; Corsetti, L.; Slingo, J.M.

    1993-02-01

    Radiation fields from a perpetual July integration of a T106 version of the ECM-WF operational model are used to identify the most appropriate way to diagnose cloud radiative forcing in a general circulation model, for the purposes of intercomparison between models. Differences between the Methods I and II of Cess and Potter (1987) and a variant method are addressed. Method I is shown to be the least robust of all methods, due to the potential uncertainties related to persistent cloudiness, length of the sampling period and biases in retrieved clear-sky quantities due to insufficient sampling of the diurnal cycle. Method II is proposed as an unambiguous way to produce consistent radiative diagnostics for intercomparing model results. The impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature is discussed. The sensitivity of the results to horizontal resolution is considered by using the diagnostics from parallel integrations with T21 version of the model

  6. ADAPTIVE MODEL REFINEMENT FOR THE IONOSPHERE AND THERMOSPHERE

    Data.gov (United States)

    National Aeronautics and Space Administration — ADAPTIVE MODEL REFINEMENT FOR THE IONOSPHERE AND THERMOSPHERE ANTHONY M. D’AMATO∗, AARON J. RIDLEY∗∗, AND DENNIS S. BERNSTEIN∗∗∗ Abstract. Mathematical models of...

  7. Efficient ECG Signal Compression Using Adaptive Heart Model

    National Research Council Canada - National Science Library

    Szilagyi, S

    2001-01-01

    This paper presents an adaptive, heart-model-based electrocardiography (ECG) compression method. After conventional pre-filtering the waves from the signal are localized and the model's parameters are determined...

  8. Multiple Adaptations and Content-Adaptive FEC Using Parameterized RD Model for Embedded Wavelet Video

    Directory of Open Access Journals (Sweden)

    Yu Ya-Huei

    2007-01-01

    Full Text Available Scalable video coding (SVC has been an active research topic for the past decade. In the past, most SVC technologies were based on a coarse-granularity scalable model which puts many scalability constraints on the encoded bitstreams. As a result, the application scenario of adapting a preencoded bitstream multiple times along the distribution chain has not been seriously investigated before. In this paper, a model-based multiple-adaptation framework based on a wavelet video codec, MC-EZBC, is proposed. The proposed technology allows multiple adaptations on both the video data and the content-adaptive FEC protection codes. For multiple adaptations of video data, rate-distortion information must be embedded within the video bitstream in order to allow rate-distortion optimized operations for each adaptation. Experimental results show that the proposed method reduces the amount of side information by more than 50% on average when compared to the existing technique. It also reduces the number of iterations required to perform the tier-2 entropy coding by more than 64% on average. In addition, due to the nondiscrete nature of the rate-distortion model, the proposed framework also enables multiple adaptations of content-adaptive FEC protection scheme for more flexible error-resilient transmission of bitstreams.

  9. A 5-Year Investigation of Children's Adaptive Functioning Following Conformal Radiation Therapy for Localized Ependymoma

    Energy Technology Data Exchange (ETDEWEB)

    Netson, Kelli L.; Conklin, Heather M. [Department of Psychology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu Shengjie; Xiong Xiaoping [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [Division of Radiation Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-09-01

    Purpose: Conformal and intensity modulated radiation therapies have the potential to preserve cognitive outcomes in children with ependymoma; however, functional behavior remains uninvestigated. This longitudinal investigation prospectively examined intelligence quotient (IQ) and adaptive functioning during the first 5 years after irradiation in children diagnosed with ependymoma. Methods and Materials: The study cohort consisted of 123 children with intracranial ependymoma. Mean age at irradiation was 4.60 years (95% confidence interval [CI], 3.85-5.35). Serial neurocognitive evaluations, including an age-appropriate IQ measure and the Vineland Adaptive Behavior Scales (VABS), were completed before irradiation, 6 months after treatment, and annually for 5 years. A total of 579 neurocognitive evaluations were included in these analyses. Results: Baseline IQ and VABS were below normative means (P<.05), although within the average range. Linear mixed models revealed stable IQ and VABS across the follow-up period, except for the VABS Communication Index, which declined significantly (P=.015). Annual change in IQ (-.04 points) did not correlate with annual change in VABS (-.90 to +.44 points). Clinical factors associated with poorer baseline performance (P<.05) included preirradiation chemotherapy, cerebrospinal fluid shunt placement, number and extent of surgical resections, and younger age at treatment. No clinical factors significantly affected the rate of change in scores. Conclusions: Conformal and intensity modulated radiation therapies provided relative sparing of functional outcomes including IQ and adaptive behaviors, even in very young children. Communication skills remained vulnerable and should be the target of preventive and rehabilitative interventions.

  10. Extended Higgs sectors in radiative neutrino models

    Directory of Open Access Journals (Sweden)

    Oleg Antipin

    2017-05-01

    Full Text Available Testable Higgs partners may be sought within the extensions of the SM Higgs sector aimed at generating neutrino masses at the loop level. We study a viability of extended Higgs sectors for two selected models of radiative neutrino masses: a one-loop mass model, providing the Higgs partner within a real triplet scalar representation, and a three-loop mass model, providing it within its two-Higgs-doublet sector. The Higgs sector in the one-loop model may remain stable and perturbative up to the Planck scale, whereas the three-loop model calls for a UV completion around 106 GeV. Additional vector-like lepton and exotic scalar fields, which are required to close one- and three-loop neutrino-mass diagrams, play a decisive role for the testability of the respective models. We constrain the parameter space of these models using LHC bounds on diboson resonances.

  11. The Application of Adaptive Behaviour Models: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jessica A. Price

    2018-01-01

    Full Text Available Adaptive behaviour has been viewed broadly as an individual’s ability to meet the standards of social responsibilities and independence; however, this definition has been a source of debate amongst researchers and clinicians. Based on the rich history and the importance of the construct of adaptive behaviour, the current study aimed to provide a comprehensive overview of the application of adaptive behaviour models to assessment tools, through a systematic review. A plethora of assessment measures for adaptive behaviour have been developed in order to adequately assess the construct; however, it appears that the only definition on which authors seem to agree is that adaptive behaviour is what adaptive behaviour scales measure. The importance of the construct for diagnosis, intervention and planning has been highlighted throughout the literature. It is recommended that researchers and clinicians critically review what measures of adaptive behaviour they are utilising and it is suggested that the definition and theory is revisited.

  12. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  13. Dark radiation in LARGE volume models

    Science.gov (United States)

    Cicoli, Michele; Conlon, Joseph P.; Quevedo, Fernando

    2013-02-01

    We consider reheating driven by volume modulus decays in the LARGE volume scenario. Such reheating always generates nonzero dark radiation through the decays to the axion partner, while the only competitive visible sector decays are Higgs pairs via the Giudice-Masiero term. In the framework of sequestered models where the cosmological moduli problem is absent, the simplest model with a shift-symmetric Higgs sector generates 1.56≤ΔNeff≤1.74. For more general cases, the known experimental bounds on ΔNeff strongly constrain the parameters and matter content of the models.

  14. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  15. State of research and perspective on adaptive response to low doses of ionizing radiation in Japan

    International Nuclear Information System (INIS)

    Sadao Hattori

    1997-01-01

    In a review article entitled ''Physical Benefits from Low Levels of Ionizing Radiation,'' published in Health Physics in December of 1982, Professor T.D. Luckey of the University of Missouri, asserted the ''radiation hormesis'' with 200 references. This resulted in the first International Symposium on Radiation Hormesis in Oakland, California (August 1985). CRIEPI consulted many specialists about Luckey's paper and studied many other papers such as Lorenz, 1954; Luckey, 1980, Liu et al., 1985. Radiation hormesis research in Japan has been based on the rationale that if Luckey's claim were to be true, radiation management in Japan has been extremely erroneous. CRIEPI organized a Hormesis Research Steering Committee composed of leading specialists in the field concerned, and began research in cooperation with a number of universities, as well as the National Cancer Research Institute, and the National Institute of Radiological Sciences. After obtaining interesting results in various experiments on the health effects of exposure to low doses of radiation, we have proceeded on an expanded program, which involves fourteen universities and two research institutes throughout Japan. The interesting results we obtained can be categorized in five groups. 1. Enhancement of immune systems such as lymphocytes and suppression of cancer, 2. Radio-adaptive response relating to the activation of DNA repair and adoptosis, 3. Rejuvenation of cells such as increase of SOD and cell membrane permeability, 4. Radiation effect on neuro-transmitting system through increase of key enzymes, 5. Others, including the therapy of adult-disease such as diabetes and hypertension. We are now carrying out experimental activities on the effects of low-dose radiation on mammals. After several years of research activities, we are recognizing Luckey's claim. Some basic surveys including Hiroshima Nagasaki and animal experiments in Japan have brought us valuable informations on the health effects of low

  16. Radiation transport code with adaptive Mesh Refinement: acceleration techniques and applications

    International Nuclear Information System (INIS)

    Velarde, Pedro; Garcia-Fernaandez, Carlos; Portillo, David; Barbas, Alfonso

    2011-01-01

    We present a study of acceleration techniques for solving Sn radiation transport equations with Adaptive Mesh Refinement (AMR). Both DSA and TSA are considered, taking into account the influence of the interaction between different levels of the mesh structure and the order of approximation in angle. A Hybrid method is proposed in order to obtain better convergence rate and lower computer times. Some examples are presented relevant to ICF and X ray secondary sources. (author)

  17. Adaptive Radiation: application in lung cancer; Radioterapia adaptativa: aplicacion en cancer de pulmon

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Mazon, J.; Raba Diez, J. I.; Vazquez Rodriguez, J. a.; Pacheco Baldor, M. T.; Mendiguren Santiago, M. A.; Menendez Garcia, J. C.

    2011-07-01

    The previous updates are a form of adaptive radiation that can be used to account for changes in the size, shape and location of both the tumor and healthy tissue. Are especially useful in the case of lung cancer which typically is associated with significant anatomical changes due to the response to treatment.In the present study, the variation in tumor volume and dosimetric effects from a new CT and replanning during the course of treatment in patients with lung cancer.

  18. Disentangling adaptive evolutionary radiations and the role of diet in promoting diversification on islands

    OpenAIRE

    DeMiguel, Daniel

    2016-01-01

    Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil data, rigorous attempts to identify this phenomenon in the fossil record are largely uncommon. Here I focus on direct evidence of the diet (through tooth-wear patterns) and ecologically-relevant traits of one of the most renowned fossil vertebrates-the Miocene ruminant Hoplitomeryx from the island of Gargano-to deepen our understanding of the most likely causal forces under which a...

  19. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  20. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides.

    Science.gov (United States)

    Ren, Jing; Chen, Liang; Jin, Xiaoli; Zhang, Miaomiao; You, Frank M; Wang, Jirui; Frenkel, Vladimir; Yin, Xuegui; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2017-01-01

    Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ F ST ≤ 0.15) or high genetic differentiation ( F ST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different F ST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.

  1. The RBE of tritium-beta exposure for the induction of the adaptive response and apoptosis; cellular defense mechanisms against the biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Boreham, D.R.; Bahen, M.E.; Dolling, J-A.

    1997-01-01

    Adaption to radiation is one of a few biological responses that has been demonstrated to occur in mammalian cells exposed to doses of ionizing radiation in the occupational exposure range. The adaptive response has been well characterized in the yeast Saccharomyces cerevisiae, although the doses required to induce the response are higher than in mammalian cells. When yeast cells are primed with sublethal doses of gamma-radiation, they subsequently undergo an adaptive response and develop resistance to radiation, heat the chemical mutagens in a time and dose dependent manner. We have used this model system to assess the relative ability of tritium-beta radiation to induce the adaptive response the examined tritium-induced radiation resistance, thermal tolerance and suppression of mutation. The results show that sublethal priming doses of tritium caused yeast cells to develop resistance to radiation, heat, and a chemical mutagen MNNG. The magnitude and kinetics of the response, per unit dose, were the same for tritium and gamma-radiation. Therefore, the relative biological effectiveness (RBE) of tritium induction of the adaptive response was about 1.0. Apoptosis is a genetically programmed cell death or cell suicide. Cells damaged by radiation can be selectively removed from the population by apoptosis and therefore eliminated as a potential cancer risk to the organism. Since we have previously shown that apoptosis is a sensitive indicator of radiation damage in human lymphocytes exposed to low doses, we have used this endpoint to investigate the potency of tritium-beta radiation. Initially, tritium was compared to X-rays for relative effectiveness at inducing apoptosis. The results showed the lymphocytes irradiated in vitro with X-rays or tritium had similar levels of apoptosis per unit dose. Therefore the relative biology effectiveness of tritium for induction of apoptosis in human lymphocytes was also about 1. In the work presented here, we have demonstrated that

  2. Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation.

    Directory of Open Access Journals (Sweden)

    James B Pease

    2016-02-01

    Full Text Available Speciation events often occur in rapid bursts of diversification, but the ecological and genetic factors that promote these radiations are still much debated. Using whole transcriptomes from all 13 species in the ecologically and reproductively diverse wild tomato clade (Solanum sect. Lycopersicon, we infer the species phylogeny and patterns of genetic diversity in this group. Despite widespread phylogenetic discordance due to the sorting of ancestral variation, we date the origin of this radiation to approximately 2.5 million years ago and find evidence for at least three sources of adaptive genetic variation that fuel diversification. First, we detect introgression both historically between early-branching lineages and recently between individual populations, at specific loci whose functions indicate likely adaptive benefits. Second, we find evidence of lineage-specific de novo evolution for many genes, including loci involved in the production of red fruit color. Finally, using a "PhyloGWAS" approach, we detect environment-specific sorting of ancestral variation among populations that come from different species but share common environmental conditions. Estimated across the whole clade, small but substantial and approximately equal fractions of the euchromatic portion of the genome are inferred to contribute to each of these three sources of adaptive genetic variation. These results indicate that multiple genetic sources can promote rapid diversification and speciation in response to new ecological opportunity, in agreement with our emerging phylogenomic understanding of the complexity of both ancient and recent species radiations.

  3. A theoretical approach to room acoustic simulations based on a radiative transfer model

    DEFF Research Database (Denmark)

    Ruiz-Navarro, Juan-Miguel; Jacobsen, Finn; Escolano, José

    2010-01-01

    A theoretical approach to room acoustic simulations based on a radiative transfer model is developed by adapting the classical radiative transfer theory from optics to acoustics. The proposed acoustic radiative transfer model expands classical geometrical room acoustic modeling algorithms...... by incorporating a propagation medium that absorbs and scatters radiation, handling both diffuse and non-diffuse reflections on boundaries and objects in the room. The main scope of this model is to provide a proper foundation for a wide number of room acoustic simulation models, in order to establish and unify...... their principles. It is shown that this room acoustic modeling technique establishes the basis of two recently proposed algorithms, the acoustic diffusion equation and the room acoustic rendering equation. Both methods are derived in detail using an analytical approximation and a simplified integral equation...

  4. In vivo study of the adaptive response induced by radiation of different types

    International Nuclear Information System (INIS)

    Klokov, D.Yu.; Zaichkina, S.I.; Rozanova, O.M.; Aptikaeva, G.F.; Akhmadieva, A.Kh.; Smirnova, E.N.; Surkenova, G.N.; Kuzin, A.M.

    2000-01-01

    Low doses of X- and gamma-rays are known to induce the adaptive response (AR), i.e. a reduction in the damage caused by subsequent high doses. Using micronucleus test, we investigated the in vivo induction of AR in mouse bone marrow cells by low doses of radiation of different types. In our experiments we used low-LET gamma-radiation, high-LET secondary radiation from 70 GeV protons and secondary biogenic radiation. The latter is a novel type of radiation discovered only recently. Secondary biogenic radiation is known to be induced in biological objects after exposure to radiation and thought to be responsible for stimulating and protecting effects in cells in response to external irradiation. To expose mice to the secondary biogenic radiation, animals were housed in plastic cages containing gamma-irradiated oat seeds as bedding and food for 2 weeks before challenging with a high dose (1.5 Gy at a dose rate of 1 Gy/min) of 60 Co gamma-radiation. It was found that the yield of cytogenetic damage in mice exposed to both secondary biogenic and gamma-radiation was significantly reduced as compared to that in animals exposed to the challenge dose alone, i.e. the AR was induced. Pretreatment of animals with a low dose of gamma-radiation (0.1 Gy at a dose rate of 0.125 Gy/min) also induced the AR. In contrast, preliminary exposure of mice to a low dose (0.09 Gy at a dose rate of 1 Gy/min) of secondary radiation from 70 GeV protons induced no AR, suggesting that triggering the cascade of events leading to the AR induction depends on the DNA single-strand to double- strand breaks ratio. The precise mechanisms underlying the AR are of great importance since the phenomenon of AR can be used for medical benefits and in assessment of risks for carcinogens. But they have not been elucidated well at present. Taken together, our results suggest the crucial role of particular types of initial DNA lesions and the secondary biogenic radiation induced in cells in response to external

  5. Land radiative management as contributor to regional-scale climate adaptation and mitigation

    Science.gov (United States)

    Seneviratne, Sonia I.; Phipps, Steven J.; Pitman, Andrew J.; Hirsch, Annette L.; Davin, Edouard L.; Donat, Markus G.; Hirschi, Martin; Lenton, Andrew; Wilhelm, Micah; Kravitz, Ben

    2018-02-01

    Greenhouse gas emissions urgently need to be reduced. Even with a step up in mitigation, the goal of limiting global temperature rise to well below 2 °C remains challenging. Consequences of missing these goals are substantial, especially on regional scales. Because progress in the reduction of carbon dioxide emissions has been slow, climate engineering schemes are increasingly being discussed. But global schemes remain controversial and have important shortcomings. A reduction of global mean temperature through global-scale management of solar radiation could lead to strong regional disparities and affect rainfall patterns. On the other hand, active management of land radiative effects on a regional scale represents an alternative option of climate engineering that has been little discussed. Regional land radiative management could help to counteract warming, in particular hot extremes in densely populated and important agricultural regions. Regional land radiative management also raises some ethical issues, and its efficacy would be limited in time and space, depending on crop growing periods and constraints on agricultural management. But through its more regional focus and reliance on tested techniques, regional land radiative management avoids some of the main shortcomings associated with global radiation management. We argue that albedo-related climate benefits of land management should be considered more prominently when assessing regional-scale climate adaptation and mitigation as well as ecosystem services.

  6. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  7. Adaptation dynamics of the quasispecies model

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness ...

  8. Modeling Family Adaptation to Fragile X Syndrome

    Science.gov (United States)

    Raspa, Melissa; Bailey, Donald, Jr.; Bann, Carla; Bishop, Ellen

    2014-01-01

    Using data from a survey of 1,099 families who have a child with Fragile X syndrome, we examined adaptation across 7 dimensions of family life: parenting knowledge, social support, social life, financial impact, well-being, quality of life, and overall impact. Results illustrate that although families report a high quality of life, they struggle…

  9. Adaptation dynamics of the quasispecies model

    Indian Academy of Sciences (India)

    Abstract. We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness valleys.

  10. Adaptation dynamics of the quasispecies model

    Indian Academy of Sciences (India)

    We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness valleys. We mainly ...

  11. Radiation-induced bystander effect and adaptive response in mammalian cells

    Science.gov (United States)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Hei, T. K.

    2004-01-01

    Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. Low-Dose UVA Radiation-Induced Adaptive Response in Cultured Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Zhongrong Liu

    2012-01-01

    Full Text Available Objective. To investigate the mechanism of the adaptive response induced by low-dose ultraviolet A (UVA radiation. Methods. Cultured dermal fibroblasts were irradiated by a lethal dose of UVA (86.4 J/cm2 with preirradiation of single or repetitive low dose of UVA (7.2 J/cm2. Alterations of cellular morphology were observed by light microscope and electron microscope. Cell cycle and cellular apoptosis were assayed by flow cytometer. The extent of DNA damage was determined by single-cell gel electrophoresis (SCGE. Results. The cultured dermal fibroblasts, with pretreatment of single or repetitive irradiation of 7.2 J/cm2 UVA relieved toxic reaction of cellular morphology and arrest of cell cycle, decreased apoptosis ratio, reduced DNA chain breakage, and accelerated DNA repair caused by subsequent 86.4 J/cm2 UVA irradiation. Compared with nonpretreatment groups, all those differences were significant (P<0.01 or P<0.05. Conclusions. The adaptation reaction might depend on the accumulated dose of low-dose UVA irradiation. Low-dose UVA radiation might induce adaptive response that may protect cultured dermal fibroblasts from the subsequent challenged dose of UVA damage. The duration and protective capability of the adaptive reaction might be related to the accumulated dose of low-dose UVA Irradiation.

  13. Histogram Equalization to Model Adaptation for Robust Speech Recognition

    Directory of Open Access Journals (Sweden)

    Suh Youngjoo

    2010-01-01

    Full Text Available We propose a new model adaptation method based on the histogram equalization technique for providing robustness in noisy environments. The trained acoustic mean models of a speech recognizer are adapted into environmentally matched conditions by using the histogram equalization algorithm on a single utterance basis. For more robust speech recognition in the heavily noisy conditions, trained acoustic covariance models are efficiently adapted by the signal-to-noise ratio-dependent linear interpolation between trained covariance models and utterance-level sample covariance models. Speech recognition experiments on both the digit-based Aurora2 task and the large vocabulary-based task showed that the proposed model adaptation approach provides significant performance improvements compared to the baseline speech recognizer trained on the clean speech data.

  14. Histogram Equalization to Model Adaptation for Robust Speech Recognition

    Science.gov (United States)

    Suh, Youngjoo; Kim, Hoirin

    2010-12-01

    We propose a new model adaptation method based on the histogram equalization technique for providing robustness in noisy environments. The trained acoustic mean models of a speech recognizer are adapted into environmentally matched conditions by using the histogram equalization algorithm on a single utterance basis. For more robust speech recognition in the heavily noisy conditions, trained acoustic covariance models are efficiently adapted by the signal-to-noise ratio-dependent linear interpolation between trained covariance models and utterance-level sample covariance models. Speech recognition experiments on both the digit-based Aurora2 task and the large vocabulary-based task showed that the proposed model adaptation approach provides significant performance improvements compared to the baseline speech recognizer trained on the clean speech data.

  15. Adaptive planning using megavoltage fan-beam CT for radiation therapy with testicular shielding

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); School of Advance Sciences, Vellore Institue of Technology University, Vellore, Tamil Nadu (India); Kozak, Kevin [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Tolakanahalli, Ranjini [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); Ramasubramanian, V. [School of Advance Sciences, Vellore Institue of Technology University, Vellore, Tamil Nadu (India); Paliwal, Bhudatt R. [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); University of Wisconsin, Riverview Cancer Centre, Wisconsin Rapids, WI (United States); Welsh, James S. [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); Rong, Yi, E-mail: rong@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); University of Wisconsin, Riverview Cancer Centre, Wisconsin Rapids, WI (United States)

    2012-07-01

    This study highlights the use of adaptive planning to accommodate testicular shielding in helical tomotherapy for malignancies of the proximal thigh. Two cases of young men with large soft tissue sarcomas of the proximal thigh are presented. After multidisciplinary evaluation, preoperative radiation therapy was recommended. Both patients were referred for sperm banking and lead shields were used to minimize testicular dose during radiation therapy. To minimize imaging artifacts, kilovoltage CT (kVCT) treatment planning was conducted without shielding. Generous hypothetical contours were generated on each 'planning scan' to estimate the location of the lead shield and generate a directionally blocked helical tomotherapy plan. To ensure the accuracy of each plan, megavoltage fan-beam CT (MVCT) scans were obtained at the first treatment and adaptive planning was performed to account for lead shield placement. Two important regions of interest in these cases were femurs and femoral heads. During adaptive planning for the first patient, it was observed that the virtual lead shield contour on kVCT planning images was significantly larger than the actual lead shield used for treatment. However, for the second patient, it was noted that the size of the virtual lead shield contoured on the kVCT image was significantly smaller than the actual shield size. Thus, new adaptive plans based on MVCT images were generated and used for treatment. The planning target volume was underdosed up to 2% and had higher maximum doses without adaptive planning. In conclusion, the treatment of the upper thigh, particularly in young men, presents several clinical challenges, including preservation of gonadal function. In such circumstances, adaptive planning using MVCT can ensure accurate dose delivery even in the presence of high-density testicular shields.

  16. ADAPTIVE LEARNING OF HIDDEN MARKOV MODELS FOR EMOTIONAL SPEECH

    Directory of Open Access Journals (Sweden)

    A. V. Tkachenia

    2014-01-01

    Full Text Available An on-line unsupervised algorithm for estimating the hidden Markov models (HMM parame-ters is presented. The problem of hidden Markov models adaptation to emotional speech is solved. To increase the reliability of estimated HMM parameters, a mechanism of forgetting and updating is proposed. A functional block diagram of the hidden Markov models adaptation algorithm is also provided with obtained results, which improve the efficiency of emotional speech recognition.

  17. Adaptive Functioning of Childhood Brain Tumor Survivors following Conformal Radiation Therapy

    Science.gov (United States)

    Ashford, Jason M.; Netson, Kelli L.; Clark, Kellie N.; Merchant, Thomas E.; Santana, Victor M.; Wu, Shengjie; Conklin, Heather M.

    2014-01-01

    Background Adaptive functioning is not often examined in childhood brain tumor (BT) survivors, with the few existing investigations relying on examiner interviews. Parent questionnaires may provide similar information with decreased burden. The purpose of this study was: (1) to examine adaptive behaviors in BT survivors relative to healthy peer and cancer survivor groups, and (2) to explore the validity of a parent questionnaire in relation to an examiner administered interview. Procedure Participants (age 13.11±2.98 years) were BT survivors treated with conformal radiation therapy (n=50), healthy siblings of BT survivors (n=39) and solid tumor (ST) survivors who did not receive CNS-directed therapy (n=40). Parents completed the Adaptive Behavior Assessment System–2nd Edition (ABAS-II). For a subset of the BT cohort (n=32), examiners interviewed the parents using the Vineland Adaptive Behavior Scales (VABS) within 12 months. Results Groups differed significantly on each of the ABAS-II indices and the general adaptive composite, with the BT group scoring lower than the sibling and ST groups across indices. Executive functioning, but not IQ, was associated with adaptive skills; no clear pattern of clinical and demographic predictors was established. VABS scores were correlated with ABAS-II scores on nearly all indices. Conclusions BT survivors showed significantly lower adaptive functioning when compared to healthy and cancer controls. The ABAS-II proved sensitive to these behavioral limitations and was consistent with scores on the VABS. The use of a parent questionnaire to assess adaptive functioning enhances survivorship investigations by increasing flexibility of assessment and decreasing examiner burden. PMID:24658934

  18. Modeling background radiation in Southern Nevada.

    Science.gov (United States)

    Haber, Daniel A; Burnley, Pamela C; Adcock, Christopher T; Malchow, Russell L; Marsac, Kara E; Hausrath, Elisabeth M

    2017-05-01

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials by creating a high resolution background model. The intention is for this method to be used in an emergency response scenario where the background radiation environment is unknown. Two study areas in Southern Nevada have been modeled using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas that are homogenous in terms of K, U, and Th, referred to as background radiation units, are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by the Department of Energy's Remote Sensing Lab - Nellis, allowing for the refinement of the technique. By using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide and define radiation background units within alluvium, successful models have been produced for Government Wash, north of Lake Mead, and for the western shore of Lake Mohave, east of Searchlight, NV. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    ARL-TR-8155 ● SEP 2017 US Army Research Laboratory Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model... Energy Research, Volume 5 (Solar Radiation Flux Model) by Clayton Walker and Gail Vaucher Computational and Information Sciences Directorate, ARL...2017 June 28 4. TITLE AND SUBTITLE Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model) 5a. CONTRACT NUMBER ROTC Internship

  20. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  1. Improved Gaussian Mixture Models for Adaptive Foreground Segmentation

    DEFF Research Database (Denmark)

    Katsarakis, Nikolaos; Pnevmatikakis, Aristodemos; Tan, Zheng-Hua

    2016-01-01

    Adaptive foreground segmentation is traditionally performed using Stauffer & Grimson’s algorithm that models every pixel of the frame by a mixture of Gaussian distributions with continuously adapted parameters. In this paper we provide an enhancement of the algorithm by adding two important dynamic...

  2. Adaptation of the Neural Network Recognition System of the Helicopter on Its Acoustic Radiation to the Flight Speed

    Directory of Open Access Journals (Sweden)

    V. K. Hohlov

    2015-01-01

    Full Text Available The article concerns the adaptation of a neural tract that recognizes a helicopter from the aerodynamic and ground objects by its acoustic radiation to the helicopter flight speed. It uses non-centered informative signs-indications of estimating signal spectra, which correspond to the local extremes (maximums and minimums of the power spectrum of input signal and have the greatest information when differentiating the helicopter signals from those of tracked vehicles. The article gives justification to the principle of the neural network (NN adaptation and adaptation block structure, which solves problems of blade passage frequency estimation when capturing the object and track it when tracking a target, as well as forming a signal to control the resonant filter parameters of the selection block of informative signs. To create the discriminatory characteristics of the discriminator are used autoregressive statistical characteristics of the quadrature components of signal, obtained through the discrete Hilbert Converter (DGC that perforMathematical modeling of the tracking meter using the helicopter signals obtained in real conditions is performed. The article gives estimates of the tracking parameter when using a tracking meter with DGC by sequential records of realized acoustic noise of the helicopter. It also shows a block-diagram of the adaptive NN. The scientific novelty of the work is that providing the invariance of used informative sign, the counts of local extremes of power spectral density (PSD to changes in the helicopter flight speed is reached due to adding the NN structure and adaptation block, which is implemented as a meter to track the apparent passage frequency of the helicopter rotor blades using its relationship with a function of the autoregressive acoustic signal of the helicopter.Specialized literature proposes solutions based on the use of training classifiers with different parametric methods of spectral representations

  3. Theoretical Modelling of Sound Radiation from Plate

    Science.gov (United States)

    Zaman, I.; Rozlan, S. A. M.; Yusoff, A.; Madlan, M. A.; Chan, S. W.

    2017-01-01

    Recently the development of aerospace, automotive and building industries demands the use of lightweight materials such as thin plates. However, the plates can possibly add to significant vibration and sound radiation, which eventually lead to increased noise in the community. So, in this study, the fundamental concept of sound pressure radiated from a simply-supported thin plate (SSP) was analyzed using the derivation of mathematical equations and numerical simulation of ANSYS®. The solution to mathematical equations of sound radiated from a SSP was visualized using MATLAB®. The responses of sound pressure level were measured at far field as well as near field in the frequency range of 0-200 Hz. Result shows that there are four resonance frequencies; 12 Hz, 60 Hz, 106 Hz and 158 Hz were identified which represented by the total number of the peaks in the frequency response function graph. The outcome also indicates that the mathematical derivation correlated well with the simulation model of ANSYS® in which the error found is less than 10%. It can be concluded that the obtained model is reliable and can be applied for further analysis such as to reduce noise emitted from a vibrating thin plate.

  4. Androgen Induces Adaptation to Oxidative Stress in Prostate Cancer: Implications for Treatment with Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Jehonathan H. Pinthus

    2007-01-01

    Full Text Available Radiation therapy is a standard treatment for prostate cancer (PC. The postulated mechanism of action for radiation therapy is the generation of reactive oxygen species (ROS. Adjuvant androgen deprivation (AD therapy has been shown to confer a survival advantage over radiation alone in high-risk localized PC. However, the mechanism of this interaction is unclear. We hypothesize that androgens modify the radioresponsiveness of PC through the regulation of cellular oxidative homeostasis. Using androgen receptor (AR+ 22rv1 and AR− PC3 human PC cell lines, we demonstrated that testosterone increased basal reactive oxygen species (bROS levels, resulting in dose-dependent activation of phospho-p38 and pAKT, increased expression of clusterin, catalase, manganese superoxide dismutase. Similar data were obtained in three human PC xenografts; WISH-PC14, WISH-PC23, CWR22, growing in testosterone-supplemented or castrated SCID mice. These effects were reversible through AD or through incubation with a reducing agent. Moreover, testosterone increased the activity of catalase, superoxide dismutases, glutathione reductase. Consequently, AD significantly facilitated the response of AR+ cells to oxidative stress challenge. Thus, testosterone induces a preset cellular adaptation to radiation through the generation of elevated bROS, which is modified by AD. These findings provide a rational for combined hormonal and radiation therapy for localized PC.

  5. Self Adaptive Hypermedia Navigation Based On Learner Model Characters

    NARCIS (Netherlands)

    Vassileva, Dessislava; Bontchev, Boyan

    2006-01-01

    Dessislava Vassileva, Boyan Bontchev "Self Adaptive Hypermedia Navigation Based On Learner Model Characters", IADAT-e2006, 3rd International Conference on Education, Barcelona (Spain), July 12-14, 2006, ISBN: 84-933971-9-9

  6. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  7. Solar radiation practical modeling for renewable energy applications

    CERN Document Server

    Myers, Daryl Ronald

    2013-01-01

    Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation m

  8. Adaptive meshes in ecosystem modelling: a way forward?

    Science.gov (United States)

    Popova, E. E.; Ham, D. A.; Srokosz, M. A.; Piggott, M. D.

    2009-04-01

    The need to resolve physical processes occuring on many different length scales has lead to the development of ocean flow models based on unstructured and adaptive meshes. However, thus far models of biological processes have been based on fixed, structured grids which lack the ability to dynamically focus resolution on areas of developing small-scale structure. Here we will present the initial results of coupling a four component biological model to the 3D non-hydrostatic, finite element, adaptive grid ocean model ICOM (the Imperial College Ocean Model). Mesh adaptivity automatically resolves fine-scale physical or biological features as they develop, optimising computational cost by reducing resolution where it is not required. Experiments are carried out within the framework of a horizontally uniform water column. The vertical physical processes in top 500m are represented by a two equation turbulence model. The physical model is coupled to a four component biological model, which includes generic phytoplankton, zooplankton, nitrate and particular organic matter (detritus). The physical and biological model is set up to represent idealised oligotrophic conditions, typical of subtropical gyres. A stable annual cycle is achieved after a number of years of integration. We compare results obtained on a fully adaptive mesh with ones using a high resolution static mesh. We assess the computational efficiency of the adaptive approach for modelling of ecosystem processes such as the dynamics of the phytoplankton spring bloom, formation of the subsurface chlorophyll maximum and nutrient supply to the photic zone.

  9. Modeling adaptation of carbon use efficiency in microbial communities

    Directory of Open Access Journals (Sweden)

    Steven D Allison

    2014-10-01

    Full Text Available In new microbial-biogeochemical models, microbial carbon use efficiency (CUE is often assumed to decline with increasing temperature. Under this assumption, soil carbon losses under warming are small because microbial biomass declines. Yet there is also empirical evidence that CUE may adapt (i.e. become less sensitive to warming, thereby mitigating negative effects on microbial biomass. To analyze potential mechanisms of CUE adaptation, I used two theoretical models to implement a tradeoff between microbial uptake rate and CUE. This rate-yield tradeoff is based on thermodynamic principles and suggests that microbes with greater investment in resource acquisition should have lower CUE. Microbial communities or individuals could adapt to warming by reducing investment in enzymes and uptake machinery. Consistent with this idea, a simple analytical model predicted that adaptation can offset 50% of the warming-induced decline in CUE. To assess the ecosystem implications of the rate-yield tradeoff, I quantified CUE adaptation in a spatially-structured simulation model with 100 microbial taxa and 12 soil carbon substrates. This model predicted much lower CUE adaptation, likely due to additional physiological and ecological constraints on microbes. In particular, specific resource acquisition traits are needed to maintain stoichiometric balance, and taxa with high CUE and low enzyme investment rely on low-yield, high-enzyme neighbors to catalyze substrate degradation. In contrast to published microbial models, simulations with greater CUE adaptation also showed greater carbon storage under warming. This pattern occurred because microbial communities with stronger CUE adaptation produced fewer degradative enzymes, despite increases in biomass. Thus the rate-yield tradeoff prevents CUE adaptation from driving ecosystem carbon loss under climate warming.

  10. Radiation-induced apoptosis in human tumor cell lines: adaptive response and split-dose effect.

    Science.gov (United States)

    Filippovich, I V; Sorokina, N I; Robillard, N; Lisbona, A; Chatal, J F

    1998-07-03

    Irradiation of human ovarian carcinoma cells (OVCAR 3) and myeloma cells (RPMI 8226) with graded doses of 137Cs-gamma-rays led to a 35-40% increase in time-dependent apoptosis 72 hr after 6-8 Gy irradiation. Large individual variations in sensitivity to radiation-induced apoptosis were noted in human lymphocytes obtained from 5 donors. Pretreatment of OVCAR 3 and RPMI 8226 cells with 0.01 Gy increased their resistance to apoptosis after subsequent 6 Gy irradiation several hours or 48 and 72 hr later. A dose of 4 or 8 Gy given in 2 equal fractions at an interval of a few hours produced a low level of apoptosis compared to that resulting from a single administration of the same total dose. Adaptive response was demonstrated in 2 out of 3 samples of human lymphocytes isolated from different donors, and no split-dose effect for apoptosis was noted in 2 other donors. In split-dose experiments, there was no correlation between the sensitivity of cells to apoptosis and their position in the cell cycle, after the first half-dose. No G1 block was observed in irradiated cell lines. Adaptive response and split-dose effect were prevented by 3-aminobenzamide and okadaic acid which inhibit poly(ADP-ribose)polymerase and protein phosphatase, respectively. These results imply a common mechanism for acquired resistance to radiation-induced apoptosis in adaptive response and the split-dose effect.

  11. Modeling of processes of an adaptive business management

    Directory of Open Access Journals (Sweden)

    Karev Dmitry Vladimirovich

    2011-04-01

    Full Text Available On the basis of the analysis of systems of adaptive management board business proposed the original version of the real system of adaptive management, the basis of which used dynamic recursive model cash flow forecast and real data. Proposed definitions and the simulation of scales and intervals of model time in the control system, as well as the thresholds observations and conditions of changing (correction of the administrative decisions. The process of adaptive management is illustrated on the basis proposed by the author of the script of development of business.

  12. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego, E-mail: fabio@ucolick.org [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  13. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae.

    Science.gov (United States)

    Givnish, Thomas J; Barfuss, Michael H J; Van Ee, Benjamin; Riina, Ricarda; Schulte, Katharina; Horres, Ralf; Gonsiska, Philip A; Jabaily, Rachel S; Crayn, Darren M; Smith, J Andrew C; Winter, Klaus; Brown, Gregory K; Evans, Timothy M; Holst, Bruce K; Luther, Harry; Till, Walter; Zizka, Georg; Berry, Paul E; Sytsma, Kenneth J

    2014-02-01

    We present an integrative model predicting associations among epiphytism, the tank habit, entangling seeds, C₃ vs. CAM photosynthesis, avian pollinators, life in fertile, moist montane habitats, and net rates of species diversification in the monocot family Bromeliaceae. We test these predictions by relating evolutionary shifts in form, physiology, and ecology to time and ancestral distributions, quantifying patterns of correlated and contingent evolution among pairs of traits and analyzing the apparent impact of individual traits on rates of net species diversification and geographic expansion beyond the ancestral Guayana Shield. All predicted patterns of correlated evolution were significant, and the temporal and spatial associations of phenotypic shifts with orogenies generally accorded with predictions. Net rates of species diversification were most closely coupled to life in fertile, moist, geographically extensive cordilleras, with additional significant ties to epiphytism, avian pollination, and the tank habit. The highest rates of net diversification were seen in the bromelioid tank-epiphytic clade (D(crown) = 1.05 My⁻¹), associated primarily with the Serra do Mar and nearby ranges of coastal Brazil, and in the core tillandsioids (D(crown) = 0.67 My⁻¹), associated primarily with the Andes and Central America. Six large-scale adaptive radiations and accompanying pulses of speciation account for 86% of total species richness in the family. This study is among the first to test a priori hypotheses about the relationships among phylogeny, phenotypic evolution, geographic spread, and net species diversification, and to argue for causality to flow from functional diversity to spatial expansion to species diversity.

  14. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    Science.gov (United States)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  15. Validation of the community radiative transfer model

    International Nuclear Information System (INIS)

    Ding Shouguo; Yang Ping; Weng Fuzhong; Liu Quanhua; Han Yong; Delst, Paul van; Li Jun; Baum, Bryan

    2011-01-01

    To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (τ 30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.

  16. An adaptation model for trabecular bone at different mechanical levels

    Directory of Open Access Journals (Sweden)

    Lv Linwei

    2010-07-01

    Full Text Available Abstract Background Bone has the ability to adapt to mechanical usage or other biophysical stimuli in terms of its mass and architecture, indicating that a certain mechanism exists for monitoring mechanical usage and controlling the bone's adaptation behaviors. There are four zones describing different bone adaptation behaviors: the disuse, adaptation, overload, and pathologic overload zones. In different zones, the changes of bone mass, as calculated by the difference between the amount of bone formed and what is resorbed, should be different. Methods An adaptation model for the trabecular bone at different mechanical levels was presented in this study based on a number of experimental observations and numerical algorithms in the literature. In the proposed model, the amount of bone formation and the probability of bone remodeling activation were proposed in accordance with the mechanical levels. Seven numerical simulation cases under different mechanical conditions were analyzed as examples by incorporating the adaptation model presented in this paper with the finite element method. Results The proposed bone adaptation model describes the well-known bone adaptation behaviors in different zones. The bone mass and architecture of the bone tissue within the adaptation zone almost remained unchanged. Although the probability of osteoclastic activation is enhanced in the overload zone, the potential of osteoblasts to form bones compensate for the osteoclastic resorption, eventually strengthening the bones. In the disuse zone, the disuse-mode remodeling removes bone tissue in disuse zone. Conclusions The study seeks to provide better understanding of the relationships between bone morphology and the mechanical, as well as biological environments. Furthermore, this paper provides a computational model and methodology for the numerical simulation of changes of bone structural morphology that are caused by changes of mechanical and biological

  17. Modeling the radiation response of Chlamydomonas reinhardi

    International Nuclear Information System (INIS)

    Roesch, W.C.

    1983-01-01

    To pursue our goal of establishing quantitative relations between initial physical events produced by ionizing radiation and the subsequent biological effects in cells, we have been developing and testing theoretical models for two kinds of cells, the mammalian Chinese hamster ovary (CHO) cell and the green alga, Chlamydomonas reinhardi. The hamster cell studies are beginning to produce results and will be discussed below. The C. reinhardt studies have been in progress for some time and illustrate the normal scientific cycle of framing, testing, and revising hypotheses

  18. Adaptive radiation therapy for postprostatectomy patients using real-time electromagnetic target motion tracking during external beam radiation therapy.

    Science.gov (United States)

    Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M; Gay, Hiram A; Hou, Wei-Hsien; Parikh, Parag J

    2013-03-15

    Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (Dmin) with the planned Dmin to the CTV. Treatments were considered adequate if the delivered CTV Dmin is at least 95% of the planned CTV Dmin. Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: -0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor

    Directory of Open Access Journals (Sweden)

    F. Haugen, R. Bakke, and B. Lie

    2013-04-01

    Full Text Available A dynamic model has been adapted to a pilot anaerobic reactor fed diarymanure. Both steady-state data from online sensors and laboratory analysis anddynamic operational data from online sensors are used in the model adaptation.The model is based on material balances, and comprises four state variables,namely biodegradable volatile solids, volatile fatty acids, acid generatingmicrobes (acidogens, and methane generating microbes (methanogens. The modelcan predict the methane gas flow produced in the reactor. The model may beused for optimal reactor design and operation, state-estimation and control.Also, a dynamic model for the reactor temperature based on energy balance ofthe liquid in the reactor is adapted. This model may be used for optimizationand control when energy and economy are taken into account.

  20. Adaptive Networks Theory, Models and Applications

    CERN Document Server

    Gross, Thilo

    2009-01-01

    With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.

  1. Modeling Students' Memory for Application in Adaptive Educational Systems

    Science.gov (United States)

    Pelánek, Radek

    2015-01-01

    Human memory has been thoroughly studied and modeled in psychology, but mainly in laboratory setting under simplified conditions. For application in practical adaptive educational systems we need simple and robust models which can cope with aspects like varied prior knowledge or multiple-choice questions. We discuss and evaluate several models of…

  2. Factors driving adaptive radiation in plants of oceanic islands: a case study from the Juan Fernández Archipelago.

    Science.gov (United States)

    Takayama, Koji; Crawford, Daniel J; López-Sepúlveda, Patricio; Greimler, Josef; Stuessy, Tod F

    2018-03-13

    Adaptive radiation is a common evolutionary phenomenon in oceanic islands. From one successful immigrant population, dispersal into different island environments and directional selection can rapidly yield a series of morphologically distinct species, each adapted to its own particular environment. Not all island immigrants, however, follow this evolutionary pathway. Others successfully arrive and establish viable populations, but they remain in the same ecological zone and only slowly diverge over millions of years. This transformational speciation, or anagenesis, is also common in oceanic archipelagos. The critical question is why do some groups radiate adaptively and others not? The Juan Fernández Islands contain 105 endemic taxa of angiosperms, 49% of which have originated by adaptive radiation (cladogenesis) and 51% by anagenesis, hence providing an opportunity to examine characteristics of taxa that have undergone both types of speciation in the same general island environment. Life form, dispersal mode, and total number of species in progenitors (genera) of endemic angiosperms in the archipelago were investigated from literature sources and compared with modes of speciation (cladogenesis vs. anagenesis). It is suggested that immigrants tending to undergo adaptive radiation are herbaceous perennial herbs, with leaky self-incompatible breeding systems, good intra-island dispersal capabilities, and flexible structural and physiological systems. Perhaps more importantly, the progenitors of adaptively radiated groups in islands are those that have already been successful in adaptations to different environments in source areas, and which have also undergone eco-geographic speciation. Evolutionary success via adaptive radiation in oceanic islands, therefore, is less a novel feature of island lineages but rather a continuation of tendency for successful adaptive speciation in lineages of continental source regions.

  3. A Clinical Concept for Interfractional Adaptive Radiation Therapy in the Treatment of Head and Neck Cancer

    International Nuclear Information System (INIS)

    Jensen, Alexandra D.; Nill, Simeon; Huber, Peter E.; Bendl, Rolf; Debus, Jürgen; Münter, Marc W.

    2012-01-01

    Purpose: To present an approach to fast, interfractional adaptive RT in intensity-modulated radiation therapy (IMRT) of head and neck tumors in clinical routine. Ensuring adequate patient position throughout treatment proves challenging in high-precision RT despite elaborate immobilization. Because of weight loss, treatment plans must be adapted to account for requiring supportive therapy incl. feeding tube or parenteral nutrition without treatment breaks. Methods and Materials: In-room CT position checks are used to create adapted IMRT treatment plans by stereotactic correlation to the initial setup, and volumes are adapted to the new geometry. New IMRT treatment plans are prospectively created on the basis of position control scans using the initial optimization parameters in KonRad without requiring complete reoptimization and thus facilitating quick replanning in daily routine. Patients treated for squamous cell head and neck cancer (SCCHN) in 2006–2007 were evaluated as to necessity/number of replannings, weight loss, dose, and plan parameters. Results: Seventy-two patients with SCCHN received IMRT to the primary site and lymph nodes (median dose 70.4 Gy). All patients received concomitant chemotherapy requiring supportive therapy by feeding tube or parenteral nutrition. Median weight loss was 7.8 kg, median volume loss was approximately 7%. Fifteen of 72 patients required adaptation of their treatment plans at least once. Target coverage was improved by up to 10.7% (median dose). The increase of dose to spared parotid without replanning was 11.7%. Replanning including outlining and optimization was feasible within 2 hours for each patient, and treatment could be continued without any interruptions. Conclusion: To preserve high-quality dose application, treatment plans must be adapted to anatomical changes. Replanning based on position control scans therefore presents a practical approach in clinical routine. In the absence of clinically usable online

  4. Psychophysiological adaptation of the patient with the remote effect of the III degree acute radiation syndrome

    Directory of Open Access Journals (Sweden)

    Metlyaeva N.A.

    2013-12-01

    putation of both shins at level in top / 3, late beam buttock, right hip ulcers, a beam cataract of the III degree of both eyes, stabilized. The assessment of the efficiency of psychophysiological adaptation in dynamics with 2009 indicates emergence of prevalence of hypochondriac tendencies over a demonstration with accession of high uneasiness and autistic lines at preservation of the leading role of an hypochondriac somatization of alarm with considerable decrease in an emotionality, an integration, a freedom of behavior. The changes revealed in dynamics correspond to the specific increase weight of violations of mental adaptation, characteristic for the period of adaptation exhaustion. The high intelligence, good figurative and logical thinking, well-mannered forms of behavior, high control over the emotional sphere, restraint of emotions, independence, self-sufficiency, organization, behavior taking into account environment requirements provided the patient M. firmness before a heavy illness, promoted good adaptation to an environment with confidence in myself, high social adaptability, opportunity successfully to carry out duties, hold the work account (worked 39 years after accident. Comparative assessment of operator ability of the patient M. showed good average time of common and difficult sensorimotor reactions with 2 mistakes, high time of reaction for moving object, however decrease in accuracy of reaction from 10-13% to 2% testifies to manifestation in dynamics of insufficiency of real functional reserves of nervous system. Conclusions. Efficiency of psychophysiological adaptation depends not only on a dose of radiation and weight of the transferred disease, but, mostly, on premorbid properties of the identity of the victim and his social and labor installation.

  5. Glutathione (GSH Production as Protective Adaptation Against Light Regime Radiation of Symbiodinium Natural Population

    Directory of Open Access Journals (Sweden)

    Moh Muhaemin

    2017-08-01

    Full Text Available Glutathione (GSH, as a wide range of low molecular weight, which found in marine microalgae and event bacteria, are essential to prevent photooxidation and productivity loss from these Radical Oxigen Species (ROS. Symbiodinium, endo-symbiont of corals, were exposed with different UV radiation combined with irradiance treatments to explore biomass specific initial response. Intracellular glutahione was observed as potential adaptive response of Symbiodinium population under environmental specific stress. The result showed that GSH production increased significantly with increasing irradiance and/or UV levels. GSH concentration was fluctuated among populations exposed by different irradiance treatments, but not effected by UV and irradiance exposure. GSH production as a response of UV exposure was higher than irradiance treatments. Both these high correlative fluctuation of intracellular GSH production and the presence of both treatments indicated protective specific adaptation of Symbiodinium under specific environmental stress, respectively.   Keywords: zooxanthellae, irradiance, glutathione (GSH, corals, Fungia

  6. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes.

    Science.gov (United States)

    Pavlovič, Andrej

    2012-02-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the plant to capture a leaf litter from the canopy above. We showed that the plant benefits from nitrogen uptake by increased rate of photosynthesis and growth what may provide competitive advantage over others co-habiting plants. A possible impact of such specialization toward hybridization, an important mechanism in speciation, is discussed.

  7. Cytogenetic monitoring, radiosensitivity study and adaptive response of workers exposed to low level ionizing radiation

    International Nuclear Information System (INIS)

    Peitl Junior, Paulo

    1996-01-01

    The objectives of the present study were: To determine the frequencies of chromosome aberrations in lymphocytes from individuals belonging to professionally exposed groups, under normal conditions; to determine the possible differences in radiosensitivity between the lymphocytes of technicians and controls after in vitro irradiation with gamma rays during the G 1 phase of the cell cycle (radiosensitivity study), and to examine the influence of in vivo and in vitro pre-exposure to low doses of radiation on the frequency of chromosome aberrations induced in vitro by high doses (study of the adaptive response) in a group of technicians (T) compared to controls (C). (author)

  8. Conservatism and adaptability during squirrel radiation: what is mandible shape telling us?

    Directory of Open Access Journals (Sweden)

    Isaac Casanovas-Vilar

    Full Text Available Both functional adaptation and phylogeny shape the morphology of taxa within clades. Herein we explore these two factors in an integrated way by analyzing shape and size variation in the mandible of extant squirrels using landmark-based geometric morphometrics in combination with a comparative phylogenetic analysis. Dietary specialization and locomotion were found to be reliable predictors of mandible shape, with the prediction by locomotion probably reflecting the underlying diet. In addition a weak but significant allometric effect could be demonstrated. Our results found a strong phylogenetic signal in the family as a whole as well as in the main clades, which is in agreement with the general notion of squirrels being a conservative group. This fact does not preclude functional explanations for mandible shape, but rather indicates that ancient adaptations kept a prominent role, with most genera having diverged little from their ancestral clade morphologies. Nevertheless, certain groups have evolved conspicuous adaptations that allow them to specialize on unique dietary resources. Such adaptations mostly occurred in the Callosciurinae and probably reflect their radiation into the numerous ecological niches of the tropical and subtropical forests of Southeastern Asia. Our dietary reconstruction for the oldest known fossil squirrels (Eocene, 36 million years ago show a specialization on nuts and seeds, implying that the development from protrogomorphous to sciuromorphous skulls was not necessarily related to a change in diet.

  9. Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications

    International Nuclear Information System (INIS)

    Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Kashani, Rojano; Parikh, Parag; Yang, Deshan; Zhao, Tianyu; Green, Olga; Wooten, Omar; Li, H. Harold; Hu, Yanle; Rodriguez, Vivian; Olsen, Lindsey; Robinson, Clifford; Michalski, Jeff; Mutic, Sasa; Olsen, Jeffrey

    2016-01-01

    Purpose: To demonstrate the feasibility of online adaptive magnetic resonance (MR) image guided radiation therapy (MR-IGRT) through reporting of our initial clinical experience and workflow considerations. Methods and Materials: The first clinically deployed online adaptive MR-IGRT system consisted of a split 0.35T MR scanner straddling a ring gantry with 3 multileaf collimator-equipped 60 Co heads. The unit is supported by a Monte Carlo–based treatment planning system that allows real-time adaptive planning with the patient on the table. All patients undergo computed tomography and MR imaging (MRI) simulation for initial treatment planning. A volumetric MRI scan is acquired for each patient at the daily treatment setup. Deformable registration is performed using the planning computed tomography data set, which allows for the transfer of the initial contours and the electron density map to the daily MRI scan. The deformed electron density map is then used to recalculate the original plan on the daily MRI scan for physician evaluation. Recontouring and plan reoptimization are performed when required, and patient-specific quality assurance (QA) is performed using an independent in-house software system. Results: The first online adaptive MR-IGRT treatments consisted of 5 patients with abdominopelvic malignancies. The clinical setting included neoadjuvant colorectal (n=3), unresectable gastric (n=1), and unresectable pheochromocytoma (n=1). Recontouring and reoptimization were deemed necessary for 3 of 5 patients, and the initial plan was deemed sufficient for 2 of the 5 patients. The reasons for plan adaptation included tumor progression or regression and a change in small bowel anatomy. In a subsequently expanded cohort of 170 fractions (20 patients), 52 fractions (30.6%) were reoptimized online, and 92 fractions (54.1%) were treated with an online-adapted or previously adapted plan. The median time for recontouring, reoptimization, and QA was 26

  10. Benefits of adaptive radiation therapy in lung cancer as a function of replanning frequency

    International Nuclear Information System (INIS)

    Dial, Christian; Weiss, Elisabeth; Hugo, Geoffrey D.; Siebers, Jeffrey V.

    2016-01-01

    Purpose: To quantify the potential benefit associated with daily replanning in lung cancer in terms of normal tissue dose sparing and to characterize the tradeoff between adaptive benefit and replanning frequency. Methods: A set of synthetic images and contours, derived from weekly active breathing control images of 12 patients who underwent radiation therapy treatment for nonsmall cell lung cancer, is generated for each fraction of treatment using principal component analysis in a way that preserves temporal anatomical trends (e.g., tumor regression). Daily synthetic images and contours are used to simulate four different treatment scenarios: (1) a “no-adapt” scenario that simulates delivery of an initial plan throughout treatment, (2) a “midadapt” scenario that implements a single replan for fraction 18, (3) a “weekly adapt” scenario that simulates weekly adaptations, and (4) a “full-adapt” scenario that simulates daily replanning. An initial intensity modulated radiation therapy plan is created for each patient and replanning is carried out in an automated fashion by reoptimizing beam apertures and weights. Dose is calculated on each image and accumulated to the first in the series using deformable mappings utilized in synthetic image creation for comparison between simulated treatments. Results: Target coverage was maintained and cord tolerance was not exceeded for any of the adaptive simulations. Average reductions in mean lung dose (MLD) and volume of lung receiving 20 Gy or more (V20 lung ) were 65 ± 49 cGy (p = 0.000 01) and 1.1% ± 1.2% (p = 0.0006), respectively, for all patients. The largest reduction in MLD for a single patient was 162 cGy, which allowed an isotoxic escalation of the target dose of 1668 cGy. Average reductions in cord max dose, mean esophageal dose (MED), dose received by 66% of the heart (D66 heart ), and dose received by 33% of the heart (D33 heart ), were 158 ± 280, 117 ± 121, 37 ± 77, and 99 ± 120 c

  11. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  12. Model-based design of adaptive embedded systems

    CERN Document Server

    Hamberg, Roelof; Reckers, Frans; Verriet, Jacques

    2013-01-01

    Today’s embedded systems have to operate in a wide variety of dynamically changing environmental circumstances. Adaptivity, the ability of a system to autonomously adapt itself, is a means to optimise a system’s behaviour to accommodate changes in its environment. It involves making in-product trade-offs between system qualities at system level. The main challenge in the development of adaptive systems is keeping control of the intrinsic complexity of such systems while working with multi-disciplinary teams to create different parts of the system. Model-Based Development of Adaptive Embedded Systems focuses on the development of adaptive embedded systems both from an architectural and methodological point of view. It describes architectural solution patterns for adaptive systems and state-of-the-art model-based methods and techniques to support adaptive system development. In particular, the book describes the outcome of the Octopus project, a cooperation of a multi-disciplinary team of academic and indus...

  13. Adaptive Modeling and Real-Time Simulation

    Science.gov (United States)

    1984-01-01

    34 Artificial Inteligence , Vol. 13, pp. 27-39 (1980). Describes circumscription which is just the assumption that everything that is known to have a particular... Artificial Intelligence Truth Maintenance Planning Resolution Modeling Wcrld Models ~ .. ~2.. ASSTR AT (Coninue n evrse sieIf necesaran Identfy by...represents a marriage of (1) the procedural-network st, planning technology developed in artificial intelligence with (2) the PERT/CPM technology developed in

  14. Future directions for LDEF ionizing radiation modeling and assessments

    Science.gov (United States)

    Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    A calculational program utilizing data from radiation dosimetry measurements aboard the Long Duration Exposure Facility (LDEF) satellite to reduce the uncertainties in current models defining the ionizing radiation environment is in progress. Most of the effort to date has been on using LDEF radiation dose measurements to evaluate models defining the geomagnetically trapped radiation, which has provided results applicable to radiation design assessments being performed for Space Station Freedom. Plans for future data comparisons, model evaluations, and assessments using additional LDEF data sets (LET spectra, induced radioactivity, and particle spectra) are discussed.

  15. Statistical Models of Adaptive Immune populations

    Science.gov (United States)

    Sethna, Zachary; Callan, Curtis; Walczak, Aleksandra; Mora, Thierry

    The availability of large (104-106 sequences) datasets of B or T cell populations from a single individual allows reliable fitting of complex statistical models for naïve generation, somatic selection, and hypermutation. It is crucial to utilize a probabilistic/informational approach when modeling these populations. The inferred probability distributions allow for population characterization, calculation of probability distributions of various hidden variables (e.g. number of insertions), as well as statistical properties of the distribution itself (e.g. entropy). In particular, the differences between the T cell populations of embryonic and mature mice will be examined as a case study. Comparing these populations, as well as proposed mixed populations, provides a concrete exercise in model creation, comparison, choice, and validation.

  16. Adaptive PID and Model Reference Adaptive Control Switch Controller for Nonlinear Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Xin Zuo

    2017-01-01

    Full Text Available Nonlinear systems are modeled as piecewise linear systems at multiple operating points, where the operating points are modeled as switches between constituent linearized systems. In this paper, adaptive piecewise linear switch controller is proposed for improving the response time and tracking performance of the hydraulic actuator control system, which is essentially piecewise linear. The controller composed of PID and Model Reference Adaptive Control (MRAC adaptively chooses the proportion of these two components and makes the designed system have faster response time at the transient phase and better tracking performance, simultaneously. Then, their stability and tracking performance are analyzed and evaluated by the hydraulic actuator control system, the hydraulic actuator is controlled by the electrohydraulic system, and its model is built, which has piecewise linear characteristic. Then the controller results are compared between PID and MRAC and the switch controller designed in this paper is applied to the hydraulic actuator; it is obvious that adaptive switch controller has better effects both on response time and on tracking performance.

  17. Switching Adaptability in Human-Inspired Sidesteps: A Minimal Model

    Directory of Open Access Journals (Sweden)

    Keisuke Fujii

    2017-06-01

    Full Text Available Humans can adapt to abruptly changing situations by coordinating redundant components, even in bipedality. Conventional adaptability has been reproduced by various computational approaches, such as optimal control, neural oscillator, and reinforcement learning; however, the adaptability in bipedal locomotion necessary for biological and social activities, such as unpredicted direction change in chase-and-escape, is unknown due to the dynamically unstable multi-link closed-loop system. Here we propose a switching adaptation model for performing bipedal locomotion by improving autonomous distributed control, where autonomous actuators interact without central control and switch the roles for propulsion, balancing, and leg swing. Our switching mobility model achieved direction change at any time using only three actuators, although it showed higher motor costs than comparable models without direction change. Our method of evaluating such adaptation at any time should be utilized as a prerequisite for understanding universal motor control. The proposed algorithm may simply explain and predict the adaptation mechanism in human bipedality to coordinate the actuator functions within and between limbs.

  18. Adaptive response of yeast cultures (Saccharomyces Cerevisiae) exposed to low dose of gamma radiation

    International Nuclear Information System (INIS)

    Kulcsar, Agnes; Savu, D.; Petcu, I.; Gherasim, Raluca

    2003-01-01

    The present study was planned as follows: (i) setting up of standard experimental conditions for investigation of radio-induced adaptive response in lower Eucaryotes; (ii) developing of procedures for synchronizing Saccharomyces cerevisiae X 310 D cell cultures and cell cycle stages monitoring; (iii) investigation of gamma (Co-60) and UV irradiation effects on the viability of synchronized and non-synchronized cell cultures of Saccharomyces cerevisiae; the effects were correlated with the cell density and cell cycle stage; (iv) study of the adaptive response induced by irradiation and setting up of the experimental conditions for which this response is optimized. The irradiations were performed by using a Co-60 with doses of 10 2 - 10 4 Gy and dose rates ranging from 2.2 x 10 2 Gy/h to 8.7 x 10 3 Gy/h. The study of radioinduced adaptive response was performed by applying a pre-irradiation treatment of 100-500 Gy, followed by challenge doses of 2-4 kGy delivered at different time intervals, ranging from 1 h to 4 h. The survival rate of synchronized and non-synchronized cultures as a function of exposure dose shows an exponential decay shape. No difference in viability of the cells occurred between synchronized and non-synchronized cultures. The pre-irradiation of cells with 100 and 200 Gy were most efficient to induce an adaptive response for the yeast cells. In this stage of work we proved the occurrence of the adaptive response in the case of synchronized yeast cultures exposed to gamma radiation. The results will be used in the future to investigate the dependence of this response on the cell cycle and the possibility to induce such a response by a low level electromagnetic field. (authors)

  19. GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy

    Science.gov (United States)

    Men, Chunhua; Jia, Xun; Jiang, Steve B.

    2010-08-01

    Online adaptive radiation therapy (ART) has great promise to significantly reduce normal tissue toxicity and/or improve tumor control through real-time treatment adaptations based on the current patient anatomy. However, the major technical obstacle for clinical realization of online ART, namely the inability to achieve real-time efficiency in treatment re-planning, has yet to be solved. To overcome this challenge, this paper presents our work on the implementation of an intensity-modulated radiation therapy (IMRT) direct aperture optimization (DAO) algorithm on the graphics processing unit (GPU) based on our previous work on the CPU. We formulate the DAO problem as a large-scale convex programming problem, and use an exact method called the column generation approach to deal with its extremely large dimensionality on the GPU. Five 9-field prostate and five 5-field head-and-neck IMRT clinical cases with 5 × 5 mm2 beamlet size and 2.5 × 2.5 × 2.5 mm3 voxel size were tested to evaluate our algorithm on the GPU. It takes only 0.7-3.8 s for our implementation to generate high-quality treatment plans on an NVIDIA Tesla C1060 GPU card. Our work has therefore solved a major problem in developing ultra-fast (re-)planning technologies for online ART.

  20. Distinct evolutionary patterns of brain and body size during adaptive radiation.

    Science.gov (United States)

    Gonzalez-Voyer, Alejandro; Winberg, Svante; Kolm, Niclas

    2009-09-01

    Morphological traits are often genetically and/or phenotypically correlated with each other and such covariation can have an important influence on the evolution of individual traits. The strong positive relationship between brain size and body size in vertebrates has attracted a lot of interest, and much debate has surrounded the study of the factors responsible for the allometric relationship between these two traits. Here, we use comparative analyses of the Tanganyikan cichlid adaptive radiation to investigate the patterns of evolution for brain size and body size separately. We found that body size exhibited recent bursts of rapid evolution, a pattern that is consistent with divergence linked to ecological specialization. Brain weight on the other hand, showed no bursts of divergence but rather evolved in a gradual manner. Our results thus show that even highly genetically correlated traits can present markedly different patterns of evolution, hence interpreting patterns of evolution of traits from correlations in extant taxa can be misleading. Furthermore, our results suggest, contrary to expectations from theory, that brain size does not play a key role during adaptive radiation.

  1. Applications of deformable image registration: Automatic segmentation and adaptive radiation therapy

    Science.gov (United States)

    Morcos, Marc

    The contents of this thesis are best divided into two components: (i) evaluation of atlas-based segmentation and deformable contour propagation and (ii) adaptive radiation therapy using deformable electron density mapping. The first component of this thesis involves the evaluation of two commercial deformable registration systems with respect to automatic segmentation techniques. Overall, the techniques revealed that manual modifications would be required if the structures were to be used for treatment planning. The automatic segmentation methods utilized by both commercial products serve as an excellent starting point for contouring process and also reduce inter- and intra-physician variability when contouring. In the second component, we developed a framework for dose accumulation adaptive radiation therapy. By registering the planning computed tomography (CT) images to the weekly cone-beam computed tomography (CBCT) images, we were able to produce modified CBCT images which possessed CT Hounsfield units; this was achieved by using deformable image registration. Dose distributions were recalculated onto the modified CBCT images and then compared to the planned dose distributions. Results indicated that deformable electron density mapping is a feasible technique to allow dose distributions to be recalculated on pre-treatment CBCT scans.

  2. Efficiently adapting graphical models for selectivity estimation

    DEFF Research Database (Denmark)

    Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian S.

    2013-01-01

    in estimation accuracy. We show how to efficiently construct such a graphical model from the database using only two-way join queries, and we show how to perform selectivity estimation in a highly efficient manner. We integrate our algorithms into the PostgreSQL DBMS. Experimental results indicate...

  3. Adaptation dynamics of the quasispecies model

    Indian Academy of Sciences (India)

    Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560 064, India ... lation can increase with time in either a smooth continuous manner [2] or sudden ... 2. Quasispecies model and its steady state. We consider an infinitely large population reproducing asexually via the elementary processes of selection and ...

  4. Modeling the radiation balance within a planted trench system

    Science.gov (United States)

    Kramer, Isaac; Agam, Nurit; Berliner, Pedro

    2017-04-01

    Micro-catchment systems (MCs) are designed to harvest and utilize rainwater, with the aim of supporting tree growth in arid regions. While MCs were traditionally built with shallow infiltration basins, recent research indicates that MCs with deeper basins retain more water than MCs with shallower basins, and that trees grown in deeper MCs outperform those grown in shallow MCs. This may be partially because the flux of incoming shortwave radiation reaching the surface is decreased in deeper basins. The degree to which the incoming radiation reaching the floor of the MC is reduced, however, depends on the system's dimensions and orientation, geographical location, canopy geometry, soil properties, date, and time. Existing radiation models are either capable of modeling radiation penetration into trenches, or describe transmission of radiation through canopy. None can describe the penetration of radiation through canopy into a trench. The goal of our research was to model the incoming shortwave and longwave radiation flux densities reaching a MC floor in which trees are planted. The model calculates the incoming shortwave and longwave radiation at any given point on the trench floor. In calculating the incoming shortwave radiation, the model considers direct radiation, diffuse radiation, and direct and diffuse radiation reflected from the walls of the MC system. The model also accounts for possible shading and attenuation of the radiation caused by the presence of a canopy in the system. Validation of the model is performed by comparing measured incoming shortwave radiation to modeled outputs. The measurements are conducted at various positions within existing trenches with width of 1 m and length of 12 m, in which three 6-year old olive trees are grown, with 4 m spacing between trees. The flexibility of the model and the ability to change the trench configurations will help enable the maximization of water use efficiency inside MC systems.

  5. Neuro- PI controller based model reference adaptive control for ...

    African Journals Online (AJOL)

    The control input to the plant is given by the sum of the output of conventional MRAC and the output of NN. The proposed Neural Network -based Model Reference Adaptive Controller (NN-MRAC) can significantly improve the system behavior and force the system to follow the reference model and minimize the error ...

  6. The behavior of adaptive bone-remodeling simulation models

    NARCIS (Netherlands)

    H.H. Weinans (Harrie); R. Huiskes (Rik); H.J. Grootenboer

    1992-01-01

    textabstractThe process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule

  7. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  8. Statistical Modeling for Radiation Hardness Assurance: Toward Bigger Data

    Science.gov (United States)

    Ladbury, R.; Campola, M. J.

    2015-01-01

    New approaches to statistical modeling in radiation hardness assurance are discussed. These approaches yield quantitative bounds on flight-part radiation performance even in the absence of conventional data sources. This allows the analyst to bound radiation risk at all stages and for all decisions in the RHA process. It also allows optimization of RHA procedures for the project's risk tolerance.

  9. Evolutionary Influences of Plastic Behavioral Responses Upon Environmental Challenges in an Adaptive Radiation.

    Science.gov (United States)

    Foster, Susan A; Wund, Matthew A; Baker, John A

    2015-09-01

    At the end of the 19th century, the suggestion was made by several scientists, including J. M. Baldwin, that behavioral responses to environmental change could both rescue populations from extinction (Baldwin Effect) and influence the course of subsequent evolution. Here we provide the historical and theoretical background for this argument and offer evidence of the importance of these ideas for understanding how animals (and other organisms that exhibit behavior) will respond to the rapid environmental changes caused by human activity. We offer examples from long-term research on the evolution of behavioral and other phenotypes in the adaptive radiation of the threespine stickleback fish (Gasterosteus aculeatus), a radiation in which it is possible to infer ancestral patterns of behavioral plasticity relative to the post-glacial freshwater radiation in northwestern North America, and to use patterns of parallelism and contemporary evolution to understand adaptive causes of responses to environmental modification. Our work offers insights into the complexity of cognitive responses to environmental change, and into the importance of examining multiple aspects of the phenotype simultaneously, if we are to understand how behavioral shifts contribute to the persistence of populations and to subsequent evolution. We conclude by discussing the origins of apparent novelties induced by environmental shifts, and the importance of accounting for geographic variation within species if we are to accurately anticipate the effects of anthropogenic environmental modification on the persistence and evolution of animals. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  10. Algorithms for Optimal Model Distributions in Adaptive Switching Control Schemes

    Directory of Open Access Journals (Sweden)

    Debarghya Ghosh

    2016-03-01

    Full Text Available Several multiple model adaptive control architectures have been proposed in the literature. Despite many advances in theory, the crucial question of how to synthesize the pairs model/controller in a structurally optimal way is to a large extent not addressed. In particular, it is not clear how to place the pairs model/controller is such a way that the properties of the switching algorithm (e.g., number of switches, learning transient, final performance are optimal with respect to some criteria. In this work, we focus on the so-called multi-model unfalsified adaptive supervisory switching control (MUASSC scheme; we define a suitable structural optimality criterion and develop algorithms for synthesizing the pairs model/controller in such a way that they are optimal with respect to the structural optimality criterion we defined. The peculiarity of the proposed optimality criterion and algorithms is that the optimization is carried out so as to optimize the entire behavior of the adaptive algorithm, i.e., both the learning transient and the steady-state response. A comparison is made with respect to the model distribution of the robust multiple model adaptive control (RMMAC, where the optimization considers only the steady-state ideal response and neglects any learning transient.

  11. A mathematical model for radiation hydrodynamics

    Directory of Open Access Journals (Sweden)

    Sebastiano Pennisi

    1990-11-01

    Full Text Available We adopt here the idea of describing a radiation field by means of the radiation energy density E and the radiative flux vector F which must satisfy a set of evolution equations; in these equations an unknown tensorial function P(E,F appears that is determined by the methods of extended thermodynamics.

  12. Adapting to life: Ecosystem and ocean modelling using dynamic adaptive remeshing

    Science.gov (United States)

    Hill, J.; Popova, E.; Piggott, M. D.; Ham, D.; Srokosz, M. A.

    2011-12-01

    Primary production in the world ocean is significantly controlled by meso- and sub-mesocale process. Thus existing general circulation models applied at the basin and global scale are limited by two opposing requirements: to have high enough spatial resolution to resolve fully the processes involved (down to order 1km) and the need to realistically simulate the basin scale. No model can currently satisfy both of these constraints. Adaptive unstructured mesh techniques offer a fundamental advantage over standard fixed structured mesh models by automatically generating very high resolution at locations only where and when it is required. Mesh adaptivity automatically resolves fine-scale physical or biological features as they develop, optimising computational cost by reducing resolution where it is not required. Here, we describe Fluidity-ICOM, a non-hydrostatic, finite-element, unstructured mesh ocean model, into which we have embedded a six-component ecosystem model, that has been validated at a number of ocean locations. We demonstrate the benefits of adaptive unstructured mesh techniques for coupled physical and biological modelling by examining a convective example where a chimney of cold water is allowed to restratify. The restratification leads to changes in the mixed layer depth, pumping nutrients from depth, affecting the dynamics and spatial distribution of the ecosystem components. We examine the effects of a number of factors, including wind stress and temperature fluxes, on the ecosystem during the restratification. Comparing results between the fixed and adaptive mesh simulations shows the importance of sub-mesoscale processes in determining the biological response, and stresses the need for high-resolution in coupled biology-physics ocean models.

  13. Modeling Adaptive and Nonadaptive Responses of Populations to Environmental Change.

    Science.gov (United States)

    Coulson, Tim; Kendall, Bruce E; Barthold, Julia; Plard, Floriane; Schindler, Susanne; Ozgul, Arpat; Gaillard, Jean-Michel

    2017-09-01

    Understanding how the natural world will be impacted by environmental change over the coming decades is one of the most pressing challenges facing humanity. Addressing this challenge is difficult because environmental change can generate both population-level plastic and evolutionary responses, with plastic responses being either adaptive or nonadaptive. We develop an approach that links quantitative genetic theory with data-driven structured models to allow prediction of population responses to environmental change via plasticity and adaptive evolution. After introducing general new theory, we construct a number of example models to demonstrate that evolutionary responses to environmental change over the short-term will be considerably slower than plastic responses and that the rate of adaptive evolution to a new environment depends on whether plastic responses are adaptive or nonadaptive. Parameterization of the models we develop requires information on genetic and phenotypic variation and demography that will not always be available, meaning that simpler models will often be required to predict responses to environmental change. We consequently develop a method to examine whether the full machinery of the evolutionarily explicit models we develop will be needed to predict responses to environmental change or whether simpler nonevolutionary models that are now widely constructed may be sufficient.

  14. Interactions between a tropical mixed boundary layer and cumulus convection in a radiative-convective model

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Caryn L. [Pennsylvania State Univ., University Park, PA (United States)

    1993-05-01

    This report details a radiative-convective model, combining previously developed cumulus, stable cloud and radiation parameterizations with a boundary layer scheme, which was developed in the current study. The cloud model was modified to incorporate the effects of both small and large clouds. The boundary layer model was adapted from a mixed layer model was only slightly modified to couple it with the more sophisticated cloud model. The model was tested for a variety of imposed divergence profiles, which simulate the regions of the tropical ocean from approximately the intertropical Convergence Zone (ITCZ) to the subtropical high region. The sounding used to initialize the model for most of the runs is from the trade wind region of ATEX. For each experiment, the model was run with a timestep of 300 seconds for a period of 7 days.

  15. Stock market modeling and forecasting a system adaptation approach

    CERN Document Server

    Zheng, Xiaolian

    2013-01-01

    Stock Market Modeling translates experience in system adaptation gained in an engineering context to the modeling of financial markets with a view to improving the capture and understanding of market dynamics. The modeling process is considered as identifying a dynamic system in which a real stock market is treated as an unknown plant and the identification model proposed is tuned by feedback of the matching error. Like a physical system, a stock market exhibits fast and slow dynamics corresponding to internal (such as company value and profitability) and external forces (such as investor sentiment and commodity prices) respectively. The framework presented here, consisting of an internal model and an adaptive filter, is successful at considering both fast and slow market dynamics. A double selection method is efficacious in identifying input factors influential in market movements, revealing them to be both frequency- and market-dependent.   The authors present work on both developed and developing markets ...

  16. Subjective quality assessment of an adaptive video streaming model

    Science.gov (United States)

    Tavakoli, Samira; Brunnström, Kjell; Wang, Kun; Andrén, Börje; Shahid, Muhammad; Garcia, Narciso

    2014-01-01

    With the recent increased popularity and high usage of HTTP Adaptive Streaming (HAS) techniques, various studies have been carried out in this area which generally focused on the technical enhancement of HAS technology and applications. However, a lack of common HAS standard led to multiple proprietary approaches which have been developed by major Internet companies. In the emerging MPEG-DASH standard the packagings of the video content and HTTP syntax have been standardized; but all the details of the adaptation behavior are left to the client implementation. Nevertheless, to design an adaptation algorithm which optimizes the viewing experience of the enduser, the multimedia service providers need to know about the Quality of Experience (QoE) of different adaptation schemes. Taking this into account, the objective of this experiment was to study the QoE of a HAS-based video broadcast model. The experiment has been carried out through a subjective study of the end user response to various possible clients' behavior for changing the video quality taking different QoE-influence factors into account. The experimental conclusions have made a good insight into the QoE of different adaptation schemes which can be exploited by HAS clients for designing the adaptation algorithms.

  17. GAUSSIAN MIXTURE MODELS FOR ADAPTATION OF DEEP NEURAL NETWORK ACOUSTIC MODELS IN AUTOMATIC SPEECH RECOGNITION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Natalia A. Tomashenko

    2016-11-01

    Full Text Available Subject of Research. We study speaker adaptation of deep neural network (DNN acoustic models in automatic speech recognition systems. The aim of speaker adaptation techniques is to improve the accuracy of the speech recognition system for a particular speaker. Method. A novel method for training and adaptation of deep neural network acoustic models has been developed. It is based on using an auxiliary GMM (Gaussian Mixture Models model and GMMD (GMM-derived features. The principle advantage of the proposed GMMD features is the possibility of performing the adaptation of a DNN through the adaptation of the auxiliary GMM. In the proposed approach any methods for the adaptation of the auxiliary GMM can be used, hence, it provides a universal method for transferring adaptation algorithms developed for GMMs to DNN adaptation.Main Results. The effectiveness of the proposed approach was shown by means of one of the most common adaptation algorithms for GMM models – MAP (Maximum A Posteriori adaptation. Different ways of integration of the proposed approach into state-of-the-art DNN architecture have been proposed and explored. Analysis of choosing the type of the auxiliary GMM model is given. Experimental results on the TED-LIUM corpus demonstrate that, in an unsupervised adaptation mode, the proposed adaptation technique can provide, approximately, a 11–18% relative word error reduction (WER on different adaptation sets, compared to the speaker-independent DNN system built on conventional features, and a 3–6% relative WER reduction compared to the SAT-DNN trained on fMLLR adapted features.

  18. Student Modelling in Adaptive E-Learning Systems

    Directory of Open Access Journals (Sweden)

    Clemens Bechter

    2011-09-01

    Full Text Available Most e-Learning systems provide web-based learning so that students can access the same online courses via the Internet without adaptation, based on each student's profile and behavior. In an e-Learning system, one size does not fit all. Therefore, it is a challenge to make e-Learning systems that are suitably “adaptive”. The aim of adaptive e-Learning is to provide the students the appropriate content at the right time, means that the system is able to determine the knowledge level, keep track of usage, and arrange content automatically for each student for the best learning result. This study presents a proposed system which includes major adaptive features based on a student model. The proposed system is able to initialize the student model for determining the knowledge level of a student when the student registers for the course. After a student starts learning the lessons and doing many activities, the system can track information of the student until he/she takes a test. The student’s knowledge level, based on the test scores, is updated into the system for use in the adaptation process, which combines the student model with the domain model in order to deliver suitable course contents to the students. In this study, the proposed adaptive e-Learning system is implemented on an “Introduction to Java Programming Language” course, using LearnSquare software. After the system was tested, the results showed positive feedback towards the proposed system, especially in its adaptive capability.

  19. Modelling of a holographic interferometry based calorimeter for radiation dosimetry

    Science.gov (United States)

    Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.

    2017-08-01

    In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.

  20. Mutagenic adaptive response to high-LET radiation in human lymphoblastoid cells exposed to X-rays.

    Science.gov (United States)

    Varès, Guillaume; Wang, Bing; Tanaka, Kaoru; Kakimoto, Ayana; Eguchi-Kasai, Kyomi; Nenoi, Mitsuru

    2011-01-10

    The ability of cells to adapt low-dose or low-dose rate radiation is well known. High-LET radiation has unique characteristics, and the data concerning low doses effects and high-LET radiation remain fragmented. In this study, we assessed in vitro the ability of low doses of X-rays to induce an adaptive response (AR) to a subsequent challenging dose of heavy-ion radiation. Lymphoblastoid cells (TK6, AHH-1, NH32) were exposed to priming 0.02-0.1Gy X-rays, followed 6h later by challenging 1Gy heavy-ion radiation (carbon-ion: 20 and 40keV/μm, neon-ion: 150keV/μm). Pre-exposure of p53-competent cells resulted in decreased mutation frequencies at hypoxanthine-guanine phosphoribosyl transferase locus and different H2AX phosphorylation kinetics, as compared to cells exposed to challenging radiation alone. This phenomenon did not seem to be linked with cell cycle effects or radiation-induced apoptosis. Taken together, our results suggested the existence of an AR to mutagenic effects of heavy-ion radiation in lymphoblastoid cells and the involvement of double-strand break repair mechanisms. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Effective UV radiation from model calculations and measurements

    Science.gov (United States)

    Feister, Uwe; Grewe, Rolf

    1994-01-01

    Model calculations have been made to simulate the effect of atmospheric ozone and geographical as well as meteorological parameters on solar UV radiation reaching the ground. Total ozone values as measured by Dobson spectrophotometer and Brewer spectrometer as well as turbidity were used as input to the model calculation. The performance of the model was tested by spectroradiometric measurements of solar global UV radiation at Potsdam. There are small differences that can be explained by the uncertainty of the measurements, by the uncertainty of input data to the model and by the uncertainty of the radiative transfer algorithms of the model itself. Some effects of solar radiation to the biosphere and to air chemistry are discussed. Model calculations and spectroradiometric measurements can be used to study variations of the effective radiation in space in space time. The comparability of action spectra and their uncertainties are also addressed.

  2. Model-free adaptive sliding mode controller design for generalized ...

    Indian Academy of Sciences (India)

    L M WANG

    2017-08-16

    Aug 16, 2017 ... Abstract. A novel model-free adaptive sliding mode strategy is proposed for a generalized projective synchronization (GPS) between two entirely unknown fractional-order chaotic systems subject to the external disturbances. To solve the difficulties from the little knowledge about the master–slave system ...

  3. Space Weather Forecasts Driven by the ADAPT Model

    Science.gov (United States)

    Henney, C. J.; Arge, C. N.; Shurkin, K.; Schooley, A. K.; Hock, R. A.; White, S.

    2015-12-01

    In this presentation, we highlight recent progress to forecast key space weather parameters with the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model. Driven by a magnetic flux transport model, ADAPT evolves global solar magnetic maps forward 1 to 7 days in the future to provide realistic estimates of the solar near-side field distribution used to forecast the solar wind, F10.7 (i.e., the solar 10.7 cm radio flux), extreme ultraviolet (EUV) and far ultraviolet (FUV) irradiance. Input to the ADAPT model includes solar near-side estimates of the inferred photospheric magnetic field from space-based (i.e., HMI) and ground-based (e.g., GONG & VSM) instruments. We summarize the recent findings that: 1) the sum of the absolute value of strong magnetic fields, associated with sunspots, is shown to correlate well with the observed daily F10.7 variability (Henney et al. 2012); and 2) the sum of the absolute value of weak magnetic fields, associated with plage regions, is shown to correlate well with EUV and FUV irradiance variability (Henney et al. 2015). In addition, recent progress to utilize the ADAPT global maps as input to the Wang-Sheeley-Arge (WSA) coronal and solar wind model is presented. We also discuss the challenges of observing less than half of the solar surface at any given time and the need for future magnetograph instruments near L1 and L5.

  4. Why Reinvent the Wheel? Let's Adapt Our Institutional Assessment Model.

    Science.gov (United States)

    Aguirre, Francisco; Hawkins, Linda

    This paper reports on the implementation of an Integrated Assessment and Strategic Planning (IASP) process to comply with accountability requirements at the community college of New Mexico State University at Alamogordo. The IASP model adapted an existing compliance matrix and applied it to the business college program in 1995 to assess and…

  5. Fast, Sequence Adaptive Parcellation of Brain MR Using Parametric Models

    DEFF Research Database (Denmark)

    Puonti, Oula; Iglesias, Juan Eugenio; Van Leemput, Koen

    2013-01-01

    -of-the-art segmentation performance in both cortical and subcortical structures, while retaining all the benefits of generative parametric models, including high computational speed, automatic adaptiveness to changes in image contrast when different scanner platforms and pulse sequences are used, and the ability...

  6. Adapting to life: simulating an ecosystem within an unstructured adaptive mesh ocean model

    Science.gov (United States)

    Hill, J.; Piggott, M. D.; Popova, E. E.; Ham, D. A.; Srokosz, M. A.

    2010-12-01

    Ocean oligotrophic gyres are characterised by low rates of primary production. Nevertheless their great area, covering roughly a third of the Earth's surface, and probably constituting the largest ecosystem on the planet means that they play a crucial role in global biogeochemistry. Current models give values of primary production two orders of magnitude lower than those observed, thought to be due to the non-resolution of sub-mesoscale phenomena, which play a significant role in nutrient supply in such areas. However, which aspects of sub-mesoscale processes are responsible for the observed higher productivity is an open question. Existing models are limited by two opposing requirements: to have high enough spatial resolution to resolve fully the processes involved (down to order 1km) and the need to realistically simulate the full gyre. No model can currently satisfy both of these constraints. Here, we detail Fluidity-ICOM, a non-hydrostatic, finite-element, unstructured mesh ocean model. Adaptive mesh techniques allow us to focus resolution where and when we require it. We present the first steps towards performing a full North Atlantic simulation, by showing that adaptive mesh techniques can be used in conjunction with both turbulent parametrisations and ecosystems models in psuedo-1D water columns. We show that the model can successfully reproduce the annual variation of the mixed layer depth at keys locations within the North Atlantic gyre, with adaptive meshing producing more accurate results than the fixed mesh simulations, with fewer degrees of freedom. Moreover, the model is capable of reproducing the key behaviour of the ecosystem in those locations.

  7. Rates of morphological evolution in Captorhinidae: an adaptive radiation of Permian herbivores

    Directory of Open Access Journals (Sweden)

    Neil Brocklehurst

    2017-04-01

    Full Text Available The evolution of herbivory in early tetrapods was crucial in the establishment of terrestrial ecosystems, although it is so far unclear what effect this innovation had on the macro-evolutionary patterns observed within this clade. The clades that entered this under-filled region of ecospace might be expected to have experienced an “adaptive radiation”: an increase in rates of morphological evolution and speciation driven by the evolution of a key innovation. However such inferences are often circumstantial, being based on the coincidence of a rate shift with the origin of an evolutionary novelty. The conclusion of an adaptive radiation may be made more robust by examining the pattern of the evolutionary shift; if the evolutionary innovation coincides not only with a shift in rates of morphological evolution, but specifically in the morphological characteristics relevant to the ecological shift of interest, then one may more plausibly infer a causal relationship between the two. Here I examine the impact of diet evolution on rates of morphological change in one of the earliest tetrapod clades to evolve high-fibre herbivory: Captorhinidae. Using a method of calculating heterogeneity in rates of discrete character change across a phylogeny, it is shown that a significant increase in rates of evolution coincides with the transition to herbivory in captorhinids. The herbivorous captorhinids also exhibit greater morphological disparity than their faunivorous relatives, indicating more rapid exploration of new regions of morphospace. As well as an increase in rates of evolution, there is a shift in the regions of the skeleton undergoing the most change; the character changes in the herbivorous lineages are concentrated in the mandible and dentition. The fact that the increase in rates of evolution coincides with increased change in characters relating to food acquisition provides stronger evidence for a causal relationship between the herbivorous

  8. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  9. The radiation performance standard. A presentation model for ionizing radiation in the living environment

    International Nuclear Information System (INIS)

    Schaap, L.E.J.J.; Bosmans, G.; Van der Graaf, E.R.; Hendriks, Ch.F.

    1998-01-01

    By means of the so-called radiation performance standard (SPN, abbreviated in Dutch) the total radioactivity from building constructions which contributes to the indoor radiation dose can be calculated. The SPN is implemented with related boundary values and is part of the Building Decree ('Bouwbesluit') in the Netherlands. The model, presented in this book, forms the basis of a new Dutch radiation protection standard, to be published by the Dutch Institute for Standardization NEN (formerly NNI). 14 refs

  10. Semiparametric Efficient Adaptive Estimation of the PTTGARCH model

    OpenAIRE

    Ciccarelli, Nicola

    2016-01-01

    Financial data sets exhibit conditional heteroskedasticity and asymmetric volatility. In this paper we derive a semiparametric efficient adaptive estimator of a conditional heteroskedasticity and asymmetric volatility GARCH-type model (i.e., the PTTGARCH(1,1) model). Via kernel density estimation of the unknown density function of the innovation and via the Newton-Raphson technique applied on the root-n-consistent quasi-maximum likelihood estimator, we construct a more efficient estimator tha...

  11. ADAPTATION OF WOFOST MODEL FROM CGMS TO ROMANIAN CONDITIONS

    OpenAIRE

    LAZĂR CĂTĂLIN; BARUTH BETTINA; MICALE FABIO; LAZĂR DANIELA ANCA

    2009-01-01

    This preliminary study is an inventory of the main resources and difficulties in adaptation of the Crop Growth Monitoring System (CGMS) used by Agri4cast unit of IPSC from Joint Research Centre (JRC) - Ispra of European Commission to conditions of Romania.In contrast with the original model calibrated mainly with statistical average yields at national level, for local calibration of the model the statistical yields at lower administrative units (macroregion or county) must be used. In additio...

  12. A phoneme-based student model for adaptive spelling training

    OpenAIRE

    Baschera, Gian-Marco; Gross, Markus H.

    2009-01-01

    We present a novel phoneme-based student model for spelling training. Our model is data driven, adapts to the user and provides information for, e.g., optimal word selection. We describe spelling errors using a set of features accounting for phonemic, capitalization, typo, and other error categories. We compute the influence of individual features on the error expectation values based on previous input data using Poisson regression. This enables us to predict error expectation values and to c...

  13. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  14. DNA sequence analysis of HPRT- mutants induced in human lymphoblastoid cells adapted to ionizing radiation

    International Nuclear Information System (INIS)

    Rigaud, O.; Laquerbe, A.; Moustacchi, E.

    1995-01-01

    Radioadaptation to the mutagenic effect of ionizing radiation by pre-exposure of human cells to a low dose has been shown to decrease the proportion of HPRT - mutants of the deletion type. To determine whether point mutations would be affected by the adaptive treatment, the molecular nature of mutations induced after exposure to low, high or low plus high doses was established. DNA sequencing of 38 point mutants which still expressed mRNA was performed using reverse transcription/polymerase chain reaction amplification. Under all conditions, base substitutions were the most common mutational event (range 72-80%), the remainder being frameshift and small deletions. The types and proportions of base changes did not appear to be differentially modified. A clustering of mutations was observed in exon 8, independently of the radiation protocol. About 40% of the mutants exhibited incorrect splicing of mRNA. The lack of striking modifications between the different molecular spectra of point mutations suggests that low-dose pre-exposure does not affect the production and/or the processing of lesions leading to point mutations. Thus the highly significant effect triggered by the low dose is the preferential reduction of deletion-type mutations. In view of the actual small data set, definitive conclusions will be drawn only when our observations are confirmed or can be generalized to human endogenous loci other than the HPRT locus, which is particularly prone to the recovery of deletion-type mutations. 37 refs., 1 fig., 5 tabs

  15. Adaptive statistical iterative reconstruction reduces patient radiation dose in neuroradiology CT studies.

    Science.gov (United States)

    Komlosi, Peter; Zhang, Yanrong; Leiva-Salinas, Carlos; Ornan, David; Patrie, James T; Xin, Wenjun; Grady, Deborah; Wintermark, Max

    2014-03-01

    Adaptive statistical iterative reconstruction (ASIR) can decrease image noise, thereby generating CT images of comparable diagnostic quality with less radiation. The purpose of this study is to quantify the effect of systematic use of ASIR versus filtered back projection (FBP) for neuroradiology CT protocols on patients' radiation dose and image quality. We evaluated the effect of ASIR on six types of neuroradiologic CT studies: adult and pediatric unenhanced head CT, adult cervical spine CT, adult cervical and intracranial CT angiography, adult soft tissue neck CT with contrast, and adult lumbar spine CT. For each type of CT study, two groups of 100 consecutive studies were retrospectively reviewed: 100 studies performed with FBP and 100 studies performed with ASIR/FBP blending factor of 40 %/60 % with appropriate noise indices. The weighted volume CT dose index (CTDIvol), dose-length product (DLP) and noise were recorded. Each study was also reviewed for image quality by two reviewers. Continuous and categorical variables were compared by t test and free permutation test, respectively. For adult unenhanced brain CT, CT cervical myelography, cervical and intracranial CT angiography and lumbar spine CT both CTDIvol and DLP were lowered by up to 10.9 % (p neuroradiology CT examinations because this approach affords a significant dose reduction while preserving image quality.

  16. Adaptive response induced by low doses of ionizing radiation in human lymphocytes

    International Nuclear Information System (INIS)

    Frati, Diego Libkind; Bunge, Maria M.

    2001-01-01

    The term adaptive response (AR) applies to the phenomenon of protection or enhanced repair induced by a small dose of a mutagenic agent. In order to determine the existence of AR in human lymphocytes for two different irradiation schemes, microcultures of blood from 4 donors were irradiated. Samples were exposed 24 hours (hr) after phytohemagglutinin stimulation to an adapting dose of 0,01 Gy and to a challenging dose of 1,5 Gy either 6 or 24 hr later (irradiation scheme 24+30 or 24+48, respectively). Gamma radiation from a 2,5 MeV Linac was used in all experiments. A cytogenetic analysis of unstable chromosome aberrations was applied as the endpoint. High inter-individual variability was found for the first irradiation scheme: one expressed AR, two did not and the last showed an apparent synergistic response. For the second irradiation scheme, low mitotic indices (MI) were found, suggesting a G2 arrest. When a series of harvesting times were applied for the last donor, normal MI were obtained only harvesting after 58 hr. An AR was found when harvesting at 72 hr but not at 58 hr. (author)

  17. Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2016-02-01

    Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sparse and short span. To address this problem we propose and develop an adaptive two-stage forecasting approach for modeling multivariate, irregularly sampled clinical time series of varying lengths. The proposed model (1) learns the population trend from a collection of time series for past patients; (2) captures individual-specific short-term multivariate variability; and (3) adapts by automatically adjusting its predictions based on new observations. The proposed forecasting model is evaluated on a real-world clinical time series dataset. The results demonstrate the benefits of our approach on the prediction tasks for multivariate, irregularly sampled clinical time series, and show that it can outperform both the population based and patient-specific time series prediction models in terms of prediction accuracy.

  18. Construction of Gait Adaptation Model in Human Splitbelt Treadmill Walking

    Directory of Open Access Journals (Sweden)

    Yuji Otoda

    2009-01-01

    Full Text Available There are a huge number of studies that measure kinematics, dynamics, the oxygen uptake and so on in human walking on the treadmill. Especially in walking on the splitbelt treadmill where the speed of the right and left belt is different, remarkable differences in kinematics are seen between normal and cerebellar disease subjects. In order to construct the gait adaptation model of such human splitbelt treadmill walking, we proposed a simple control model and made a newly developed 2D biped robot walk on the splitbelt treadmill. We combined the conventional limit-cycle based control consisting of joint PD-control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. We showed that the data of robot (normal subject model and cerebellum disease subject model experiments had high similarities with the data of normal subjects and cerebellum disease subjects experiments carried out by Reisman et al. (2005 and Morton and Bastian (2006 in ratios and patterns. We also showed that P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in splitbelt walking and P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed the gait adaptation model in human splitbelt treadmill walking and confirmed the validity of our hypotheses and the proposed model using the biped robot.

  19. Modeling thermal dilepton radiation for SIS experiments

    Energy Technology Data Exchange (ETDEWEB)

    Seck, Florian [TU Darmstadt (Germany); Collaboration: HADES-Collaboration

    2016-07-01

    Dileptons are radiated during the whole time evolution of a heavy-ion collision and leave the interaction zone unaffected. Thus they carry valuable information about the hot and dense medium created in those collisions to the detector. Realistic dilepton emission rates and an accurate description of the fireball's space-time evolution are needed to properly describe the contribution of in-medium signals to the dilepton invariant mass spectrum. In this presentation we demonstrate how this can be achieved at SIS collision energies. The framework is implemented into the event generator Pluto which is used by the HADES and CBM experiments to produce their hadronic freeze-out cocktails. With the help of an coarse-graining approach to model the fireball evolution and pertinent dilepton rates via a parametrization of the Rapp-Wambach in-medium ρ meson spectral function, the thermal contribution to the spectrum can be calculated. The results also enable us to get an estimate of the fireball lifetime at SIS18 energies.

  20. Automatic Segmentation and Online virtualCT in Head-and-Neck Adaptive Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Peroni, Marta, E-mail: marta.peroni@mail.polimi.it [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Ciardo, Delia [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Spadea, Maria Francesca [Department of Experimental and Clinical Medicine, Universita degli Studi Magna Graecia, Catanzaro (Italy); Riboldi, Marco [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy); Comi, Stefania; Alterio, Daniela [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Baroni, Guido [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy); Orecchia, Roberto [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Universita degli Studi di Milano, Milano (Italy); Medical Department, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy)

    2012-11-01

    Purpose: The purpose of this work was to develop and validate an efficient and automatic strategy to generate online virtual computed tomography (CT) scans for adaptive radiation therapy (ART) in head-and-neck (HN) cancer treatment. Method: We retrospectively analyzed 20 patients, treated with intensity modulated radiation therapy (IMRT), for an HN malignancy. Different anatomical structures were considered: mandible, parotid glands, and nodal gross tumor volume (nGTV). We generated 28 virtualCT scans by means of nonrigid registration of simulation computed tomography (CTsim) and cone beam CT images (CBCTs), acquired for patient setup. We validated our approach by considering the real replanning CT (CTrepl) as ground truth. We computed the Dice coefficient (DSC), center of mass (COM) distance, and root mean square error (RMSE) between correspondent points located on the automatically segmented structures on CBCT and virtualCT. Results: Residual deformation between CTrepl and CBCT was below one voxel. Median DSC was around 0.8 for mandible and parotid glands, but only 0.55 for nGTV, because of the fairly homogeneous surrounding soft tissues and of its small volume. Median COM distance and RMSE were comparable with image resolution. No significant correlation between RMSE and initial or final deformation was found. Conclusion: The analysis provides evidence that deformable image registration may contribute significantly in reducing the need of full CT-based replanning in HN radiation therapy by supporting swift and objective decision-making in clinical practice. Further work is needed to strengthen algorithm potential in nGTV localization.

  1. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  2. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    Science.gov (United States)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  3. OMEGA: The operational multiscale environment model with grid adaptivity

    International Nuclear Information System (INIS)

    Bacon, D.P.

    1995-01-01

    This review talk describes the OMEGA code, used for weather simulation and the modeling of aerosol transport through the atmosphere. Omega employs a 3D mesh of wedge shaped elements (triangles when viewed from above) that adapt with time. Because wedges are laid out in layers of triangular elements, the scheme can utilize structured storage and differencing techniques along the elevation coordinate, and is thus a hybrid of structured and unstructured methods. The utility of adaptive gridding in this moded, near geographic features such as coastlines, where material properties change discontinuously, is illustrated. Temporal adaptivity was used additionally to track moving internal fronts, such as clouds of aerosol contaminants. The author also discusses limitations specific to this problem, including manipulation of huge data bases and fixed turn-around times. In practice, the latter requires a carefully tuned optimization between accuracy and computation speed

  4. Radiation treatment for the right naris in a pediatric anesthesia patient using an adaptive oral airway technique

    Energy Technology Data Exchange (ETDEWEB)

    Sponseller, Patricia, E-mail: sponselp@uw.edu; Pelly, Nicole; Trister, Andrew; Ford, Eric; Ermoian, Ralph

    2015-10-01

    Radiation therapy for pediatric patients often includes the use of intravenous anesthesia with supplemental oxygen delivered via the nasal cannula. Here, we describe the use of an adaptive anesthesia technique for electron irradiation of the right naris in a preschool-aged patient treated under anesthesia. The need for an intranasal bolus plug precluded the use of standard oxygen supplementation. This novel technique required the multidisciplinary expertise of anesthesiologists, radiation therapists, medical dosimetrists, medical physicists, and radiation oncologists to ensure a safe and reproducible treatment course.

  5. Radiation treatment for the right naris in a pediatric anesthesia patient using an adaptive oral airway technique

    International Nuclear Information System (INIS)

    Sponseller, Patricia; Pelly, Nicole; Trister, Andrew; Ford, Eric; Ermoian, Ralph

    2015-01-01

    Radiation therapy for pediatric patients often includes the use of intravenous anesthesia with supplemental oxygen delivered via the nasal cannula. Here, we describe the use of an adaptive anesthesia technique for electron irradiation of the right naris in a preschool-aged patient treated under anesthesia. The need for an intranasal bolus plug precluded the use of standard oxygen supplementation. This novel technique required the multidisciplinary expertise of anesthesiologists, radiation therapists, medical dosimetrists, medical physicists, and radiation oncologists to ensure a safe and reproducible treatment course

  6. Clinical Outcomes With Dose-Escalated Adaptive Radiation Therapy for Urinary Bladder Cancer: A Prospective Study

    International Nuclear Information System (INIS)

    Murthy, Vedang; Masodkar, Renuka; Kalyani, Nikhil; Mahantshetty, Umesh; Bakshi, Ganesh; Prakash, Gagan; Joshi, Amit; Prabhash, Kumar; Ghonge, Sujata; Shrivastava, Shyamkishore

    2016-01-01

    Purpose: The purpose of this study was to assess feasibility, clinical outcomes, and toxicity in patients with bladder cancer treated with adaptive, image guided radiation therapy (IGRT) for bladder preservation as a part of trimodality treatment. The role of dose escalation was also studied. Methods and Materials: Forty-four patients with localized bladder cancer were enrolled in a prospective study. They underwent maximal safe resection of bladder tumor and concurrent platinum-based chemotherapy. Patients with large tumors were offered induction chemotherapy. Radiation therapy planning was done using either 3 (n=34) or 6 (n=10) concentrically grown planning target volumes (PTV). Patients received 64 Gy in 32 fractions to the whole bladder and 55 Gy to the pelvic nodes and, if appropriate, a simultaneous integrated boost to the tumor bed to 68 Gy (equivalent dose for 2-Gy fractions assuming α/β of 10 [EQD2] 10  = 68.7 Gy). Daily megavoltage (MV) imaging helped to choose the most appropriate PTV encompassing bladder for the particular day (using plan-of-the-day approach). Results: Most patients (88%) had T2 disease. Sixteen patients (36%) received neoadjuvant chemotherapy. A majority of the patients (73%) received prophylactic nodal irradiation, whereas 55% of the patients received escalated dose to the tumor bed. With a median follow-up of 30 months, the 3-year locoregional control (LRC), disease-free survival, and overall survival (OS) were 78%, 66%, and 67%, respectively. The bladder preservation rate was 83%. LRC (87% vs 68%, respectively, P=.748) and OS (74% vs 60%, respectively, P=.36) rates were better in patients receiving dose escalation. Instances of acute and late Radiation Therapy Oncology Group (RTOG) grade 3 genitourinary toxicity was seen in 5 (11%) and 2 (4%) patients, respectively. There was no acute or late RTOG grade 3 or higher gastrointestinal toxicity. Conclusions: Adaptive IGRT using plan-of-the-day approach for bladder preservation

  7. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  8. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  9. Zealotry effects on opinion dynamics in the adaptive voter model

    Science.gov (United States)

    Klamser, Pascal P.; Wiedermann, Marc; Donges, Jonathan F.; Donner, Reik V.

    2017-11-01

    The adaptive voter model has been widely studied as a conceptual model for opinion formation processes on time-evolving social networks. Past studies on the effect of zealots, i.e., nodes aiming to spread their fixed opinion throughout the system, only considered the voter model on a static network. Here we extend the study of zealotry to the case of an adaptive network topology co-evolving with the state of the nodes and investigate opinion spreading induced by zealots depending on their initial density and connectedness. Numerical simulations reveal that below the fragmentation threshold a low density of zealots is sufficient to spread their opinion to the whole network. Beyond the transition point, zealots must exhibit an increased degree as compared to ordinary nodes for an efficient spreading of their opinion. We verify the numerical findings using a mean-field approximation of the model yielding a low-dimensional set of coupled ordinary differential equations. Our results imply that the spreading of the zealots' opinion in the adaptive voter model is strongly dependent on the link rewiring probability and the average degree of normal nodes in comparison with that of the zealots. In order to avoid a complete dominance of the zealots' opinion, there are two possible strategies for the remaining nodes: adjusting the probability of rewiring and/or the number of connections with other nodes, respectively.

  10. Environmental Radiation Effects on Mammals A Dynamical Modeling Approach

    CERN Document Server

    Smirnova, Olga A

    2010-01-01

    This text is devoted to the theoretical studies of radiation effects on mammals. It uses the framework of developed deterministic mathematical models to investigate the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems including hematopoiesis, small intestine and humoral immunity, as well as on the development of autoimmune diseases. Thus, these models can contribute to the development of the system and quantitative approaches in radiation biology and ecology. This text is also of practical use. Its modeling studies of the dynamics of granulocytopoiesis and thrombocytopoiesis in humans testify to the efficiency of employment of the developed models in the investigation and prediction of radiation effects on these hematopoietic lines. These models, as well as the properly identified models of other vital body systems, could provide a better understanding of the radiation risks to health. The modeling predictions will enable the implementation of more ef...

  11. Radiation exposure modeling and project schedule visualization

    International Nuclear Information System (INIS)

    Jaquish, W.R.; Enderlin, V.R.

    1995-10-01

    This paper discusses two applications using IGRIP (Interactive Graphical Robot Instruction Program) to assist environmental remediation efforts at the Department of Energy (DOE) Hanford Site. In the first application, IGRIP is used to calculate the estimated radiation exposure to workers conducting tasks in radiation environments. In the second, IGRIP is used as a configuration management tool to detect interferences between equipment and personnel work areas for multiple projects occurring simultaneously in one area. Both of these applications have the capability to reduce environmental remediation costs by reducing personnel radiation exposure and by providing a method to effectively manage multiple projects in a single facility

  12. Methodologies in the modeling of combined chemo-radiation treatments

    Science.gov (United States)

    Grassberger, C.; Paganetti, H.

    2016-11-01

    The variety of treatment options for cancer patients has increased significantly in recent years. Not only do we combine radiation with surgery and chemotherapy, new therapeutic approaches such as immunotherapy and targeted therapies are starting to play a bigger role. Physics has made significant contributions to radiation therapy treatment planning and delivery. In particular, treatment plan optimization using inverse planning techniques has improved dose conformity considerably. Furthermore, medical physics is often the driving force behind tumor control and normal tissue complication modeling. While treatment optimization and outcome modeling does focus mainly on the effects of radiation, treatment modalities such as chemotherapy are treated independently or are even neglected entirely. This review summarizes the published efforts to model combined modality treatments combining radiation and chemotherapy. These models will play an increasing role in optimizing cancer therapy not only from a radiation and drug dosage standpoint, but also in terms of spatial and temporal optimization of treatment schedules.

  13. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  14. Animal Models of Ionizing Radiation Damage

    Science.gov (United States)

    1992-01-01

    irradiated vessels of various tissues (54). Severely damaged blood vessels, those with thrombosis or occlusion, can produce marked changes in tissues...X-irradiation of the Rat, Radiat. Res., 20:471-476, 1963. 153. Persinger, M.A., and T.B. Fiss, Mesenteric Mast Cell Degranulation is not Essential... Thrombosis of the Heart Induced by Radiation, Arch. Path., 96:1-4, 1973. 8. Bruner, A., Immediate Changes in Estimated Cardiac Output and Vascular Resistance

  15. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  16. Econometric model for age- and population-dependent radiation exposures

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation

  17. Proteomic study on X-irradiation-responsive proteins and ageing. Search for responsible proteins for radiation adaptive response

    International Nuclear Information System (INIS)

    Miura, Yuri; Kano, Mayumi; Suzuki, Shozo; Endo, Tamao; Toda, Tosifusa; Yamada, Masaki; Nishine, Tsutomu; Urano, Shiro

    2007-01-01

    We investigated high- or low-dose irradiation-responsive proteins using proteomics on two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE), and the effects of ageing on cell responses to radiation in variously aged rat astrocytes. After 5 Gy irradiation, the relative abundance of peroxiredoxin 2, an antioxidant enzyme, and latexin, an inhibitor of carboxypeptidase, increased. The induction of these proteins was suppressed by ageing, suggesting that the response to high-dose radiation decreased with ageing. The relative abundance of elongation factor 2 (EF-2) fragment increased 3 h and reduced 24 h after 0.1 Gy irradiation. Temporal enhancement of the EF-2 fragment due to low-dose irradiation was suppressed by ageing. Since radiation adaptive response in cultured astrocytes was observed 3 h but not 24 h after 0.1 Gy irradiation and suppressed by ageing as previously reported, alteration of the EF-2 fragment corresponded to the radiation adaptive response. We also examined phospho-protein profiles, resulting in the relative abundance of phospho-EF-1β and phospho-β-actin being altered by 0.1 Gy irradiation; however, ageing did not affect the alteration of phospho-EF-1β and phospho-β-actin, unlike the EF-2 fragment. The results suggested that the EF-2 fragment was a possible candidate for the protein responsible for the radiation adaptive response in cultured astrocytes. (author)

  18. A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment

    International Nuclear Information System (INIS)

    Asadi, Ehsan; Ribeiro, Roberto; Behrad Khamesee, Mir; Khajepour, Amir

    2015-01-01

    This paper presents the development of a new electromagnetic hybrid damper which provides regenerative adaptive damping force for various applications. Recently, the introduction of electromagnetic technologies to the damping systems has provided researchers with new opportunities for the realization of adaptive semi-active damping systems with the added benefit of energy recovery. In this research, a hybrid electromagnetic damper is proposed. The hybrid damper is configured to operate with viscous and electromagnetic subsystems. The viscous medium provides a bias and fail-safe damping force while the electromagnetic component adds adaptability and the capacity for regeneration to the hybrid design. The electromagnetic component is modeled and analyzed using analytical (lumped equivalent magnetic circuit) and electromagnetic finite element method (FEM) (COMSOL ® software package) approaches. By implementing both modeling approaches, an optimization for the geometric aspects of the electromagnetic subsystem is obtained. Based on the proposed electromagnetic hybrid damping concept and the preliminary optimization solution, a prototype is designed and fabricated. A good agreement is observed between the experimental and FEM results for the magnetic field distribution and electromagnetic damping forces. These results validate the accuracy of the modeling approach and the preliminary optimization solution. An analytical model is also presented for viscous damping force, and is compared with experimental results The results show that the damper is able to produce damping coefficients of 1300 and 0–238 N s m −1 through the viscous and electromagnetic components, respectively. (paper)

  19. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  20. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Executive summary

    International Nuclear Information System (INIS)

    Jacob, P.; Paretzke, H.G.; Roth, P.

    2000-01-01

    The Association Contract covers a range of research domains that are important to the Radiation Protection Research Action, especially in the areas 'Evaluation of Radiation Risks' and 'Understanding Radiation Mechanisms and Epidemiology'. Three research projects concentrate on radiation dosimetry research and two projects on the modelling of radiation carcinogenesis. The following list gives an overview on the topics and responsible scientific project leaders of the Association Contract: Study of radiation fields and dosimetry at aviation altitudes. Biokinetics and dosimetry of incorporated radionuclides. Dose reconstruction. Biophysical models for the induction of cancer by radiation. Experimental data for the induction of cancer by radiation of different qualities. (orig.)

  1. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    . Dar es Salaam. Durban. Bloemfontein. Antananarivo. Cape Town. Ifrane ... program strategy. A number of CCAA-supported projects have relevance to other important adaptation-related themes such as disaster preparedness and climate.

  2. Evaluation-Function-based Model-free Adaptive Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Agus Naba

    2016-12-01

    Full Text Available Designs of adaptive fuzzy controllers (AFC are commonly based on the Lyapunov approach, which requires a known model of the controlled plant. They need to consider a Lyapunov function candidate as an evaluation function to be minimized. In this study these drawbacks were handled by designing a model-free adaptive fuzzy controller (MFAFC using an approximate evaluation function defined in terms of the current state, the next state, and the control action. MFAFC considers the approximate evaluation function as an evaluative control performance measure similar to the state-action value function in reinforcement learning. The simulation results of applying MFAFC to the inverted pendulum benchmark verified the proposed scheme’s efficacy.

  3. Modeling of Radiative Heat Transfer in an Electric Arc Furnace

    Science.gov (United States)

    Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen

    2017-12-01

    Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.

  4. Effect of low dose radiation in lymphocytes from children exposed to ionizing radiation after the Chernobyl accident. Cytogenetic, chromosome painting, GPA and adaptive response studies

    International Nuclear Information System (INIS)

    Padovani, L.; Appolloni, M.; Anzidei, P.; Spano, M.; Stronati, L.; Testa, A.; Mauro, F.

    1997-01-01

    The present study concerns the monitoring of some children coming from Byelorussian, Ukrainian and Russian republics, exposed to the fall-out, or to the initial acute dose of radiation with the aim of assessing the effects of ionizing radiation on human health and of verifying the persisting of chromosomal damage several years after the accident. Both structural chromosomes damage (conventional cytogenetic and chromosome painting) and molecular mutation (GPA) have been investigated, moreover the possible induction of an adaptive response has been tested. (author)

  5. Goal-oriented model adaptivity for viscous incompressible flows

    KAUST Repository

    van Opstal, T. M.

    2015-04-04

    © 2015, Springer-Verlag Berlin Heidelberg. In van Opstal et al. (Comput Mech 50:779–788, 2012) airbag inflation simulations were performed where the flow was approximated by Stokes flow. Inside the intricately folded initial geometry the Stokes assumption is argued to hold. This linearity assumption leads to a boundary-integral representation, the key to bypassing mesh generation and remeshing. It therefore enables very large displacements with near-contact. However, such a coarse assumption cannot hold throughout the domain, where it breaks down one needs to revert to the original model. The present work formalizes this idea. A model adaptive approach is proposed, in which the coarse model (a Stokes boundary-integral equation) is locally replaced by the original high-fidelity model (Navier–Stokes) based on a-posteriori estimates of the error in a quantity of interest. This adaptive modeling framework aims at taking away the burden and heuristics of manually partitioning the domain while providing new insight into the physics. We elucidate how challenges pertaining to model disparity can be addressed. Essentially, the solution in the interior of the coarse model domain is reconstructed as a post-processing step. We furthermore present a two-dimensional numerical experiments to show that the error estimator is reliable.

  6. Adaptive Gaussian Predictive Process Models for Large Spatial Datasets

    Science.gov (United States)

    Guhaniyogi, Rajarshi; Finley, Andrew O.; Banerjee, Sudipto; Gelfand, Alan E.

    2011-01-01

    Large point referenced datasets occur frequently in the environmental and natural sciences. Use of Bayesian hierarchical spatial models for analyzing these datasets is undermined by onerous computational burdens associated with parameter estimation. Low-rank spatial process models attempt to resolve this problem by projecting spatial effects to a lower-dimensional subspace. This subspace is determined by a judicious choice of “knots” or locations that are fixed a priori. One such representation yields a class of predictive process models (e.g., Banerjee et al., 2008) for spatial and spatial-temporal data. Our contribution here expands upon predictive process models with fixed knots to models that accommodate stochastic modeling of the knots. We view the knots as emerging from a point pattern and investigate how such adaptive specifications can yield more flexible hierarchical frameworks that lead to automated knot selection and substantial computational benefits. PMID:22298952

  7. Multivariable robust adaptive controller using reduced-order model

    Directory of Open Access Journals (Sweden)

    Wei Wang

    1990-04-01

    Full Text Available In this paper a multivariable robust adaptive controller is presented for a plant with bounded disturbances and unmodeled dynamics due to plant-model order mismatches. The robust stability of the closed-loop system is achieved by using the normalization technique and the least squares parameter estimation scheme with dead zones. The weighting polynomial matrices are incorporated into the control law, so that the open-loop unstable or/and nonminimum phase plants can be handled.

  8. An auto-calibration procedure for empirical solar radiation models

    NARCIS (Netherlands)

    Bojanowski, J.S.; Donatelli, Marcello; Skidmore, A.K.; Vrieling, A.

    2013-01-01

    Solar radiation data are an important input for estimating evapotranspiration and modelling crop growth. Direct measurement of solar radiation is now carried out in most European countries, but the network of measuring stations is too sparse for reliable interpolation of measured values. Instead of

  9. Modeling of the bipolar transistor under different pulse ionizing radiations

    Science.gov (United States)

    Antonova, A. M.; Skorobogatov, P. K.

    2017-01-01

    This paper describes a 2D model of the bipolar transistor 2T312 under gamma, X-ray and laser pulse ionizing radiations. Both the Finite Element Discretization and Semiconductor module of Comsol 5.1 are used. There is an analysis of energy deposition in this device under different radiations and the results of transient ionizing current response for some different conditions.

  10. UV- Radiation Absorption by Ozone in a Model Atmosphere using ...

    African Journals Online (AJOL)

    UV- radiation absorption is studied through variation of ozone transmittance with altitude in the atmosphere for radiation in the 9.6μm absorption band using Goody's model atmosphere with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different ...

  11. Language Model Combination and Adaptation Using Weighted Finite State Transducers

    Science.gov (United States)

    Liu, X.; Gales, M. J. F.; Hieronymus, J. L.; Woodland, P. C.

    2010-01-01

    In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences

  12. Altered G{sub 1} checkpoint control determines adaptive survival responses to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boothman, David A.; Meyers, Mark; Odegaard, Eric; Wang, Meizhi [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States)

    1996-11-04

    Adaptive survival responses (ASRs) are observed when cells become more resistant to a high dose of a cytotoxic agent after repeated low dose exposures to that agent or another genotoxic agent. Confluent (G{sub 0}/G{sub 1}) human normal (GM2936B, GM2937A, AG2603, IMR-90), cancer-prone (XPV2359), and neoplastic (U1-Mel, HEp-2, HTB-152) cells were primed with repeated low doses of X-rays (ranging from 0.05-10 cGy/day for 4 days), then challenged with a high dose (290-450 cGy) on day 5. U1-Mel and HEp-2 cells showed greater than 2-fold transient survival enhancement when primed with 1-10 cGy. ASRs in U1-Mel or HEp-2 cells were blocked by cycloheximide or actinomycin D. Increases in cyclins A and D1 mRNAs were noted in primed compared to unirradiated U1-Mel and HEp-2 cells; however, only cyclin A protein levels increased. Cyclin D1 and proliferating cell nuclear antigen (PCNA) protein levels were constitutively elevated in HEp-2 and U1-Mel cells, compared to the other human normal and neoplastic cells examined, and were not altered by low or high doses of radiation. Low dose primed U1-Mel cells entered S-phase 4-6 h faster than unprimed U1-Mel cells upon low-density replating. Similar responses in terms of survival recovery, transcript and protein induction, and altered cell cycle regulation were not observed in the other human normal, cancer-prone or neoplastic cells examined. We hypothesize that only certain human cells can adapt to ionizing radiation by progressing to a point later in G{sub 1} (the A point) where DNA repair processes and radioresistance can be induced. ASRs in human cells correlated well with constitutively elevated levels of PCNA and cyclin D1, as well as inducibility of cyclin A. We propose that a protein complex composed of cyclin D1, PCNA, and possibly cyclin A may play a role in cell cycle regulation and DNA repair, which determine ASRs in human cells.

  13. Altered G1 checkpoint control determines adaptive survival responses to ionizing radiation

    International Nuclear Information System (INIS)

    Boothman, David A.; Meyers, Mark; Odegaard, Eric; Wang, Meizhi

    1996-01-01

    Adaptive survival responses (ASRs) are observed when cells become more resistant to a high dose of a cytotoxic agent after repeated low dose exposures to that agent or another genotoxic agent. Confluent (G 0 /G 1 ) human normal (GM2936B, GM2937A, AG2603, IMR-90), cancer-prone (XPV2359), and neoplastic (U1-Mel, HEp-2, HTB-152) cells were primed with repeated low doses of X-rays (ranging from 0.05-10 cGy/day for 4 days), then challenged with a high dose (290-450 cGy) on day 5. U1-Mel and HEp-2 cells showed greater than 2-fold transient survival enhancement when primed with 1-10 cGy. ASRs in U1-Mel or HEp-2 cells were blocked by cycloheximide or actinomycin D. Increases in cyclins A and D1 mRNAs were noted in primed compared to unirradiated U1-Mel and HEp-2 cells; however, only cyclin A protein levels increased. Cyclin D1 and proliferating cell nuclear antigen (PCNA) protein levels were constitutively elevated in HEp-2 and U1-Mel cells, compared to the other human normal and neoplastic cells examined, and were not altered by low or high doses of radiation. Low dose primed U1-Mel cells entered S-phase 4-6 h faster than unprimed U1-Mel cells upon low-density replating. Similar responses in terms of survival recovery, transcript and protein induction, and altered cell cycle regulation were not observed in the other human normal, cancer-prone or neoplastic cells examined. We hypothesize that only certain human cells can adapt to ionizing radiation by progressing to a point later in G 1 (the A point) where DNA repair processes and radioresistance can be induced. ASRs in human cells correlated well with constitutively elevated levels of PCNA and cyclin D1, as well as inducibility of cyclin A. We propose that a protein complex composed of cyclin D1, PCNA, and possibly cyclin A may play a role in cell cycle regulation and DNA repair, which determine ASRs in human cells

  14. Empirical modeling of solar radiation exergy for Turkey

    International Nuclear Information System (INIS)

    Arslanoglu, Nurullah

    2016-01-01

    Highlights: • Solar radiation exergy is an important parameter in solar energy applications. • Empirical models are developed for estimate solar radiation exergy for Turkey. • The accuracy of the models is evaluated on the basis of statistical indicators. • The new models can be used to predict global solar radiation exergy. - Abstract: In this study, three different empirical models are developed to predict the monthly average daily global solar radiation exergy on a horizontal surface for some provinces in different regions of Turkey by using meteorological data from Turkish State Meteorological Services. To indicate the performance of the models, the following statistical test methods are used: the coefficient of determination (R 2 ), mean bias error (MBE), mean absolute bias error (MABE), mean percent error (MPE), mean absolute percent error (MAPE), root mean square error (RMSE) and the t-statistic method (t sta ). By the improved empirical models in this paper do not need exergy-to-energy ratio (ψ) and monthly average daily global solar radiation to calculate solar radiation exergy. Consequently, the average exergy-to-energy ratio (ψ) for all provinces are found to be 0.93 for Turkey. The highest and lowest monthly average daily values of solar radiation exergy are obtained at 23.4 MJ/m 2 day in June and 4 MJ/m 2 day in December, respectively. The empirical models providing the best results here can be reliably used to predict solar radiation exergy in Turkey and in other locations with similar climatic conditions in the world. The predictions of solar radiation exergy from regression models could enable the scientists to design the solar-energy systems precisely.

  15. An adaptive distance measure for use with nonparametric models

    International Nuclear Information System (INIS)

    Garvey, D. R.; Hines, J. W.

    2006-01-01

    Distance measures perform a critical task in nonparametric, locally weighted regression. Locally weighted regression (LWR) models are a form of 'lazy learning' which construct a local model 'on the fly' by comparing a query vector to historical, exemplar vectors according to a three step process. First, the distance of the query vector to each of the exemplar vectors is calculated. Next, these distances are passed to a kernel function, which converts the distances to similarities or weights. Finally, the model output or response is calculated by performing locally weighted polynomial regression. To date, traditional distance measures, such as the Euclidean, weighted Euclidean, and L1-norm have been used as the first step in the prediction process. Since these measures do not take into consideration sensor failures and drift, they are inherently ill-suited for application to 'real world' systems. This paper describes one such LWR model, namely auto associative kernel regression (AAKR), and describes a new, Adaptive Euclidean distance measure that can be used to dynamically compensate for faulty sensor inputs. In this new distance measure, the query observations that lie outside of the training range (i.e. outside the minimum and maximum input exemplars) are dropped from the distance calculation. This allows for the distance calculation to be robust to sensor drifts and failures, in addition to providing a method for managing inputs that exceed the training range. In this paper, AAKR models using the standard and Adaptive Euclidean distance are developed and compared for the pressure system of an operating nuclear power plant. It is shown that using the standard Euclidean distance for data with failed inputs, significant errors in the AAKR predictions can result. By using the Adaptive Euclidean distance it is shown that high fidelity predictions are possible, in spite of the input failure. In fact, it is shown that with the Adaptive Euclidean distance prediction

  16. Anisotropic mesh adaptation for marine ice-sheet modelling

    Science.gov (United States)

    Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier

    2017-04-01

    Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh

  17. Reducing the radiation dose for CT colonography using adaptive statistical iterative reconstruction: A pilot study.

    Science.gov (United States)

    Flicek, Kristina T; Hara, Amy K; Silva, Alvin C; Wu, Qing; Peter, Mary B; Johnson, C Daniel

    2010-07-01

    The purpose of our study was to evaluate the feasibility of preserving image quality during CT colonography (CTC) using a reduced radiation dose with adaptive statistical iterative reconstruction (ASIR). A proven colon phantom was imaged at standard dose settings (50 mAs) and at reduced doses (10-40 mAs) using six different ASIR levels (0-100%). We assessed 2D and 3D image quality and noise to determine the optimal dose and ASIR setting. Eighteen patients were then scanned with a standard CTC dose (50 mAs) in the supine position and at a reduced dose of 25 mAs with 40% ASIR in the prone position. Three radiologists blinded to the scanning techniques assessed 2D and 3D image quality and noise at three different colon locations. A score difference of > or = 1 was considered clinically important. Actual noise measures were compared between the standard-dose and low-dose acquisitions. The phantom study showed image noise reduction that correlated with a higher percentage of ASIR. In patients, no significant image quality differences were identified between standard- and low-dose images using 40% ASIR. Overall image quality was reduced for both image sets as body mass index increased. Measured image noise was less with the low-dose technique using ASIR. The results of this pilot study show that the radiation dose during CTC can be reduced 50% below currently accepted low-dose techniques without significantly affecting image quality when ASIR is used. Further evaluation in a larger patient group is warranted.

  18. Adaptive Radiation in Socially Advanced Stem-Group Ants from the Cretaceous.

    Science.gov (United States)

    Barden, Phillip; Grimaldi, David A

    2016-02-22

    Across terrestrial ecosystems, modern ants are ubiquitous. As many as 94 out of every 100 individual arthropods in rainforests are ants, and they constitute up to 15% of animal biomass in the Amazon. Moreover, ants are pervasive agents of natural selection as over 10,000 arthropod species are specialized inquilines or myrmecomorphs living among ants or defending themselves through mimicry. Such impact is traditionally explained by sociality: ants are the first major group of ground-dwelling predatory insects to become eusocial, increasing efficiency of tasks and establishing competitive superiority over solitary species. A wealth of specimens from rich deposits of 99 million-year-old Burmese amber resolves ambiguity regarding sociality and diversity in the earliest ants. The stem-group genus Gerontoformica maintained distinct reproductive castes including morphotypes unknown in solitary aculeate (stinging) wasps, providing insight into early behavior. We present rare aggregations of workers, indicating group recruitment as well as an instance of interspecific combat; such aggression is a social feature of modern ants. Two species and an unusual new genus are described, further expanding the remarkable diversity of early ants. Stem-group ants are recovered as a paraphyletic assemblage at the base of modern lineages varying greatly in size, form, and mouthpart structure, interpreted here as an adaptive radiation. Though Cretaceous stem-group ants were eusocial and adaptively diverse, we hypothesize that their extinction resulted from the rise of competitively superior crown-group taxa that today form massive colonies, consistent with Wilson and Hölldobler's concept of "dynastic succession." Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  20. Experimental Evolution of UV-C Radiation Tolerance: Emergence of Adaptive and Non-Adaptive Traits in Escherichia coli Under Differing Flux Regimes

    Science.gov (United States)

    Moffet, A.; Okansinski, A.; Sloan, C.; Grace, J. M.; Paulino-Lima, I. G.; Gentry, D.; Rothschild, L. J.; Camps, M.

    2014-12-01

    High-energy ultraviolet (UV-C) radiation is a significant challenge to life in environments such as high altitude areas, the early Earth, the Martian surface, and space. As UV-C exposure is both a selection pressure and a mutagen, adaptation dynamics in such environments include a high rate of change in both tolerance-related and non-tolerance-related genes, as well changes in linkages between the resulting traits. Determining the relationship between the intensity and duration of the UV-C exposure, mutation rate, and emergence of UV-C resistance will inform our understanding of both the emergence of radiation-related extremophily in natural environments and the optimal strategies for generating artificial extremophiles. In this study, we iteratively exposed an Escherichia colistrain to UV-C radiation of two different fluxes, 3.3 J/m^2/s for 6 seconds and 0.5 J/m^2/s for 40 seconds, with the same overall fluence of 20 J/m^2. After each iteration, cells from each exposure regime were assayed for increased UV-C tolerance as an adaptive trait. The exposed cells carried a plasmid bearing a TEM beta-lactamase gene, which in the absence of antibiotic treatment is a neutral reporter for mutagenesis. Sequencing of this gene allowed us to determine the baseline mutation frequency for each flux. As an additional readout for adaptation, the presence of extended-spectrum beta-lactamase mutations was tested by plating UV-exposed cultures in cefotaxime plates. We observed an increase of approximately one-million-fold in UV-C tolerance over seven iterations; no significant difference between the two fluxes was found. Future work will focus on identifying the genomic changes responsible for the change in UV-C tolerance; determining the mechanisms of the emerged UV-C tolerance; and performing competition experiments between the iteration strains to quantify fitness tradeoffs resulting from UV-C adaptation.

  1. Animal models for radiation injury, protection and therapy.

    Science.gov (United States)

    Augustine, Alison Deckhut; Gondré-Lewis, Timothy; McBride, William; Miller, Lara; Pellmar, Terry C; Rockwell, Sara

    2005-07-01

    Current events throughout the world underscore the growing threat of different forms of terrorism, including radiological or nuclear attack. Pharmaceutical products and other approaches are needed to protect the civilian population from radiation and to treat those with radiation-induced injuries. In the event of an attack, radiation exposures will be heterogeneous in terms of both dose and quality, depending on the type of device used and each victim's location relative to the radiation source. Therefore, methods are needed to protect against and treat a wide range of early and slowly developing radiation-induced injuries. Equally important is the development of rapid and accurate biodosimetry methods for estimating radiation doses to individuals and guiding clinical treatment decisions. Acute effects of high-dose radiation include hematopoietic cell loss, immune suppression, mucosal damage (gastrointestinal and oral), and potential injury to other sites such as the lung, kidney and central nervous system (CNS). Long-term effects, as a result of both high- and low-dose radiation, include dysfunction or fibrosis in a wide range of organs and tissues and cancer. The availability of appropriate types of animal models, as well as adequate numbers of animals, is likely to be a major bottleneck in the development of new or improved radioprotectors, mitigators and therapeutic agents to prevent or treat radiation injuries and of biodosimetry methods to measure radiation doses to individuals.

  2. Model Adaptation for Prognostics in a Particle Filtering Framework

    Science.gov (United States)

    Saha, Bhaskar; Goebel, Kai Frank

    2011-01-01

    One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  3. Model Adaptation for Prognostics in a Particle Filtering Framework

    Directory of Open Access Journals (Sweden)

    Bhaskar Saha

    2011-01-01

    Full Text Available One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the “curse of dimensionality”, i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for “well-designed” particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion and Li-Polymer batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  4. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  5. Multiple Model Adaptive Control Using Dual Youla-Kucera Factorisation

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2012-01-01

    We propose a multi-model adaptive control scheme for uncertain linear plants based on the concept of model unfalsification. The approach relies on examining the ability of a pre-computed set of plant-controller candidates and choosing the one that is best able to reproduce observed in- and output...... signal samples. The ability to reproduce observations is measured as an easily computable signal norm. Compared to other related approaches, our procedure is designed to be able to handle significant measurement noise and closed-loop correlations between output measurements and control signals....

  6. A Black-box Modelling Engine for Discharge Produced Plasma Radiation Sources

    International Nuclear Information System (INIS)

    Zakharov, S.V.; Choi, P.; Krukovskiy, A.Y.; Zhang, Q.; Novikov, V.G.; Zakharov, V.S.

    2006-01-01

    A Blackbox Modelling Engine (BME), is an instrument based on the adaptation of the RMHD code Z*, integrated into a specific computation environment to provide a turn key simulation instrument and to enable routine plasma modelling without specialist knowledge in numerical computation. Two different operating modes are provided: Detailed Physics mode and Fast Numerics mode. In the Detailed Physics mode, non-stationary, non-equilibrium radiation physics have been introduced to allow the modelling of transient plasmas in experimental geometry. In the Fast Numerics mode, the system architecture and the radiation transport is simplified to significantly accelerate the computation rate. The Fast Numerics mode allows the BME to be used realistically in parametric scanning to explore complex physical set up, before using the Detailed Physics mode. As an example of the results from the BME modelling, the EUV source plasma dynamics in the pulsed capillary discharge are presented

  7. Adaptive real-time models of vehicle dynamics; Adaptive Echtzeitmodelle fuer die Kraftfahrzeugdynamik

    Energy Technology Data Exchange (ETDEWEB)

    Halfmann, C.; Holzmann, H.; Isermann, R. [Technische Univ. Darmstadt (Germany). Inst. fuer Automatisierungstechnik; Hamann, C.D.; Simm, N. [Opel (A.) AG, Ruesselsheim (Germany). Gruppe Chassis und Fahrerassistenzsysteme

    1999-12-01

    The application of modern simulation tools offering additional support during the vehicle development process is accepted to a large extent by most car manufacturers. Just like new model-based control strategies, these simulation investigations require very accurate - and thus very complex - models of vehicle dynamics, which can be processed in real time. As an example of such a vehicle model, this article describes a real-time vehicle simulation model which was developed at the Institute of Automatic Control at Darmstadt University of Technology, in co-operation with the ITDC of the Adam OPEL AG. By applying modern adaptation techniques, this vehicle model is able to calculate onboard the important variables describing the actual driving state even if the environmental conditions change. (orig.) [German] Der Einsatz von Simulationswerkzeugen zur Unterstuetzung der Fahrzeugentwicklung hat sich bei den meisten Automobilherstellern weitgehend durchgesetzt. Ebenso wie neuartige modellbasierte Regelstrategien verlangen diese Simulationsuntersuchungen nach immer exakteren - und damit komplexeren - fahrdynamischen Modellen, die in Echtzeit ausgewertet werden. Als Beispiel fuer ein solches Gesamtfahrzeugmodell beschreibt dieser Beitrag ein echtzeitfaehiges Modell fuer die Bewegung des Fahrzeugs um alle drei Hauptachsen, das am Institut fuer Automatisierungstechnik der TU Darmstadt in Kooperation mit dem Internationalen Technischen Entwicklungszentrum (ITEZ) der Adam Opel AG entwickelt wurde. Es ist durch den Einsatz von Adaptionsmethoden in der Lage, wichtige fahrdynamische Zustandsgroessen im Fahrzeug auch unter veraenderlichen Umgebungsbedingungen zu ermitteln. (orig.)

  8. Interval for the expression of the adaptive response induced by gamma radiation in leucocytes of mouse In vivo

    International Nuclear Information System (INIS)

    Mendiola C, M.T.; Morales R, P.

    2002-01-01

    The interval between the adaptive gamma radiation dose (0.01 Gy) and challenge (1.0 Gy) capable to induce the maximum expression of the adaptive response in lymphocytes of mouse In vivo. The animals were exposed to the mentioned doses with different intervals among both (1, 1.5, 5 or 18 hr). By means of the unicellular electrophoresis in gel technique, four damage parameters were analysed. The results showed that from the 1 hr interval an adaptive response was produced since in the pretreated organisms with 0.01 Gy the cells present lesser damage than in those not adapted. The maximum response was induced with the intervals between 2.5 and 5 hr and even though it persisted until 18 hr, the effect was reducing. (Author)

  9. [Treatment of cloud radiative effects in general circulation models

    International Nuclear Information System (INIS)

    Wang, W.C.

    1993-01-01

    This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment

  10. Modeling of Cloud/Radiation Processes for Cirrus Cloud Formation

    National Research Council Canada - National Science Library

    Liou, K

    1997-01-01

    This technical report includes five reprints and pre-prints of papers associated with the modeling of cirrus cloud and radiation processes as well as remote sensing of cloud optical and microphysical...

  11. Iterative development and the scope for plasticity: contrasts among trait categories in an adaptive radiation.

    Science.gov (United States)

    Foster, S A; Wund, M A; Graham, M A; Earley, R L; Gardiner, R; Kearns, T; Baker, J A

    2015-10-01

    Phenotypic plasticity can influence evolutionary change in a lineage, ranging from facilitation of population persistence in a novel environment to directing the patterns of evolutionary change. As the specific nature of plasticity can impact evolutionary consequences, it is essential to consider how plasticity is manifested if we are to understand the contribution of plasticity to phenotypic evolution. Most morphological traits are developmentally plastic, irreversible, and generally considered to be costly, at least when the resultant phenotype is mis-matched to the environment. At the other extreme, behavioral phenotypes are typically activational (modifiable on very short time scales), and not immediately costly as they are produced by constitutive neural networks. Although patterns of morphological and behavioral plasticity are often compared, patterns of plasticity of life history phenotypes are rarely considered. Here we review patterns of plasticity in these trait categories within and among populations, comprising the adaptive radiation of the threespine stickleback fish Gasterosteus aculeatus. We immediately found it necessary to consider the possibility of iterated development, the concept that behavioral and life history trajectories can be repeatedly reset on activational (usually behavior) or developmental (usually life history) time frames, offering fine tuning of the response to environmental context. Morphology in stickleback is primarily reset only in that developmental trajectories can be altered as environments change over the course of development. As anticipated, the boundaries between the trait categories are not clear and are likely to be linked by shared, underlying physiological and genetic systems.

  12. Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders.

    Science.gov (United States)

    Blackledge, Todd A; Gillespie, Rosemary G

    2004-11-16

    Species in ecologically similar habitats often display patterns of divergence that are strikingly comparable, suggesting that natural selection can lead to predictable evolutionary change in communities. However, the relative importance of selection as an agent mediating in situ diversification, versus dispersal between habitats, cannot be addressed without knowledge of phylogenetic history. We used an adaptive radiation of spiders within the Hawaiian Islands to test the prediction that species of spiders on different islands would independently evolve webs with similar architectures. Tetragnatha spiders are the only nocturnal orb-weaving spiders endemic to the Hawaiian archipelago, and multiple species of orb-weaving Tetragnatha co-occur within mesic and wet forest habitats on each of the main islands. Therefore, comparison of web architectures spun by spiders on different islands allowed study of replicated evolutionary events of past behavioral diversification. We found that species within each island construct webs with architectures that differ from one another. However, pairs of species on different islands, "ethotypes," share remarkable similarities in web architectures. Phylogenetic analysis demonstrated that the species comprising these ethotypes evolved independent of one another. Our study illustrates the high degree of predictability that can be exhibited by the evolutionary diversification of complex behaviors. However, not all web architectures were shared between islands, demonstrating that unique effects also have played an important role in the historical diversification of behavior.

  13. Linearized vector radiative transfer model MCC++ for a spherical atmosphere

    International Nuclear Information System (INIS)

    Postylyakov, O.V.

    2004-01-01

    Application of radiative transfer models has shown that optical remote sensing requires extra characteristics of radiance field in addition to the radiance intensity itself. Simulation of spectral measurements, analysis of retrieval errors and development of retrieval algorithms are in need of derivatives of radiance with respect to atmospheric constituents under investigation. The presented vector spherical radiative transfer model MCC++ was linearized, which allows the calculation of derivatives of all elements of the Stokes vector with respect to the volume absorption coefficient simultaneously with radiance calculation. The model MCC++ employs Monte Carlo algorithm for radiative transfer simulation and takes into account aerosol and molecular scattering, gas and aerosol absorption, and Lambertian surface albedo. The model treats a spherically symmetrical atmosphere. Relation of the estimated derivatives with other forms of radiance derivatives: the weighting functions used in gas retrieval and the air mass factors used in the DOAS retrieval algorithms, is obtained. Validation of the model against other radiative models is overviewed. The computing time of the intensity for the MCC++ model is about that for radiative models treating sphericity of the atmosphere approximately and is significantly shorter than that for the full spherical models used in the comparisons. The simultaneous calculation of all derivatives (i.e. with respect to absorption in all model atmosphere layers) and the intensity is only 1.2-2 times longer than the calculation of the intensity only

  14. CT radiation dose and image quality optimization using a porcine model.

    Science.gov (United States)

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2013-01-01

    To evaluate potential radiation dose savings and resultant image quality effects with regard to optimization of commonly performed computed tomography (CT) studies derived from imaging a porcine (pig) model. Imaging protocols for 4 clinical CT suites were developed based on the lowest milliamperage and kilovoltage, the highest pitch that could be set from current imaging protocol parameters, or both. This occurred before significant changes in noise, contrast, and spatial resolution were measured objectively on images produced from a quality assurance CT phantom. The current and derived phantom protocols were then applied to scan a porcine model for head, abdomen, and chest CT studies. Further optimized protocols were developed based on the same methodology as in the phantom study. The optimization achieved with respect to radiation dose and image quality was evaluated following data collection of radiation dose recordings and image quality review. Relative visual grading analysis of image quality criteria adapted from the European guidelines on radiology quality criteria for CT were used for studies completed with both the phantom-based or porcine-derived imaging protocols. In 5 out of 16 experimental combinations, the current clinical protocol was maintained. In 2 instances, the phantom protocol reduced radiation dose by 19% to 38%. In the remaining 9 instances, the optimization based on the porcine model further reduced radiation dose by 17% to 38%. The porcine model closely reflects anatomical structures in humans, allowing the grading of anatomical criteria as part of image quality review without radiation risks to human subjects. This study demonstrates that using a porcine model to evaluate CT optimization resulted in more radiation dose reduction than when imaging protocols were tested solely on quality assurance phantoms.

  15. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES DISSERTATION Emily A. Knight, Major, USAF AFIT-ENC-DS-15-S-001 DEPARTMENT OF THE...not subject to copyright protection in the United States. AFIT-ENC-DS-15-S-001 MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES...EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES Emily A. Knight, B.A., M.S. Major, USAF Committee Membership: Dr. William P. Baker Chair Dr. Larry W

  16. CONSTRUCTIVE MODEL OF ADAPTATION OF DATA STRUCTURES IN RAM. PART II. CONSTRUCTORS OF SCENARIOS AND ADAPTATION PROCESSES

    Directory of Open Access Journals (Sweden)

    V. I. Shynkarenko

    2016-04-01

    Full Text Available Purpose.The second part of the paper completes presentation of constructive and the productive structures (CPS, modeling adaptation of data structures in memory (RAM. The purpose of the second part in the research is to develop a model of process of adaptation data in a RAM functioning in different hardware and software environments and scenarios of data processing. Methodology. The methodology of mathematical and algorithmic constructionism was applied. In this part of the paper, changes were developed the constructors of scenarios and adaptation processes based on a generalized CPS through its transformational conversions. Constructors are interpreted, specialized CPS. Were highlighted the terminal alphabets of the constructor scenarios in the form of data processing algorithms and the constructor of adaptation – in the form of algorithmic components of the adaptation process. The methodology involves the development of substitution rules that determine the output process of the relevant structures. Findings. In the second part of the paper, system is represented by CPS modeling adaptation data placement in the RAM, namely, constructors of scenarios and of adaptation processes. The result of the implementation of constructor of scenarios is a set of data processing operations in the form of text in the language of programming C#, constructor of the adaptation processes – a process of adaptation, and the result the process of adaptation – the adapted binary code of processing data structures. Originality. For the first time proposed the constructive model of data processing – the scenario that takes into account the order and number of calls to the various elements of data structures and adaptation of data structures to the different hardware and software environments. At the same the placement of data in RAM and processing algorithms are adapted. Constructionism application in modeling allows to link data models and algorithms for

  17. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily....... The performance of the empirical models was nearly identical at all sites. Since the empirical models were easier to use and simpler to calibrate than the physically based models, the results indicate that the empirical models can be used as a good substitute for the physically based ones when available...

  18. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    Nairobi, Kenya. 28 Adapting Fishing Policy to Climate Change with the Aid of Scientific and Endogenous Knowledge. Cap Verde, Gambia,. Guinea, Guinea Bissau,. Mauritania and Senegal. Environment and Development in the Third World. (ENDA-TM). Dakar, Senegal. 29 Integrating Indigenous Knowledge in Climate Risk ...

  19. Empirical investigation on modeling solar radiation series with ARMA–GARCH models

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Yan, Dong; Zhao, Na; Zhou, Jianzhong

    2015-01-01

    Highlights: • Apply 6 ARMA–GARCH(-M) models to model and forecast solar radiation. • The ARMA–GARCH(-M) models produce more accurate radiation forecasting than conventional methods. • Show that ARMA–GARCH-M models are more effective for forecasting solar radiation mean and volatility. • The ARMA–EGARCH-M is robust and the ARMA–sGARCH-M is very competitive. - Abstract: Simulation of radiation is one of the most important issues in solar utilization. Time series models are useful tools in the estimation and forecasting of solar radiation series and their changes. In this paper, the effectiveness of autoregressive moving average (ARMA) models with various generalized autoregressive conditional heteroskedasticity (GARCH) processes, namely ARMA–GARCH models are evaluated for their effectiveness in radiation series. Six different GARCH approaches, which contain three different ARMA–GARCH models and corresponded GARCH in mean (ARMA–GARCH-M) models, are applied in radiation data sets from two representative climate stations in China. Multiple evaluation metrics of modeling sufficiency are used for evaluating the performances of models. The results show that the ARMA–GARCH(-M) models are effective in radiation series estimation. Both in fitting and prediction of radiation series, the ARMA–GARCH(-M) models show better modeling sufficiency than traditional models, while ARMA–EGARCH-M models are robustness in two sites and the ARMA–sGARCH-M models appear very competitive. Comparisons of statistical diagnostics and model performance clearly show that the ARMA–GARCH-M models make the mean radiation equations become more sufficient. It is recommended the ARMA–GARCH(-M) models to be the preferred method to use in the modeling of solar radiation series

  20. Motion Planning of Bimanual Robot Using Adaptive Model of Assembly

    Science.gov (United States)

    Hwang, Myun Joong; Lee, Doo Yong; Chung, Seong Youb

    This paper presents a motion planning method for a bimanual robot for executing assembly tasks. The method employs an adaptive modeling which can automatically generate an assembly model and modify the model during actual assembly. Bimanual robotic assembly is modeled at the task-level using contact states of workpieces and their transitions. The lower-level velocity commands of the workpieces are automatically derived by solving optimization problem formulated with assembly constraints, position of the workpieces, and kinematics of manipulators. Motion requirements of the workpieces are transformed to motion commands of the bimanual robot. The proposed approach is evaluated with experiments on peg-in-hole assembly with an L-shaped peg.

  1. Adaptive Active Noise Suppression Using Multiple Model Switching Strategy

    Directory of Open Access Journals (Sweden)

    Quanzhen Huang

    2017-01-01

    Full Text Available Active noise suppression for applications where the system response varies with time is a difficult problem. The computation burden for the existing control algorithms with online identification is heavy and easy to cause control system instability. A new active noise control algorithm is proposed in this paper by employing multiple model switching strategy for secondary path varying. The computation is significantly reduced. Firstly, a noise control system modeling method is proposed for duct-like applications. Then a multiple model adaptive control algorithm is proposed with a new multiple model switching strategy based on filter-u least mean square (FULMS algorithm. Finally, the proposed algorithm was implemented on Texas Instruments digital signal processor (DSP TMS320F28335 and real time experiments were done to test the proposed algorithm and FULMS algorithm with online identification. Experimental verification tests show that the proposed algorithm is effective with good noise suppression performance.

  2. Prediction of conductivity by adaptive neuro-fuzzy model.

    Directory of Open Access Journals (Sweden)

    S Akbarzadeh

    Full Text Available Electrochemical impedance spectroscopy (EIS is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity.

  3. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    Science.gov (United States)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  4. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based...... on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models...... that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines....

  5. Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design

    NARCIS (Netherlands)

    Burgos, Daniel; Tattersall, Colin; Koper, Rob

    2006-01-01

    Burgos, D., Tattersall, C., & Koper, E. J. R. (2007). Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design. In B. Fernández Manjon, J. M. Sanchez Perez, J. A. Gómez Pulido, M. A. Vega Rodriguez & J. Bravo (Eds.), Computers and Education:

  6. An adaptive complex network model for brain functional networks.

    Directory of Open Access Journals (Sweden)

    Ignacio J Gomez Portillo

    Full Text Available Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution.

  7. Campbell-Bristow development Model for Estimating Global Solar radiation in the Region of Junin, Perú

    Directory of Open Access Journals (Sweden)

    Dr. Becquer Frauberth Camayo-Lapa

    2015-11-01

    Full Text Available In order to have a tool to estimate the monthly and annual solar radiation on the horizontal surface in Junín region, in which is not available with this information, adapted Bristow-Campbell (1984 model for estimating global solar radiation monthly average.   To develop the model of Bristow-Campbell that estimates the average daily global solar radiation monthly modeling technique proposed by Espinoza (2010, were recorded daily maximum and minimum temperatures of 19 weather stations and the equations proposed  by the Solar High Peru 2003 was adapted to this model.  The Bristow-Campbell model was developed with data recorded in stations: Santa Ana, Tarma and Satipo belonging to Sierra and Selva, respectively. The performance of applications calculated solar radiation was determined by considering the OLADE (1992 that solar radiation over 4,0 kWh/m2/day are profitable and 5,0 kWh/m2/day very profitable. The results indicate that the monthly average global solar radiation in Junín  region is 5,3  kWh/m2/day corresponding to the  4,2 Forest and the Sierra 5,6 kWh/m2/day kWh/m2/day. Profitability is determined for the less profitable Selva and Sierra is very profitable. In addition, the operating model is simple and available to all users. We conclude that application of the Bristow-Campbell model adapted, it is an instrument of great utility to generate a comprehensive database of available solar radiation in Junín region.

  8. On an incompressible model in radiation hydrodynamics

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka

    2015-01-01

    Roč. 38, č. 4 (2015), s. 765-774 ISSN 0170-4214 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : radiation hydrodynamics * incompressible Navier - Stokes -Fourier system * weak solution Subject RIV: BA - General Mathematics Impact factor: 1.002, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/mma.3107/abstract

  9. On an incompressible model in radiation hydrodynamics

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka

    2015-01-01

    Roč. 38, č. 4 (2015), s. 765-774 ISSN 0170-4214 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : radiation hydrodynamics * incompressible Navier-Stokes-Fourier system * weak solution Subject RIV: BA - General Mathematics Impact factor: 1.002, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/mma.3107/abstract

  10. Estimation of intercepted radiation on row-structured orchards with remote sensing and radiative transfer models

    OpenAIRE

    Guillén Climent, M. Luz

    2012-01-01

    The light energy absorbed by plant leaves drives fundamental physiological processes such as photosynthesis. The absorption of light occurs within the 400-700 nm spectral region, so it is called Photosynthetic Active Radiation, PAR. Thus, the fraction of intercepted PAR is called fIPAR. This thesis studies the estimation of fIPAR with high spatial resolution sensors and radiative transfer models in heterogeneous orchards. The objective is to obtain maps showing the spatial v...

  11. High frequency radiation from dynamic earthquake fault models

    International Nuclear Information System (INIS)

    Madariaga, R.

    1983-01-01

    We study the radiation of high frequency waves from a simple antiplane model of an earthquake source. In this model only antiplane waves are generated so that the mathematics is relatively simple, but the physics is the same as in the more complex plane or three dimensional models where P and S waves are radiated. An exact solution is found for the problem of an arbitrary moving semi-infinite crack in the presence of a general dynamic stress drop. In the case when friction is independent of time, an algebraic expression is obtained for particle velocity. This result is exploited to understand the origin of high frequency waves, and the role of rupture velocity and stress intensity on the radiation. We show that barriers and asperities dominate the radiation, but that they are indistinguishable from a high frequency point of view

  12. Disentangling dispersal, vicariance and adaptive radiation patterns: a case study using armyworms in the pest genus Spodoptera (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Kergoat, Gael J; Prowell, Dorothy P; Le Ru, Bruno P; Mitchell, Andrew; Dumas, Pascaline; Clamens, Anne-Laure; Condamine, Fabien L; Silvain, Jean-François

    2012-12-01

    Thanks to the recent development of integrative approaches that combine dated phylogenies with models of biogeographic evolution, it is becoming more feasible to assess the roles of dispersal and vicariance in creating complex patterns of geographical distribution. However, the historical biogeography of taxa with good dispersal abilities, like birds or flying insects, still remains largely unknown because of the lack of complete phylogenies accompanied by robust estimates of divergence times. In this study, we investigate the evolution and historical biogeography of the globally distributed pest genus Spodoptera (Lepidoptera: Noctuidae) using complete taxon sampling and an extensive set of analyses. Through the analysis of a combined morphological and molecular dataset, we provide the first robust phylogenetic framework for this widespread and economically important group of moths. Historical biogeography approaches indicate that dispersal events have been the driving force in the biogeographic history of the group. One of the most interesting findings of this study is the probable occurrence of two symmetric long-distance dispersal events between the Afrotropical and the Neotropical region, which appear to have occurred in the late Miocene. Even more remarkably, our dated phylogenies reveal that the diversification of the clade that includes specialist grass feeders has followed closely the expansion of grasslands in the Miocene, similar to the adaptive radiation of specialist grazing mammals during the same period. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Low-Dose Ionizing Radiation Affects Mesenchymal Stem Cells via Extracellular Oxidized Cell-Free DNA: A Possible Mediator of Bystander Effect and Adaptive Response

    Directory of Open Access Journals (Sweden)

    V. A. Sergeeva

    2017-01-01

    Full Text Available We have hypothesized that the adaptive response to low doses of ionizing radiation (IR is mediated by oxidized cell-free DNA (cfDNA fragments. Here, we summarize our experimental evidence for this model. Studies involving measurements of ROS, expression of the NOX (superoxide radical production, induction of apoptosis and DNA double-strand breaks, antiapoptotic gene expression and cell cycle inhibition confirm this hypothesis. We have demonstrated that treatment of mesenchymal stem cells (MSCs with low doses of IR (10 cGy leads to cell death of part of cell population and release of oxidized cfDNA. cfDNA has the ability to penetrate into the cytoplasm of other cells. Oxidized cfDNA, like low doses of IR, induces oxidative stress, ROS production, ROS-induced oxidative modifications of nuclear DNA, DNA breaks, arrest of the cell cycle, activation of DNA reparation and antioxidant response, and inhibition of apoptosis. The MSCs pretreated with low dose of irradiation or oxidized cfDNA were equally effective in induction of adaptive response to challenge further dose of radiation. Our studies suggest that oxidized cfDNA is a signaling molecule in the stress signaling that mediates radiation-induced bystander effects and that it is an important component of the development of radioadaptive responses to low doses of IR.

  14. Modelling of cellular curves for the radiations

    International Nuclear Information System (INIS)

    Sanchez-Reyer, A.; Farrus, B.; Rovirosa, A.; Biete, A.

    1996-01-01

    In this paper a revision of the principal radiobiological models existing in the literature is made. In function of the departure hypothesis, said models are divided in three main classes: cellular target models, lesion interaction models and repair saturation models. In the present work is developed a global vision of these models so that the reader could obtain a general idea from the last advances in this field. (Author) 42 refs

  15. Free-streaming radiation in cosmological models with spatial curvature

    Science.gov (United States)

    Wilson, M. L.

    1982-01-01

    The effects of spatial curvature on radiation anisotropy are examined for the standard Friedmann-Robertson-Walker model universes. The effect of curvature is found to be very important when considering fluctuations with wavelengths comparable to the horizon. It is concluded that the behavior of radiation fluctuations in models with spatial curvature is quite different from that in spatially flat models, and that models with negative curvature are most strikingly different. It is therefore necessary to take the curvature into account in careful studies of the anisotropy of the microwave background.

  16. The Role of Scale and Model Bias in ADAPT's Photospheric Eatimation

    Energy Technology Data Exchange (ETDEWEB)

    Godinez Vazquez, Humberto C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hickmann, Kyle Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Arge, Charles Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henney, Carl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-20

    The Air Force Assimilative Photospheric flux Transport model (ADAPT), is a magnetic flux propagation based on Worden-Harvey (WH) model. ADAPT would be used to provide a global photospheric map of the Earth. A data assimilation method based on the Ensemble Kalman Filter (EnKF), a method of Monte Carlo approximation tied with Kalman filtering, is used in calculating the ADAPT models.

  17. Model-free adaptive control of advanced power plants

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  18. Preference learning with evolutionary Multivariate Adaptive Regression Spline model

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Shaker, Noor; Christensen, Mads Græsbøll

    2015-01-01

    This paper introduces a novel approach for pairwise preference learning through combining an evolutionary method with Multivariate Adaptive Regression Spline (MARS). Collecting users' feedback through pairwise preferences is recommended over other ranking approaches as this method is more appealing...... for function approximation as well as being relatively easy to interpret. MARS models are evolved based on their efficiency in learning pairwise data. The method is tested on two datasets that collectively provide pairwise preference data of five cognitive states expressed by users. The method is analysed...

  19. Competition and adaptation in an Internet evolution model.

    Science.gov (United States)

    Serrano, M Angeles; Boguñá, Marián; Díaz-Guilera, Albert

    2005-01-28

    We model the evolution of the Internet at the autonomous system level as a process of competition for users and adaptation of bandwidth capability. From a weighted network formalism, where both nodes and links are weighted, we find the exponent of the degree distribution as a simple function of the growth rates of the number of autonomous systems and connections in the Internet, both empirically measurable quantities. Our approach also accounts for a high level of clustering as well as degree-degree correlations, both with the same hierarchical structure present in the real Internet. Further, it also highlights the interplay between bandwidth, connectivity, and traffic of the network.

  20. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Science.gov (United States)

    Schumann, Ulrich; Mayer, Bernhard

    2017-11-01

    Earth's surface temperature sensitivity to radiative forcing (RF) by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW) and longwave (LW) radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks). Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing) and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA) and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  1. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  2. Challenges of Representing Sub-Grid Physics in an Adaptive Mesh Refinement Atmospheric Model

    Science.gov (United States)

    O'Brien, T. A.; Johansen, H.; Johnson, J. N.; Rosa, D.; Benedict, J. J.; Keen, N. D.; Collins, W.; Goodfriend, E.

    2015-12-01

    Some of the greatest potential impacts from future climate change are tied to extreme atmospheric phenomena that are inherently multiscale, including tropical cyclones and atmospheric rivers. Extremes are challenging to simulate in conventional climate models due to existing models' coarse resolutions relative to the native length-scales of these phenomena. Studying the weather systems of interest requires an atmospheric model with sufficient local resolution, and sufficient performance for long-duration climate-change simulations. To this end, we have developed a new global climate code with adaptive spatial and temporal resolution. The dynamics are formulated using a block-structured conservative finite volume approach suitable for moist non-hydrostatic atmospheric dynamics. By using both space- and time-adaptive mesh refinement, the solver focuses computational resources only where greater accuracy is needed to resolve critical phenomena. We explore different methods for parameterizing sub-grid physics, such as microphysics, macrophysics, turbulence, and radiative transfer. In particular, we contrast the simplified physics representation of Reed and Jablonowski (2012) with the more complex physics representation used in the System for Atmospheric Modeling of Khairoutdinov and Randall (2003). We also explore the use of a novel macrophysics parameterization that is designed to be explicitly scale-aware.

  3. Quadratic adaptive algorithm for solving cardiac action potential models.

    Science.gov (United States)

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights

  4. Space-time adaptive hierarchical model reduction for parabolic equations.

    Science.gov (United States)

    Perotto, Simona; Zilio, Alessandro

    Surrogate solutions and surrogate models for complex problems in many fields of science and engineering represent an important recent research line towards the construction of the best trade-off between modeling reliability and computational efficiency. Among surrogate models, hierarchical model (HiMod) reduction provides an effective approach for phenomena characterized by a dominant direction in their dynamics. HiMod approach obtains 1D models naturally enhanced by the inclusion of the effect of the transverse dynamics. HiMod reduction couples a finite element approximation along the mainstream with a locally tunable modal representation of the transverse dynamics. In particular, we focus on the pointwise HiMod reduction strategy, where the modal tuning is performed on each finite element node. We formalize the pointwise HiMod approach in an unsteady setting, by resorting to a model discontinuous in time, continuous and hierarchically reduced in space (c[M([Formula: see text])G( s )]-dG( q ) approximation). The selection of the modal distribution and of the space-time discretization is automatically performed via an adaptive procedure based on an a posteriori analysis of the global error. The final outcome of this procedure is a table, named HiMod lookup diagram , that sets the time partition and, for each time interval, the corresponding 1D finite element mesh together with the associated modal distribution. The results of the numerical verification confirm the robustness of the proposed adaptive procedure in terms of accuracy, sensitivity with respect to the goal quantity and the boundary conditions, and the computational saving. Finally, the validation results in the groundwater experimental setting are promising. The extension of the HiMod reduction to an unsteady framework represents a crucial step with a view to practical engineering applications. Moreover, the results of the validation phase confirm that HiMod approximation is a viable approach.

  5. Mutagenic adaptive response to high-LET radiation in human lymphoblastoid cells exposed to low doses of heavy-ion radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vares, Guillaume, E-mail: vares@nirs.go.jp [Radiation Risk Reduction Research Program, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555 (Japan); Wang, Bing, E-mail: jp2813km@nirs.go.jp [Radiation Risk Reduction Research Program, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555 (Japan); Tanaka, Kaoru; Kakimoto, Ayana; Eguchi-Kasai, Kyomi; Nenoi, Mitsuru [Radiation Risk Reduction Research Program, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555 (Japan)

    2011-07-01

    Adaptive response (AR) and bystander effect are two important phenomena involved in biological responses to low doses of ionizing radiation (IR). Furthermore, there is a strong interest in better understanding the biological effects of high-LET radiation. We previously demonstrated the ability of low doses of X-rays to induce an AR to challenging heavy-ion radiation . In this study, we assessed in vitro the ability of priming low doses (0.01 Gy) of heavy-ion radiation to induce a similar AR to a subsequent challenging dose (1-4 Gy) of high-LET IR (carbon-ion: 20 and 40 keV/{mu}m, neon-ion: 150 keV/{mu}m) in TK6, AHH-1 and NH32 cells. Our results showed that low doses of high-LET radiation can induce an AR characterized by lower mutation frequencies at hypoxanthine-guanine phosphoribosyl transferase locus and faster DNA repair kinetics, in cells expressing p53.

  6. The science and politics of linear radiation models

    International Nuclear Information System (INIS)

    Sagan, L.A.

    1992-01-01

    Unlike religion or politics, science is thought to be value free, and free of subjectivity. The author's thesis is that scientists carry the same cultural baggage as do other human beings. Where uncertainty exists, we often invent explanatory myths; we call them knowledge, or science. An example is our belief in the harmfulness of radiation at low (environmental or occupational exposure) levels. This thesis (myth) is widely accepted as established fact, not only among the lay public, but among the scientific community as well. Historically, it was thought that radiation effects obeyed a threshold response. Occupational exposure standards were based upon such a presumption. Following the second world war, however, this strategy was reconsidered, based on genetic studies and the observation that genetic phenomena were important in carcinogenesis. On the basis of prudence, public policy authorities adopted a policy in which it was assumed that even very low doses of radiation might be harmful. Evidence to the contrary has been suppressed. Indeed, the literature is full of reports suggesting that animals exposed to low doses of radiation benefit from those exposures. Such benefits include enhancement of the immune system, increased resistance to infection, and increased longevity. Several mechanisms have been proposed which might explain how such effects could occur. There is now a new wave of interest in low dose phenomena, and in the adaptive mechanisms which exist. Whether this shall result in a reconsideration of the radiation paradigm is still to be seen

  7. Linear No-Threshold Model VS. Radiation Hormesis

    Science.gov (United States)

    Doss, Mohan

    2013-01-01

    The atomic bomb survivor cancer mortality data have been used in the past to justify the use of the linear no-threshold (LNT) model for estimating the carcinogenic effects of low dose radiation. An analysis of the recently updated atomic bomb survivor cancer mortality dose-response data shows that the data no longer support the LNT model but are consistent with a radiation hormesis model when a correction is applied for a likely bias in the baseline cancer mortality rate. If the validity of the phenomenon of radiation hormesis is confirmed in prospective human pilot studies, and is applied to the wider population, it could result in a considerable reduction in cancers. The idea of using radiation hormesis to prevent cancers was proposed more than three decades ago, but was never investigated in humans to determine its validity because of the dominance of the LNT model and the consequent carcinogenic concerns regarding low dose radiation. Since cancer continues to be a major health problem and the age-adjusted cancer mortality rates have declined by only ∼10% in the past 45 years, it may be prudent to investigate radiation hormesis as an alternative approach to reduce cancers. Prompt action is urged. PMID:24298226

  8. Status of the Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). 10-minute averages of these data formed an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and 2002. These data were then averaged to provide a differential flux spectrum at 0.174, 0.304, 0.527, 1.5, 2.0, 11.0, and 31 MeV in the jovian equatorial plane as a function of radial distance. This omni-directional, equatorial model was combined with the original Divine model of jovian electron radiation to yield estimates of the out-of-plane radiation environment. That model, referred to here as the Galileo Interim Radiation Electron (or GIRE) model, was then used to calculate the Europa mission dose for an average and a 1-sigma worst-case situation. The prediction of the GIRE model is about a factor of 2 lower than the Divine model estimate over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeds the Divine model by about 50% for thicker shielding. The model, the steps leading to its creation, and relevant issues and concerns are discussed. While work remains to be done, the GIRE model clearly represents a significant step forward in the study of the jovian radiation environment, and it is a useful and valuable tool for estimating that environment for future space missions.

  9. Adaptive and non-adaptive models of depression: A comparison using register data on antidepressant medication during divorce.

    Science.gov (United States)

    Rosenström, Tom; Fawcett, Tim W; Higginson, Andrew D; Metsä-Simola, Niina; Hagen, Edward H; Houston, Alasdair I; Martikainen, Pekka

    2017-01-01

    Divorce is associated with an increased probability of a depressive episode, but the causation of events remains unclear. Adaptive models of depression propose that depression is a social strategy in part, whereas non-adaptive models tend to propose a diathesis-stress mechanism. We compare an adaptive evolutionary model of depression to three alternative non-adaptive models with respect to their ability to explain the temporal pattern of depression around the time of divorce. Register-based data (304,112 individuals drawn from a random sample of 11% of Finnish people) on antidepressant purchases is used as a proxy for depression. This proxy affords an unprecedented temporal resolution (a 3-monthly prevalence estimates over 10 years) without any bias from non-compliance, and it can be linked with underlying episodes via a statistical model. The evolutionary-adaptation model (all time periods with risk of divorce are depressogenic) was the best quantitative description of the data. The non-adaptive stress-relief model (period before divorce is depressogenic and period afterwards is not) provided the second best quantitative description of the data. The peak-stress model (periods before and after divorce can be depressogenic) fit the data less well, and the stress-induction model (period following divorce is depressogenic and the preceding period is not) did not fit the data at all. The evolutionary model was the most detailed mechanistic description of the divorce-depression link among the models, and the best fit in terms of predicted curvature; thus, it offers most rigorous hypotheses for further study. The stress-relief model also fit very well and was the best model in a sensitivity analysis, encouraging development of more mechanistic models for that hypothesis.

  10. Radiative and non-radiative recombinations in tensile strained Ge microstrips: Photoluminescence experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Virgilio, M., E-mail: virgilio@df.unipi.it [Dip. di Fisica “E. Fermi,” Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); NEST, Istituto Nanoscienze-CNR, P.za San Silvestro 12, 56127 Pisa (Italy); Schroeder, T.; Yamamoto, Y. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Capellini, G. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Dip. di scienze, Università Roma Tre, viale G. Marconi 446, 00146 Roma (Italy)

    2015-12-21

    Tensile germanium microstrips are candidate as gain material in Si-based light emitting devices due to the beneficial effect of the strain field on the radiative recombination rate. In this work, we thoroughly investigate their radiative recombination spectra by means of micro-photoluminescence experiments at different temperatures and excitation powers carried out on samples featuring different tensile strain values. For sake of comparison, bulk Ge(001) photoluminescence is also discussed. The experimental findings are interpreted in light of a numerical modeling based on a multi-valley effective mass approach, taking in to account the depth dependence of the photo-induced carrier density and of the self-absorption effect. The theoretical modeling allowed us to quantitatively describe the observed increase of the photoluminescence intensity for increasing values of strain, excitation power, and temperature. The temperature dependence of the non-radiative recombination time in this material has been inferred thanks to the model calibration procedure.

  11. Radiation dose modeling using IGRIP and Deneb/ERGO

    International Nuclear Information System (INIS)

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-01-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb's ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood

  12. Assesment of longwave radiation effects on air quality modelling in street canyons

    Science.gov (United States)

    Soucasse, L.; Buchan, A.; Pain, C.

    2016-12-01

    Computational Fluid Dynamics is widely used as a predictive tool to evaluate people's exposure to pollutants in urban street canyons. However, in low-wind conditions, flow and pollutant dispersion in the canyons are driven by thermal effects and may be affected by longwave (infrared) radiation due to the absorption and emission of water vapor contained in the air. These effects are mostly ignored in the literature dedicated to air quality modelling at this scale. This study aims at quantifying the uncertainties due to neglecting thermal radiation in air quality models. The Large-Eddy-Simulation of air flow in a single 2D canyon with a heat source on the ground is considered for Rayleigh and Reynolds numbers in the range of [10e8-10e10] and [5.10e3-5.10e4] respectively. The dispersion of a tracer is monitored once the statistically steady regime is reached. Incoming radiation is computed for a mid-latitude summer atmosphere and canyon surfaces are assumed to be black. Water vapour is the only radiating molecule considered and a global model is used to treat the spectral dependancy of its absorption coefficient. Flow and radiation fields are solved in a coupled way using the finite element solvers Fluidity and Fetch which have the capability of adapting their space and angular resolution according to an estimate of the solution error. Results show significant effects of thermal radiation on flow patterns and tracer dispersion. When radiation is taken into account, the air is heated far from the heat source leading to a stronger natural convection flow. The tracer is then dispersed faster out of the canyon potentially decreasing people's exposure to pollution within the street canyon.

  13. Modeling of the Martian environment for radiation analysis

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Clowdsley, M.S.; Qualls, G.D.; Singleterry, R.C.

    2006-01-01

    A model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) has been developed. Solar modulated primary particles rescaled for conditions at Mars are transported through the Martian atmosphere down to the surface, with altitude and backscattering patterns taken into account. The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g. CO 2 and H 2 O ices) along with its time variations throughout the Martian year. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. This site has been developed to provide the scientific and engineering communities with an interactive site containing a variety of environmental models, shield evaluation codes, and radiation response models to allow a thorough assessment of ionizing radiation risk for current and future space missions

  14. Flux-limited diffusion models in radiation hydrodynamics

    International Nuclear Information System (INIS)

    Pomraning, G.C.; Szilard, R.H.

    1993-01-01

    The authors discuss certain flux-limited diffusion theories which approximately describe radiative transfer in the presence of steep spatial gradients. A new formulation is presented which generalizes a flux-limited description currently in widespread use for large radiation hydrodynamic calculations. This new formation allows more than one Case discrete mode to be described by a flux-limited diffusion equation. Such behavior is not extant in existing formulations. Numerical results predicted by these flux-limited diffusion models are presented for radiation penetration into an initially cold halfspace. 37 refs., 5 figs

  15. A new approach to modelling radiation noise in CCD's

    International Nuclear Information System (INIS)

    Chugg, A.; Hopkinson, G.

    1998-01-01

    The energy depositions reported by Monte Carlo electron-photon irradiation transport codes are subject to a random error due to the finite number of particle histories used to generate the results. These statistical variations, normally a nuisance, may also be identified with the real radiation noise effects experienced by CCD pixels in persistent radiation environments. This paper explores the practicability of such radiation noise modelling by applying the ACCEPT code from the ITS suite to the case of a shielded CCD exposed to an electron flux. The results are compared with those obtained in a subsequent electron irradiation of the CCD by a Van de Graaff accelerator

  16. Modelling and Analysis of the Dynamics of Adaptive Temporal-Causal Network Models for Evolving Social Interactions

    NARCIS (Netherlands)

    Treur, J.

    2017-01-01

    Network-Oriented Modelling based on adaptive temporal-causal networks provides a unified approach to model and analyse dynamics and adaptivity of various processes, including mental and social interaction processes. Adaptive temporal-causal network models are based on causal relations by which the

  17. Final Report - Epigenetics of low dose radiation effects in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, Olga

    2014-10-22

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis of induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their targets in low

  18. An Adaptive Channel Model for VBLAST in Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Ghassan M. T. Abdalla

    2009-01-01

    Full Text Available The wireless transmission environment in vehicular ad hoc systems varies from line of sight with few surroundings to rich Rayleigh fading. An efficient communication system must adapt itself to these diverse conditions. Multiple antenna systems are known to provide superior performance compared to single antenna systems in terms of capacity and reliability. The correlation between the antennas has a great effect on the performance of MIMO systems. In this paper we introduce a novel adaptive channel model for MIMO-VBLAST systems in vehicular ad hoc networks. Using the proposed model, the correlation between the antennas was investigated. Although the line of sight is ideal for single antenna systems, it severely degrades the performance of VBLAST systems since it increases the correlation between the antennas. A channel update algorithm using single tap Kalman filters for VBLAST in flat fading channels has also been derived and evaluated. At 12 dB Es/N0, the new algorithm showed 50% reduction in the mean square error (MSE between the actual channel and the corresponding updated estimate compared to the MSE without update. The computational requirement of the proposed algorithm for a p×q VBLAST is 6p×q real multiplications and 4p×q real additions.

  19. Adaptive unstructured meshes for finite element ocean modelling

    Science.gov (United States)

    Power, P. W.; Pain, C. C.; Piggott, M. D.; Marshall, D. P.; Fang, F.; Umpleby, A. P.; de Oliveira, C. R. E.; Goddard, A. J. H.

    2003-04-01

    Flow in the world's oceans occurs at a wide range of spatial scales, from micro-metres to mega-metres. In particular, regions of intense flow are often highly localised, for example Western Boundary Currents. Conventional numerical ocean models generally use static meshes. The Imperial College Ocean Model (ICOM) uses advanced finite element methods to evolve the mesh to follow regions of intense flow, where high resolution may be required. Coarser resolution can be used in other areas of the flow domain. Evolution of the unstructured mesh is achieved by the use of a variety of error norms which control a self-adaptive anisotrophic meshing algorithm. The objective of this work is a reduction in computational cost, ensuring areas of fine resolution are used only where and when they are required. In this work we present some examples of an error measure being used to obtain high-quality solutions to a set of benchmark problems, for example flow over a seamount and a wind driven gyre, while using a minimal number of elements. The long term objective of this work is to define a rigorous self-adaptive technique for use in an Oceanographic context, and we present plans for the implimentation of a sensitivity based error measure.

  20. A model code for the radiative theta pinch

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S., E-mail: leesing@optusnet.com.au [INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 Australia (Australia); Physics Department, University of Malaya, Kuala Lumpur (Malaysia); Saw, S. H. [INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 Australia (Australia); Lee, P. C. K. [Nanyang Technological University, National Institute of Education, Singapore 637616 (Singapore); Akel, M. [Department of Physics, Atomic Energy Commission, Damascus, P. O. Box 6091, Damascus (Syrian Arab Republic); Damideh, V. [INTI International University, 71800 Nilai (Malaysia); Khattak, N. A. D. [Department of Physics, Gomal University, Dera Ismail Khan (Pakistan); Mongkolnavin, R.; Paosawatyanyong, B. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10140 (Thailand)

    2014-07-15

    A model for the theta pinch is presented with three modelled phases of radial inward shock phase, reflected shock phase, and a final pinch phase. The governing equations for the phases are derived incorporating thermodynamics and radiation and radiation-coupled dynamics in the pinch phase. A code is written incorporating correction for the effects of transit delay of small disturbing speeds and the effects of plasma self-absorption on the radiation. Two model parameters are incorporated into the model, the coupling coefficient f between the primary loop current and the induced plasma current and the mass swept up factor f{sub m}. These values are taken from experiments carried out in the Chulalongkorn theta pinch.

  1. Model-Based Assurance Case+ (MBAC+): Tutorial on Modeling Radiation Hardness Assurance Activities

    Science.gov (United States)

    Austin, Rebekah; Label, Ken A.; Sampson, Mike J.; Evans, John; Witulski, Art; Sierawski, Brian; Karsai, Gabor; Mahadevan, Nag; Schrimpf, Ron; Reed, Robert A.

    2017-01-01

    This presentation will cover why modeling is useful for radiation hardness assurance cases, and also provide information on Model-Based Assurance Case+ (MBAC+), NASAs Reliability Maintainability Template, and Fault Propagation Modeling.

  2. The third RAdiation transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models

    NARCIS (Netherlands)

    Widlowski, J.L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.I.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T.; LeBlanc, S.; Lewis, P.E.; Martin, E.; Mõttus, M.; North, P.R.J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Thompson, R.; Verhoef, W.; Verstraete, M.M.; Xie, D.

    2007-01-01

    [1] The Radiation Transfer Model Intercomparison ( RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a

  3. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  4. A model describing stable coherent synchrotron radiation in storage rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wuestefeld, G.; Huebers, H.-W.; Warnock, R.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  5. MCNP model for the many KE-Basin radiation sources

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1997-01-01

    This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with

  6. A mathematical model of radiation effect on the immunity system

    International Nuclear Information System (INIS)

    Smirnova, O.A.

    1984-01-01

    A mathematical model, simulating the effect of ionizing radiation on the dynamics of humoral immune reaction is suggested. It represents the system of nonlinear differential equations and is realized in the form of program in Fortran computer language. The model describes the primary immune reaction of nonirradiated organism on T-independent antigen, reflects the postradiation lymphopoiesis dynamics in nonimmunized mammals, simulates the processes of injury and recovery of the humoral immunity system under the combined effect of ionizing radiation and antigenic stimulation. The model can be used for forecasting imminity state in irradiated mammals

  7. Numerical model of solar dynamic radiator for parametric analysis

    Science.gov (United States)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  8. Improved Model Calibration From Genetically Adaptive Multi-Method Search

    Science.gov (United States)

    Vrugt, J. A.; Robinson, B. A.

    2006-12-01

    Evolutionary optimization is a subject of intense interest in many fields of study, including computational chemistry, biology, bio-informatics, economics, computational science, geophysics and environmental science. The goal is to determine values for model parameters or state variables that provide the best possible solution to a predefined cost or objective function, or a set of optimal trade-off values in the case of two or more conflicting objectives. However, locating optimal solutions often turns out to be painstakingly tedious, or even completely beyond current or projected computational capacity. Here we present an innovative concept of genetically adaptive multi-algorithm optimization. Benchmark results show that this new optimization technique is significantly more efficient than current state-of-the-art evolutionary algorithms, approaching a factor of ten improvement for the more complex, higher dimensional optimization problems. Our new algorithm provides new opportunities for solving previously intractable environmental model calibration problems.

  9. Human Adaptive Mechatronics and Human-System Modelling

    Directory of Open Access Journals (Sweden)

    Satoshi Suzuki

    2013-03-01

    Full Text Available Several topics in projects for mechatronics studies, which are 'Human Adaptive Mechatronics (HAM' and 'Human-System Modelling (HSM', are presented in this paper. The main research theme of the HAM project is a design strategy for a new intelligent mechatronics system, which enhances operators' skills during machine operation. Skill analyses and control system design have been addressed. In the HSM project, human modelling based on hierarchical classification of skills was studied, including the following five types of skills: social, planning, cognitive, motion and sensory-motor skills. This paper includes digests of these research topics and the outcomes concerning each type of skill. Relationships with other research activities, knowledge and information that will be helpful for readers who are trying to study assistive human-mechatronics systems are also mentioned.

  10. ALADYN - a spatially explicit, allelic model for simulating adaptive dynamics.

    Science.gov (United States)

    Schiffers, Katja H; Travis, Justin Mj

    2014-12-01

    ALADYN is a freely available cross-platform C++ modeling framework for stochastic simulation of joint allelic and demographic dynamics of spatially-structured populations. Juvenile survival is linked to the degree of match between an individual's phenotype and the local phenotypic optimum. There is considerable flexibility provided for the demography of the considered species and the genetic architecture of the traits under selection. ALADYN facilitates the investigation of adaptive processes to spatially and/or temporally changing conditions and the resulting niche and range dynamics. To our knowledge ALADYN is so far the only model that allows a continuous resolution of individuals' locations in a spatially explicit landscape together with the associated patterns of selection.

  11. Direct model reference adaptive control of robotic arms

    Science.gov (United States)

    Kaufman, Howard; Swift, David C.; Cummings, Steven T.; Shankey, Jeffrey R.

    1993-01-01

    The results of controlling A PUMA 560 Robotic Manipulator and the NASA shuttle Remote Manipulator System (RMS) using a Command Generator Tracker (CGT) based Model Reference Adaptive Controller (DMRAC) are presented. Initially, the DMRAC algorithm was run in simulation using a detailed dynamic model of the PUMA 560. The algorithm was tuned on the simulation and then used to control the manipulator using minimum jerk trajectories as the desired reference inputs. The ability to track a trajectory in the presence of load changes was also investigated in the simulation. Satisfactory performance was achieved in both simulation and on the actual robot. The obtained responses showed that the algorithm was robust in the presence of sudden load changes. Because these results indicate that the DMRAC algorithm can indeed be successfully applied to the control of robotic manipulators, additional testing was performed to validate the applicability of DMRAC to simulated dynamics of the shuttle RMS.

  12. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey

    International Nuclear Information System (INIS)

    Demirhan, Haydar

    2014-01-01

    Highlights: • Impacts of multicollinearity on solar radiation estimation models are discussed. • Accuracy of existing empirical models for Turkey is evaluated. • A new non-linear model for the estimation of average daily horizontal global solar radiation is proposed. • Estimation and prediction performance of the proposed and existing models are compared. - Abstract: Due to the considerable decrease in energy resources and increasing energy demand, solar energy is an appealing field of investment and research. There are various modelling strategies and particular models for the estimation of the amount of solar radiation reaching at a particular point over the Earth. In this article, global solar radiation estimation models are taken into account. To emphasize severity of multicollinearity problem in solar radiation estimation models, some of the models developed for Turkey are revisited. It is observed that these models have been identified as accurate under certain multicollinearity structures, and when the multicollinearity is eliminated, the accuracy of these models is controversial. Thus, a reliable model that does not suffer from multicollinearity and gives precise estimates of global solar radiation for the whole region of Turkey is necessary. A new nonlinear model for the estimation of average daily horizontal solar radiation is proposed making use of the genetic programming technique. There is no multicollinearity problem in the new model, and its estimation accuracy is better than the revisited models in terms of numerous statistical performance measures. According to the proposed model, temperature, precipitation, altitude, longitude, and monthly average daily extraterrestrial horizontal solar radiation have significant effect on the average daily global horizontal solar radiation. Relative humidity and soil temperature are not included in the model due to their high correlation with precipitation and temperature, respectively. While altitude has

  13. Adaptive response of human lymphocytes to low dose radiation on DNA synthesis

    International Nuclear Information System (INIS)

    Du Zeji; Su Liaoyuan; Tian Hailin

    1995-01-01

    Human peripheral blood lymphocytes PHA-stimulated in vitro for 24 h were exposed to low dose γ-ray irradiation (adaptive dose), they showed an adaptive response to the inhibition of DNA synthesis by subsequent higher acute doses of γ-ray (challenge dose). At the interval of 24 h between adaptive dose and challenge dose, the most obvious adaptive response induced by low dose irradiation was found. It was also found that the response induced by 1.0 cGy of adaptive dose was more obvious than that by other doses. In the challenge doses range of 1.0∼7.0 Gy, the adaptive response was observed and that 3.0 Gy was more obvious. The adaptive response disappeared with the challenge doses further increased

  14. Leukocyte activity is altered in a ground based murine model of microgravity and proton radiation exposure.

    Directory of Open Access Journals (Sweden)

    Jenine K Sanzari

    Full Text Available Immune system adaptation during spaceflight is a concern in space medicine. Decreased circulating leukocytes observed during and after space flight infer suppressed immune responses and susceptibility to infection. The microgravity aspect of the space environment has been simulated on Earth to study adverse biological effects in astronauts. In this report, the hindlimb unloading (HU model was employed to investigate the combined effects of solar particle event-like proton radiation and simulated microgravity on immune cell parameters including lymphocyte subtype populations and activity. Lymphocytes are a type of white blood cell critical for adaptive immune responses and T lymphocytes are regulators of cell-mediated immunity, controlling the entire immune response. Mice were suspended prior to and after proton radiation exposure (2 Gy dose and total leukocyte numbers and splenic lymphocyte functionality were evaluated on days 4 or 21 after combined HU and radiation exposure. Total white blood cell (WBC, lymphocyte, neutrophil, and monocyte counts are reduced by approximately 65%, 70%, 55%, and 70%, respectively, compared to the non-treated control group at 4 days after combined exposure. Splenic lymphocyte subpopulations are altered at both time points investigated. At 21 days post-exposure to combined HU and proton radiation, T cell activation and proliferation were assessed in isolated lymphocytes. Cell surface expression of the Early Activation Marker, CD69, is decreased by 30% in the combined treatment group, compared to the non-treated control group and cell proliferation was suppressed by approximately 50%, compared to the non-treated control group. These findings reveal that the combined stressors (HU and proton radiation exposure result in decreased leukocyte numbers and function, which could contribute to immune system dysfunction in crew members. This investigation is one of the first to report on combined proton radiation and

  15. A computational framework for modeling targets as complex adaptive systems

    Science.gov (United States)

    Santos, Eugene; Santos, Eunice E.; Korah, John; Murugappan, Vairavan; Subramanian, Suresh

    2017-05-01

    Modeling large military targets is a challenge as they can be complex systems encompassing myriad combinations of human, technological, and social elements that interact, leading to complex behaviors. Moreover, such targets have multiple components and structures, extending across multiple spatial and temporal scales, and are in a state of change, either in response to events in the environment or changes within the system. Complex adaptive system (CAS) theory can help in capturing the dynamism, interactions, and more importantly various emergent behaviors, displayed by the targets. However, a key stumbling block is incorporating information from various intelligence, surveillance and reconnaissance (ISR) sources, while dealing with the inherent uncertainty, incompleteness and time criticality of real world information. To overcome these challenges, we present a probabilistic reasoning network based framework called complex adaptive Bayesian Knowledge Base (caBKB). caBKB is a rigorous, overarching and axiomatic framework that models two key processes, namely information aggregation and information composition. While information aggregation deals with the union, merger and concatenation of information and takes into account issues such as source reliability and information inconsistencies, information composition focuses on combining information components where such components may have well defined operations. Since caBKBs can explicitly model the relationships between information pieces at various scales, it provides unique capabilities such as the ability to de-aggregate and de-compose information for detailed analysis. Using a scenario from the Network Centric Operations (NCO) domain, we will describe how our framework can be used for modeling targets with a focus on methodologies for quantifying NCO performance metrics.

  16. ADAPTATION OF WOFOST MODEL FROM CGMS TO ROMANIAN CONDITIONS

    Directory of Open Access Journals (Sweden)

    LAZĂR CĂTĂLIN

    2009-12-01

    Full Text Available This preliminary study is an inventory of the main resources and difficulties in adaptation of the Crop Growth Monitoring System (CGMS used by Agri4cast unit of IPSC from Joint Research Centre (JRC - Ispra of European Commission to conditions of Romania.In contrast with the original model calibrated mainly with statistical average yields at national level, for local calibration of the model the statistical yields at lower administrative units (macroregion or county must be used. In addition, for winter crops, the start of simulation in the new system will be in the autumn of the previous year. The start of simulation (and emergence day in the genuine system is 1st of January of the current year and the existing calibration was meant to provide a compensation system for this technical physiological delay.Proposed approach provides a better initialisation of the water balance (emergence occurs after start of simulation, as well as a better account for impact of wintering conditions, but obviously a new calibration for all cultivar dependent parameters is necessary. For the preoperational run, the localized model will use the weather data available till the last day available and the missing data from the rest of the year will be replaced either by the daily values of the long term averages or by the values from a year considered similar with the current one.Proposed adaptations permit a better use of information available on local scale and the localized model may be the core of a regional system for crop monitoring and in the same degree as the original system it can be used as tool for specific researches, such as studying the impact of climate changes.

  17. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.

    Science.gov (United States)

    Tuta, Jure; Juric, Matjaz B

    2018-03-24

    This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.

  18. Prediction of hourly solar radiation with multi-model framework

    International Nuclear Information System (INIS)

    Wu, Ji; Chan, Chee Keong

    2013-01-01

    Highlights: • A novel approach to predict solar radiation through the use of clustering paradigms. • Development of prediction models based on the intrinsic pattern observed in each cluster. • Prediction based on proper clustering and selection of model on current time provides better results than other methods. • Experiments were conducted on actual solar radiation data obtained from a weather station in Singapore. - Abstract: In this paper, a novel multi-model prediction framework for prediction of solar radiation is proposed. The framework started with the assumption that there are several patterns embedded in the solar radiation series. To extract the underlying pattern, the solar radiation series is first segmented into smaller subsequences, and the subsequences are further grouped into different clusters. For each cluster, an appropriate prediction model is trained. Hence a procedure for pattern identification is developed to identify the proper pattern that fits the current period. Based on this pattern, the corresponding prediction model is applied to obtain the prediction value. The prediction result of the proposed framework is then compared to other techniques. It is shown that the proposed framework provides superior performance as compared to others

  19. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2016-01-01

    Full Text Available This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE digital elevation model (DEM for the actual amount of incident solar radiation according to solar geometry. The surface insolation mapping, by integrating a physical model with the Communication, Ocean, and Meteorological Satellite (COMS Meteorological Imager (MI image, was performed through a comparative analysis with ground-based observation data (pyranometer. Original and topographically corrected solar radiation maps were created and their characteristics analyzed. Both the original and the topographically corrected solar energy resource maps captured the temporal variations in atmospheric conditions, such as the movement of seasonal rain fronts during summer. In contrast, although the original solar radiation map had a low insolation value over mountain areas with a high rate of cloudiness, the topographically corrected solar radiation map provided a better description of the actual surface geometric characteristics.

  20. A lattice model exhibiting radiation-induced anomalous conductivity

    OpenAIRE

    Kimball, J. C.; Lee, Keeyung

    2003-01-01

    A lattice-based model exhibits an unusual conductivity when it is subjected to both a static magnetic field and electromagnetic radiation. This conductivity anomaly may explain some aspects of the recently observed "zero-resistance states". PACS: 72.40+w, 73.40-c, 73.63 Keywords: Zero-resistance states, negative conductivity, lattice model

  1. Canonical Ensemble Model for Black Hole Radiation Jingyi Zhang

    Indian Academy of Sciences (India)

    Abstract. In this paper, a canonical ensemble model for the black hole quantum tunnelling radiation is introduced. In this model the probability distribution function corresponding to the emission shell is calculated to second order. The formula of pressure and internal energy of the thermal system is modified, and the ...

  2. Radiation risk estimation based on measurement error models

    CERN Document Server

    Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya

    2017-01-01

    This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

  3. Adaptive Response to ionizing Radiation Induced by Low Doses of Gamma Rays in Human Lymphoblastoid Cell Lines

    International Nuclear Information System (INIS)

    Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon

    1994-01-01

    When cells are exposed to low doses of a mutagenic or clastogenic agents, they often become less sensitive to the effects of a higher does administered subsequently. Such adaptive responses were first described in Escherichia coli and mammalian cells to low doses of an alkylating agent. Since most of the studies have been carried out with human lymphocytes, it is urgently necessary to study this effect in different cellular systems. Its relation with inherent cellular radiosensitivity and underlying mechanism also remain to be answered. In this study, adaptive response by 1 cGy of gamma rays was investigated in three human lymphoblastoid cell lines which were derived from ataxia telangiectasia homozygote, ataxia telangiectasia heterozygote, and normal individual. Experiments were carried out by delivering 1 cGy followed by 50 cGy of gamma radiation and chromatid breaks were scored as an endpoint. The results indicate that prior exposure to 1 cGy of gamma rays reduces the number of chromatid breaks induced by subsequent higher does (50 cGy). The expression of this adaptive response was similar among three cell lines despite of their different radiosensitivity. When 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase, was added after 50 cGy, adaptive responses were abolished in all the tested cell lines. Therefore it is suggested that the adaptive response can be observed in human lymphoblastoid cell lines. Which was first documented through this study. The expression of adaptive response was similar among the cell lines regardless of their radiosensitivity. The elimination of the adaptive response by 3-aminobenzamide is consistent with the proposal that this adaptive response is the result of the induction of a certain chromosomal repair mechanism

  4. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  5. A biological-based model that links genomic instability, bystander effects, and adaptive response

    International Nuclear Information System (INIS)

    Scott, B.R.

    2004-01-01

    This paper links genomic instability, bystander effects, and adaptive response in mammalian cell communities via a novel biological-based, dose-response model called NEOTRANS 3 . The model is an extension of the NEOTRANS 2 model that addressed stochastic effects (genomic instability, mutations, and neoplastic transformation) associated with brief exposure to low radiation doses. With both models, ionizing radiation produces DNA damage in cells that can be associated with varying degrees of genomic instability. Cells with persistent problematic instability (PPI) are mutants that arise via misrepair of DNA damage. Progeny of PPI cells also have PPI and can undergo spontaneous neoplastic transformation. Unlike NEOTRANS 2 , with NEOTRANS 3 newly induced mutant PPI cells and their neoplastically transformed progeny can be suppressed via our previously introduced protective apoptosis-mediated (PAM) process, which can be activated by low linear energy transfer (LET) radiation. However, with NEOTRANS 3 (which like NEOTRANS 2 involves cross-talk between nongenomically compromised [e.g., nontransformed, nonmutants] and genomically compromised [e.g., mutants, transformants, etc.] cells), it is assumed that PAM is only activated over a relatively narrow, dose-rate-dependent interval (D PAM ,D off ); where D PAM is a small stochastic activation threshold, and D off is the stochastic dose above which PAM does not occur. PAM cooperates with activated normal DNA repair and with activated normal apoptosis in guarding against genomic instability. Normal repair involves both error-free repair and misrepair components. Normal apoptosis and the error-free component of normal repair protect mammals by preventing the occurrence of mutant cells. PAM selectively removes mutant cells arising via the misrepair component of normal repair, selectively removes existing neoplastically transformed cells, and probably selectively removes other genomically compromised cells when it is activated

  6. Toward an Adaptive Learning System Framework: Using Bayesian Network to Manage Learner Model

    Directory of Open Access Journals (Sweden)

    Viet Anh Nguyen

    2012-12-01

    Full Text Available This paper represents a new approach to manage learner modeling in an adaptive learning system framework. It considers developing the basic components of an adaptive learning system such as the learner model, the course content model and the adaptation engine. We use the overlay model and Bayesian network to evaluate learners’ knowledge. In addition, we also propose a new content modeling method as well as adaptation engine to generate adaptive course based on learner’s knowledge. Based on this approach, we developed an adaptive learning system named is ACGS-II, that teaches students how to design an Entity Relationship model in a database system course. Empirical testing results for students who used the application indicate that our proposed model is very helpful as guidelines to develop adaptive learning system to meet learners’ demands.

  7. [Comparison of three daily global solar radiation models].

    Science.gov (United States)

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  8. Pneumatic Adaptive Absorber: Mathematical Modelling with Experimental Verification

    Directory of Open Access Journals (Sweden)

    Grzegorz Mikułowski

    2016-01-01

    Full Text Available Many of mechanical energy absorbers utilized in engineering structures are hydraulic dampers, since they are simple and highly efficient and have favourable volume to load capacity ratio. However, there exist fields of applications where a threat of toxic contamination with the hydraulic fluid contents must be avoided, for example, food or pharmacy industries. A solution here can be a Pneumatic Adaptive Absorber (PAA, which is characterized by a high dissipation efficiency and an inactive medium. In order to properly analyse the characteristics of a PAA, an adequate mathematical model is required. This paper proposes a concept for mathematical modelling of a PAA with experimental verification. The PAA is considered as a piston-cylinder device with a controllable valve incorporated inside the piston. The objective of this paper is to describe a thermodynamic model of a double chamber cylinder with gas migration between the inner volumes of the device. The specific situation considered here is that the process cannot be defined as polytropic, characterized by constant in time thermodynamic coefficients. Instead, the coefficients of the proposed model are updated during the analysis. The results of the experimental research reveal that the proposed mathematical model is able to accurately reflect the physical behaviour of the fabricated demonstrator of the shock absorber.

  9. Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm?

    Science.gov (United States)

    Kluzik, JoAnn; Diedrichsen, Jörn; Shadmehr, Reza; Bastian, Amy J

    2008-09-01

    We make errors when learning to use a new tool. However, the cause of error may be ambiguous: is it because we misestimated properties of the tool or of our own arm? We considered a well-studied adaptation task in which people made goal-directed reaching movements while holding the handle of a robotic arm. The robot produced viscous forces that perturbed reach trajectories. As reaching improved with practice, did people recalibrate an internal model of their arm, or did they build an internal model of the novel tool (robot), or both? What factors influenced how the brain solved this credit assignment problem? To investigate these questions, we compared transfer of adaptation between three conditions: catch trials in which robot forces were turned off unannounced, robot-null trials in which subjects were told that forces were turned off, and free-space trials in which subjects still held the handle but watched as it was detached from the robot. Transfer to free space was 40% of that observed in unannounced catch trials. We next hypothesized that transfer to free space might increase if the training field changed gradually, rather than abruptly. Indeed, this method increased transfer to free space from 40 to 60%. Therefore although practice with a novel tool resulted in formation of an internal model of the tool, it also appeared to produce a transient change in the internal model of the subject's arm. Gradual changes in the tool's dynamics increased the extent to which the nervous system recalibrated the model of the subject's own arm.

  10. Modern methods in collisional-radiative modeling of plasmas

    CERN Document Server

    2016-01-01

    This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It ...

  11. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  12. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  13. Adaptive Atmospheric Modeling Key Techniques in Grid Generation, Data Structures, and Numerical Operations with Applications

    CERN Document Server

    Behrens, Jörn

    2006-01-01

    Gives an overview and guidance in the development of adaptive techniques for atmospheric modeling. This book covers paradigms of adaptive techniques, such as error estimation and adaptation criteria. Considering applications, it demonstrates several techniques for discretizing relevant conservation laws from atmospheric modeling.

  14. Individual-based model for radiation risk assessment

    Science.gov (United States)

    Smirnova, O.

    A mathematical model is developed which enables one to predict the life span probability for mammals exposed to radiation. It relates statistical biometric functions with statistical and dynamic characteristics of an organism's critical system. To calculate the dynamics of the latter, the respective mathematical model is used too. This approach is applied to describe the effects of low level chronic irradiation on mice when the hematopoietic system (namely, thrombocytopoiesis) is the critical one. For identification of the joint model, experimental data on hematopoiesis in nonirradiated and irradiated mice, as well as on mortality dynamics of those in the absence of radiation are utilized. The life span probability and life span shortening predicted by the model agree with corresponding experimental data. Modeling results show the significance of ac- counting the variability of the individual radiosensitivity of critical system cells when estimating the radiation risk. These findings are corroborated by clinical data on persons involved in the elimination of the Chernobyl catastrophe after- effects. All this makes it feasible to use the model for radiation risk assessments for cosmonauts and astronauts on long-term missions such as a voyage to Mars or a lunar colony. In this case the model coefficients have to be determined by making use of the available data for humans. Scenarios for the dynamics of dose accumulation during space flights should also be taken into account.

  15. Using multistage models to describe radiation-induced leukaemia

    International Nuclear Information System (INIS)

    Little, M.P.; Muirhead, C.R.; Boice, J.D. Jr.; Kleinerman, R.A.

    1995-01-01

    The Armitage-Doll model of carcinogenesis is fitted to data on leukaemia mortality among the Japanese atomic bomb survivors with the DS86 dosimetry and on leukaemia incidence in the International Radiation Study of Cervical Cancer patients. Two different forms of model are fitted: the first postulates up to two radiation-affected stages and the second additionally allows for the presence at birth of a non-trivial population of cells which have already accumulated the first of the mutations leading to malignancy. Among models of the first form, a model with two adjacent radiation-affected stages appears to fit the data better than other models of the first form, including both models with two affected stages in any order and models with only one affected stage. The best fitting model predicts a linear-quadratic dose-response and reductions of relative risk with increasing time after exposure and age at exposure, in agreement with what has previously been observed in the Japanese and cervical cancer data. However, on the whole it does not provide an adequate fit to either dataset. The second form of model appears to provide a rather better fit, but the optimal models have biologically implausible parameters (the number of initiated cells at birth is negative) so that this model must also be regarded as providing an unsatisfactory description of the data. (author)

  16. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  17. Convenient models of the atmosphere: optics and solar radiation

    Science.gov (United States)

    Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov

    2017-11-01

    Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.

  18. A clinical intranet model for radiation oncology

    International Nuclear Information System (INIS)

    Brooks, Ken; Fox, Tim; Davis, Larry

    1997-01-01

    Purpose: A new paradigm in computing is being formulated from advances in client-server technology. This new way of accessing data in a network is referred to variously as Web-based computing, Internet computing, or Intranet computing. The difference between an internet and intranet being that the former is for global access and the later is only for intra-departmental access. Our purpose with this work is to develop a clinically useful radiation oncology intranet for accessing physically disparate data sources. Materials and Methods: We have developed an intranet client-server system using Windows-NT Server 4.0 running Internet Information Server (IIS) on the back-end and client PCs using a typical World Wide Web (WWW) browser. The clients also take advantage of the Microsoft Open Database Connectivity (ODBC) standard for accessing commercial database systems. The various data sources used include: a traditional Radiation Oncology Information (ROIS) System (VARiS 1.3 tm ); a 3-D treatment planning system (CAD Plan tm ); a beam scanning system (Wellhoffer tm ); as well as an electronic portal imaging device (PortalVision tm ) and a CT-Simulator providing digitally reconstructed radiographs (DRRs) (Picker AcQsim tm ). We were able to leverage previously developed Microsoft Visual C++ applications without major re-writing of source code for this. Results: With the data sources and development materials used, we were able to develop a series of WWW-based clinical tool kits. The tool kits were designed to provide profession-specific clinical information. The physician's tool kit provides a treatment schedule for daily patients along with a dose summary from VARiS and the ability to review portal images and prescription images from the EPID and Picker. The physicists tool kit compares dose summaries from VARiS with an independent check against RTP beam data and serves as a quick 'chart-checker'. Finally, an administrator tool kit provides a summary of periodic charging

  19. Cloud-radiation interactions and their parameterization in climate models

    Science.gov (United States)

    1994-01-01

    This report contains papers from the International Workshop on Cloud-Radiation Interactions and Their Parameterization in Climate Models met on 18-20 October 1993 in Camp Springs, Maryland, USA. It was organized by the Joint Working Group on Clouds and Radiation of the International Association of Meteorology and Atmospheric Sciences. Recommendations were grouped into three broad areas: (1) general circulation models (GCMs), (2) satellite studies, and (3) process studies. Each of the panels developed recommendations on the themes of the workshop. Explicitly or implicitly, each panel independently recommended observations of basic cloud microphysical properties (water content, phase, size) on the scales resolved by GCMs. Such observations are necessary to validate cloud parameterizations in GCMs, to use satellite data to infer radiative forcing in the atmosphere and at the earth's surface, and to refine the process models which are used to develop advanced cloud parameterizations.

  20. Modelling of cloudless solar radiation for PV module performance analysis

    International Nuclear Information System (INIS)

    Dusabe, D.; Munda, J.; Jimoh, A.

    2009-01-01

    The empirical model developed in this study uses standard specifications together with actual solar radiation and cell temperature to predict voltage-current characteristics of a photovoltaic panel under varying weather conditions. The paper focuses on the modelling of hourly cloudless solar radiation to provide the insolation on a PV module of any orientation, located at any site. The model is built in MATLAB/Simulink environment to provide a tool that may be loaded in the library. It is found that the predicted solar radiation strongly agrees with the experimental data from the National Renewable Energy Laboratory (NREL). Further, a satisfactory agreement between the predicted voltage - current curves and laboratory measurements is obtained. (authors)

  1. General analysis of dark radiation in sequestered string models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Muia, Francesco [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy)

    2015-12-22

    We perform a general analysis of axionic dark radiation produced from the decay of the lightest modulus in the sequestered LARGE Volume Scenario. We discuss several cases depending on the form of the Kähler metric for visible sector matter fields and the mechanism responsible for achieving a de Sitter vacuum. The leading decay channels which determine dark radiation predictions are to hidden sector axions, visible sector Higgses and SUSY scalars depending on their mass. We show that in most of the parameter space of split SUSY-like models squarks and sleptons are heavier than the lightest modulus. Hence dark radiation predictions previously obtained for MSSM-like cases hold more generally also for split SUSY-like cases since the decay channel to SUSY scalars is kinematically forbidden. However the inclusion of string loop corrections to the Kähler potential gives rise to a parameter space region where the decay channel to SUSY scalars opens up, leading to a significant reduction of dark radiation production. In this case, the simplest model with a shift-symmetric Higgs sector can suppress the excess of dark radiation ΔN{sub eff} to values as small as 0.14, in perfect agreement with current experimental bounds. Depending on the exact mass of the SUSY scalars all values in the range 0.14≲ΔN{sub eff}≲1.6 are allowed. Interestingly dark radiation overproduction can be avoided also in the absence of a Giudice-Masiero coupling.

  2. Initial Characterization of the Growth Stimulation and Heat-Shock-Induced Adaptive Response in Developing Lake Whitefish Embryos after Ionizing Radiation Exposure.

    Science.gov (United States)

    Thome, Christopher; Mitz, Charles; Hulley, Emily N; Somers, Christopher M; Manzon, Richard G; Wilson, Joanna Y; Boreham, Douglas R

    2017-10-01

    Ionizing radiation is known to effect development during early life stages. Lake whitefish (Coregonus clupeaformis) represent a unique model organism for examining such effects. The purpose of this study was to examine how ionizing radiation affects development in lake whitefish embryos and to investigate the presence of an adaptive response induced by heat shock. Acute exposure to 137 Cs gamma rays was administered at five time points corresponding to major developmental stages, with doses ranging from 0.008 to 15.5 Gy. Chronic gamma-ray exposures were delivered throughout embryogenesis within a custom-built irradiator at dose rates between 0.06 and 4.4 mGy/day. Additionally, embryos were given a heat shock of 3, 6 or 9°C prior to a single acute exposure. Radiation effects were assessed based on survival, development rate, morphometric measurements and growth efficiency. Embryos showed high resistance to acute exposures with an LD 50/hatch of 5.0 ± 0.7 Gy immediately after fertilization, increasing to 14.2 ± 0.1 Gy later in development. Chronic irradiation at all dose rates stimulated growth, with treated embryos up to 60% larger in body mass during development compared to unirradiated controls. Chronic irradiation also accelerated the time-to-hatch. A heat shock administered 6 h prior to irradiation reduced mortality by up to 25%. Overall, low-dose chronic irradiation caused growth stimulation in developing lake whitefish embryos and acute radiation mortality was reduced by a heat-shock-induced adaptive response.

  3. Scale-adaptive surface modeling of vascular structures

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2010-11-01

    Full Text Available Abstract Background The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. Methods Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. Results Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. Conclusions Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery.

  4. Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models

    Directory of Open Access Journals (Sweden)

    Ming-Shi Wang

    2012-05-01

    Full Text Available A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle’s speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.

  5. SIS epidemiological model for adaptive RT: Forecasting the parotid glands shrinkage during tomotherapy treatment.

    Science.gov (United States)

    Maffei, Nicola; Guidi, Gabriele; Vecchi, Claudio; Ciarmatori, Alberto; Gottardi, Giovanni; Meduri, Bruno; D'Angelo, Elisa; Bruni, Alessio; Mazzeo, Ercole; Pratissoli, Silvia; Giacobazzi, Patrizia; Baldazzi, Giuseppe; Lohr, Frank; Costi, Tiziana

    2016-07-01

    A susceptible-infected-susceptible (SIS) epidemic model was applied to radiation therapy (RT) treatments to predict morphological variations in head and neck (H&N) anatomy. 360 daily MVCT images of 12 H&N patients treated by tomotherapy were analyzed in this retrospective study. Deformable image registration (DIR) algorithms, mesh grids, and structure recontouring, implemented in the RayStation treatment planning system (TPS), were applied to assess the daily organ warping. The parotid's warping was evaluated using the epidemiological approach considering each vertex as a single subject and its deformed vector field (DVF) as an infection. Dedicated IronPython scripts were developed to export daily coordinates and displacements of the region of interest (ROI) from the TPS. matlab tools were implemented to simulate the SIS modeling. Finally, the fully trained model was applied to a new patient. A QUASAR phantom was used to validate the model. The patients' validation was obtained setting 0.4 cm of vertex displacement as threshold and splitting susceptible (S) and infectious (I) cases. The correlation between the epidemiological model and the parotids' trend for further optimization of alpha and beta was carried out by Euclidean and dynamic time warping (DTW) distances. The best fit with experimental conditions across all patients (Euclidean distance of 4.09 ± 1.12 and DTW distance of 2.39 ± 0.66) was obtained setting the contact rate at 7.55 ± 0.69 and the recovery rate at 2.45 ± 0.26; birth rate was disregarded in this constant population. Combining an epidemiological model with adaptive RT (ART), the authors' novel approach could support image-guided radiation therapy (IGRT) to validate daily setup and to forecast anatomical variations. The SIS-ART model developed could support clinical decisions in order to optimize timing of replanning achieving personalized treatments.

  6. Water System Adaptation To Hydrological Changes: Module 11, Methods and Tools: Computational Models

    Science.gov (United States)

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  7. Statistical Modeling for Radiation Hardness Assurance

    Science.gov (United States)

    Ladbury, Raymond L.

    2014-01-01

    We cover the models and statistics associated with single event effects (and total ionizing dose), why we need them, and how to use them: What models are used, what errors exist in real test data, and what the model allows us to say about the DUT will be discussed. In addition, how to use other sources of data such as historical, heritage, and similar part and how to apply experience, physics, and expert opinion to the analysis will be covered. Also included will be concepts of Bayesian statistics, data fitting, and bounding rates.

  8. The use of adaptive radiation therapy to reduce setup error: a prospective clinical study

    International Nuclear Information System (INIS)

    Yan Di; Wong, John; Vicini, Frank; Robertson, John; Horwitz, Eric; Brabbins, Donald; Cook, Carla; Gustafson, Gary; Stromberg, Jannifer; Martinez, Alvaro

    1996-01-01

    Purpose: Adaptive Radiation Therapy (ART) is a closed-loop feedback process where each patients treatment is adaptively optimized according to the individual variation information measured during the course of treatment. The process aims to maximize the benefits of treatment for the individual patient. A prospective study is currently being conducted to test the feasibility and effectiveness of ART for clinical use. The present study is limited to compensating the effects of systematic setup error. Methods and Materials: The study includes 20 patients treated on a linear accelerator equipped with a computer controlled multileaf collimator (MLC) and a electronic portal imaging device (EPID). Alpha cradles are used to immobilize those patients treated for disease in the thoracic and abdominal regions, and thermal plastic masks for the head and neck. Portal images are acquired daily. Setup error of each treatment field is quantified off-line every day. As determined from an earlier retrospective study of different clinical sites, the measured setup variation from the first 4 to 9 days, are used to estimate systematic setup error and the standard deviation of random setup error for each field. Setup adjustment is made if estimated systematic setup error of the treatment field was larger than or equal to 2 mm. Instead of the conventional approach of repositioning the patient, setup correction is implemented by reshaping MLC to compensate for the estimated systematic error. The entire process from analysis of portal images to the implementation of the modified MLC field is performed via computer network. Systematic and random setup errors of the treatment after adjustment are compared with those prior to adjustment. Finally, the frequency distributions of block overlap cumulated throughout the treatment course are evaluated. Results: Sixty-seven percent of all treatment fields were reshaped to compensate for the estimated systematic errors. At the time of this writing

  9. A Computational Model of Cellular Response to Modulated Radiation Fields

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Trainor, Colman [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  10. A Computational Model of Cellular Response to Modulated Radiation Fields

    International Nuclear Information System (INIS)

    McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O’Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2012-01-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  11. Adaptive elastic networks as models of supercooled liquids

    Science.gov (United States)

    Yan, Le; Wyart, Matthieu

    2015-08-01

    The thermodynamics and dynamics of supercooled liquids correlate with their elasticity. In particular for covalent networks, the jump of specific heat is small and the liquid is strong near the threshold valence where the network acquires rigidity. By contrast, the jump of specific heat and the fragility are large away from this threshold valence. In a previous work [Proc. Natl. Acad. Sci. USA 110, 6307 (2013), 10.1073/pnas.1300534110], we could explain these behaviors by introducing a model of supercooled liquids in which local rearrangements interact via elasticity. However, in that model the disorder characterizing elasticity was frozen, whereas it is itself a dynamic variable in supercooled liquids. Here we study numerically and theoretically adaptive elastic network models where polydisperse springs can move on a lattice, thus allowing for the geometry of the elastic network to fluctuate and evolve with temperature. We show numerically that our previous results on the relationship between structure and thermodynamics hold in these models. We introduce an approximation where redundant constraints (highly coordinated regions where the frustration is large) are treated as an ideal gas, leading to analytical predictions that are accurate in the range of parameters relevant for real materials. Overall, these results lead to a description of supercooled liquids, in which the distance to the rigidity transition controls the number of directions in phase space that cost energy and the specific heat.

  12. Preliminary Exploration of Adaptive State Predictor Based Human Operator Modeling

    Science.gov (United States)

    Trujillo, Anna C.; Gregory, Irene M.

    2012-01-01

    Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to quantify the effects of changing aircraft dynamics on an operator s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. A gradient descent estimator and a least squares estimator with exponential forgetting used these data to predict pilot stick input. The results indicate that individual pilot characteristics and vehicle dynamics did not affect the accuracy of either estimator method to estimate pilot stick input. These methods also were able to predict pilot stick input during changing aircraft dynamics and they may have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot.

  13. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.

    Science.gov (United States)

    Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J

    2014-04-15

    for CO2 hydration/dehydration. Finally, RBC organophosphates (e.g. NTP) could be reduced during hypoxia to further increase Hb-O2 affinity without compromising tissue O2 delivery because high-affinity Hbs could still adequately deliver O2 to the tissues via Bohr/Root shifts. We suggest that the evolution of this unique mode of tissue O2 transfer evolved in the Triassic/Jurassic Period, when O2 levels were low, ultimately giving rise to the most extensive adaptive radiation of extant vertebrates, the teleost fishes.

  14. An anthropomorphic abdominal phantom for deformable image registration accuracy validation in adaptive radiation therapy.

    Science.gov (United States)

    Liao, Yuliang; Wang, Linjing; Xu, Xiangdong; Chen, Haibin; Chen, Jiawei; Zhang, Guoqian; Lei, Huaiyu; Wang, Ruihao; Zhang, Shuxu; Gu, Xuejun; Zhen, Xin; Zhou, Linghong

    2017-06-01

    To design and construct a three-dimensional (3D) anthropomorphic abdominal phantom for geometric accuracy and dose summation accuracy evaluations of deformable image registration (DIR) algorithms for adaptive radiation therapy (ART). Organ molds, including liver, kidney, spleen, stomach, vertebra, and two metastasis tumors, were 3D printed using contours from an ovarian cancer patient. The organ molds were molded with deformable gels made of different mixtures of polyvinyl chloride (PVC) and the softener dioctyl terephthalate. Gels with different densities were obtained by a polynomial fitting curve that described the relation between the Hounsfield unit (HU) and PVC-softener blending ratio. The rigid vertebras were constructed by molding of white cement and cellulose pulp. The final abdominal phantom was assembled by arranging all the fabricated organs inside a hollow dummy according to their anatomies, and sealed by deformable gel with averaged HU of muscle and fat. Fiducial landmarks were embedded inside the phantom for spatial accuracy and dose accumulation accuracy studies. Two channels were excavated to facilitate ionization chamber insertion for dosimetric measurements. Phantom properties such as deformable gel elasticity and HU stability were studied. The dosimetric measurement accuracy in the phantom was performed, and the DIR accuracies of three DIR algorithms available in the open source DIR toolkit-DIRART were also validated. The constructed deformable gel showed elastic behavior and was stable in HU values over times, proving to be a practical material for the deformable phantom. The constructed abdominal phantom consisted of realistic anatomies in terms of both anatomical shapes and densities when compared with its reference patient. The dosimetric measurements showed a good agreement with the calculated doses from the treatment planning system. Fiducial-based accuracy analysis conducted on the constructed phantom demonstrated the feasibility of

  15. Radioadaptive response. Efficient repair of radiation-induced DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji; Aritomi, Hisako; Morisita, Jun

    1996-01-01

    To verify the hypothesis that the induction of a novel, efficient repair mechanism for chromosomal DNA breaks may be involved in the radioadaptive response, the repair kinetics of DNA damage has been studied in cultured Chinese hamster V79 cells with single-cell gel electrophoresis. The cells were adapted by priming exposure with 5 cGy of γ-rays and 4-h incubation at 37C. There were no indication of any difference in the initial yields of DNA double-strand breaks induced by challenging doses from non-adapted cells and from adapted cells. The rejoining of DNA double-strand breaks was monitored over 120 min after the adapted cells were challenged with 5 or 1.5 Gy, doses at the same level to those used in the cytogenetical adaptive response. The rate of DNA damage repair in adapted cells was higher than that in non-adapted cells, and the residual damage was less in adapted cells than in non-adapted cells. These results indicate that the radioadaptive response may result from the induction of a novel, efficient DNA repair mechanism which leads to less residual damage, but not from the induction of protective functions that reduce the initial DNA damage

  16. Jupiter radiation belt models (July 1974)

    International Nuclear Information System (INIS)

    Divine, N.

    1974-01-01

    Flux profiles which were derived from data returned by Pioneer 10 during Jupiter encounter, form the basis for a new set of numerical models for the energy spectra of electrons and protons in Jupiter's inner magnetosphere

  17. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    Science.gov (United States)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  18. Modelling the luminous efficacy of solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E. [Universidad Autonoma de Madrid (Spain). Dpto. de Fisica Aplicada; Soler, A.; Robledo, L. [Universidad de Madrid (Spain). Dpto. de Fisic a e Instalaciones Aplicadas

    2000-07-01

    The global and diffuse luminous efficacy models proposed in Muneer (1995), Muneer and Kinghorn (1997), have been tested with experimental data obtained in Madrid. When the models with local coefficients are statistically assessed with local data, global illuminance L{sub g} is estimated with an acceptable accuracy, but diffuse illuminance L{sub d} is overestimated for L{sub d} higher than about 25 klux. (author)

  19. Managing a national radiation oncologist workforce: A workforce planning model

    International Nuclear Information System (INIS)

    Stuckless, Teri; Milosevic, Michael; Metz, Catherine de; Parliament, Matthew; Tompkins, Brent; Brundage, Michael

    2012-01-01

    Purpose: The specialty of radiation oncology has experienced significant workforce planning challenges in many countries. Our purpose was to develop and validate a workforce-planning model that would forecast the balance between supply of, and demand for, radiation oncologists in Canada over a minimum 10-year time frame, to identify the model parameters that most influenced this balance, and to suggest how this model may be applicable to other countries. Methods: A forward calculation model was created and populated with data obtained from national sources. Validation was confirmed using a historical prospective approach. Results: Under baseline assumptions, the model predicts a short-term surplus of RO trainees followed by a projected deficit in 2020. Sensitivity analyses showed that access to radiotherapy (proportion of incident cases referred), individual RO workload, average age of retirement and resident training intake most influenced balance of supply and demand. Within plausible ranges of these parameters, substantial shortages or excess of graduates is possible, underscoring the need for ongoing monitoring. Conclusions: Workforce planning in radiation oncology is possible using a projection calculation model based on current system characteristics and modifiable parameters that influence projections. The workload projections should inform policy decision making regarding growth of the specialty and training program resident intake required to meet oncology health services needs. The methods used are applicable to workforce planning for radiation oncology in other countries and for other comparable medical specialties.

  20. Capacitance Online Estimation Based on Adaptive Model Observer

    Directory of Open Access Journals (Sweden)

    Cen Zhaohui

    2016-01-01

    Full Text Available As a basic component in electrical and electronic devices, capacitors are very popular in electrical circuits. Conventional capacitors such as electrotype capacitors are easy to degradation, aging and fatigue due to long‐time running and outer damages such as mechanical and electrical stresses. In this paper, a novel online capacitance measurement/estimation approach is proposed. Firstly, an Adaptive Model Observer (AMO is designed based on the capacitor's circuit equations. Secondly, the AMO’s stability and convergence are analysed and discussed. Finally, Capacitors with different capacitance and different initial voltages in a buck converter topology are tested and validated. Simulation results demonstrate the effectiveness and superiority of our proposed approach.

  1. Adapting models of visual aesthetics for personalized content creation

    DEFF Research Database (Denmark)

    Liapis, Antonios; Yannakakis, Georgios N.; Togelius, Julian

    2012-01-01

    spaceships according to their visual taste: the impact of the various visual properties is adjusted based on player preferences and new content is generated online based on the updated computational model of visual aesthetics of the player. Results are presented which show the potential of the approach...... pleasing 2D game spaceships via neuroevolutionary constrained optimization and evaluate the impact of the designed visual properties on the generated spaceships. The offline generated spaceships are used as the initial population of an interactive evolution experiment in which players are asked to choose......This paper introduces a search-based approach to personalized content generation with respect to visual aesthetics. The approach is based on a two-step adaptation procedure where (1) the evaluation function that characterizes the content is adjusted to match the visual aesthetics of users and (2...

  2. Modeling extreme events: Sample fraction adaptive choice in parameter estimation

    Science.gov (United States)

    Neves, Manuela; Gomes, Ivette; Figueiredo, Fernanda; Gomes, Dora Prata

    2012-09-01

    When modeling extreme events there are a few primordial parameters, among which we refer the extreme value index and the extremal index. The extreme value index measures the right tail-weight of the underlying distribution and the extremal index characterizes the degree of local dependence in the extremes of a stationary sequence. Most of the semi-parametric estimators of these parameters show the same type of behaviour: nice asymptotic properties, but a high variance for small values of k, the number of upper order statistics to be used in the estimation, and a high bias for large values of k. This shows a real need for the choice of k. Choosing some well-known estimators of those parameters we revisit the application of a heuristic algorithm for the adaptive choice of k. The procedure is applied to some simulated samples as well as to some real data sets.

  3. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  4. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  5. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  6. Modelling of the indirect radiation effect due to background aerosols in Austria

    International Nuclear Information System (INIS)

    Neubauer, D.

    2009-01-01

    Aerosols and greenhouse gases are the two most important contributors to the anthropogenic climate change. The indirect aerosol effect is simulated in this study. The effects of black carbon are investigated. Usually, models use measured aerosol data as input, and their predictions are compared to cloud parameters measured independently from the aerosol measurements. The model developed in this study uses simultaneously measured values for the aerosol and the subsequent cloud. This way, more realistic predictions for the indirect aerosol effect can be expected. The model uses data from an earlier intensive measurement campaign at an Austrian background site. The aerosol and cloud data are taken from the FWF project P 131 43 - CHE and had been collected in 2000 at a measurement site on a mountain in the proximity of Vienna (Rax, 1680 m a.s.l.). The simulation model consists of two parts, a cloud droplet growth model and a radiative model. The growth model for cloud droplets computes the cloud droplet distribution originating from a measured aerosol distribution. The calculated cloud droplet size distributions that are used for further calculations are selected according to the measured liquid water content of the real-world cloud. The radiative model then computes the radiative forcing using the calculated cloud droplet size distribution. The cloud model is a cloud parcel model which describes an ascending air parcel containing the droplets. Turbulent diffusion (important for stratiform clouds) is realized through a simple approach. The model includes nucleation, condensation, coagulation and radiative effects. Because of radiative heating/cooling of the cloud droplets the temperature and the critical super-saturation of the droplets can change. For radiative transfer calculations, the radiative transfer code of the public domain program 'Streamer' was adapted for this study. 'Streamer' accounts for scattering and absorption of radiation in the whole spectral region

  7. Critical ingredients of Type Ia supernova radiative-transfer modelling

    Science.gov (United States)

    Dessart, Luc; Hillier, D. John; Blondin, Stéphane; Khokhlov, Alexei

    2014-07-01

    We explore the physics of Type Ia supernova (SN Ia) light curves and spectra using the 1D non-local thermodynamic equilibrium (non-LTE) time-dependent radiative-transfer code CMFGEN. Rather than adjusting ejecta properties to match observations, we select as input one `standard' 1D Chandrasekhar-mass delayed-detonation hydrodynamical model, and then explore the sensitivity of radiation and gas properties of the ejecta on radiative-transfer modelling assumptions. The correct computation of SN Ia radiation is not exclusively a solution to an `opacity problem', characterized by the treatment of a large number of lines. We demonstrate that the key is to identify and treat important atomic processes consistently. This is not limited to treating line blanketing in non-LTE. We show that including forbidden-line transitions of metals, and in particular Co, is increasingly important for the temperature and ionization of the gas beyond maximum light. Non-thermal ionization and excitation are also critical since they affect the colour evolution and the ΔM15 decline rate of our model. While impacting little the bolometric luminosity, a more complete treatment of decay routes leads to enhanced line blanketing, e.g. associated with 48Ti in the U and B bands. Overall, we find that SN Ia radiation properties are influenced in a complicated way by the atomic data we employ, so that obtaining converged results is a real challenge. Nonetheless, with our fully fledged CMFGEN model, we obtain good agreement with the golden standard Type Ia SN 2005cf in the optical and near-IR, from 5 to 60 d after explosion, suggesting that assuming spherical symmetry is not detrimental to SN Ia radiative-transfer modelling at these times. Multi-D effects no doubt matter, but they are perhaps less important than accurately treating the non-LTE processes that are crucial to obtain reliable temperature and ionization structures.

  8. Adaptive Surface Modeling of Soil Properties in Complex Landforms

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-06-01

    Full Text Available Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the surface modeling of soil properties in complex geomorphic areas. Here we present a method for adaptive surface modeling of combined secondary variables to improve prediction accuracy during the interpolation of soil properties (ASM-SP. Using various secondary variables and multiple base interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex geomorphic area (Qinghai Lake Basin, China. Five methods, including inverse distance weighting (IDW, ordinary kriging (OK, and OK combined with different secondary variables (e.g., OK-Landuse, OK-Geology, and OK-Soil, were used to validate the proposed method. The mean error (ME, mean absolute error (MAE, root mean square error (RMSE, mean relative error (MRE, and accuracy (AC were used as evaluation indicators. Results showed that: (1 The OK interpolation result is spatially smooth and has a weak bull's-eye effect, and the IDW has a stronger ‘bull’s-eye’ effect, relatively. They both have obvious deficiencies in depicting spatial variability of soil K+. (2 The methods incorporating combinations of different secondary variables (e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil were associated with lower estimation bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and OK-Soil, the accuracy of ASM-SP increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively. Furthermore, ASM-SP was more stable, with lower MEs, MAEs, RMSEs, and MREs. (3 ASM-SP presents more details than others in the abrupt boundary, which can render the result consistent with the true secondary variables. In conclusion, ASM-SP can not only consider the nonlinear relationship between secondary variables and soil properties, but can also adaptively combine the advantages of multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.

  9. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    OpenAIRE

    Yeom, Jong-Min; Seo, You-Kyung; Kim, Dong-Su; Han, Kyung-Soo

    2016-01-01

    This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE) digital elevation model (DEM) for the actual amount of...

  10. A biokinetic model for zinc for use in radiation protection

    International Nuclear Information System (INIS)

    Leggett, Richard Wayne

    2012-01-01

    The physiology of the essential trace element zinc has been studied extensively in human subjects using kinetic analysis of time-dependent measurements of administered zinc tracers. A number of biokinetic models describing zinc exchange between plasma and tissues and loss of systemic zinc in excreta have been developed from the derived data. More rudimentary biokinetic models for zinc have been developed to estimate radiation doses from internally deposited radioisotopes of zinc. The latter models are designed to provide broadly accurate estimates of cumulative decays of zinc radioisotopes in tissues and are not intended as realistic descriptions of the directions of movement of zinc in the body. This paper reviews biokinetic data for zinc and proposes a physiologically meaningful biokinetic model for systemic zinc for use in radiation protection. The proposed model bears some resemblance to zinc models developed in physiological studies but depicts a finer division of systemic zinc and is based on a broader spectrum of data than previous models. The proposed model and current radiation protection model for zinc yield broadly similar estimates of effective dose from internally deposited radioisotopes of zinc but substantially different dose estimates for several individual tissues, particularly the liver.

  11. Model study of radiation effects on the gastrointestinal cell system

    International Nuclear Information System (INIS)

    Kicherer, G.

    1983-03-01

    Since it is now possible to calculate the radiation fields used for medicinal purposes by means of radiation transport programs it was started to determine with mathematical models of radioeffects not only the physical effects or irradiation, but also the resulting biological radioresponses. This supplementary biologic information is not only of large general importance, but particularly valuable for the medicinal application of the biologically highly effective neutron radiation. With support by the Institute for Medicinal Radiophysics and Radiobiology of Essen University Hospital, and of two biomathematical working groups of Ulm University and Cologne University Hospital, who are experienced in the field of establishing mathematical models of the hematogenic cellular system, we developed out of experimental fundamental findings a cellkinetic, kybernetic model of the intestinal mucosa, which is highly sensitive to radiation. With this newly established model we succeeded for the first time in simulating comprehensively and quantitatively the time-dependent acute radioresponse of such a radiosensitive cellular system. For the first time we successfully used the computer simulation languages DARE-P and GASP, which are principally employed for solving problems in automatic control technology, and set up a radioresponse model. (orig.) [de

  12. Using plural modeling for predicting decisions made by adaptive adversaries

    International Nuclear Information System (INIS)

    Buede, Dennis M.; Mahoney, Suzanne; Ezell, Barry; Lathrop, John

    2012-01-01

    Incorporating an appropriate representation of the likelihood of terrorist decision outcomes into risk assessments associated with weapons of mass destruction attacks has been a significant problem for countries around the world. Developing these likelihoods gets at the heart of the most difficult predictive problems: human decision making, adaptive adversaries, and adversaries about which very little is known. A plural modeling approach is proposed that incorporates estimates of all critical uncertainties: who is the adversary and what skills and resources are available to him, what information is known to the adversary and what perceptions of the important facts are held by this group or individual, what does the adversary know about the countermeasure actions taken by the government in question, what are the adversary's objectives and the priorities of those objectives, what would trigger the adversary to start an attack and what kind of success does the adversary desire, how realistic is the adversary in estimating the success of an attack, how does the adversary make a decision and what type of model best predicts this decision-making process. A computational framework is defined to aggregate the predictions from a suite of models, based on this broad array of uncertainties. A validation approach is described that deals with a significant scarcity of data.

  13. Workload Model Based Dynamic Adaptation of Social Internet of Vehicles.

    Science.gov (United States)

    Alam, Kazi Masudul; Saini, Mukesh; El Saddik, Abdulmotaleb

    2015-09-15

    Social Internet of Things (SIoT) has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV) is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems.

  14. Workload Model Based Dynamic Adaptation of Social Internet of Vehicles

    Directory of Open Access Journals (Sweden)

    Kazi Masudul Alam

    2015-09-01

    Full Text Available Social Internet of Things (SIoT has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems.

  15. Radiative heating in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Baer, F.; Arsky, N.; Rocque, K. [Univ. of Maryland, College Park, MD (United States)

    1996-04-01

    LWR algorithms from various GCMs vary significantly from one another for the same clear sky input data. This variability becomes pronounced when clouds are included. We demonstrate this effect by intercomparing the various models` output using observed data including clouds from ARM/CART data taken in Oklahoma.

  16. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...... Center, SEC, Denmark. With measured solar radiation on horizontal and the different solar radiation processing models the total radiation is calculated on differently tilted and oriented surfaces and compared with the measured solar radiation on the different surfaces. Further, the impact on the yearly......Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...

  17. Curve fitting methods for solar radiation data modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  18. Curve fitting methods for solar radiation data modeling

    Science.gov (United States)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-10-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  19. Curve fitting methods for solar radiation data modeling

    International Nuclear Information System (INIS)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-01-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R 2 . The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods

  20. Radiative transfer model for heterogeneous 3-D scenes

    Science.gov (United States)

    Kimes, D. S.; Kirchner, J. A.

    1982-01-01

    A general mathematical framework for simulating processes in heterogeneous 3-D scenes is presented. Specifically, a model was designed and coded for application to radiative transfers in vegetative scenes. The model is unique in that it predicts (1) the directional spectral reflectance factors as a function of the sensor's azimuth and zenith angles and the sensor's position above the canopy, (2) the spectral absorption as a function of location within the scene, and (3) the directional spectral radiance as a function of the sensor's location within the scene. The model was shown to follow known physical principles of radiative transfer. Initial verification of the model as applied to a soybean row crop showed that the simulated directional reflectance data corresponded relatively well in gross trends to the measured data. However, the model can be greatly improved by incorporating more sophisticated and realistic anisotropic scattering algorithms

  1. Plasmonic-cavity model for radiating nano-rod antennas

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2014-01-01

    In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition and the ......In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition...... and the radiation efficiency. With our theoretical model, we show that besides the plasmonic resonances, efficient radiation takes advantage of (a) rendering a large value of the rods' radius and (b) a central-fed profile, through which the radiation efficiency can reach up to 70% and even higher in a wide...... frequency band. Our theoretical expressions and conclusions are general and pave the way for engineering and further optimization of optical antenna systems and their radiation patterns....

  2. Modelling spatial connectivity in epidemiological systems, dengue fever in Thailand on networks from radiation models

    Science.gov (United States)

    Stollenwerk, Nico; Götz, Thomas; Mateus, Luis; Wijaya, Putra; Willems, David; Skwara, Urszula; Marguta, Ramona; Ghaffari, Peyman; Aguiar, Maíra

    2016-06-01

    We model the connectivity between Thai provinces in terms of human mobility via a radiation model in order to describe dengue fever spreading in Thailand, for which long term epidemiological data are available.

  3. Spatially adaptive mixture modeling for analysis of FMRI time series.

    Science.gov (United States)

    Vincent, Thomas; Risser, Laurent; Ciuciu, Philippe

    2010-04-01

    Within-subject analysis in fMRI essentially addresses two problems, the detection of brain regions eliciting evoked activity and the estimation of the underlying dynamics. In Makni et aL, 2005 and Makni et aL, 2008, a detection-estimation framework has been proposed to tackle these problems jointly, since they are connected to one another. In the Bayesian formalism, detection is achieved by modeling activating and nonactivating voxels through independent mixture models (IMM) within each region while hemodynamic response estimation is performed at a regional scale in a nonparametric way. Instead of IMMs, in this paper we take advantage of spatial mixture models (SMM) for their nonlinear spatial regularizing properties. The proposed method is unsupervised and spatially adaptive in the sense that the amount of spatial correlation is automatically tuned from the data and this setting automatically varies across brain regions. In addition, the level of regularization is specific to each experimental condition since both the signal-to-noise ratio and the activation pattern may vary across stimulus types in a given brain region. These aspects require the precise estimation of multiple partition functions of underlying Ising fields. This is addressed efficiently using first path sampling for a small subset of fields and then using a recently developed fast extrapolation technique for the large remaining set. Simulation results emphasize that detection relying on supervised SMM outperforms its IMM counterpart and that unsupervised spatial mixture models achieve similar results without any hand-tuning of the correlation parameter. On real datasets, the gain is illustrated in a localizer fMRI experiment: brain activations appear more spatially resolved using SMM in comparison with classical general linear model (GLM)-based approaches, while estimating a specific parcel-based HRF shape. Our approach therefore validates the treatment of unsmoothed fMRI data without fixed GLM