WorldWideScience

Sample records for adaptive protein evolution

  1. In the light of directed evolution: Pathways of adaptive protein evolution

    OpenAIRE

    Bloom, Jesse D; Arnold, Frances H.

    2009-01-01

    Directed evolution is a widely-used engineering strategy for improving the stabilities or biochemical functions of proteins by repeated rounds of mutation and selection. These experiments offer empirical lessons about how proteins evolve in the face of clearly-defined laboratory selection pressures. Directed evolution has revealed that single amino acid mutations can enhance properties such as catalytic activity or stability and that adaptation can often occur through pathways consisting of s...

  2. Adaptive evolution of centromere proteins in plants and animals

    Directory of Open Access Journals (Sweden)

    Henikoff Steven

    2004-08-01

    Full Text Available Abstract Background Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3, which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C, that is characterized by a single 24 amino-acid motif (CENPC motif. Results Whereas we find no evidence that mammalian CenH3 (CENP-A has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p is under negative selection. Conclusions CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi.

  3. Using maximum likelihood method to detect adaptive evolution of HCV envelope protein-coding genes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wenjuan; ZHANG Yuan; ZHONG Yang

    2006-01-01

    Nonsynonymous-synonymous substitution rate ratio (dN/dS) is an important measure for evaluating selective pressure based on the protein-coding sequences. Maximum likelihood (ML) method with codon-substitution models is a powerful statistic tool for detecting amino acid sites under positive selection and adaptive evolution. We analyzed the hepatitis C virus (HCV) envelope protein-coding sequences from 18 general geno/ subtypes worldwide, and found 4 amino acid sites under positive selection. Since these sites are located in different immune epitopes, it is reasonable to anticipate that our study would have potential values in biomedicine. It also suggests that the ML method is an effective way to detect adaptive evolution in virus proteins with relatively high genetic diversity.

  4. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    Science.gov (United States)

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity.

  5. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers.

    Directory of Open Access Journals (Sweden)

    Sharon A Jansa

    Full Text Available The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae and pitvipers (Serpentes: Crotalinae. In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF, a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role.

  6. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    Science.gov (United States)

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats. PMID:23965379

  7. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    Science.gov (United States)

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats.

  8. Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse.

    Directory of Open Access Journals (Sweden)

    Jihui Ping

    Full Text Available Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA receptor and non-structural protein 1 (NS1 interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30 suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for

  9. The Adaptive Evolution Database (TAED)

    OpenAIRE

    Liberles, David A; Schreiber, David R.; Govindarajan, Sridhar; Chamberlin, Stephen G.; Steven A Benner

    2001-01-01

    Background The Master Catalog is a collection of evolutionary families, including multiple sequence alignments, phylogenetic trees and reconstructed ancestral sequences, for all protein-sequence modules encoded by genes in GenBank. It can therefore support large-scale genomic surveys, of which we present here The Adaptive Evolution Database (TAED). In TAED, potential examples of positive adaptation are identified by high values for the normalized ratio of nonsynonymous to synonymous nucleotid...

  10. Testing for adaptive evolution of the female reproductive protein ZPC in mammals, birds and fishes reveals problems with the M7-M8 likelihood ratio test

    OpenAIRE

    Berlin Sofia; Smith Nick GC

    2005-01-01

    Abstract Background Adaptive evolution appears to be a common feature of reproductive proteins across a very wide range of organisms. A promising way of addressing the evolutionary forces responsible for this general phenomenon is to test for adaptive evolution in the same gene but among groups of species, which differ in their reproductive biology. One can then test evolutionary hypotheses by asking whether the variation in adaptive evolution is consistent with the variation in reproductive ...

  11. Molecular evolution and thermal adaptation

    Science.gov (United States)

    Chen, Peiqiu

    2011-12-01

    In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of

  12. Adaptive Evolution of the Venom-Targeted vWF Protein in Opossums that Eat Pitvipers

    OpenAIRE

    Sharon A Jansa; Voss, Robert S.

    2011-01-01

    The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae) and pitvipers (Serp...

  13. Adaptive evolution in ecological communities.

    Directory of Open Access Journals (Sweden)

    Martin M Turcotte

    Full Text Available Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  14. Adaptive evolution of molecular phenotypes

    Science.gov (United States)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-09-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak.

  15. Evolution of proteins.

    Science.gov (United States)

    Dayhoff, M. O.

    1971-01-01

    The amino acid sequences of proteins from living organisms are dealt with. The structure of proteins is first discussed; the variation in this structure from one biological group to another is illustrated by the first halves of the sequences of cytochrome c, and a phylogenetic tree is derived from the cytochrome c data. The relative geological times associated with the events of this tree are discussed. Errors which occur in the duplication of cells during the evolutionary process are examined. Particular attention is given to evolution of mutant proteins, globins, ferredoxin, and transfer ribonucleic acids (tRNA's). Finally, a general outline of biological evolution is presented.

  16. Reconstruction of the most recent common ancestor sequences of SARS-Cov S gene and detection of adaptive evolution in the spike protein

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan; ZHENG Nan; HAO Pei; ZHONG Yang

    2004-01-01

    @@ The genome organization and expression strategy of severe acute respiratory syndrome coronavirus (SARSCoV) have been described extensivelyl1- 10]. As a structural glycoprotein on the virion surface, the spike protein is responsible for binding to host cellular receptors and for the fusion between the viral envelope and the cellular membrane. It also induces neutralizing antibodies in the host and mediates cellular immunity[11]. Previous studies suggested that amino acid replacements in the spike protein could dramatically alter the pathogenesis and virulence of some coronaviruses[11]. It is therefore reasonable to test the hypothesis that radical amino acid replacements in the spike protein, favored by environmental selective pressure during the process of SARS-CoV interspecific transmission[10], might make this pathogen adapt to a new host. In this study, we investigated a total of 108complete sequences of the SARS-CoV S gene from GenBank (until March 23, 2004). After omission of those records containing frame-shift mutations or low quality sequences, e.g. ZJ01, and selection of one sequence for identical records, an alignment of 42 sequences was obtained using the program Clustal-X[13]. Then, we reconstructed the most recent common ancestor (MRCA) sequences of the SARS-CoV S gene and detected the adaptive evolution in the spike protein.

  17. Adaptive genic evolution in the Drosophila genomes

    DEFF Research Database (Denmark)

    Shapiro, Joshua A; Huang, Wei; Zhang, Chenhui;

    2007-01-01

    Determining the extent of adaptive evolution at the genomic level is central to our understanding of molecular evolution. A suitable observation for this purpose would consist of polymorphic data on a large and unbiased collection of genes from two closely related species, each having a large and...... the theories and data pertaining to the interpretation of adaptive evolution in genomic studies.......Determining the extent of adaptive evolution at the genomic level is central to our understanding of molecular evolution. A suitable observation for this purpose would consist of polymorphic data on a large and unbiased collection of genes from two closely related species, each having a large....... melanogaster and its close relatives were adaptive. (iv) This signature of adaptive evolution is observable only in regions of normal recombination. Hence, the low level of polymorphism observed in regions of reduced recombination may not be driven primarily by positive selection. Finally, we discuss...

  18. Protein Adaptations in Archaeal Extremophiles

    Directory of Open Access Journals (Sweden)

    Christopher J. Reed

    2013-01-01

    Full Text Available Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  19. Epistatic adaptive evolution of human color vision.

    Directory of Open Access Journals (Sweden)

    Shozo Yokoyama

    2014-12-01

    Full Text Available Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV-free retinal environment, the short wavelength-sensitive (SWS1 visual pigment in human (human S1 switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45-30 million years ago, the middle and long wavelength-sensitive (MWS/LWS pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments.

  20. Evolution of adaptation mechanisms: Adaptation energy, stress, and oscillating death.

    Science.gov (United States)

    Gorban, Alexander N; Tyukina, Tatiana A; Smirnova, Elena V; Pokidysheva, Lyudmila I

    2016-09-21

    In 1938, Selye proposed the notion of adaptation energy and published 'Experimental evidence supporting the conception of adaptation energy.' Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description. We aim to demonstrate that Selye׳s adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyze Selye׳s axioms of adaptation energy together with Goldstone׳s modifications and propose a series of models for interpretation of these axioms. Adaptation energy is considered as an internal coordinate on the 'dominant path' in the model of adaptation. The phenomena of 'oscillating death' and 'oscillating remission' are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyze the optimal strategies for different systems of factors. PMID:26801872

  1. Fitness seascapes and adaptive evolution of the influenza virus

    Science.gov (United States)

    Lassig, Michael

    2014-03-01

    The seasonal human influenza A virus undergoes rapid genome evolution. This process is triggered by interactions with the host immune system and produces significant year-to-year sequence turnover in the population of circulating viral strains. We develop a dynamical fitness model that predicts the evolution of the viral population from one year to the next. Two factors are shown to determine the fitness of a viral strain: adaptive changes, which are under positive selection, and deleterious mutations, which affect conserved viral functions such as protein stability. Combined with the influenza strain tree, this fitness model maps the adaptive history of influenza A. We discuss the implications of our results for the statistical theory of adaptive evolution in asexual populations. Based on this and related systems, we touch upon the fundamental question of when evolution can be predicted. Joint work with Marta Luksza, Columbia University.

  2. Parallel genotypic adaptation: when evolution repeats itself

    OpenAIRE

    Wood, Troy E.; Burke, John M.; Rieseberg, Loren H.

    2005-01-01

    Until recently, parallel genotypic adaptation was considered unlikely because phenotypic differences were thought to be controlled by many genes. There is increasing evidence, however, that phenotypic variation sometimes has a simple genetic basis and that parallel adaptation at the genotypic level may be more frequent than previously believed. Here, we review evidence for parallel genotypic adaptation derived from a survey of the experimental evolution, phylogenetic, and quantitative genetic...

  3. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  4. The adaptive evolution of the mammalian mitochondrial genome

    Directory of Open Access Journals (Sweden)

    O'Brien Stephen J

    2008-03-01

    Full Text Available Abstract Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas. Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation.

  5. Adaptive functional evolution of leptin in cold-adaptive pika family

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Aresearch team led by Prof.ZHAO Xinquan with the CAS Northwest Institute of Plateau Biology has put forward the viewpoint for the first time that adaptive functional evolution may occur in the leptin protein of the pika (Ochotona) family, a typical coldadaptive mammal.

  6. Protein evolution on rugged landscapes.

    OpenAIRE

    Macken, C A; Perelson, A S

    1989-01-01

    We analyze a mathematical model of protein evolution in which the evolutionary process is viewed as hill-climbing on a random fitness landscape. In studying the structure of such landscapes, we note that a large number of local optima exist, and we calculate the time and number of mutational changes until a protein gets trapped at a local optimum. Such a hill-climbing process may underlie the evolution of antibody molecules by somatic hypermutation.

  7. Adaptation, plant evolution, and the fossil record

    Science.gov (United States)

    Knoll, A. H.; Niklas, K. J.

    1987-01-01

    The importance of adaptation in determining patterns of evolution has become an important focus of debate in evolutionary biology. As it pertains to paleobotany, the issue is whether or not adaptive evolution mediated by natural selection is sufficient to explain the stratigraphic distributions of taxa and character states observed in the plant fossil record. One means of addressing this question is the functional evaluation of stratigraphic series of plant organs set in the context of paleoenvironmental change and temporal patterns of floral composition within environments. For certain organ systems, quantitative estimates of biophysical performance can be made on the basis of structures preserved in the fossil record. Performance estimates for plants separated in time or space can be compared directly. Implicit in different hypotheses of the forces that shape the evolutionary record (e.g. adaptation, mass extinction, rapid environmental change, chance) are predictions about stratigraphic and paleoenvironmental trends in the efficacy of functional performance. Existing data suggest that following the evolution of a significant structural innovation, adaptation for improved functional performance can be a major determinant of evolutionary changes in plants; however, there are structural and development limits to functional improvement, and once these are reached, the structure in question may no longer figure strongly in selection until and unless a new innovation evolves. The Silurian-Devonian paleobotanical record is consistent with the hypothesis that the succession of lowland floodplain dominants preserved in the fossil record of this interval was determined principally by the repeated evolution of new taxa that rose to ecological importance because of competitive advantages conferred by improved biophysical performance. This does not seem to be equally true for Carboniferous-Jurassic dominants of swamp and lowland floodplain environments. In these cases

  8. Evolution or adaptation? What do heritable adaptive changes imply?

    Directory of Open Access Journals (Sweden)

    M. Kemal Irmak

    2014-02-01

    Full Text Available Interactions between environmental factors and epigenetic inheritance system produce a great deal of variation from one geographic region to another in human craniofacial morphology, skin color, hair form, stature and body proportions. In this system, while environmental factors produce modifications in the body, they simultaneously induce long-term epigenetic modifications in the germ cells that are inherited to offspring. This kind of heritable changes is called biological adaptation. It was previously reported that biological adaptation is limited to neural crest derivatives such as craniofacial tissues, melanocytes, and structures related to hair form, stature and body proportions. Thus, inheritance of adaptive changes is limited to a number of traits and species-to-species evolution seems unlikely. [J Exp Integr Med 2014; 4(1.000: 13-16

  9. Adaptive evolution of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Berg Johannes

    2004-10-01

    Full Text Available Abstract Background The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. Results We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background mutation rate, the selection coefficient, and the effective population size. Conclusions The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.

  10. Venom Evolution: Gene Loss Shapes Phenotypic Adaptation.

    Science.gov (United States)

    Casewell, Nicholas R

    2016-09-26

    Snake venoms are variable protein mixtures with a multitude of bioactivities. New work shows, surprisingly, that it is the loss of toxin-encoding genes that strongly influences venom function in rattlesnakes, highlighting how gene loss can underpin adaptive phenotypic change. PMID:27676304

  11. Lessons in Protein Design from Combined Evolution and Conformational Dynamics

    OpenAIRE

    Swarnendu Tripathi; M Neal Waxham; Cheung, Margaret S.; Yin Liu

    2015-01-01

    Protein-protein interactions play important roles in the control of every cellular process. How natural selection has optimized protein design to produce molecules capable of binding to many partner proteins is a fascinating problem but not well understood. Here, we performed a combinatorial analysis of protein sequence evolution and conformational dynamics to study how calmodulin (CaM), which plays essential roles in calcium signaling pathways, has adapted to bind to a large number of partne...

  12. Procedure for Adaptive Laboratory Evolution of Microorganisms Using a Chemostat.

    Science.gov (United States)

    Jeong, Haeyoung; Lee, Sang J; Kim, Pil

    2016-01-01

    Natural evolution involves genetic diversity such as environmental change and a selection between small populations. Adaptive laboratory evolution (ALE) refers to the experimental situation in which evolution is observed using living organisms under controlled conditions and stressors; organisms are thereby artificially forced to make evolutionary changes. Microorganisms are subject to a variety of stressors in the environment and are capable of regulating certain stress-inducible proteins to increase their chances of survival. Naturally occurring spontaneous mutations bring about changes in a microorganism's genome that affect its chances of survival. Long-term exposure to chemostat culture provokes an accumulation of spontaneous mutations and renders the most adaptable strain dominant. Compared to the colony transfer and serial transfer methods, chemostat culture entails the highest number of cell divisions and, therefore, the highest number of diverse populations. Although chemostat culture for ALE requires more complicated culture devices, it is less labor intensive once the operation begins. Comparative genomic and transcriptome analyses of the adapted strain provide evolutionary clues as to how the stressors contribute to mutations that overcome the stress. The goal of the current paper is to bring about accelerated evolution of microorganisms under controlled laboratory conditions. PMID:27684991

  13. Evolution-Based Functional Decomposition of Proteins.

    Science.gov (United States)

    Rivoire, Olivier; Reynolds, Kimberly A; Ranganathan, Rama

    2016-06-01

    The essential biological properties of proteins-folding, biochemical activities, and the capacity to adapt-arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment-a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  14. Adaptive CGFs Based on Grammatical Evolution

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2015-01-01

    Full Text Available Computer generated forces (CGFs play blue or red units in military simulations for personnel training and weapon systems evaluation. Traditionally, CGFs are controlled through rule-based scripts, despite the doctrine-driven behavior of CGFs being rigid and predictable. Furthermore, CGFs are often tricked by trainees or fail to adapt to new situations (e.g., changes in battle field or update in weapon systems, and, in most cases, the subject matter experts (SMEs review and redesign a large amount of CGF scripts for new scenarios or training tasks, which is both challenging and time-consuming. In an effort to overcome these limitations and move toward more true-to-life scenarios, a study using grammatical evolution (GE to generate adaptive CGFs for air combat simulations has been conducted. Expert knowledge is encoded with modular behavior trees (BTs for compatibility with the operators in genetic algorithm (GA. GE maps CGFs, represented with BTs to binary strings, and uses GA to evolve CGFs with performance feedback from the simulation. Beyond-visual-range air combat experiments between adaptive CGFs and nonadaptive baseline CGFs have been conducted to observe and study this evolutionary process. The experimental results show that the GE is an efficient framework to generate CGFs in BTs formalism and evolve CGFs via GA.

  15. Advances in the directed evolution of proteins

    OpenAIRE

    Lane, Michael D.; Seelig, Burckhard

    2014-01-01

    Natural evolution has produced a great diversity of proteins that can be harnessed for numerous applications in biotechnology and pharmaceutical science. Commonly, specific applications require proteins to be tailored by protein engineering. Directed evolution is a type of protein engineering that yields proteins with the desired properties under well-defined conditions and in a practical time frame. While directed evolution has been employed for decades, recent creative developments enable t...

  16. Adaptation in protein fitness landscapes is facilitated by indirect paths.

    OpenAIRE

    Wu, N.; Dai, L.; Olson, CA; Lloyd-Smith, JO; Sun, R

    2016-01-01

    The structure of fitness landscapes is critical for understanding adaptive protein evolution. Previous empirical studies on fitness landscapes were confined to either the neighborhood around the wild type sequence, involving mostly single and double mutants, or a combinatorially complete subgraph involving only two amino acids at each site. In reality, the dimensionality of protein sequence space is higher (20(L)) and there may be higher-order interactions among more than two sites. Here we e...

  17. Distributed representations accelerate evolution of adaptive behaviours.

    Directory of Open Access Journals (Sweden)

    James V Stone

    2007-08-01

    Full Text Available Animals with rudimentary innate abilities require substantial learning to transform those abilities into useful skills, where a skill can be considered as a set of sensory-motor associations. Using linear neural network models, it is proved that if skills are stored as distributed representations, then within-lifetime learning of part of a skill can induce automatic learning of the remaining parts of that skill. More importantly, it is shown that this "free-lunch" learning (FLL is responsible for accelerated evolution of skills, when compared with networks which either 1 cannot benefit from FLL or 2 cannot learn. Specifically, it is shown that FLL accelerates the appearance of adaptive behaviour, both in its innate form and as FLL-induced behaviour, and that FLL can accelerate the rate at which learned behaviours become innate.

  18. Protein evolution on a human signaling network

    OpenAIRE

    Purisima Enrico O; Cui Qinghua; Wang Edwin

    2009-01-01

    Abstract Background The architectural structure of cellular networks provides a framework for innovations as well as constraints for protein evolution. This issue has previously been studied extensively by analyzing protein interaction networks. However, it is unclear how signaling networks influence and constrain protein evolution and conversely, how protein evolution modifies and shapes the functional consequences of signaling networks. In this study, we constructed a human signaling networ...

  19. Adaptive copy number evolution in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Shalini Nair

    2008-10-01

    Full Text Available Copy number polymorphism (CNP is ubiquitous in eukaryotic genomes, but the degree to which this reflects the action of positive selection is poorly understood. The first gene in the Plasmodium folate biosynthesis pathway, GTP-cyclohydrolase I (gch1, shows extensive CNP. We provide compelling evidence that gch1 CNP is an adaptive consequence of selection by antifolate drugs, which target enzymes downstream in this pathway. (1 We compared gch1 CNP in parasites from Thailand (strong historical antifolate selection with those from neighboring Laos (weak antifolate selection. Two percent of chromosomes had amplified copy number in Laos, while 72% carried multiple (2-11 copies in Thailand, and differentiation exceeded that observed at 73 synonymous SNPs. (2 We found five amplicon types containing one to greater than six genes and spanning 1 to >11 kb, consistent with parallel evolution and strong selection for this gene amplification. gch1 was the only gene occurring in all amplicons suggesting that this locus is the target of selection. (3 We observed reduced microsatellite variation and increased linkage disequilibrium (LD in a 900-kb region flanking gch1 in parasites from Thailand, consistent with rapid recent spread of chromosomes carrying multiple copies of gch1. (4 We found that parasites bearing dhfr-164L, which causes high-level resistance to antifolate drugs, carry significantly (p = 0.00003 higher copy numbers of gch1 than parasites bearing 164I, indicating functional association between genes located on different chromosomes but linked in the same biochemical pathway. These results demonstrate that CNP at gch1 is adaptive and the associations with dhfr-164L strongly suggest a compensatory function. More generally, these data demonstrate how selection affects multiple enzymes in a single biochemical pathway, and suggest that investigation of structural variation may provide a fast-track to locating genes underlying adaptation.

  20. Protein Evolution of Human Milk.

    Science.gov (United States)

    Thakkar, Sagar K; Giuffrida, Francesca; Bertschy, Emmanuelle; De Castro, Antonio; Destaillats, Frédéric; Lee, Le Ye

    2016-01-01

    Given the documented short- and long-term advantages of breastfeeding, human milk (HM) as a sole source of nutrition for the first few months of newborn life is considered a normative standard. Each macroconstituent of HM plays a crucial role in the growth and development of the baby. Lipids are largely responsible for providing more than 50% of the energy as well as providing essential fatty acids and minor lipids that are integral to all cell membranes. Carbohydrates can be broadly divided into lactose and oligosaccharides, which are a readily digestible source of glucose and indigestible nonnutritive components, respectively. Proteins in HM provide essential amino acids indispensable for the growth of infants. What is more interesting is that protein concentration profoundly changes from colostrum to mature milk. In this report, we share data from an observatory, single-center, longitudinal trial assessing the constituents of HM collected 30, 60 and 120 days postpartum from 50 mothers (singleton deliveries: 25 male and 25 female infants). The protein content decreased with evolving stages of lactation from an average of 1.45 to 1.38 g/100 ml. The data did not show any gender differences as it was reported for lipid content at 120 days postpartum by our group. Additionally, we also share consolidated literature data on protein evolution of HM during the first year of lactation. PMID:27336906

  1. Accelerated evolution of constraint elements for hematophagic adaptation in mosquitoes.

    Science.gov (United States)

    Wang, Ming-Shan; Adeola, Adeniyi C; Li, Yan; Zhang, Ya-Ping; Wu, Dong-Dong

    2015-11-18

    Comparative genomics is a powerful approach that comprehensively interprets the genome. Herein, we performed whole genome comparative analysis of 16 Diptera genomes, including four mosquitoes and 12 Drosophilae. We found more than 540 000 constraint elements (CEs) in the Diptera genome, with the majority found in the intergenic, coding and intronic regions. Accelerated elements (AEs) identified in mosquitoes were mostly in the protein-coding regions (>93%), which differs from vertebrates in genomic distribution. Some genes functionally enriched in blood digestion, body temperature regulation and insecticide resistance showed rapid evolution not only in the lineage of the recent common ancestor of mosquitoes (RCAM), but also in some mosquito lineages. This may be associated with lineage-specific traits and/or adaptations in comparison with other insects. Our findings revealed that although universally fast evolution acted on biological systems in RCAM, such as hematophagy, same adaptations also appear to have occurred through distinct degrees of evolution in different mosquito species, enabling them to be successful blood feeders in different environments.

  2. Influence of chance, history, and adaptation on digital evolution

    OpenAIRE

    Wagenaar, Daniel A.; Adami, Christoph

    2004-01-01

    We evolved multiple clones of populations of digital organisms to study the effects of chance, history, and adaptation in evolution. We show that clones adapted to a specific environment can adapt to new environments quickly and efficiently, although their history remains a significant factor in their fitness. Adaptation is most significant (and the effects of history less so) if the old and new environments are dissimilar. For more similar environments, adaptation is slower while history is ...

  3. Effects of metabolic rate on protein evolution

    OpenAIRE

    James F Gillooly; Michael W. McCoy; Allen, Andrew P.

    2007-01-01

    Since the modern evolutionary synthesis was first proposed early in the twentieth century, attention has focused on assessing the relative contribution of mutation versus natural selection on protein evolution. Here we test a model that yields general quantitative predictions on rates of protein evolution by combining principles of individual energetics with Kimura's neutral theory. The model successfully predicts much of the heterogeneity in rates of protein evolution for diverse eukaryotes ...

  4. Adaptation in protein fitness landscapes is facilitated by indirect paths

    Science.gov (United States)

    Wu, Nicholas C; Dai, Lei; Olson, C Anders; Lloyd-Smith, James O; Sun, Ren

    2016-01-01

    The structure of fitness landscapes is critical for understanding adaptive protein evolution. Previous empirical studies on fitness landscapes were confined to either the neighborhood around the wild type sequence, involving mostly single and double mutants, or a combinatorially complete subgraph involving only two amino acids at each site. In reality, the dimensionality of protein sequence space is higher (20L) and there may be higher-order interactions among more than two sites. Here we experimentally characterized the fitness landscape of four sites in protein GB1, containing 204 = 160,000 variants. We found that while reciprocal sign epistasis blocked many direct paths of adaptation, such evolutionary traps could be circumvented by indirect paths through genotype space involving gain and subsequent loss of mutations. These indirect paths alleviate the constraint on adaptive protein evolution, suggesting that the heretofore neglected dimensions of sequence space may change our views on how proteins evolve. DOI: http://dx.doi.org/10.7554/eLife.16965.001 PMID:27391790

  5. Adaptive Game Level Creation through Rank-based Interactive Evolution

    DEFF Research Database (Denmark)

    Liapis, Antonios; Martínez, Héctor Pérez; Togelius, Julian;

    2013-01-01

    This paper introduces Rank-based Interactive Evolution (RIE) which is an alternative to interactive evolution driven by computational models of user preferences to generate personalized content. In RIE, the computational models are adapted to the preferences of users which, in turn, are used...... artificial agents. Results suggest that RIE is both faster and more robust than standard interactive evolution and outperforms other state-of-the-art interactive evolution approaches....

  6. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins

    Science.gov (United States)

    Nevado, Bruno; Atchison, Guy W.; Hughes, Colin E.; Filatov, Dmitry A.

    2016-01-01

    The evolutionary processes that drive rapid species diversification are poorly understood. In particular, it is unclear whether Darwinian adaptation or non-adaptive processes are the primary drivers of explosive species diversifications. Here we show that repeated rapid radiations within New World lupins (Lupinus, Leguminosae) were underpinned by a major increase in the frequency of adaptation acting on coding and regulatory changes genome-wide. This contrasts with far less frequent adaptation in genomes of slowly diversifying lupins and all other plant genera analysed. Furthermore, widespread shifts in optimal gene expression coincided with shifts to high rates of diversification and evolution of perenniality, a putative key adaptation trait thought to have triggered the evolutionary radiations in New World lupins. Our results reconcile long-standing debate about the relative importance of protein-coding and regulatory evolution, and represent the first unambiguous evidence for the rapid onset of lineage- and genome-wide accelerated Darwinian evolution during rapid species diversification. PMID:27498896

  7. OASes and STING: adaptive evolution in concert.

    Science.gov (United States)

    Mozzi, Alessandra; Pontremoli, Chiara; Forni, Diego; Clerici, Mario; Pozzoli, Uberto; Bresolin, Nereo; Cagliani, Rachele; Sironi, Manuela

    2015-04-01

    OAS (2'-5'-oligoadenylate synthases) proteins and cyclic GMP-AMP synthase (cGAS, gene symbol: MB21D1) patrol the cytoplasm for the presence of foreign nucleic acids. Upon binding to double-stranded RNA or double-stranded DNA, OAS proteins and cGAS produce nucleotide second messengers to activate RNase L and STING (stimulator of interferon genes, gene symbol: TMEM173), respectively; this leads to the initiation of antiviral responses. We analyzed the evolutionary history of the MB21D1-TMEM173 and OAS-RNASEL axes in primates and bats and found evidence of widespread positive selection in both orders. In TMEM173, residue 230, a major determinant of response to natural ligands and to mimetic drugs (e.g., DMXAA), was positively selected in Primates and Chiroptera. In both orders, selection also targeted an α-helix/loop element in RNase L that modulates the enzyme preference for single-stranded RNA versus stem loops. Analysis of positively selected sites in OAS1, OAS2, and MB21D1 revealed parallel evolution, with the corresponding residues being selected in different genes. As this cannot result from gene conversion, these data suggest that selective pressure acting on OAS and MB21D1 genes is related to nucleic acid recognition and to the specific mechanism of enzyme activation, which requires a conformational change. Finally, a population genetics-phylogenetics analysis in humans, chimpanzees, and gorillas detected several positively selected sites in most genes. Data herein shed light into species-specific differences in infection susceptibility and in response to synthetic compounds, with relevance for the design of synthetic compounds as vaccine adjuvants. PMID:25752600

  8. Evolution of vertebrate interferon inducible transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Hickford Danielle

    2012-04-01

    Full Text Available Abstract Background Interferon inducible transmembrane proteins (IFITMs have diverse roles, including the control of cell proliferation, promotion of homotypic cell adhesion, protection against viral infection, promotion of bone matrix maturation and mineralisation, and mediating germ cell development. Most IFITMs have been well characterised in human and mouse but little published data exists for other animals. This study characterised IFITMs in two distantly related marsupial species, the Australian tammar wallaby and the South American grey short-tailed opossum, and analysed the phylogeny of the IFITM family in vertebrates. Results Five IFITM paralogues were identified in both the tammar and opossum. As in eutherians, most marsupial IFITM genes exist within a cluster, contain two exons and encode proteins with two transmembrane domains. Only two IFITM genes, IFITM5 and IFITM10, have orthologues in both marsupials and eutherians. IFITM5 arose in bony fish and IFITM10 in tetrapods. The bone-specific expression of IFITM5 appears to be restricted to therian mammals, suggesting that its specialised role in bone production is a recent adaptation specific to mammals. IFITM10 is the most highly conserved IFITM, sharing at least 85% amino acid identity between birds, reptiles and mammals and suggesting an important role for this presently uncharacterised protein. Conclusions Like eutherians, marsupials also have multiple IFITM genes that exist in a gene cluster. The differing expression patterns for many of the paralogues, together with poor sequence conservation between species, suggests that IFITM genes have acquired many different roles during vertebrate evolution.

  9. Evolution of Protein Lipograms: A Bioinformatics Problem

    Science.gov (United States)

    White, Harold B., III; Dhurjati, Prasad

    2006-01-01

    A protein lacking one of the 20 common amino acids is a protein lipogram. This open-ended problem-based learning assignment deals with the evolution of proteins with biased amino acid composition. It has students query protein and metabolic databases to test the hypothesis that natural selection has reduced the frequency of each amino acid…

  10. Technologies of directed protein evolution in vivo

    OpenAIRE

    Blagodatski, Artem; Katanaev, Vladimir

    2010-01-01

    Directed evolution of proteins for improved or modified functionality is an important branch of modern biotechnology. It has traditionally been performed using various in vitro methods, but more recently, methods of in vivo artificial evolution come into play. In this review, we discuss and compare prokaryotic and eukaryotic-based systems of directed protein evolution in vivo, highlighting their benefits and current limitations and focusing on the biotechnological potential of vertebrate immu...

  11. Protein Evolution within a Structural Space

    OpenAIRE

    Deeds, Eric J.; Dokholyan, Nikolay V.; Shakhnovich, Eugene I.

    2003-01-01

    Understanding of the evolutionary origins of protein structures represents a key component of the understanding of molecular evolution as a whole. Here we seek to elucidate how the features of an underlying protein structural “space” might impact protein structural evolution. We approach this question using lattice polymers as a completely characterized model of this space. We develop a measure of structural comparison of lattice structures that is analogous to the one used to understand stru...

  12. Adaptive differential evolution a robust approach to multimodal problem optimization

    CERN Document Server

    Zhang, Jingqiao; Zhang, Jingqiao

    2009-01-01

    The fundamental theme of this book is theoretical study of differential evolution and algorithmic analysis of parameter adaptive schemes. The book offers real-world insights into a variety of large-scale complex industrial applications.

  13. Adaptation and evolution of drug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    I.L. Bergval

    2013-01-01

    Many studies have been conducted on drug resistance and the evolution of Mycobacterium tuberculosis. Notwithstanding, many molecular mechanisms facilitating the emergence, adaptation and spread of drug-resistant tuberculosis have yet to be discovered. This thesis reports studies of the adaptive mech

  14. Differential Evolution for Many-Particle Adaptive Quantum Metrology

    NARCIS (Netherlands)

    N.B. Lovett; C. Crosnier; M. Perarnau- Llobet; B. Sanders

    2013-01-01

    We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods

  15. Urban Evolution: The Role of Water and Adaptation

    Science.gov (United States)

    Kaushal, S.

    2015-12-01

    The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth's population grows, infrastructure ages, and management decisions alter them. The concept of "urban evolution" was proposed in order to study changes in urban ecosystems over time. Urban evolution has exerted a major influence on Earth's water and elemental cycles from local to global scales over human history. A current understanding of urban evolution allows urban planning, management, and restoration to move beyond reactive management to predictive management. We explore two key mechanisms of urban evolution, urban selective pressure and adaptation, and their relationship to the evolution of modern water and biogeochemical cycles. Urban selective pressure is an environmental or societal driver contributing to urban adaptation. Urban adaptation is the sequential process by which an urban structure, function, or services becomes more fitted to its changing environment or human choices. We show how hydrological and biogeochemical traits evolve across successive generations of urban ecosystems via shifts in selective pressures and adaptations. We also discuss how urban evolution can be divided into distinct stages and transition periods of growth and expansion and decay and repair during the Anthropocene epoch. We explore multiple examples and drivers of urban evolution and adaptations including the role of unintended consequences and societal drivers. We also present a conceptual model for the evolution of urban waters from the Industrial Revolution to the present day emphasizing the role of urban adaptations in response to selective pressures. Finally, we conclude by proposing new concepts and questions for future research related to the urban evolution of water, material, and energy cycles.

  16. Evolution of speech-specific cognitive adaptations

    Directory of Open Access Journals (Sweden)

    Bart ede Boer

    2015-09-01

    Full Text Available This paper briefly reviews theoretical results that shed light on what kind of cognitive adaptations we can expect to have evolved for (combinatorial speech and then reviews concrete empirical work investigating adaptations for combinatorial speech. The paper argues that an evolutionary perspective is natural when investigating cognitive adaptations related to speech and language. This is because properties of language are determined through complex interaction between biologically evolved cognitive mechanisms (possibly adapted to language and cultural (evolutionary processes. It turns out that there is as yet no strong direct evidence for cognitive traits that have undergone selection related to speech in general or combinatorial structure in particular, but there is indirect evidence that indicates selection. However, the traits that may have undergone selection are expected to be continuously variable ones, rather than the discrete ones that linguists have focused on traditionally.

  17. Evolution of niche width and adaptive diversification.

    Science.gov (United States)

    Ackermann, Martin; Doebeli, Michael

    2004-12-01

    Theoretical models suggest that resource competition can lead to the adaptive splitting of consumer populations into diverging lineages, that is, to adaptive diversification. In general, diversification is likely if consumers use only a narrow range of resources and thus have a small niche width. Here we use analytical and numerical methods to study the consequences for diversification if the niche width itself evolves. We found that the evolutionary outcome depends on the inherent costs or benefits of widening the niche. If widening the niche did not have costs in terms of overall resource uptake, then the consumer evolved a niche that was wide enough for disruptive selection on the niche position to vanish; adaptive diversification was no longer observed. However, if widening the niche was costly, then the niche widths remained relatively narrow, allowing for adaptive diversification in niche position. Adaptive diversification and speciation resulting from competition for a broadly distributed resource is thus likely if the niche width is fixed and relatively narrow or free to evolve but subject to costs. These results refine the conditions for adaptive diversification due to competition and formulate them in a way that might be more amenable for experimental investigations. PMID:15696740

  18. Evolution or adaptation? What do heritable adaptive changes imply?

    OpenAIRE

    M. Kemal Irmak

    2014-01-01

    Interactions between environmental factors and epigenetic inheritance system produce a great deal of variation from one geographic region to another in human craniofacial morphology, skin color, hair form, stature and body proportions. In this system, while environmental factors produce modifications in the body, they simultaneously induce long-term epigenetic modifications in the germ cells that are inherited to offspring. This kind of heritable changes is called biological adaptation. It wa...

  19. Preferential attachment in the protein network evolution

    OpenAIRE

    Eisenberg, Eli; Levanon, Erez Y.

    2003-01-01

    The Saccharomyces cerevisiae protein-protein interaction map, as well as many natural and man-made networks, shares the scale-free topology. The preferential attachment model was suggested as a generic network evolution model that yields this universal topology. However, it is not clear that the model assumptions hold for the protein interaction network. Using a cross genome comparison we show that (a) the older a protein, the better connected it is, and (b) The number of interactions a prote...

  20. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  1. Biophysics of protein evolution and evolutionary protein biophysics

    OpenAIRE

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for ...

  2. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  3. Evolution and adaptation of Pseudomonas aeruginosa in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Madsen Sommer, Lea Mette

    to these environments.Independently and together the studies presented in this thesis provide new knowledge of adaptation and evolution in both CF and PCD airways. With further characterisation of genetic and phenotypic adaptationsit should be possible to translate these results into clinically relevant information...... of evolution to these observations, this thesis shows that collections of longitudinal P. aeruginosa isolates from CF patients provide a valuable basis for the study of adaptation and evolution in natural environments....... of natural environments, the primary obstacle is re-sampling of the samepopulation over time, especially if the population is small.Nevertheless, it has been accomplished: Chronic airway infections of cystic fibrosis (CF) patients have offered a unique view into the adaptationand evolution of Pseudomonas...

  4. Ecology and Evolution of Adaptive Morphological Variation in Fish Populations

    OpenAIRE

    Svanbäck, Richard

    2004-01-01

    The work in this thesis deals with the ecology and evolution of adaptive individual variation. Ecologists have long used niche theory to describe the ecology of a species as a whole, treating conspecific individuals as ecological equivalent. During recent years, research about individual variation in diet and morphology has gained interest in adaptive radiations and ecological speciation. Such variation among individual niche use may have important conservation implications as well as ecologi...

  5. Adaptive Network Dynamics and Evolution of Leadership in Collective Migration

    OpenAIRE

    Pais, Darren; Leonard, Naomi Ehrich

    2013-01-01

    The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcatio...

  6. Pax6 in Collembola: Adaptive Evolution of Eye Regression.

    Science.gov (United States)

    Hou, Ya-Nan; Li, Sheng; Luan, Yun-Xia

    2016-01-01

    Unlike the compound eyes in insects, collembolan eyes are comparatively simple: some species have eyes with different numbers of ocelli (1 + 1 to 8 + 8), and some species have no apparent eye structures. Pax6 is a universal master control gene for eye morphogenesis. In this study, full-length Pax6 cDNAs, Fc-Pax6 and Cd-Pax6, were cloned from an eyeless collembolan (Folsomia candida, soil-dwelling) and an eyed one (Ceratophysella denticulata, surface-dwelling), respectively. Their phylogenetic positions are between the two Pax6 paralogs in insects, eyeless (ey) and twin of eyeless (toy), and their protein sequences are more similar to Ey than to Toy. Both Fc-Pax6 and Cd-Pax6 could induce ectopic eyes in Drosophila, while Fc-Pax6 exhibited much weaker transactivation ability than Cd-Pax6. The C-terminus of collembolan Pax6 is indispensable for its transactivation ability, and determines the differences of transactivation ability between Fc-Pax6 and Cd-Pax6. One of the possible reasons is that Fc-Pax6 accumulated more mutations at some key functional sites of C-terminus under a lower selection pressure on eye development due to the dark habitats of F. candida. The composite data provide a first molecular evidence for the monophyletic origin of collembolan eyes, and indicate the eye degeneration of collembolans is caused by adaptive evolution. PMID:26856893

  7. The Origin and Early Evolution of Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  8. The rule of declining adaptability in microbial evolution experiments

    Directory of Open Access Journals (Sweden)

    Alejandro eCouce

    2015-03-01

    Full Text Available One of the most recurrent observations after two decades of microbial evolution experiments regards the dynamics of fitness change. In a given environment, low-fitness genotypes are recurrently observed to adapt faster than their more fit counterparts. Since adaptation is the main macroscopic outcome of Darwinian evolution, studying its patterns of change could potentially provide insight into key issues of evolutionary theory, from fixation dynamics to the genetic architecture of organisms. Here, we re-analyze several published datasets from experimental evolution with microbes and show that, despite large differences in the origin of the data, a pattern of inverse dependence of adaptability with fitness clearly emerges. In quantitative terms, it is remarkable to observe little if any degree of idiosyncrasy across systems as diverse as virus, bacteria and yeast. The universality of this phenomenon suggests that its emergence might be understood from general principles, giving rise to the exciting prospect that evolution might be statistically predictable at the macroscopic level. We discuss this possibilities in the light of the various theories of adaptation that have been proposed and delineate future directions of research.

  9. Evolution of evolvability via adaptation of mutation rates.

    Science.gov (United States)

    Bedau, Mark A; Packard, Norman H

    2003-05-01

    We examine a simple form of the evolution of evolvability-the evolution of mutation rates-in a simple model system. The system is composed of many agents moving, reproducing, and dying in a two-dimensional resource-limited world. We first examine various macroscopic quantities (three types of genetic diversity, a measure of population fitness, and a measure of evolutionary activity) as a function of fixed mutation rates. The results suggest that (i) mutation rate is a control parameter that governs a transition between two qualitatively different phases of evolution, an ordered phase characterized by punctuated equilibria of diversity, and a disordered phase of characterized by noisy fluctuations around an equilibrium diversity, and (ii) the ability of evolution to create adaptive structure is maximized when the mutation rate is just below the transition between these two phases of evolution. We hypothesize that this transition occurs when the demands for evolutionary memory and evolutionary novelty are typically balanced. We next allow the mutation rate itself to evolve, and we observe that evolving mutation rates adapt to values at this transition. Furthermore, the mutation rates adapt up (or down) as the evolutionary demands for novelty (or memory) increase, thus supporting the balance hypothesis. PMID:12689727

  10. Quantifying adaptive evolution in the Drosophila immune system.

    Directory of Open Access Journals (Sweden)

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  11. Understanding protein evolution: from protein physics to Darwinian selection.

    Science.gov (United States)

    Zeldovich, Konstantin B; Shakhnovich, Eugene I

    2008-01-01

    Efforts in whole-genome sequencing and structural proteomics start to provide a global view of the protein universe, the set of existing protein structures and sequences. However, approaches based on the selection of individual sequences have not been entirely successful at the quantitative description of the distribution of structures and sequences in the protein universe because evolutionary pressure acts on the entire organism, rather than on a particular molecule. In parallel to this line of study, studies in population genetics and phenomenological molecular evolution established a mathematical framework to describe the changes in genome sequences in populations of organisms over time. Here, we review both microscopic (physics-based) and macroscopic (organism-level) models of protein-sequence evolution and demonstrate that bridging the two scales provides the most complete description of the protein universe starting from clearly defined, testable, and physiologically relevant assumptions.

  12. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    LENUS (Irish Health Repository)

    Sen, Lin

    2011-06-03

    Abstract Background The chloroplast-localized ribulose-1, 5-biphosphate carboxylase\\/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU) of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure. Results We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2. Conclusions The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such

  13. The diversity challenge in directed protein evolution.

    Science.gov (United States)

    Wong, Tuck Seng; Zhurina, Daria; Schwaneberg, Ulrich

    2006-05-01

    Over the past decade, we have witnessed a bloom in the field of evolutive protein engineering which is fueled by advances in molecular biology techniques and high-throughput screening technology. Directed protein evolution is a powerful algorithm using iterative cycles of random mutagenesis and screening for tailoring protein properties to our needs in industrial applications and for elucidating proteins' structure function relationships. This review summarizes, categorizes and discusses advantages and disadvantages of random mutagenesis methods used for generating genetic diversity. These random mutagenesis methods have been classified into four main categories depending on the method employed for nucleotide substitutions: enzyme based methods (Category I), synthetic chemistry based methods (Category II), whole cell methods (Category III) and combined methods (Category I-II, I-III and II-III). The basic principle of each method is discussed and varied mutagenic conditions are summarized in Tables and compared (benchmarked) to each other in terms of: mutational bias, controllable mutation frequency, ability to generate consecutive nucleotide substitutions and subset diversity, dependency on gene length, technical simplicity/robustness and cost-effectiveness. The latter comparison shows how highly-biased and limited current diversity creating methods are. Based on these limitations, strategies for generating diverse mutant libraries are proposed and discussed (RaMuS-Flowchart; KISS principle). We hope that this review provides, especially for researchers just entering the field of directed evolution, a guide for developing successful directed evolution strategies by selecting complementary methods for generating diverse mutant libraries.

  14. Data Warehouse Schema Evolution and Adaptation Framework Using Ontology

    Directory of Open Access Journals (Sweden)

    M.Thenmozhi

    2014-07-01

    Full Text Available Data Warehouse systems aim at integrating data from multiple heterogeneous, distributed, autonomous data sources. Due to changing business needs the data warehouse systems are never meant to be static. Changes in the data source structure or business requirements would result in the evolution of data warehouse schema structure. When data warehouse schema evolves the dependent modules such as its mappings, queries and views gets affected. The existing works on data warehouse evolution focus only on schema evolution at the physical level. As ontology seems to be a promising solution in data warehouse research, the proposed framework handles data warehouse schema evolution at ontological level. Moreover, it analyses the impact of the dependent modules and proposes methods to automatically adapt to changes.

  15. Adaptive Network Dynamics and Evolution of Leadership in Collective Migration

    CERN Document Server

    Pais, Darren

    2013-01-01

    The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can describe other adaptive network dynamics involving collective...

  16. Gene duplication and adaptive evolution of digestive proteases in Drosophila arizonae female reproductive tracts.

    Directory of Open Access Journals (Sweden)

    Erin S Kelleher

    2007-08-01

    Full Text Available It frequently has been postulated that intersexual coevolution between the male ejaculate and the female reproductive tract is a driving force in the rapid evolution of reproductive proteins. The dearth of research on female tracts, however, presents a major obstacle to empirical tests of this hypothesis. Here, we employ a comparative EST approach to identify 241 candidate female reproductive proteins in Drosophila arizonae, a repleta group species in which physiological ejaculate-female coevolution has been documented. Thirty-one of these proteins exhibit elevated amino acid substitution rates, making them candidates for molecular coevolution with the male ejaculate. Strikingly, we also discovered 12 unique digestive proteases whose expression is specific to the D. arizonae lower female reproductive tract. These enzymes belong to classes most commonly found in the gastrointestinal tracts of a diverse array of organisms. We show that these proteases are associated with recent, lineage-specific gene duplications in the Drosophila repleta species group, and exhibit strong signatures of positive selection. Observation of adaptive evolution in several female reproductive tract proteins indicates they are active players in the evolution of reproductive tract interactions. Additionally, pervasive gene duplication, adaptive evolution, and rapid acquisition of a novel digestive function by the female reproductive tract points to a novel coevolutionary mechanism of ejaculate-female interaction.

  17. Protein cold adaptation : Role of physico-chemical parameters in adaptation of proteins to low temperatures

    NARCIS (Netherlands)

    Shokrollahzade, Soheila; Sharifi, Fatemeh; Vaseghi, Akbar; Faridounnia, Maryam; Jahandideh, Samad

    2015-01-01

    During years 2007 and 2008, we published three papers (Jahandideh, 2007a, JTB, 246, 159-166; Jahandideh, 2007b, JTB, 248, 721-726; Jahandideh, 2008, JTB, 255, 113-118) investigating sequence and structural parameters in adaptation of proteins to low temperatures. Our studies revealed important featu

  18. Adaptive evolution: evaluating empirical support for theoretical predictions.

    Science.gov (United States)

    Olson-Manning, Carrie F; Wagner, Maggie R; Mitchell-Olds, Thomas

    2012-12-01

    Adaptive evolution is shaped by the interaction of population genetics, natural selection and underlying network and biochemical constraints. Variation created by mutation, the raw material for evolutionary change, is translated into phenotypes by flux through metabolic pathways and by the topography and dynamics of molecular networks. Finally, the retention of genetic variation and the efficacy of selection depend on population genetics and demographic history. Emergent high-throughput experimental methods and sequencing technologies allow us to gather more evidence and to move beyond the theory in different systems and populations. Here we review the extent to which recent evidence supports long-established theoretical principles of adaptation.

  19. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution

    Science.gov (United States)

    He, Yi-Ming; Ma, Bin-Guang

    2016-05-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions.

  20. Adaptive evolution of facial colour patterns in Neotropical primates

    OpenAIRE

    Santana, Sharlene E.; Lynch Alfaro, Jessica; Alfaro, Michael E.

    2012-01-01

    The rich diversity of primate faces has interested naturalists for over a century. Researchers have long proposed that social behaviours have shaped the evolution of primate facial diversity. However, the primate face constitutes a unique structure where the diverse and potentially competing functions of communication, ecology and physiology intersect, and the major determinants of facial diversity remain poorly understood. Here, we provide the first evidence for an adaptive role of facial co...

  1. Sex speeds adaptation by altering the dynamics of molecular evolution.

    Science.gov (United States)

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.

  2. Molecular clock in neutral protein evolution

    Directory of Open Access Journals (Sweden)

    Wilke Claus O

    2004-08-01

    Full Text Available Abstract Background A frequent observation in molecular evolution is that amino-acid substitution rates show an index of dispersion (that is, ratio of variance to mean substantially larger than one. This observation has been termed the overdispersed molecular clock. On the basis of in silico protein-evolution experiments, Bastolla and coworkers recently proposed an explanation for this observation: Proteins drift in neutral space, and can temporarily get trapped in regions of substantially reduced neutrality. In these regions, substitution rates are suppressed, which results in an overall substitution process that is not Poissonian. However, the simulation method of Bastolla et al. is representative only for cases in which the product of mutation rate μ and population size Ne is small. How the substitution process behaves when μNe is large is not known. Results Here, I study the behavior of the molecular clock in in silico protein evolution as a function of mutation rate and population size. I find that the index of dispersion decays with increasing μNe, and approaches 1 for large μNe . This observation can be explained with the selective pressure for mutational robustness, which is effective when μNe is large. This pressure keeps the population out of low-neutrality traps, and thus steadies the ticking of the molecular clock. Conclusions The molecular clock in neutral protein evolution can fall into two distinct regimes, a strongly overdispersed one for small μNe, and a mostly Poissonian one for large μNe. The former is relevant for the majority of organisms in the plant and animal kingdom, and the latter may be relevant for RNA viruses.

  3. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans

    Directory of Open Access Journals (Sweden)

    Shen Tong

    2012-03-01

    Full Text Available Abstract Background Cetaceans (whales, dolphins and porpoises are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs, which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. Results We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω values along most (30 out of 33 examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS, and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans habitat, and the other to the rapid diversification and radiation of oceanic dolphins. Conclusions This

  4. Research of circuit evolution design based on adaptive HereBoy algorithm

    OpenAIRE

    Huicong WU; Wang, Jinze; Chuncao LIU; Gao, JinJin

    2015-01-01

    Aiming at solving the convergence rate problem in the latter stage of circuit evolution design, adaptive HereBoy algorithm together with the population evolution idea of GA is adapted to study the impact of adaptive-adjust factor on the evolution of convergence rate. One circuit model which is based on the similarities between combinatorial circuit and neural network is proposed, on which the matrix encoding scheme of combinatorial circuit is discussed. Besides of this, extrint evolution is a...

  5. Evolution of collective action in adaptive social structures.

    Science.gov (United States)

    Moreira, João A; Pacheco, Jorge M; Santos, Francisco C

    2013-01-01

    Many problems in nature can be conveniently framed as a problem of evolution of collective cooperative behaviour, often modelled resorting to the tools of evolutionary game theory in well-mixed populations, combined with an appropriate N-person dilemma. Yet, the well-mixed assumption fails to describe the population dynamics whenever individuals have a say in deciding which groups they will participate. Here we propose a simple model in which dynamical group formation is described as a result of a topological evolution of a social network of interactions. We show analytically how evolutionary dynamics under public goods games in finite adaptive networks can be effectively transformed into a N-Person dilemma involving both coordination and co-existence. Such dynamics would be impossible to foresee from more conventional 2-person interactions as well as from descriptions based on infinite, well-mixed populations. Finally, we show how stochastic effects help rendering cooperation viable, promoting polymorphic configurations in which cooperators prevail.

  6. Strategy Uniform Crossover Adaptation Evolution in a Minority Game

    Institute of Scientific and Technical Information of China (English)

    杨伟松; 汪秉宏; 全宏俊; 胡进锟

    2003-01-01

    We propose a new adaptation minority game for understanding the complex dynamical behaviour characterized by agent interactions competing limited resources in many natural and social systems. Intelligent agents may modify a part of their strategies periodically, depending on the strategyperformances. In the present model, the strategies will be updated according to a uniform-crossover variation process inspired by genetic evolution algorithm in biology. The performances of the agents in our model are calculated for different parameter conditions. It has been found that the new system may evolve via the strategy uniform crossover adaptation mechanism into a frozen equilibrium state in which the performance of the system may reach the best limit, implying the strongest cooperation among agents and the most effective utilization of the social resources.

  7. Adaptive Evolution Coupled with Retrotransposon Exaptation Allowed for the Generation of a Human-Protein-Specific Coding Gene That Promotes Cancer Cell Proliferation and Metastasis in Both Haematological Malignancies and Solid Tumours: The Extraordinary Case of MYEOV Gene.

    Science.gov (United States)

    Papamichos, Spyros I; Margaritis, Dimitrios; Kotsianidis, Ioannis

    2015-01-01

    The incidence of cancer in human is high as compared to chimpanzee. However previous analysis has documented that numerous human cancer-related genes are highly conserved in chimpanzee. Till date whether human genome includes species-specific cancer-related genes that could potentially contribute to a higher cancer susceptibility remains obscure. This study focuses on MYEOV, an oncogene encoding for two protein isoforms, reported as causally involved in promoting cancer cell proliferation and metastasis in both haematological malignancies and solid tumours. First we document, via stringent in silico analysis, that MYEOV arose de novo in Catarrhini. We show that MYEOV short-isoform start codon was evolutionarily acquired after Catarrhini/Platyrrhini divergence. Throughout the course of Catarrhini evolution MYEOV acquired a gradually elongated translatable open reading frame (ORF), a gradually shortened translation-regulatory upstream ORF, and alternatively spliced mRNA variants. A point mutation introduced in human allowed for the acquisition of MYEOV long-isoform start codon. Second, we demonstrate the precious impact of exonized transposable elements on the creation of MYEOV gene structure. Third, we highlight that the initial part of MYEOV long-isoform coding DNA sequence was under positive selection pressure during Catarrhini evolution. MYEOV represents a Primate Orphan Gene that acquired, via ORF expansion, a human-protein-specific coding potential. PMID:26568894

  8. Adaptive Evolution Coupled with Retrotransposon Exaptation Allowed for the Generation of a Human-Protein-Specific Coding Gene That Promotes Cancer Cell Proliferation and Metastasis in Both Haematological Malignancies and Solid Tumours: The Extraordinary Case of MYEOV Gene

    Directory of Open Access Journals (Sweden)

    Spyros I. Papamichos

    2015-01-01

    Full Text Available The incidence of cancer in human is high as compared to chimpanzee. However previous analysis has documented that numerous human cancer-related genes are highly conserved in chimpanzee. Till date whether human genome includes species-specific cancer-related genes that could potentially contribute to a higher cancer susceptibility remains obscure. This study focuses on MYEOV, an oncogene encoding for two protein isoforms, reported as causally involved in promoting cancer cell proliferation and metastasis in both haematological malignancies and solid tumours. First we document, via stringent in silico analysis, that MYEOV arose de novo in Catarrhini. We show that MYEOV short-isoform start codon was evolutionarily acquired after Catarrhini/Platyrrhini divergence. Throughout the course of Catarrhini evolution MYEOV acquired a gradually elongated translatable open reading frame (ORF, a gradually shortened translation-regulatory upstream ORF, and alternatively spliced mRNA variants. A point mutation introduced in human allowed for the acquisition of MYEOV long-isoform start codon. Second, we demonstrate the precious impact of exonized transposable elements on the creation of MYEOV gene structure. Third, we highlight that the initial part of MYEOV long-isoform coding DNA sequence was under positive selection pressure during Catarrhini evolution. MYEOV represents a Primate Orphan Gene that acquired, via ORF expansion, a human-protein-specific coding potential.

  9. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population. PMID:27296141

  10. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

  11. Signatures of protein biophysics in coding sequence evolution

    OpenAIRE

    Wilke, Claus O; Drummond, D Allan

    2010-01-01

    Since the early days of molecular evolution, the conventional wisdom has been that the evolution of protein-coding genes is primarily determined by functional constraints. Yet recent evidence indicates that the evolution of these genes is strongly shaped by the biophysical processes of protein synthesis, protein folding, and specific as well as non-specific protein–protein interactions. Selection pressures related to these biophysical processes affect primarily the amino-acid sequence of gene...

  12. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein.

    Directory of Open Access Journals (Sweden)

    Aditi Gupta

    2016-03-01

    Full Text Available Epistatic interactions between residues determine a protein's adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1 using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient condition that detects epistasis in most cases. We analyze the "fossils" of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing

  13. Historical Contingency in a Multigene Family Facilitates Adaptive Evolution of Toxin Resistance.

    Science.gov (United States)

    McGlothlin, Joel W; Kobiela, Megan E; Feldman, Chris R; Castoe, Todd A; Geffeney, Shana L; Hanifin, Charles T; Toledo, Gabriela; Vonk, Freek J; Richardson, Michael K; Brodie, Edmund D; Pfrender, Michael E; Brodie, Edmund D

    2016-06-20

    Novel adaptations must originate and function within an already established genome [1]. As a result, the ability of a species to adapt to new environmental challenges is predicted to be highly contingent on the evolutionary history of its lineage [2-6]. Despite a growing appreciation of the importance of historical contingency in the adaptive evolution of single proteins [7-11], we know surprisingly little about its role in shaping complex adaptations that require evolutionary change in multiple genes. One such adaptation, extreme resistance to tetrodotoxin (TTX), has arisen in several species of snakes through coevolutionary arms races with toxic amphibian prey, which select for TTX-resistant voltage-gated sodium channels (Nav) [12-16]. Here, we show that the relatively recent origins of extreme toxin resistance, which involve the skeletal muscle channel Nav1.4, were facilitated by ancient evolutionary changes in two other members of the same gene family. A substitution conferring TTX resistance to Nav1.7, a channel found in small peripheral neurons, arose in lizards ∼170 million years ago (mya) and was present in the common ancestor of all snakes. A second channel found in larger myelinated neurons, Nav1.6, subsequently evolved resistance in four different snake lineages beginning ∼38 mya. Extreme TTX resistance has evolved at least five times within the past 12 million years via changes in Nav1.4, but only within lineages that previously evolved resistant Nav1.6 and Nav1.7. Our results show that adaptive protein evolution may be contingent upon enabling substitutions elsewhere in the genome, in this case, in paralogs of the same gene family. PMID:27291053

  14. Adaptive evolution of the vertebrate skeletal muscle sodium channel

    Directory of Open Access Journals (Sweden)

    Jian Lu

    2011-01-01

    Full Text Available Tetrodotoxin (TTX is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Na v. The skeletal muscle Na v (Na v1.4 channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sensitivity among the various vertebrate species can be associated with adaptive evolution. In this study, we investigated the adaptive evolution of the vertebrate Na v1.4 channels. By means of the CODEML program of the PAML 4.3 package, the lineages of both garter snakes and pufferfishes were denoted to be under positive selection. The positively selected sites identified in the p-loop regions indicated their involvement in Na v1.4 channel sensitivity to TTX. Most of these sites were located in the intracellular regions of the Na v1.4 channel, thereby implying the possible association of these regions with the regulation of voltage-sensor movement.

  15. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    Science.gov (United States)

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  16. Practical Aspects of Protein Co-evolution

    Directory of Open Access Journals (Sweden)

    David eOchoa

    2014-04-01

    Full Text Available Co-evolution is a fundamental aspect of Evolutionary Theory. At the molecular level, co-evolutionary linkages between protein families have been used as indicators of protein interactions and functional relationships from long ago. Due to the complexity of the problem and the amount of genomic data required for these approaches to achieve good performances, it took a relatively long time from the appearance of the first ideas and concepts to the quotidian application of these approaches and their incorporation to the standard toolboxes of bioinformaticians and molecular biologists. Today, these methodologies are mature (both in terms of performance and usability/implementation, and the genomic information that feeds them large enough to allow their general application. This review tries to summarize the current landscape of co-evolution-based methodologies, with a strong emphasis on describing interesting cases where their application to important biological systems, alone or in combination with other computational and experimental approaches, allowed getting new insight into these.

  17. Adaptive molecular evolution of a defence gene in sexual but not functionally asexual evening primroses.

    Science.gov (United States)

    Hersch-Green, E I; Myburg, H; Johnson, M T J

    2012-08-01

    Theory predicts that sexual reproduction provides evolutionary advantages over asexual reproduction by reducing mutational load and increasing adaptive potential. Here, we test the latter prediction in the context of plant defences against pathogens because pathogens frequently reduce plant fitness and drive the evolution of plant defences. Specifically, we ask whether sexual evening primrose plant lineages (Onagraceae) have faster rates of adaptive molecular evolution and altered gene expression of a class I chitinase, a gene implicated in defence against pathogens, than functionally asexual evening primrose lineages. We found that the ratio of amino acid to silent substitutions (K(a) /K(s) = 0.19 vs. 0.11 for sexual and asexual lineages, respectively), the number of sites identified to be under positive selection (four vs. zero for sexual and asexual lineages, respectively) and the expression of chitinase were all higher in sexual than in asexual lineages. Our results are congruent with the conclusion that a loss of sexual recombination and segregation in the Onagraceae negatively affects adaptive structural and potentially regulatory evolution of a plant defence protein.

  18. Mechanisms of adaptive evolution. Darwinism and Lamarckism restated.

    Science.gov (United States)

    Aboitiz, F

    1992-07-01

    This article discusses the conceptual basis of the different mechanisms of adaptive evolution. It is argued that only two such mechanisms may conceivably exist, Lamarckism and Darwinism. Darwinism is the fundamental process generating the diversity of species. Some aspects of the gene-centered approach to Darwinism are questioned, since they do not account for the generation of biological diversity. Diversity in biological design must be explained in relation to the diversity of interactions of organisms (or other higher-level units) with their environment. This aspect is usually overlooked in gene-centered views of evolution. A variant of the gene-selectionist approach has been proposed to account for the spread of cultural traits in human societies. Alternatively, I argue that social evolution is rather driven by what I call pseudo-Lamarckian inheritance. Finally, I argue that Lamarckian and pseudo-Lamarckian inheritance are just special cases of faithful replication which are found in the development of some higher-order units, such as multicellular organisms and human societies.

  19. Diversification and adaptive sequence evolution of Caenorhabditis lysozymes (Nematoda: Rhabditidae

    Directory of Open Access Journals (Sweden)

    Boehnisch Claudia

    2008-04-01

    Full Text Available Abstract Background Lysozymes are important model enzymes in biomedical research with a ubiquitous taxonomic distribution ranging from phages up to plants and animals. Their main function appears to be defence against pathogens, although some of them have also been implicated in digestion. Whereas most organisms have only few lysozyme genes, nematodes of the genus Caenorhabditis possess a surprisingly large repertoire of up to 15 genes. Results We used phylogenetic inference and sequence analysis tools to assess the evolution of lysozymes from three congeneric nematode species, Caenorhabditis elegans, C. briggsae, and C. remanei. Their lysozymes fall into three distinct clades, one belonging to the invertebrate-type and the other two to the protist-type lysozymes. Their diversification is characterised by (i ancestral gene duplications preceding species separation followed by maintenance of genes, (ii ancestral duplications followed by gene loss in some of the species, and (iii recent duplications after divergence of species. Both ancestral and recent gene duplications are associated in several cases with signatures of adaptive sequence evolution, indicating that diversifying selection contributed to lysozyme differentiation. Current data strongly suggests that genetic diversity translates into functional diversity. Conclusion Gene duplications are a major source of evolutionary innovation. Our analysis provides an evolutionary framework for understanding the diversification of lysozymes through gene duplication and subsequent differentiation. This information is expected to be of major value in future analysis of lysozyme function and in studies of the dynamics of evolution by gene duplication.

  20. The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression.

    Science.gov (United States)

    Melo-Ferreira, José; Vilela, Joana; Fonseca, Miguel M; da Fonseca, Rute R; Boursot, Pierre; Alves, Paulo C

    2014-04-01

    Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread. Here, we analyzed the sequences of 11 complete mitogenomes (ten newly obtained) of hares of temperate and arctic origins (including two of arctic origin introgressed into temperate species). The analysis of patterns of codon substitutions along the reconstructed phylogeny showed evidence for positive selection in several codons in genes of the OXPHOS complexes, most notably affecting the arctic lineage. However, using theoretical models, no predictable effect of these differences was found on the structure and physicochemical properties of the encoded proteins, suggesting that the focus of selection may lie on complex interactions with nuclear encoded peptides. Also, a cloverleaf structure was detected in the control region only from the arctic mtDNA lineage, which may influence mtDNA replication and transcription. These results suggest that adaptation impacted the evolution of hare mtDNA and may have influenced the occurrence and consequences of the many reported cases of massive mtDNA introgression. However, the origin of adaptation remains elusive.

  1. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation

    Science.gov (United States)

    Jobson, Richard W.; Nielsen, Rasmus; Laakkonen, Liisa; Wikström, Mårten; Albert, Victor A.

    2004-01-01

    Much recent attention in the study of adaptation of organismal form has centered on developmental regulation. As such, the highly conserved respiratory machinery of eukaryotic cells might seem an unlikely target for selection supporting novel morphologies. We demonstrate that a dramatic molecular evolutionary rate increase in subunit I of cytochrome c oxidase (COX) from an active-trapping lineage of carnivorous plants is caused by positive Darwinian selection. Bladderworts (Utricularia) trap plankton when water-immersed, negatively pressured suction bladders are triggered. The resetting of traps involves active ion transport, requiring considerable energy expenditure. As judged from the quaternary structure of bovine COX, the most profound adaptive substitutions are two contiguous cysteines absent in ≈99.9% of databased COX I sequences from Eukaryota, Archaea, and Bacteria. This motif lies directly at the docking point of COX I helix 3 and cytochrome c, and modeling of bovine COX I suggests the possibility of an unprecedented helix-terminating disulfide bridge that could alter COX/cytochrome c dissociation kinetics. Thus, the key adaptation in Utricularia likely lies in molecular energetic changes that buttressed the mechanisms responsible for the bladderworts' radical morphological evolution. Along with evidence for COX evolution underlying expansion of the anthropoid neocortex, our findings underscore that important morphological and physiological innovations must often be accompanied by specific adaptations in proteins with basic cellular functions. PMID:15596720

  2. Arabidopsis thaliana mTERF proteins: evolution and functional classification

    Directory of Open Access Journals (Sweden)

    Tatjana eKleine

    2012-10-01

    Full Text Available Organellar gene expression (OGE is crucial for plant development, photosynthesis and respiration, but our understanding of the mechanisms that control it is still relatively poor. Thus, OGE requires various nucleus-encoded proteins that promote transcription, splicing, trimming and editing of organellar RNAs, and regulate translation. In metazoans, proteins of the mitochondrial Transcription tERmination Factor (mTERF family interact with the mitochondrial chromosome and regulate transcriptional initiation and termination. Sequencing of the Arabidopsis thaliana genome led to the identification of a diversified MTERF gene family but, in contrast to mammalian mTERFs, knowledge about the function of these proteins in photosynthetic organisms is scarce. In this hypothesis article, I show that tandem duplications and one block duplication contributed to the large number of MTERF genes in A. thaliana, and propose that the expansion of the family is related to the evolution of land plants. The MTERF genes - especially the duplicated genes - display a number of distinct mRNA accumulation patterns, suggesting functional diversification of mTERF proteins to increase adaptability to environmental changes. Indeed, hypothetical functions for the different mTERF proteins can be predicted using co-expression analysis and gene ontology annotations. On this basis, mTERF proteins can be sorted into five groups. Members of the chloroplast and chloroplast-associated clusters are principally involved in chloroplast gene expression, embryogenesis and protein catabolism, while representatives of the mitochondrial cluster seem to participate in DNA and RNA metabolism in that organelle. Moreover, members of the mitochondrion-associated cluster and the low expression group may act in the nucleus and/or the cytosol. As proteins involved in OGE and presumably nuclear gene expression, mTERFs are ideal candidates for the coordination of the expression of organelle and nuclear

  3. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes.

    Science.gov (United States)

    Xu, Qianghua; Cheng, Chi-Hing Christina; Hu, Peng; Ye, Hua; Chen, Zuozhou; Cao, Lixue; Chen, Lei; Shen, Yu; Chen, Liangbiao

    2008-06-01

    Hepcidin is a small bioactive peptide with dual roles as an antimicrobial peptide and as the principal hormonal regulator of iron homeostasis in human and mouse. Hepcidin homologs of very similar structures are found in lower vertebrates, all comprise approximately 20-25 amino acids with 8 highly conserved cysteines forming 4 intramolecular disulfide bonds, giving hepcidin a hairpin structure. Hepcidins are particularly diverse in teleost fishes, which may be related to the diversity of aquatic environments with varying degree of pathogen challenge, oxygenation, and iron concentration, factors known to alter hepcidin expression in mammals. We characterized the diversity of hepcidin genes of the Antarctic notothenioid fishes that are endemic to the world's coldest and most oxygen-rich marine water. Notothenioid fishes have at least 4 hepcidin variants, in 2 distinctive structural types. Type I hepcidins comprise 3 distinct variants that are homologs of the widespread 8-cysteine hepcidins. Type II is a novel 4-cysteine variant and therefore only 2 possible disulfide bonds, highly expressed in hematopoietic tissues. Analyses of d(N)/d(S) substitution rate ratios and likelihood ratio test under site-specific models detected significant signal of positive Darwinian selection on the mature hepcidin-coding sequence, suggesting adaptive evolution of notothenioid hepcidins. Genomic polymerase chain reaction and Southern hybridization showed that the novel type II hepcidin occurs exclusively in lineages of the Antarctic notothenioid radiation but not in the basal non-Antarctic taxa, and lineage-specific positive selection was detected on the branch leading to the type II hepcidin clade under branch-site models, suggesting adaptive evolution of the reduced cysteine variant in response to the polar environment. We also isolated a structurally distinct 4-cysteine (4cys) hepcidin from an Antarctic eelpout that is unrelated to the notothenioids but inhabits the same freezing

  4. Connectivity of neutral networks and structural conservation in protein evolution

    OpenAIRE

    Bastolla, Ugo; Porto, Markus; Roman, H. Eduardo; Vendruscolo, Michele

    2001-01-01

    Protein structures are much more conserved than sequences during evolution. Based on this observation, we investigate the consequences of structural conservation on protein evolution. We study seven of the most studied protein folds, finding out that an extended neutral network in sequence space is associated to each of them. Within our model, neutral evolution leads to a non-Poissonian substitution process, due to the broad distribution of connectivities in neutral networks. The observation ...

  5. Diversity and evolution of coral fluorescent proteins.

    Directory of Open Access Journals (Sweden)

    Naila O Alieva

    Full Text Available GFP-like fluorescent proteins (FPs are the key color determinants in reef-building corals (class Anthozoa, order Scleractinia and are of considerable interest as potential genetically encoded fluorescent labels. Here we report 40 additional members of the GFP family from corals. There are three major paralogous lineages of coral FPs. One of them is retained in all sampled coral families and is responsible for the non-fluorescent purple-blue color, while each of the other two evolved a full complement of typical coral fluorescent colors (cyan, green, and red and underwent sorting between coral groups. Among the newly cloned proteins are a "chromo-red" color type from Echinopora forskaliana (family Faviidae and pink chromoprotein from Stylophora pistillata (Pocilloporidae, both evolving independently from the rest of coral chromoproteins. There are several cyan FPs that possess a novel kind of excitation spectrum indicating a neutral chromophore ground state, for which the residue E167 is responsible (numeration according to GFP from A. victoria. The chromoprotein from Acropora millepora is an unusual blue instead of purple, which is due to two mutations: S64C and S183T. We applied a novel probabilistic sampling approach to recreate the common ancestor of all coral FPs as well as the more derived common ancestor of three main fluorescent colors of the Faviina suborder. Both proteins were green such as found elsewhere outside class Anthozoa. Interestingly, a substantial fraction of the all-coral ancestral protein had a chromohore apparently locked in a non-fluorescent neutral state, which may reflect the transitional stage that enabled rapid color diversification early in the history of coral FPs. Our results highlight the extent of convergent or parallel evolution of the color diversity in corals, provide the foundation for experimental studies of evolutionary processes that led to color diversification, and enable a comparative analysis of

  6. Statistical analysis on adaptive evolution of SQUA genes in angiosperms

    Institute of Scientific and Technical Information of China (English)

    CHEN Yongyan; ZHONG Yang; TIAN Bo; YANG Ji; LI Dezhu

    2005-01-01

    SQUAMOSA (SQUA) subfamily includes important perianth identity genes of MADS-box gene family. SQUA genes of Dendrocalamus latiflorus were sequenced, and phylogenetic form on SQUA genes in angiosperms was analyzed. Relative rate and adaptive evolution after SQUA gene duplication in recent common ancestor of monocots and eudicots were analyzed using the methods of relative rate test, statistic on synonymous and non-synonymous coden substitution sites and likelihood rate test. The results show that both of relative rate and synonymous and non-synonymous coden substitution in eudicot clade are significantly higher than those in monocot clade, and the value of dN/ds uncovered possible positive selective pressure in eudicot clade.

  7. Functional evolution of leptin of Ochotona curzoniae in adaptive thermogenesis driven by cold environmental stress.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available BACKGROUND: Environmental stress can accelerate the directional selection and evolutionary rate of specific stress-response proteins to bring about new or altered functions, enhancing an organism's fitness to challenging environments. Plateau pika (Ochotona curzoniae, an endemic and keystone species on Qinghai-Tibetan Plateau, is a high hypoxia and low temperature tolerant mammal with high resting metabolic rate and non-shivering thermogenesis to cope in this harsh plateau environment. Leptin is a key hormone related to how these animals regulate energy homeostasis. Previous molecular evolutionary analysis helped to generate the hypothesis that adaptive evolution of plateau pika leptin may be driven by cold stress. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis, recombinant pika leptin was first purified. The thermogenic characteristics of C57BL/6J mice injected with pika leptin under warm (23±1°C and cold (5±1°C acclimation is investigated. Expression levels of genes regulating adaptive thermogenesis in brown adipose tissue and the hypothalamus are compared between pika leptin and human leptin treatment, suggesting that pika leptin has adaptively and functionally evolved. Our results show that pika leptin regulates energy homeostasis via reduced food intake and increased energy expenditure under both warm and cold conditions. Compared with human leptin, pika leptin demonstrates a superior induced capacity for adaptive thermogenesis, which is reflected in a more enhanced β-oxidation, mitochondrial biogenesis and heat production. Moreover, leptin treatment combined with cold stimulation has a significant synergistic effect on adaptive thermogenesis, more so than is observed with a single cold exposure or single leptin treatment. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that cold stress has driven the functional evolution of plateau pika leptin as an ecological adaptation to the Qinghai-Tibetan Plateau.

  8. Adaptive Evolution of cry Genes in Bacillus thuringiensis:Implications for Their Specificity Determination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The cry gene family, produced during the late exponential phase of growth in Bacillus thuringiensis, is a large, still-growing family of homologous genes, in which each gene encodes a protein with strong specific activity against only one or a few insect species. Extensive studies are mostly focusing on the structural and functional relationships of Cry proteins, and have revealed several residues or domains that are important for the target recognition and receptor attachment. In this study,we have employed a maximum likelihood method to detect evidence of adaptive evolution in Cry proteins, and have identified 24 positively selected residues, which are all located in Domain Ⅱ or Ⅲ. Combined with known data from mutagenesis studies, the majority of these residues, at the molecular level, contribute much to the insect specificity determination. We postulate that the potential pressures driving the diversification of Cry proteins may be in an attempt to adapt for the "arm race" between δ-endotoxins and the targeted insects, or to enlarge their target spectra, hence result in the functional divergence. The sites identified to be under positive selection would provide targets for further structural and functional analyses on Cry proteins.

  9. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    Science.gov (United States)

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and

  10. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    Directory of Open Access Journals (Sweden)

    Fei Shi

    2011-01-01

    Full Text Available Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions.

  11. Adaptive evolution of synthetic cooperating communities improves growth performance.

    Directory of Open Access Journals (Sweden)

    Xiaolin Zhang

    Full Text Available Symbiotic interactions between organisms are important for human health and biotechnological applications. Microbial mutualism is a widespread phenomenon and is important in maintaining natural microbial communities. Although cooperative interactions are prevalent in nature, little is known about the processes that allow their initial establishment, govern population dynamics and affect evolutionary processes. To investigate cooperative interactions between bacteria, we constructed, characterized, and adaptively evolved a synthetic community comprised of leucine and lysine Escherichia coli auxotrophs. The co-culture can grow in glucose minimal medium only if the two auxotrophs exchange essential metabolites - lysine and leucine (or its precursors. Our experiments showed that a viable co-culture using these two auxotrophs could be established and adaptively evolved to increase growth rates (by ∼3 fold and optical densities. While independently evolved co-cultures achieved similar improvements in growth, they took different evolutionary trajectories leading to different community compositions. Experiments with individual isolates from these evolved co-cultures showed that changes in both the leucine and lysine auxotrophs improved growth of the co-culture. Interestingly, while evolved isolates increased growth of co-cultures, they exhibited decreased growth in mono-culture (in the presence of leucine or lysine. A genome-scale metabolic model of the co-culture was also constructed and used to investigate the effects of amino acid (leucine or lysine release and uptake rates on growth and composition of the co-culture. When the metabolic model was constrained by the estimated leucine and lysine release rates, the model predictions agreed well with experimental growth rates and composition measurements. While this study and others have focused on cooperative interactions amongst community members, the adaptive evolution of communities with other

  12. GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution?

    Science.gov (United States)

    Bridi, L C; Rafael, M S

    2016-02-01

    Anopheles darlingi is the main malaria vector in humans in South America. In the Amazon basin, it lives along the banks of rivers and lakes, which responds to the annual hydrological cycle (dry season and rainy season). In these breeding sites, the larvae of this mosquito feed on decomposing organic and microorganisms, which can be pathogenic and trigger the activation of innate immune system pathways, such as proteins Gram-negative binding protein (GNBP). Such environmental changes affect the occurrence of polymorphic inversions especially at the heterozygote frequency, which confer adaptative advantage compared to homozygous inversions. We mapped the GNBP probe to the An. darlingi 2Rd inversion by fluorescent in situ hybridization (FISH), which was a good indicator of the GNBP immune response related to the chromosomal polymorphic inversions and adaptative evolution. To better understand the evolutionary relations and time of divergence of the GNBP of An. darlingi, we compared it with nine other mosquito GNBPs. The results of the phylogenetic analysis of the GNBP sequence between the species of mosquitoes demonstrated three clades. Clade I and II included the GNBPB5 sequence, and clade III the sequence of GNBPB1. Most of these sequences of GNBP analyzed were homologous with that of subfamily B, including that of An. gambiae (87 %), therefore suggesting that GNBP of An. darling belongs to subfamily B. This work helps us understand the role of inversion polymorphism in evolution of An. darlingi.

  13. The evolution of protein complexes by duplication of homomeric interactions

    OpenAIRE

    Pereira Leal, J.B.; Levy, E.D.; van de Kamp, C.; Teichmann, S.A.

    2007-01-01

    BACKGROUND: Cellular functions are accomplished by the concerted actions of functional modules. The mechanisms driving the emergence and evolution of these modules are still unclear. Here we investigate the evolutionary origins of protein complexes, modules in physical protein-protein interaction networks. RESULTS: We studied protein complexes in Saccharomyces cerevisiae, complexes of known three-dimensional structure in the Protein Data Bank and clusters of pairwise protein interactions in t...

  14. Evolution of protein complexes by duplication of homomeric interactions

    OpenAIRE

    Pereira-Leal, Jose B; Levy, Emmanuel D; Kamp, Christel; Teichmann, Sarah A.

    2007-01-01

    Background Cellular functions are accomplished by the concerted actions of functional modules. The mechanisms driving the emergence and evolution of these modules are still unclear. Here we investigate the evolutionary origins of protein complexes, modules in physical protein-protein interaction networks. Results We studied protein complexes in Saccharomyces cerevisiae, complexes of known three-dimensional structure in the Protein Data Bank and clusters of pairwise protein interactions in the...

  15. Adaptive resolution simulation of an atomistic protein in MARTINI water

    NARCIS (Netherlands)

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J.; Praprotnik, Matej

    2014-01-01

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coa

  16. Contingency and entrenchment in protein evolution under purifying selection

    OpenAIRE

    Shah, Premal; McCandlish, David M.; Plotkin, Joshua B.

    2015-01-01

    How large a role does history play in evolution? Do later events depend critically on specific earlier events, or do all events occur more or less independently? If a change occurs early in evolution, does it become easier or harder to revert the change as time proceeds? Here, we explore these ideas in the context of protein evolution, by simulating sequence evolution under purifying selection and then systematically permuting the order of amino acid substitutions. Our results suggest that th...

  17. A Model for Protein Sequence Evolution Based on Selective Pressure for Protein Stability: Application to Hemoglobins

    OpenAIRE

    Lorraine Marsh

    2009-01-01

    Negative selection against protein instability is a central influence on evolution of proteins. Protein stability is maintained over evolution despite changes in underlying sequences. An empirical all-site stability-based model of evolution was developed to focus on the selection of residues arising from their contributions to protein stability. In this model, site rates could vary. A structure-based method was used to predict stationary frequencies of hemoglobin residues based on their prope...

  18. Directed Evolution of Proteins through In Vitro Protein Synthesis in Liposomes

    OpenAIRE

    Takehiro Nishikawa; Takeshi Sunami; Tomoaki Matsuura; Tetsuya Yomo

    2012-01-01

    Directed evolution of proteins is a technique used to modify protein functions through “Darwinian selection.” In vitro compartmentalization (IVC) is an in vitro gene screening system for directed evolution of proteins. IVC establishes the link between genetic information (genotype) and the protein translated from the information (phenotype), which is essential for all directed evolution methods, by encapsulating both in a nonliving microcompartment. Herein, we introduce a new liposome-based I...

  19. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    DEFF Research Database (Denmark)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben;

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular...... evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae...... evidence for a link between adaptation to cold habitats and adaptive evolution of LTI stress responses in early Pooideae evolution and shed light on a poorly understood chapter in the evolutionary history of some of the world's most important temperate crops...

  20. Determinants of the rate of protein sequence evolution

    OpenAIRE

    Zhang, Jianzhi; Yang, Jian-Rong

    2015-01-01

    The rate and mechanism of protein sequence evolution have been central questions in evolutionary biology since the 1960s. Although the rate of protein sequence evolution depends primarily on the level of functional constraint, exactly what constitutes functional constraint has remained unclear. The increasing availability of genomic data has allowed for much needed empirical examinations on the nature of functional constraint. These studies found that the evolutionary rate of a protein is pre...

  1. Clusters of adaptive evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Laura B. Scheinfeldt

    2011-09-01

    Full Text Available Considerable work has been devoted to identifying regions of the human genome that have been subjected to recent positive selection. Although detailed follow-up studies of putatively selected regions are critical for a deeper understanding of human evolutionary history, such studies have received comparably less attention. Recently, we have shown that ALMS1 has been the target of recent positive selection acting on standing variation in Eurasian populations. Here, we describe a careful follow-up analysis of genetic variation across the ALMS1 region, which unexpectedly revealed a cluster of substrates of positive selection. Specifically, through the analysis of SNP data from the HapMap and HGDP-CEPH samples as well sequence data from the region, we find compelling evidence for three independent and distinct signals of recent positive selection across this 3 Mb region surrounding ALMS1. Moreover, we analyzed the HapMap data to identify other putative clusters of independent selective events and conservatively discovered 19 additional clusters of adaptive evolution. This work has important implications for the interpretation of genome-scans for positive selection in humans and more broadly contributes to a better understanding of how recent positive selection has shaped genetic variation across the human genome.

  2. Drosophila Adaptation to Viral Infection through Defensive Symbiont Evolution

    Science.gov (United States)

    Faria, Vitor G.; Magalhães, Sara; Paulo, Tânia F.; Nolte, Viola; Schlötterer, Christian

    2016-01-01

    Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit. PMID:27684942

  3. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment

    Directory of Open Access Journals (Sweden)

    Hikaru eSuenaga

    2015-09-01

    Full Text Available Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and therefore enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose.

  4. The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq

    Directory of Open Access Journals (Sweden)

    Loren H. Rieseberg

    2012-10-01

    Full Text Available Few studies have investigated the causes of evolutionary rate variation among plant nuclear genes, especially in recently diverged species still capable of hybridizing in the wild. The recent advent of Next Generation Sequencing (NGS permits investigation of genome wide rates of protein evolution and the role of selection in generating and maintaining divergence. Here, we use individual whole-transcriptome sequencing (RNAseq to refine our understanding of the population genomics of wild species of sunflowers (Helianthus spp. and the factors that affect rates of protein evolution. We aligned 35 GB of transcriptome sequencing data and identified 433,257 polymorphic sites (SNPs in a reference transcriptome comprising 16,312 genes. Using SNP markers, we identified strong population clustering largely corresponding to the three species analyzed here (Helianthus annuus, H. petiolaris, H. debilis, with one distinct early generation hybrid. Then, we calculated the proportions of adaptive substitution fixed by selection (alpha and identified gene ontology categories with elevated values of alpha. The “response to biotic stimulus” category had the highest mean alpha across the three interspecific comparisons, implying that natural selection imposed by other organisms plays an important role in driving protein evolution in wild sunflowers. Finally, we examined the relationship between protein evolution (dN/dS ratio and several genomic factors predicted to co-vary with protein evolution (gene expression level, divergence and specificity, genetic divergence [FST], and nucleotide diversity pi. We find that variation in rates of protein divergence was correlated with gene expression level and specificity, consistent with results from a broad range of taxa and timescales. This would in turn imply that these factors govern protein evolution both at a microevolutionary and macroevolutionary timescale. Our results contribute to a general understanding of the

  5. Massively parallel sampling of lattice proteins reveals foundations of thermal adaptation

    Science.gov (United States)

    Venev, Sergey V.; Zeldovich, Konstantin B.

    2015-08-01

    Evolution of proteins in bacteria and archaea living in different conditions leads to significant correlations between amino acid usage and environmental temperature. The origins of these correlations are poorly understood, and an important question of protein theory, physics-based prediction of types of amino acids overrepresented in highly thermostable proteins, remains largely unsolved. Here, we extend the random energy model of protein folding by weighting the interaction energies of amino acids by their frequencies in protein sequences and predict the energy gap of proteins designed to fold well at elevated temperatures. To test the model, we present a novel scalable algorithm for simultaneous energy calculation for many sequences in many structures, targeting massively parallel computing architectures such as graphics processing unit. The energy calculation is performed by multiplying two matrices, one representing the complete set of sequences, and the other describing the contact maps of all structural templates. An implementation of the algorithm for the CUDA platform is available at http://www.github.com/kzeldovich/galeprot and calculates protein folding energies over 250 times faster than a single central processing unit. Analysis of amino acid usage in 64-mer cubic lattice proteins designed to fold well at different temperatures demonstrates an excellent agreement between theoretical and simulated values of energy gap. The theoretical predictions of temperature trends of amino acid frequencies are significantly correlated with bioinformatics data on 191 bacteria and archaea, and highlight protein folding constraints as a fundamental selection pressure during thermal adaptation in biological evolution.

  6. Asymmetric relationships between proteins shape genome evolution.

    NARCIS (Netherlands)

    Notebaart, R.A.; Kensche, P.R.; Huynen, M.A.; Dutilh, B.E.

    2009-01-01

    BACKGROUND: The relationships between proteins are often asymmetric: one protein (A) depends for its function on another protein (B), but the second protein does not depend on the first. In metabolic networks there are multiple pathways that converge into one central pathway. The enzymes in the conv

  7. Multifunctional adaptive NS1 mutations are selected upon human influenza virus evolution in the mouse.

    Directory of Open Access Journals (Sweden)

    Nicole E Forbes

    Full Text Available The role of the NS1 protein in modulating influenza A virulence and host range was assessed by adapting A/Hong Kong/1/1968 (H3N2 (HK-wt to increased virulence in the mouse. Sequencing the NS genome segment of mouse-adapted variants revealed 11 mutations in the NS1 gene and 4 in the overlapping NEP gene. Using the HK-wt virus and reverse genetics to incorporate mutant NS gene segments, we demonstrated that all NS1 mutations were adaptive and enhanced virus replication (up to 100 fold in mouse cells and/or lungs. All but one NS1 mutant was associated with increased virulence measured by survival and weight loss in the mouse. Ten of twelve NS1 mutants significantly enhanced IFN-β antagonism to reduce the level of IFN β production relative to HK-wt in infected mouse lungs at 1 day post infection, where 9 mutants induced viral yields in the lung that were equivalent to or significantly greater than HK-wt (up to 16 fold increase. Eight of 12 NS1 mutants had reduced or lost the ability to bind the 30 kDa cleavage and polyadenylation specificity factor (CPSF30 thus demonstrating a lack of correlation with reduced IFN β production. Mutant NS1 genes resulted in increased viral mRNA transcription (10 of 12 mutants, and protein production (6 of 12 mutants in mouse cells. Increased transcription activity was demonstrated in the influenza mini-genome assay for 7 of 11 NS1 mutants. Although we have shown gain-of-function properties for all mutant NS genes, the contribution of the NEP mutations to phenotypic changes remains to be assessed. This study demonstrates that NS1 is a multifunctional virulence factor subject to adaptive evolution.

  8. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    Science.gov (United States)

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains.

  9. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    Science.gov (United States)

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains. PMID:26453945

  10. Cold adaptation of a mesophilic cellulase, EG III from Trichoderma reesei, by directed evolution

    Institute of Scientific and Technical Information of China (English)

    XIAO; Zhizhuang(肖志壮); WANG; Pan(王攀); QU; Yinbo(曲音波); GAO; Peiji(高培基); WANG; Tianhong(汪天虹)

    2002-01-01

    Cold-active enzymes have received little research attention although they are very useful in industries. Since the structure bases of cold adaptation of enzymes are still unclear, it is also very difficult to obtain cold-adapted enzymes for industrial applications using routine protein engineering methods. In this work, we employed directed evolution method to randomly mutate a mesophilic cellulase, endoglucanase III (EG III) from Trichoderma reesei, and obtained a cold- adapted mutant, designated as w-3. DNA sequence analysis indicates that w-3 is a truncated form of native EG III with a deletion of 25 consecutive amino acids at C-terminus. Further examination of enzymatic kinetics and thermal stability shows that mutant w-3 has a higher Kcat value and becomes more thermolabile than its parent. In addition, activation energies of w-3 and wild type EG III calculated from Arrhenius equation are 13.3 kJ@mol-1 and 26.2 kJ@mol-1, respectively. Therefore, the increased specific activity of w-3 at lower temperatures could result from increased Kcat value and decreased activation energy.

  11. The Effects of Network Neighbours on Protein Evolution

    OpenAIRE

    Guang-Zhong Wang; Martin J Lercher

    2011-01-01

    Interacting proteins may often experience similar selection pressures. Thus, we may expect that neighbouring proteins in biological interaction networks evolve at similar rates. This has been previously shown for protein-protein interaction networks. Similarly, we find correlated rates of evolution of neighbours in networks based on co-expression, metabolism, and synthetic lethal genetic interactions. While the correlations are statistically significant, their magnitude is small, with network...

  12. Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life.

    Directory of Open Access Journals (Sweden)

    A Faddeeva

    Full Text Available Collembola (springtails represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor.We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade.Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response, ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development.We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land.

  13. Adaptive molecular convergence: Molecular evolution versus molecular phylogenetics

    OpenAIRE

    Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.

    2010-01-01

    Definitive identification of convergent evolution, the acquisition of the same biological trait in unrelated lineages, provides one of the most compelling sources of evidence for natural selection. Although numerous examples of convergent morphological evolution are well known (such as the independent development of wings in birds and mammals), cases of convergent evolution at the molecular-genetic level appear to be quite rare. We recently discovered a remarkable case of convergent molecular...

  14. Protein and ligand adaptation in a retinoic acid binding protein.

    OpenAIRE

    Pattanayek, R.; Newcomer, M E

    1999-01-01

    A retinoic acid binding protein isolated from the lumen of the rat epididymis (ERABP) is a member of the lipocalin superfamily. ERABP binds both the all-trans and 9-cis isomers of retinoic acid, as well as the synthetic retinoid (E)-4-[2-(5,6,7,8)-tetrahydro-5,5,8,8-tetramethyl-2 napthalenyl-1 propenyl]-benzoic acid (TTNPB), a structural analog of all-trans retinoic acid. The structure of ERABP with a mixture of all-trans and 9-cis retinoic acid has previously been reported. To elucidate any ...

  15. Characterizing Microbe-Environment Interactions Through Experimental Evolution: The Autonomous Adaptive Directed Evolution Chamber

    Science.gov (United States)

    Ibanez, C. R.; Blaich, J.; Owyang, S.; Storrs, A.; Moffet, A.; Wong, N.; Zhou, J.; Gentry, D.

    2015-12-01

    We are developing a laboratory system for studying micro- to meso-scale interactions between microorganisms and their physicochemical environments. The Autonomous Adaptive Directed Evolution Chamber (AADEC) cultures microorganisms in controlled,small-scale geochemical environments. It observes corresponding microbial interactions to these environments and has the ability to adjust thermal, chemical, and other parameters in real time in response to these interactions. In addition to the sensed data, the system allows the generation of time-resolved ecological, genomic, etc. samples on the order of microbial generations. The AADEC currently houses cultures in liquid media and controls UVC radiation, heat exposure, and nutrient supply. In a proof-of-concept experimental evolution application, it can increase UVC radiation resistance of Escherichia coli cultures by iteratively exposing them to UVC and allowing the surviving cells to regrow. A baseline characterization generated a million fold resistance increase. This demonstration uses a single-well growth chamber prototype, but it was limited by scalability. We have expanded upon this system by implementing a microwell plate compatible fluidics system and sensor housing. This microwell plate system increases the diversity of microbial interactions seen in response to the geochemical environments generated by the system, allowing greater control over individual cultures' environments and detection of rarer events. The custom microfluidic card matches the footprint of a standard microwell plate. This card enables controllable fluid flow between wells and introduces multiple separate exposure and sensor chambers, increasing the variety of sensors compatible with the system. This gives the device control over scale and the interconnectedness of environments within the system. The increased controllability of the multiwell system provides a platform for implementing machine learning algorithms that will autonomously

  16. Structural similarity of loops in protein families: toward the understanding of protein evolution

    OpenAIRE

    Madej Thomas; Panchenko Anna R

    2005-01-01

    Abstract Background Protein evolution and protein classification are usually inferred by comparing protein cores in their conserved aligned parts. Structurally aligned protein regions are separated by less conserved loop regions, where sequence and structure locally deviate from each other and do not superimpose well. Results Our results indicate that even longer protein loops can not be viewed as "random coils" and for the majority of protein families in our test set there exists a linear co...

  17. Fisheries-induced neutral and adaptive evolution in exploited fish populations and consequences for their adaptive potential

    DEFF Research Database (Denmark)

    Marty, Lise; Dieckmann, Ulf; Ernande, Bruno

    2015-01-01

    of genetic drift and the loss of adaptive potential. We find that evolutionary recovery is hampered by an association of weak selection differentials with reduced additive genetic variances. Third, the contribution of fisheries-induced selection to the erosion of functional genetic diversity clearly...... dominates that of genetic drift only for the traits related to maturation. Together, our results highlight the importance of taking into account population genetic variability in predictions of eco-evolutionary dynamics......Fishing may induce neutral and adaptive evolution affecting life-history traits, and molecular evidence has shown that neutral genetic diversity has declined in some exploited populations. Here, we theoretically study the interplay between neutral and adaptive evolution caused by fishing...

  18. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30ºC

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    Exposure to long-term environmental changes across >100s of generations results in adapted phenotypes, but little is known about how metabolic and transcriptional responses are optimized in these processes. Here, we show that thermotolerant yeast strains selected by adaptive laboratory evolution ...

  19. Evolution and physics in comparative protein structure modeling.

    Science.gov (United States)

    Fiser, András; Feig, Michael; Brooks, Charles L; Sali, Andrej

    2002-06-01

    From a physical perspective, the native structure of a protein is a consequence of physical forces acting on the protein and solvent atoms during the folding process. From a biological perspective, the native structure of proteins is a result of evolution over millions of years. Correspondingly, there are two types of protein structure prediction methods, de novo prediction and comparative modeling. We review comparative protein structure modeling and discuss the incorporation of physical considerations into the modeling process. A good starting point for achieving this aim is provided by comparative modeling by satisfaction of spatial restraints. Incorporation of physical considerations is illustrated by an inclusion of solvation effects into the modeling of loops.

  20. Evolution der β-Propeller Proteine

    OpenAIRE

    Chaudhuri, Indronil

    2008-01-01

    Die β-Propeller bilden eine große Gruppe von Proteinen, die aus strukturell repetitiven Einheiten, den Propellerblättern aufgebaut sind. Bioinformatische Analysen der Propellerproteine weisen auf einen Ursprung aus einer gemeinsamen ancestralen Form hin. Dabei sind zwei evolutionäre Szenarios für die Entstehung der Propellerfaltung denkbar, die Amplifikation aus einem einzelnen Blatt und die Oligomerisierung aus größeren Fragmenten. Im Labor wurde die strukturelle Wiederholungseinheit verwend...

  1. Statistical theory of neutral protein evolution by random site mutations

    Indian Academy of Sciences (India)

    Arnab Bhattacherjee; Parbati Biswas

    2009-09-01

    Understanding the features of the protein conformational space represents a key component to characterize protein structural evolution at the molecular level. This problem is approached in a twofold manner; simple lattice models are used to represent protein structures with the ability of a protein sequence to fold into the lowest energy native conformation, quantified as the foldability, which measures the fitness of the sequence. Alternatively, a self-consistent mean-field based theory is developed to evaluate the protein neutrality through random single-point and multiple-point mutations by calculating the pair-wise probability profile of the amino acid residues in a library of sequences, consistent with a particular foldability criterion. The theory predicts the change in sequence plasticity with the foldability criterion and also correlates the effect of hydrophobic residues on the variation of the free energy surface of the protein as a function of the number of cumulative mutations. The results obtained from the theory are compared with the exact enumeration results of 3 × 3 × 3 lattice protein and also with some small real proteins chosen from the protein databank. An excellent match of the results obtained from theory and exact enumeration with those of real proteins validates the range of applicability of the theory. The theory may provide a new perspective in de novo protein design, in-vivo/in-vitro protein evolution and site-directed mutagenesis experiments.

  2. Evolution of a fluorinated green fluorescent protein

    OpenAIRE

    Yoo, Tae Hyeon; Link, A. James; Tirrell, David A.

    2007-01-01

    The fluorescence of bacterial cells expressing a variant (GFPm) of the green fluorescent protein (GFP) was reduced to background levels by global replacement of the leucine residues of GFPm by 5,5,5-trifluoroleucine. Eleven rounds of random mutagenesis and screening via fluorescence-activated cell sorting yielded a GFP mutant containing 20 amino acid substitutions. The mutant protein in fluorinated form showed improved folding efficiency both in vivo and in vitro, and the median fluorescence ...

  3. A hierarchical approach to protein molecular evolution

    OpenAIRE

    Bogarad, Leonard D.; Deem, Michael W.

    1999-01-01

    Biological diversity has evolved despite the essentially infinite complexity of protein sequence space. We present a hierarchical approach to the efficient searching of this space and quantify the evolutionary potential of our approach with Monte Carlo simulations. These simulations demonstrate that non-homologous juxtaposition of encoded structure is the rate-limiting step in the production of new tertiary protein folds. Non-homologous ``swapping'' of low energy secondary structures increase...

  4. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution

    OpenAIRE

    Covert, Arthur W.; Richard E Lenski; Wilke, Claus O.; Ofria, Charles

    2013-01-01

    It might seem obvious that deleterious mutations must impede evolution. However, a later mutation may interact with a deleterious predecessor, facilitating otherwise inaccessible adaptations. Although such interactions have been reported before, it is unclear whether they are rare and inconsequential or, alternatively, are important for sustaining adaptation. We studied digital organisms—computer programs that replicate and evolve—to compare adaptation in populations where deleterious mutatio...

  5. Evolution of fitness trade-offs in locally adapted populations of Pseudomonas fluorescens

    DEFF Research Database (Denmark)

    Schick, Alana; Bailey, Susan; Kassen, Rees

    2015-01-01

    characterize the genetic causes of trade-offs generating local adaptation in populations of Pseudomonas fluorescens that had previously been evolved for specialization on three different carbon resources. We measured the fitness effects of mutations that arose during selection in that environment...... provide a detailed account of the genetics of specialization and suggest that the evolution of trade-offs associated with local adaptation may often result from the antagonistic effects of beneficial mutations substituted later in adaptation....

  6. Similar rates of protein adaptation in Drosophila miranda and D. melanogaster, two species with different current effective population sizes

    Directory of Open Access Journals (Sweden)

    Bachtrog Doris

    2008-12-01

    Full Text Available Abstract Background Adaptive protein evolution is common in several Drosophila species investigated. Some studies point to very weak selection operating on amino-acid mutations, with average selection intensities on the order of Nes ~ 5 in D. melanogaster and D. simulans. Species with lower effective population sizes should undergo less adaptation since they generate fewer mutations and selection is ineffective on a greater proportion of beneficial mutations. Results Here I study patterns of polymorphism and divergence at 91 X-linked loci in D. miranda, a species with a roughly 5-fold smaller effective population size than D. melanogaster. Surprisingly, I find a similar fraction of amino-acid mutations being driven to fixation by positive selection in D. miranda and D. melanogaster. Genes with higher rates of amino-acid evolution show lower levels of neutral diversity, a pattern predicted by recurrent adaptive protein evolution. I fit a hitchhiking model to patterns of polymorphism in D. miranda and D. melanogaster and estimate an order of magnitude higher selection coefficients for beneficial mutations in D. miranda. Conclusion This analysis suggests that effective population size may not be a major determinant in rates of protein adaptation. Instead, adaptation may not be mutation-limited, or the distribution of fitness effects for beneficial mutations might differ vastly between different species or populations. Alternative explanation such as biases in estimating the fraction of beneficial mutations or slightly deleterious mutation models are also discussed.

  7. Trichinella spiralis: the evolution of adaptation and parasitism

    Science.gov (United States)

    Parasitism among nematodes has occurred in multiple, independent events. Deciphering processes that drive species diversity and adaptation are keys to understanding parasitism and advancing control strategies. Studies have been put forth on morphological and physiological aspects of parasitism and a...

  8. Adaptive evolution of complex innovations through stepwise metabolic niche expansion.

    Science.gov (United States)

    Szappanos, Balázs; Fritzemeier, Jonathan; Csörgő, Bálint; Lázár, Viktória; Lu, Xiaowen; Fekete, Gergely; Bálint, Balázs; Herczeg, Róbert; Nagy, István; Notebaart, Richard A; Lercher, Martin J; Pál, Csaba; Papp, Balázs

    2016-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes. PMID:27197754

  9. Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits

    OpenAIRE

    Martin Olivier C; Espinosa-Soto Carlos; Wagner Andreas

    2011-01-01

    Abstract Background Many important evolutionary adaptations originate in the modification of gene regulatory circuits to produce new gene activity phenotypes. How do evolving populations sift through an astronomical number of circuits to find circuits with new adaptive phenotypes? The answer may often involve phenotypic plasticity. Phenotypic plasticity allows a genotype to produce different - alternative - phenotypes after non-genetic perturbations that include gene expression noise, environ...

  10. Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits

    OpenAIRE

    Espinosa-Soto, C.; Martin, O. C.; Wagner, A

    2011-01-01

    BACKGROUND: Many important evolutionary adaptations originate in the modification of gene regulatory circuits to produce new gene activity phenotypes. How do evolving populations sift through an astronomical number of circuits to find circuits with new adaptive phenotypes? The answer may often involve phenotypic plasticity. Phenotypic plasticity allows a genotype to produce different - alternative - phenotypes after non-genetic perturbations that include gene expression noise, environment...

  11. Fecundity increase supports adaptive radiation hypothesis in spider web evolution

    OpenAIRE

    Todd A. Blackledge; Coddington, Jonathan A.; Agnarsson, Ingi

    2009-01-01

    Identifying the mechanisms driving adaptive radiations is key to explaining the diversity of life. The extreme reliance of spiders upon silk for survival provides an exceptional system in which to link patterns of diversification to adaptive changes in silk use. Most of the world’s 41,000 species of spiders belong to two apical lineages of spiders that exhibit quite different silk ecologies, distinct from their ancestors. Orb spiders spin highly stereotyped webs that are suspended in air and ...

  12. From lifetime to evolution: timescales of human gut microbiota adaptation

    OpenAIRE

    Sara eQuercia; Marco eCandela; Cristina eGiuliani; Silvia eTurroni; Donata eLuiselli; Simone eRampelli; Patrizia eBrigidi; Claudio eFranceschi; Maria Giulia eBacalini; Paolo eGaragnani; Chiara ePirazzini

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The gut microbiota continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily varia...

  13. From lifetime to evolution: timescales of human gut microbiota adaptation

    OpenAIRE

    Quercia, Sara; Candela, Marco; Giuliani, Cristina; Turroni, Silvia; Luiselli, Donata; Rampelli, Simone; Brigidi, Patrizia; Franceschi, Claudio; Bacalini, Maria Giulia; Garagnani, Paolo; Pirazzini, Chiara

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota (GM) is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The GM continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations i...

  14. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    Directory of Open Access Journals (Sweden)

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  15. Adaption of Saccharomyces cerevisiae expressing a heterologous protein

    DEFF Research Database (Denmark)

    Krogh, Astrid Mørkeberg; Beck, Vibe; Højlund Christensen, Lars;

    2008-01-01

    Production of the heterologous protein, bovine aprotinin, in Saccharomyces cerevisiae was shown to affect the metabolism of the host cell to various extent depending on the strain genotype. Strains with different genotypes, industrial and laboroatory, respectively, were investigated. The maximal ...... result of the adaptation. Determination of the level of mRNA encoding aprotinin and the plasmid copy number pointed to different mechanisms responsible for the decline in aprotinin yield in the different strains. (C) 2008 Elsevier B.V. All rights reserved....

  16. Adaptive Simulated Annealing Based Protein Loop Modeling of Neurotoxins

    Institute of Scientific and Technical Information of China (English)

    陈杰; 黄丽娜; 彭志红

    2003-01-01

    A loop modeling method, adaptive simulated annealing, for ab initio prediction of protein loop structures, as an optimization problem of searching the global minimum of a given energy function, is proposed. An interface-friendly toolbox-LoopModeller in Windows and Linux systems, VC++ and OpenGL environments is developed for analysis and visualization. Simulation results of three short-chain neurotoxins modeled by LoopModeller show that the method proposed is fast and efficient.

  17. Distinct genomic signatures of adaptation in pre- and postnatal environments during human evolution.

    Science.gov (United States)

    Uddin, Monica; Goodman, Morris; Erez, Offer; Romero, Roberto; Liu, Guozhen; Islam, Munirul; Opazo, Juan C; Sherwood, Chet C; Grossman, Lawrence I; Wildman, Derek E

    2008-03-01

    The human genome evolution project seeks to reveal the genetic underpinnings of key phenotypic features that are distinctive of humans, such as a greatly enlarged cerebral cortex, slow development, and long life spans. This project has focused predominantly on genotypic changes during the 6-million-year descent from the last common ancestor (LCA) of humans and chimpanzees. Here, we argue that adaptive genotypic changes during earlier periods of evolutionary history also helped shape the distinctive human phenotype. Using comparative genome sequence data from 10 vertebrate species, we find a signature of human ancestry-specific adaptive evolution in 1,240 genes during their descent from the LCA with rodents. We also find that the signature of adaptive evolution is significantly different for highly expressed genes in human fetal and adult-stage tissues. Functional annotation clustering shows that on the ape stem lineage, an especially evident adaptively evolved biological pathway contains genes that function in mitochondria, are crucially involved in aerobic energy production, and are highly expressed in two energy-demanding tissues, heart and brain. Also, on this ape stem lineage, there was adaptive evolution among genes associated with human autoimmune and aging-related diseases. During more recent human descent, the adaptively evolving, highly expressed genes in fetal brain are involved in mediating neuronal connectivity. Comparing adaptively evolving genes from pre- and postnatal-stage tissues suggests that different selective pressures act on the development vs. the maintenance of the human phenotype.

  18. Molecular evolution of herpesviruses: genomic and protein sequence comparisons.

    OpenAIRE

    Karlin, S; Mocarski, E S; Schachtel, G A

    1994-01-01

    Phylogenetic reconstruction of herpesvirus evolution is generally founded on amino acid sequence comparisons of specific proteins. These are relevant to the evolution of the specific gene (or set of genes), but the resulting phylogeny may vary depending on the particular sequence chosen for analysis (or comparison). In the first part of this report, we compare 13 herpesvirus genomes by using a new multidimensional methodology based on distance measures and partial orderings of dinucleotide re...

  19. Teaching Noncovalent Interactions Using Protein Molecular Evolution

    Science.gov (United States)

    Fornasari, Maria Silvina; Parisi, Gustavo; Echave, Julian

    2008-01-01

    Noncovalent interactions and physicochemical properties of amino acids are important topics in biochemistry courses. Here, we present a computational laboratory where the capacity of each of the 20 amino acids to maintain different noncovalent interactions are used to investigate the stabilizing forces in a set of proteins coming from organisms…

  20. Evolution of Respiratory Proteins across the Pancrustacea.

    Science.gov (United States)

    Burmester, Thorsten

    2015-11-01

    Respiratory proteins enhance the capacity of the blood for oxygen transport and support intracellular storage and delivery of oxygen. Hemocyanin and hemoglobin are the respiratory proteins that occur in the Pancrustacea. The copper-containing hemocyanins evolved from phenoloxidases in the stem lineage of arthropods. For a long time, hemocyanins had only been known from the malacostracan crustaceans but recent studies identified hemocyanin also in Remipedia, Ostracoda, and Branchiura. Hemoglobins are common in the Branchiopoda but have also been sporadically found in other crustacean classes (Malacostraca, Copepoda, Thecostraca). Respiratory proteins had long been considered unnecessary in the hexapods because of the tracheal system. Only chironomids, some backswimmers, and the horse botfly, which all live under hypoxic conditions, were known exceptions and possess hemoglobins. However, recent data suggest that hemocyanins occur in most ametabolous and hemimetabolous insects. Phylogenetic analysis showed the hemocyanins of insects and Remipedia to be similar, suggesting a close relationship of these taxa. Hemocyanin has been lost in dragonflies, mayflies, and Eumetabola (Hemiptera + Holometabola). In cockroaches and grasshoppers, hemocyanin expression is restricted to the developing embryo while in adults oxygen is supplied solely by the tracheal system. This pattern suggests that hemocyanin was the oxygen-transport protein in the hemolymph of the last common ancestor of the pancrustaceans. The loss was probably associated with miniaturization, a period of restricted availability of oxygen, a change in life-style, or morphological changes. Once lost, hemocyanin was not regained. Some pancrustaceans also possess cellular globin genes with uncertain functions, which are expressed at low levels. When a respiratory protein was again required, hemoglobins evolved several times independently from cellular globins. PMID:26130703

  1. A simple stochastic model for the evolution of protein lengths

    OpenAIRE

    Destri C.; Miccio C.

    2007-01-01

    We analyze a simple discrete-time stochastic process for the theoretical modeling of the evolution of protein lengths. At every step of the process, a new protein is produced as a modi¿cation of one of the proteins already existing, and its length is assumed to be a random variable that depends only on the length of the originating protein. Thus a random recursive tree is produced over the natural numbers. If quasi scale invariance is assumed, the length distribution in a single history tends...

  2. Diversity and Evolution of Coral Fluorescent Proteins

    OpenAIRE

    Alieva, Naila O.; Konzen, Karen A.; Field, Steven F.; Meleshkevitch, Ella A.; Hunt, Marguerite E.; Victor Beltran-Ramirez; Miller, David J.; Jörg Wiedenmann; Anya Salih; Matz, Mikhail V

    2008-01-01

    GFP-like fluorescent proteins (FPs) are the key color determinants in reef-building corals (class Anthozoa, order Scleractinia) and are of considerable interest as potential genetically encoded fluorescent labels. Here we report 40 additional members of the GFP family from corals. There are three major paralogous lineages of coral FPs. One of them is retained in all sampled coral families and is responsible for the non-fluorescent purple-blue color, while each of the other two evolved a full ...

  3. The evolution of human cells in terms of protein innovation.

    Science.gov (United States)

    Sardar, Adam J; Oates, Matt E; Fang, Hai; Forrest, Alistair R R; Kawaji, Hideya; Gough, Julian; Rackham, Owen J L

    2014-06-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type-specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type-specific domain architectures.

  4. Localizing recent adaptive evolution in the human genome

    DEFF Research Database (Denmark)

    Williamson, Scott H; Hubisz, Melissa J; Clark, Andrew G;

    2007-01-01

    , clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome...

  5. Molecular evolution, intracellular organization, and the quinary structure of proteins.

    OpenAIRE

    McConkey, E H

    1982-01-01

    High-resolution two-dimensional polyacrylamide gel electrophoresis shows that at least half of 370 denatured polypeptides from hamster cells and human cells are indistinguishable in terms of isoelectric points and molecular weights. Molecular evolution may have been more conservative for this set of proteins than sequence studies on soluble proteins have implied. This may be a consequence of complexities of intracellular organization and the numerous macromolecular interactions in which most ...

  6. Exploring the evolution of protein function in Archaea

    OpenAIRE

    Goncearenco Alexander; Berezovsky Igor N

    2012-01-01

    Abstract Background Despite recent progress in studies of the evolution of protein function, the questions what were the first functional protein domains and what were their basic building blocks remain unresolved. Previously, we introduced the concept of elementary functional loops (EFLs), which are the functional units of enzymes that provide elementary reactions in biochemical transformations. They are presumably descendants of primordial catalytic peptides. Results We analyzed distant evo...

  7. From lifetime to evolution: timescales of human gut microbiota adaptation

    Directory of Open Access Journals (Sweden)

    Sara eQuercia

    2014-11-01

    Full Text Available Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The gut microbiota continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies.

  8. From lifetime to evolution: timescales of human gut microbiota adaptation.

    Science.gov (United States)

    Quercia, Sara; Candela, Marco; Giuliani, Cristina; Turroni, Silvia; Luiselli, Donata; Rampelli, Simone; Brigidi, Patrizia; Franceschi, Claudio; Bacalini, Maria Giulia; Garagnani, Paolo; Pirazzini, Chiara

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota (GM) is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The GM continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies. PMID:25408692

  9. Adaptive virulence evolution: the good old fitness-based approach.

    Science.gov (United States)

    Alizon, Samuel; Michalakis, Yannis

    2015-05-01

    Infectious diseases could be expected to evolve towards complete avirulence to their hosts if given enough time. However, this is not the case. Often, virulence is maintained because it is linked to adaptive advantages to the parasite, a situation that is often associated with the hypothesis known as the transmission-virulence trade-off hypothesis. Here, we argue that this hypothesis has three limitations, which are related to how virulence is defined, the possibility of multiple trade-offs, and the difficulty of testing the hypothesis empirically. By adopting a fitness-based approach, where the relation between virulence and the fitness of the parasite throughout its life cycle is directly assessed, it is possible to address these limitations and to determine directly whether virulence is adaptive. PMID:25837917

  10. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    OpenAIRE

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary hi...

  11. Adaptive mutations in the JC virus protein capsid are associated with progressive multifocal leukoencephalopathy (PML.

    Directory of Open Access Journals (Sweden)

    Shamil R Sunyaev

    2009-02-01

    Full Text Available PML is a progressive and mostly fatal demyelinating disease caused by JC virus infection and destruction of infected oligodendrocytes in multiple brain foci of susceptible individuals. While JC virus is highly prevalent in the human population, PML is a rare disease that exclusively afflicts only a small percentage of immunocompromised individuals including those affected by HIV (AIDS or immunosuppressive drugs. Viral- and/or host-specific factors, and not simply immune status, must be at play to account for the very large discrepancy between viral prevalence and low disease incidence. Here, we show that several amino acids on the surface of the JC virus capsid protein VP1 display accelerated evolution in viral sequences isolated from PML patients but not in sequences isolated from healthy subjects. We provide strong evidence that at least some of these mutations are involved in binding of sialic acid, a known receptor for the JC virus. Using statistical methods of molecular evolution, we performed a comprehensive analysis of JC virus VP1 sequences isolated from 55 PML patients and 253 sequences isolated from the urine of healthy individuals and found that a subset of amino acids found exclusively among PML VP1 sequences is acquired via adaptive evolution. By modeling of the 3-D structure of the JC virus capsid, we showed that these residues are located within the sialic acid binding site, a JC virus receptor for cell infection. Finally, we go on to demonstrate the involvement of some of these sites in receptor binding by demonstrating a profound reduction in hemagglutination properties of viral-like particles made of the VP1 protein carrying these mutations. Collectively, these results suggest that a more virulent PML causing phenotype of JC virus is acquired via adaptive evolution that changes viral specificity for its cellular receptor(s.

  12. Molecular evolution of cyclin proteins in animals and fungi

    Directory of Open Access Journals (Sweden)

    Afonnikov Dmitry A

    2011-07-01

    Full Text Available Abstract Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.

  13. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    The community succession mechanism of Acidithiobacillus sp. coupling with adaptive evolution of adsorption performance were systematically investigated. Specifically, the μmax of attached and free cells was increased and peak time was moved ahead, indicating both cell growth of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was promoted. In the mixed strains system, the domination courses of A. thiooxidans was dramatically shortened from 22th day to 15th day, although community structure finally approached to the normal system. Compared to A. ferrooxidans, more positive effects of adaptive evolution on cell growth of A. thiooxidans were shown in either single or mixed strains system. Moreover, higher concentrations of sulfate and ferric ions indicated that both sulfur and iron metabolism was enhanced, especially of A. thiooxidans. Consistently, copper ion production was improved from 65.5 to 88.5 mg/L. This new adaptive evolution and community succession mechanism may be useful for guiding similar bioleaching processes.

  14. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    The community succession mechanism of Acidithiobacillus sp. coupling with adaptive evolution of adsorption performance were systematically investigated. Specifically, the μmax of attached and free cells was increased and peak time was moved ahead, indicating both cell growth of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was promoted. In the mixed strains system, the domination courses of A. thiooxidans was dramatically shortened from 22th day to 15th day, although community structure finally approached to the normal system. Compared to A. ferrooxidans, more positive effects of adaptive evolution on cell growth of A. thiooxidans were shown in either single or mixed strains system. Moreover, higher concentrations of sulfate and ferric ions indicated that both sulfur and iron metabolism was enhanced, especially of A. thiooxidans. Consistently, copper ion production was improved from 65.5 to 88.5 mg/L. This new adaptive evolution and community succession mechanism may be useful for guiding similar bioleaching processes. PMID:25978855

  15. Simulated Evolution of Protein-Protein Interaction Networks with Realistic Topology

    OpenAIRE

    G Jack Peterson; Steve Pressé; Peterson, Kristin S.; Dill, Ken A.

    2012-01-01

    We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the t...

  16. The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation*

    OpenAIRE

    Li, Bohua; Zhao, Lei; Wang, Chong; Guo, Huaizu; Wu, Lan; Zhang, Xunming; Qian, Weizhu; Wang, Hao; Guo, Yajun

    2009-01-01

    Understanding the evolutionary mechanism that acts at the interfaces of protein-protein complexes is a fundamental issue with high interest for delineating the macromolecular complexes and networks responsible for regulation and complexity in biological systems. To investigate whether the evolution of protein-protein interface acts in a similar way as antibody affinity maturation, we incorporated evolutionary information derived from antibody affinity maturation with common simulation techniq...

  17. Molecular evolution of type VI intermediate filament proteins

    Directory of Open Access Journals (Sweden)

    Vincent Michel

    2007-09-01

    Full Text Available Abstract Background Tanabin, transitin and nestin are type VI intermediate filament (IF proteins that are developmentally regulated in frogs, birds and mammals, respectively. Tanabin is expressed in the growth cones of embryonic vertebrate neurons, whereas transitin and nestin are found in myogenic and neurogenic cells. Another type VI IF protein, synemin, is expressed in undifferentiated and mature muscle cells of birds and mammals. In addition to an IF-typical α-helical core domain, type VI IF proteins are characterized by a long C-terminal tail often containing distinct repeated motifs. The molecular evolution of type VI IF proteins remains poorly studied. Results To examine the evolutionary history of type VI IF proteins, sequence comparisons, BLAST searches, synteny studies and phylogenic analyses were performed. This study provides new evidence that tanabin, transitin and nestin are indeed orthologous type VI IF proteins. It demonstrates that tanabin, transitin and nestin genes share intron positions and sequence identities, have a similar chromosomal context and display closely related positions in phylogenic analyses. Despite this homology, fast evolution rates of their C-terminal extremity have caused the appearance of repeated motifs with distinct biological activities. In particular, our in silico and in vitro analyses of their tail domain have shown that (avian transitin, but not (mammalian nestin, contains a repeat domain displaying nucleotide hydrolysis activity. Conclusion These analyses of the evolutionary history of the IF proteins fit with a model in which type VI IFs form a branch distinct from NF proteins and are composed of two major proteins: synemin and nestin orthologs. Rapid evolution of the C-terminal extremity of nestin orthologs could be responsible for their divergent functions.

  18. Protein evolution. Pervasive degeneracy and epistasis in a protein-protein interface.

    Science.gov (United States)

    Podgornaia, Anna I; Laub, Michael T

    2015-02-01

    Mapping protein sequence space is a difficult problem that necessitates the analysis of 20(N) combinations for sequences of length N. We systematically mapped the sequence space of four key residues in the Escherichia coli protein kinase PhoQ that drive recognition of its substrate PhoP. We generated a library containing all 160,000 variants of PhoQ at these positions and used a two-step selection coupled to next-generation sequencing to identify 1659 functional variants. Our results reveal extensive degeneracy in the PhoQ-PhoP interface and epistasis, with the effect of individual substitutions often highly dependent on context. Together, epistasis and the genetic code create a pattern of connectivity of functional variants in sequence space that likely constrains PhoQ evolution. Consequently, the diversity of PhoQ orthologs is substantially lower than that of functional PhoQ variants. PMID:25657251

  19. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Madsen Sommer, Lea Mette; Molin, Søren;

    2015-01-01

    Little is known about how within-host evolution compares between genotypically different strains of the same pathogenic species. We sequenced the whole genomes of 474 longitudinally collected clinical isolates of Pseudomonas aeruginosa sampled from 34 children and young individuals with cystic fi...... of genes involved in host adaptation may help in predicting bacterial evolution in patients with cystic fibrosis and in the design of future intervention strategies.......Little is known about how within-host evolution compares between genotypically different strains of the same pathogenic species. We sequenced the whole genomes of 474 longitudinally collected clinical isolates of Pseudomonas aeruginosa sampled from 34 children and young individuals with cystic...... fibrosis. Our analysis of 36 P. aeruginosa lineages identified convergent molecular evolution in 52 genes. This list of genes suggests a role in host adaptation for remodeling of regulatory networks and central metabolism, acquisition of antibiotic resistance and loss of extracellular virulence factors...

  20. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution.

    Science.gov (United States)

    Covert, Arthur W; Lenski, Richard E; Wilke, Claus O; Ofria, Charles

    2013-08-20

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358

  1. Experimental evolution of a bacteriophage virus reveals the trajectory of adaptation across a fecundity/longevity trade-off.

    Directory of Open Access Journals (Sweden)

    Richard H Heineman

    Full Text Available Life history theory attempts to account for how organisms lead their lives, balancing the conflicting demands of reproduction and survival. Here, we track the genomic and phenotypic evolution of the bacteriophage virus T7 across a postulated fecundity/longevity constraint. We adapted T7 to a challenging survival environment (6M urea. Our evolved strain displayed a significant improvement in propagule survival, coupled with a significant loss of fecundity (reduced growth rate on host cells. However, the increased resistance to urea did not generalise to increased resistance against temperature stress, highlighting that propagule durability is environment dependent. Previous comparative studies predicted that changes in propagule resistance would be mediated by changes in capsid proteins or gene deletions. In contrast, we found that point mutations in internal core protein genes (6.7 and 16 were responsible for the increased urea resistance of our evolved strain. Prior to the emergence of the 6.7 and 16 mutations, a distinct set of 5-point mutations peaked at over 20% prevalence before attenuating, suggestive of negative epistatic interactions during adaptation. Our results illustrate that parasites can adapt to specific transmission environments, and that this adaptation can impose costs on the subsequent ability to exploit host cells, potentially constraining durable parasites to lower virulence.

  2. Aspects of the Evolution and Adaptive Significance of Regional Endothermy in Fishes

    OpenAIRE

    Sepulveda, Chugey J.A.

    2005-01-01

    This dissertation addressed questions related to the selective advantages of regional endothermy and its independent evolution among several fish groups. The chapters integrate laboratory and field physiological measurements to provide a better understanding ofthe evolution of regional endothermy and its importance as an adaptation to the pelagic environment. Studies on the swimming energetics of the eastern Pacific bonito (Sarda chiliensis) revealed that the bonito had a similar cost of tran...

  3. Adaptive evolution of the symbiotic gene NORK is not correlated with shifts of rhizobial specificity in the genus Medicago

    Directory of Open Access Journals (Sweden)

    Ronfort Joëlle

    2007-11-01

    Full Text Available Abstract Background The NODULATION RECEPTOR KINASE (NORK gene encodes a Leucine-Rich Repeat (LRR-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in this gene, using a limited number of messenger RNA sequences, but the functional reason of these changes remains obscure. The Medicago genus, where changes in rhizobial associations have been previously examined, is a good model to test whether the evolution of NORK is influenced by rhizobial interactions. Results We sequenced a region of 3610 nucleotides (encoding a 392 amino acid-long region of the NORK protein in 32 Medicago species. We confirm that positive selection in NORK has occurred within the Medicago genus and find that the amino acid positions targeted by selection occur in sites outside of solvent-exposed regions in LRRs, and other sites in the N-terminal region of the protein. We tested if branches of the Medicago phylogeny where changes of rhizobial symbionts occurred displayed accelerated rates of amino acid substitutions. Only one branch out of five tested, leading to M. noeana, displays such a pattern. Among other branches, the most likely for having undergone positive selection is not associated with documented shift of rhizobial specificity. Conclusion Adaptive changes in the sequence of the NORK receptor have involved the LRRs, but targeted different sites than in most previous studies of LRR proteins evolution. The fact that positive selection in NORK tends not to be associated to changes in rhizobial specificity indicates that this gene was probably not involved in evolving rhizobial preferences. Other explanations (e.g. coevolutionary arms race must be tested to explain the adaptive evolution of NORK.

  4. Evolutionary constraints on adaptive evolution during range expansion in an invasive plant

    OpenAIRE

    Colautti, Robert I.; Christopher G. Eckert; Barrett, Spencer C. H.

    2010-01-01

    Biological invasions may expose populations to strong selection for local adaptation along geographical gradients in climate. However, evolution during contemporary timescales can be constrained by low standing genetic variation and genetic correlations among life-history traits. We examined limits to local adaptation associated with northern migration of the invasive wetland plant purple loosestrife (Lythrum salicaria) using a selection model incorporating a trade-off between flowering time ...

  5. Ancient and Recent Adaptive Evolution of Primate Non-Homologous End Joining Genes

    OpenAIRE

    Ann Demogines; Alysia M East; Ji-Hoon Lee; Grossman, Sharon R.; Sabeti, Pardis C.; Paull, Tanya T.; Sawyer, Sara L.

    2010-01-01

    In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ) pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to...

  6. Genomic evidence of adaptive evolution in emergent Vibrio parahaemolyticus ecotypes

    Directory of Open Access Journals (Sweden)

    Jeffrey W. Turner

    2016-07-01

    Full Text Available Abstract The ubiquitous marine bacterium Vibrio parahaemolyticus is a leading cause of illness associated with seafood consumption. The emergence of two genetically distinct ecotypes (ST3 and ST36 has led to an alarming increase in the size and frequency of disease outbreaks. We conducted a genomic comparison of 30 V. parahaemolyticus genomes that represent a diverse collection of 15 genetically distinct ecotypes, including newly sequenced representatives of ST3 and ST36, isolated from both clinical and environmental sources. A multistep evolutionary analysis showed that genes associated with sensing and responding to environmental stimuli have evolved under positive selection, identifying examples of convergent evolution between ST3 and ST36. A comparison of predicted proteomes indicated that ST3 and ST36 ecotypes laterally acquired tens of novel genes associated with a variety of functions including dormancy, homeostasis and membrane transport. Genes identified in this study play an apparent role in environmental fitness and may confer cross protection against stressors encountered in the human host. Together, these results show the evolution of stress response is an important genetic mechanism correlated with the recent emergence of the ST3 and ST36 ecotypes.

  7. Brain evolution and development: adaptation, allometry and constraint.

    Science.gov (United States)

    Montgomery, Stephen H; Mundy, Nicholas I; Barton, Robert A

    2016-09-14

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  8. Brain evolution and development: adaptation, allometry and constraint

    Science.gov (United States)

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  9. Prevalence of epistasis in the evolution of influenza A surface proteins.

    Directory of Open Access Journals (Sweden)

    Sergey Kryazhimskiy

    2011-02-01

    Full Text Available The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and

  10. Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Voolstra, Christian R.; Sunagawa, Shinichi; Matz, Mikhail V.; Bayer, Till; Aranda, Manuel; Buschiazzo, Emmanuel; DeSalvo, Michael K.; Lindquist, Erika; Szmant, Alina M.; Coffroth, Mary Alice; Medina, Monica

    2011-01-31

    Background: Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. Methodology/Principal Findings: We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7percent of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineagespecific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. Conclusion/Relevance: This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals? evolutionary response to global climate change.

  11. The evolution of adhesiveness as a social adaptation.

    Science.gov (United States)

    Garcia, Thomas; Doulcier, Guilhem; De Monte, Silvia

    2015-11-27

    Cellular adhesion is a key ingredient to sustain collective functions of microbial aggregates. Here, we investigate the evolutionary origins of adhesion and the emergence of groups of genealogically unrelated cells with a game-theoretical model. The considered adhesiveness trait is costly, continuous and affects both group formation and group-derived benefits. The formalism of adaptive dynamics reveals two evolutionary stable strategies, at each extreme on the axis of adhesiveness. We show that cohesive groups can evolve by small mutational steps, provided the population is already endowed with a minimum adhesiveness level. Assortment between more adhesive types, and in particular differential propensities to leave a fraction of individuals ungrouped at the end of the aggregation process, can compensate for the cost of increased adhesiveness. We also discuss the change in the social nature of more adhesive mutations along evolutionary trajectories, and find that altruism arises before directly beneficial behavior, despite being the most challenging form of cooperation.

  12. The evolution of adhesiveness as a social adaptation.

    Science.gov (United States)

    Garcia, Thomas; Doulcier, Guilhem; De Monte, Silvia

    2015-01-01

    Cellular adhesion is a key ingredient to sustain collective functions of microbial aggregates. Here, we investigate the evolutionary origins of adhesion and the emergence of groups of genealogically unrelated cells with a game-theoretical model. The considered adhesiveness trait is costly, continuous and affects both group formation and group-derived benefits. The formalism of adaptive dynamics reveals two evolutionary stable strategies, at each extreme on the axis of adhesiveness. We show that cohesive groups can evolve by small mutational steps, provided the population is already endowed with a minimum adhesiveness level. Assortment between more adhesive types, and in particular differential propensities to leave a fraction of individuals ungrouped at the end of the aggregation process, can compensate for the cost of increased adhesiveness. We also discuss the change in the social nature of more adhesive mutations along evolutionary trajectories, and find that altruism arises before directly beneficial behavior, despite being the most challenging form of cooperation. PMID:26613415

  13. Diversity and adaptive evolution of Saccharomyces wine yeast: a review.

    Science.gov (United States)

    Marsit, Souhir; Dequin, Sylvie

    2015-11-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains.

  14. Adaptive topology evolution in information-sharing social networks

    CERN Document Server

    Chen, Duanbing; Lu, Linyuan; Medo, Matus; Zhang, Yi-Cheng; Zhou, Tao

    2011-01-01

    The advent of Internet and World Wide Web has led to unprecedent growth of the information available. People usually face the information overload by following a limited number of sources which best fit their interests. In order to get the picture it is important to address issues like who people do follow and how they search for better information sources. In this work we conduct an empirical analysis on different on-line social networking sites, and draw inspiration from its results to present different source selection strategies in an adaptive model for social recommendation. We show that local search rules which enhance the typical topological features of real social communities give rise to network configurations that are globally optimal. Hence these abstract rules help to create networks which are both effective in information diffusion and people friendly.

  15. Two goose-type lysozymes in Mytilus galloprovincialis: possible function diversification and adaptive evolution.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available Two goose-type lysozymes (designated as MGgLYZ1 and MGgLYZ2 were identified from the mussel Mytilus galloprovincialis. MGgLYZ1 mRNA was widely expressed in the examined tissues and responded sensitively to bacterial challenge in hemocytes, while MGgLYZ2 mRNA was predominately expressed and performed its functions in hepatopancreas. However, immunolocalization analysis showed that both these lysozymes were expressed in all examined tissues with the exception of adductor muscle. Recombinant MGgLYZ1 and MGgLYZ2 could inhibit the growth of several Gram-positive and Gram-negative bacteria, and they both showed the highest activity against Pseudomonas putida with the minimum inhibitory concentration (MIC of 0.95-1.91 µM and 1.20-2.40 µM, respectively. Protein sequences analysis revealed that MGgLYZ2 had lower isoelectric point and less protease cutting sites than MGgLYZ1. Recombinant MGgLYZ2 exhibited relative high activity at acidic pH of 4-5, while MGgLYZ1 have an optimum pH of 6. These results indicated MGgLYZ2 adapted to acidic environment and perhaps play an important role in digestion. Genomic structure analysis suggested that both MGgLYZ1 and MGgLYZ2 genes are composed of six exons with same length and five introns, indicating these genes were conserved and might originate from gene duplication during the evolution. Selection pressure analysis showed that MGgLYZ1 was under nearly neutral selection while MGgLYZ2 evolved under positive selection pressure with three positively selected amino acid residues (Y(102, L(200 and S(202 detected in the mature peptide. All these findings suggested MGgLYZ2 perhaps served as a digestive lysozyme under positive selection pressure during the evolution while MGgLYZ1 was mainly involved in innate immune responses.

  16. The Origin and Early Evolution of Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  17. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A. (MSU); (UW)

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  18. Adaptation to salinity in mangroves: Implication on the evolution of salt-tolerance

    Institute of Scientific and Technical Information of China (English)

    LIANG Shan; ZHOU RenChao; DONG SuiSui; SHI SuHua

    2008-01-01

    A plant's adaptation to its environment is one of the most important issues in evolutionary biology. Mangroves are trees that inhabit the intertidal zones with high salinity, while salt tolerance competence of different species varies. Even congeneric species usually occupy distinct positions of intertidal zones due to differential ability of salt tolerance. Some species have different ecotypes that adapt well to littoral and terrestrial environments, respectively. These characteristics of mangroves make them ideal ecological models to study adaptation of mangroves to salinity. Here, we briefly depict adaptive traits of salt tolerance in mangroves with respect to anatomy, physiology and biochemistry, and review the major advances recently made on both the genetic and genomic levels. Results from studies on individual genes or whole genomes of mangroves have confirmed conclusions drawn from studies on anatomy, physiology and biochemistry, and have further indicated that specific patterns of gene expression might contribute to adaptive evolution of mangroves under high salinity. By integrating all information from mangroves and performing comparisons among species of mangroves and non-mangroves, we could give a general picture of adaptation of mangroves to salinity, thus providing a new avenue for further studies on a molecular basis of adaptive evolution of mangroves.

  19. Interplay between Chaperones and Protein Disorder Promotes the Evolution of Protein Networks

    OpenAIRE

    Sebastian Pechmann; Judith Frydman

    2014-01-01

    Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the p...

  20. Unfolding Thermodynamics of Cysteine-Rich Proteins and Molecular Thermal-Adaptation of Marine Ciliates

    Directory of Open Access Journals (Sweden)

    Giorgia Cazzolli

    2013-11-01

    Full Text Available Euplotes nobilii and Euplotes raikovi are phylogenetically closely allied species of marine ciliates, living in polar and temperate waters, respectively. Their evolutional relation and the sharply different temperatures of their natural environments make them ideal organisms to investigate thermal-adaptation. We perform a comparative study of the thermal unfolding of disulfide-rich protein pheromones produced by these ciliates. Recent circular dichroism (CD measurements have shown that the two psychrophilic (E. nobilii and mesophilic (E. raikovi protein families are characterized by very different melting temperatures, despite their close structural homology. The enhanced thermal stability of the E. raikovi pheromones is realized notwithstanding the fact that these proteins form, as a rule, a smaller number of disulfide bonds. We perform Monte Carlo (MC simulations in a structure-based coarse-grained (CG model to show that the higher stability of the E. raikovi pheromones is due to the lower locality of the disulfide bonds, which yields a lower entropy increase in the unfolding process. Our study suggests that the higher stability of the mesophilic E. raikovi phermones is not mainly due to the presence of a strongly hydrophobic core, as it was proposed in the literature. In addition, we argue that the molecular adaptation of these ciliates may have occurred from cold to warm, and not from warm to cold. To provide a testable prediction, we identify a point-mutation of an E. nobilii pheromone that should lead to an unfolding temperature typical of that of E. raikovi pheromones.

  1. Two-photon directed evolution of green fluorescent proteins

    Science.gov (United States)

    Stoltzfus, Caleb R.; Barnett, Lauren M.; Drobizhev, Mikhail; Wicks, Geoffrey; Mikhaylov, Alexander; Hughes, Thomas E.; Rebane, Aleksander

    2015-07-01

    Directed evolution has been used extensively to improve the properties of a variety of fluorescent proteins (FPs). Evolutionary strategies, however, have not yet been used to improve the two-photon absorption (2PA) properties of a fluorescent protein, properties that are important for two-photon imaging in living tissues, including the brain. Here we demonstrate a technique for quantitatively screening the two-photon excited fluorescence (2PEF) efficiency and 2PA cross section of tens of thousands of mutant FPs expressed in E. coli colonies. We use this procedure to move EGFP through three rounds of two-photon directed evolution leading to new variants showing up to a 50% enhancement in peak 2PA cross section and brightness within the near-IR tissue transparency wavelength range.

  2. Did Convergent Protein Evolution Enable Phytoplasmas to Generate 'Zombie Plants'?

    Science.gov (United States)

    Rümpler, Florian; Gramzow, Lydia; Theißen, Günter; Melzer, Rainer

    2015-12-01

    Phytoplasmas are pathogenic bacteria that reprogram plant development such that leaf-like structures instead of floral organs develop. Infected plants are sterile and mainly serve to propagate phytoplasmas and thus have been termed 'zombie plants'. The developmental reprogramming relies on specific interactions of the phytoplasma protein SAP54 with a small subset of MADS-domain transcription factors. Here, we propose that SAP54 folds into a structure that is similar to that of the K-domain, a protein-protein interaction domain of MADS-domain proteins. We suggest that undergoing convergent structural and sequence evolution, SAP54 evolved to mimic the K-domain. Given the high specificity of resulting developmental alterations, phytoplasmas might be used to study flower development in genetically intractable plants.

  3. Self-adaptive learning based discrete differential evolution algorithm for solving CJWTA problem

    Institute of Scientific and Technical Information of China (English)

    Yu Xue; Yi Zhuang; Tianquan Ni; Siru Ni; Xuezhi Wen

    2014-01-01

    Cooperative jamming weapon-target assignment (CJWTA) problem is a key issue in electronic countermeasures (ECM). Some symbols which relevant to the CJWTA are defined firstly. Then, a formulation of jamming fitness is presented. Final y, a model of the CJWTA problem is constructed. In order to solve the CJWTA problem efficiently, a self-adaptive learning based discrete differential evolution (SLDDE) algorithm is proposed by introduc-ing a self-adaptive learning mechanism into the traditional discrete differential evolution algorithm. The SLDDE algorithm steers four candidate solution generation strategies simultaneously in the framework of the self-adaptive learning mechanism. Computa-tional simulations are conducted on ten test instances of CJWTA problem. The experimental results demonstrate that the proposed SLDDE algorithm not only can generate better results than only one strategy based discrete differential algorithms, but also outper-forms two algorithms which are proposed recently for the weapon-target assignment problems.

  4. Evolution of the acyl-CoA binding protein (ACBP)

    DEFF Research Database (Denmark)

    Burton, Mark; Rose, Timothy M; Faergeman, Nils J;

    2005-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein that binds C12-C22 acyl-CoA esters with high affinity. In vitro and in vivo experiments suggest that it is involved in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, regulation of the intracellular ac......-specific paralogues have evolved altered functions. The appearance of ACBP very early on in evolution points towards a fundamental role of ACBP in acyl-CoA metabolism, including ceramide synthesis and in signalling....

  5. Topology, Geometry, and Stability: Protein Folding and Evolution

    CERN Document Server

    Simmons, Walter

    2015-01-01

    The protein folding problem must ultimately be solved on all length scales from the atomic up through a hierarchy of complicated structures. By analyzing the stability of the folding process using physics and mathematics, this paper shows that features without length scales, i.e. topological features, are potentially of central importance. Topology is a natural mathematical tool for the study of shape and we avail ourselves of that tool to examine the relationship between the amino acid sequence and the shapes of protein molecules. We apply what we learn to conjectures about their biological evolution.

  6. Directed evolution of protein-based neurotransmitter sensors for MRI

    OpenAIRE

    Romero, Philip A.; Shapiro, Mikhail G.; Frances H Arnold; Jasanoff, Alan

    2013-01-01

    The production of contrast agents sensitive to neuronal signaling events is a rate- limiting step in the development of molecular-level functional magnetic resonance imaging (molecular fMRI) approaches for studying the brain. High throughput generation and evaluation of potential probes is possible using techniques for macromolecular engineering of protein-based contrast agents. In an initial exploration of this strategy, we used the method of directed evolution to identify mutants of a bacte...

  7. Adaptive evolution of the osmoregulation-related genes in cetaceans during secondary aquatic adaptation

    OpenAIRE

    Xu, Shixia; Yang, Yunxia; Zhou, Xuming; Xu, Junxiao; Zhou, Kaiya; Yang, Guang

    2013-01-01

    Background Osmoregulation was a primary challenge for cetaceans during the evolutionary transition from a terrestrial to a mainly hyperosmotic environment. Several physiological mechanisms have been suggested to maintain the water and salt balance in cetaceans, but their genetic and evolutionary bases remain poorly explored. The current study investigated the genes involved in osmoregulation in cetaceans and compared them with their counterparts in terrestrial mammals to test whether adaptive...

  8. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects.

    Directory of Open Access Journals (Sweden)

    Snigdhadip Dey

    2016-02-01

    Full Text Available All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging, are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to

  9. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

    Science.gov (United States)

    Schlüter, Lothar; Lohbeck, Kai T.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2016-01-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2–adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  10. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects.

    Science.gov (United States)

    Dey, Snigdhadip; Proulx, Stephen R; Teotónio, Henrique

    2016-02-01

    All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than

  11. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects.

    Science.gov (United States)

    Dey, Snigdhadip; Proulx, Stephen R; Teotónio, Henrique

    2016-02-01

    All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than

  12. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification.

    Science.gov (United States)

    Schlüter, Lothar; Lohbeck, Kai T; Gröger, Joachim P; Riebesell, Ulf; Reusch, Thorsten B H

    2016-07-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2-adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  13. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature?

    Science.gov (United States)

    Bailey, Susan F; Bataillon, Thomas

    2016-01-01

    There have been a variety of approaches taken to try to characterize and identify the genetic basis of adaptation in nature, spanning theoretical models, experimental evolution studies and direct tests of natural populations. Theoretical models can provide formalized and detailed hypotheses regarding evolutionary processes and patterns, from which experimental evolution studies can then provide important proofs of concepts and characterize what is biologically reasonable. Genetic and genomic data from natural populations then allow for the identification of the particular factors that have and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights, suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions--that is simple environments, a small range of usually asexual species, relatively short timescales--the question remains as to how applicable these experimental results are to natural populations. In this review, we discuss important insights coming from experimental evolution, focusing on four key topics tied to the evolutionary genetics of adaptation, and within those topics, we discuss the extent to which the experimental work compliments and informs natural population studies. We finish by making suggestions for future work in particular a need for natural population genomic time series data, as well as the necessity for studies that combine both experimental evolution and natural population approaches.

  14. Rapid evolution in response to introduced predators II: the contribution of adaptive plasticity

    Directory of Open Access Journals (Sweden)

    Knapp Roland A

    2007-02-01

    Full Text Available Abstract Background Introductions of non-native species can significantly alter the selective environment for populations of native species, which can respond through phenotypic plasticity or genetic adaptation. We examined phenotypic and genetic responses of Daphnia populations to recent introductions of non-native fish to assess the relative roles of phenotypic plasticity versus genetic change in causing the observed patterns. The Daphnia community in alpine lakes throughout the Sierra Nevada of California (USA is ideally suited for investigation of rapid adaptive evolution because there are multiple lakes with and without introduced fish predators. We conducted common-garden experiments involving presence or absence of chemical cues produced by fish and measured morphological and life-history traits in Daphnia melanica populations collected from lakes with contrasting fish stocking histories. The experiment allowed us to assess the degree of population differentiation due to fish predation and examine the contribution of adaptive plasticity in the response to predator introduction. Results Our results show reductions in egg number and body size of D. melanica in response to introduced fish. These phenotypic changes have a genetic basis but are partly due to a direct response to chemical cues from fish via adaptive phenotypic plasticity. Body size showed the largest phenotypic change, on the order of nine phenotypic standard deviations, with approximately 11% of the change explained by adaptive plasticity. Both evolutionary and plastic changes in body size and egg number occurred but no changes in the timing of reproduction were observed. Conclusion Native Daphnia populations exposed to chemical cues produced by salmonid fish predators display adaptive plasticity for body size and fecundity. The magnitude of adaptive plasticity was insufficient to explain the total phenotypic change, so the realized change in phenotypic means in populations

  15. A Convergent Differential Evolution Algorithm with Hidden Adaptation Selection for Engineering Optimization

    Directory of Open Access Journals (Sweden)

    Zhongbo Hu

    2014-01-01

    Full Text Available Many improved differential Evolution (DE algorithms have emerged as a very competitive class of evolutionary computation more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform mutation and hidden adaptation selection (haS operators. The parameter self-adaptation and uniform mutation operator enhance the diversity of populations and guarantee ergodicity. The haS can automatically remove some inferior individuals in the process of the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals. The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011.

  16. Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling.

    Directory of Open Access Journals (Sweden)

    Jonna Kulmuni

    Full Text Available Insect chemical communication and chemosensory systems rely on proteins coded by several gene families. Here, we have combined protein modeling with evolutionary analysis in order to study the evolution and structure of chemosensory proteins (CSPs within arthropods and, more specifically, in ants by using the data available from sequenced genomes. Ants and other social insects are especially interesting model systems for the study of chemosensation, as they communicate in a highly complex social context and much of their communication relies on chemicals. Our ant protein models show how this complexity has shaped CSP evolution; the proteins are highly modifiable by their size, surface charge and binding pocket. Based on these findings, we divide ant CSPs into three groups: typical insect CSPs, an ancient 5-helical CSP and hymenopteran CSPs with a small binding pocket, and suggest that these groups likely serve different functions. The hymenopteran CSPs have duplicated repeatedly in individual ant lineages. In these CSPs, positive selection has driven surface charge changes, an observation which has possible implications for the interaction between CSPs and ligands or odorant receptors. Our phylogenetic analysis shows that within the Arthropoda the only highly conserved gene is the ancient 5-helical CSP, which is likely involved in an essential ubiquitous function rather than chemosensation. During insect evolution, the 6-helical CSPs have diverged and perform chemosensory functions among others. Our results contribute to the general knowledge of the structural differences between proteins underlying chemosensation and highlight those protein properties which have been affected by adaptive evolution.

  17. Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling.

    Science.gov (United States)

    Kulmuni, Jonna; Havukainen, Heli

    2013-01-01

    Insect chemical communication and chemosensory systems rely on proteins coded by several gene families. Here, we have combined protein modeling with evolutionary analysis in order to study the evolution and structure of chemosensory proteins (CSPs) within arthropods and, more specifically, in ants by using the data available from sequenced genomes. Ants and other social insects are especially interesting model systems for the study of chemosensation, as they communicate in a highly complex social context and much of their communication relies on chemicals. Our ant protein models show how this complexity has shaped CSP evolution; the proteins are highly modifiable by their size, surface charge and binding pocket. Based on these findings, we divide ant CSPs into three groups: typical insect CSPs, an ancient 5-helical CSP and hymenopteran CSPs with a small binding pocket, and suggest that these groups likely serve different functions. The hymenopteran CSPs have duplicated repeatedly in individual ant lineages. In these CSPs, positive selection has driven surface charge changes, an observation which has possible implications for the interaction between CSPs and ligands or odorant receptors. Our phylogenetic analysis shows that within the Arthropoda the only highly conserved gene is the ancient 5-helical CSP, which is likely involved in an essential ubiquitous function rather than chemosensation. During insect evolution, the 6-helical CSPs have diverged and perform chemosensory functions among others. Our results contribute to the general knowledge of the structural differences between proteins underlying chemosensation and highlight those protein properties which have been affected by adaptive evolution. PMID:23723994

  18. Diversity-dependent cladogenesis and trait evolution in the adaptive radiation of the auks (aves: alcidae).

    Science.gov (United States)

    Weir, Jason T; Mursleen, Sara

    2013-02-01

    Through the course of an adaptive radiation, the evolutionary speed of cladogenesis and ecologically relevant trait evolution are expected to slow as species diversity increases, niches become occupied, and ecological opportunity declines. We develop new likelihood-based models to test diversity-dependent evolution in the auks, one of only a few families of seabirds adapted to underwater "flight," and which exhibit a large variety of bill sizes and shapes. Consistent with the expectations of adaptive radiation, we find both a decline in rates of cladogenesis (a sixfold decline) and bill shape (a 64-fold decline) evolution as diversity increased. Bill shape diverged into two clades at the basal cladogenesis event with one clade possessing mostly long, narrow bills used to forage primarily on fish, and the other with short thick bills used to forage primarily on plankton. Following this initial divergence in bill shape, size, a known correlate of both prey size and maximum diving depth, diverged rapidly within each of these clades. These results suggest that adaptive radiation in foraging traits underwent initial divergence in bill shape to occupy different food resources, followed by size differentiation to subdivide each niche along the depth axis of the water column. PMID:23356613

  19. The evolution of control and distribution of adaptive mutations in a metabolic pathway.

    Science.gov (United States)

    Wright, Kevin M; Rausher, Mark D

    2010-02-01

    In an attempt to understand whether it should be expected that some genes tend to be used disproportionately often by natural selection, we investigated two related phenomena: the evolution of flux control among enzymes in a metabolic pathway and properties of adaptive substitutions in pathway enzymes. These two phenomena are related by the principle that adaptive substitutions should occur more frequently in enzymes with greater flux control. Predicting which enzymes will be preferentially involved in adaptive evolution thus requires an evolutionary theory of flux control. We investigated the evolution of enzyme control in metabolic pathways with two models of enzyme kinetics: metabolic control theory (MCT) and Michaelis-Menten saturation kinetics (SK). Our models generate two main predictions for pathways in which reactions are moderately to highly irreversible: (1) flux control will evolve to be highly unequal among enzymes in a pathway and (2) upstream enzymes evolve a greater control coefficient then those downstream. This results in upstream enzymes fixing the majority of beneficial mutations during adaptive evolution. Once the population has reached high fitness, the trend is reversed, with the majority of neutral/slightly deleterious mutations occurring in downstream enzymes. These patterns are the result of three factors (the first of these is unique to the MCT simulations while the other two seem to be general properties of the metabolic pathways): (1) the majority of randomly selected, starting combinations of enzyme kinetic rates generate pathways that possess greater control for the upstream enzymes compared to downstream enzymes; (2) selection against large pools of intermediate substrates tends to prevent majority control by downstream enzymes; and (3) equivalent mutations in enzyme kinetic rates have the greatest effect on flux for enzymes with high levels of flux control, and these enzymes will accumulate adaptive substitutions, strengthening their

  20. Protein evolution via amino acid and codon elimination

    DEFF Research Database (Denmark)

    Goltermann, Lise; Larsen, Marie Sofie Yoo; Banerjee, Rajat;

    2010-01-01

    correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained...... via screening of reduced-size ensembles. METHODOLOGY/PRINCIPAL FINDINGS: The strategy involves combining a sequential mutagenesis scheme to reduce library size with structurally stabilizing mutations, chaperone complementation, and reduced temperature of gene expression. In six steps, we eliminated...... a common buried residue, Phe, from the green fluorescent protein (GFP), while retaining activity. A GFP variant containing 11 Phe residues was used as starting scaffold to generate 10 separate variants in which each Phe was replaced individually (in one construct two adjacent Phe residues were changed...

  1. Accelerated protein evolution analysis reveals genes and pathways associated with the evolution of mammalian longevity

    OpenAIRE

    Li, Yang; de Magalhães, João Pedro

    2011-01-01

    The genetic basis of the large species differences in longevity and aging remains a mystery. Thanks to recent large-scale genome sequencing efforts, the genomes of multiple species have been sequenced and can be used for cross-species comparisons to study species divergence in longevity. By analyzing proteins under accelerated evolution in several mammalian lineages where maximum lifespan increased, we identified genes and processes that are candidate targets of selection when longevity evolv...

  2. Analysis of ribosomal protein gene structures: implications for intron evolution.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs and mitochondrial ribosomal proteins (MRPs, which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be "conserved," i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.

  3. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Alex Wong

    2012-09-01

    Full Text Available Adaptation is likely to be an important determinant of the success of many pathogens, for example when colonizing a new host species, when challenged by antibiotic treatment, or in governing the establishment and progress of long-term chronic infection. Yet, the genomic basis of adaptation is poorly understood in general, and for pathogens in particular. We investigated the genetics of adaptation to cystic fibrosis-like culture conditions in the presence and absence of fluoroquinolone antibiotics using the opportunistic pathogen Pseudomonas aeruginosa. Whole-genome sequencing of experimentally evolved isolates revealed parallel evolution at a handful of known antibiotic resistance genes. While the level of antibiotic resistance was largely determined by these known resistance genes, the costs of resistance were instead attributable to a number of mutations that were specific to individual experimental isolates. Notably, stereotypical quinolone resistance mutations in DNA gyrase often co-occurred with other mutations that, together, conferred high levels of resistance but no consistent cost of resistance. This result may explain why these mutations are so prevalent in clinical quinolone-resistant isolates. In addition, genes involved in cyclic-di-GMP signalling were repeatedly mutated in populations evolved in viscous culture media, suggesting a shared mechanism of adaptation to this CF-like growth environment. Experimental evolutionary approaches to understanding pathogen adaptation should provide an important complement to studies of the evolution of clinical isolates.

  4. Loss of the insulator protein CTCF during nematode evolution

    Directory of Open Access Journals (Sweden)

    Schierenberg Einhard

    2009-08-01

    Full Text Available Abstract Background The zinc finger (ZF protein CTCF (CCCTC-binding factor is highly conserved in Drosophila and vertebrates where it has been shown to mediate chromatin insulation at a genomewide level. A mode of genetic regulation that involves insulators and insulator binding proteins to establish independent transcriptional units is currently not known in nematodes including Caenorhabditis elegans. We therefore searched in nematodes for orthologs of proteins that are involved in chromatin insulation. Results While orthologs for other insulator proteins were absent in all 35 analysed nematode species, we find orthologs of CTCF in a subset of nematodes. As an example for these we cloned the Trichinella spiralis CTCF-like gene and revealed a genomic structure very similar to the Drosophila counterpart. To investigate the pattern of CTCF occurrence in nematodes, we performed phylogenetic analysis with the ZF protein sets of completely sequenced nematodes. We show that three ZF proteins from three basal nematodes cluster together with known CTCF proteins whereas no zinc finger protein of C. elegans and other derived nematodes does so. Conclusion Our findings show that CTCF and possibly chromatin insulation are present in basal nematodes. We suggest that the insulator protein CTCF has been secondarily lost in derived nematodes like C. elegans. We propose a switch in the regulation of gene expression during nematode evolution, from the common vertebrate and insect type involving distantly acting regulatory elements and chromatin insulation to a so far poorly characterised mode present in more derived nematodes. Here, all or some of these components are missing. Instead operons, polycistronic transcriptional units common in derived nematodes, seemingly adopted their function.

  5. Evolution of taxis responses in virtual bacteria: non-adaptive dynamics.

    Directory of Open Access Journals (Sweden)

    Richard A Goldstein

    2008-05-01

    Full Text Available Bacteria are able to sense and respond to a variety of external stimuli, with responses that vary from stimuli to stimuli and from species to species. The best-understood is chemotaxis in the model organism Escherichia coli, where the dynamics and the structure of the underlying pathway are well characterised. It is not clear, however, how well this detailed knowledge applies to mechanisms mediating responses to other stimuli or to pathways in other species. Furthermore, there is increasing experimental evidence that bacteria integrate responses from different stimuli to generate a coherent taxis response. We currently lack a full understanding of the different pathway structures and dynamics and how this integration is achieved. In order to explore different pathway structures and dynamics that can underlie taxis responses in bacteria, we perform a computational simulation of the evolution of taxis. This approach starts with a population of virtual bacteria that move in a virtual environment based on the dynamics of the simple biochemical pathways they harbour. As mutations lead to changes in pathway structure and dynamics, bacteria better able to localise with favourable conditions gain a selective advantage. We find that a certain dynamics evolves consistently under different model assumptions and environments. These dynamics, which we call non-adaptive dynamics, directly couple tumbling probability of the cell to increasing stimuli. Dynamics that are adaptive under a wide range of conditions, as seen in the chemotaxis pathway of E. coli, do not evolve in these evolutionary simulations. However, we find that stimulus scarcity and fluctuations during evolution results in complex pathway dynamics that result both in adaptive and non-adaptive dynamics depending on basal stimuli levels. Further analyses of evolved pathway structures show that effective taxis dynamics can be mediated with as few as two components. The non-adaptive dynamics

  6. Functional organization and its implication in evolution of the human protein-protein interaction network

    OpenAIRE

    Zhao Yiqiang; Mooney Sean D

    2012-01-01

    Abstract Background Based on the distinguishing properties of protein-protein interaction networks such as power-law degree distribution and modularity structure, several stochastic models for the evolution of these networks have been purposed, motivated by the idea that a validated model should reproduce similar topological properties of the empirical network. However, being able to capture topological properties does not necessarily mean it correctly reproduces how networks emerge and evolv...

  7. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii

    Science.gov (United States)

    Ramasamy, Sukanya; Ometto, Lino; Crava, Cristina M.; Revadi, Santosh; Kaur, Rupinder; Horner, David S.; Pisani, Davide; Dekker, Teun; Anfora, Gianfranco; Rota-Stabelli, Omar

    2016-01-01

    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila. We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes. We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors—Or85a and Or22a—are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii. PMID:27435796

  8. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors

    OpenAIRE

    Kurosawa, Kazuhiko; Laser, Josephine; Sinskey, Anthony J.

    2015-01-01

    First published by BioMed Central Kurosawa, Kazuhiko ; Laser, Josephine ; Sinskey Anthony J : Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. - In: Biotechnoloy for Biofuels. - ISSN 1754-6834 (online). - 8 (2015), art. 76. - doi:10.1186/s13068-015-0258-3. Background: Lignocellulosic biomass has been investigated as a renewable non-food source for production of biofuels. A significant technical challenge to using lign...

  9. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviours

    Directory of Open Access Journals (Sweden)

    Daria eMolodtsova

    2014-12-01

    Full Text Available It is increasingly apparent that genes and networks that influence complex behaviour are evolutionary conserved, which is paradoxical considering that behaviour is labile over evolutionary timescales. How does adaptive change in behaviour arise if behaviour is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behaviour, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behaviour of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

  10. The TALE face of Hox proteins in animal evolution

    Directory of Open Access Journals (Sweden)

    Samir eMerabet

    2015-08-01

    Full Text Available Hox genes are major regulators of embryonic development. One of their most conserved functions is to coordinate the formation of specific body structures along the anterior-posterior (AP axis in Bilateria. This architectural role was at the basis of several morphological innovations across bilaterian evolution. In this review, we traced the origin of the Hox patterning system by considering the partnership with PBC and Meis proteins. PBC and Meis belong to the TALE-class of homeodomain-containing transcription factors and act as generic cofactors of Hox proteins for AP axis patterning in Bilateria. Recent data indicate that Hox proteins acquired the ability to interact with their TALE partners in the last common ancestor of Bilateria and Cnidaria. These interactions relied initially on a short peptide motif called hexapeptide (HX, which is present in Hox and non-Hox protein families. Remarkably, Hox proteins can also recruit the TALE cofactors by using specific PBC Interaction Motifs (SPIMs. We describe how a functional Hox/TALE patterning system emerged in eumetazoans through the acquisition of SPIMs. We anticipate that interaction flexibility could be found in other patterning systems, being at the heart of the astonishing morphological diversity observed in the animal kingdom.

  11. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution. PMID:23475937

  12. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution.

  13. Ancient and recent adaptive evolution of primate non-homologous end joining genes.

    Directory of Open Access Journals (Sweden)

    Ann Demogines

    2010-10-01

    Full Text Available In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to characterize the molecular evolution of the human NHEJ pathway, we generated large simian primate sequence datasets for NHEJ genes. Codon-based models of gene evolution yielded statistical support for the recurrent positive selection of five NHEJ genes during primate evolution: XRCC4, NBS1, Artemis, POLλ, and CtIP. Analysis of human polymorphism data using the composite of multiple signals (CMS test revealed that XRCC4 has also been subjected to positive selection in modern humans. Crystal structures are available for XRCC4, Nbs1, and Polλ; and residues under positive selection fall exclusively on the surfaces of these proteins. Despite the positive selection of such residues, biochemical experiments with variants of one positively selected site in Nbs1 confirm that functions necessary for DNA repair and checkpoint signaling have been conserved. However, many viruses interact with the proteins of the NHEJ pathway as part of their infectious lifecycle. We propose that an ongoing evolutionary arms race between viruses and NHEJ genes may be driving the surprisingly rapid evolution of these critical genes.

  14. Parameter extraction of different fuel cell models with transferred adaptive differential evolution

    International Nuclear Information System (INIS)

    To improve the design and control of FC (fuel cell) models, it is important to extract their unknown parameters. Generally, the parameter extraction problems of FC models can be transformed as nonlinear and multi-variable optimization problems. To extract the parameters of different FC models exactly and fast, in this paper, we propose a transferred adaptive DE (differential evolution) framework, in which the successful parameters of the adaptive DE solving previous problems are properly transferred to solve new optimization problems in the similar problem-domains. Based on this framework, an improved adaptive DE method (TRADE, in short) is presented as an illustration. To verify the performance of our proposal, TRADE is used to extract the unknown parameters of two types of fuel cell models, i.e., PEMFC (proton exchange membrane fuel cell) and SOFC (solid oxide fuel cell). The results of TRADE are also compared with those of other state-of-the-art EAs (evolutionary algorithms). Even though the modification is very simple, the results indicate that TRADE can extract the parameters of both PEMFC and SOFC models exactly and fast. Moreover, the V–I characteristics obtained by TRADE agree well with the simulated and experimental data in all cases for both types of fuel cell models. Also, it improves the performance of the original adaptive DE significantly in terms of both the quality of final solutions and the convergence speed in all cases. Additionally, TRADE is able to provide better results compared with other EAs. - Highlights: • A framework of transferred adaptive differential evolution is proposed. • Based on the framework, an improved differential evolution (TRADE) is presented. • TRADE obtains very promising results to extract the parameters of PEMFC and SOFC models

  15. From Environment to Man: Genome Evolution and Adaptation of Human Opportunistic Bacterial Pathogens

    Science.gov (United States)

    Aujoulat, Fabien; Roger, Frédéric; Bourdier, Alice; Lotthé, Anne; Lamy, Brigitte; Marchandin, Hélène; Jumas-Bilak, Estelle

    2012-01-01

    Environment is recognized as a huge reservoir for bacterial species and a source of human pathogens. Some environmental bacteria have an extraordinary range of activities that include promotion of plant growth or disease, breakdown of pollutants, production of original biomolecules, but also multidrug resistance and human pathogenicity. The versatility of bacterial life-style involves adaptation to various niches. Adaptation to both open environment and human specific niches is a major challenge that involves intermediate organisms allowing pre-adaptation to humans. The aim of this review is to analyze genomic features of environmental bacteria in order to explain their adaptation to human beings. The genera Pseudomonas, Aeromonas and Ochrobactrum provide valuable examples of opportunistic behavior associated to particular genomic structure and evolution. Particularly, we performed original genomic comparisons among aeromonads and between the strictly intracellular pathogens Brucella spp. and the mild opportunistic pathogens Ochrobactrum spp. We conclude that the adaptation to human could coincide with a speciation in action revealed by modifications in both genomic and population structures. This adaptation-driven speciation could be a major mechanism for the emergence of true pathogens besides the acquisition of specialized virulence factors. PMID:24704914

  16. Evolution of regulatory networks towards adaptability and stability in a changing environment

    Science.gov (United States)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  17. Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification

    Directory of Open Access Journals (Sweden)

    Carolina M. Voloch

    2014-11-01

    Full Text Available Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G, RNA-dependent RNA polymerase (L and polymerase (P genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.

  18. Within-host co-evolution of chronic viruses and the adaptive immune system

    Science.gov (United States)

    Nourmohammad, Armita

    We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.

  19. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution.

    Science.gov (United States)

    Flegr, Jaroslav

    2013-01-16

    Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ.Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III), genetic revolution model of Mayr (class IV) or the frozen plasticity theory of Flegr (class V), suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation--while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III) or elastic (class IV and V) on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation.The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories.

  20. Evidence for widespread adaptive evolution of gene expression in budding yeast.

    Science.gov (United States)

    Fraser, Hunter B; Moses, Alan M; Schadt, Eric E

    2010-02-16

    Changes in gene expression have been proposed to underlie many, or even most, adaptive differences between species. Despite the increasing acceptance of this view, only a handful of cases of adaptive gene expression evolution have been demonstrated. To address this discrepancy, we introduce a simple test for lineage-specific selection on gene expression. Applying the test to genome-wide gene expression data from the budding yeast Saccharomyces cerevisiae, we find that hundreds of gene expression levels have been subject to lineage-specific selection. Comparing these findings with independent population genetic evidence of selective sweeps suggests that this lineage-specific selection has resulted in recent sweeps at over a hundred genes, most of which led to increased transcript levels. Examination of the implicated genes revealed a specific biochemical pathway--ergosterol biosynthesis--where the expression of multiple genes has been subject to selection for reduced levels. In sum, these results suggest that adaptive evolution of gene expression is common in yeast, that regulatory adaptation can occur at the level of entire pathways, and that similar genome-wide scans may be possible in other species, including humans.

  1. Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators

    DEFF Research Database (Denmark)

    Luján, Adela M.; Maciá, María D.; Yang, Liang;

    2011-01-01

    , which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic...... infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition...... diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution...

  2. Biophysical and structural considerations for protein sequence evolution

    Directory of Open Access Journals (Sweden)

    Grahnen Johan A

    2011-12-01

    Full Text Available Abstract Background Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influence of structure and biophysics into phylogenetic models via statistical/informational approaches have not resulted in expected improvements in model performance. This suggests that further innovations are needed for progress in this field. Results Here we develop a coarse-grained physics-based model of protein folding and binding function, and compare it to a popular informational model. We find that both models violate the assumption of the native sequence being close to a thermodynamic optimum, causing directional selection away from the native state. Sampling and simulation show that the physics-based model is more specific for fold-defining interactions that vary less among residue type. The informational model diffuses further in sequence space with fewer barriers and tends to provide less support for an invariant sites model, although amino acid substitutions are generally conservative. Both approaches produce sequences with natural features like dN/dS Conclusions Simple coarse-grained models of protein folding can describe some natural features of evolving proteins but are currently not accurate enough to use in evolutionary inference. This is partly due to improper packing of the hydrophobic core. We suggest possible improvements on the representation of structure, folding energy, and binding function, as regards both native and non-native conformations, and describe a large number of possible applications for such a model.

  3. Simulated evolution of protein-protein interaction networks with realistic topology.

    Science.gov (United States)

    Peterson, G Jack; Pressé, Steve; Peterson, Kristin S; Dill, Ken A

    2012-01-01

    We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the target protein's neighborhood. We find good agreement of the model on 10 different network properties compared to high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1) PPI networks evolve modular structures, with no need to invoke particular selection pressures. (2) Proteins in cells have on average about 6 degrees of separation, similar to some social networks, such as human-communication and actor networks. (3) Unlike social networks, which have a shrinking diameter (degree of maximum separation) over time, PPI networks are predicted to grow in diameter. (4) The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into biological evolution.

  4. Simulated evolution of protein-protein interaction networks with realistic topology.

    Directory of Open Access Journals (Sweden)

    G Jack Peterson

    Full Text Available We model the evolution of eukaryotic protein-protein interaction (PPI networks. In our model, PPI networks evolve by two known biological mechanisms: (1 Gene duplication, which is followed by rapid diversification of duplicate interactions. (2 Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the target protein's neighborhood. We find good agreement of the model on 10 different network properties compared to high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1 PPI networks evolve modular structures, with no need to invoke particular selection pressures. (2 Proteins in cells have on average about 6 degrees of separation, similar to some social networks, such as human-communication and actor networks. (3 Unlike social networks, which have a shrinking diameter (degree of maximum separation over time, PPI networks are predicted to grow in diameter. (4 The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into biological evolution.

  5. Structural evolution of the protein kinase-like superfamily.

    Directory of Open Access Journals (Sweden)

    Eric D Scheeff

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  6. Structural Evolution of the Protein Kinase-Like Superfamily.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  7. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  8. Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1 in cetaceans

    Directory of Open Access Journals (Sweden)

    Montgomery Stephen H

    2011-04-01

    Full Text Available Abstract Background Representatives of Cetacea have the greatest absolute brain size among animals, and the largest relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates have yet to be surveyed in cetaceans. Results We sequenced ~1240 basepairs of the brain development gene microcephalin (MCPH1 in 38 cetacean species. Alignments of these data and a published complete sequence from Tursiops truncatus with primate MCPH1 were utilized in phylogenetic analyses and to estimate ω (rate of nonsynonymous substitution/rate of synonymous substitution using site and branch models of molecular evolution. We also tested the hypothesis that selection on MCPH1 was correlated with brain size in cetaceans using a continuous regression analysis that accounted for phylogenetic history. Our analyses revealed widespread signals of adaptive evolution in the MCPH1 of Cetacea and in other subclades of Mammalia, however, there was not a significant positive association between ω and brain size within Cetacea. Conclusion In conjunction with a recent study of Primates, we find no evidence to support an association between MCPH1 evolution and the evolution of brain size in highly encephalized mammalian species. Our finding of significant positive selection in MCPH1 may be linked to other functions of the gene.

  9. Niche evolution and adaptive radiation: Testing the order of trait divergence

    Science.gov (United States)

    Ackerly, D.D.; Schwilk, D.W.; Webb, C.O.

    2006-01-01

    In the course of an adaptive radiation, the evolution of niche parameters is of particular interest for understanding modes of speciation and the consequences for coexistence of related species within communities. We pose a general question: In the course of an evolutionary radiation, do traits related to within-community niche differences (?? niche) evolve before or after differentiation of macrohabitat affinity or climatic tolerances (?? niche)? Here we introduce a new test to address this question, based on a modification of the method of independent contrasts. The divergence order test (DOT) is based on the average age of the nodes on a tree, weighted by the absolute magnitude of the contrast at each node for a particular trait. The comparison of these weighted averages reveals whether large divergences for one trait have occurred earlier or later in the course of diversification, relative to a second trait; significance is determined by bootstrapping from maximum-likelihood ancestral state reconstructions. The method is applied to the evolution of Ceanothus, a woody plant group in California, in which co-occurring species exhibit significant differences in a key leaf trait (specific leaf area) associated with contrasting physiological and life history strategies. Co-occurring species differ more for this trait than expected under a null model of community assembly. This ?? niche difference evolved early in the divergence of two major subclades within Ceanothus, whereas climatic distributions (?? niche traits) diversified later within each of the subclades. However, rapid evolution of climate parameters makes inferences of early divergence events highly uncertain, and differentiation of the ?? niche might have taken place throughout the evolution of the group, without leaving a clear phylogenetic signal. Similar patterns observed in several plant and animal groups suggest that early divergence of ?? niche traits might be a common feature of niche evolution in

  10. Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes

    Directory of Open Access Journals (Sweden)

    Shaohua eFan

    2014-06-01

    Full Text Available African cichlid fishes are an ideal system for studying explosive rates of speciation and the origin of diversity in adaptive radiation. Within the last few million years, more than 2000 species have evolved in the Great Lakes of East Africa, the largest adaptive radiation in vertebrates. These young species show spectacular diversity in their coloration, morphology and behavior. However, little is known about the genomic basis of this astonishing diversity. Recently, five African cichlid genomes were sequenced, including that of the Nile tilapia (Oreochromis niloticus, a basal and only relatively moderately diversified lineage, and the genomes of four representative endemic species of the adaptive radiations, Neolamprologus brichardi, Astatotilapia burtoni, Metriaclima zebra, and Pundamila nyererei. Using the tilapia genome as the reference genome, we generated a high-resolution genomic variation map, consisting of single nucleotide polymorphisms (SNPs, short insertions and deletions (indels, inversions and deletions. In total, around 18.8, 17.7, 17.0 and 17.0 million SNPs, 2.3, 2.2, 1.4 and 1.9 million indels, 262, 306, 162, and 154 inversions, and 3509, 2705, 2710 and 2634 deletions were inferred to have evolved in the N. brichardi, A. burtoni, P. nyererei and M. zebra respectively. Many of these variations affected the annotated gene regions in the genome. Different patterns of genetic variation were detected during the adaptive radiation of African cichlid fishes. For SNPs, the highest rate of evolution was detected in the common ancestor of N. brichardi, A. burtoni, P. nyererei and M. zebra. However, for the evolution of inversions and deletions, we found that the rates at the terminal taxa are substantially higher than the rates at the ancestral lineages. The high-resolution map provides an ideal opportunity to understand the genomic bases of the adaptive radiation of African cichlid fishes.

  11. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota.

    Science.gov (United States)

    Gubry-Rangin, Cécile; Kratsch, Christina; Williams, Tom A; McHardy, Alice C; Embley, T Martin; Prosser, James I; Macqueen, Daniel J

    2015-07-28

    The Thaumarchaeota is an abundant and ubiquitous phylum of archaea that plays a major role in the global nitrogen cycle. Previous analyses of the ammonia monooxygenase gene amoA suggest that pH is an important driver of niche specialization in these organisms. Although the ecological distribution and ecophysiology of extant Thaumarchaeota have been studied extensively, the evolutionary rise of these prokaryotes to ecological dominance in many habitats remains poorly understood. To characterize processes leading to their diversification, we investigated coevolutionary relationships between amoA, a conserved marker gene for Thaumarchaeota, and soil characteristics, by using deep sequencing and comprehensive environmental data in Bayesian comparative phylogenetics. These analyses reveal a large and rapid increase in diversification rates during early thaumarchaeotal evolution; this finding was verified by independent analyses of 16S rRNA. Our findings suggest that the entire Thaumarchaeota diversification regime was strikingly coupled to pH adaptation but less clearly correlated with several other tested environmental factors. Interestingly, the early radiation event coincided with a period of pH adaptation that enabled the terrestrial Thaumarchaeota ancestor to initially move from neutral to more acidic and alkaline conditions. In contrast to classic evolutionary models, whereby niches become rapidly filled after adaptive radiation, global diversification rates have remained stably high in Thaumarchaeota during the past 400-700 million years, suggesting an ongoing high rate of niche formation or switching for these microbes. Our study highlights the enduring importance of environmental adaptation during thaumarchaeotal evolution and, to our knowledge, is the first to link evolutionary diversification to environmental adaptation in a prokaryotic phylum.

  12. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota.

    Science.gov (United States)

    Gubry-Rangin, Cécile; Kratsch, Christina; Williams, Tom A; McHardy, Alice C; Embley, T Martin; Prosser, James I; Macqueen, Daniel J

    2015-07-28

    The Thaumarchaeota is an abundant and ubiquitous phylum of archaea that plays a major role in the global nitrogen cycle. Previous analyses of the ammonia monooxygenase gene amoA suggest that pH is an important driver of niche specialization in these organisms. Although the ecological distribution and ecophysiology of extant Thaumarchaeota have been studied extensively, the evolutionary rise of these prokaryotes to ecological dominance in many habitats remains poorly understood. To characterize processes leading to their diversification, we investigated coevolutionary relationships between amoA, a conserved marker gene for Thaumarchaeota, and soil characteristics, by using deep sequencing and comprehensive environmental data in Bayesian comparative phylogenetics. These analyses reveal a large and rapid increase in diversification rates during early thaumarchaeotal evolution; this finding was verified by independent analyses of 16S rRNA. Our findings suggest that the entire Thaumarchaeota diversification regime was strikingly coupled to pH adaptation but less clearly correlated with several other tested environmental factors. Interestingly, the early radiation event coincided with a period of pH adaptation that enabled the terrestrial Thaumarchaeota ancestor to initially move from neutral to more acidic and alkaline conditions. In contrast to classic evolutionary models, whereby niches become rapidly filled after adaptive radiation, global diversification rates have remained stably high in Thaumarchaeota during the past 400-700 million years, suggesting an ongoing high rate of niche formation or switching for these microbes. Our study highlights the enduring importance of environmental adaptation during thaumarchaeotal evolution and, to our knowledge, is the first to link evolutionary diversification to environmental adaptation in a prokaryotic phylum. PMID:26170282

  13. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host.

    Science.gov (United States)

    Klemm, Elizabeth J; Gkrania-Klotsas, Effrossyni; Hadfield, James; Forbester, Jessica L; Harris, Simon R; Hale, Christine; Heath, Jennifer N; Wileman, Thomas; Clare, Simon; Kane, Leanne; Goulding, David; Otto, Thomas D; Kay, Sally; Doffinger, Rainer; Cooke, Fiona J; Carmichael, Andrew; Lever, Andrew M L; Parkhill, Julian; MacLennan, Calman A; Kumararatne, Dinakantha; Dougan, Gordon; Kingsley, Robert A

    2016-01-01

    Host adaptation is a key factor contributing to the emergence of new bacterial, viral and parasitic pathogens. Many pathogens are considered promiscuous because they cause disease across a range of host species, while others are host-adapted, infecting particular hosts(1). Host adaptation can potentially progress to host restriction, where the pathogen is strictly limited to a single host species and is frequently associated with more severe symptoms. Host-adapted and host-restricted bacterial clades evolve from within a broader host-promiscuous species and sometimes target different niches within their specialist hosts, such as adapting from a mucosal to a systemic lifestyle. Genome degradation, marked by gene inactivation and deletion, is a key feature of host adaptation, although the triggers initiating genome degradation are not well understood. Here, we show that a chronic systemic non-typhoidal Salmonella infection in an immunocompromised human patient resulted in genome degradation targeting genes that are expendable for a systemic lifestyle. We present a genome-based investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis (S. Enteritidis) infection covering 15 years in an interleukin-12 β1 receptor-deficient individual that developed into an asymptomatic chronic infection. The infecting S. Enteritidis harboured a mutation in the mismatch repair gene mutS that accelerated the genomic mutation rate. Phylogenetic analysis and phenotyping of multiple patient isolates provides evidence for a remarkable level of within-host evolution that parallels genome changes present in successful host-restricted bacterial pathogens but never before observed on this timescale. Our analysis identifies common pathways of host adaptation and demonstrates the role that immunocompromised individuals can play in this process. PMID:27572160

  14. Evolution of the MAGUK protein gene family in premetazoan lineages

    Directory of Open Access Journals (Sweden)

    Ruiz-Trillo Iñaki

    2010-04-01

    Full Text Available Abstract Background Cell-to-cell communication is a key process in multicellular organisms. In multicellular animals, scaffolding proteins belonging to the family of membrane-associated guanylate kinases (MAGUK are involved in the regulation and formation of cell junctions. These MAGUK proteins were believed to be exclusive to Metazoa. However, a MAGUK gene was recently identified in an EST survey of Capsaspora owczarzaki, an unicellular organism that branches off near the metazoan clade. To further investigate the evolutionary history of MAGUK, we have undertook a broader search for this gene family using available genomic sequences of different opisthokont taxa. Results Our survey and phylogenetic analyses show that MAGUK proteins are present not only in Metazoa, but also in the choanoflagellate Monosiga brevicollis and in the protist Capsaspora owczarzaki. However, MAGUKs are absent from fungi, amoebozoans or any other eukaryote. The repertoire of MAGUKs in Placozoa and eumetazoan taxa (Cnidaria + Bilateria is quite similar, except for one class that is missing in Trichoplax, while Porifera have a simpler MAGUK repertoire. However, Vertebrata have undergone several independent duplications and exhibit two exclusive MAGUK classes. Three different MAGUK types are found in both M. brevicollis and C. owczarzaki: DLG, MPP and MAGI. Furthermore, M. brevicollis has suffered a lineage-specific diversification. Conclusions The diversification of the MAGUK protein gene family occurred, most probably, prior to the divergence between Metazoa+choanoflagellates and the Capsaspora+Ministeria clade. A MAGI-like, a DLG-like, and a MPP-like ancestral genes were already present in the unicellular ancestor of Metazoa, and new gene members have been incorporated through metazoan evolution within two major periods, one before the sponge-eumetazoan split and another within the vertebrate lineage. Moreover, choanoflagellates have suffered an independent MAGUK

  15. Phylogeny and evolution of Rab7 and Rab9 proteins

    Directory of Open Access Journals (Sweden)

    Wyroba Elżbieta

    2009-05-01

    Full Text Available Abstract Background An important role in the evolution of intracellular trafficking machinery in eukaryotes played small GTPases belonging to the Rab family known as pivotal regulators of vesicle docking, fusion and transport. The Rab family is very diversified and divided into several specialized subfamilies. We focused on the VII functional group comprising Rab7 and Rab9, two related subfamilies, and analysed 210 sequences of these proteins. Rab7 regulates traffic from early to late endosomes and from late endosome to vacuole/lysosome, whereas Rab9 participates in transport from late endosomes to the trans-Golgi network. Results Although Rab7 and Rab9 proteins are quite small and show heterogeneous rates of substitution in different lineages, we found a phylogenetic signal and inferred evolutionary relationships between them. Rab7 proteins evolved before radiation of main eukaryotic supergroups while Rab9 GTPases diverged from Rab7 before split of choanoflagellates and metazoans. Additional duplication of Rab9 and Rab7 proteins resulting in several isoforms occurred in the early evolution of vertebrates and next in teleost fishes and tetrapods. Three Rab7 lineages emerged before divergence of monocots and eudicots and subsequent duplications of Rab7 genes occurred in particular angiosperm clades. Interestingly, several Rab7 copies were identified in some representatives of excavates, ciliates and amoebozoans. The presence of many Rab copies is correlated with significant differences in their expression level. The diversification of analysed Rab subfamilies is also manifested by non-conserved sequences and structural features, many of which are involved in the interaction with regulators and effectors. Individual sites discriminating different subgroups of Rab7 and Rab9 GTPases have been identified. Conclusion Phylogenetic reconstructions of Rab7 and Rab9 proteins were performed by a variety of methods. These Rab GTPases show diversification

  16. Identifying innovation in laboratory studies of cultural evolution: rates of retention and measures of adaptation.

    Science.gov (United States)

    Caldwell, Christine A; Cornish, Hannah; Kandler, Anne

    2016-03-19

    In recent years, laboratory studies of cultural evolution have become increasingly prevalent as a means of identifying and understanding the effects of cultural transmission on the form and functionality of transmitted material. The datasets generated by these studies may provide insights into the conditions encouraging, or inhibiting, high rates of innovation, as well as the effect that this has on measures of adaptive cultural change. Here we review recent experimental studies of cultural evolution with a view to elucidating the role of innovation in generating observed trends. We first consider how tasks are presented to participants, and how the corresponding conceptualization of task success is likely to influence the degree of intent underlying any deviations from perfect reproduction. We then consider the measures of interest used by the researchers to track the changes that occur as a result of transmission, and how these are likely to be affected by differing rates of retention. We conclude that considering studies of cultural evolution from the perspective of innovation provides us with valuable insights that help to clarify important differences in research designs, which have implications for the likely effects of variation in retention rates on measures of cultural adaptation.

  17. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Hyman, James M [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Higdon, Dave [Los Alamos National Laboratory; Ter Braak, Cajo J F [NETHERLANDS; Diks, Cees G H [UNIV OF AMSTERDAM

    2008-01-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems.

  18. Simulation of Old Urban Residential Area Evolution Based on Complex Adaptive System

    Institute of Scientific and Technical Information of China (English)

    YANG Fan; WANG Xiao-ming; HUA Hong

    2009-01-01

    On the basis of complex adaptive system theory,this paper proposed an agent-based model of old urban residential area,in which,residents and providers are the two adaptive agents.The behaviors of residents and providers in this model are trained with back propagation and simulated with Swarm software based on environment-rules-agents interaction.This model simulates the evolution of old urban residential area and analyzes the relations between the evolution and urban management with the background of Chaozhou city.As a result,the following are obtained:(1) Simulation without government intervention indicates the trend of housing ageing,environmental deterioration,economic depression,and social filtering-down in old urban residential area.If the development of old urban residential area is under control of developers in market,whose desire is profit maximization,and factors such as social justice,historic and culture value will be ignored.(2) If the government carries out some policies and measures which will perfectly serve their original aims,simulation reveals that old urban residential area could be adapted to environment and keep sustainable development.This conclusion emphasizes that government must act as initiator and program maker for guiding residents and other providers directly in the development of old urban residential area.

  19. Flagellated algae protein evolution suggests the prevalence of lineage-specific rules governing evolutionary rates of eukaryotic proteins.

    Science.gov (United States)

    Chang, Ting-Yan; Liao, Ben-Yang

    2013-01-01

    Understanding the general rules governing the rate of protein evolution is fundamental to evolutionary biology. However, attempts to address this issue in yeasts and mammals have revealed considerable differences in the relative importance of determinants for protein evolutionary rates. This phenomenon was previously explained by the fact that yeasts and mammals are different in many cellular and genomic properties. Flagellated algae species have several cellular and genomic characteristics that are intermediate between yeasts and mammals. Using partial correlation analyses on the evolution of 6,921 orthologous proteins from Chlamydomonas reinhardtii and Volvox carteri, we examined factors influencing evolutionary rates of proteins in flagellated algae. Previous studies have shown that mRNA abundance and gene compactness are strong determinants for protein evolutionary rates in yeasts and mammals, respectively. We show that both factors also influence algae protein evolution with mRNA abundance having a larger impact than gene compactness on the rates of algae protein evolution. More importantly, among all the factors examined, coding sequence (CDS) length has the strongest (positive) correlation with protein evolutionary rates. This correlation between CDS length and the rates of protein evolution is not due to alignment-related issues or domain density. These results suggest no simple and universal rules governing protein evolutionary rates across different eukaryotic lineages. Instead, gene properties influence the rate of protein evolution in a lineage-specific manner. PMID:23563973

  20. Mean protein evolutionary distance: a method for comparative protein evolution and its application.

    Directory of Open Access Journals (Sweden)

    Michael J Wise

    Full Text Available Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED, measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins' roles. Different species' proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV, dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza, and viroporins agnoprotein (polyomavirus, p7 (hepatitis C and VPU (HIV emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles, PB1/PB2 (influenza and VP1 (rotavirus, and internal serine proteases such as NS3 (dengue and hepatitis C virus emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz.

  1. Mean protein evolutionary distance: a method for comparative protein evolution and its application.

    Science.gov (United States)

    Wise, Michael J

    2013-01-01

    Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED), measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins' roles. Different species' proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV), dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza), and viroporins agnoprotein (polyomavirus), p7 (hepatitis C) and VPU (HIV) emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles), PB1/PB2 (influenza) and VP1 (rotavirus), and internal serine proteases such as NS3 (dengue and hepatitis C virus) emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz. PMID:23613826

  2. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system

    Science.gov (United States)

    Mizutani, H.; Ponnamperuma, C.

    1977-01-01

    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  3. The Evolution of the Secreted Regulatory Protein Progranulin.

    Directory of Open Access Journals (Sweden)

    Roger G E Palfree

    Full Text Available Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i: the origins of metazoan progranulins (ii: the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii: the evolution of granulin module architectures of vertebrate progranulins (iv: the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl

  4. Evolutionary adaptation of an AraC-like regulatory protein in Citrobacter rodentium and Escherichia species.

    Science.gov (United States)

    Tan, Aimee; Petty, Nicola K; Hocking, Dianna; Bennett-Wood, Vicki; Wakefield, Matthew; Praszkier, Judyta; Tauschek, Marija; Yang, Ji; Robins-Browne, Roy

    2015-04-01

    The evolution of pathogenic bacteria is a multifaceted and complex process, which is strongly influenced by the horizontal acquisition of genetic elements and their subsequent expression in their new hosts. A well-studied example is the RegA regulon of the enteric pathogen Citrobacter rodentium. The RegA regulatory protein is a member of the AraC/XylS superfamily, which coordinates the expression of a gene repertoire that is necessary for full pathogenicity of this murine pathogen. Upon stimulation by an exogenous, gut-associated signal, namely, bicarbonate ions, RegA activates the expression of a series of genes, including virulence factors, such as autotransporters, fimbriae, a dispersin-like protein, and the grlRA operon on the locus of enterocyte effacement pathogenicity island. Interestingly, the genes encoding RegA homologues are distributed across the genus Escherichia, encompassing pathogenic and nonpathogenic subtypes. In this study, we carried out a series of bioinformatic, transcriptional, and functional analyses of the RegA regulons of these bacteria. Our results demonstrated that regA has been horizontally transferred to Escherichia spp. and C. rodentium. Comparative studies of two RegA homologues, namely, those from C. rodentium and E. coli SMS-3-5, a multiresistant environmental strain of E. coli, showed that the two regulators acted similarly in vitro but differed in terms of their abilities to activate the virulence of C. rodentium in vivo, which evidently was due to their differential activation of grlRA. Our data indicate that RegA from C. rodentium has strain-specific adaptations that facilitate infection of its murine host. These findings shed new light on the development of virulence by C. rodentium and on the evolution of virulence-regulatory genes of bacterial pathogens in general.

  5. Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host

    Science.gov (United States)

    Wang, Shuai; Wang, Sen; Luo, Yingfeng; Xiao, Lihua; Luo, Xuenong; Gao, Shenghan; Dou, Yongxi; Zhang, Huangkai; Guo, Aijiang; Meng, Qingshu; Hou, Junling; Zhang, Bing; Zhang, Shaohua; Yang, Meng; Meng, Xuelian; Mei, Hailiang; Li, Hui; He, Zilong; Zhu, Xueliang; Tan, Xinyu; Zhu, Xing-quan; Yu, Jun; Cai, Jianping; Zhu, Guan; Hu, Songnian; Cai, Xuepeng

    2016-01-01

    Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms, respectively) are parasitic flatworms of major public health and food safety importance. Among them, T. asiatica is a newly recognized species that split from T. saginata via an intermediate host switch ∼1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications and functional diversifications might have partially driven the divergence between T. asiatica and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized gene family expansions in T. asiatica that may favour its hepatotropism in the new intermediate host. We also identify potential targets for developing diagnostic or intervention tools against human tapeworms. These data provide new insights into the evolution of Taenia parasites, particularly the recent speciation of T. asiatica. PMID:27653464

  6. Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity.

    Science.gov (United States)

    Weng, Jing-Ke; Ye, Mingli; Li, Bin; Noel, Joseph P

    2016-08-11

    Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience. PMID:27518563

  7. Phylogenomic analyses reveal convergent patterns of adaptive evolution in elephant and human ancestries.

    Science.gov (United States)

    Goodman, Morris; Sterner, Kirstin N; Islam, Munirul; Uddin, Monica; Sherwood, Chet C; Hof, Patrick R; Hou, Zhuo-Cheng; Lipovich, Leonard; Jia, Hui; Grossman, Lawrence I; Wildman, Derek E

    2009-12-01

    Specific sets of brain-expressed genes, such as aerobic energy metabolism genes, evolved adaptively in the ancestry of humans and may have evolved adaptively in the ancestry of other large-brained mammals. The recent addition of genomes from two afrotherians (elephant and tenrec) to the expanding set of publically available sequenced mammalian genomes provided an opportunity to test this hypothesis. Elephants resemble humans by having large brains and long life spans; tenrecs, in contrast, have small brains and short life spans. Thus, we investigated whether the phylogenomic patterns of adaptive evolution are more similar between elephant and human than between either elephant and tenrec lineages or human and mouse lineages, and whether aerobic energy metabolism genes are especially well represented in the elephant and human patterns. Our analyses encompassed approximately 6,000 genes in each of these lineages with each gene yielding extensive coding sequence matches in interordinal comparisons. Each gene's nonsynonymous and synonymous nucleotide substitution rates and dN/dS ratios were determined. Then, from gene ontology information on genes with the higher dN/dS ratios, we identified the more prevalent sets of genes that belong to specific functional categories and that evolved adaptively. Elephant and human lineages showed much slower nucleotide substitution rates than tenrec and mouse lineages but more adaptively evolved genes. In correlation with absolute brain size and brain oxygen consumption being largest in elephants and next largest in humans, adaptively evolved aerobic energy metabolism genes were most evident in the elephant lineage and next most evident in the human lineage.

  8. Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs.

    Science.gov (United States)

    Montelli, Stefano; Peruffo, Antonella; Patarnello, Tomaso; Cozzi, Bruno; Negrisolo, Enrico

    2016-01-01

    The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers. PMID:27336480

  9. Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs

    Science.gov (United States)

    Patarnello, Tomaso; Cozzi, Bruno; Negrisolo, Enrico

    2016-01-01

    The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers. PMID:27336480

  10. The eunuch phenomenon: adaptive evolution of genital emasculation in sexually dimorphic spiders.

    Science.gov (United States)

    Kuntner, Matjaž; Agnarsson, Ingi; Li, Daiqin

    2015-02-01

    Under natural and sexual selection traits often evolve that secure paternity or maternity through self-sacrifice to predators, rivals, offspring, or partners. Emasculation-males removing their genitals-is an unusual example of such behaviours. Known only in insects and spiders, the phenomenon's adaptiveness is difficult to explain, yet its repeated origins and association with sexual size dimorphism (SSD) and sexual cannibalism suggest an adaptive significance. In spiders, emasculation of paired male sperm-transferring organs - secondary genitals - (hereafter, palps), results in 'eunuchs'. This behaviour has been hypothesized to be adaptive because (i) males plug female genitals with their severed palps (plugging hypothesis), (ii) males remove their palps to become better fighters in male-male contests (better-fighter hypothesis), perhaps reaching higher agility due to reduced total body mass (gloves-off hypothesis), and (iii) males achieve prolonged sperm transfer through severed genitals (remote-copulation hypothesis). Prior research has provided evidence in support of these hypotheses in some orb-weaving spiders but these explanations are far from general. Seeking broad macroevolutionary patterns of spider emasculation, we review the known occurrences, weigh the evidence in support of the hypotheses in each known case, and redefine more precisely the particular cases of emasculation depending on its timing in relation to maturation and mating: 'pre-maturation', 'mating', and 'post-mating'. We use a genus-level spider phylogeny to explore emasculation evolution and to investigate potential evolutionary linkage between emasculation, SSD, lesser genital damage (embolic breakage), and sexual cannibalism (females consuming their mates). We find a complex pattern of spider emasculation evolution, all cases confined to Araneoidea: emasculation evolved at least five and up to 11 times, was lost at least four times, and became further modified at least once. We also find

  11. Explaining the evolution of European Union foreign climate policy: A case of bounded adaptiveness

    OpenAIRE

    Simon Schunz

    2012-01-01

    Ever since the inception of the United Nations climate regime in the early 1990s, the European Union has aspired to play a leading part in the global combat against climate change. Based on an analysis of how the Union has developed its foreign climate policy to fulfil this role over the past two decades, the paper sets out to identify the driving factors behind this evolution. It demonstrates that the EU’s development in this area was co-determined by adaptations to shifting international ...

  12. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates

    DEFF Research Database (Denmark)

    Pereira, Joana; Johnson, Warren E.; O'Brien, Stephen J.;

    2014-01-01

    . In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive...... the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints...

  13. Adaptive Plasmid Evolution Results in Host-Range Expansion of a Broad-Host-Range Plasmid

    OpenAIRE

    De Gelder, Leen; Williams, Julia J.; Ponciano, José M; Sota, Masahiro; Eva M. Top

    2008-01-01

    Little is known about the range of hosts in which broad-host-range (BHR) plasmids can persist in the absence of selection for plasmid-encoded traits, and whether this “long-term host range” can evolve over time. Previously, the BHR multidrug resistance plasmid pB10 was shown to be highly unstable in Stenotrophomonas maltophilia P21 and Pseudomonas putida H2. To investigate whether this plasmid can adapt to such unfavorable hosts, we performed evolution experiments wherein pB10 was maintained ...

  14. Genetic Adaptation to Salt Stress in Experimental Evolution of Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; Hillesland, Kristina; He, Zhili; Joachimiak, Marcin; Zane, Grant; Dehal, Paramvir; Arkin, Adam; Stahl, David; Wall, Judy; Hazen, Terry; Zhou, Jizhong; Baidoo, Edward; Benke, Peter; Mukhopadhyay, Aindrila

    2010-05-17

    High salinity is one of the most common environmental stressors. In order to understand how environmental organisms adapt to salty environment, an experiment evolution with sulfate reducing bacteria Desulfovibrio vugaris Hildenborough was conducted. Control lines and salt-stressed lines (6 lines each) grown in minimal medium LS4D or LS4D + 100 mM NaCl were transferred for 1200 generations. The salt tolerance was tested with LS4D supplemented with 250 mM NaCl. Statistical analysis of the growth data suggested that all lines adapted to their evolutionary environment. In addition, the control lines performed better than the ancestor with faster growth rate, higher biomass yield and shorter lag phase under salty environment they did not evolve in. However, the salt-adapted lines performed better than the control lines on measures of growth rate and yield under salty environment, suggesting that the salt?evolved lines acquired mutations specific to having extra salt in LS4D. Growth data and gene transcription data suggested that populations tended to improve till 1000 generations and active mutations tended to be fixed at the stage of 1000 generations. Point mutations and insertion/deletions were identified in isolated colonies from salt-adapted and control lines via whole genome sequencing. Glu, Gln and Ala appears to be the major osmoprotectant in evolved salt-stressed line. Ongoing studies are now characterizing the contribution of specific mutations identified in the salt-evolved D. vulgaris.

  15. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    Directory of Open Access Journals (Sweden)

    Adela M Luján

    Full Text Available Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  16. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    Science.gov (United States)

    Luján, Adela M; Maciá, María D; Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  17. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution

    Directory of Open Access Journals (Sweden)

    Flegr Jaroslav

    2013-01-01

    Full Text Available Abstract Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ. Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III, genetic revolution model of Mayr (class IV or the frozen plasticity theory of Flegr (class V, suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation – while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III or elastic (class IV and V on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation. The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories. Reviewers This article was reviewed by Claus Wilke, Pierre Pantarotti and David Penny (nominated by Anthony Poole.

  18. A quantitative approach to analyzing genome reductive evolution using protein-protein interaction networks: A case study ofMycobacterium leprae

    Directory of Open Access Journals (Sweden)

    Richard O Akinola

    2016-03-01

    Full Text Available The advance in high-throughput sequencing technologies has yielded complete genome sequences of several organisms, including complete bacterial genomes. The growing number of these available sequenced genomes has enabled analyses of their dynamics, as well as the molecular and evolutionary processes which these organisms are under. Comparative genomics of different bacterial genomes have highlighted their genome size and gene content in association with lifestyles and adaptation to various environments and have contributed to enhancing our understanding of the mechanisms of their evolution. Protein-protein functional interactions mediate many essential processes for maintaining the stability of the biological systems under changing environmental conditions. Thus, these interactions play crucial roles in the evolutionary processes of different organisms, especially for obligate intracellular bacteria, proven to generally have reduced genome sizes compared to their nearest free-living relatives. In this study, we used the approach based on the Renormalization Group (RG analysis technique and the Maximum-Excluded-Mass-Burning (MEMB model to investigate the evolutionary process of genome reduction in relation to the organization of functional networks of two organisms. Using a Mycobacterium leprae (MLP network in comparison with a Mycobacterium tuberculosis (MTB network as a case study, we show that reductive evolution in MLP was as a result of removal of important proteins from neighbours of corresponding orthologous MTB proteins. While each orthologous MTB protein had an increase in number of interacting partners in most instances, the corresponding MLP protein had lost some of them. This work provides a quantitative model for mapping reductive evolution and protein-protein functional interaction network organization in terms of roles played by different proteins in the network structure.

  19. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis

    Science.gov (United States)

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shunmin; Huang, Dawei

    2016-01-01

    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  20. Contribution of Multiple Inter-kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-killing Chytrid, Batrachochytrium dendrobatidis

    Directory of Open Access Journals (Sweden)

    Baofa Sun

    2016-08-01

    Full Text Available Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd. Although horizontal gene transfer (HGT facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  1. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis

    Science.gov (United States)

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shunmin; Huang, Dawei

    2016-01-01

    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians. PMID:27630622

  2. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution

    OpenAIRE

    Yi-Ming He; Bin-Guang Ma

    2016-01-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophil...

  3. Reflected Adaptive Differential Evolution with Two External Archives for Large-Scale Global Optimization

    Directory of Open Access Journals (Sweden)

    Rashida Adeeb Khanum

    2016-02-01

    Full Text Available JADE is an adaptive scheme of nature inspired algorithm, Differential Evolution (DE. It performed considerably improved on a set of well-studied benchmark test problems. In this paper, we evaluate the performance of new JADE with two external archives to deal with unconstrained continuous large-scale global optimization problems labeled as Reflected Adaptive Differential Evolution with Two External Archives (RJADE/TA. The only archive of JADE stores failed solutions. In contrast, the proposed second archive stores superior solutions at regular intervals of the optimization process to avoid premature convergence towards local optima. The superior solutions which are sent to the archive are reflected by new potential solutions. At the end of the search process, the best solution is selected from the second archive and the current population. The performance of RJADE/TA algorithm is then extensively evaluated on two test beds. At first on 28 latest benchmark functions constructed for the 2013 Congress on Evolutionary Computation special session. Secondly on ten benchmark problems from CEC2010 Special Session and Competition on Large-Scale Global Optimization. Experimental results demonstrated a very competitive perfor-mance of the algorithm.

  4. Chewing on the trees: Constraints and adaptation in the evolution of the primate mandible.

    Science.gov (United States)

    Meloro, Carlo; Cáceres, Nilton Carlos; Carotenuto, Francesco; Sponchiado, Jonas; Melo, Geruza Leal; Passaro, Federico; Raia, Pasquale

    2015-07-01

    Chewing on different food types is a demanding biological function. The classic assumption in studying the shape of feeding apparatuses is that animals are what they eat, meaning that adaptation to different food items accounts for most of their interspecific variation. Yet, a growing body of evidence points against this concept. We use the primate mandible as a model structure to investigate the complex interplay among shape, size, diet, and phylogeny. We find a weak but significant impact of diet on mandible shape variation in primates as a whole but not in anthropoids and catarrhines as tested in isolation. These clades mainly exhibit allometric shape changes, which are unrelated to diet. Diet is an important factor in the diversification of strepsirrhines and platyrrhines and a phylogenetic signal is detected in all primate clades. Peaks in morphological disparity occur during the Oligocene (between 37 and 25 Ma) supporting the notion that an adaptive radiation characterized the evolution of South American monkeys. In all primate clades, the evolution of mandible size is faster than its shape pointing to a strong effect of allometry on ecomorphological diversification in this group.

  5. Chewing on the trees: Constraints and adaptation in the evolution of the primate mandible.

    Science.gov (United States)

    Meloro, Carlo; Cáceres, Nilton Carlos; Carotenuto, Francesco; Sponchiado, Jonas; Melo, Geruza Leal; Passaro, Federico; Raia, Pasquale

    2015-07-01

    Chewing on different food types is a demanding biological function. The classic assumption in studying the shape of feeding apparatuses is that animals are what they eat, meaning that adaptation to different food items accounts for most of their interspecific variation. Yet, a growing body of evidence points against this concept. We use the primate mandible as a model structure to investigate the complex interplay among shape, size, diet, and phylogeny. We find a weak but significant impact of diet on mandible shape variation in primates as a whole but not in anthropoids and catarrhines as tested in isolation. These clades mainly exhibit allometric shape changes, which are unrelated to diet. Diet is an important factor in the diversification of strepsirrhines and platyrrhines and a phylogenetic signal is detected in all primate clades. Peaks in morphological disparity occur during the Oligocene (between 37 and 25 Ma) supporting the notion that an adaptive radiation characterized the evolution of South American monkeys. In all primate clades, the evolution of mandible size is faster than its shape pointing to a strong effect of allometry on ecomorphological diversification in this group. PMID:26095445

  6. Metabolic adaptation in transplastomic plants massively accumulating recombinant proteins.

    Directory of Open Access Journals (Sweden)

    Julia Bally

    Full Text Available BACKGROUND: Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Here we used proteomics to characterize tobacco (Nicotiana tabacum plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD or a green fluorescent protein (GFP. While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO(2 metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. CONCLUSIONS/SIGNIFICANCE: The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation.

  7. Evolution at Two Levels in Fire Ants: The Relationship between Patterns of Gene Expression and Protein Sequence Evolution

    OpenAIRE

    Hunt, B. G.; Ometto, L.; Keller, L.; Goodisman, M. A. D.

    2013-01-01

    Variation in protein sequence and gene expression each contribute to phenotypic diversity, and may be subject to similar selective pressures. Eusocial insects are particularly useful for investigating the evolutionary link between protein sequence and condition-dependent patterns of gene expression because gene expression plays a central role in determining differences between eusocial insect sexes and castes. We investigated the relationship between protein coding sequence evolution and gene...

  8. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution.

    Science.gov (United States)

    Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef

    2014-02-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy.

  9. Differential Evolution with Adaptive Mutation and Parameter Control Using Lévy Probability Distribution

    Institute of Scientific and Technical Information of China (English)

    Ren-Jie He; Zhen-Yu Yang

    2012-01-01

    Differential evolution (DE) has become a very popular and effective global optimization algorithm in the area of evolutionary computation.In spite of many advantages such as conceptual simplicity,high efficiency and ease of use,DE has two main components,i.e.,mutation scheme and parameter control,which significantly influence its performance.In this paper we intend to improve the performance of DE by using carefully considered strategies for both of the two components.We first design an adaptive mutation scheme,which adaptively makes use of the bias of superior individuals when generating new solutions.Although introducing such a bias is not a new idea,existing methods often use heuristic rules to control the bias.They can hardly maintain the appropriate balance between exploration and exploitation during the search process,because the preferred bias is often problem and evolution-stage dependent.Instead of using any fixed rule,a novel strategy is adopted in the new adaptive mutation scheme to adjust the bias dynamically based on the identified local fitness landscape captured by the current population.As for the other component,i.e.,parameter control,we propose a mechanism by using the Lévy probability distribution to adaptively control the scale factor F of DE.For every mutation in each generation,an Fi is produced from one of four different Lévy distributions according to their historical performance.With the adaptive mutation scheme and parameter control using Lévy distribution as the main components,we present a new DE variant called Lévy DE (LDE).Experimental studies were carried out on a broad range of benchmark functions in global numerical optimization.The results show that LDE is very competitive,and both of the two main components have contributed to its overall performance.The scalability of LDE is also discussed by conducting experiments on some selected benchmark functions with dimensions from 30 to 200.

  10. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change.

    Science.gov (United States)

    Anderson, Jill T; Inouye, David W; McKinney, Amy M; Colautti, Robert I; Mitchell-Olds, Tom

    2012-09-22

    Anthropogenic climate change has already altered the timing of major life-history transitions, such as the initiation of reproduction. Both phenotypic plasticity and adaptive evolution can underlie rapid phenological shifts in response to climate change, but their relative contributions are poorly understood. Here, we combine a continuous 38 year field survey with quantitative genetic field experiments to assess adaptation in the context of climate change. We focused on Boechera stricta (Brassicaeae), a mustard native to the US Rocky Mountains. Flowering phenology advanced significantly from 1973 to 2011, and was strongly associated with warmer temperatures and earlier snowmelt dates. Strong directional selection favoured earlier flowering in contemporary environments (2010-2011). Climate change could drive this directional selection, and promote even earlier flowering as temperatures continue to increase. Our quantitative genetic analyses predict a response to selection of 0.2 to 0.5 days acceleration in flowering per generation, which could account for more than 20 per cent of the phenological change observed in the long-term dataset. However, the strength of directional selection and the predicted evolutionary response are likely much greater now than even 30 years ago because of rapidly changing climatic conditions. We predict that adaptation will likely be necessary for long-term in situ persistence in the context of climate change. PMID:22787021

  11. Rapid adaptive evolution of colour vision in the threespine stickleback radiation.

    Science.gov (United States)

    Rennison, Diana J; Owens, Gregory L; Heckman, Nancy; Schluter, Dolph; Veen, Thor

    2016-05-11

    Vision is a sensory modality of fundamental importance for many animals, aiding in foraging, detection of predators and mate choice. Adaptation to local ambient light conditions is thought to be commonplace, and a match between spectral sensitivity and light spectrum is predicted. We use opsin gene expression to test for local adaptation and matching of spectral sensitivity in multiple independent lake populations of threespine stickleback populations derived since the last ice age from an ancestral marine form. We show that sensitivity across the visual spectrum is shifted repeatedly towards longer wavelengths in freshwater compared with the ancestral marine form. Laboratory rearing suggests that this shift is largely genetically based. Using a new metric, we found that the magnitude of shift in spectral sensitivity in each population corresponds strongly to the transition in the availability of different wavelengths of light between the marine and lake environments. We also found evidence of local adaptation by sympatric benthic and limnetic ecotypes to different light environments within lakes. Our findings indicate rapid parallel evolution of the visual system to altered light conditions. The changes have not, however, yielded a close matching of spectrum-wide sensitivity to wavelength availability, for reasons we discuss. PMID:27147098

  12. cis-Regulatory and Protein Evolution in Orthologous and Duplicate Genes

    OpenAIRE

    Castillo-Davis, Cristian I.; Hartl, Daniel L.; Achaz, Guillaume

    2004-01-01

    The relationship between protein and regulatory sequence evolution is a central question in molecular evolution. It is currently not known to what extent changes in gene expression are coupled with the evolution of protein coding sequences, or whether these changes differ among orthologs (species homologs) and paralogs (duplicate genes). Here, we develop a method to measure the extent of functionally relevant cis-regulatory sequence change in homologous genes, and validate it using microarray...

  13. Adaptation to cell culture induces functional differences in measles virus proteins

    Directory of Open Access Journals (Sweden)

    Rota Paul A

    2008-10-01

    Full Text Available Abstract Background Live, attenuated measles virus (MeV vaccine strains were generated by adaptation to cell culture. The genetic basis for the attenuation of the vaccine strains is unknown. We previously reported that adaptation of a pathogenic, wild-type MeV to Vero cells or primary chicken embryo fibroblasts (CEFs resulted in a loss of pathogenicity in rhesus macaques. The CEF-adapted virus (D-CEF contained single amino acid changes in the C and matrix (M proteins and two substitutions in the shared amino terminal domain of the phosphoprotein (P and V protein. The Vero-adapted virus (D-VI had a mutation in the cytoplasmic tail of the hemagglutinin (H protein. Results In vitro assays were used to test the functions of the wild-type and mutant proteins. The substitution in the C protein of D-CEF decreased its ability to inhibit mini-genome replication, while the wild-type and mutant M proteins inhibited replication to the same extent. The substitution in the cytoplasmic tail of the D-VI H protein resulted in reduced fusion in a quantitative fusion assay. Co-expression of M proteins with wild-type fusion and H proteins decreased fusion activity, but the mutation in the M protein of D-CEF did not affect this function. Both mutations in the P and V proteins of D-CEF reduced the ability of these proteins to inhibit type I and II interferon signaling. Conclusion Adaptation of a wild-type MeV to cell culture selected for genetic changes that caused measurable functional differences in viral proteins.

  14. Protein evolution analysis of S-hydroxynitrile lyase by complete sequence design utilizing the INTMSAlign software

    OpenAIRE

    Shogo Nakano; Yasuhisa Asano

    2015-01-01

    Development of software and methods for design of complete sequences of functional proteins could contribute to studies of protein engineering and protein evolution. To this end, we developed the INTMSAlign software, and used it to design functional proteins and evaluate their usefulness. The software could assign both consensus and correlation residues of target proteins. We generated three protein sequences with S-selective hydroxynitrile lyase (S-HNL) activity, which we call designed S-HNL...

  15. Independent Effects of Protein Core Size and Expression on Residue-Level Structure-Evolution Relationships

    OpenAIRE

    Franzosa, Eric A.; Yu Xia

    2012-01-01

    Recently, we demonstrated that yeast protein evolutionary rate at the level of individual amino acid residues scales linearly with degree of solvent accessibility. This residue-level structure-evolution relationship is sensitive to protein core size: surface residues from large-core proteins evolve much faster than those from small-core proteins, while buried residues are equally constrained independent of protein core size. In this work, we investigate the joint effects of protein core size ...

  16. Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan

    Science.gov (United States)

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words)

  17. Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates.

    Science.gov (United States)

    Kulmuni, J; Wurm, Y; Pamilo, P

    2013-06-01

    Gene duplications can have a major role in adaptation, and gene families underlying chemosensation are particularly interesting due to their essential role in chemical recognition of mates, predators and food resources. Social insects add yet another dimension to the study of chemosensory genomics, as the key components of their social life rely on chemical communication. Still, chemosensory gene families are little studied in social insects. Here we annotated chemosensory protein (CSP) genes from seven ant genomes and studied their evolution. The number of functional CSP genes ranges from 11 to 21 depending on species, and the estimated rates of gene birth and death indicate high turnover of genes. Ant CSP genes include seven conservative orthologous groups present in all the ants, and a group of genes that has expanded independently in different ant lineages. Interestingly, the expanded group of genes has a differing mode of evolution from the orthologous groups. The expanded group shows rapid evolution as indicated by a high dN/dS (nonsynonymous to synonymous changes) ratio, several sites under positive selection and many pseudogenes, whereas the genes in the seven orthologous groups evolve slowly under purifying selection and include only one pseudogene. These results show that adaptive changes have played a role in ant CSP evolution. The expanded group of ant-specific genes is phylogenetically close to a conservative orthologous group CSP7, which includes genes known to be involved in ant nestmate recognition, raising an interesting possibility that the expanded CSPs function in ant chemical communication. PMID:23403962

  18. Trade-offs and evolution of thermal adaptation in the Irish potato famine pathogen Phytophthora infestans.

    Science.gov (United States)

    Yang, Li-Na; Zhu, Wen; Wu, E-Jiao; Yang, Ce; Thrall, Peter H; Burdon, Jeremy J; Jin, Li-Ping; Shang, Li-Ping; Zhan, Jiasui

    2016-08-01

    Temperature is one of the most important environmental parameters with crucial impacts on nearly all biological processes. Due to anthropogenic activity, average air temperatures are expected to increase by a few degrees in coming decades, accompanied by an increased occurrence of extreme temperature events. Such global trends are likely to have various major impacts on human society through their influence on natural ecosystems, food production and biotic interactions, including diseases. In this study, we used a combination of statistical genetics, experimental evolution and common garden experiments to investigate the evolutionary potential for thermal adaptation in the potato late blight pathogen, Phytophthora infestans, and infer its likely response to changing temperatures. We found a trade-off associated with thermal adaptation to heterogeneous environments in P. infestans, with the degree of the trade-off peaking approximately at the pathogen's optimum growth temperature. A genetic trade-off in thermal adaptation was also evidenced by the negative association between a strain's growth rate and its thermal range for growth, and warm climates selecting for a low pathogen growth rate. We also found a mirror effect of phenotypic plasticity and genetic adaptation on growth rate. At below the optimum, phenotypic plasticity enhances pathogen's growth rate but nature selects for slower growing genotypes when temperature increases. At above the optimum, phenotypic plasticity reduces pathogen's growth rate but natural selection favours for faster growing genotypes when temperature increases further. We conclude from these findings that the growth rate of P. infestans will only be marginally affected by global warming. PMID:27288627

  19. Molecular Evolution of the Yersinia Major Outer Membrane Protein C (OmpC).

    Science.gov (United States)

    Stenkova, Anna M; Bystritskaya, Evgeniya P; Guzev, Konstantin V; Rakin, Alexander V; Isaeva, Marina P

    2016-01-01

    The genus Yersinia includes species with a wide range of eukaryotic hosts (from fish, insects, and plants to mammals and humans). One of the major outer membrane proteins, the porin OmpC, is preferentially expressed in the host gut, where osmotic pressure, temperature, and the concentrations of nutrients and toxic products are relatively high. We consider here the molecular evolution and phylogeny of Yersinia ompC. The maximum likelihood gene tree reflects the macroevolution processes occurring within the genus Yersinia. Positive selection and horizontal gene transfer are the key factors of ompC diversification, and intraspecies recombination was revealed in two Yersinia species. The impact of recombination on ompC evolution was different from that of another major porin gene, ompF, possibly due to the emergence of additional functions and conservation of the basic transport function. The predicted antigenic determinants of OmpC were located in rapidly evolving regions, which may indicate the evolutionary mechanisms of Yersinia adaptation to the host immune system. PMID:27578962

  20. Physicochemical evolution and positive selection of the gymnosperm matK proteins

    Indian Academy of Sciences (India)

    Da Cheng Hao; Jun Mu; Shi Lin Chen; Pei Gen Xiao

    2010-04-01

    It is not clear whether matK evolves under Darwinian selection. In this study, the gymnosperm Taxaceae, Cephalotaxaceae and Pinaceae were used to illustrate the physicochemical evolution, molecular adaptation and evolutionary dynamics of gene divergence in matKs. matK sequences were amplified from 27 Taxaceae and 12 Cephalotaxaceae species. matK sequences of 19 Pinaceae species were retrieved from GenBank. The phylogenetic tree was generated using conceptual-translated amino acid sequences. Selective influences were investigated using standard $d_{\\text{N}}/d_{\\text{S}}$ ratio methods and more sensitive techniques investigating the amino acid property changes resulting from nonsynonymous replacements in a phylogenetic context. Analyses revealed the presence of positive selection in matKs (N-terminal region, RT domain and domain X) of Taxaceae and Pinaceae, and found positive destabilizing selection in N-terminal region and RT domain of Cephalotaxaceae matK. Moreover, various amino acid properties were found to be influenced by destabilizing positive selection. Amino acid sites relating to these properties and to different secondary structures were found and have the potential to affect group II intron maturase function. Despite the evolutionary constraint on the rapidly evolving matK, this protein evolves under positive selection in gymnosperm. Several regions of matK have experienced molecular adaptation which fine-tunes maturase performance.

  1. Computer-Aided Protein Directed Evolution: a Review of Web Servers, Databases and other Computational Tools for Protein Engineering

    OpenAIRE

    Rajni Verma; Ulrich Schwaneberg; Danilo Roccatano

    2012-01-01

    The combination of computational and directed evolution methods has proven a winning strategy for protein engineering. We refer to this approach as computer-aided protein directed evolution (CAPDE) and the review summarizes the recent developments in this rapidly growing field. We will restrict ourselves to overview the availability, usability and limitations of web servers, databases and other computational tools proposed in the last five years. The goal of this review is to provide concise ...

  2. The Evolution of Protein Structures and Structural Ensembles Under Functional Constraint

    OpenAIRE

    Liberles, David A; Grahnen, Johan A.; Jessica Siltberg-Liberles

    2011-01-01

    Protein sequence, structure, and function are inherently linked through evolution and population genetics. Our knowledge of protein structure comes from solved structures in the Protein Data Bank (PDB), our knowledge of sequence through sequences found in the NCBI sequence databases (http://www.ncbi.nlm.nih.gov/), and our knowledge of function through a limited set of in-vitro biochemical studies. How these intersect through evolution is described in the first part of the review. In the secon...

  3. A population-based experimental model for protein evolution: Effects of mutation rate and selection stringency on evolutionary outcomes

    OpenAIRE

    Leconte, Aaron M; Dickinson, Bryan; Yang, David D.; Chen, Irene; Allen, Benjamin; Liu, David Ruchien

    2013-01-01

    Protein evolution is a critical component of organismal evolution and a valuable method for the generation of useful molecules in the laboratory. Few studies, however, have experimentally characterized how fundamental parameters influence protein evolution outcomes over long evolutionary trajectories or multiple replicates. In this work, we applied phage-assisted continuous evolution (PACE) as an experimental platform to study evolving protein populations over hundreds of rounds of evolution....

  4. Design Of Multivariable Fractional Order Pid Controller Using Covariance Matrix Adaptation Evolution Strategy

    Directory of Open Access Journals (Sweden)

    Sivananaithaperumal Sudalaiandi

    2014-06-01

    Full Text Available This paper presents an automatic tuning of multivariable Fractional-Order Proportional, Integral and Derivative controller (FO-PID parameters using Covariance Matrix Adaptation Evolution Strategy (CMAES algorithm. Decoupled multivariable FO-PI and FO-PID controller structures are considered. Oustaloup integer order approximation is used for the fractional integrals and derivatives. For validation, two Multi-Input Multi- Output (MIMO distillation columns described byWood and Berry and Ogunnaike and Ray are considered for the design of multivariable FO-PID controller. Optimal FO-PID controller is designed by minimizing Integral Absolute Error (IAE as objective function. The results of previously reported PI/PID controller are considered for comparison purposes. Simulation results reveal that the performance of FOPI and FO-PID controller is better than integer order PI/PID controller in terms of IAE. Also, CMAES algorithm is suitable for the design of FO-PI / FO-PID controller.

  5. Explaining the evolution of European Union foreign climate policy: A case of bounded adaptiveness

    Directory of Open Access Journals (Sweden)

    Simon Schunz

    2012-02-01

    Full Text Available Ever since the inception of the United Nations climate regime in the early 1990s, the European Union has aspired to play a leading part in the global combat against climate change. Based on an analysis of how the Union has developed its foreign climate policy to fulfil this role over the past two decades, the paper sets out to identify the driving factors behind this evolution. It demonstrates that the EU’s development in this area was co-determined by adaptations to shifting international dynamics strongly bounded by purely domestic concerns. Providing a concise understanding and explanation of how the Union designs its foreign policy with regard to one emblematic issue of its international activity, the contribution provides insights into the remarkably rapid, but not always effective maturation of this unique actor’s involvement in global politics.

  6. Whole-Genome Scans Provide Evidence of Adaptive Evolution in Malawian Plasmodium falciparum Isolates

    DEFF Research Database (Denmark)

    Ocholla, Harold; Preston, Mark D; Mipando, Mwapatsa;

    2014-01-01

    BACKGROUND:  Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. METHODS:  We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used...... population genetics approaches to investigate genetic diversity and population structure and identify loci under selection. RESULTS:  High genetic diversity (π = 2.4 × 10(-4)), moderately high multiplicity of infection (2.7), and low linkage disequilibrium (500-bp) were observed in Chikhwawa District, Malawi......, an area of high malaria transmission. Allele frequency-based tests provided evidence of recent population growth in Malawi and detected potential targets of host immunity and candidate vaccine antigens. Comparison of the sequence variation between isolates from Malawi and those from 5 geographically...

  7. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Pedersen, Søren Damkiær; Khademi, Seyed Mohammad Hossein;

    2014-01-01

    Pseudomonas aeruginosa airway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist, P. aeruginosa depends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes...... the pyoverdine siderophore and the Pseudomonas heme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation of P. aeruginosa to the host environment. Here we investigated...... the within-host evolution of the transmissible P. aeruginosa DK2 lineage. We found positive selection for promoter mutations leading to increased expression of the phu system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrate that increased expression of phuR confers a growth...

  8. Physicochemical evolution and molecular adaptation of the cetacean osmoregulation-related gene UT-A2 and implications for functional studies.

    Science.gov (United States)

    Wang, Jingzhen; Yu, Xueying; Hu, Bo; Zheng, Jinsong; Xiao, Wuhan; Hao, Yujiang; Liu, Wenhua; Wang, Ding

    2015-01-01

    Cetaceans have an enigmatic evolutionary history of re-invading aquatic habitats. One of their essential adaptabilities that has enabled this process is their homeostatic strategy adjustment. Here, we investigated the physicochemical evolution and molecular adaptation of the cetacean urea transporter UT-A2, which plays an important role in urine concentration and water homeostasis. First, we cloned UT-A2 from the freshwater Yangtze finless porpoise, after which bioinformatics analyses were conducted based on available datasets (including freshwater baiji and marine toothed and baleen whales) using MEGA, PAML, DataMonkey, TreeSAAP and Consurf. Our findings suggest that the UT-A2 protein shows folding similar to that of dvUT and UT-B, whereas some variations occurred in the functional So and Si regions of the selectivity filter. Additionally, several regions of the cetacean UT-A2 protein have experienced molecular adaptations. We suggest that positive-destabilizing selection could contribute to adaptations by influencing its biochemical and conformational character. The conservation of amino acid residues within the selectivity filter of the urea conduction pore is likely to be necessary for urea conduction, whereas the non-conserved amino acid replacements around the entrance and exit of the conduction pore could potentially affect the activity, which could be interesting target sites for future mutagenesis studies.

  9. Pre-adaptations and the evolution of pollination by sexual deception: Cope's rule of specialization revisited.

    Science.gov (United States)

    Vereecken, Nicolas J; Wilson, Carol A; Hötling, Susann; Schulz, Stefan; Banketov, Sergey A; Mardulyn, Patrick

    2012-12-01

    Pollination by sexual deception is arguably one of the most unusual liaisons linking plants and insects, and perhaps the most illustrative example of extreme floral specialization in angiosperms. While considerable progress has been made in understanding the floral traits involved in sexual deception, less is known about how this remarkable mimicry system might have arisen, the role of pre-adaptations in promoting its evolution and its extent as a pollination mechanism outside the few groups of plants (primarily orchids) where it has been described to date. In the Euro-Mediterranean region, pollination by sexual deception is traditionally considered to be the hallmark of the orchid genus Ophrys. Here, we introduce two new cases outside of Ophrys, in plant groups dominated by generalized, shelter-mimicking species. On the basis of phylogenetic reconstructions of ancestral pollination strategies, we provide evidence for independent and bidirectional evolutionary transitions between generalized (shelter mimicry) and specialized (sexual deception) pollination strategies in three groups of flowering plants, and suggest that pseudocopulation has evolved from pre-adaptations (floral colours, shapes and odour bouquets) that selectively attract male pollinators through shelter mimicry. These findings, along with comparative analyses of floral traits (colours and scents), shed light on particular phenotypic changes that might have fuelled the parallel evolution of these extraordinary pollination strategies. Collectively, our results provide the first substantive insights into how pollination sexual deception might have evolved in the Euro-Mediterranean region, and demonstrate that even the most extreme cases of pollinator specialization can reverse to more generalized interactions, breaking 'Cope's rule of specialization'.

  10. Micro-Foundations of Organizational Adaptation : A Field Study in the Evolution of Product Development Capabilities in a Design Firm

    OpenAIRE

    Salvato, Carlo

    2006-01-01

    The aim of this dissertation is to improve knowledge of how organizations adapt to their dynamic environments, by developing a detailed understanding of the configuration and evolution of organizational replicators. Among open questions in the literature on organizational adaptation, I have explored the following: How can the structure of organizational replicators and the nature of their components be realistically described? How do different organizational replicators interact with each oth...

  11. Heat shock proteins and hypometabolism: adaptive strategy for proteome preservation

    Directory of Open Access Journals (Sweden)

    Storey KB

    2011-03-01

    Full Text Available Kenneth B Storey, Janet M StoreyDepartments of Biology and Chemistry, Carleton University, Ottawa, ON, CanadaAbstract: To survive under harsh environmental conditions many organisms retreat into hypometabolic states where metabolic rate may be reduced by 80% or more and energy use is reprioritized to emphasize key functions that sustain viability and provide cytoprotection. ATP-expensive activities, such as gene expression, protein turnover (synthesis and degradation, and the cell cycle, are largely shut down. As a consequence, mechanisms that stabilize the existing cellular proteome can become critical for long-term survival. Heat shock proteins (HSPs are well-known for their actions as chaperones that act to fold new proteins or refold proteins that are damaged. Indeed, they are part of the “minimal stress proteome” that appears to be a ubiquitous response by all cells as they attempt, successfully or unsuccessfully, to deal with stress. The present review summarizes evidence that HSPs are also a conserved feature of natural animal hypometabolism including the phenomena of estivation, hibernation, diapause, cold-hardiness, anaerobiosis, and anhydrobiosis. That is, organisms that retreat into dormant or torpid states in anticipation that environmental conditions may become too difficult for normal life also integrate the use of HSPs to protect their proteome while hypometabolic. Multiple studies show a common upregulation of expression of hsp genes and/or HSP proteins prior to or during hypometabolism in organisms as diverse as ground squirrels, turtles, land snails, insects, and brine shrimp and in situations of both preprogrammed dormancies (eg, seasonal or life stage specific and opportunistic hypometabolism (eg, triggered by desiccation or lack of oxygen. Hence, HSPs are not just a “shock” response that attempts to rescue cells from damaging stress but are a key protective strategy that is an integral component of natural states of

  12. Optimization of reactor network design problem using Jumping Gene Adaptation of Differential Evolution

    Science.gov (United States)

    Gujarathi, Ashish M.; Purohit, S.; Srikanth, B.

    2015-06-01

    Detailed working principle of jumping gene adaptation of differential evolution (DE-JGa) is presented. The performance of the DE-JGa algorithm is compared with the performance of differential evolution (DE) and modified DE (MDE) by applying these algorithms on industrial problems. In this study Reactor network design (RND) problem is solved using DE, MDE, and DE-JGa algorithms: These industrial processes are highly nonlinear and complex with reference to optimal operating conditions with many equality and inequality constraints. Extensive computational comparisons have been made for all the chemical engineering problems considered. The results obtained in the present study show that DE-JGa algorithm outperforms the other algorithms (DE and MDE). Several comparisons are made among the algorithms with regard to the number of function evaluations (NFE)/CPU- time required to find the global optimum. The standard deviation and the variance values obtained using DE-JGa, DE and MDE algorithms also show that the DE-JGa algorithm gives consistent set of results for the majority of the test problems and the industrial real world problems.

  13. Adaptive Molecular Evolution of PHYE in Primulina, a Karst Cave Plant.

    Directory of Open Access Journals (Sweden)

    Junjie Tao

    Full Text Available Limestone Karst areas possess high levels of biodiversity and endemism. Primulina is a typical component of Karst endemic floras. The high species richness and wide distribution in various Karst microenvironments make the genus an idea model for studying speciation and local adaptation. In this study, we obtained 10 full-length sequences of the phytochrome PHYE from available transcriptome resources of Primulina and amplified partial sequences of PHYE from the genomic DNA of 74 Primulina species. Then, we used maximum-likelihood approaches to explore molecular evolution of PHYE in this Karst cave plant. The results showed that PHYE was dominated by purifying selection in both data sets, and two sites were identified as potentially under positive selection. Furthermore, the ω ratio varies greatly among different functional domains of PHYE and among different species lineages. These results suggest that potential positive selection in PHYE might have played an important role in the adaption of Primulina to heterogeneous light environments in Karst regions, and different species lineages might have been subjected to different selective pressures.

  14. Adaptive evolution of defense ability leads to diversification of prey species.

    Science.gov (United States)

    Zu, Jian; Wang, Jinliang; Du, Jianqiang

    2014-06-01

    In this paper, by using the adaptive dynamics approach, we investigate how the adaptive evolution of defense ability promotes the diversity of prey species in an initial one-prey-two-predator community. We assume that the prey species can evolve to a safer strategy such that it can reduce the predation risk, but a prey with a high defense ability for one predator may have a low defense ability for the other and vice versa. First, by using the method of critical function analysis, we find that if the trade-off is convex in the vicinity of the evolutionarily singular strategy, then this singular strategy is a continuously stable strategy. However, if the trade-off is weakly concave near the singular strategy and the competition between the two predators is relatively weak, then the singular strategy may be an evolutionary branching point. Second, we find that after the branching has occurred in the prey strategy, if the trade-off curve is globally concave, then the prey species might eventually evolve into two specialists, each caught by only one predator species. However, if the trade-off curve is convex-concave-convex, the prey species might eventually branch into two partial specialists, each being caught by both of the two predators and they can stably coexist on the much longer evolutionary timescale.

  15. The Evolution of Two-Component Systems in Bacteria RevealsDifferent Strategies for Niche Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric; Huang, Katherine; Arkin, Adam

    2006-09-13

    Two-component systems including histidine protein kinasesrepresent the primary signal transduction paradigm in prokaryoticorganisms. To understand how these systems adapt to allow organisms todetect niche-specific signals, we analyzed the phylogenetic distributionof nearly 5000 histidine protein kinases from 207 sequenced prokaryoticgenomes. We found that many genomes carry a large repertoire of recentlyevolved signaling genes, which may reflect selective pressure to adapt tonew environmental conditions. Both lineage-specific gene family expansionand horizontal gene transfer play major roles in the introduction of newhistidine kinases into genomes; however, there are differences in howthese two evolutionary forces act. Genes imported via horizontal transferare more likely to retain their original functionality as inferred from asimilar complement of signaling domains, while gene family expansionaccompanied by domain shuffling appears to be a major source of novelgenetic diversity. Family expansion is the dominantsource of newhistidine kinase genes in the genomes most enriched in signalingproteins, and detailed analysis reveals that divergence in domainstructure and changes in expression patterns are hallmarks of recentexpansions. Finally, while these two modes of gene acquisition arewidespread across bacterial taxa, there are clear species-specificpreferences for which mode is used.

  16. Shooting darts: co-evolution and counter-adaptation in hermaphroditic snails

    Directory of Open Access Journals (Sweden)

    Koene Joris M

    2005-03-01

    Full Text Available Abstract Background Evolutionary conflicts of interest between the sexes often lead to co-evolutionary arms races consisting of repeated arisal of traits advantageous for one sex but harmful to the other sex, and counter-adaptations by the latter. In hermaphrodites, these antagonistic interactions are at least an equally important driving force. Here, we investigate the evolution of one of the most striking examples of sexual conflict in hermaphrodites, the so-called shooting of love-darts in land snails. Stabbing this calcareous dart through the partner's skin ultimately increases paternity. This trait is obviously beneficial for the shooter, but it manipulates sperm storage in the receiver. Hence, an arms race between the love-dart and the spermatophore receiving organs may be expected. Results We performed a detailed phylogenetic analysis of 28S ribosomal RNA gene sequences from dart-possessing land snail species. Both the Shimodaira-Hasegawa test and Bayesian posterior probabilities rejected a monophyletic origin of most reproductive structures, including the love-dart, indicating that most traits arose repeatedly. Based on the inferred phylogenetic trees, we calculated phylogenetically independent contrasts for the different reproductive traits. Subsequent principal component and correlation analyses demonstrated that these contrasts covary, meaning that correlated evolution of these traits occurred. Conclusion Our study represents the first comprehensive comparative analysis of reproductive organ characteristics in simultaneous hermaphrodites. Moreover, it strongly suggests that co-evolutionary arms races can result from sexual conflict in these organisms and play a key role in the evolution of hermaphroditic mating systems.

  17. Adaptive evolution of simian immunodeficiency viruses isolated from two conventional progressor macaques with neuroaids

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Brian T [Los Alamos National Laboratory; Korber, Bette T [Los Alamos National Laboratory

    2008-01-01

    Simian immunodeficiency virus infection of macaques may result in neuroAIDS, a feature more commonly observed in macaques with rapid progressive disease than in those with conventional disease. This is the first report of two conventional progressors (H631 and H636) with encephalitis in rhesus macaques inoculated with a derivative of SIVsmES43-3. Phylogenetic analyses of viruses isolated from the cerebral spinal fluid (CSF) and plasma from both animals demonstrated tissue compartmentalization. Additionally, virus from the central nervous system (CNS) was able to infect primary macaque monocyte-derived macrophages more efficiently than virus from plasma. Conversely, virus isolated from plasma was able to replicate better in peripheral blood mononuclear cells than virus from CNS. We speculate that these viruses were under different selective pressures in their separate compartments. Furthermore, these viruses appear to have undergone adaptive evolution to preferentially replicate in their respective cell targets. Analysis of the number of potential N-linked glycosylation sites (PNGS) in gp160 showed that there was a statistically significant loss of PNGS in viruses isolated from CNS in both macaques compared to SIVsmE543-3. Moreover, virus isolated from the brain in H631, had statistically significant loss of PNGS compared to virus isolated from CSF and plasma of the same animal. It is possible that the brain isolate may have adapted to decrease the number of PNGS given that humoral immune selection pressure is less likely to be encountered in the brain. These viruses provide a relevant model to study the adaptations required for SIV to induce encephalitis.

  18. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization.

    Science.gov (United States)

    Islam, Sk Minhazul; Das, Swagatam; Ghosh, Saurav; Roy, Subhrajit; Suganthan, Ponnuthurai Nagaratnam

    2012-04-01

    Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness-induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, is a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.

  19. Molecular characterization of insulin from squamate reptiles reveals sequence diversity and possible adaptive evolution.

    Science.gov (United States)

    Yamagishi, Genki; Yoshida, Ayaka; Kobayashi, Aya; Park, Min Kyun

    2016-01-01

    The Squamata are the most adaptive and prosperous group among ectothermic amniotes, reptiles, due to their species-richness and geographically wide habitat. Although the molecular mechanisms underlying their prosperity remain largely unknown, unique features have been reported from hormones that regulate energy metabolism. Insulin, a central anabolic hormone, is one such hormone, as its roles and effectiveness in regulation of blood glucose levels remain to be examined in squamates. In the present study, cDNAs coding for insulin were isolated from multiple species that represent various groups of squamates. The deduced amino acid sequences showed a high degree of divergence, with four lineages showing obviously higher number of amino acid substitutions than most of vertebrates, from teleosts to mammals. Among 18 sites presented to comprise the two receptor binding surfaces (one with 12 sites and the other with 6 sites), substitutions were observed in 13 sites. Among them was the substitution of HisB10, which results in the loss of the ability to hexamerize. Furthermore, three of these substitutions were reported to increase mitogenicity in human analogues. These substitutions were also reported from insulin of hystricomorph rodents and agnathan fishes, whose mitogenic potency have been shown to be increased. The estimated value of the non-synonymous-to-synonymous substitution ratio (ω) for the Squamata clade was larger than those of the other reptiles and aves. Even higher values were estimated for several lineages among squamates. These results, together with the regulatory mechanisms of digestion and nutrient assimilation in squamates, suggested a possible adaptive process through the molecular evolution of squamate INS. Further studies on the roles of insulin, in relation to the physiological and ecological traits of squamate species, will provide an insight into the molecular mechanisms that have led to the adaptivity and prosperity of squamates.

  20. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche

    Science.gov (United States)

    Van Doorslaer, Koenraad; DeSalle, Rob; Einstein, Mark H.; Burk, Robert D.

    2015-01-01

    In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential) is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution. PMID:26086730

  1. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche.

    Directory of Open Access Journals (Sweden)

    Koenraad Van Doorslaer

    2015-06-01

    Full Text Available In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution.

  2. The contribution of ancestry, chance, and past and ongoing selection to adaptive evolution

    Indian Academy of Sciences (India)

    Amitabh Joshi; Robinson B. Castillo; Laurence D. Mueller

    2003-12-01

    often not be due to differently shaped fitness functions, but rather due to differences in how the fitness function maps onto the actual distribution of phenotypes in a given population. We discuss these results in the light of previous work on reverse evolution, and the role of ancestry, chance, and past and ongoing selection in adaptive evolution.

  3. High-Resolution Mapping of Protein Concentration Reveals Principles of Proteome Architecture and Adaptation

    Directory of Open Access Journals (Sweden)

    Emmanuel D. Levy

    2014-05-01

    Full Text Available A single yeast cell contains a hundred million protein molecules. How these proteins are organized to orchestrate living processes is a central question in biology. To probe this organization in vivo, we measured the local concentration of proteins based on the strength of their nonspecific interactions with a neutral reporter protein. We first used a cytosolic reporter and measured local concentrations for ∼2,000 proteins in S. cerevisiae, with accuracy comparable to that of mass spectrometry. Localizing the reporter to membranes specifically increased the local concentration measured for membrane proteins. Comparing the concentrations measured by both reporters revealed that encounter frequencies between proteins are primarily dictated by their abundances. However, to change these encounter frequencies and restructure the proteome, as in adaptation, we find that changes in localization have more impact than changes in abundance. These results highlight how protein abundance and localization contribute to proteome organization and reorganization.

  4. Characterization of Adapter Protein NRBP as a Negative Regulator of T Cell Activation

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; LIN Zhi-xin; WU Jun

    2008-01-01

    Adapter proteins can regulate the gene transcriptions in disparate signaling pathway by interacting with multiple signaling molecules, including T cell activation signaling. Nuclear receptor binding protein (NRBP), a novel adapter protein, represents a small family of evolutionarily conserved proteins with homologs in Caenorhabditis elegans (C. elegans), Drosophila melanogaster (D.melanogaster), mouse and human. Here, we demonstrated that overexpression of NRBP in Jurkat TAg cells specifically impairs T cell receptor (TCR) or phorbol myristate acetate (PMA)/ionomycin-mediated signaling leading to nuclear factor of activated T cells (NFAT) promoter activation. Furthermore, the N-terminal of NRBP is necessary for its regulation of NFAT activation. Finally, we showed that NRBP has minimal effect on both TCR- and PMA-induced CD69 up-regulation in Jurkat TAg cells, which suggests that NRBP may function downstream of protein kinase C (PKC)/Ras pathway.

  5. Adaptive evolution of Desulfovibrio alaskensis G20 for developing resistance to perchlorate

    Science.gov (United States)

    Mehta-Kolte, M. G.; Youngblut, M.; Redford, S.; Gregoire, P.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    resistance to perchlorate and suggest that adaptive evolution is a valuable tool to understand potential responses of microorganism to any environmental perturbations imposed during oil production.

  6. Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in Drosophila melanogaster.

    Science.gov (United States)

    Kellermann, Vanessa; Hoffmann, Ary A; Kristensen, Torsten Nygaard; Moghadam, Neda Nasiri; Loeschcke, Volker

    2015-11-01

    Experimental evolution can be a useful tool for testing the impact of environmental factors on adaptive changes in populations, and this approach is being increasingly used to understand the potential for evolutionary responses in populations under changing climates. However, selective factors will often be more complex in natural populations than in laboratory environments and produce different patterns of adaptive differentiation. Here we test the ability of laboratory experimental evolution under different temperature cycles to reproduce well-known patterns of clinal variation in Drosophila melanogaster. Six fluctuating thermal regimes mimicking the natural temperature conditions along the east coast of Australia were initiated. Contrary to expectations, on the basis of field patterns there was no evidence for adaptation to thermal regimes as reflected by changes in cold and heat resistance after 1-3 years of laboratory natural selection. While laboratory evolution led to changes in starvation resistance, development time, and body size, patterns were not consistent with those seen in natural populations. These findings highlight the complexity of factors affecting trait evolution in natural populations and indicate that caution is required when inferring likely evolutionary responses from the outcome of experimental evolution studies. PMID:26655772

  7. Protein evolution: intrinsic preferences in peptide bond formation: a computational and experimental analysis

    Indian Academy of Sciences (India)

    Subramania Ranganathan; Dinabandhu Kundu; S D Vudayagiri

    2003-12-01

    Two possibilities exist for the evolution of individual enzymes/proteins from a milieu of amino acids, one based on preference and selectivity and the other on the basis of random events. Logic is overwhelmingly in favour of the former. By protein data base analysis and experiments, we have provided data to show the manifestation of two types of preferences, namely, the choice of the neighbour and its acceptance from the amino end (left) or the carboxyl end (right). The study tends to show that if the 20 proteinous amino acids were made to combine in water, the resulting profile would be nonrandom. Such selectivity could be a factor in protein evolution.

  8. Edwardsiella comparative phylogenomics reveal the new intra/inter-species taxonomic relationships, virulence evolution and niche adaptation mechanisms.

    Directory of Open Access Journals (Sweden)

    Minjun Yang

    Full Text Available Edwardsiella bacteria are leading fish pathogens causing huge losses to aquaculture industries worldwide. E. tarda is a broad-host range pathogen that infects more than 20 species of fish and other animals including humans while E. ictaluri is host-adapted to channel catfish causing enteric septicemia of catfish (ESC. Thus, these two species consist of a useful comparative system for studying the intricacies of pathogen evolution. Here we present for the first time the phylogenomic comparisons of 8 genomes of E. tarda and E. ictaluri isolates. Genome-based phylogenetic analysis revealed that E. tarda could be separate into two kinds of genotypes (genotype I, EdwGI and genotype II, EdwGII based on the sequence similarity. E. tarda strains of EdwGI were clustered together with the E. ictaluri lineage and showed low sequence conservation to E. tarda strains of EdwGII. Multilocus sequence analysis (MLSA of 48 distinct Edwardsiella strains also supports the new taxonomic relationship of the lineages. We identified the type III and VI secretion systems (T3SS and T6SS as well as iron scavenging related genes that fulfilled the criteria of a key evolutionary factor likely facilitating the virulence evolution and adaptation to a broad range of hosts in EdwGI E. tarda. The surface structure-related genes may underlie the adaptive evolution of E. ictaluri in the host specification processes. Virulence and competition assays of the null mutants of the representative genes experimentally confirmed their contributive roles in the evolution/niche adaptive processes. We also reconstructed the hypothetical evolutionary pathway to highlight the virulence evolution and niche adaptation mechanisms of Edwardsiella. This study may facilitate the development of diagnostics, vaccines, and therapeutics for this under-studied pathogen.

  9. Modularity in the evolution of yeast protein interaction network

    OpenAIRE

    Ogishima, Soichi; Tanaka, Hiroshi; Nakaya, Jun

    2015-01-01

    Protein interaction networks are known to exhibit remarkable structures: scale-free and small-world and modular structures. To explain the evolutionary processes of protein interaction networks possessing scale-free and small-world structures, preferential attachment and duplication-divergence models have been proposed as mathematical models. Protein interaction networks are also known to exhibit another remarkable structural characteristic, modular structure. How the protein interaction netw...

  10. Genome-wide analysis of adaptive molecular evolution in the carnivorous plant Utricularia gibba.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Librado, Pablo; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A

    2015-02-01

    The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan. PMID:25577200

  11. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali; Garrett, Roger Antony

    2011-01-01

    CRISPR/Cas and CRISPR/Cmr immune machineries of archaea and bacteria provide an adaptive and effective defence mechanism directed specifically against viruses and plasmids. Present data suggest that both CRISPR/Cas and Cmr modules can behave like integral genetic elements. They tend to be located...... in the more variable regions of chromosomes and are displaced by genome shuffling mechanisms including transposition. CRISPR loci may be broken up and dispersed in chromosomes by transposons with the potential for creating genetic novelty. Both CRISPR/Cas and Cmr modules appear to exchange readily between...... the significant barriers imposed by their differing conjugative, transcriptional and translational mechanisms. There are parallels between the CRISPR crRNAs and eukaryal siRNAs, most notably to germ cell piRNAs which are directed, with the help of effector proteins, to silence or destroy transposons...

  12. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy

    Science.gov (United States)

    Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2016-01-01

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  13. Evolution of Heat Sensors Drove Shifts in Thermosensation between Xenopus Species Adapted to Different Thermal Niches.

    Science.gov (United States)

    Saito, Shigeru; Ohkita, Masashi; Saito, Claire T; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2016-05-20

    Temperature is one of the most critical environmental factors affecting survival, and thus species that inhabit different thermal niches have evolved thermal sensitivities suitable for their respective habitats. During the process of shifting thermal niches, various types of genes expressed in diverse tissues, including those of the peripheral to central nervous systems, are potentially involved in the evolutionary changes in thermosensation. To elucidate the molecular mechanisms behind the evolution of thermosensation, thermal responses were compared between two species of clawed frogs (Xenopus laevis and Xenopus tropicalis) adapted to different thermal environments. X. laevis was much more sensitive to heat stimulation than X. tropicalis at the behavioral and neural levels. The activity and sensitivity of the heat-sensing TRPA1 channel were higher in X. laevis compared with those of X. tropicalis The thermal responses of another heat-sensing channel, TRPV1, also differed between the two Xenopus species. The species differences in Xenopus TRPV1 heat responses were largely determined by three amino acid substitutions located in the first three ankyrin repeat domains, known to be involved in the regulation of rat TRPV1 activity. In addition, Xenopus TRPV1 exhibited drastic species differences in sensitivity to capsaicin, contained in chili peppers, between the two Xenopus species. Another single amino acid substitution within Xenopus TRPV1 is responsible for this species difference, which likely alters the neural and behavioral responses to capsaicin. These combined subtle amino acid substitutions in peripheral thermal sensors potentially serve as a driving force for the evolution of thermal and chemical sensation.

  14. Evolution of Heat Sensors Drove Shifts in Thermosensation between Xenopus Species Adapted to Different Thermal Niches.

    Science.gov (United States)

    Saito, Shigeru; Ohkita, Masashi; Saito, Claire T; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2016-05-20

    Temperature is one of the most critical environmental factors affecting survival, and thus species that inhabit different thermal niches have evolved thermal sensitivities suitable for their respective habitats. During the process of shifting thermal niches, various types of genes expressed in diverse tissues, including those of the peripheral to central nervous systems, are potentially involved in the evolutionary changes in thermosensation. To elucidate the molecular mechanisms behind the evolution of thermosensation, thermal responses were compared between two species of clawed frogs (Xenopus laevis and Xenopus tropicalis) adapted to different thermal environments. X. laevis was much more sensitive to heat stimulation than X. tropicalis at the behavioral and neural levels. The activity and sensitivity of the heat-sensing TRPA1 channel were higher in X. laevis compared with those of X. tropicalis The thermal responses of another heat-sensing channel, TRPV1, also differed between the two Xenopus species. The species differences in Xenopus TRPV1 heat responses were largely determined by three amino acid substitutions located in the first three ankyrin repeat domains, known to be involved in the regulation of rat TRPV1 activity. In addition, Xenopus TRPV1 exhibited drastic species differences in sensitivity to capsaicin, contained in chili peppers, between the two Xenopus species. Another single amino acid substitution within Xenopus TRPV1 is responsible for this species difference, which likely alters the neural and behavioral responses to capsaicin. These combined subtle amino acid substitutions in peripheral thermal sensors potentially serve as a driving force for the evolution of thermal and chemical sensation. PMID:27022021

  15. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    Science.gov (United States)

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  16. DNA repeat arrays in chicken and human genomes and the adaptive evolution of avian genome size

    Directory of Open Access Journals (Sweden)

    Piontkivska Helen

    2005-02-01

    Full Text Available Abstract Background Birds have smaller average genome sizes than other tetrapod classes, and it has been proposed that a relatively low frequency of repeating DNA is one factor in reduction of avian genome sizes. Results DNA repeat arrays in the sequenced portion of the chicken (Gallus gallus autosomes were quantified and compared with those in human autosomes. In the chicken 10.3% of the genome was occupied by DNA repeats, in contrast to 44.9% in human. In the chicken, the percentage of a chromosome occupied by repeats was positively correlated with chromosome length, but even the largest chicken chromosomes had repeat densities much lower than those in human, indicating that avoidance of repeats in the chicken is not confined to minichromosomes. When 294 simple sequence repeat types shared between chicken and human genomes were compared, mean repeat array length and maximum repeat array length were significantly lower in the chicken than in human. Conclusions The fact that the chicken simple sequence repeat arrays were consistently smaller than arrays of the same type in human is evidence that the reduction in repeat array length in the chicken has involved numerous independent evolutionary events. This implies that reduction of DNA repeats in birds is the result of adaptive evolution. Reduction of DNA repeats on minichromosomes may be an adaptation to permit chiasma formation and alignment of small chromosomes. However, the fact that repeat array lengths are consistently reduced on the largest chicken chromosomes supports the hypothesis that other selective factors are at work, presumably related to the reduction of cell size and consequent advantages for the energetic demands of flight.

  17. Adaptive evolution of a derived radius morphology in manakins (Aves, Pipridae) to support acrobatic display behavior.

    Science.gov (United States)

    Friscia, Anthony; Sanin, Gloria D; Lindsay, Willow R; Day, Lainy B; Schlinger, Barney A; Tan, Josh; Fuxjager, Matthew J

    2016-06-01

    The morphology of the avian skeleton is often studied in the context of adaptations for powered flight. The effects of other evolutionary forces, such as sexual selection, on avian skeletal design are unclear, even though birds produce diverse behaviors that undoubtedly require a variety of osteological modifications. Here, we investigate this issue in a family of passerine birds called manakins (Pipridae), which have evolved physically unusual and elaborate courtship displays. We report that, in species within the genus Manacus, the shaft of the radius is heavily flattened and shows substantial solidification. Past work anecdotally notes this morphology and attributes it to the species' ability to hit their wings together above their heads to produce loud mechanical sonations. Our results show that this feature is unique to Manacus compared to the other species in our study, including a variety of taxa that produce other sonations through alternate wing mechanisms. At the same time, our data reveal striking similarities across species in total radius volume and solidification. Together, this suggests that supposedly adaptive alterations in radial morphology occur within a conserved framework of a set radius volume and solidness, which in turn is likely determined by natural selection. Further allometric analyses imply that the radius is less constrained by body size and the structural demands that underlie powered flight, compared to other forelimb bones that are mostly unmodified across taxa. These results are consistent with the idea that the radius is more susceptible to selective modification by sexual selection. Overall, this study provides some of the first insight into the osteological evolution of passerine birds, as well as the way in which opposing selective forces can shape skeletal design in these species. J. Morphol. 277:766-775, 2016. © 2016 Wiley Periodicals, Inc. PMID:27027525

  18. Adaptive evolution of the Hox gene family for development in bats and dolphins.

    Directory of Open Access Journals (Sweden)

    Lu Liang

    Full Text Available Bats and cetaceans (i.e., whales, dolphins, porpoises are two kinds of mammals with unique locomotive styles and occupy novel niches. Bats are the only mammals capable of sustained flight in the sky, while cetaceans have returned to the aquatic environment and are specialized for swimming. Associated with these novel adaptations to their environment, various development changes have occurred to their body plans and associated structures. Given the importance of Hox genes in many aspects of embryonic development, we conducted an analysis of the coding regions of all Hox gene family members from bats (represented by Pteropus vampyrus, Pteropus alecto, Myotis lucifugus and Myotis davidii and cetaceans (represented by Tursiops truncatus for adaptive evolution using the available draft genome sequences. Differences in the selective pressures acting on many Hox genes in bats and cetaceans were found compared to other mammals. Positive selection, however, was not found to act on any of the Hox genes in the common ancestor of bats and only upon Hoxb9 in cetaceans. PCR amplification data from additional bat and cetacean species, and application of the branch-site test 2, showed that the Hoxb2 gene within bats had significant evidence of positive selection. Thus, our study, with genomic and newly sequenced Hox genes, identifies two candidate Hox genes that may be closely linked with developmental changes in bats and cetaceans, such as those associated with the pancreatic, neuronal, thymus shape and forelimb. In addition, the difference in our results from the genome-wide scan and newly sequenced data reveals that great care must be taken in interpreting results from draft genome data from a limited number of species, and deep genetic sampling of a particular clade is a powerful tool for generating complementary data to address this limitation.

  19. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation.

    Directory of Open Access Journals (Sweden)

    Roderick Nigel Finn

    Full Text Available A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16. The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.

  20. Adaptive evolution of the Hox gene family for development in bats and dolphins.

    Science.gov (United States)

    Liang, Lu; Shen, Yong-Yi; Pan, Xiao-Wei; Zhou, Tai-Cheng; Yang, Chao; Irwin, David M; Zhang, Ya-Ping

    2013-01-01

    Bats and cetaceans (i.e., whales, dolphins, porpoises) are two kinds of mammals with unique locomotive styles and occupy novel niches. Bats are the only mammals capable of sustained flight in the sky, while cetaceans have returned to the aquatic environment and are specialized for swimming. Associated with these novel adaptations to their environment, various development changes have occurred to their body plans and associated structures. Given the importance of Hox genes in many aspects of embryonic development, we conducted an analysis of the coding regions of all Hox gene family members from bats (represented by Pteropus vampyrus, Pteropus alecto, Myotis lucifugus and Myotis davidii) and cetaceans (represented by Tursiops truncatus) for adaptive evolution using the available draft genome sequences. Differences in the selective pressures acting on many Hox genes in bats and cetaceans were found compared to other mammals. Positive selection, however, was not found to act on any of the Hox genes in the common ancestor of bats and only upon Hoxb9 in cetaceans. PCR amplification data from additional bat and cetacean species, and application of the branch-site test 2, showed that the Hoxb2 gene within bats had significant evidence of positive selection. Thus, our study, with genomic and newly sequenced Hox genes, identifies two candidate Hox genes that may be closely linked with developmental changes in bats and cetaceans, such as those associated with the pancreatic, neuronal, thymus shape and forelimb. In addition, the difference in our results from the genome-wide scan and newly sequenced data reveals that great care must be taken in interpreting results from draft genome data from a limited number of species, and deep genetic sampling of a particular clade is a powerful tool for generating complementary data to address this limitation. PMID:23825528

  1. Convergent evolution among immunoglobulin G-binding bacterial proteins.

    OpenAIRE

    Frick, I M; Wikström, M.; Forsén, S.; Drakenberg, T; Gomi, H.; Sjöbring, U; Björck, L

    1992-01-01

    Protein G, a bacterial cell-wall protein with high affinity for the constant region of IgG (IgGFc) antibodies, contains homologous repeats responsible for the interaction with IgGFc. A synthetic peptide corresponding to an 11-amino acid-long sequence in the COOH-terminal region of the repeats was found to bind to IgGFc and block the interaction with protein G. Moreover, two other IgGFc-binding bacterial proteins (proteins A and H), which do not contain any sequences homologous to the peptide,...

  2. The Evolution of Light Stress Proteins in Photosynthetic Organisms

    Directory of Open Access Journals (Sweden)

    Iwona Adamska

    2006-04-01

    Full Text Available The Elip (early light-inducible protein family in pro- and eukaryotic photosynthetic organisms consists of more than 100 different stress proteins. These proteins accumulate in photosynthetic membranes in response to light stress and have photoprotective functions. At the amino acid level, members of the Elip family are closely related to light-harvesting chlorophyll a/b-binding (Cab antenna proteins of photosystem I and II, present in higher plants and some algae. Based on their predicted secondary structure, members of the Elip family are divided into three groups: (a one-helix Hlips (high light-induced proteins, also called Scps (small Cab-like proteins or Ohps (one-helix proteins; (b two-helix Seps (stress-enhanced proteins; and (c three-helix Elips and related proteins. Despite having different physiological functions it is believed that eukaryotic three-helix Cab proteins evolved from the prokaryotic Hlips through a series of duplications and fusions. In this review we analyse the occurrence of Elip family members in various photosynthetic prokaryotic and eukaryotic organisms and discuss their evolutionary relationship with Cab proteins.

  3. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster

    Directory of Open Access Journals (Sweden)

    Jakobek Judy L

    2007-07-01

    Full Text Available Abstract Background The biosynthesis of aflatoxin (AF involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST and O-methylsterigmatocystin (OMST, the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus. Results To elucidate the mechanisms that have driven formation of these clusters, we performed systematic searches of aflatoxin cluster homologs across five Aspergillus genomes. We found a high level of gene duplication and identified seven modules consisting of highly correlated gene pairs (aflA/aflB, aflR/aflS, aflX/aflY, aflF/aflE, aflT/aflQ, aflC/aflW, and aflG/aflL. With the exception of A. nomius, contrasts of mean Ka/Ks values across all cluster genes showed significant differences in selective pressure between section Flavi and non-section Flavi species. A. nomius mean Ka/Ks values were more similar to partial clusters in A. fumigatus and A. terreus. Overall, mean Ka/Ks values were significantly higher for section Flavi than for non-section Flavi species. Conclusion Our results implicate several genomic mechanisms in the evolution of ST, OMST and AF cluster genes. Gene modules may arise from duplications of a single gene, whereby the function of the pre-duplication gene is retained in the copy (aflF/aflE or the copies may partition the ancestral function (aflA/aflB. In some gene modules, the

  4. Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins.

    Science.gov (United States)

    Lindbo, Sarah; Garousi, Javad; Åstrand, Mikael; Honarvar, Hadis; Orlova, Anna; Hober, Sophia; Tolmachev, Vladimir

    2016-03-16

    Engineered scaffold proteins (ESP) are high-affinity binders that can be used as probes for radionuclide imaging. Histidine-containing tags enable both efficient purification of ESP and radiolabeling with (99m)Tc(CO)3. Earlier studies demonstrated that the use of a histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag instead of the commonly used hexahistidine (H6)-tag reduces hepatic uptake of radiolabeled ESP and short peptides. Here, we investigated the influence of histidine-containing tags on the biodistribution of a novel type of ESP, ADAPTs. A series of anti-HER2 ADAPT probes having H6- or (HE)3-tags in the N-termini were prepared. The constructs, (HE)3-ADAPT6 and H6-ADAPT6, were labeled with two different nuclides, (99m)Tc or (111)In. The labeling with (99m)Tc(CO)3 utilized the histidine-containing tags, while (111)In was attached through a maleimido derivative of DOTA conjugated to the N-terminus. For (111)In-labeled ADAPTs, the use of (HE)3 provided a significantly (p < 0.05) lower hepatic uptake at 1 h after injection, but there was no significant difference in hepatic uptake of (111)In-(HE)3-ADAPT6 and H6-ADAPT6 at later time points. Interestingly, in the case of (99m)Tc, (99m)Tc(CO)3-H6-ADAPT6 provided significantly (p < 0.05) lower uptake in a number of normal tissues and was more suitable as an imaging probe. Thus, the influence of histidine-containing tags on the biodistribution of the novel ADAPT scaffold proteins was different compared to its influence on other ESPs studied so far. Apparently, the effect of a histidine-containing tag on the biodistribution is highly dependent on the scaffold composition of the ESP. PMID:26781756

  5. Evolution of cooperation in the spatial public goods game with adaptive reputation assortment

    Science.gov (United States)

    Chen, Mei-huan; Wang, Li; Sun, Shi-wen; Wang, Juan; Xia, Cheng-yi

    2016-01-01

    We present a new spatial public goods game model, which takes the individual reputation and behavior diversity into account at the same time, to investigate the evolution of cooperation. Initially, each player x will be endowed with an integer Rx between 1 and Rmax to characterize his reputation value, which will be adaptively varied according to the strategy action at each time step. Then, the agents play the game and the system proceeds in accordance with a Fermi-like rule, in which a multiplicative factor (wy) to denote the individual difference to perform the strategy transfer will be placed before the traditional Fermi probability. For influential participants, wy is set to be 1.0, but be a smaller value w (0 reputation threshold (RC), and the greater the threshold, the higher the fraction of cooperators. The origin of promotion of cooperation will be attributed to the fact that the larger reputation threshold renders the higher heterogeneity in the fraction of two types of players and strategy spreading capability. Our work is conducive to a better understanding of the emergence of cooperation within many real-world systems.

  6. Forecasting of currency exchange rates using an adaptive ARMA model with differential evolution based training

    Directory of Open Access Journals (Sweden)

    Minakhi Rout

    2014-01-01

    Full Text Available To alleviate the limitations of statistical based methods of forecasting of exchange rates, soft and evolutionary computing based techniques have been introduced in the literature. To further the research in this direction this paper proposes a simple but promising hybrid prediction model by suitably combining an adaptive autoregressive moving average (ARMA architecture and differential evolution (DE based training of its feed-forward and feed-back parameters. Simple statistical features are extracted for each exchange rate using a sliding window of past data and are employed as input to the prediction model for training its internal coefficients using DE optimization strategy. The prediction efficiency is validated using past exchange rates not used for training purpose. Simulation results using real life data are presented for three different exchange rates for one–fifteen months’ ahead predictions. The results of the developed model are compared with other four competitive methods such as ARMA-particle swarm optimization (PSO, ARMA-cat swarm optimization (CSO, ARMA-bacterial foraging optimization (BFO and ARMA-forward backward least mean square (FBLMS. The derivative based ARMA-FBLMS forecasting model exhibits worst prediction performance of the exchange rates. Comparisons of different performance measures including the training time of the all three evolutionary computing based models demonstrate that the proposed ARMA-DE exchange rate prediction model possesses superior short and long range prediction potentiality compared to others.

  7. Comparison of sequence-based and structure-based phylogenetic trees of homologous proteins: Inferences on protein evolution

    Indian Academy of Sciences (India)

    S Balaji; N Srinivasan

    2007-01-01

    Several studies based on the known three-dimensional (3-D) structures of proteins show that two homologous proteins with insignificant sequence similarity could adopt a common fold and may perform same or similar biochemical functions. Hence, it is appropriate to use similarities in 3-D structure of proteins rather than the amino acid sequence similarities in modelling evolution of distantly related proteins. Here we present an assessment of using 3-D structures in modelling evolution of homologous proteins. Using a dataset of 108 protein domain families of known structures with at least 10 members per family we present a comparison of extent of structural and sequence dissimilarities among pairs of proteins which are inputs into the construction of phylogenetic trees. We find that correlation between the structure-based dissimilarity measures and the sequence-based dissimilarity measures is usually good if the sequence similarity among the homologues is about 30% or more. For protein families with low sequence similarity among the members, the correlation coefficient between the sequence-based and the structure-based dissimilarities are poor. In these cases the structure-based dendrogram clusters proteins with most similar biochemical functional properties better than the sequence-similarity based dendrogram. In multi-domain protein families and disulphide-rich protein families the correlation coefficient for the match of sequence-based and structure-based dissimilarity (SDM) measures can be poor though the sequence identity could be higher than 30%. Hence it is suggested that protein evolution is best modelled using 3-D structures if the sequence similarities (SSM) of the homologues are very low.

  8. Design of structurally distinct proteins using strategies inspired by evolution.

    Science.gov (United States)

    Jacobs, T M; Williams, B; Williams, T; Xu, X; Eletsky, A; Federizon, J F; Szyperski, T; Kuhlman, B

    2016-05-01

    Natural recombination combines pieces of preexisting proteins to create new tertiary structures and functions. We describe a computational protocol, called SEWING, which is inspired by this process and builds new proteins from connected or disconnected pieces of existing structures. Helical proteins designed with SEWING contain structural features absent from other de novo designed proteins and, in some cases, remain folded at more than 100°C. High-resolution structures of the designed proteins CA01 and DA05R1 were solved by x-ray crystallography (2.2 angstrom resolution) and nuclear magnetic resonance, respectively, and there was excellent agreement with the design models. This method provides a new strategy to rapidly create large numbers of diverse and designable protein scaffolds.

  9. Observation-driven adaptive differential evolution and its application to accurate and smooth bronchoscope three-dimensional motion tracking.

    Science.gov (United States)

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-08-01

    This paper proposes an observation-driven adaptive differential evolution algorithm that fuses bronchoscopic video sequences, electromagnetic sensor measurements, and computed tomography images for accurate and smooth bronchoscope three-dimensional motion tracking. Currently an electromagnetic tracker with a position sensor fixed at the bronchoscope tip is commonly used to estimate bronchoscope movements. The large tracking error from directly using sensor measurements, which may be deteriorated heavily by patient respiratory motion and the magnetic field distortion of the tracker, limits clinical applications. How to effectively use sensor measurements for precise and stable bronchoscope electromagnetic tracking remains challenging. We here exploit an observation-driven adaptive differential evolution framework to address such a challenge and boost the tracking accuracy and smoothness. In our framework, two advantageous points are distinguished from other adaptive differential evolution methods: (1) the current observation including sensor measurements and bronchoscopic video images is used in the mutation equation and the fitness computation, respectively and (2) the mutation factor and the crossover rate are determined adaptively on the basis of the current image observation. The experimental results demonstrate that our framework provides much more accurate and smooth bronchoscope tracking than the state-of-the-art methods. Our approach reduces the tracking error from 3.96 to 2.89 mm, improves the tracking smoothness from 4.08 to 1.62 mm, and increases the visual quality from 0.707 to 0.741. PMID:25660001

  10. Shared human-chimpanzee pattern of perinatal femoral shaft morphology and its implications for the evolution of hominin locomotor adaptations.

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    Full Text Available BACKGROUND: Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual's lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion. METHODOLOGY/PRINCIPAL FINDINGS: Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state. CONCLUSIONS/SIGNIFICANCE: These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.

  11. Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma.

    Science.gov (United States)

    Haag, E S; Sly, B J; Andrews, M E; Raff, R A

    1999-07-01

    During the evolution of direct development in the sea urchin Heliocidaris erythrogramma major modifications occurred, which allowed the precocious formation of adult-specific structures and led to a novel larval body that surrounds these structures. The HeET-1 gene was isolated in a differential screen for transcripts enriched in the early embryos of H. erythrogramma relative to those of its indirect-developing congener, H. tuberculata. HeET-1 was unique among the three genes found in that no homologous transcript was detected in H. tuberculata total embryonic RNA blots. To verify this apparently extreme differential expression of the HeET-1 genes in Heliocidaris, we isolated the HeET-1 homologue from H. tuberculata genomic DNA and used it to probe blots of poly(A)+ RNA prepared from H. tuberculata embryos. It is expressed in H. tuberculata embryos at levels undetectable by this technique. The predicted amino acid sequence of HeET-1 suggested that it encodes a novel secreted protein. To assess the function of HeET-1, we raised polyclonal antisera to the HeET-1-encoded protein. We find that it is present in eggs in a type of secretory vesicle and that this maternal pool is gradually secreted after fertilization. As cells acquire apical-basal polarity in the blastula the protein becomes localized to the apical extracellular matrix, leading us to name the protein apextrin. The apical extracellular localization of apextrin is maintained in the columnar cells of the larval ectoderm until their internalization at metamorphosis. Ingressing mesenchyme cells rapidly endocytose apextrin upon leaving the vegetal plate. Comparison with fibropellin III, an apical lamina component, suggests that apextrin is an extracellular protein that is in tighter association with the plasma membrane than is the hyalin layer or apical lamina. We propose that apextrin is involved in apical cell adhesion and that its high level of expression may represent an adaptive cooption necessary for

  12. Biochemical Evolution of Iron and Copper Proteins, Substances Vital to Life

    Science.gov (United States)

    Frieden, Earl

    1974-01-01

    Summarizes studies in the area of biochemical evolution of iron, copper, and heme proteins to provide an historical outline. Included are lists of major kinds of proteins and enzymes and charts illustrating electron flow in a cytochrome electron transport system and interconversion of jerrous to ferric ion in iron metabolism. (CC)

  13. Initial mutations direct alternative pathways of protein evolution

    NARCIS (Netherlands)

    Salverda, M.L.M.; Dellus, E.; Gorter, F.A.; Debets, A.J.M.; Oost, van der J.; Hoekstra, R.F.; Tawfik, D.S.; Visser, de J.A.G.M.

    2011-01-01

    Whether evolution is erratic due to random historical details, or is repeatedly directed along similar paths by certain constraints, remains unclear. Epistasis (i.e. non-additive interaction between mutations that affect fitness) is a mechanism that can contribute to both scenarios. Epistasis can co

  14. Rapid evolution of immune proteins in social insects.

    Science.gov (United States)

    Viljakainen, Lumi; Evans, Jay D; Hasselmann, Martin; Rueppell, Olav; Tingek, Salim; Pamilo, Pekka

    2009-08-01

    The existence of behavioral traits connected to defense against pathogens manifests the importance of pathogens in the evolution of social insects. However, very little is known about how pathogen pressure has affected the molecular evolution of genes involved in their innate immune system. We have studied the sequence evolution of several immune genes in ants and honeybees. The results show high rates of evolution in both ants and honeybees as measured by the ratio of amino acid changes to silent nucleotide changes, the ratio being clearly higher than in Drosophila immune genes or in nonimmunity genes of bees. This conforms to our expectations based on high pathogen pressure in social insects. The codon-based likelihood method found clear evidence of positive selection only in one ant gene, even though positive selection has earlier been found in both ant and termite immune genes. There is now indication that selection on the amino acid composition of the immune-related genes has been an important part in the fight against pathogens by social insects. However, we cannot distinguish in all the cases whether the high observed d(N)/d(S) ratio results from positive selection within a restricted part of the studied genes or from relaxation of purifying selection associated with effective measures of behaviorally based colony-level defenses. PMID:19387012

  15. [Small heat shock proteins and adaptation to hypertermia in various Drosophila species].

    Science.gov (United States)

    Shilova, V Iu; Garbuz, D G; Evgen'ev, M B; Zatsepina, O G

    2006-01-01

    Expression level and kinetics of accumulation of small heat shock proteins (21-27 kDa group) have been investigated in three Drosophila species differing significantly by temperature niche and thermosensitivity. It was shown that low-latitude thermotolerant species D. virilis exceeds the high-latitude thermosensitive closely-related species D. lummei as well as distant thermosensitive species D. melanogaster in terms of small heat shock proteins expression and accumulation after temperature elevation. The data obtained enable to postulate an important role of small heat shock proteins in organism basal thermotolerance and general adaptation to adverse conditions of environment. PMID:16637267

  16. Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution

    DEFF Research Database (Denmark)

    Utrilla, José; O'Brien, Edward J.; Chen, Ke;

    2016-01-01

    Pleiotropic regulatory mutations affect diverse cellular processes, posing a challenge to our understanding of genotype-phenotype relationships across multiple biological scales. Adaptive laboratory evolution (ALE) allows for such mutations to be found and characterized in the context of clear...... selection pressures. Here, several ALE-selected single-mutation variants in RNA polymerase (RNAP) of Escherichia coli are detailed using an integrated multi-scale experimental and computational approach. While these mutations increase cellular growth rates in steady environments, they reduce tolerance......, they share a common adaptive mechanism. In turn, these findings highlight the resource allocation trade-offs organisms face and suggest how the structure of the regulatory network enhances evolvability....

  17. Flagellated Algae Protein Evolution Suggests the Prevalence of Lineage-Specific Rules Governing Evolutionary Rates of Eukaryotic Proteins

    OpenAIRE

    Chang, Ting-Yan; Liao, Ben-Yang

    2013-01-01

    Understanding the general rules governing the rate of protein evolution is fundamental to evolutionary biology. However, attempts to address this issue in yeasts and mammals have revealed considerable differences in the relative importance of determinants for protein evolutionary rates. This phenomenon was previously explained by the fact that yeasts and mammals are different in many cellular and genomic properties. Flagellated algae species have several cellular and genomic characteristics t...

  18. Funktion und Evolution chloroplastidärer PPR-Proteine

    OpenAIRE

    Beick, Susanne

    2011-01-01

    PPR-Proteine bilden die größte Familie von RNA-Bindeproteinen in Pflanzen und sie werden fast ausschließlich in die Mitochondrien oder Plastiden importiert, wo sie eine wesentliche Rolle im RNA-Metabolismus spielen (Lurin et al., 2004). Doch die Funktionsweise der Proteine ist noch weitgehend unbekannt. In dieser Arbeit wurde das plastidäre PPR-Protein PPR5 in Zea mays funktionell charakterisiert, dessen Ortholog in Arabidopsis thaliana essentiell für die Embryogenese ist (Cushing et al., 200...

  19. Parameters of proteome evolution from histograms of amino-acid sequence identities of paralogous proteins

    OpenAIRE

    Yan Koon-Kiu; Axelsen Jacob; Maslov Sergei

    2005-01-01

    Abstract Background The evolution of the full repertoire of proteins encoded in a given genome is mostly driven by gene duplications, deletions, and sequence modifications of existing proteins. Indirect information about relative rates and other intrinsic parameters of these three basic processes is contained in the proteome-wide distribution of sequence identities of pairs of paralogous proteins. Results We introduce a simple mathematical framework based on a stochastic birth-and-death model...

  20. Differential protein expression during colonic adaptation in ultra-short bowel rats

    Institute of Scientific and Technical Information of China (English)

    Hai-Ping Jiang; Tao Chen; Guang-Rong Yan; Dan Chen

    2011-01-01

    AIM: To investigate the proteins involved in colonic adaptation and molecular mechanisms of colonic adaptation in rats with ultra-short bowel syndrome (USBS). METHODS: Sprague Dawley rats were randomly assigned to three groups: USBS group (10 rats) undergoing an approximately 90%-95% small bowel resection; sham-operation group (10 rats) undergoing small bowel transaction and anastomosis; and control group (ten normal rats). Colon morphology and differential protein expression was analyzed after rats were given postsurgical enteral nutrition for 21 d. Protein expression in the colonic mucosa was analyzed by two-dimensional electrophoresis (2-DE) in all groups. Differential protein spots were detected by ImageMaster 2D Platinum software and were further analyzed with matrix-assisted laser desorption/ionization-time-of-flight/time-of-flightmass spectrometric (MALDI-TOF/TOF-MS) analysis. RESULTS: The colonic mucosal thickness significantly increased in the USBS group compared with the control group (302.1 ± 16.9 μm vs 273.7 ± 16.0 μm, P 0.05). The height of colon plica markedly improved in USBS group compared with the control group (998.4 ± 81.2 μm vs 883.4 ± 39.0 μm, P 0.05). A total of 141 differential protein spots were found in the USBS group. Forty-nine of these spots were down-regulated while 92 protein spots were up-regulated by over 2-folds. There were 133 differential protein spots in USBS group. Thirty of these spots were down-regulated and 103 were upregulated. There were 47 common differential protein spots among the three groups, including 17 downregulated protein spots and 30 up-regulated spots. Among 47 differential spots, eight up-regulated proteins were identified by MALDI-TOF/TOF-MS. These proteins were previously reported to be involved in sugar and fat metabolism, protein synthesis and oxidation reduction, which are associated with colonic adaption. CONCLUSION: Eight proteins found in this study play important roles in colonic compensation

  1. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Directory of Open Access Journals (Sweden)

    Getz Wayne M

    2011-05-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA, DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli. We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN dS. However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Conclusions Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was

  2. Evolution of the extended LHC protein superfamily in photosynthesis

    OpenAIRE

    Engelken, Johannes

    2010-01-01

    In photosynthesis, sunlight interacts with colorful photosynthetic pigments like the chlorophylls, carotenoids and phycobilines. The first two of these pigments can be bound by members of the extended light-harvesting complex (LHC) protein superfamily and are organised in order to take on functions in the collection of or in the defense against sunlight. The extended LHC superfamily comprises several protein families, like the LHCs, the photosystem II subunit S (PSBS), the red algal lineage c...

  3. A pivot mutation impedes reverse evolution across an adaptive landscape for drug resistance in Plasmodium vivax

    OpenAIRE

    Ogbunugafor, C. Brandon; Hartl, Daniel

    2016-01-01

    Background: The study of reverse evolution from resistant to susceptible phenotypes can reveal constraints on biological evolution, a topic for which evolutionary theory has relatively few general principles. The public health catastrophe of antimicrobial resistance in malaria has brought these constraints on evolution into a practical realm, with one proposed solution: withdrawing anti-malarial medication use in high resistance settings, built on the assumption that reverse evolution occurs ...

  4. Identification of Semaphorin 5A Interacting Protein by Applying Apriori Knowledge and Peptide Complementarity Related to Protein Evolution and Structure

    Institute of Scientific and Technical Information of China (English)

    Anguraj Sadanandam; Michelle L. Varney; Rakesh K. Singh

    2008-01-01

    In the post-genomic era, various computational methods that predict proteinprotein interactions at the genome level are available; however, each method has its own advantages and disadvantages, resulting in false predictions. Here we developed a unique integrated approach to identify interacting partner(s) of Semaphorin 5A (SEMA5A), beginning with seven proteins sharing similar ligand interacting residues as putative binding partners. The methods include Dwyer and Root-Bernstein/Dillon theories of protein evolution, hydropathic complementarity of protein structure, pattern of protein functions among molecules, information on domain-domain interactions, co-expression of genes and protein evolution. Among the set of seven proteins selected as putative SEMA5A interacting partners, we found the functions of Plexin B3 and Neuropilin-2 to be associated with SEMA5A.We modeled the semaphorin domain structure of Plexin B3 and found that it shares similarity with SEMA5A. Moreover, a virtual expression database search and RT-PCR analysis showed co-expression of SEMA5A and Plexin B3 and these proteins were found to have co-evolved. In addition, we confirmed the interaction of SEMA5A with Plexin B3 in co-immunoprecipitation studies. Overall, these studies demonstrate that an integrated method of prediction can be used at the genome level for discovering many unknown protein binding partners with known ligand binding domains.

  5. Exploring the correlations between sequence evolution rate and phenotypic divergence across the Mammalian tree provides insights into adaptive evolution

    Indian Academy of Sciences (India)

    Jan Janecka; Bhanu Chowdhary; William Murphy

    2012-11-01

    Sequence evolution behaves in a relatively consistent manner, leading to one of the fundamental paradigms in biology, the existence of a `molecular clock’. The molecular clock can be distilled to the concept of accumulation of substitutions, through time yielding a stable rate from which we can estimate lineage divergence. Over the last 50 years, evolutionary biologists have obtained an in-depth understanding of this clock’s nuances. It has been fine-tuned by taking into account the vast heterogeneity in rates across lineages and genes, leading to `relaxed’ molecular clock methods for timetree reconstruction. Sequence rate varies with life history traits including body size, generation time and metabolic rate, and we review recent studies on this topic. However, few studies have explicitly examined correlates between molecular evolution and morphological evolution. The patterns observed across diverse lineages suggest that rates of molecular and morphological evolution are largely decoupled. We discuss how identifying the molecular mechanisms behind rapid functional radiations are central to understanding evolution. The vast functional divergence within mammalian lineages that have relatively `slow’ sequence evolution refutes the hypotheses that pulses in diversification yielding major phenotypic change are the result of steady accumulation of substitutions. Patterns rather suggest phenotypic divergence is likely caused by regulatory alterations mediated through mechanisms such as insertions/deletions in functional regions. These can rapidly arise and sweep to fixation faster than predicted from a lineage’s sequence neutral substitution rate, enabling species to leapfrog between phenotypic `islands’. We suggest research directions that could illuminate mechanisms behind the functional diversity we see today.

  6. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation.

    Science.gov (United States)

    Arafa, A; Suarez, D; Kholosy, S G; Hassan, M K; Nasef, S; Selim, A; Dauphin, G; Kim, M; Yilma, J; Swayne, D; Aly, M M

    2012-10-01

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country, affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used as a part of the control strategy to help to control the disease. Epidemiological data with sequence analysis of H5N1 viruses is important to link the mechanism of virus evolution in Egypt. This study describes the evolutionary pattern of Egyptian H5N1 viruses based on molecular characterization for the isolates collected from commercial poultry farms and village poultry from 2006 to 2011. Genetic analysis of the hemagglutinin (HA) gene was done by sequencing of the full-length H5 gene. The epidemiological pattern of disease outbreaks in Egyptian poultry farms seems to be seasonal with no specific geographic distribution across the country. The molecular epidemiological data revealed that there are two major groups of viruses: the classic group of subclade 2.2.1 and a variant group of 2.2.1.1. The classic group is prevailing mainly in village poultry and had fewer mutations compared to the originally introduced virus in 2006. Since 2009, this group has started to be transmitted back to commercial sectors. The variant group emerged by late 2007, was prevalent mainly in vaccinated commercial poultry, mutated continuously at a higher rate until 2010, and started to decline in 2011. Genetic analysis of the neuraminidase (NA) gene and the other six internal genes indicates a grouping of the Egyptian viruses similar to that obtained using the HA gene, with no obvious reassortments. The results of this study indicate that HPAI-H5N1 viruses are progressively evolving and adapting in Egypt and continue to acquire new mutations every season. PMID:22760662

  7. Regulatory modulation of the T-box gene Tbx5 links development, evolution, and adaptation of the sternum

    OpenAIRE

    Bickley, Sorrel R. B.; Logan, Malcolm P. O.

    2014-01-01

    The fin-to-limb transition and acquisition of sterna were critical steps in the evolution of tetrapods, but despite the importance of the sternum in enabling quadrupedal locomotion and avian flight, the mechanisms controlling acquisition and evolutionary adaptation of sterna are not understood. Furthermore, the mechanisms that underlie sternum development and sternal defects are not known. We describe T-box transcription factor gene Tbx5 function in sternum formation, how disruption of TBX5 c...

  8. Modularity, adaptability and evolution in the AUTOPIA architecture for control of autonomous vehicles. Updating Mechatronics of Automatic Cars

    OpenAIRE

    Pérez Rastelli, Joshué; González, Carlos; Milanés, Vicente; Onieva, Enrique; Godoy, Jorge; Pedro, Teresa de

    2009-01-01

    International audience Computer systems to carry out control algorithms on autonomous vehicles have been developed in recent years. However, the advances in peripheral devices allow connecting the actuator controllers to the control system by means of standard communication links (USB, CAN, Ethernet ... ).The goal is to permit the use of standard computers. In this paper, we present the evolution of AUTOPIA architecture and its modularity and adaptability to move the old system based on IS...

  9. Experimental Evolution of a Bacteriophage Virus Reveals the Trajectory of Adaptation across a Fecundity/Longevity Trade-Off

    OpenAIRE

    Heineman, Richard H.; Brown, Sam P.

    2012-01-01

    Life history theory attempts to account for how organisms lead their lives, balancing the conflicting demands of reproduction and survival. Here, we track the genomic and phenotypic evolution of the bacteriophage virus T7 across a postulated fecundity/longevity constraint. We adapted T7 to a challenging survival environment (6M urea). Our evolved strain displayed a significant improvement in propagule survival, coupled with a significant loss of fecundity (reduced growth rate on host cells). ...

  10. Which Beak Fits the Bill? An Activity Examining Adaptation, Natural Selection and Evolution

    Science.gov (United States)

    Darling, Randi

    2014-01-01

    Evolution is a unifying concept within biology. In fact, Dobzhansky, a noted evolutionary biologist, argued, "Nothing in biology makes sense except in the light of evolution" (Dobzhansky, 1973). However, often students have misconceptions about evolution. There are a number of available activities where students use tools (representing…

  11. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  12. Co-evolution of SNF spliceosomal proteins with their RNA targets in trans-splicing nematodes.

    Science.gov (United States)

    Strange, Rex Meade; Russelburg, L Peyton; Delaney, Kimberly J

    2016-08-01

    Although the mechanism of pre-mRNA splicing has been well characterized, the evolution of spliceosomal proteins is poorly understood. The U1A/U2B″/SNF family (hereafter referred to as the SNF family) of RNA binding spliceosomal proteins participates in both the U1 and U2 small interacting nuclear ribonucleoproteins (snRNPs). The highly constrained nature of this system has inhibited an analysis of co-evolutionary trends between the proteins and their RNA binding targets. Here we report accelerated sequence evolution in the SNF protein family in Phylum Nematoda, which has allowed an analysis of protein:RNA co-evolution. In a comparison of SNF genes from ecdysozoan species, we found a correlation between trans-splicing species (nematodes) and increased phylogenetic branch lengths of the SNF protein family, with respect to their sister clade Arthropoda. In particular, we found that nematodes (~70-80 % of pre-mRNAs are trans-spliced) have experienced higher rates of SNF sequence evolution than arthropods (predominantly cis-spliced) at both the nucleotide and amino acid levels. Interestingly, this increased evolutionary rate correlates with the reliance on trans-splicing by nematodes, which would alter the role of the SNF family of spliceosomal proteins. We mapped amino acid substitutions to functionally important regions of the SNF protein, specifically to sites that are predicted to disrupt protein:RNA and protein:protein interactions. Finally, we investigated SNF's RNA targets: the U1 and U2 snRNAs. Both are more divergent in nematodes than arthropods, suggesting the RNAs have co-evolved with SNF in order to maintain the necessarily high affinity interaction that has been characterized in other species. PMID:27450547

  13. Co-evolution of SNF spliceosomal proteins with their RNA targets in trans-splicing nematodes.

    Science.gov (United States)

    Strange, Rex Meade; Russelburg, L Peyton; Delaney, Kimberly J

    2016-08-01

    Although the mechanism of pre-mRNA splicing has been well characterized, the evolution of spliceosomal proteins is poorly understood. The U1A/U2B″/SNF family (hereafter referred to as the SNF family) of RNA binding spliceosomal proteins participates in both the U1 and U2 small interacting nuclear ribonucleoproteins (snRNPs). The highly constrained nature of this system has inhibited an analysis of co-evolutionary trends between the proteins and their RNA binding targets. Here we report accelerated sequence evolution in the SNF protein family in Phylum Nematoda, which has allowed an analysis of protein:RNA co-evolution. In a comparison of SNF genes from ecdysozoan species, we found a correlation between trans-splicing species (nematodes) and increased phylogenetic branch lengths of the SNF protein family, with respect to their sister clade Arthropoda. In particular, we found that nematodes (~70-80 % of pre-mRNAs are trans-spliced) have experienced higher rates of SNF sequence evolution than arthropods (predominantly cis-spliced) at both the nucleotide and amino acid levels. Interestingly, this increased evolutionary rate correlates with the reliance on trans-splicing by nematodes, which would alter the role of the SNF family of spliceosomal proteins. We mapped amino acid substitutions to functionally important regions of the SNF protein, specifically to sites that are predicted to disrupt protein:RNA and protein:protein interactions. Finally, we investigated SNF's RNA targets: the U1 and U2 snRNAs. Both are more divergent in nematodes than arthropods, suggesting the RNAs have co-evolved with SNF in order to maintain the necessarily high affinity interaction that has been characterized in other species.

  14. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    Science.gov (United States)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  15. Ecological Divergence, Adaptive Diversification, and the Evolution of Social Signaling Traits: An Empirical Study in Arid Australian Lizards.

    Science.gov (United States)

    Edwards, Danielle L; Melville, Jane; Joseph, Leo; Keogh, J Scott

    2015-12-01

    Species diversification often results from divergent evolution of ecological or social signaling traits. Theoretically, a combination of the two may promote speciation, however, empirical examples studying how social signal and ecological divergence might be involved in diversification are rare in general and typically do not consider range overlap as a contributing factor. We show that ecologically distinct lineages within the Australian sand dragon species complex (including Ctenophorus maculatus, Ctenophorus fordi, and Ctenophorus femoralis) have diversified recently, diverging in ecologically relevant and social signaling phenotypic traits as arid habitats expanded and differentiated. Diversification has resulted in repeated and independent invasion of distinct habitat types, driving convergent evolution of similar phenotypes. Our results suggest that parapatry facilitates diversification in visual signals through reinforcement as a hybridization-avoidance mechanism. We show that particularly striking variation in visual social signaling traits is better explained by the extent of lineage parapatry relative to ecological or phylogenetic divergence, suggesting that these traits reinforce divergence among lineages initiated by ecologically adaptive evolution. This study provides a rare empirical example of a repeated, intricate relationship between ecological and social signal evolution during diversification driven by ecological divergence and the evolution of new habitats, thereby supporting emergent theories regarding the importance of both ecological and social trait evolution throughout speciation.

  16. Ultrafast colorimetric determination of predominant protein structure evolution with gold nanoplasmonic particles

    Science.gov (United States)

    Kim, Hye Young; Choi, Inhee

    2016-01-01

    The intracellular and extracellular accumulation of disordered proteins and aggregated proteins occurs in many protein conformational diseases, such as aging-related neurodegeneration and alcoholic liver diseases. However, the conventional methods to study protein structural changes are limited for the rapid detection and monitoring of protein aggregation because of long incubation times (i.e., usually several days), complicated sample pretreatment steps, and expensive instrumentation. Here, we describe an ultrafast colorimetric method for the real-time monitoring of protein structure evolution and the determination of predominant structures via nanoparticle-assisted protein aggregation. During the aggregation process, nanoparticles act as nucleation cores, which form networks depending on the structures of the protein aggregates, and accelerate the kinetics of the protein aggregation. Simultaneously, these nanoparticles exhibit colorimetric responses according to their embedded shapes (e.g., fibrillar and amorphous) on the protein aggregates. We observed distinct spectral shifts and concomitant colorimetric responses of concentration- and type-dependent protein aggregation with the naked eye within a few minutes (pH levels, high temperature, and chemicals. These findings suggest that the proposed method is an easy way to study the molecular biophysics of protein aggregation and to rapidly screen anti-aggregation drugs for protein conformational diseases.The intracellular and extracellular accumulation of disordered proteins and aggregated proteins occurs in many protein conformational diseases, such as aging-related neurodegeneration and alcoholic liver diseases. However, the conventional methods to study protein structural changes are limited for the rapid detection and monitoring of protein aggregation because of long incubation times (i.e., usually several days), complicated sample pretreatment steps, and expensive instrumentation. Here, we describe an

  17. Relative Contributions of Intrinsic Structural–Functional Constraints and Translation Rate to the Evolution of Protein-Coding Genes

    OpenAIRE

    Wolf, Yuri I.; Gopich, Irina V.; David J Lipman; Eugene V Koonin

    2010-01-01

    A long-standing assumption in evolutionary biology is that the evolution rate of protein-coding genes depends, largely, on specific constraints that affect the function of the given protein. However, recent research in evolutionary systems biology revealed unexpected, significant correlations between evolution rate and characteristics of genes or proteins that are not directly related to specific protein functions, such as expression level and protein–protein interactions. The strongest conne...

  18. Pharmacological activities in thermal proteins: relationships in molecular evolution

    Science.gov (United States)

    Fox, S. W.; Hefti, F.; Hartikka, J.; Junard, E.; Przybylski, A. T.; Vaughan, G.

    1987-01-01

    The model of protobiological events that has been presented in these pages has increasing relevance to pharmacological research. The thermal proteins that function as key substances in the proteinoid theory have recently been found to prolong the survival of rat forebrain neurons in culture and to stimulate the growth of neurites. A search for such activity in thermal proteins added to cultures of modern neurons was suggested by the fact that some of the microspheres assembled from proteinoids rich in hydrophobic amino acids themselves generate fibrous outgrowths.

  19. Whole genome sequencing of bacteria in cystic fibrosis as a model for bacterial genome adaptation and evolution.

    Science.gov (United States)

    Sharma, Poonam; Gupta, Sushim Kumar; Rolain, Jean-Marc

    2014-03-01

    Cystic fibrosis (CF) airways harbor a wide variety of new and/or emerging multidrug resistant bacteria which impose a heavy burden on patients. These bacteria live in close proximity with one another, which increases the frequency of lateral gene transfer. The exchange and movement of mobile genetic elements and genomic islands facilitate the spread of genes between genetically diverse bacteria, which seem to be advantageous to the bacterium as it allows adaptation to the new niches of the CF lungs. Niche adaptation is one of the major evolutionary forces shaping bacterial genome composition and in CF the chronic strains adapt and become less virulent. The purpose of this review is to shed light on CF bacterial genome alterations. Next-generation sequencing technology is an exciting tool that may help us to decipher the genome architecture and the evolution of bacteria colonizing CF lungs. PMID:24502835

  20. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2015-01-01

    adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures....... In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance...

  1. Life at the border: Adaptation of proteins to anisotropic membrane environment

    Science.gov (United States)

    Pogozheva, Irina D; Mosberg, Henry I; Lomize, Andrei L

    2014-01-01

    This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region—between double bonds and carbonyl groups of lipids. These “midpolar” regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein–lipid binding. PMID:24947665

  2. Markovian and Non-Markovian Protein Sequence Evolution: Aggregated Markov Process Models

    OpenAIRE

    Kosiol, Carolin; Goldman, Nick

    2011-01-01

    Over the years, there have been claims that evolution proceeds according to systematically different processes over different timescales and that protein evolution behaves in a non-Markovian manner. On the other hand, Markov models are fundamental to many applications in evolutionary studies. Apparent non-Markovian or time-dependent behavior has been attributed to influence of the genetic code at short timescales and dominance of physicochemical properties of the amino acids at long timescale...

  3. Evol and ProDy for bridging protein sequence evolution and structural dynamics

    OpenAIRE

    Bakan, Ahmet; Dutta, Anindita; Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R.; Bahar, Ivet

    2014-01-01

    Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolu...

  4. Protein structure and evolution: are they constrained globally by a principle derived from information theory?

    Science.gov (United States)

    Hatton, Leslie; Warr, Gregory

    2015-01-01

    That the physicochemical properties of amino acids constrain the structure, function and evolution of proteins is not in doubt. However, principles derived from information theory may also set bounds on the structure (and thus also the evolution) of proteins. Here we analyze the global properties of the full set of proteins in release 13-11 of the SwissProt database, showing by experimental test of predictions from information theory that their collective structure exhibits properties that are consistent with their being guided by a conservation principle. This principle (Conservation of Information) defines the global properties of systems composed of discrete components each of which is in turn assembled from discrete smaller pieces. In the system of proteins, each protein is a component, and each protein is assembled from amino acids. Central to this principle is the inter-relationship of the unique amino acid count and total length of a protein and its implications for both average protein length and occurrence of proteins with specific unique amino acid counts. The unique amino acid count is simply the number of distinct amino acids (including those that are post-translationally modified) that occur in a protein, and is independent of the number of times that the particular amino acid occurs in the sequence. Conservation of Information does not operate at the local level (it is independent of the physicochemical properties of the amino acids) where the influences of natural selection are manifest in the variety of protein structure and function that is well understood. Rather, this analysis implies that Conservation of Information would define the global bounds within which the whole system of proteins is constrained; thus it appears to be acting to constrain evolution at a level different from natural selection, a conclusion that appears counter-intuitive but is supported by the studies described herein.

  5. Adaptive radiation versus 'radiation' and 'explosive diversification': why conceptual distinctions are fundamental to understanding evolution.

    Science.gov (United States)

    Givnish, Thomas J

    2015-07-01

    Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within a lineage. Recently, some researchers have begun to use 'adaptive radiation' or 'radiation' as synonymous with 'explosive species diversification'. This essay aims to clarify distinctions between these concepts, and the related ideas of geographic speciation, sexual selection, key innovations, key landscapes and ecological keys. Several examples are given to demonstrate that adaptive radiation and explosive diversification are not the same phenomenon, and that focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some 'radiations' involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of 'adaptive radiation' appear to involve effects driven partly by geographic speciation, species' dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity.

  6. Shift in the isoelectric-point of milk proteins as a consequence of adaptive divergence between the milks of mammalian species.

    LENUS (Irish Health Repository)

    Khaldi, Nora

    2011-07-29

    Abstract Background Milk proteins are required to proceed through a variety of conditions of radically varying pH, which are not identical across mammalian digestive systems. We wished to investigate if the shifts in these requirements have resulted in marked changes in the isoelectric point and charge of milk proteins during evolution. Results We investigated nine major milk proteins in 13 mammals. In comparison with a group of orthologous non-milk proteins, we found that 3 proteins κ-casein, lactadherin, and muc1 have undergone the highest change in isoelectric point during evolution. The pattern of non-synonymous substitutions indicate that selection has played a role in the isoelectric point shift, since residues that show significant evidence of positive selection are much more likely to be charged (p = 0.03 for κ-casein; p < 10-8 for muc1). However, this selection does not appear to be solely due to adaptation to the diversity of mammalian digestive systems, since striking changes are seen among species that resemble each other in terms of their digestion. Conclusion The changes in charge are most likely due to changes of other protein functions, rather than an adaptation to the different mammalian digestive systems. These functions may include differences in bioactive peptide releases in the gut between different mammals, which are known to be a major contributing factor in the functional and nutritional value of mammalian milk. This raises the question of whether bovine milk is optimal in terms of particular protein functions, for human nutrition and possibly disease resistance. This article was reviewed by Fyodor Kondrashov, David Liberles (nominated by David Ardell), and Christophe Lefevre (nominated by Mark Ragan).

  7. Evol and ProDy for bridging protein sequence evolution and structural dynamics

    Science.gov (United States)

    Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R.; Bahar, Ivet

    2014-01-01

    Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. Availability and implementation: ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/. Contact: bahar@pitt.edu PMID:24849577

  8. The evolution of core proteins involved in microRNA biogenesis

    Directory of Open Access Journals (Sweden)

    Brown James R

    2008-03-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a recently discovered class of non-coding RNAs (ncRNAs which play important roles in eukaryotic gene regulation. miRNA biogenesis and activation is a complex process involving multiple protein catalysts and involves the large macromolecular RNAi Silencing Complex or RISC. While phylogenetic analyses of miRNA genes have been previously published, the evolution of miRNA biogenesis itself has been little studied. In order to better understand the origin of miRNA processing in animals and plants, we determined the phyletic occurrences and evolutionary relationships of four major miRNA pathway protein components; Dicer, Argonaute, RISC RNA-binding proteins, and Exportin-5. Results Phylogenetic analyses show that all four miRNA pathway proteins were derived from large multiple protein families. As an example, vertebrate and invertebrate Argonaute (Ago proteins diverged from a larger family of PIWI/Argonaute proteins found throughout eukaryotes. Further gene duplications among vertebrates after the evolution of chordates from urochordates but prior to the emergence of fishes lead to the evolution of four Ago paralogues. Invertebrate RISC RNA-binding proteins R2D2 and Loquacious are related to other RNA-binding protein families such as Staufens as well as vertebrate-specific TAR (HIV trans-activator RNA RNA-binding protein (TRBP and protein kinase R-activating protein (PACT. Export of small RNAs from the nucleus, including miRNA, is facilitated by three closely related karyopherin-related nuclear transporters, Exportin-5, Exportin-1 and Exportin-T. While all three exportins have direct orthologues in deutrostomes, missing exportins in arthropods (Exportin-T and nematodes (Exportin-5 are likely compensated by dual specificities of one of the other exportin paralogues. Conclusion Co-opting particular isoforms from large, diverse protein families seems to be a common theme in the evolution of miRNA biogenesis

  9. Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kristensen, Torsten N; Overgaard, Johannes; Loeschcke, Volker;

    2011-01-01

    The ability to use different food sources is likely to be under strong selection if organisms are faced with natural variation in macro-nutrient (protein, carbohydrate and lipid) availabilities. Here, we use experimental evolution to study how variable dietary protein content affects adult body...... composition and developmental success in Drosophila melanogaster. We reared flies on either a standard diet or a protein-enriched diet for 17 generations before testing them on both diet types. Flies from lines selected on protein-rich diet produced phenotypes with higher total body mass and relative lipid...

  10. Evolution of Drosophila ribosomal protein gene core promoters

    OpenAIRE

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2008-01-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, a...

  11. A General, Adaptive, Roadmap-Based Algorithm for Protein Motion Computation.

    Science.gov (United States)

    Molloy, Kevin; Shehu, Amarda

    2016-03-01

    Precious information on protein function can be extracted from a detailed characterization of protein equilibrium dynamics. This remains elusive in wet and dry laboratories, as function-modulating transitions of a protein between functionally-relevant, thermodynamically-stable and meta-stable structural states often span disparate time scales. In this paper we propose a novel, robotics-inspired algorithm that circumvents time-scale challenges by drawing analogies between protein motion and robot motion. The algorithm adapts the popular roadmap-based framework in robot motion computation to handle the more complex protein conformation space and its underlying rugged energy surface. Given known structures representing stable and meta-stable states of a protein, the algorithm yields a time- and energy-prioritized list of transition paths between the structures, with each path represented as a series of conformations. The algorithm balances computational resources between a global search aimed at obtaining a global view of the network of protein conformations and their connectivity and a detailed local search focused on realizing such connections with physically-realistic models. Promising results are presented on a variety of proteins that demonstrate the general utility of the algorithm and its capability to improve the state of the art without employing system-specific insight.

  12. Shared and Unique Proteins in Human, Mouse and Rat Saliva Proteomes: Footprints of Functional Adaptation

    Directory of Open Access Journals (Sweden)

    Robert C. Karn

    2013-12-01

    Full Text Available The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in this comparison apparently represent a core of highly-expressed human salivary proteins. Of the proteins unique to each proteome, one-half to 2/3 lack signal peptides and probably are contaminants instead of less highly-represented salivary proteins. We recently published the first rodent saliva proteomes with saliva collected from the genome mouse (C57BL/6 and the genome rat (BN/SsNHsd/Mcwi. Our second objective was to compare the proteins in the human proteome with those we identified in the genome mouse and rat to determine those common to all three mammals, as well as the specialized rodent subset. We also identified proteins unique to each of the three mammals, because differences in the secreted protein constitutions can provide clues to differences in the evolutionary adaptation of the secretions in the three different mammals.

  13. Classification and evolution of EF-hand proteins

    Science.gov (United States)

    Kawasaki, H.; Nakayama, S.; Kretsinger, R. H.

    1998-01-01

    Forty-five distinct subfamilies of EF-hand proteins have been identified. They contain from two to eight EF-hands that are recognizable by amino acid sequence as being statistically similar to other EF-hand domains. All proteins within one subfamily are congruent to one another, i.e. the dendrogram computed from one of the EF-hand domains is similar, within statistical error, to the dendrogram computed from another(s) domain. Thirteen subfamilies--including Calmodulin, Troponin C, Essential light chain, Regulatory light chain--referred to collectively as CTER, are congruent with one another. They appear to have evolved from a single ur-domain by two cycles of gene duplication and fusion. The subfamilies of CTER subsequently evolved by gene duplications and speciations. The remaining 32 subfamilies do not show such general patterns of congruence; however, some--such as S100, intestinal calcium binding protein (calbindin 9 kd), and trichohylin--do not form congruent clusters of subfamilies. Nearly all of the domains 1, 3, 5, and 7 are most similar to other ODD domains. Correspondingly the EVEN numbered domains of all 45 subfamilies most closely resemble EVEN domains of other subfamilies. Many sequence and chemical characteristics do not show systemic trends by subfamily or species of host organisms; such homoplasy is widespread. Eighteen of the subfamilies are heterochimeric; in addition to multiple EF-hands they contain domains of other evolutionary origins.

  14. Evolution and organization of the human protein C gene

    International Nuclear Information System (INIS)

    The authors have isolated overlapping phage genomic clones covering an area of 21 kilobases that encodes the human protein C gene. The gene is at least 11.2 kilobases long and is made up of nine exons and eight introns. Two regions homologous to epidermal growth factor and transforming growth factor are encoded by amino acids 46-91 and 92-136 and are precisely delimited by introns, as is a similar sequence in the genes for coagulation factor IX and tissue plasminogen activator. When homologous amino acids of factor IX and protein C are aligned, the positions of all eight introns correspond precisely, suggesting that these genes are the product of a relatively recent gene duplication. Nevertheless, the two genes are sufficiently distantly related that no nucleic acid homology remains in the intronic regions and that the size of the introns varies dramatically between the two genes. The similarity of the genes for factor IX and protein C suggests that they may be the most closely related members of the serine protease gene family involved in coagulation and fibrinolysis

  15. Reassessing Domain Architecture Evolution of Metazoan Proteins: The Contribution of Different Evolutionary Mechanisms

    Directory of Open Access Journals (Sweden)

    Laszlo Patthy

    2011-08-01

    Full Text Available In the accompanying papers we have shown that sequence errors of public databases and confusion of paralogs and epaktologs (proteins that are related only through the independent acquisition of the same domain types significantly distort the picture that emerges from comparison of the domain architecture (DA of multidomain Metazoan proteins since they introduce a strong bias in favor of terminal over internal DA change. The issue of whether terminal or internal DA changes occur with greater probability has very important implications for the DA evolution of multidomain proteins since gene fusion can add domains only at terminal positions, whereas domain-shuffling is capable of inserting domains both at internal and terminal positions. As a corollary, overestimation of terminal DA changes may be misinterpreted as evidence for a dominant role of gene fusion in DA evolution. In this manuscript we show that in several recent studies of DA evolution of Metazoa the authors used databases that are significantly contaminated with incomplete, abnormal and mispredicted sequences (e.g., UniProtKB/TrEMBL, EnsEMBL and/or the authors failed to separate paralogs and epaktologs, explaining why these studies concluded that the major mechanism for gains of new domains in metazoan proteins is gene fusion. In contrast with the latter conclusion, our studies on high quality orthologous and paralogous Swiss-Prot sequences confirm that shuffling of mobile domains had a major role in the evolution of multidomain proteins of Metazoa and especially those formed in early vertebrates.

  16. Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins.

    Science.gov (United States)

    Desdouits, Nathan; Nilges, Michael; Blondel, Arnaud

    2015-02-01

    Protein conformation has been recognized as the key feature determining biological function, as it determines the position of the essential groups specifically interacting with substrates. Hence, the shape of the cavities or grooves at the protein surface appears to drive those functions. However, only a few studies describe the geometrical evolution of protein cavities during molecular dynamics simulations (MD), usually with a crude representation. To unveil the dynamics of cavity geometry evolution, we developed an approach combining cavity detection and Principal Component Analysis (PCA). This approach was applied to four systems subjected to MD (lysozyme, sperm whale myoglobin, Dengue envelope protein and EF-CaM complex). PCA on cavities allows us to perform efficient analysis and classification of the geometry diversity explored by a cavity. Additionally, it reveals correlations between the evolutions of the cavities and structures, and can even suggest how to modify the protein conformation to induce a given cavity geometry. It also helps to perform fast and consensual clustering of conformations according to cavity geometry. Finally, using this approach, we show that both carbon monoxide (CO) location and transfer among the different xenon sites of myoglobin are correlated with few cavity evolution modes of high amplitude. This correlation illustrates the link between ligand diffusion and the dynamic network of internal cavities.

  17. Small-angle neutron scattering study of structural evolution of different phases in protein solution

    Indian Academy of Sciences (India)

    V K Aswal; S Chodankar; J Kohlbrecher; R Vavrin; A G Wagh

    2008-10-01

    Small-angle neutron scattering (SANS) has been used to study the structural evolution of different phases in protein solution leading to crystallization, denaturation and gelation. The protein solution under crystallization mostly consists of monomers and dimers, and higher-mers are not observed as they are perhaps formed in very small numbers. The onset and the rate of crystallization strongly depend on the salt concentration. Protein denaturation on addition of surfactant occurs due to the formation of micelle-like clusters along the unfolded polypeptide chains of the protein. The structure of such protein{surfactant complex is found to be independent of the size of the micelles in their pure surfactant solutions. The structure of temperature-induced protein gels shows a fractal structure. Rheology of these gels shows a strong dependence on varying pH or protein concentration, whereas the structure of such gels is found to be similar.

  18. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure.

    Science.gov (United States)

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G

    2016-11-01

    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)protein(s) was susceptible to proteolysis. Thus the compact structure of pasta protects the starch and proteins in the interior of the whole pasta, reducing the enzymatic degradation of starch molecules, especially for molecules with Rh>100nm. PMID:27516291

  19. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution.

    Science.gov (United States)

    Mannakee, Brian K; Gutenkunst, Ryan N

    2016-07-01

    The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein's rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces.

  20. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution.

    Directory of Open Access Journals (Sweden)

    Brian K Mannakee

    2016-07-01

    Full Text Available The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein's rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces.

  1. Elastic, not plastic species: Frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms

    Directory of Open Access Journals (Sweden)

    Flegr Jaroslav

    2010-01-01

    Full Text Available Abstract Background Darwin's evolutionary theory could easily explain the evolution of adaptive traits (organs and behavioral patterns in asexual but not in sexual organisms. Two models, the selfish gene theory and frozen plasticity theory were suggested to explain evolution of adaptive traits in sexual organisms in past 30 years. Results The frozen plasticity theory suggests that sexual species can evolve new adaptations only when their members are genetically uniform, i.e. only after a portion of the population of the original species had split off, balanced on the edge of extinction for several generations, and then undergone rapid expansion. After a short period of time, estimated on the basis of paleontological data to correspond to 1-2% of the duration of the species, polymorphism accumulates in the gene pool due to frequency-dependent selection; and thus, in each generation, new mutations occur in the presence of different alleles and therefore change their selection coefficients from generation to generation. The species ceases to behave in an evolutionarily plastic manner and becomes evolutionarily elastic on a microevolutionary time-scale and evolutionarily frozen on a macroevolutionary time-scale. It then exists in this state until such changes accumulate in the environment that the species becomes extinct. Conclusion Frozen plasticity theory, which includes the Darwinian model of evolution as a special case - the evolution of species in a plastic state, not only offers plenty of new predictions to be tested, but also provides explanations for a much broader spectrum of known biological phenomena than classic evolutionary theories. Reviewers This article was reviewed by Rob Knight, Fyodor Kondrashov and Massimo Di Giulio (nominated by David H. Ardell.

  2. Alpha-synuclein gene structure,evolution,and protein aggregation

    Institute of Scientific and Technical Information of China (English)

    Lili Xiong; Peng Zhao; Zhiyun Guo; Jianhua Zhang; Diqiang Li; Canquan Mao

    2010-01-01

    α-synuclein,a member of the synuclein family,is predominately expressed in brain tissues,where it is the major component of Lewy bodies,the major hallmark of Parkinson's disease.We analyzed the phylogenetics,gene structure,and effects of different forms of α-synuclein on in vitro protein aggregation.The synuclein phylogenetic tree showed that sequences could be classified into α,β,and γ protein groups.The orthologous gene α-,β-and γ-synuclein showed similar evolutionary distance to the paralogous gene α-,β-and γ-synuclein.Bioinformatics analysis suggests that the amino-acid sequence of human α-synuclein can be divided into three regions: N-terminal amphipathic region(1-60),central hydrophobic non-amyloid beta component segment(61-95),and the C-terminal acidic part(96-140).The mutant site of A30P is at the second exon of α-synuclein,whereas E46K is located at the third exon of α-synuclein.α-synuclein alternative splicing results in four isomers,and five exons,all of which participate in protein coding,comprising 140 amino acids to produce the major α-synuclein in vivo.The threeα-synuclein isoforms are products of alternative splicing,α-synuclein 126,112 and 98.We also review the genetic and cellular factors that affect the aggregation of α-synuclein and compounds that inhibit aggregation.A better understanding of α-synuclein sequences,structure,and function may allow better targeted therapy and diagnosis of α-synuclein in Parkinson's disease and other neurodegenerative diseases.

  3. β-Propeller blades as ancestral peptides in protein evolution.

    Directory of Open Access Journals (Sweden)

    Klaus O Kopec

    Full Text Available Proteins of the β-propeller fold are ubiquitous in nature and widely used as structural scaffolds for ligand binding and enzymatic activity. This fold comprises between four and twelve four-stranded β-meanders, the so called blades that are arranged circularly around a central funnel-shaped pore. Despite the large size range of β-propellers, their blades frequently show sequence similarity indicative of a common ancestry and it has been proposed that the majority of β-propellers arose divergently by amplification and diversification of an ancestral blade. Given the structural versatility of β-propellers and the hypothesis that the first folded proteins evolved from a simpler set of peptides, we investigated whether this blade may have given rise to other folds as well. Using sequence comparisons, we identified proteins of four other folds as potential homologs of β-propellers: the luminal domain of inositol-requiring enzyme 1 (IRE1-LD, type II β-prisms, β-pinwheels, and WW domains. Because, with increasing evolutionary distance and decreasing sequence length, the statistical significance of sequence comparisons becomes progressively harder to distinguish from the background of convergent similarities, we complemented our analyses with a new method that evaluates possible homology based on the correlation between sequence and structure similarity. Our results indicate a homologous relationship of IRE1-LD and type II β-prisms with β-propellers, and an analogous one for β-pinwheels and WW domains. Whereas IRE1-LD most likely originated by fold-changing mutations from a fully formed PQQ motif β-propeller, type II β-prisms originated by amplification and differentiation of a single blade, possibly also of the PQQ type. We conclude that both β-propellers and type II β-prisms arose by independent amplification of a blade-sized fragment, which represents a remnant of an ancient peptide world.

  4. β-Propeller Blades as Ancestral Peptides in Protein Evolution

    Science.gov (United States)

    Kopec, Klaus O.; Lupas, Andrei N.

    2013-01-01

    Proteins of the β-propeller fold are ubiquitous in nature and widely used as structural scaffolds for ligand binding and enzymatic activity. This fold comprises between four and twelve four-stranded β-meanders, the so called blades that are arranged circularly around a central funnel-shaped pore. Despite the large size range of β-propellers, their blades frequently show sequence similarity indicative of a common ancestry and it has been proposed that the majority of β-propellers arose divergently by amplification and diversification of an ancestral blade. Given the structural versatility of β-propellers and the hypothesis that the first folded proteins evolved from a simpler set of peptides, we investigated whether this blade may have given rise to other folds as well. Using sequence comparisons, we identified proteins of four other folds as potential homologs of β-propellers: the luminal domain of inositol-requiring enzyme 1 (IRE1-LD), type II β-prisms, β-pinwheels, and WW domains. Because, with increasing evolutionary distance and decreasing sequence length, the statistical significance of sequence comparisons becomes progressively harder to distinguish from the background of convergent similarities, we complemented our analyses with a new method that evaluates possible homology based on the correlation between sequence and structure similarity. Our results indicate a homologous relationship of IRE1-LD and type II β-prisms with β-propellers, and an analogous one for β-pinwheels and WW domains. Whereas IRE1-LD most likely originated by fold-changing mutations from a fully formed PQQ motif β-propeller, type II β-prisms originated by amplification and differentiation of a single blade, possibly also of the PQQ type. We conclude that both β-propellers and type II β-prisms arose by independent amplification of a blade-sized fragment, which represents a remnant of an ancient peptide world. PMID:24143202

  5. Plant lipid transfer proteins : Evolution, expression and function

    OpenAIRE

    Edstam, Monika

    2013-01-01

    The plant non-specific lipid transfer proteins (nsLTPs) are known for the ability to transfer different lipids in vitro, but their in vivo functions have not yet been elucidated. They seem to play a role in the defense against biotic and abiotic stresses; the gene expression of nsLTPs is often upregulated when exposed to stresses. Further, two different nsLTPs have been shown to affect the lipid composition of the plant cuticle, a structure acting as a protective barrier. However, more eviden...

  6. β-Propeller Blades as Ancestral Peptides in Protein Evolution

    OpenAIRE

    Kopec, Klaus O.; Lupas, Andrei N.

    2013-01-01

    Proteins of the β-propeller fold are ubiquitous in nature and widely used as structural scaffolds for ligand binding and enzymatic activity. This fold comprises between four and twelve four-stranded β-meanders, the so called blades that are arranged circularly around a central funnel-shaped pore. Despite the large size range of β-propellers, their blades frequently show sequence similarity indicative of a common ancestry and it has been proposed that the majority of β-propellers arose diverge...

  7. An adaptive bin framework search method for a beta-sheet protein homopolymer model

    Directory of Open Access Journals (Sweden)

    Hoos Holger H

    2007-04-01

    Full Text Available Abstract Background The problem of protein structure prediction consists of predicting the functional or native structure of a protein given its linear sequence of amino acids. This problem has played a prominent role in the fields of biomolecular physics and algorithm design for over 50 years. Additionally, its importance increases continually as a result of an exponential growth over time in the number of known protein sequences in contrast to a linear increase in the number of determined structures. Our work focuses on the problem of searching an exponentially large space of possible conformations as efficiently as possible, with the goal of finding a global optimum with respect to a given energy function. This problem plays an important role in the analysis of systems with complex search landscapes, and particularly in the context of ab initio protein structure prediction. Results In this work, we introduce a novel approach for solving this conformation search problem based on the use of a bin framework for adaptively storing and retrieving promising locally optimal solutions. Our approach provides a rich and general framework within which a broad range of adaptive or reactive search strategies can be realized. Here, we introduce adaptive mechanisms for choosing which conformations should be stored, based on the set of conformations already stored in memory, and for biasing choices when retrieving conformations from memory in order to overcome search stagnation. Conclusion We show that our bin framework combined with a widely used optimization method, Monte Carlo search, achieves significantly better performance than state-of-the-art generalized ensemble methods for a well-known protein-like homopolymer model on the face-centered cubic lattice.

  8. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis

    NARCIS (Netherlands)

    Cermak, N.M.; Res, P.T.; Groot, de C.P.G.M.; Saris, W.H.M.; Loon, van L.J.C.

    2012-01-01

    Background: Protein ingestion after a single bout of resistance-type exercise stimulates net muscle protein accretion during acute postexercise recovery. Consequently, it is generally accepted that protein supplementation is required to maximize the adaptive response of the skeletal muscle to prolon

  9. [The CRISPR case, « ready-made » mutations and Lamarckian evolution of an adaptive immunity system].

    Science.gov (United States)

    Casane, Didier; Laurenti, Patrick

    2016-01-01

    Since genetics has shown that mutation predates selection, biology has developed within the Darwinian paradigm framework. However, a mechanism that produces favorable mutations preferentially in response to adaptive constraints has been recently identified. This mechanism, the CRISPR-Cas adaptive immunity system, is considered as a bona fide example of Lamarckian evolution, even if it only reflects loosely Lamarck's ideas. This unusual evolutionary process is made possible by two prokaryotic properties: i) somatic and germinal cells are not distinct sets of cells; ii) Archae and Bacteria very frequently integrate DNA fragments from the environment, and they therefore have access to a source of "ready-made" useful genetic information. The CRISPR-Cas is a defense system against viruses and plasmids that is based on the integration of genomic fragments of these infectious agents into the host genome, and that protects the host against subsequent infections. Therefore, this mechanism does produce advantageous mutations by integrating DNA from the environment and allowing its transmission to descendants. In conclusion, most of the time evolution relies on purely Darwinian processes, i.e. mutations occurring at random, but in a small minority of cases the occurrence of mutations is more or less biased, and is therefore more or less Lamarckian. Although they are rare, such processes are nevertheless important to our understanding of the plurality of modes of evolution. PMID:27406776

  10. Co-evolution of cyanophage and cyanobacteria in Antarctic lakes: adaptive responses to high UV flux and global warming

    Science.gov (United States)

    Storrie-Lombardi, Michael C.; Pinkart, Holly C.

    2007-09-01

    Rapid adaptation to acute environmental change demands co-evolution of indigenous viral populations and their hosts. Horizontal gene transfer (HGT) is a highly efficient adaptive mechanism, but a difficult phenomena to dectect. The mosaic nature of bacteriophage genomes resulting from HGT has generally been explored using phylogenetic analysis of coding regions. Focusing on the proteome certainly provides one window into the origin and evolution of genome information storage. However, the original fitness function for a nucleotide polymer would arise from a more primal survival imperative predating the appearance of a coding function. Multivariate analysis of a genome information storage metric (lossless compression), nucleotide distributions, and distributions of the three major physiochemical characteristics of the polymer (triple:double bonding [G+C], purine:pyrimidine [G+A], and keto:amine [G+T] fractions) produces a metric to detect and characterize mosaicism in both coding and non-coding regions of a genome. We discuss possibilities and limitations of using these techniques to investigate HGT and the origins and evolution of genome complexity. Analysis of available virus (n= 2374) and bacteriophage genomes (n=417) indicates these probes can perform whole-genome taxonomy tasks or sliding window searches for evidence of HGT in a single genome. HGT responses may serve as a canary or bell-weather for global environmental change. We discuss one area of application of considerable interest to our institute: the response of cyanophage and their cyanobacteria hosts to variations in ultraviolet solar flux in geographically isolated Antarctic lakes.

  11. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio

    2015-01-26

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet\\'s performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  12. Species specificity in major urinary proteins by parallel evolution.

    Directory of Open Access Journals (Sweden)

    Darren W Logan

    Full Text Available Species-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1 diversity, to enable the signaling of multiple behaviors, 2 dynamic regulation, to indicate age and dominance, and 3 species-specificity. Recently, the major urinary proteins (Mups have been shown to function themselves as genetically-encoded pheromones to regulate species-specific behavior. Mups are multiple highly related proteins expressed in combinatorial patterns that differ between individuals, gender, and age; which are sufficient to fulfill the first two criteria. We have now characterized and fully annotated the mouse Mup gene content in detail. This has enabled us to further analyze the extent of Mup coding diversity and determine their potential to encode species-specific cues.Our results show that the mouse Mup gene cluster is composed of two subgroups: an older, more divergent class of genes and pseudogenes, and a second class with high sequence identity formed by recent sequential duplications of a single gene/pseudogene pair. Previous work suggests that truncated Mup pseudogenes may encode a family of functional hexapeptides with the potential for pheromone activity. Sequence comparison, however, reveals that they have limited coding potential. Similar analyses of nine other completed genomes find Mup gene expansions in divergent lineages, including those of rat, horse and grey mouse lemur, occurring independently from a single ancestral Mup present in other placental mammals. Our findings illustrate that increasing genomic complexity of the Mup gene family is not evolutionarily isolated, but is instead a recurring mechanism of generating coding diversity consistent with a species

  13. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yoshizawa M.

    2013-03-01

    Full Text Available Ultrafast structural evolution in photoactive yellow protein (PYP is studied by femtosecond stimulated Raman spectroscopy. A comparison between wild-type PYP and E46Q mutant reveals that the hydrogen-bonding network surrounding the chromophore of PYP is immediately rearranged in the electronic excited state.

  14. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure.

    Science.gov (United States)

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G

    2016-11-01

    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)pasta protects the starch and proteins in the interior of the whole pasta, reducing the enzymatic degradation of starch molecules, especially for molecules with Rh>100nm.

  15. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution

    Science.gov (United States)

    Mannakee, Brian K.; Gutenkunst, Ryan N.

    2016-01-01

    The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces. PMID:27380265

  16. 3D-interologs: an evolution database of physical protein- protein interactions across multiple genomes

    OpenAIRE

    Chen Yung-Chiang; Lo Yu-Shu; Yang Jinn-Moon

    2010-01-01

    Abstract Background Comprehensive exploration of protein-protein interactions is a challenging route to understand biological processes. For efficiently enlarging protein interactions annotated with residue-based binding models, we proposed a new concept "3D-domain interolog mapping" with a scoring system to explore all possible protein pairs between the two homolog families, derived from a known 3D-structure dimmer (template), across multiple species. Each family consists of homologous prote...

  17. Annotation of Selaginella moellendorffii Major Intrinsic Proteins and the Evolution of the Protein Family in Terrestrial Plants

    OpenAIRE

    Anderberg, Hanna I.; Kjellbom, Per; Johanson, Urban

    2012-01-01

    Major intrinsic proteins (MIPs) also called aquaporins form pores in membranes to facilitate the permeation of water and certain small polar solutes across membranes. MIPs are present in virtually every organism but are uniquely abundant in land plants. To elucidate the evolution and function of MIPs in terrestrial plants, the MIPs encoded in the genome of the spikemoss Selaginella moellendorffii were identified and analyzed. In total 19 MIPs were found in S. moellendorffii belonging to 6 of ...

  18. A Practical Teaching Course in Directed Protein Evolution Using the Green Fluorescent Protein as a Model

    Science.gov (United States)

    Ruller, Roberto; Silva-Rocha, Rafael; Silva, Artur; Schneider, Maria Paula Cruz; Ward, Richard John

    2011-01-01

    Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from "Aequorea victoria" by a random mutagenesis strategy using error-prone polymerase chain…

  19. No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2003-01-01

    Full Text Available Abstract Background It has been suggested that rates of protein evolution are influenced, to a great extent, by the proportion of amino acid residues that are directly involved in protein function. In agreement with this hypothesis, recent work has shown a negative correlation between evolutionary rates and the number of protein-protein interactions. However, the extent to which the number of protein-protein interactions influences evolutionary rates remains unclear. Here, we address this question at several different levels of evolutionary relatedness. Results Manually curated data on the number of protein-protein interactions among Saccharomyces cerevisiae proteins was examined for possible correlation with evolutionary rates between S. cerevisiae and Schizosaccharomyces pombe orthologs. Only a very weak negative correlation between the number of interactions and evolutionary rate of a protein was observed. Furthermore, no relationship was found between a more general measure of the evolutionary conservation of S. cerevisiae proteins, based on the taxonomic distribution of their homologs, and the number of protein-protein interactions. However, when the proteins from yeast were assorted into discrete bins according to the number of interactions, it turned out that 6.5% of the proteins with the greatest number of interactions evolved, on average, significantly slower than the rest of the proteins. Comparisons were also performed using protein-protein interaction data obtained with high-throughput analysis of Helicobacter pylori proteins. No convincing relationship between the number of protein-protein interactions and evolutionary rates was detected, either for comparisons of orthologs from two completely sequenced H. pylori strains or for comparisons of H. pylori and Campylobacter jejuni orthologs, even when the proteins were classified into bins by the number of interactions. Conclusion The currently available comparative-genomic data do not

  20. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes.

    Science.gov (United States)

    Martinez, N; Michoud, G; Cario, A; Ollivier, J; Franzetti, B; Jebbar, M; Oger, P; Peters, J

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure. PMID:27595789

  1. Birth and rapid subcellular adaptation of a hominoid-specific CDC14 protein.

    Directory of Open Access Journals (Sweden)

    Lia Rosso

    2008-06-01

    Full Text Available Gene duplication was prevalent during hominoid evolution, yet little is known about the functional fate of new ape gene copies. We characterized the CDC14B cell cycle gene and the functional evolution of its hominoid-specific daughter gene, CDC14Bretro. We found that CDC14B encodes four different splice isoforms that show different subcellular localizations (nucleus or microtubule-associated and functional properties. A microtubular CDC14B variant spawned CDC14Bretro through retroposition in the hominoid ancestor 18-25 million years ago (Mya. CDC14Bretro evolved brain-/testis-specific expression after the duplication event and experienced a short period of intense positive selection in the African ape ancestor 7-12 Mya. Using resurrected ancestral protein variants, we demonstrate that by virtue of amino acid substitutions in distinct protein regions during this time, the subcellular localization of CDC14Bretro progressively shifted from the association with microtubules (stabilizing them to an association with the endoplasmic reticulum. CDC14Bretro evolution represents a paradigm example of rapid, selectively driven subcellular relocalization, thus revealing a novel mode for the emergence of new gene function.

  2. The orphan adapter protein SLY1 as a novel anti-apoptotic protein required for thymocyte development

    Directory of Open Access Journals (Sweden)

    Beer-Hammer Sandra

    2009-07-01

    Full Text Available Abstract Background SH3 containing Lymphocyte Protein (SLY1 is a putative adapter protein exclusively expressed in lymphocytes which is involved in antigen receptor induced activation. We previously have generated SLY1Δ/Δ mice harbouring a partial deletion in the N-terminal region of SLY1 which revealed profound immunological defects in T and B cell functions. Results In this study, T cell development in SLY1-/- and SLY1Δ/Δ mice was analysed ex vivo and upon cultivation with the bone marrow stromal cell line OP9. SLY1-deficient thymocytes were compromised in inducing nutrient receptor expression and ribosomal protein S6 phosphorylation, indicating a defect in mTOR complex activation. Furthermore, SLY1 was identified as a novel anti-apoptotic protein required for developmental progression of T cell precursors to the CD4+CD8+ double-positive stage by protecting from premature programmed cell death initiation in developing CD4-CD8- double-negative thymocytes. In addition, SLY1 phosphorylation was differentially regulated upon Notch ligand-mediated stimulation and expression of the preTCR. Conclusion Thus, our results suggest a non-redundant role for SLY1 in integrating signals from both receptors in early T cell progenitors in the thymus.

  3. Self-adaptive Differential Evolution Based Optimal Power Flow for Units with Non-smooth Fuel Cost Functions

    Directory of Open Access Journals (Sweden)

    C. Thitithamrongchai

    2007-06-01

    Full Text Available This paper presents a self-adaptive differential evolution with augmented Lagrange multiplier method (SADE_ALM for solving optimal power flow (OPF problems with non-smooth generator fuel cost curves. The SADE_ALM is a modified version of conventional differential evolution (DE by integrating mutation factor (F and crossover constant (CR as additional control variables.An augmented Lagrange multiplier method (ALM is applied to handle inequality constraints instead of traditional penalty function method, whereas the sum of the violated constraint (SVC index is employed to ensure that the final result is the feasible global or quasi-global optimum.The proposed algorithm has been tested with the IEEE 30-bus system with different fuel cost characteristics, i.e. 1 quadratic cost curve model, and 2 quadratic cost curve with rectified sine component model (valve-point effects. Numerical results show that the SADE_ALM provides very impressive results compared with the previous reports.

  4. Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate‐induced range shifts

    DEFF Research Database (Denmark)

    Hargreaves, Anna; Bailey, Susan; Laird, Robert

    2015-01-01

    Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution...... at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate-induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient....... We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual-based model. We compare range-wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs...

  5. Using extremely halophilic bacteria to understand the role of surface charge and surface hydration in protein evolution, folding, and function

    Science.gov (United States)

    Hoff, Wouter; Deole, Ratnakar; Osu Collaboration

    2013-03-01

    Halophilic Archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant, and have evolved highly acidic proteomes that only function at high salinity. We examine osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila. We find that H. halophila has an acidic proteome and accumulates molar concentrations of KCl when grown in high salt media. Upon growth of H. halophila in low salt media, its cytoplasmic K + content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. We conclude that proteome acidity is not driven by stabilizing interactions between K + ions and acidic side chains, but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. We propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K + binding sites on an increasingly acidic protein surface.

  6. The limits of adaptation of functional protein synthesis to sever undernutrition

    International Nuclear Information System (INIS)

    Our goal is to determine how the stress of infections alters the adaptation to reduced food intake in children. We think that an important element is the need for hepatic synthesis of rapidly turning over acute-phase proteins, a critical factor in overall maintenance of host defenses. When the child's prior intake has been adequate, even though growth may temporarily cease, the presence of adequate amino acid stores in tissues allows the hepatic response to stress to be maintained at the same time as an adequate rate of synthesis of nutrient transport proteins. However, when the immune system is activated in a children whose nutrition is already suboptimal the ability of the liver to synthesize nutrient transport proteins is compromised thereby further impeding nutrient utilization. We will use stable isotope tracer methodology to determine the effects of severe protein energy malnutrition, with and without infection, on the rates of synthesis of nutrient transport proteins and acute-phase proteins in undernourished children at three time points during treatment; in the early resuscitative period, after appetite has returned, and at the end of the catch-up growth phase when normal growth has resumed. (author). 12 refs, 1 fig., 1 tab

  7. Evolution of Escherichia coli to 42 °C and Subsequent Genetic Engineering Reveals Adaptive Mechanisms and Novel Mutations

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Pedersen, Margit; LaCroix, Ryan A.;

    2014-01-01

    two or more strains. This mutational recurrence pointed to the key genetic targets underlying the evolved fitness increase. Genome engineering was used to introduce the novel ALE-acquired alleles in random combinations into the ancestral strain, and competition between these engineered strains...... conditions allowed selection based on exponential-phase growth rate, yielding strains that uniformly converged toward a similar phenotype along distinct genetic paths. Adapted strains possessed as few as 6 and as many as 55 mutations, and of the 144 genes that mutated in total, 14 arose independently across...... reaffirmed the impact of the key mutations on the growth rate at 42 °C. Interestingly, most of the identified key gene targets differed significantly from those found in similar temperature adaptation studies, highlighting the sensitivity of genetic evolution to experimental conditions and ancestral genotype...

  8. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks.

    Science.gov (United States)

    Wilson, Laura A B; Colombo, Marco; Sánchez-Villagra, Marcelo R; Salzburger, Walter

    2015-01-01

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time. PMID:26584885

  9. Modification of gene duplicability during the evolution of protein interaction network.

    Directory of Open Access Journals (Sweden)

    Matteo D'Antonio

    2011-04-01

    Full Text Available Duplications of genes encoding highly connected and essential proteins are selected against in several species but not in human, where duplicated genes encode highly connected proteins. To understand when and how gene duplicability changed in evolution, we compare gene and network properties in four species (Escherichia coli, yeast, fly, and human that are representative of the increase in evolutionary complexity, defined as progressive growth in the number of genes, cells, and cell types. We find that the origin and conservation of a gene significantly correlates with the properties of the encoded protein in the protein-protein interaction network. All four species preserve a core of singleton and central hubs that originated early in evolution, are highly conserved, and accomplish basic biological functions. Another group of hubs appeared in metazoans and duplicated in vertebrates, mostly through vertebrate-specific whole genome duplication. Such recent and duplicated hubs are frequently targets of microRNAs and show tissue-selective expression, suggesting that these are alternative mechanisms to control their dosage. Our study shows how networks modified during evolution and contributes to explaining the occurrence of somatic genetic diseases, such as cancer, in terms of network perturbations.

  10. Science and technology libraries in evolution: adaptation and synergy for survival and success

    OpenAIRE

    Nieuwenhuysen, Paul

    2004-01-01

    A brief overview is presented of some challenges that science and technology libraries have to face, caused by the evolution from classical libraries towards more electronic and digital libraries. This is a consequence of the fast evolution in information and communication technology (ICT) that has lead to more applications of ICT, not only to manage classical libraries, but also to create, distribute and access information resources in digital format through computer networks.

  11. Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution

    Directory of Open Access Journals (Sweden)

    Lu Zhongyi

    2007-06-01

    Full Text Available Abstract Background Many of the mutations accumulated by naturally evolving proteins are neutral in the sense that they do not significantly alter a protein's ability to perform its primary biological function. However, new protein functions evolve when selection begins to favor other, "promiscuous" functions that are incidental to a protein's original biological role. If mutations that are neutral with respect to a protein's primary biological function cause substantial changes in promiscuous functions, these mutations could enable future functional evolution. Results Here we investigate this possibility experimentally by examining how cytochrome P450 enzymes that have evolved neutrally with respect to activity on a single substrate have changed in their abilities to catalyze reactions on five other substrates. We find that the enzymes have sometimes changed as much as four-fold in the promiscuous activities. The changes in promiscuous activities tend to increase with the number of mutations, and can be largely rationalized in terms of the chemical structures of the substrates. The activities on chemically similar substrates tend to change in a coordinated fashion, potentially providing a route for systematically predicting the change in one activity based on the measurement of several others. Conclusion Our work suggests that initially neutral genetic drift can lead to substantial changes in protein functions that are not currently under selection, in effect poising the proteins to more readily undergo functional evolution should selection favor new functions in the future. Reviewers This article was reviewed by Martijn Huynen, Fyodor Kondrashov, and Dan Tawfik (nominated by Christoph Adami.

  12. Evolution and protein interactions of AP2 proteins in Brassicaceae:Evidence linking development and environmental responses

    Institute of Scientific and Technical Information of China (English)

    Liping Zeng; Yue Yin; Chenjiang You; Qianli Pan; Duo Xu; Taijie Jin; Bailong Zhang; and Hong Ma

    2016-01-01

    Plants have evolved a large number of transcrip-tion factors (TF), which are enriched among duplicate genes, highlighting their roles in complex regulatory networks. The APETALA2/EREBP-like genes constitute a large plant TF family and participate in development and stress responses. To probe the conservation and divergence of AP2/EREBP genes, we analyzed the duplication patterns of this family in Brassicaceae and identified interacting proteins of represen-tative Arabidopsis AP2/EREBP proteins. We found that many AP2/EREBP duplicates generated early in Brassicaceae history were quickly lost, but many others were retained in all tested Brassicaceae species, suggesting early functional divergence followed by persistent conservation. In addition, the sequences of the AP2 domain and exon numbers were highly conserved in rosids. Furthermore, we used 16 A. thaliana AP2/EREBP proteins as baits in yeast screens and identified 1,970 potential AP2/EREBP-interacting proteins, with a small subset of interactions verified in planta. Many AP2 genes also exhibit reduced expression in an anther- defective mutant, providing a possible link to developmental regulation. The putative AP2-interacting proteins participate in many functions in development and stress responses, including photomorphogenesis, flower development, path-ogenesis, drought and cold responses, abscisic acid and auxin signaling. Our results present the AP2/EREBP evolution patterns in Brassicaceae, and support a proposed interaction network of AP2/EREBP proteins and their putative interacting proteins for further study.

  13. Origin and evolution of new exons in the rodent zinc finger protein 39 gene

    Institute of Scientific and Technical Information of China (English)

    PENG Lixin; ZHENG Hongkun; LI Xin; YANG Shuang; CHEN Hong; WANG Wen

    2005-01-01

    The origin of new structures and functions is an important process in evolution. In the past decades, we have obtained some preliminary knowledge of the origin and evolution of new genes. However, as the basic unit of genes, the origin and evolution of exons remain unclear. Because young exons retain the footprints of origination, they can be good materials for studying origin and evolution of new exons. In this paper, we report two young exons in a zinc finger protein gene of rodents. Since they are unique sequences in mouse and rat genome and no homologous sequences were found in the orthologous genes of human and pig, the young exons might originate after the divergence of primates and rodents through exonization of intronic sequences. Strong positive selection was detected in the new exons between mouse and rat, suggesting that these exons have undergone significant functional divergence after the separation of the two species. On the other hand, population genetics data of mouse demonstrate that the new exons have been subject to functional constraint, indicating an important function of the new exons in mouse. Functional analyses suggest that these new exons encode a nuclear localization signal peptide, which may mediate new ways of nuclear protein transport. To our knowledge, this is the first example of the origin and evolution of young exons.

  14. Interrelationship Between Protein Electrostatics and Evolution in HCV and HIV Replicative Proteins

    OpenAIRE

    Frenz, Christopher M.

    2008-01-01

    Protein electrostatics have been demonstrated to play a vital role in protein functionality, with many functionally important amino acid residues exhibiting an electrostatic state that is altered from that of a normal amino acid residue. Residues with altered electrostatic states can be identified by the presence of a pKa value that is perturbed by 2 or more pK units, and such residues have been demonstrated to play critical roles in catalysis, ligand binding, and protein stability. Within th...

  15. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian

    2010-01-16

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  16. Evolutionary Characteristics of Missing Proteins: Insights into the Evolution of Human Chromosomes Related to Missing-Protein-Encoding Genes.

    Science.gov (United States)

    Xu, Aishi; Li, Guang; Yang, Dong; Wu, Songfeng; Ouyang, Hongsheng; Xu, Ping; He, Fuchu

    2015-12-01

    Although the "missing protein" is a temporary concept in C-HPP, the biological information for their "missing" could be an important clue in evolutionary studies. Here we classified missing-protein-encoding genes into two groups, the genes encoding PE2 proteins (with transcript evidence) and the genes encoding PE3/4 proteins (with no transcript evidence). These missing-protein-encoding genes distribute unevenly among different chromosomes, chromosomal regions, or gene clusters. In the view of evolutionary features, PE3/4 genes tend to be young, spreading at the nonhomology chromosomal regions and evolving at higher rates. Interestingly, there is a higher proportion of singletons in PE3/4 genes than the proportion of singletons in all genes (background) and OTCSGs (organ, tissue, cell type-specific genes). More importantly, most of the paralogous PE3/4 genes belong to the newly duplicated members of the paralogous gene groups, which mainly contribute to special biological functions, such as "smell perception". These functions are heavily restricted into specific type of cells, tissues, or specific developmental stages, acting as the new functional requirements that facilitated the emergence of the missing-protein-encoding genes during evolution. In addition, the criteria for the extremely special physical-chemical proteins were first set up based on the properties of PE2 proteins, and the evolutionary characteristics of those proteins were explored. Overall, the evolutionary analyses of missing-protein-encoding genes are expected to be highly instructive for proteomics and functional studies in the future.

  17. Contractile activity-induced adaptations in the mitochondrial protein import system.

    Science.gov (United States)

    Takahashi, M; Chesley, A; Freyssenet, D; Hood, D A

    1998-05-01

    We previously demonstrated that subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial subfractions import proteins at different rates. This study was undertaken to investigate 1) whether protein import is altered by chronic contractile activity, which induces mitochondrial biogenesis, and 2) whether these two subfractions adapt similarly. Using electrical stimulation (10 Hz, 3 h/day for 7 and 14 days) to induce contractile activity, we observed that malate dehydrogenase import into the matrix of the SS and IMF mitochondia isolated from stimulated muscle was significantly increased by 1.4-to 1.7-fold, although the pattern of increase differed for each subfraction. This acceleration of import may be mitochondrial compartment specific, since the import of Bcl-2 into the outer membrane was not affected. Contractile activity also modified the mitochondrial content of proteins comprising the import machinery, as evident from increases in the levels of the intramitochondrial chaperone mtHSP70 as well as the outer membrane import receptor Tom20 in SS and IMF mitochondria. Addition of cytosol isolated from stimulated or control muscles to the import reaction resulted in similar twofold increases in the ability of mitochondria to import malate dehydrogenase, despite elevations in the concentration of mitochondrial import-stimulating factor within the cytosol of chronically stimulated muscle. These results suggest that chronic contractile activity modifies the extra- and intramitochondrial environments in a fashion that favors the acceleration of precursor protein import into the matrix of the organelle. This increase in protein import is likely an important adaptation in the overall process of mitochondrial biogenesis. PMID:9612226

  18. Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata).

    Science.gov (United States)

    Torres-Dowdall, Julián; Handelsman, Corey A; Reznick, David N; Ghalambor, Cameron K

    2012-11-01

    Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator-induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on guppies obtained from two drainages containing populations adapted to high- and low-predation environments. We reared full-siblings from all populations in treatments simulating the presumed ancestral (predator cues present) and derived (predator cues absent) conditions and measured water column use, head morphology, and size at maturity. When reared in presence of predator cues, all populations had phenotypes that were typical of a high-predation ecotype. However, when reared in the absence of predator cues, guppies from high- and low-predation regimes differed in head morphology and size at maturity; the qualitative nature of these differences corresponded to those that characterize adaptive phenotypes in high- versus low-predation environments. Thus, divergence in plasticity is due to phenotypic differences between high- and low-predation populations when reared in the absence of predator cues. These results suggest that plasticity might initially play an important role during colonization of novel environments, and then evolve as a by-product of adaptation to the derived environment.

  19. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals

    Directory of Open Access Journals (Sweden)

    Zo Young-Gun

    2009-04-01

    Full Text Available Abstract Background Phospholipid hydroperoxide glutathione peroxidases (PHGPx, the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown. Results We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms. Conclusion Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic

  20. Intra-chain 3D segment swapping spawns the evolution of new multidomain protein architectures.

    Science.gov (United States)

    Szilágyi, András; Zhang, Yang; Závodszky, Péter

    2012-01-01

    Multidomain proteins form in evolution through the concatenation of domains, but structural domains may comprise multiple segments of the chain. In this work, we demonstrate that new multidomain architectures can evolve by an apparent three-dimensional swap of segments between structurally similar domains within a single-chain monomer. By a comprehensive structural search of the current Protein Data Bank (PDB), we identified 32 well-defined segment-swapped proteins (SSPs) belonging to 18 structural families. Nearly 13% of all multidomain proteins in the PDB may have a segment-swapped evolutionary precursor as estimated by more permissive searching criteria. The formation of SSPs can be explained by two principal evolutionary mechanisms: (i) domain swapping and fusion (DSF) and (ii) circular permutation (CP). By large-scale comparative analyses using structural alignment and hidden Markov model methods, it was found that the majority of SSPs have evolved via the DSF mechanism, and a much smaller fraction, via CP. Functional analyses further revealed that segment swapping, which results in two linkers connecting the domains, may impart directed flexibility to multidomain proteins and contributes to the development of new functions. Thus, inter-domain segment swapping represents a novel general mechanism by which new protein folds and multidomain architectures arise in evolution, and SSPs have structural and functional properties that make them worth defining as a separate group. PMID:22079367

  1. Adaptive evolution of multiple traits through multiple mutations at a single gene.

    Science.gov (United States)

    Linnen, Catherine R; Poh, Yu-Ping; Peterson, Brant K; Barrett, Rowan D H; Larson, Joanna G; Jensen, Jeffrey D; Hoekstra, Hopi E

    2013-03-15

    The identification of precise mutations is required for a complete understanding of the underlying molecular and evolutionary mechanisms driving adaptive phenotypic change. Using plasticine models in the field, we show that the light coat color of deer mice that recently colonized the light-colored soil of the Nebraska Sand Hills provides a strong selective advantage against visually hunting predators. Color variation in an admixed population suggests that this light Sand Hills phenotype is composed of multiple traits. We identified distinct regions within the Agouti locus associated with each color trait and found that only haplotypes associated with light trait values have evidence of selection. Thus, local adaptation is the result of independent selection on many mutations within a single locus, each with a specific effect on an adaptive phenotype, thereby minimizing pleiotropic consequences. PMID:23493712

  2. Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain.

    Science.gov (United States)

    Ji, Boyang; Zhang, Sheng-Da; Arnoux, Pascal; Rouy, Zoe; Alberto, François; Philippe, Nadège; Murat, Dorothée; Zhang, Wei-Jia; Rioux, Jean-Baptiste; Ginet, Nicolas; Sabaty, Monique; Mangenot, Sophie; Pradel, Nathalie; Tian, Jiesheng; Yang, Jing; Zhang, Lichen; Zhang, Wenyan; Pan, Hongmiao; Henrissat, Bernard; Coutinho, Pedro M; Li, Ying; Xiao, Tian; Médigue, Claudine; Barbe, Valérie; Pignol, David; Talla, Emmanuel; Wu, Long-Fei

    2014-02-01

    Magnetotactic bacteria (MTB) are capable of synthesizing intracellular organelles, the magnetosomes, that are membrane-bounded magnetite or greigite crystals arranged in chains. Although MTB are widely spread in various ecosystems, few axenic cultures are available, and only freshwater Magnetospirillum spp. have been genetically analysed. Here, we present the complete genome sequence of a marine magnetotactic spirillum, Magnetospira sp. QH-2. The high number of repeats and transposable elements account for the differences in QH-2 genome structure compared with other relatives. Gene cluster synteny and gene correlation analyses indicate that the insertion of the magnetosome island in the QH-2 genome occurred after divergence between freshwater and marine magnetospirilla. The presence of a sodium-quinone reductase, sodium transporters and other functional genes are evidence of the adaptive evolution of Magnetospira sp. QH-2 to the marine ecosystem. Genes well conserved among freshwater magnetospirilla for nitrogen fixation and assimilatory nitrate respiration are absent from the QH-2 genome. Unlike freshwater Magnetospirillum spp., marine Magnetospira sp. QH-2 neither has TonB and TonB-dependent receptors nor does it grow on trace amounts of iron. Taken together, our results show a distinct, adaptive evolution of Magnetospira sp. QH-2 to marine sediments in comparison with its closely related freshwater counterparts. PMID:23841906

  3. Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores

    Science.gov (United States)

    Wendell, David; Jing, Peng; Geng, Jia; Subramaniam, Varuni; Lee, Tae Jin; Montemagno, Carlo; Guo, Peixuan

    2009-11-01

    Biological pores have been used to study the transport of DNA and other molecules, but most pores have channels that allow only the movement of small molecules and single-stranded DNA and RNA. The bacteriophage phi29 DNA-packaging motor, which allows double-stranded DNA to enter the virus during maturation and exit during an infection, contains a connector protein with a channel that is between 3.6 and 6 nm wide. Here we show that a modified version of this connector protein, when reconstituted into liposomes and inserted into planar lipid bilayers, allows the translocation of double-stranded DNA. The measured conductance of a single connector channel was 4.8 nS in 1 M KCl. This engineered and membrane-adapted phage connector is expected to have applications in microelectromechanical sensing, microreactors, gene delivery, drug loading and DNA sequencing.

  4. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature?

    DEFF Research Database (Denmark)

    Bailey, Susan; Bataillon, Thomas

    2015-01-01

    , suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions – that is simple environments, a small range of usually asexual species, relatively short timescales – the question remains as to how applicable...

  5. The evolution of an annual life cycle in killifish: adaptation to ephemeral aquatic environments through embryonic diapause.

    Science.gov (United States)

    Furness, Andrew I

    2016-08-01

    An annual life cycle is characterized by growth, maturity, and reproduction condensed into a single, short season favourable to development, with production of embryos (seeds, cysts, or eggs) capable of surviving harsh conditions which juveniles or adults cannot tolerate. More typically associated with plants in desert environments, or temperate-zone insects exposed to freezing winters, the evolution of an annual life cycle in vertebrates is fairly novel. Killifish, small sexually dimorphic fishes in the Order Cyprinodontiformes, have adapted to seasonally ephemeral water bodies across much of Africa and South America through the independent evolution of an annual life history. These annual killifish produce hardy desiccation-resistant eggs that undergo diapause (developmental arrest) and remain buried in the soil for long periods when fish have perished due to the drying of their habitat. Killifish are found in aquatic habitats that span a continuum from permanent and stable to seasonal and variable, thus providing a useful system in which to piece together the evolutionary history of this life cycle using natural comparative variation. I first review adaptations for life in ephemeral aquatic environments in killifish, with particular emphasis on the evolution of embryonic diapause. I then bring together available evidence from a variety of approaches and provide a scenario for how this annual life cycle evolved. There are a number of features within Aplocheiloidei killifish including their inhabitation of marginal or edge aquatic habitat, their small size and rapid attainment of maturity, and egg properties that make them particularly well suited to the colonization of ephemeral waters. PMID:25969869

  6. The elusive nature of adaptive mitochondrial DNA evolution of an Arctic lineage prone to frequent introgression

    DEFF Research Database (Denmark)

    Melo-Ferreira, Jose; Vilela, Joana; Fonseca, Miguel M.;

    2014-01-01

    Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from...

  7. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    Science.gov (United States)

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique

  8. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    Directory of Open Access Journals (Sweden)

    Damien B Wilburn

    Full Text Available In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s without the immediate need for complementary mutations. Consequently

  9. Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios

    Directory of Open Access Journals (Sweden)

    J.-P. Vidal

    2012-02-01

    Full Text Available Drought events develop in both space and time and they are therefore best described through summary joint spatio-temporal characteristics, like mean duration, mean affected area and total magnitude. This paper addresses the issue of future projections of such characteristics of drought events over France through three main research questions: (1 are downscaled climate projections able to reproduce spatio-temporal characteristics of meteorological and agricultural droughts in France over a present-day period? (2 How such characteristics will evolve over the 21st century? (3 How to use standardized drought indices to represent theoretical adaptation scenarios? These questions are addressed using the Isba land surface model, downscaled climate projections from the ARPEGE General Circulation Model under three emissions scenarios, as well as results from a previously performed 50-yr multilevel and multiscale drought reanalysis over France. Spatio-temporal characteristics of meteorological and agricultural drought events are computed using the Standardized Precipitation Index and the Standardized Soil Wetness Index, respectively, and for time scales of 3 and 12 months. Results first show that the distributions of joint spatio-temporal characteristics of observed events are well reproduced by the downscaled hydroclimate projections over a present-day period. All spatio-temporal characteristics of drought events are then found to dramatically increase over the 21st century, with stronger changes for agricultural droughts. Two theoretical adaptation scenarios are eventually built based on hypotheses of adaptation to evolving climate and hydrological normals, either retrospective or prospective, and by taking advantage of the statistical properties of the standardized drought indices. The perceived spatio-temporal characteristics of drought events derived from these theoretical adaptation scenarios show much reduced changes, but they call for more

  10. Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios

    Directory of Open Access Journals (Sweden)

    J.-P. Vidal

    2012-08-01

    Full Text Available Drought events develop in both space and time and they are therefore best described through summary joint spatio-temporal characteristics, such as mean duration, mean affected area and total magnitude. This paper addresses the issue of future projections of such characteristics of drought events over France through three main research questions: (1 Are downscaled climate projections able to simulate spatio-temporal characteristics of meteorological and agricultural droughts in France over a present-day period? (2 How such characteristics will evolve over the 21st century? (3 How to use standardized drought indices to represent theoretical adaptation scenarios? These questions are addressed using the Isba land surface model, downscaled climate projections from the ARPEGE General Circulation Model under three emissions scenarios, as well as results from a previously performed 50-yr multilevel and multiscale drought reanalysis over France. Spatio-temporal characteristics of meteorological and agricultural drought events are computed using the Standardized Precipitation Index and the Standardized Soil Wetness Index, respectively, and for time scales of 3 and 12 months. Results first show that the distributions of joint spatio-temporal characteristics of observed events are well simulated by the downscaled hydroclimate projections over a present-day period. All spatio-temporal characteristics of drought events are then found to dramatically increase over the 21st century, with stronger changes for agricultural droughts. Two theoretical adaptation scenarios are eventually built based on hypotheses of adaptation to evolving climate and hydrological normals, either retrospective or prospective. The perceived spatio-temporal characteristics of drought events derived from these theoretical adaptation scenarios show much reduced changes, but they call for more realistic scenarios at both the catchment and national scale in order to accurately assess the

  11. Evolution of light-harvesting complex proteins from Chl c-containing algae

    Directory of Open Access Journals (Sweden)

    Puerta M Virginia

    2011-04-01

    Full Text Available Abstract Background Light harvesting complex (LHC proteins function in photosynthesis by binding chlorophyll (Chl and carotenoid molecules that absorb light and transfer the energy to the reaction center Chl of the photosystem. Most research has focused on LHCs of plants and chlorophytes that bind Chl a and b and extensive work on these proteins has uncovered a diversity of biochemical functions, expression patterns and amino acid sequences. We focus here on a less-studied family of LHCs that typically bind Chl a and c, and that are widely distributed in Chl c-containing and other algae. Previous phylogenetic analyses of these proteins suggested that individual algal lineages possess proteins from one or two subfamilies, and that most subfamilies are characteristic of a particular algal lineage, but genome-scale datasets had revealed that some species have multiple different forms of the gene. Such observations also suggested that there might have been an important influence of endosymbiosis in the evolution of LHCs. Results We reconstruct a phylogeny of LHCs from Chl c-containing algae and related lineages using data from recent sequencing projects to give ~10-fold larger taxon sampling than previous studies. The phylogeny indicates that individual taxa possess proteins from multiple LHC subfamilies and that several LHC subfamilies are found in distantly related algal lineages. This phylogenetic pattern implies functional differentiation of the gene families, a hypothesis that is consistent with data on gene expression, carotenoid binding and physical associations with other LHCs. In all probability LHCs have undergone a complex history of evolution of function, gene transfer, and lineage-specific diversification. Conclusion The analysis provides a strikingly different picture of LHC diversity than previous analyses of LHC evolution. Individual algal lineages possess proteins from multiple LHC subfamilies. Evolutionary relationships showed

  12. This Deja vu feeling--analysis of multidomain protein evolution in eukaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Christian M Zmasek

    Full Text Available Evolutionary innovation in eukaryotes and especially animals is at least partially driven by genome rearrangements and the resulting emergence of proteins with new domain combinations, and thus potentially novel functionality. Given the random nature of such rearrangements, one could expect that proteins with particularly useful multidomain combinations may have been rediscovered multiple times by parallel evolution. However, existing reports suggest a minimal role of this phenomenon in the overall evolution of eukaryotic proteomes. We assembled a collection of 172 complete eukaryotic genomes that is not only the largest, but also the most phylogenetically complete set of genomes analyzed so far. By employing a maximum parsimony approach to compare repertoires of Pfam domains and their combinations, we show that independent evolution of domain combinations is significantly more prevalent than previously thought. Our results indicate that about 25% of all currently observed domain combinations have evolved multiple times. Interestingly, this percentage is even higher for sets of domain combinations in individual species, with, for instance, 70% of the domain combinations found in the human genome having evolved independently at least once in other species. We also show that previous, much lower estimates of this rate are most likely due to the small number and biased phylogenetic distribution of the genomes analyzed. The process of independent emergence of identical domain combination is widespread, not limited to domains with specific functional categories. Besides data from large-scale analyses, we also present individual examples of independent domain combination evolution. The surprisingly large contribution of parallel evolution to the development of the domain combination repertoire in extant genomes has profound consequences for our understanding of the evolution of pathways and cellular processes in eukaryotes and for comparative

  13. Predicting functional divergence in protein evolution by site-specific rate shifts

    Science.gov (United States)

    Gaucher, Eric A.; Gu, Xun; Miyamoto, Michael M.; Benner, Steven A.

    2002-01-01

    Most modern tools that analyze protein evolution allow individual sites to mutate at constant rates over the history of the protein family. However, Walter Fitch observed in the 1970s that, if a protein changes its function, the mutability of individual sites might also change. This observation is captured in the "non-homogeneous gamma model", which extracts functional information from gene families by examining the different rates at which individual sites evolve. This model has recently been coupled with structural and molecular biology to identify sites that are likely to be involved in changing function within the gene family. Applying this to multiple gene families highlights the widespread divergence of functional behavior among proteins to generate paralogs and orthologs.

  14. EDGA: A Population Evolution Direction-Guided Genetic Algorithm for Protein-Ligand Docking.

    Science.gov (United States)

    Guan, Boxin; Zhang, Changsheng; Ning, Jiaxu

    2016-07-01

    Protein-ligand docking can be formulated as a search algorithm associated with an accurate scoring function. However, most current search algorithms cannot show good performance in docking problems, especially for highly flexible docking. To overcome this drawback, this article presents a novel and robust optimization algorithm (EDGA) based on the Lamarckian genetic algorithm (LGA) for solving flexible protein-ligand docking problems. This method applies a population evolution direction-guided model of genetics, in which search direction evolves to the optimum solution. The method is more efficient to find the lowest energy of protein-ligand docking. We consider four search methods-a tradition genetic algorithm, LGA, SODOCK, and EDGA-and compare their performance in docking of six protein-ligand docking problems. The results show that EDGA is the most stable, reliable, and successful. PMID:26895461

  15. Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination.

    Science.gov (United States)

    Carmona, Lina Marcela; Fugmann, Sebastian D; Schatz, David G

    2016-04-15

    The recombination-activating gene 1 (RAG1) and RAG2 proteins initiate V(D)J recombination, the process that assembles the B- and T-lymphocyte antigen receptor genes of jawed vertebrates. RAG1 and RAG2 are thought to have arisen from a transposable element, but the origins of this element are not understood. We show that two ancestral RAG1 proteins, Transib transposase and purple sea urchin RAG1-like, have a latent ability to initiate V(D)J recombination when coexpressed with RAG2 and that in vitro transposition by Transib transposase is stimulated by RAG2. Conversely, we report low levels of V(D)J recombination by RAG1 in the absence of RAG2. Recombination by RAG1 alone differs from canonical V(D)J recombination in having lost the requirement for asymmetric DNA substrates, implicating RAG2 in the origins of the "12/23 rule," a fundamental regulatory feature of the reaction. We propose that evolution of RAG1/RAG2 began with a Transib transposon whose intrinsic recombination activity was enhanced by capture of an ancestral RAG2, allowing for the development of adaptive immunity.

  16. Engineering and evolution of molecular chaperones and protein disaggregases with enhanced activity

    Directory of Open Access Journals (Sweden)

    Korrie eMack

    2016-03-01

    Full Text Available Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson’s disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector.

  17. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    Science.gov (United States)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  18. No accelerated rate of protein evolution in male-biased Drosophila pseudoobscura genes.

    OpenAIRE

    Metta, Muralidhar; Gudavalli, Rambabu; Gibert, Jean-Michel; Schlotterer, Christian

    2006-01-01

    Sexually dimorphic traits are often subject to diversifying selection. Genes with a male-biased gene expression also are probably affected by sexual selection and have a high rate of protein evolution. We used SAGE to measure sex-biased gene expression in Drosophila pseudoobscura. Consistent with previous results from D. melanogaster, a larger number of genes were male biased (402 genes) than female biased (138 genes). About 34% of the genes changed the sex-related expression pattern between ...

  19. The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq

    OpenAIRE

    Rieseberg, Loren H.; Kane, Nolan C.; Brook T. Moyers; Sébastien Renaut; Grassa, Christopher J.

    2012-01-01

    Few studies have investigated the causes of evolutionary rate variation among plant nuclear genes, especially in recently diverged species still capable of hybridizing in the wild. The recent advent of Next Generation Sequencing (NGS) permits investigation of genome wide rates of protein evolution and the role of selection in generating and maintaining divergence. Here, we use individual whole-transcriptome sequencing (RNAseq) to refine our understanding of the population genomics of wild spe...

  20. FK506 binding protein 51 integrates pathways of adaptation: FKBP51 shapes the reactivity to environmental change.

    Science.gov (United States)

    Rein, Theo

    2016-09-01

    This review portraits FK506 binding protein (FKBP) 51 as "reactivity protein" and collates recent publications to develop the concept of FKBP51 as contributor to different levels of adaptation. Adaptation is a fundamental process that enables unicellular and multicellular organisms to adjust their molecular circuits and structural conditions in reaction to environmental changes threatening their homeostasis. FKBP51 is known as chaperone and co-chaperone of heat shock protein (HSP) 90, thus involved in processes ensuring correct protein folding in response to proteotoxic stress. In mammals, FKBP51 both shapes the stress response and is calibrated by the stress levels through an ultrashort molecular feedback loop. More recently, it has been linked to several intracellular pathways related to the reactivity to drug exposure and stress. Through its role in autophagy and DNA methylation in particular it influences adaptive pathways, possibly also in a transgenerational fashion. Also see the video abstract here. PMID:27374865

  1. Human Skeletal Muscle Stem Cells in Adaptations to Exercise; Effects of Resistance Exercise Contraction Mode and Protein Supplementation

    DEFF Research Database (Denmark)

    Farup, Jean

    2014-01-01

    protein constitute key factors in regulation of human skeletal muscle mass; however, the influence of divergent resistance exercise contraction modes and protein supplementation on SC content, is not well described. The overall aim of the present thesis was to investigate whether eccentric versus...... concentric resistance training and ingestion of protein influence myocellular adaptations, with special emphasis on muscle stem cell adaptations, during both acute and prolonged resistance exercise in human skeletal muscle. Paper I. Whey protein supplementation accelerates satellite cell proliferation during....... In conclusion, protein supplementation may accelerate SC proliferation as part of regeneration or remodeling processes after maximal eccentric exercise. Paper II. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of exercise contraction mode. The aim of paper II was to investigate...

  2. Has Human Evolution Stopped?

    OpenAIRE

    Templeton, Alan R.

    2010-01-01

    It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important ...

  3. The Gene Tbx5 Links Development, Evolution and Adaptation of the Sternum in Terrestrial Vertebrates

    OpenAIRE

    Bickley, S. R. B.

    2013-01-01

    The transition from fins to limbs during the colonisation of land was a key innovation in vertebrate evolution. Changes in the limb and shoulder girdle during this event have been investigated extensively, but little attention has been given to the acquisition of the sternum, a feature considered characteristic of virtually all terrestrial vertebrates, and which is mandatory for tetrapod locomotion. The sternum is a thin flat bone lying at the ventral midline of the thorax that provides a cru...

  4. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution.

    Science.gov (United States)

    Fumagalli, Matteo; Sironi, Manuela; Pozzoli, Uberto; Ferrer-Admetlla, Anna; Ferrer-Admettla, Anna; Pattini, Linda; Nielsen, Rasmus

    2011-11-01

    Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55 distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs, and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here, only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis, which lends credence to the hypothesis that some

  5. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution.

    Directory of Open Access Journals (Sweden)

    Matteo Fumagalli

    2011-11-01

    Full Text Available Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55 distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs, and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here, only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis, which lends credence to the

  6. Rapid evolution in response to introduced predators II: the contribution of adaptive plasticity

    OpenAIRE

    Knapp Roland A; Bakelar Jeremy W; Latta Leigh C; Pfrender Michael E

    2007-01-01

    Abstract Background Introductions of non-native species can significantly alter the selective environment for populations of native species, which can respond through phenotypic plasticity or genetic adaptation. We examined phenotypic and genetic responses of Daphnia populations to recent introductions of non-native fish to assess the relative roles of phenotypic plasticity versus genetic change in causing the observed patterns. The Daphnia community in alpine lakes throughout the Sierra Neva...

  7. Genome-wide analysis of adaptive molecular evolution in the carnivorous plant Utricularia gibba

    OpenAIRE

    CARRETERO PAULET, LORENZO; Chang, T-H; Librado Sanz, Pablo; Ibarra Laclette, E.; Herrera Estrella, L.; Rozas Liras, Julio A.; Albert, V.A.

    2015-01-01

    The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compa...

  8. Genome-Wide Analysis of Adaptive Molecular Evolution in the Carnivorous Plant Utricularia gibba

    OpenAIRE

    Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Librado, Pablo; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A.

    2015-01-01

    The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compa...

  9. Long-Term Experimental Evolution in Escherichia Coli. VI. Environmental Constraints on Adaptation and Divergence

    OpenAIRE

    Travisano, M.

    1997-01-01

    The effect of environment on adaptation and divergence was examined in two sets of populations of Escherichia coli selected for 1000 generations in either maltose- or glucose-limited media. Twelve replicate populations selected in maltose-limited medium improved in fitness in the selected environment, by an average of 22.5%. Statistically significant among-population genetic variation for fitness was observed during the course of the propagation, but this variation was small relative to the f...

  10. Recovery of Phenotypes Obtained by Adaptive Evolution through Inverse Metabolic Engineering

    DEFF Research Database (Denmark)

    Hong, Kuk-Ki; Nielsen, Jens

    2012-01-01

    In a previous study, system level analysis of adaptively evolved yeast mutants showing improved galactose utilization revealed relevant mutations. The governing mutations were suggested to be in the Ras/PKA signaling pathway and ergosterol metabolism. Here, site-directed mutants having one of the...... the identification of specific mutations by systems biology can direct new metabolic engineering strategies for improving galactose utilization by yeast....

  11. The evolution of Rare Pride: using evaluation to drive adaptive management in a biodiversity conservation organization.

    Science.gov (United States)

    Jenks, Brett; Vaughan, Peter W; Butler, Paul J

    2010-05-01

    Rare Pride is a social marketing program that stimulates human behavior change in order to promote biodiversity conservation in critically threatened regions in developing countries. A series of formal evaluation studies, networking strategies, and evaluative inquiries have driven a 20-year process of adaptive management that has resulted in extensive programmatic changes within Pride. This paper describes the types of evaluation that Rare used to drive adaptive management and the changes it caused in Pride's theory-of-change and programmatic structure. We argue that (a) qualitative data gathered from partners and staff through structured interviews is most effective at identifying problems with current programs and procedures, (b) networking with other organizations is the most effective strategy for learning of new management strategies, and (c) quantitative data gathered through surveys is effective at measuring program impact and quality. Adaptive management has allowed Rare to increase its Pride program from implementing about two campaigns per year in 2001 to more than 40 per year in 2009 while improving program quality and maintaining program impact. PMID:19733908

  12. Telomerase and telomere-associated proteins: structural insights into mechanism and evolution.

    Science.gov (United States)

    Lewis, Karen A; Wuttke, Deborah S

    2012-01-11

    Recent advances in our structural understanding of telomerase and telomere-associated proteins have contributed significantly to elucidating the molecular mechanisms of telomere maintenance. The structures of telomerase TERT domains have provided valuable insights into how experimentally identified conserved motifs contribute to the telomerase reverse transcriptase reaction. Additionally, structures of telomere-associated proteins in a variety of organisms have revealed that, across evolution, telomere-maintenance mechanisms employ common structural elements. For example, the single-stranded 3' overhang of telomeric DNA is specifically and tightly bound by an OB-fold in nearly all species, including ciliates (TEBP and Pot1a), fission yeast (SpPot1), budding yeast (Cdc13), and humans (hPOT1). Structures of the yeast Cdc13, Stn1, and Ten1 proteins demonstrated that telomere maintenance is regulated by a complex that bears significant similarity to the RPA heterotrimer. Similarly, proteins that specifically bind double-stranded telomeric DNA in divergent species use homeodomains to execute their functions (human TRF1 and TRF2 and budding yeast ScRap1). Likewise, the conserved protein Rap1, which is found in budding yeast, fission yeast, and humans, contains a structural motif that is known to be critical for protein-protein interaction. In addition to revealing the common underlying themes of telomere maintenance, structures have also elucidated the specific mechanisms by which many of these proteins function, including identifying a telomere-specific domain in Stn1 and how the human TRF proteins avoid heterodimerization. In this review, we summarize the high-resolution structures of telomerase and telomere-associated proteins and discuss the emergent common structural themes among these proteins. We also address how these high-resolution structures complement biochemical and cellular studies to enhance our understanding of telomere maintenance and function.

  13. Adaptive GDDA-BLAST: fast and efficient algorithm for protein sequence embedding.

    Directory of Open Access Journals (Sweden)

    Yoojin Hong

    Full Text Available A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply "alignment profiles" hereafter provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships. A key feature of alignment profiles lies in the interoperability of data format (e.g., alignment information, physio-chemical information, genomic information, etc.. Indeed, we have demonstrated that the Position Specific Scoring Matrices (PSSMs are an informative M-dimension that is scored by quantitatively measuring the embedded or unmodified sequence alignments. Moreover, the information obtained from these alignments is informative, and remains so even in the "twilight zone" of sequence similarity (<25% identity. Although our previous embedding strategy was powerful, it suffered from contaminating alignments (embedded AND unmodified and high computational costs. Herein, we describe the logic and algorithmic process for a heuristic embedding strategy named "Adaptive GDDA-BLAST." Adaptive GDDA-BLAST is, on average, up to 19 times faster than, but has similar sensitivity to our previous method. Further, data are provided to demonstrate the benefits of embedded-alignment measurements in terms of detecting structural homology in highly divergent protein sequences and isolating secondary structural elements of transmembrane and ankyrin-repeat domains. Together, these advances allow further exploration of the embedded alignment data space within sufficiently large data sets to eventually induce relevant statistical inferences. We show that sequence embedding could serve as one of the vehicles for measurement of low

  14. Directed evolution of the suicide protein O⁶-alkylguanine-DNA alkyltransferase for increased reactivity results in an alkylated protein with exceptional stability

    OpenAIRE

    Mollwitz, Birgit; Brunk, Elizabeth; Schmitt, Simone; Pojer, Florence; Bannwarth, Michael; Schiltz, Marc; Rothlisberger, Ursula; Johnsson, Kai

    2012-01-01

    Here we present a biophysical, structural, and computational analysis of the directed evolution of the human DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (hAGT) into SNAP-tag, a self-labeling protein tag. Evolution of hAGT led not only to increased protein activity but also to higher stability, especially of the alkylated protein, suggesting that the reactivity of the suicide enzyme can be influenced by stabilizing the product of the irreversible reaction. Whereas wild-type hAGT ...

  15. Genome and metagenome analyses reveal adaptive evolution of the host and interaction with the gut microbiota in the goose

    Science.gov (United States)

    Gao, Guangliang; Zhao, Xianzhi; Li, Qin; He, Chuan; Zhao, Wenjing; Liu, Shuyun; Ding, Jinmei; Ye, Weixing; Wang, Jun; Chen, Ye; Wang, Haiwei; Li, Jing; Luo, Yi; Su, Jian; Huang, Yong; Liu, Zuohua; Dai, Ronghua; Shi, Yixiang; Meng, He; Wang, Qigui

    2016-01-01

    The goose is an economically important waterfowl that exhibits unique characteristics and abilities, such as liver fat deposition and fibre digestion. Here, we report de novo whole-genome assemblies for the goose and swan goose and describe the evolutionary relationships among 7 bird species, including domestic and wild geese, which diverged approximately 3.4~6.3 million years ago (Mya). In contrast to chickens as a proximal species, the expanded and rapidly evolving genes found in the goose genome are mainly involved in metabolism, including energy, amino acid and carbohydrate metabolism. Further integrated analysis of the host genome and gut metagenome indicated that the most widely shared functional enrichment of genes occurs for functions such as glycolysis/gluconeogenesis, starch and sucrose metabolism, propanoate metabolism and the citrate cycle. We speculate that the unique physiological abilities of geese benefit from the adaptive evolution of the host genome and symbiotic interactions with gut microbes. PMID:27608918

  16. Development Of An Efficient Glycerol Utilizing Saccharomyces Cerevisiae Strain Via Adaptive Laboratory Evolution

    DEFF Research Database (Denmark)

    Strucko, Tomas; Zirngibl, Katharina; Tharwat Tolba Mohamed, Elsayed;

    2015-01-01

    that popular wild-type laboratory yeast strains, commonly applied in metabolic engineering studies, did not grow or grew very slowly in glycerol medium.In this work, an adaptive laboratory evolution approach to obtain S. cerevisiae strains with an improved ability to grow on glycerol was applied. A broad array...... catabolism in yeast. The knowledge acquired in this study may be further applied for rational S. cerevisiae strain improvement for using glycerol as a carbon source in industrial biotechnology processes. This work is a part of the DeYeastLibrary consortium financed by ERA-IB DeYeastLibrary - Designer yeast...... strain library optimized for metabolic engineering applications http://www.era-ib.net/deyeast-library...

  17. Life in the Fast Lane: The Evolution of an Adaptive Vehicle Control System

    OpenAIRE

    Jochem, Todd; Pomerleau, Dean

    1996-01-01

    Giving robots the ability to operate in the real world has been, and continues to be, one of the most difficult tasks in AI research. Since 1987, researchers at Carnegie Mellon University have been investigating one such task. Their research has been focused on using adaptive, vision-based systems to increase the driving performance of the Navlab line of on-road mobile robots. This research has led to the development of a neural network system that can learn to drive on many road types simply...

  18. Evolution of off-lattice model proteins under ligand binding constraints

    Science.gov (United States)

    Nelson, Erik D.; Grishin, Nick V.

    2016-08-01

    We investigate protein evolution using an off-lattice polymer model evolved to imitate the behavior of small enzymes. Model proteins evolve through mutations to nucleotide sequences (including insertions and deletions) and are selected to fold and maintain a specific binding site compatible with a model ligand. We show that this requirement is, in itself, sufficient to maintain an ordered folding domain, and we compare it to the requirement of folding an ordered (but otherwise unrestricted) domain. We measure rates of amino acid change as a function of local environment properties such as solvent exposure, packing density, and distance from the active site, as well as overall rates of sequence and structure change, both along and among model lineages in star phylogenies. The model recapitulates essentially all of the behavior found in protein phylogenetic analyses, and predicts that amino acid substitution rates vary linearly with distance from the binding site.

  19. The evolution of the Indian Ocean parrots (Psittaciformes): extinction, adaptive radiation and eustacy.

    Science.gov (United States)

    Kundu, S; Jones, C G; Prys-Jones, R P; Groombridge, J J

    2012-01-01

    Parrots are among the most recognisable and widely distributed of all bird groups occupying major parts of the tropics. The evolution of the genera that are found in and around the Indian Ocean region is particularly interesting as they show a high degree of heterogeneity in distribution and levels of speciation. Here we present a molecular phylogenetic analysis of Indian Ocean parrots, identifying the possible geological and geographical factors that influenced their evolution. We hypothesise that the Indian Ocean islands acted as stepping stones in the radiation of the Old-World parrots, and that sea-level changes may have been an important determinant of current distributions and differences in speciation. A multi-locus phylogeny showing the evolutionary relationships among genera highlights the interesting position of the monotypic Psittrichas, which shares a common ancestor with the geographically distant Coracopsis. An extensive species-level molecular phylogeny indicates a complex pattern of radiation including evidence for colonisation of Africa, Asia and the Indian Ocean islands from Australasia via multiple routes, and of island populations 'seeding' continents. Moreover, comparison of estimated divergence dates and sea-level changes points to the latter as a factor in parrot speciation. This is the first study to include the extinct parrot taxa, Mascarinus mascarinus and Psittacula wardi which, respectively, appear closely related to Coracopsis nigra and Psittacula eupatria.

  20. Adaptive evolution of the lactose utilization network in experimentally evolved populations of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Selwyn Quan

    2012-01-01

    Full Text Available Adaptation to novel environments is often associated with changes in gene regulation. Nevertheless, few studies have been able both to identify the genetic basis of changes in regulation and to demonstrate why these changes are beneficial. To this end, we have focused on understanding both how and why the lactose utilization network has evolved in replicate populations of Escherichia coli. We found that lac operon regulation became strikingly variable, including changes in the mode of environmental response (bimodal, graded, and constitutive, sensitivity to inducer concentration, and maximum expression level. In addition, some classes of regulatory change were enriched in specific selective environments. Sequencing of evolved clones, combined with reconstruction of individual mutations in the ancestral background, identified mutations within the lac operon that recapitulate many of the evolved regulatory changes. These mutations conferred fitness benefits in environments containing lactose, indicating that the regulatory changes are adaptive. The same mutations conferred different fitness effects when present in an evolved clone, indicating that interactions between the lac operon and other evolved mutations also contribute to fitness. Similarly, changes in lac regulation not explained by lac operon mutations also point to important interactions with other evolved mutations. Together these results underline how dynamic regulatory interactions can be, in this case evolving through mutations both within and external to the canonical lactose utilization network.

  1. Structural Adaptation of a Thermostable Biotin-binding Protein in a Psychrophilic Environment

    Science.gov (United States)

    Meir, Amit; Bayer, Edward A.; Livnah, Oded

    2012-01-01

    Shwanavidin is an avidin-like protein from the marine proteobactrium Shewanella denitrificans, which exhibits an innate dimeric structure while maintaining high affinity toward biotin. A unique residue (Phe-43) from the L3,4 loop and a distinctive disulfide bridge were shown to account for the high affinity toward biotin. Phe-43 emulates the function and position of the critical intermonomeric Trp that characterizes the tetrameric avidins but is lacking in shwanavidin. The 18 copies of the apo-monomer revealed distinctive snapshots of L3,4 and Phe-43, providing rare insight into loop flexibility, binding site accessibility, and psychrophilic adaptation. Nevertheless, as in all avidins, shwanavidin also displays high thermostability properties. The unique features of shwanavidin may provide a platform for the design of a long sought after monovalent form of avidin, which would be ideal for novel types of biotechnological application. PMID:22493427

  2. Molecular evolution and expression of the CRAL_TRIO protein family in insects.

    Science.gov (United States)

    Smith, Gilbert; Briscoe, Adriana D

    2015-07-01

    CRAL_TRIO domain proteins are known to bind small lipophilic molecules such as retinal, inositol and Vitamin E and include such gene family members as PINTA, α-tocopherol transfer (ATT) proteins, retinoid binding proteins, and clavesins. In insects, very little is known about either the molecular evolution of this family of proteins or their ligand specificity. Here we characterize insect CRAL_TRIO domain proteins and present the first insect CRAL_TRIO protein phylogeny constructed by performing reciprocal BLAST searches of the reference genomes of Drosophila melanogaster, Anopheles gambiae, Apis mellifera, Tribolium castaneum, Bombyx mori, Manduca sexta and Danaus plexippus. We find several highly conserved amino acid residues in the CRAL_TRIO domain-containing genes across insects and a gene expansion resulting in more than twice as many gene family members in lepidopterans than in other surveyed insect species, but no lepidopteran homolog of the PINTA gene in Drosophila. In addition, we examined the expression pattern of CRAL_TRIO domain genes in Manduca sexta heads using RNA-Seq data. Of the 42 gene family members found in the M. sexta reference genome, we found 30 expressed in the head tissue with similar expression profiles between males and females. Our results suggest this gene family underwent a large expansion in lepidopteran, making the lepidopteran CRAL_TRIO domain family distinct from other holometabolous insect lineages.

  3. Molecular evolution and expression of the CRAL_TRIO protein family in insects.

    Science.gov (United States)

    Smith, Gilbert; Briscoe, Adriana D

    2015-07-01

    CRAL_TRIO domain proteins are known to bind small lipophilic molecules such as retinal, inositol and Vitamin E and include such gene family members as PINTA, α-tocopherol transfer (ATT) proteins, retinoid binding proteins, and clavesins. In insects, very little is known about either the molecular evolution of this family of proteins or their ligand specificity. Here we characterize insect CRAL_TRIO domain proteins and present the first insect CRAL_TRIO protein phylogeny constructed by performing reciprocal BLAST searches of the reference genomes of Drosophila melanogaster, Anopheles gambiae, Apis mellifera, Tribolium castaneum, Bombyx mori, Manduca sexta and Danaus plexippus. We find several highly conserved amino acid residues in the CRAL_TRIO domain-containing genes across insects and a gene expansion resulting in more than twice as many gene family members in lepidopterans than in other surveyed insect species, but no lepidopteran homolog of the PINTA gene in Drosophila. In addition, we examined the expression pattern of CRAL_TRIO domain genes in Manduca sexta heads using RNA-Seq data. Of the 42 gene family members found in the M. sexta reference genome, we found 30 expressed in the head tissue with similar expression profiles between males and females. Our results suggest this gene family underwent a large expansion in lepidopteran, making the lepidopteran CRAL_TRIO domain family distinct from other holometabolous insect lineages. PMID:25684408

  4. Adaptive response to DNA-damaging agents in natural Saccharomyces cerevisiae populations from "Evolution Canyon", Mt. Carmel, Israel.

    Directory of Open Access Journals (Sweden)

    Gabriel A Lidzbarsky

    Full Text Available BACKGROUND: Natural populations of most organisms, especially unicellular microorganisms, are constantly exposed to harsh environmental factors which affect their growth. UV radiation is one of the most important physical parameters which influences yeast growth in nature. Here we used 46 natural strains of Saccharomyces cerevisiae isolated from several natural populations at the "Evolution Canyon" microsite (Nahal Oren, Mt. Carmel, Israel. The opposing slopes of this canyon share the same geology, soil, and macroclimate, but they differ in microclimatic conditions. The interslope differences in solar radiation (200%-800% more on the "African" slope caused the development of two distinct biomes. The south-facing slope is sunnier and has xeric, savannoid "African" environment while the north-facing slope is represented by temperate, "European" forested environment. Here we studied the phenotypic response of the S. cerevisiae strains to UVA and UVC radiations and to methyl methanesulfonate (MMS in order to evaluate the interslope effect on the strains' ability to withstand DNA-damaging agents. METHODOLOGY/PRINCIPAL FINDINGS: We exposed our strains to the different DNA-damaging agents and measured survival by counting colony forming units. The strains from the "African" slope were more resilient to both UVA and MMS than the strains from the "European" slope. In contrast, we found that there was almost no difference between strains (with similar ploidy from the opposite slopes, in their sensitivity to UVC radiation. These results suggest that the "African" strains are more adapted to higher solar radiation than the "European" strains. We also found that the tetraploids strains were more tolerant to all DNA-damaging agents than their neighboring diploid strains, which suggest that high ploidy level might be a mechanism of adaptation to high solar radiation. CONCLUSIONS/SIGNIFICANCE: Our results and the results of parallel studies with several other

  5. Setal morphology and cirral setation of thoracican barnacle cirri: adaptations and implications for thoracican evolution

    DEFF Research Database (Denmark)

    Chan, B.K.K.; Garm, A.; Høeg, Jens Thorvald

    2008-01-01

    volcano. Of the pedunculates, I. cumingi has the least complex setation pattern consisting of only serrulate types. This is consistent with its very simplified feeding mode and an apparent inability to discriminate between food items. Octolasmis warwickii is slightly more modified, while both P. polymerus...... and C. mitella have a more diversified setation. The balanomorphan species exhibit by far the most complex cirral setation. This is consistent with the several types of suspension feeding seen in these species, their ability to identify and sort captured food items and even to perform microfiltration...... in the mantle cavity using the setae on their three pairs of maxillipeds. Our results indicate that in thoracican barnacles, adaptations in feeding behaviour are associated with changes in the setation pattern of the cirri. In addition, the setal types and their distribution on the cirri are...

  6. Evolution and adaptation of marine annelids in interstitial and cave habitats

    DEFF Research Database (Denmark)

    Martinez Garcia, Alejandro

    The origin of anchialine and marine cave fauna is still a highly debated topic in Evolutionary Biology. Restricted and disjunct distribution and uncertain affinities of some marine cave endemic lineages have favored their interpretation as living fossils, surviving the extinction of their coastal...... relatives in cave subterranean ecological refugia. Active colonization and ecological speciation to particular cave niches has been alternatively suggested, but the evaluation of that scenario is obscured by the dominance of crustaceans in anchialine habitats, ecologically similar out and inside caves. The...... main goal of this thesis is to explore the evolutionary processes behind colonization and adaptation to submarine cave ecosystems in the Atlantic Ocean using annelids as a model, mainly when they involved ancestrally interstitial forms. In order to do that, we studied selected lineages of annelids with...

  7. Sequestration of plant-derived glycosides by leaf beetles: A model system for evolution and adaptation

    Directory of Open Access Journals (Sweden)

    Wilhelm Boland

    2015-12-01

    Full Text Available Leaf beetles have developed an impressive repertoire of toxins and repellents to defend themselves against predators. Upon attack, the larvae discharge small droplets from glandular reservoirs on their back. The reservoirs are “bioreactors” performing the late reactions of the toxin-production from plant-derived or de novo synthesised glucosides. The import of the glucosides into the bioreactor relies on a complex transport system. Physiological studies revealed a functional network of transporters guiding the glucosides through the larval body into the defensive system. The first of the involved transporters has been identified and characterised concerning selectivity, tissue distribution, and regulation. The development of a well-tuned transport system, perfectly adjusted to the compounds provided by the food plants, provides the functional basis for the leaf beetle defenses and their local adaptation to their host plants.

  8. Adaptative evolution of metallothionein 3 in the Cd/Zn hyperaccumulator Thlaspi caerulescens

    Energy Technology Data Exchange (ETDEWEB)

    Roosens, N.H.; Bernard, C.; Verbruggen, N. [Lab. de Physiologie et Genetique Moleculaire des Plantes, Univ. Libre de Bruxelles, Brussels (Belgium); Leplae, R. [Service de Conformation des Macromolecules Biologiques et Bioinformatique, Univ. Libre de Bruxelles, Brussels (Belgium)

    2005-04-01

    A functional screening in yeast allowed to identify various cDNAs from the Cd/Zn hyper-accumulator Thlaspi caerulescens. TcMT3 displayed high identity with its closest homologue in Arabidopsis thaliana but variation in its Cys residues. Functional analysis in yeast supported a higher binding capacity for Cu, but not for Cd or Zn, of TcMT3 compared to AtMT3. Expression analysis in plants indicated that metallothionein 3 (MT3) like all the other T. caerulescens genes from the screen studied is overexpressed in all studied populations of T. caerulescens compared to A. thaliana. TcMT3 was induced by Cu, but not by Cd. Moreover significant variation in expression within T. caerulescens populations that have contrasting tolerance and accumulation capacities indicated a possible local adaptation of MT3. (orig.)

  9. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    Science.gov (United States)

    Paradis, Daniel; Vigneault, Harold; Lefebvre, René; Savard, Martine M.; Ballard, Jean-Marc; Qian, Budong

    2016-03-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentration could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. The change in groundwater recharge regime induced by climate change (with current agricultural practices) would only contribute 0 to 6 % of that increase for the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to

  10. The Genome Sequence of the psychrophilic archaeon, Methanococcoides burtonii: the Role of Genome Evolution in Cold-adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Michelle A.; Lauro, Federico M.; Williams, Timothy J.; Burg, Dominic; Siddiqui, Khawar S.; De Francisci, David; Chong, Kevin W.Y.; Pilak, Oliver; Chew, Hwee H.; De Maere, Matthew Z.; Ting, Lily; Katrib, Marilyn; Ng, Charmaine; Sowers, Kevin R.; Galperin, Michael Y.; Anderson, Iain J.; Ivanova, Natalia; Dalin, Eileen; Martinez, Michelle; Lapidus, Alla; Hauser, Loren; Land, Miriam; Thomas, Torsten; Cavicchioli, Ricardo

    2009-04-01

    Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five tiered Evidence Rating system that ranked annotations from Evidence Rating (ER) 1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilic archaea which are subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall/membrane/envelope biogenesis COG genes are over-represented. Likewise, signal transduction (COG category T) genes are over-represented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two over-represented COG categories appear to have been acquired from {var_epsilon}- and {delta}-proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they play an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have

  11. Evolution versus "intelligent design": comparing the topology of protein-protein interaction networks to the Internet.

    Science.gov (United States)

    Yang, Q; Siganos, G; Faloutsos, M; Lonardi, S

    2006-01-01

    Recent research efforts have made available genome-wide, high-throughput protein-protein interaction (PPI) maps for several model organisms. This has enabled the systematic analysis of PPI networks, which has become one of the primary challenges for the system biology community. In this study, we attempt to understand better the topological structure of PPI networks by comparing them against man-made communication networks, and more specifically, the Internet. Our comparative study is based on a comprehensive set of graph metrics. Our results exhibit an interesting dichotomy. On the one hand, both networks share several macroscopic properties such as scale-free and small-world properties. On the other hand, the two networks exhibit significant topological differences, such as the cliqueishness of the highest degree nodes. We attribute these differences to the distinct design principles and constraints that both networks are assumed to satisfy. We speculate that the evolutionary constraints that favor the survivability and diversification are behind the building process of PPI networks, whereas the leading force in shaping the Internet topology is a decentralized optimization process geared towards efficient node communication.

  12. Molecular evolution of Cide family proteins: Novel domain formation in early vertebrates and the subsequent divergence

    Directory of Open Access Journals (Sweden)

    Sun Zhirong

    2008-05-01

    Full Text Available Abstract Background Cide family proteins including Cidea, Cideb and Cidec/Fsp27, contain an N-terminal CIDE-N domain that shares sequence similarity to the N-terminal CAD domain (NCD of DNA fragmentation factors Dffa/Dff45/ICAD and Dffb/Dff40/CAD, and a unique C-terminal CIDE-C domain. We have previously shown that Cide proteins are newly emerged regulators closely associated with the development of metabolic diseases such as obesity, diabetes and liver steatosis. They modulate many metabolic processes such as lipolysis, thermogenesis and TAG storage in brown adipose tissue (BAT and white adipose tissue (WAT, as well as fatty acid oxidation and lipogenesis in the liver. Results To understand the evolutionary process of Cide proteins and provide insight into the role of Cide proteins as potential metabolic regulators in various species, we searched various databases and performed comparative genomic analysis to study the sequence conservation, genomic structure, and phylogenetic tree of the CIDE-N and CIDE-C domains of Cide proteins. As a result, we identified signature sequences for the N-terminal region of Dffa, Dffb and Cide proteins and CIDE-C domain of Cide proteins, and observed that sequences homologous to CIDE-N domain displays a wide phylogenetic distribution in species ranging from lower organisms such as hydra (Hydra vulgaris and sea anemone (Nematostella vectensis to mammals, whereas the CIDE-C domain exists only in vertebrates. Further analysis of their genomic structures showed that although evolution of the ancestral CIDE-N domain had undergone different intron insertions to various positions in the domain among invertebrates, the genomic structure of Cide family in vertebrates is stable with conserved intron phase. Conclusion Based on our analysis, we speculate that in early vertebrates CIDE-N domain was evolved from the duplication of NCD of Dffa. The CIDE-N domain somehow acquired the CIDE-C domain that was formed around the

  13. Protein secretion systems in Pseudomonas aeruginosa: an essay on diversity, evolution and function

    Directory of Open Access Journals (Sweden)

    Alain eFILLOUX

    2011-07-01

    Full Text Available Protein secretion systems are molecular nanomachines used by Gram-negative bacteria to thrive within their environment. They are used to release enzymes that hydrolyze complex carbon sources into usable compounds, or to release proteins that capture essential ions such as iron. They are also used to colonize and survive within eukaryotic hosts, causing acute or chronic infections, subverting the host cell response and escaping the immune system. In this article, the opportunistic human pathogen Pseudomonas aeruginosa is used as a model to review the diversity of secretion systems that bacteria have evolved to achieve these goals. This diversity may result from a progressive transformation of cell envelope complexes that initially may not have been dedicated to secretion. The striking similarities between secretion systems and type IV pili, flagella, bacteriophage tail or efflux pumps is a nice illustration of this evolution. Differences are also needed since various secretion configurations calls for diversity. For example, some proteins are released in the extracellular medium while others are directly injected into the cytosol of eukaryotic cells. Some proteins are folded before being released and transit into the periplasm. Other proteins cross the whole cell envelope at once in an unfolded state. However, the secretion system requires conserved basic elements or features. For example, there is a need for an energy source or for an outer membrane channel. The structure of this review is thus quite unconventional. Instead of listing secretion types one after each other, it presents a melting pot of concepts indicating that secretion types are in constant evolution and use basic principles. In other words, emergence of new secretion systems could be predicted the way Mendeleïev had anticipated characteristics of yet unknown elements.

  14. Evolution of a domain conserved in microtubule-associated proteins of eukaryotes

    Directory of Open Access Journals (Sweden)

    Alex S Rajangam

    2008-09-01

    Full Text Available Alex S Rajangam1, Hongqian Yang2, Tuula T Teeri1, Lars Arvestad21KTH Biotechnology, Swedish Center for Biomimetic Fiber Engineering, AlbaNova, Stockholm, Sweden; 2Stockholm Bioinformatics Center and School of Computer Science and Communication, Royal Institute of Technology, AlbaNova, Stockholm, SwedenAbstract: The microtubule network, the major organelle of the eukaryotic cytoskeleton, is involved in cell division and differentiation but also with many other cellular functions. In plants, microtubules seem to be involved in the ordered deposition of cellulose microfibrils by a so far unknown mechanism. Microtubule-associated proteins (MAP typically contain various domains targeting or binding proteins with different functions to microtubules. Here we have investigated a proposed microtubule-targeting domain, TPX2, first identified in the Kinesin-like protein 2 in Xenopus. A TPX2 containing microtubule binding protein, PttMAP20, has been recently identified in poplar tissues undergoing xylogenesis. Furthermore, the herbicide 2,6-dichlorobenzonitrile (DCB, which is a known inhibitor of cellulose synthesis, was shown to bind specifically to PttMAP20. It is thus possible that PttMAP20 may have a role in coupling cellulose biosynthesis and the microtubular networks in poplar secondary cell walls. In order to get more insight into the occurrence, evolution and potential functions of TPX2-containing proteins we have carried out bioinformatic analysis for all genes so far found to encode TPX2 domains with special reference to poplar PttMAP20 and its putative orthologs in other plants.Keywords: TPX2 domain, MAP20, evolution, microtubule, cellulose, bioinformatics

  15. Tracking evolution of myoglobin stability in cetaceans using experimentally calibrated computational methods that account for generic protein relaxation.

    Science.gov (United States)

    Holm, Jeppe; Dasmeh, Pouria; Kepp, Kasper P

    2016-07-01

    The evolution of cetaceans (whales, dolphins, and porpoises) from land to water is one of the most spectacular events in mammal evolution. It has been suggested that selection for higher myoglobin stability (∆G of folding) allowed whales to conquer the deep-diving niche. The stability of multi-site protein variants, including ancient proteins, is however hard to describe theoretically. From a compilation of experimental ∆∆G vs. ∆G we first find that protein substitutions are subject to large generic protein relaxation effects. Using this discovery, we develop a simple two-parameter model that predicts multi-site ∆∆G as accurately as standard methods do for single-site mutations and reproduces trends in contemporary myoglobin stabilities. We then apply this new method to the study of the evolution of Mb stability in cetaceans: With both methods the main change in stability (about 1kcal/mol) occurred very early, and stability was later relaxed in dolphins and porpoises, but was further increased in the sperm whales. This suggests that single proteins can affect whole organism evolution and indicates a role of Mb stability in the evolution of cetaceans. Transition to the deep-diving niche probably occurred already in the ancestor of contemporary baleen and toothed whales. In summary, we have discovered generic stability relaxation effects in proteins that, when incorporated into a simple model, improves the description of multi-site protein variants. PMID:27068539

  16. Tracking evolution of myoglobin stability in cetaceans using experimentally calibrated computational methods that account for generic protein relaxation.

    Science.gov (United States)

    Holm, Jeppe; Dasmeh, Pouria; Kepp, Kasper P

    2016-07-01

    The evolution of cetaceans (whales, dolphins, and porpoises) from land to water is one of the most spectacular events in mammal evolution. It has been suggested that selection for higher myoglobin stability (∆G of folding) allowed whales to conquer the deep-diving niche. The stability of multi-site protein variants, including ancient proteins, is however hard to describe theoretically. From a compilation of experimental ∆∆G vs. ∆G we first find that protein substitutions are subject to large generic protein relaxation effects. Using this discovery, we develop a simple two-parameter model that predicts multi-site ∆∆G as accurately as standard methods do for single-site mutations and reproduces trends in contemporary myoglobin stabilities. We then apply this new method to the study of the evolution of Mb stability in cetaceans: With both methods the main change in stability (about 1kcal/mol) occurred very early, and stability was later relaxed in dolphins and porpoises, but was further increased in the sperm whales. This suggests that single proteins can affect whole organism evolution and indicates a role of Mb stability in the evolution of cetaceans. Transition to the deep-diving niche probably occurred already in the ancestor of contemporary baleen and toothed whales. In summary, we have discovered generic stability relaxation effects in proteins that, when incorporated into a simple model, improves the description of multi-site protein variants.

  17. Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor

    Science.gov (United States)

    Roth, Julian; Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.

  18. Evolution of ITER tritium confinement strategy and adaptation to Cadrache site conditions and French regulatory requirements

    International Nuclear Information System (INIS)

    The ITER Nuclear Buildings include the Tokamak, Tritium and Diagnostic Buildings (Tokamak Complex) and the Hot Cell and Low Level Radioactive Waste Buildings. The Tritium Confinement Strategy of the Nuclear Buildings comprises key features of the Atmosphere and Vent Detritiation Systems (ADS/VDS) and the Heating, Ventilation and Air Conditioning (HVAC) Systems. The designs developed during the ITER EDA (Engineering Design Activities) for these systems need to be adapted to the specific conditions of the Cadarache site and modified to conform with the regulatory requirements applicable to Installations Nucleaires de Base (INB) - Basic Nuclear Installations - in France. The highest priority for such adaptation has been identified as the Tritium Confinement of the Tokamak Complex and the progress in development of a robust, coherent design concept compliant with French practice is described in the paper. The Tokamak Complex HVAC concept for generic conditions was developed for operational cost minimisation under more extreme climatic conditions (primarily temperature) than those valid for Cadarache, and incorporated recirculation of a large fraction of the air flow through the HVAC systems to achieve this objective. Due to the impracticality of precluding the spread of contamination from areas of higher activity to less contaminated areas, this concept has been abandoned in favour of a once-through configuration, which requires a complete redesign, with revised air change rates, module sizes, layout, redundancy provisions and other features. The ADS/VDS concept developed for the generic design of the ITER Tokamak Complex is undergoing a radical revision in which the system architecture, module sizing and basic process are being optimised for the Cadarache conditions. Investigation is being launched into the implementation of a wet stripper concept to replace the molecular sieve (MS) beds incorporated in the generic design, where concerns have been raised over low

  19. Large Scale Sequencing of Dothideomycetes Provides Insights into Genome Evolution and Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Sajeet; Crous, Pedro; Binder, Manfred; Spatafora, Joseph; Grigoriev, Igor

    2015-03-16

    Dothideomycetes is the largest and most diverse class of ascomycete fungi with 23 orders 110 families, 1300 genera and over 19,000 known species. We present comparative analysis of 70 Dothideomycete genomes including over 50 that we sequenced and are as yet unpublished. This extensive sampling has almost quadrupled the previous study of 18 species and uncovered a 10 fold range of genome sizes. We were able to clarify the phylogenetic positions of several species whose origins were unclear in previous morphological and sequence comparison studies. We analyzed selected gene families including proteases, transporters and small secreted proteins and show that major differences in gene content is influenced by speciation.

  20. Molecular evolution of a chordate specific family of G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Leese Florian

    2011-08-01

    Full Text Available Abstract Background Chordate evolution is a history of innovations that is marked by physical and behavioral specializations, which led to the development of a variety of forms from a single ancestral group. Among other important characteristics, vertebrates obtained a well developed brain, anterior sensory structures, a closed circulatory system and gills or lungs as blood oxygenation systems. The duplication of pre-existing genes had profound evolutionary implications for the developmental complexity in vertebrates, since mutations modifying the function of a duplicated protein can lead to novel functions, improving the evolutionary success. Results We analyzed here the evolution of the GPRC5 family of G protein-coupled receptors by comprehensive similarity searches and found that the receptors are only present in chordates and that the size of the receptor family expanded, likely due to genome duplication events in the early history of vertebrate evolution. We propose that a single GPRC5 receptor coding gene originated in a stem chordate ancestor and gave rise by duplication events to a gene family comprising three receptor types (GPRC5A-C in vertebrates, and a fourth homologue present only in mammals (GPRC5D. Additional duplications of GPRC5B and GPRC5C sequences occurred in teleost fishes. The finding that the expression patterns of the receptors are evolutionarily conserved indicates an important biological function of these receptors. Moreover, we found that expression of GPRC5B is regulated by vitamin A in vivo, confirming previous findings that linked receptor expression to retinoic acid levels in tumor cell lines and strengthening the link between the receptor expression and the development of a complex nervous system in chordates, known to be dependent on retinoic acid signaling. Conclusions GPRC5 receptors, a class of G protein-coupled receptors with unique sequence characteristics, may represent a molecular novelty that helped non