WorldWideScience

Sample records for adaptive optics laser

  1. Adaptive optics and laser guide stars at Lick observatory

    Energy Technology Data Exchange (ETDEWEB)

    Brase, J.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  2. High-efficiency Autonomous Laser Adaptive Optics

    CERN Document Server

    Baranec, Christoph; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2014-01-01

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limits their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  3. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    International Nuclear Information System (INIS)

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys

  4. Beam shaping for laser-based adaptive optics in astronomy

    OpenAIRE

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-01-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics syst...

  5. Laser Guide Star Adaptive Optics without Tip-tilt

    CERN Document Server

    Davies, R; Lidman, C; Louarn, M Le; Kasper, M; Förster-Schreiber, N M; Roccatagliata, V; Ageorges, N; Amico, P; Dumas, C; Mannucci, F

    2008-01-01

    Adaptive optics (AO) systems allow a telescope to reach its diffraction limit at near infrared wavelengths. But to achieve this, a bright natural guide star (NGS) is needed for the wavefront sensing, severely limiting the fraction of the sky over which AO can be used. To some extent this can be overcome with a laser guide star (LGS). While the laser can be pointed anywhere in the sky, one still needs to have a natural star, albeit fainter, reasonably close to correct the image motion (tip-tilt) to which laser guide stars are insensitive. There are in fact many astronomical targets without suitable tip-tilt stars, but for which the enhanced resolution obtained with the Laser Guide Star Facility (LGSF) would still be very beneficial. This article explores what adaptive optics performance one might expect if one dispenses with the tip-tilt star, and in what situations this mode of observing might be needed.

  6. Beam shaping for laser-based adaptive optics in astronomy

    CERN Document Server

    Béchet, Clémentine; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-01-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques...

  7. Laser Tomography Adaptive Optics (LTAO): A performance study

    CERN Document Server

    Tatulli, E

    2013-01-01

    We present an analytical derivation of the on-axis performance of Adaptive Optics systems using a given number of guide stars of arbitrary altitude, distributed at arbitrary angular positions in the sky. The expressions of the residual error are given for cases of both continuous and discrete turbulent atmospheric profiles. Assuming Shack-Hartmann wavefront sensing with circular apertures, we demonstrate that the error is formally described by integrals of products of three Bessel functions. We compare the performance of Adaptive Optics correction when using natural, Sodium or Rayleigh laser guide stars. For small diameter class telescopes (~5m), we show that a few number of Rayleigh beacons can provide similar performance to that of a single Sodium laser, for a lower overall cost of the instrument. For bigger apertures, using Rayleigh stars may not be such a suitable alternative because of the too severe cone effect that drastically degrades the quality of the correction.

  8. LIFT: analysis of performance in a laser assisted adaptive optics

    Science.gov (United States)

    Plantet, Cedric; Meimon, Serge; Conan, Jean-Marc; Neichel, Benoît; Fusco, Thierry

    2014-08-01

    Laser assisted adaptive optics systems rely on Laser Guide Star (LGS) Wave-Front Sensors (WFS) for high order aberration measurements, and rely on Natural Guide Stars (NGS) WFS to complement the measurements on low orders such as tip-tilt and focus. The sky-coverage of the whole system is therefore related to the limiting magnitude of the NGS WFS. We have recently proposed LIFT, a novel phase retrieval WFS technique, that allows a 1 magnitude gain over the usually used 2×2 Shack-Hartmann WFS. After an in-lab validation, LIFT's concept has been demonstrated on sky in open loop on GeMS (the Gemini Multiconjugate adaptive optics System at Gemini South). To complete its validation, LIFT now needs to be operated in closed loop in a laser assisted adaptive optics system. The present work gives a detailed analysis of LIFT's behavior in presence of high order residuals and how to limit aliasing effects on the tip/tilt/focus estimation. Also, we study the high orders' impact on noise propagation. For this purpose, we simulate a multiconjugate adaptive optics loop representative of a GeMS-like 5 LGS configuration. The residual high orders are derived from a Fourier based simulation. We demonstrate that LIFT keeps a high performance gain over the Shack-Hartmann 2×2 whatever the turbulence conditions. Finally, we show the first simulation of a closed loop with LIFT estimating turbulent tip/tilt and focus residuals that could be induced by sodium layer's altitude variations.

  9. Optical design of the adaptive optics laser guide star system

    Energy Technology Data Exchange (ETDEWEB)

    Bissinger, H. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  10. Integrated modeling of the GMT laser tomography adaptive optics system

    Science.gov (United States)

    Piatrou, Piotr

    2014-08-01

    Laser Tomography Adaptive Optics (LTAO) is one of adaptive optics systems planned for the Giant Magellan Telescope (GMT). End-to-end simulation tools that are able to cope with the complexity and computational burden of the AO systems to be installed on the extremely large telescopes such as GMT prove to be an integral part of the GMT LTAO system development endeavors. SL95, the Fortran 95 Simulation Library, is one of the software tools successfully used for the LTAO system end-to-end simulations. The goal of SL95 project is to provide a complete set of generic, richly parameterized mathematical models for key elements of the segmented telescope wavefront control systems including both active and adaptive optics as well as the models for atmospheric turbulence, extended light sources like Laser Guide Stars (LGS), light propagation engines and closed-loop controllers. The library is implemented as a hierarchical collection of classes capable of mutual interaction, which allows one to assemble complex wavefront control system configurations with multiple interacting control channels. In this paper we demonstrate the SL95 capabilities by building an integrated end-to-end model of the GMT LTAO system with 7 control channels: LGS tomography with Adaptive Secondary and on-instrument deformable mirrors, tip-tilt and vibration control, LGS stabilization, LGS focus control, truth sensor-based dynamic noncommon path aberration rejection, pupil position control, SLODAR-like embedded turbulence profiler. The rich parameterization of the SL95 classes allows to build detailed error budgets propagating through the system multiple errors and perturbations such as turbulence-, telescope-, telescope misalignment-, segment phasing error-, non-common path-induced aberrations, sensor noises, deformable mirror-to-sensor mis-registration, vibration, temporal errors, etc. We will present a short description of the SL95 architecture, as well as the sample GMT LTAO system simulation

  11. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Directory of Open Access Journals (Sweden)

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  12. Adaptive optics scanning laser ophthalmoscope imaging: technology update.

    Science.gov (United States)

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it.

  13. Adaptive optics for ultra short pulsed lasers in UHV environment

    Science.gov (United States)

    Deneuville, Francois; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-02-01

    ISP SYSTEM has developed an electro-mechanical deformable mirror compatible with Ultra High Vacuum environment, suitable for ultra short pulsed lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations. μ-AME actuators are driven by stepper motors, and their patented special design allows controlling the force with a very high accuracy. Materials and assembly method have been adapted to UHV constraints and the performances were evaluated on a first application for a beam with a diameter of 250mm. A Strehl ratio above 0.9 was reached for this application. Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for standard MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The deformable mirror design allows changing easily an actuator or even the membrane if needed, in order to improve the facility availability. They are designed for circular, square or elliptical aperture from 30mm up to 500mm or more, with incidence angle from 0° to 45°. They can be equipped with passive or active cooling for high power lasers with high repetition rate.

  14. Adaptive optics for daytime deep space laser communications to Mars

    Science.gov (United States)

    Wilson, Keith E.; Wright, Malcolm; Lee, Shinkhak; Troy, Mitchell

    2005-01-01

    This paper describes JPL research in adaptive optics (AO) to reduce the daytime background noise on a Mars-to-Earth optical communications link. AO can reduce atmosphere-induced wavefront aberrations, and enable single mode receiver operation thereby buying back margin in the deep space optical communications link.

  15. Principles of adaptive optics

    CERN Document Server

    Tyson, Robert

    2010-01-01

    History and BackgroundIntroductionHistoryPhysical OpticsTerms in Adaptive OpticsSources of AberrationsAtmospheric TurbulenceThermal BloomingNonatmospheric SourcesAdaptive Optics CompensationPhase ConjugationLimitations of Phase ConjugationArtificial Guide StarsLasers for Guide StarsCombining the LimitationsLinear AnalysisPartial Phase ConjugationAdaptive Optics SystemsAdaptive Optics Imaging SystemsBeam Propagation Syst

  16. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

    OpenAIRE

    Zawadzki, RJ; Jones, SM; Pilli, S; Balderas-Mata, S; Kim, DY; Olivier, SS; Werner, JS

    2011-01-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this d...

  17. Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking

    OpenAIRE

    Ferguson, R. Daniel; Zhong, Zhangyi; Hammer, Daniel X.; Mujat, Mircea; Patel, Ankit H.; Deng, Cong; Zou, Weiyao; Burns, Stephen A.

    2010-01-01

    We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror optical interface design, as well as a large-stroke deformable mirror (DM), enable the AOSLO image fi...

  18. Interferometric adaptive optics for high-power laser beam correction in fast ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Homoelle, D; Baker, K L; Patel, P K; Utterback, E; Rushford, M C; Siders, C W; Barty, C P J, E-mail: homoelle1@llnl.go [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)

    2010-08-01

    We present the design for a high-speed adaptive optics system that will be used to achieve the necessary laser pointing and beam-quality performance for initial fast-ignition coupling experiments. This design makes use of a 32x32 pixellated MEMS device as the adaptive optic and a two-channel interferometer as the wave-front sensor. We present results from a system testbed that demonstrates improvement of the Strehl ratio from 0.09 to 0.61 and stabilization of beam pointing from {approx}75{mu}rad to <2{mu}rad.

  19. Interferometric adaptive optics for high-power laser beam correction in fast ignition experiments

    Science.gov (United States)

    Homoelle, D.; Baker, K. L.; Patel, P. K.; Utterback, E.; Rushford, M. C.; Siders, C. W.; Barty, C. P. J.

    2010-08-01

    We present the design for a high-speed adaptive optics system that will be used to achieve the necessary laser pointing and beam-quality performance for initial fast-ignition coupling experiments. This design makes use of a 32×32 pixellated MEMS device as the adaptive optic and a two-channel interferometer as the wave-front sensor. We present results from a system testbed that demonstrates improvement of the Strehl ratio from 0.09 to 0.61 and stabilization of beam pointing from ~75μrad to <2μrad.

  20. Interferometric adaptive optics for high-power laser beam correction in fast ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Homoelle, D C; Baker, K L; Patel, P K; Utterback, E; Rushford, M C; Siders, C W; Barty, C J

    2009-10-22

    We present the design for a high-speed adaptive optics system that will be used to achieve the necessary laser pointing and beam-quality performance for initial fast-ignition coupling experiments. This design makes use of a 32 x 32 pixellated MEMS device as the adaptive optic and a two-channel interferometer as the wave-front sensor. We present results from a system testbed that demonstrates improvement of the Strehl ratio from 0.09 to 0.61 and stabilization of beam pointing from {approx}75{micro}rad to <2{micro}rad.

  1. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging.

    Science.gov (United States)

    Zawadzki, Robert J; Jones, Steven M; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S; Werner, John S

    2011-06-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented.

  2. From Dye Laser Factory to Portable Semiconductor Laser: Four Generations of Sodium Guide Star Lasers for Adaptive Optics in Astronomy and Space Situational Awareness

    Science.gov (United States)

    d'Orgeville, C.; Fetzer, G.

    This presentation recalls the history of sodium guide star laser systems used in astronomy and space situational awareness adaptive optics, analysing the impact that sodium laser technology evolution has had on routine telescope operations. While it would not be practical to describe every single sodium guide star laser system developed to date, it is possible to characterize their evolution in broad technology terms. The first generation of sodium lasers used dye laser technology to create the first sodium laser guide stars in Hawaii, California, and Spain in the late 1980's and 1990's. These experimental systems were turned into the first laser guide star facilities to equip medium-to-large diameter adaptive optics telescopes, opening a new era of LGS AO-enabled diffraction-limited imaging from the ground. Although they produced exciting scientific results, these laser guide star facilities were large, power-hungry and messy. In the USA, a second-generation of sodium lasers was developed in the 2000's that used cleaner, yet still large and complex, solid-state laser technology. These are the systems in routine operation at the 8-10m class astronomical telescopes and 4m-class satellite imaging facilities today. Meanwhile in Europe, a third generation of sodium lasers was being developed using inherently compact and efficient fiber laser technology, and resulting in the only commercially available sodium guide star laser system to date. Fiber-based sodium lasers will be deployed at two astronomical telescopes and at least one space debris tracking station this year. Although highly promising, these systems remain significantly expensive and they have yet to demonstrate high performance in the field. We are proposing to develop a fourth generation of sodium lasers: based on semiconductor technology, these lasers could provide the final solution to the problem of sodium laser guide star adaptive optics for all astronomy and space situational awareness applications.

  3. Tomography for multiconjugate adaptive optics systems using laser guide stars

    Science.gov (United States)

    Gavel, Donald T.

    2004-10-01

    In this paper we present a solution to the MCAO reconstruction problem using multiple laser guide stars and show that it can be interpreted as a form of back-projection tomography. It is shown that a key intermediate step is to determine a minimum-variance estimate of the index variations over the atmospheric volume. We follow the idea of Tokovinin and Viard [JOSA-A, April 2001] in initially formulating the problem in the Fourier domain; we then extend the interpretation to the spatial domain. The former results were limited to the case of infinite aperture and plane wave beacons, and the statistically optimal wavefront solution was given for a single science direction. The new approach is more general and interpretable as tomographic back-projections, which gives rise to algorithms for the finite aperture, cone (laser) beams, and wide-science-field cases. A fortuitous consequence of this analysis is that a "fast" algorithm suitable for real-time implementation has become evident. The reconstruction requires only filtering and the inversion of small (dimension = number of guidestars) matrices. In simulations, we compare results with those of a spatial domain least-square matrix-inversion method.

  4. Centroid gain compensation in Shack-Hartmann adaptive optics systems with natural or laser guide star

    Science.gov (United States)

    Veran; Herriot

    2000-08-01

    In an adaptive optics system with an undersampled Shack-Hartmann wave-front sensor (WFS), variations in seeing, laser guide star quality, and sodium layer thickness and range distance all combine to vary WFS centroid gain across the pupil during an exposure. While using the minimum of 4 pixels per WFS subaperture improves frame rate and read noise, the WFS centroid gain uncertainty may introduce static aberrations and degrade servo loop phase margin. We present a novel method to estimate and compensate WFS gains of each subaperture individually in real time for both natural and laser guide stars.

  5. Adaptive Bit Rate Video Streaming Through an RF/Free Space Optical Laser Link

    Directory of Open Access Journals (Sweden)

    A. Akbulut

    2010-06-01

    Full Text Available This paper presents a channel-adaptive video streaming scheme which adjusts video bit rate according to channel conditions and transmits video through a hybrid RF/free space optical (FSO laser communication system. The design criteria of the FSO link for video transmission to 2.9 km distance have been given and adaptive bit rate video streaming according to the varying channel state over this link has been studied. It has been shown that the proposed structure is suitable for uninterrupted transmission of videos over the hybrid wireless network with reduced packet delays and losses even when the received power is decreased due to weather conditions.

  6. Wave-front correction of high-intensity fs laser beams by using closed-loop adaptive optics system

    Institute of Scientific and Technical Information of China (English)

    WANG Zhaohua; JIN Zhan; ZHENG Jiaan; WANG Peng; WEI Zhiyi; ZHANG Jie

    2005-01-01

    We developed an adaptive optics system to correct the wave-front distortion of an intense fs laser beam from our multi-TW laser system, Jiguang II. In this paper, the instruments of the adaptive optical system are described and the experimental results of the closed-loop wave-front correction are presented. A distorted laser wave-front of 20 wavelengths of P-V values was corrected to 0.15 wavelength of P-V values. The beam quality of the laser system varies from 3.5 diffraction limit to 1.5 diffraction limit.

  7. The ARGOS laser system: green light for ground layer adaptive optics at the LBT

    Science.gov (United States)

    Raab, Walfried; Rabien, Sebastian; Gässler, Wolfgang; Esposito, Simone; Barl, Lothar; Borelli, Jose; Daysenroth, Matthias; Gemperlein, Hans; Kulas, Martin; Ziegleder, Julian

    2014-07-01

    We report on the development of the laser system of ARGOS, the multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT). The system uses a total of six high powered, pulsed Nd:YAG lasers frequency-doubled to a wavelength of 532 nm to generate a set of three guide stars above each of the LBT telescopes. The position of each of the LGS constellations on sky as well as the relative position of the individual laser guide stars within this constellation is controlled by a set of steerable mirrors and a fast tip-tilt mirror within the laser system. The entire opto-mechanical system is housed in two hermetically sealed and thermally controlled enclosures on the SX and DX side of the LBT telescope. The laser beams are propagated through two refractive launch telescopes which focus the beams at an altitude of 12 km, creating a constellation of laser guide stars around a 4 arcminute diameter circle by means of Rayleigh scattering. In addition to the GLAO Rayleigh beacon system, ARGOS has also been designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system was successfully installed at the LBT in April 2013. Extensive functional tests have been carried out and have verified the operation of the systems according to specifications. The alignment of the laser system with respect to the launch telescope was carried out during two more runs in June and October 2013, followed by the first propagation of laser light on sky in November 2013.

  8. Improving adaptive optical systems by the use of multiple laser beacon configurations

    Science.gov (United States)

    de La Rue, Imelda Atencio

    The field of adaptive optics (AO) and laser-beacon AO has been successfully implemented in the last part of the 20th century. Adaptive optics greatly improves the resolution capabilities of ground-based telescopes by correcting for atmospheric turbulence. The initial implementation of laser-beacon AO was done on relatively small telescopes, on the order of 1.5 m. However, with larger aperture telescopes being built, such as the 8-m class Gemini telescopes, there is much room for improvement. Errors resulting from laser-beacon AO, such as focus anisoplanatism, become worse with an increase in aperture diameter. Tilt anisoplanatism is also a problem, regardless of the size of telescope, and also needs to be reduced to enhance the resolution of the objects being observed. This dissertation investigates alternate laser-beacon AO configurations, to reduce the effects of focus and tilt anisoplanatism for larger aperture telescopes. The configurations investigated include single and multiple laser beacons at single altitudes and single and multiple laser beacons at multiple altitudes. These second configurations are referred to as hybrid beacon systems and consist of Rayleigh beacons at altitudes of 10 to 20˜km and sodium beacons at about 90˜km, the location of the sodium layer. Hybrid systems are shown to reduce both focus and tilt anisoplanatism as opposed to the first configurations which only aid in reducing focus anisoplanatism. An addition to the hybrid systems with multiple beacons, the use of multiple deformable mirrors (DM's) is investigated. These additional DM's are placed conjugate to atmospheric altitudes with predominant turbulence, beyond the traditional conjugate location of the primary mirror. They correct for turbulence at these atmospheric layers and are referred to as multi-conjugate adaptive optical (MCAO) systems. The purpose of MCAO configurations is to increase the corrected field of view. For the types of systems investigated in this

  9. Demonstration of adaptive optics for mitigating laser propagation through a random air-water interface

    Science.gov (United States)

    Land, Phillip; Majumdar, Arun K.

    2016-05-01

    This paper describes a new concept of mitigating signal distortions caused by random air-water interface using an adaptive optics (AO) system. This is the first time the concept of using an AO for mitigating the effects of distortions caused mainly by a random air-water interface is presented. We have demonstrated the feasibility of correcting the distortions using AO in a laboratory water tank for investigating the propagation effects of a laser beam through an airwater interface. The AO system consisting of a fast steering mirror, deformable mirror, and a Shack-Hartmann Wavefront Sensor for mitigating surface water distortions has a unique way of stabilizing and aiming a laser onto an object underneath the water. Essentially the AO system mathematically takes the complex conjugate of the random phase caused by air-water interface allowing the laser beam to penetrate through the water by cancelling with the complex conjugates. The results show the improvement of a number of metrics including Strehl ratio, a measure of the quality of optical image formation for diffraction limited optical system. These are the first results demonstrating the feasibility of developing a new sensor system such as Laser Doppler Vibrometer (LDV) utilizing AO for mitigating surface water distortions.

  10. The Robo-AO KOI Survey: laser adaptive optics imaging of every Kepler exoplanet candidate

    CERN Document Server

    Ziegler, Carl; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa

    2016-01-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5\\pm0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest...

  11. Modeling low order aberrations in laser guide star adaptive optics systems

    OpenAIRE

    Clare, Richard M.; Van Dam, Marcos A.; Bouchez, Antonin H.

    2007-01-01

    When using a laser guide star (LGS) adaptive optics (AO) system, quasi-static aberrations are observed between the measured wavefronts from the LGS wavefront sensor (WFS) and the natural guide star (NGS) WFS. These LGS aberrations, which can be as much as 1200 nm RMS on the Keck II LGS AO system, arise due to the finite height and structure of the sodium layer. The LGS aberrations vary significantly between nights due to the difference in sodium structure. In this paper, we successfully model...

  12. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Science.gov (United States)

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  13. Real-time blind deconvolution of retinal images in adaptive optics scanning laser ophthalmoscopy

    Science.gov (United States)

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2011-06-01

    With the use of adaptive optics (AO), the ocular aberrations can be compensated to get high-resolution image of living human retina. However, the wavefront correction is not perfect due to the wavefront measure error and hardware restrictions. Thus, it is necessary to use a deconvolution algorithm to recover the retinal images. In this paper, a blind deconvolution technique called Incremental Wiener filter is used to restore the adaptive optics confocal scanning laser ophthalmoscope (AOSLO) images. The point-spread function (PSF) measured by wavefront sensor is only used as an initial value of our algorithm. We also realize the Incremental Wiener filter on graphics processing unit (GPU) in real-time. When the image size is 512 × 480 pixels, six iterations of our algorithm only spend about 10 ms. Retinal blood vessels as well as cells in retinal images are restored by our algorithm, and the PSFs are also revised. Retinal images with and without adaptive optics are both restored. The results show that Incremental Wiener filter reduces the noises and improve the image quality.

  14. Adaptive optics system for fast automatic control of laser beam jitters in air

    Science.gov (United States)

    Grasso, Salvatore; Acernese, Fausto; Romano, Rocco; Barone, Fabrizio

    2010-04-01

    Adaptive Optics (AO) Systems can operate fast automatic control of laser beam jitters for several applications of basic research as well as for the improvement of industrial and medical devices. We here present our theoretical and experimental research showing the opportunity of suppressing laser beam geometrical fluctuations of higher order Hermite Gauss modes in interferometric Gravitational Waves (GW) antennas. This in turn allows to significantly reduce the noise that originates from the coupling of the laser source oscillations with the interferometer asymmetries and introduces the concrete possibility of overcoming the sensitivity limit of the GW antennas actually set at 10-23 1 Hz value. We have carried out the feasibility study of a novel AO System which performs effective laser jitters suppression in the 200 Hz bandwidth. It extracts the wavefront error signals in terms of Hermite Gauss (HG) coefficients and performs the wavefront correction using the Zernike polynomials. An experimental Prototype of the AO System has been implemented and tested in our laboratory at the University of Salerno and the results we have achieved fully confirm effectiveness and robustness of the control upon first and second order laser beam geometrical fluctuations, in good accordance with GW antennas requirements. Above all, we have measured 60 dB reduction of astigmatism and defocus modes at low frequency below 1 Hz and 20 dB reduction in the 200 Hz bandwidth.

  15. Discovery of a 66 mas Ultracool Binary with Laser Guide Star Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Siegler, N; Close, L; Burgasser, A; Cruz, K; Marois, C; Macintosh, B; Barman, T

    2007-02-02

    We present the discovery of 2MASS J21321145+1341584AB as a closely separated (0.066'') very low-mass field dwarf binary resolved in the near-infrared by the Keck II Telescope using laser guide star adaptive optics. Physical association is deduced from the angular proximity of the components and constraints on their common proper motion. We have obtained a near-infrared spectrum of the binary and find that it is best described by an L5{+-}0.5 primary and an L7.5{+-}0.5 secondary. Model-dependent masses predict that the two components straddle the hydrogen burning limit threshold with the primary likely stellar and the secondary likely substellar. The properties of this sytem - close projected separation (1.8{+-}0.3AU) and near unity mass ratio - are consistent with previous results for very low-mass field binaries. The relatively short estimated orbital period of this system ({approx}7-12 yr) makes it a good target for dynamical mass measurements. Interestingly, the system's angular separation is the tightest yet for any very low-mass binary published from a ground-based telescope and is the tightest binary discovered with laser guide star adaptive optics to date.

  16. Experimental demonstration of laser tomographic adaptive optics on a 30-meter telescope at 800 nm

    Science.gov (United States)

    Ammons, S., Mark; Johnson, Luke; Kupke, Renate; Gavel, Donald T.; Max, Claire E.

    2010-07-01

    A critical goal in the next decade is to develop techniques that will extend Adaptive Optics correction to visible wavelengths on Extremely Large Telescopes (ELTs). We demonstrate in the laboratory the highly accurate atmospheric tomography necessary to defeat the cone effect on ELTs, an essential milestone on the path to this capability. We simulate a high-order Laser Tomographic AO System for a 30-meter telescope with the LTAO/MOAO testbed at UCSC. Eight Sodium Laser Guide Stars (LGSs) are sensed by 99x99 Shack-Hartmann wavefront sensors over 75". The AO system is diffraction-limited at a science wavelength of 800 nm (S ~ 6-9%) over a field of regard of 20" diameter. Openloop WFS systematic error is observed to be proportional to the total input atmospheric disturbance and is nearly the dominant error budget term (81 nm RMS), exceeded only by tomographic wavefront estimation error (92 nm RMS). The total residual wavefront error for this experiment is comparable to that expected for wide-field tomographic adaptive optics systems of similar wavefront sensor order and LGS constellation geometry planned for Extremely Large Telescopes.

  17. Application of adaptive optics for controlling the NIF laser performance and spot size

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, J.; Bliss, E.; Henesian, M.; Lawson, J.; Manes, K.; Renard, P.; Sacks, R.; Salmon, T.; Trenholme, J.; Williams, W.; Winters, S.; Zacharias, R

    1998-08-17

    The National Ignition Facility (NIF) laser will use a 192-beam multi-pass architecture capable of delivering several MJ of UV energy in temporal pulse formats varying from sub-ns square to 20 ns precisely-defined high-contrast shapes. Each beam wavefront will be subjected to effects of optics inhomogeneities, figuring errors, mounting distortions, prompt and slow thermal effects from flashlamps, driven and passive air-path turbulence, and gravity-driven deformations. A 39-actuator intra-cavity deformable mirror, controlled by data from a 77-lenslet Hartman sensor will be used to correct these wavefront aberrations and thus to assure that stringent farfield spot requirements are met. We have developed numerical models for the expected distortions, the operation of the adaptive optic system, and the anticipated effects on beam propagation, component damage, frequency conversion, and target-plane energy distribution. These models have been extensively validated against data from LLNL's Beamlet, and Amplab lasers. We review the expected beam wavefront aberrations and their potential for adverse effects on the laser performance, describe our model of the corrective system operation, and display our predictions for corrected-beam operation of the NI

  18. A sodium laser guide star facility for the ANU/EOS space debris tracking adaptive optics demonstrator

    Science.gov (United States)

    D'Orgeville, Celine; Bennet, Francis; Blundell, Mark; Brister, Rod; Chan, Amy; Dawson, Murray; Gao, Yue; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian; Sellars, Matt; Smith, Craig; Uhlendorf, Kristina; Wang, Yanjie

    2014-07-01

    The Australian National University and EOS Space Systems have teamed up to equip the EOS laser space debris tracking station on Mount Stromlo near Canberra, Australia, with sodium Laser Guide Star (LGS) Adaptive Optics (AO). The AO system is used to correct for laser beam degradation caused by the atmospheric turbulence on the upward infrared laser pulse used to illuminate space debris. As a result, the AO-equipped laser tracking station can track smaller and more distant debris. This paper presents the joint ANU/EOS AO Demonstrator LGS facility requirements, architecture, and performance at the time of the conference.

  19. Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics

    Science.gov (United States)

    Xuan, Li; He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai

    2016-09-01

    Multi-conjugation adaptive optics (MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view (FOV). The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors, such as deformable mirrors (DMs) or liquid crystal wavefront correctors (LCWCs), is a very important step in the data processing of an MCAO’s controller. In this paper, a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars (LGSs) and the reasonable conjugation heights of LCWCs. Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO. Several examples are given to demonstrate our LGSs configuration optimization method. Compared with traditional methods, our method has minimum wavefront tomographic error, which will be helpful to get higher imaging resolution at large FOV in MCAO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  20. A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics

    Science.gov (United States)

    He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai; Xuan, Li

    2016-09-01

    Adaptive optics (AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present. To enlarge the imaging field of view (FOV), multi-laser guide stars (LGSs) are currently being investigated and used for the large aperture optical telescopes. LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system. We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation. By comparing with the conventional average method, the proposed method reduces the root mean square (RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV. We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  1. On-Sky Tests of a High-Power Pulsed Laser for Sodium Laser Guide Star Adaptive Optics

    Science.gov (United States)

    Otarola, Angel; Hickson, Paul; Gagné, Ronald; Bo, Yong; Zuo, Junwei; Xie, Shiyong; Feng, Lu; Rochester, Simon; Budker, Dmitry; Shen, Shixia; Xue, Suijian; Min, Li; Wei, Kai; Boyer, Corinne; Ellerbroek, Brent; Hu, Jingyao; Peng, Qinjun; Xu, Zuyan

    2016-03-01

    We present results of on-sky tests performed in the summer of 2013 to characterize the performance of a prototype high-power pulsed laser for adaptive optics. The laser operates at a pulse repetition rate (PRR) of 600-800Hz, with a 6% duty cycle. Its coupling efficiency was found to be, in the best test case (using 18W of transmitted power), 231±14 photons s-1 sr-1 atom-1 W-1 m2 when circular polarization was employed and 167±17 photons s-1 sr-1 atom-1 W-1 m2 with linear polarization. No improvement was seen when D2b repumping was used, but this is likely due to the relatively large laser guide star (LGS) diameter, typically 10 arcsec or more, which resulted in low irradiance levels. Strong relaxation oscillations were present in the laser output, which have the effect of reducing the coupling efficiency. To better understand the results, a physical modeling was performed using the measured pulse profiles and parameters specific to these tests. The model results, for a 10 arcsec angular size LGS spot, agree well with the observations. When extrapolating the physical model for a sub-arcsecond angular size LGS (typical of what is needed for a successful astronomical guide star), the model predicts that this laser would have a coupling efficiency of 130 photons s-1 sr-1 atom-1 W-1 m2, using circular polarization and D2b repumping, for a LGS diameter of 0.6 arcsec Full Width at Half Maximum (FWHM), and free of relaxation oscillations in the 589 nm laser light.

  2. The Robo-AO KOI Survey: Laser Adaptive Optics Imaging of Every Kepler Exoplanet Candidate

    Science.gov (United States)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed L.

    2016-01-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that pollute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present approximately 3300 high resolution observations of Kepler planetary hosts from 2012-2015, with ~500 observed nearby stars. We measure an overall nearby star probability rate of 16.2±0.8%. With this large dataset, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host. We then use these clues for insight into the formation and evolution of these exotic systems. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting in the habitable zone.

  3. Morphologies of High Redshift, Dust Obscured Galaxies from Keck Laser Guide Star Adaptive Optics

    CERN Document Server

    Melbourne, J; Armus, Lee; Dey, Arjun; Brand, K; Thompson, D; Soifer, B T; Matthews, K; Jannuzi, B T; Houck, J R

    2008-01-01

    Spitzer MIPS images in the Bootes field of the NOAO Deep Wide-Field Survey have revealed a class of extremely dust obscured galaxy (DOG) at z~2. The DOGs are defined by very red optical to mid-IR (observed-frame) colors, R - [24 um] > 14 mag, i.e. f_v (24 um) / f_v (R) > 1000. They are Ultra-Luminous Infrared Galaxies with L_8-1000 um > 10^12 -10^14 L_sun, but typically have very faint optical (rest-frame UV) fluxes. We imaged three DOGs with the Keck Laser Guide Star Adaptive Optics (LGSAO) system, obtaining ~0.06'' resolution in the K'-band. One system was dominated by a point source, while the other two were clearly resolved. Of the resolved sources, one can be modeled as a exponential disk system. The other is consistent with a de Vaucouleurs profile typical of elliptical galaxies. The non-parametric measures of their concentration and asymmetry, show the DOGs to be both compact and smooth. The AO images rule out double nuclei with separations of greater than 0.1'' (< 1 kpc at z=2), making it unlikely ...

  4. Lasers, lenses and light curves : adaptive optics microscopy and peculiar transiting exoplanets

    NARCIS (Netherlands)

    Werkhoven, Theodorus Isaak Mattheus van

    2014-01-01

    In the first part of this thesis, we present an adaptive optics implementation for multi-photon microscopy correcting sample-induced wavefront aberrations using either direct wavefront sensing to run a close-loop adaptive optics system (Chapter 3), or use a model-based sensorless approach to iterati

  5. Radio Galaxy 3C 230 Observed with Gemini Laser-Adaptive-Optics Integral-Field Spectroscopy

    CERN Document Server

    Steinbring, Eric

    2011-01-01

    The Altair laser-guide-star adaptive optics facility combined with the Near-Infrared Integral Field Spectrometer (NIFS) on Gemini North have been employed to study the morphology and kinematics of 3C 230 at z=1.5, the first such observations of a high-redshift radio galaxy. These suggest a bi-polar outflow spanning 0"9 (~16 kpc projected distance for a standard lambda-CDM cosmology) reaching a mean relative velocity of 235 km/s in redshifted H-alpha + [NII] and [SII] emission. Structure is resolved to 0"1 (0.8 kpc), well correlated with optical images from the Hubble Space Telescope and Very Large Array radio maps obtained at similar spatial resolution. Line diagnostics suggest that over the 10^7 yr to 10^8 yr duration of its AGN activity, gas has been ejected into bright turbulent lobes at rates comparable to star formation, although constituting perhaps only 1 percent of the baryonic mass in the galaxy.

  6. Intelligent correction of laser beam propagation through turbulent media using adaptive optics

    Science.gov (United States)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2014-10-01

    Adaptive optics methods have long been used by researchers in the astronomy field to retrieve correct images of celestial bodies. The approach is to use a deformable mirror combined with Shack-Hartmann sensors to correct the slightly distorted image when it propagates through the earth's atmospheric boundary layer, which can be viewed as adding relatively weak distortion in the last stage of propagation. However, the same strategy can't be easily applied to correct images propagating along a horizontal deep turbulence path. In fact, when turbulence levels becomes very strong (Cn 2>10-13 m-2/3), limited improvements have been made in correcting the heavily distorted images. We propose a method that reconstructs the light field that reaches the camera, which then provides information for controlling a deformable mirror. An intelligent algorithm is applied that provides significant improvement in correcting images. In our work, the light field reconstruction has been achieved with a newly designed modified plenoptic camera. As a result, by actively intervening with the coherent illumination beam, or by giving it various specific pre-distortions, a better (less turbulence affected) image can be obtained. This strategy can also be expanded to much more general applications such as correcting laser propagation through random media and can also help to improve designs in free space optical communication systems.

  7. Advancing adaptive optics technology: Laboratory turbulence simulation and optimization of laser guide stars

    Science.gov (United States)

    Rampy, Rachel A.

    Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and

  8. Resolving the Multiple Outflows in the Egg Nebula with Keck II Laser Guide Star Adaptive Optics

    CERN Document Server

    Mignant, D Le; Bouchez, A; Campbell, R; van Dam, M; Chin, J; Johansson, E; Hartman, S; Lafon, R; Lyke, J; Stomski, P; Summers, D; Wizinowich, P

    2007-01-01

    The Egg Nebula has been regarded as the archetype of bipolar proto-planetary nebulae, yet we lack a coherent model that can explain the morphology and kinematics of the nebular and dusty components observed at high-spatial and spectral resolution. Here, we report on two sets of observations obtained with the Keck Adaptive Optics Laser Guide Star: H to M-band NIRC2 imaging, and narrow bandpath K-band OSIRIS 3-D imaging-spectroscopy (through the H2 2.121micron emission line). While the central star or engine remains un-detected at all bands, we clearly resolve the dusty components in the central region and confirm that peak A is not a companion star. The spatially-resolved spectral analysis provide kinematic information of the H_2 emission regions in the eastern and central parts of the nebula and show projected velocities for the H_2 emission higher than 100 km/s. We discuss these observations against a possible formation scenario for the nebular components.

  9. The proper motion of the Arches cluster with Keck Laser-Guide Star Adaptive Optics

    CERN Document Server

    Stolte, Andrea; Morris, Mark; Lu, Jessica R; Brandner, Wolfgang; Matthews, Keith

    2007-01-01

    We present the first measurement of the proper motion of the young, compact Arches cluster near the Galactic center from near-infrared adaptive optics (AO) data taken with the recently commissioned laser-guide star (LGS) at the Keck 10-m telescope. The excellent astrometric accuracy achieved with LGS-AO provides the basis for a detailed comparison with VLT/NAOS-CONICA data taken 4.3 years earlier. Over the 4.3 year baseline, a spatial displacement of the Arches cluster with respect to the field population is measured to be 24.0 +/- 2.2 mas, corresponding to a proper motion of 5.6 +/- 0.5 mas/yr or 212 +/- 20 km/s at a distance of 8 kpc. In combination with the known radial velocity of the cluster, we derive a 3D space motion of 232 +/- 22 km/s of the Arches relative to the field. The large proper motion of the Arches cannot be explained with any of the closed orbital families observed in gas clouds in the bar potential of the inner Galaxy, but would be consistent with the Arches being on a transitional trajec...

  10. Mapping the Clumpy Structures within Submillimeter Galaxies using Laser-Guide Star Adaptive Optics Spectroscopy

    CERN Document Server

    Menéndez-Delmestre, Karín; Swinbank, Mark; Smail, Ian; Ivison, Rob J; Chapman, Scott C; Gonçalves, Thiago S

    2013-01-01

    We present the first integral-field spectroscopic observations of high-redshift submillimeter-selected galaxies (SMGs) using Laser Guide Star Adaptive Optics (LGS-AO). We target H-alpha emission of three SMGs at redshifts z~1.4-2.4 with the OH-Suppressing Infrared Imaging Spectrograph (OSIRIS) on Keck. The spatially-resolved spectroscopy of these galaxies reveals unresolved broad H-alpha line regions (FWHM>1000 km/s) likely associated with an AGN and regions of diffuse star formation traced by narrow-line H-alpha emission (FWHM<500 km/s) dominated by multiple Halpha-bright stellar clumps, each contributing 1-30% of the total clump-integrated H-alpha emission. We find that these SMGs host high star-formation rate surface densities, similar to local extreme sources, such as circumnuclear starbursts and luminous infrared galaxies. However, in contrast to these local environments, SMGs appear to be undergoing such intense activity on significantly larger spatial scales as revealed by extended H-alpha emission ...

  11. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    Science.gov (United States)

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  12. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    Science.gov (United States)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  13. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    Science.gov (United States)

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  14. Adaptive Optics for Large Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  15. Laser beam propagation through turbulence and adaptive optics for beam delivery improvement

    Science.gov (United States)

    Nicolas, Stephane

    2015-10-01

    We report results from numerical simulations of laser beam propagation through atmospheric turbulence. In particular, we study the statistical variations of the fractional beam energy hitting inside an optical aperture placed at several kilometer distance. The simulations are performed for different turbulence conditions and engagement ranges, with and without the use of turbulence mitigation. Turbulence mitigation is simulated with phase conjugation. The energy fluctuations are deduced from time sequence realizations. It is shown that turbulence mitigation leads to an increase of the mean energy inside the aperture and decrease of the fluctuations even in strong turbulence conditions and long distance engagement. As an example, the results are applied to a high energy laser countermeasure system, where we determine the probability that a single laser pulse, or one of the pulses in a sequence, will provide a lethal energy inside the target aperture. Again, turbulence mitigation contributes to increase the performance of the system at long-distance and for strong turbulence conditions in terms of kill probability. We also discuss a specific case where turbulence contributes to increase the pulse energy within the target aperture. The present analysis can be used to evaluate the performance of a variety of systems, such as directed countermeasures, laser communication, and laser weapons.

  16. “Lucky Averaging”: Quality improvement on Adaptive Optics Scanning Laser Ophthalmoscope Images

    OpenAIRE

    Huang, Gang; Zhong, Zhangyi; Zou, Weiyao; Burns, Stephen A.

    2011-01-01

    Adaptive optics(AO) has greatly improved retinal image resolution. However, even with AO, temporal and spatial variations in image quality still occur due to wavefront fluctuations, intra-frame focus shifts and other factors. As a result, aligning and averaging images can produce a mean image that has lower resolution or contrast than the best images within a sequence. To address this, we propose an image post-processing scheme called “lucky averaging”, analogous to lucky imaging (Fried, 1978...

  17. Future trends in adaptive Optics

    Science.gov (United States)

    Le Louarn, Miska

    2001-05-01

    In this talk, I will summarize the limitations of current adaptive optics systems (cone effect, anisoplanatism) and I will show what methods can be used to overcome them. I will focus on Multi-Conjugate AO and the polychromatic laser guide star. I will also address AO for Extremely Large Telescopes (ELTs), such as OWL (ESO) and CELT (University of California / Caltech).

  18. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  19. [Adaptive optics for ophthalmology].

    Science.gov (United States)

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy.

  20. Superresolving distant galaxies with gravitational telescopes : Keck laser guide star adaptive optics and Hubble Space Telescope imaging of the lens system SDSS J0737+3216

    NARCIS (Netherlands)

    Marshall, Philip J.; Treu, Tommaso; Melbourne, Jason; Gavazzi, Raphael; Bundy, Kevin; Ammons, S. Mark; Bolton, Adam S.; Burles, Scott; Larkin, James E.; Le Mignant, David; Koo, David C.; Koopmans, Leon V. E.; Max, Claire E.; Moustakas, Leonidas A.; Steinbring, Eric; Wright, Shelley A.

    2007-01-01

    We combine high-resolution images in four optical/infrared bands, obtained with the laser guide star adaptive optics ( LGSAO) system on the Keck telescope and with the Hubble Space Telescope ( HST), to study the gravitational lens system SDSS J0737 + 3216 ( lens redshift 0.3223, source redshift 0.58

  1. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy.

    Directory of Open Access Journals (Sweden)

    Kohei Takayama

    Full Text Available PURPOSE: To conduct high-resolution imaging of the retinal nerve fiber layer (RNFL in normal eyes using adaptive optics scanning laser ophthalmoscopy (AO-SLO. METHODS: AO-SLO images were obtained in 20 normal eyes at multiple locations in the posterior polar area and a circular path with a 3-4-mm diameter around the optic disc. For each eye, images focused on the RNFL were recorded and a montage of AO-SLO images was created. RESULTS: AO-SLO images for all eyes showed many hyperreflective bundles in the RNFL. Hyperreflective bundles above or below the fovea were seen in an arch from the temporal periphery on either side of a horizontal dividing line to the optic disc. The dark lines among the hyperreflective bundles were narrower around the optic disc compared with those in the temporal raphe. The hyperreflective bundles corresponded with the direction of the striations on SLO red-free images. The resolution and contrast of the bundles were much higher in AO-SLO images than in red-free fundus photography or SLO red-free images. The mean hyperreflective bundle width around the optic disc had a double-humped shape; the bundles at the temporal and nasal sides of the optic disc were narrower than those above and below the optic disc (P<0.001. RNFL thickness obtained by optical coherence tomography correlated with the hyperreflective bundle widths on AO-SLO (P<0.001 CONCLUSIONS: AO-SLO revealed hyperreflective bundles and dark lines in the RNFL, believed to be retinal nerve fiber bundles and Müller cell septa. The widths of the nerve fiber bundles appear to be proportional to the RNFL thickness at equivalent distances from the optic disc.

  2. Working Beyond the Static Limits of Laser Stability by Use of Adaptive and Polarization-Conjugation Optics

    Science.gov (United States)

    Moshe, Inon; Jackel, Steven; Lallouz, Raphael

    1998-09-01

    Strong thermo-optical aberrations in flash lamp-pumped Nd:Cr:GSGG rods were corrected to yield TEM 00 output at twice the efficiency of Nd:YAG. A hemispherical resonator operating at the limit of stability was employed. As much as 3 W of average power in a Gaussian beam ( M 2 1 ) was generated. Unique features were zero warm-up time and the ability to vary the repetition rate without varying energy, near- and far-field profiles, or polarization purity. Thermal focusing and astigmatism were corrected with a microprocessor-controlled adaptive-optics backmirror composed of discrete elements (variable-radius mirror). A reentrant resonator coupled polarizer losses back into the laser rod and corrected depolarization.

  3. Interferometric adaptive optics for high-power laser pointing, wavefront control, and phasing

    Science.gov (United States)

    Baker, K. L.; Stappaerts, E. A.; Homoelle, D. C.; Henesian, M. A.; Bliss, E. S.; Siders, C. W.; Barty, C. P. J.

    2009-02-01

    Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing and overall wavefront quality. One quad of the NIF beams, 4 beam pairs, will be utilized for these experiments and hydrodynamic and particle-in-cell simulations indicate that for the fast ignition experiments, these beams will be required to deliver 50%(4.0 kJ) of their total energy(7.96 kJ) within a 40 μm diameter spot at the end of a fast ignition cone target. This requirement implies a stringent pointing and overall phase conjugation error budget on the adaptive optics system used to correct these beam lines. The overall encircled energy requirement is more readily met by phasing of the beams in pairs but still requires high Strehl ratios, Sr, and RMS tip/tilt errors of approximately one μrad. To accomplish this task we have designed an interferometric adaptive optics system capable of beam pointing, high Strehl ratio and beam phasing with a single pixilated MEMS deformable mirror and interferometric wave-front sensor. We present the design of a testbed used to evaluate the performance of this wave-front sensor below along with simulations of its expected performance level.

  4. Interferometric adaptive optics for high power laser pointing, wave-front control and phasing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K L; Stappaerts, E A; Homoelle, D C; Henesian, M A; Bliss, E S; Siders, C W; Barty, C J

    2009-01-21

    Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing and overall wavefront quality. One quad of the NIF beams, 4 beam pairs, will be utilized for these experiments and hydrodynamic and particle-in-cell simulations indicate that for the fast ignition experiments, these beams will be required to deliver 50% (4.0 kJ) of their total energy (7.96 kJ) within a 40 {micro}m diameter spot at the end of a fast ignition cone target. This requirement implies a stringent pointing and overall phase conjugation error budget on the adaptive optics system used to correct these beam lines. The overall encircled energy requirement is more readily met by phasing of the beams in pairs but still requires high Strehl ratios, Sr, and rms tip/tilt errors of approximately one {micro}rad. To accomplish this task we have designed an interferometric adaptive optics system capable of beam pointing, high Strehl ratio and beam phasing with a single pixilated MEMS deformable mirror and interferometric wave-front sensor. We present the design of a testbed used to evaluate the performance of this wave-front sensor below along with simulations of its expected performance level.

  5. Efficient reconstruction method for ground layer adaptive optics with mixed natural and laser guide stars.

    Science.gov (United States)

    Wagner, Roland; Helin, Tapio; Obereder, Andreas; Ramlau, Ronny

    2016-02-20

    The imaging quality of modern ground-based telescopes such as the planned European Extremely Large Telescope is affected by atmospheric turbulence. In consequence, they heavily depend on stable and high-performance adaptive optics (AO) systems. Using measurements of incoming light from guide stars, an AO system compensates for the effects of turbulence by adjusting so-called deformable mirror(s) (DMs) in real time. In this paper, we introduce a novel reconstruction method for ground layer adaptive optics. In the literature, a common approach to this problem is to use Bayesian inference in order to model the specific noise structure appearing due to spot elongation. This approach leads to large coupled systems with high computational effort. Recently, fast solvers of linear order, i.e., with computational complexity O(n), where n is the number of DM actuators, have emerged. However, the quality of such methods typically degrades in low flux conditions. Our key contribution is to achieve the high quality of the standard Bayesian approach while at the same time maintaining the linear order speed of the recent solvers. Our method is based on performing a separate preprocessing step before applying the cumulative reconstructor (CuReD). The efficiency and performance of the new reconstructor are demonstrated using the OCTOPUS, the official end-to-end simulation environment of the ESO for extremely large telescopes. For more specific simulations we also use the MOST toolbox. PMID:26906596

  6. Conceptual Design of the Adaptive Optics System for the Laser Communication Relay Demonstration Ground Station at Table Mountain

    Science.gov (United States)

    Roberts, Lewis C., Jr.; Page, Norman A.; Burruss, Rick S.; Truong, Tuan N.; Dew, Sharon; Troy, Mitchell

    2013-01-01

    The Laser Communication Relay Demonstration will feature a geostationary satellite communicating via optical links to multiple ground stations. The first ground station (GS-1) is the 1m OCTL telescope at Table Mountain in California. The optical link will utilize pulse position modulation (PPM) and differential phase shift keying (DPSK) protocols. The DPSK link necessitates that adaptive optics (AO) be used to relay the incoming beam into the single mode fiber that is the input of the modem. The GS-1 AO system will have two MEMS Deformable mirrors to achieve the needed actuator density and stroke limit. The AO system will sense the aberrations with a Shack-Hartmann wavefront sensor using the light from the communication link's 1.55 microns laser to close the loop. The system will operate day and night. The system's software will be based on heritage software from the Palm 3000 AO system, reducing risk and cost. The AO system is being designed to work at r(sub 0) greater than 3.3 cm (measured at 500 nm and zenith) and at elevations greater than 20deg above the horizon. In our worst case operating conditions we expect to achieve Strehl ratios of over 70% (at 1.55 microns), which should couple 57% of the light into the single mode DPSK fiber. This paper describes the conceptual design of the AO system, predicted performance and discusses some of the trades that were conducted during the design process.

  7. Characterizing the Adaptive Optics Off-Axis Point-Spread Function. II. Methods for Use in Laser Guide Star Observations

    CERN Document Server

    Steinbring, E; MacIntosh, B A; Gavel, D; Gates, E L

    2005-01-01

    Most current astronomical adaptive optics (AO) systems rely on the availability of a bright star to measure the distortion of the incoming wavefront. Replacing the guide star with an artificial laser beacon alleviates this dependency on bright stars and therefore increases sky coverage, but it does not eliminate another serious problem for AO observations. This is the issue of PSF variation with time and field position near the guide star. In fact, because a natural guide star is still necessary for correction of the low-order phase error, characterization of laser guide star (LGS) AO PSF spatial variation is more complicated than for a natural guide star alone. We discuss six methods for characterizing LGS AO PSF variation that can potentially improve the determination of the PSF away from the laser spot, that is, off-axis. Calibration images of dense star fields are used to determine the change in PSF variation with field position. This is augmented by AO system telemetry and simple computer simulations to ...

  8. OCAM2S: an integral shutter ultrafast and low noise wavefront sensor camera for laser guide stars adaptive optics systems

    Science.gov (United States)

    Gach, Jean-Luc; Feautrier, Philippe; Balard, Philippe; Guillaume, Christian; Stadler, Eric

    2014-07-01

    To date, the OCAM2 system has demonstrated to be the fastest and lowest noise production ready wavefront sensor, achieving 2067 full frames per second with subelectron readout noise. This makes OCAM2 the ideal system for natural as well as continuous wave laser guide star wavefront sensing. In this paper we present the new gated version of OCAM2 named OCAM2-S, using E2V's CCD219 sensor with integral shutter. This new camera offers the same superb characteristics than OCAM2 both in terms of speed and readout noise but also offers a shutter function that makes the sensor only sensitive to light for very short periods, at will. We will report on gating time and extinction ratio performances of this new camera. This device opens new possibilities for Rayleigh pulsed lasers adaptive optics systems. With a shutter time constant well below 1 microsecond, this camera opens new solutions for pulsed sodium lasers with backscatter suppression or even spot elongation minimization for ELT LGS.

  9. Rest-Frame R-band Lightcurve of a z~1.3 Supernova Obtained with Keck Laser Adaptive Optics

    CERN Document Server

    Melbourne, J; Koo, D C; Max, C; Larkin, J E; Wright, S A; Steinbring, E; Barczys, M; Aldering, G; Barbary, K; Doi, M; Fadeev, V; Goldhaber, G; Hattori, T; Ihara, Y; Kashikawa, N; Konishi, K; Kowalski, M; Kuznetsova, N; Lidman, C; Morokuma, T; Perlmutter, S; Rubin, D; Schlegel, D J; Spadafora, A L; Takanashi, N; Yasuda, N

    2007-01-01

    We present Keck diffraction limited H-band photometry of a z~1.3 Type Ia supernova (SN) candidate, first identified in a Hubble Space Telescope (HST) search for SNe in massive high redshift galaxy clusters. The adaptive optics (AO) data were obtained with the Laser Guide Star facility during four observing runs from September to November 2005. In the analysis of data from the observing run nearest to maximum SN brightness, the SN was found to have a magnitude H=23.9 +/- 0.14 (Vega). We present the H-band (approximately rest-frame R) light curve and provide a detailed analysis of the AO photometric uncertainties. By constraining the aperture correction with a nearby (4" separation) star we achieve 0.14 magnitude photometric precision, despite the spatially varying AO PSF.

  10. Laser guide star adaptive optics point spread function reconstruction project at W. M. Keck Observatory: preliminary on-sky results

    Science.gov (United States)

    Jolissaint, Laurent; Ragland, Sam; Wizinowich, Peter; Bouxin, Audrey

    2014-07-01

    We present in this paper an analysis of our preliminary results for point spread function reconstruction in laser guide star (LGS) mode for the Keck-II adaptive optics system. Our approach is based on an update of the natural guide star algorithm with the LGS terms. The first reconstruction we have done is based on a set of 13 LGS runs (telemetry data and sky PSF) for which we demonstrate already a significant correlation between the reconstructed and sky PSF metrics. At this point of the project, though, our reconstructed PSF does not reproduce the sky PSF features (and this is expected) : we discuss why, and describe the different issues we have to solve, and the different experiment we will do, in order to achieve a good reconstruction.

  11. A Miniaturized Adaptive Optic Device for Optical Telecommunications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To advance the state-of-the-art uplink laser communication technology, new adaptive optic beam compensation techniques are needed for removing various time-varying...

  12. Integration of a laser doppler vibrometer and adaptive optics system for acoustic-optical detection in the presence of random water wave distortions

    Science.gov (United States)

    Land, Phillip; Robinson, Dennis; Roeder, James; Cook, Dean; Majumdar, Arun K.

    2016-05-01

    A new technique has been developed for improving the Signal-to-Noise Ratio (SNR) of underwater acoustic signals measured above the water's surface. This technique uses a Laser Doppler Vibrometer (LDV) and an Adaptive Optics (AO) system (consisting of a fast steering mirror, deformable mirror, and Shack-Hartmann Wavefront Sensor) for mitigating the effect of surface water distortions encountered while remotely recording underwater acoustic signals. The LDV is used to perform non-contact vibration measurements of a surface via a two beam laser interferometer. We have demonstrated the feasibility of this technique to overcome water distortions artificially generated on the surface of the water in a laboratory tank. In this setup, the LDV beam penetrates the surface of the water and travels down to be reflected off a submerged acoustic transducer. The reflected or returned beam is then recorded by the LDV as a vibration wave measurement. The LDV extracts the acoustic wave information while the AO mitigates the water surface distortions, increasing the overall SNR. The AO system records the Strehl ratio, which is a measure of the quality of optical image formation. In a perfect optical system the Strehl ratio is unity, however realistic systems with imperfections have Strehl ratios below one. The operation of the AO control system in open-loop and closed-loop configurations demonstrates the utility of the AO-based LDV for many applications.

  13. CATS: Optical to Near-Infrared Colors of the Bulge and Disk of Two z=0.7 Galaxies Using HST and Keck Laser Adaptive Optics Imaging

    CERN Document Server

    Steinbring, E; Metevier, A J; Koo, D C; Chun, M R; Simard, L; Larkin, J E; Max, C E

    2008-01-01

    We have employed laser guide star (LGS) adaptive optics (AO) on the Keck II telescope to obtain near-infrared (NIR) images in the Extended Groth Strip (EGS) deep galaxy survey field. This is a continuation of our Center for Adaptive Optics Treasury Survey (CATS) program of targeting 0.5optical to NIR colors and color gradients of the bulge and disk of two galaxies in the field with z=0.7.

  14. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  15. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  16. High-Resolution Imaging by Adaptive Optics Scanning Laser Ophthalmoscopy Reveals Two Morphologically Distinct Types of Retinal Hard Exudates.

    Science.gov (United States)

    Yamaguchi, Muneo; Nakao, Shintaro; Kaizu, Yoshihiro; Kobayashi, Yoshiyuki; Nakama, Takahito; Arima, Mitsuru; Yoshida, Shigeo; Oshima, Yuji; Takeda, Atsunobu; Ikeda, Yasuhiro; Mukai, Shizuo; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Histological studies from autopsy specimens have characterized hard exudates as a composition of lipid-laden macrophages or noncellular materials including lipid and proteinaceous substances (hyaline substances). However, the characteristics of hard exudates in living patients have not been examined due to insufficient resolution of existing equipment. In this study, we used adaptive optics scanning laser ophthalmoscopy (AO-SLO) to examine the characteristics of hard exudates in patients with retinal vascular diseases. High resolution imaging using AO-SLO enables morphological classification of retinal hard exudates into two types, which could not be distinguished either on fundus examination or by spectral domain optical coherence tomography (SD-OCT). One, termed a round type, consisted of an accumulation of spherical particles (average diameter of particles: 26.9 ± 4.4 μm). The other, termed an irregular type, comprised an irregularly shaped hyper-reflective deposition. The retinal thickness in regions with round hard exudates was significantly greater than the thickness in regions with irregular hard exudates (P = 0.01 →0.02). This differentiation of retinal hard exudates in patients by AO-SLO may help in understanding the pathogenesis and clinical prognosis of retinal vascular diseases. PMID:27641223

  17. High-Resolution Imaging by Adaptive Optics Scanning Laser Ophthalmoscopy Reveals Two Morphologically Distinct Types of Retinal Hard Exudates

    Science.gov (United States)

    Yamaguchi, Muneo; Nakao, Shintaro; Kaizu, Yoshihiro; Kobayashi, Yoshiyuki; Nakama, Takahito; Arima, Mitsuru; Yoshida, Shigeo; Oshima, Yuji; Takeda, Atsunobu; Ikeda, Yasuhiro; Mukai, Shizuo; Ishibashi, Tatsuro; Sonoda, Koh-hei

    2016-01-01

    Histological studies from autopsy specimens have characterized hard exudates as a composition of lipid-laden macrophages or noncellular materials including lipid and proteinaceous substances (hyaline substances). However, the characteristics of hard exudates in living patients have not been examined due to insufficient resolution of existing equipment. In this study, we used adaptive optics scanning laser ophthalmoscopy (AO-SLO) to examine the characteristics of hard exudates in patients with retinal vascular diseases. High resolution imaging using AO-SLO enables morphological classification of retinal hard exudates into two types, which could not be distinguished either on fundus examination or by spectral domain optical coherence tomography (SD-OCT). One, termed a round type, consisted of an accumulation of spherical particles (average diameter of particles: 26.9 ± 4.4 μm). The other, termed an irregular type, comprised an irregularly shaped hyper-reflective deposition. The retinal thickness in regions with round hard exudates was significantly greater than the thickness in regions with irregular hard exudates (P = 0.01 →0.02). This differentiation of retinal hard exudates in patients by AO-SLO may help in understanding the pathogenesis and clinical prognosis of retinal vascular diseases. PMID:27641223

  18. First Stellar Velocity Dispersion Measurement of a Luminous Quasar Host with Gemini North Laser Guide Star Adaptive Optics

    CERN Document Server

    Watson, Linda C; Dasyra, Kalliopi M; Bentz, Misty C; Ferrarese, Laura; Peterson, Bradley M; Pogge, Richard W; Tacconi, Linda J

    2008-01-01

    We present the first use of the Gemini North laser guide star adaptive optics (LGS AO) system and an integral field unit (IFU) to measure the stellar velocity dispersion of the host of a luminous quasar. The quasar PG1426+015 (z=0.086) was observed with the Near-Infrared Integral Field Spectrometer (NIFS) on the 8m Gemini North telescope in the H-band as part of the Science Verification phase of the new ALTAIR LGS AO system. The NIFS IFU and LGS AO are well suited for host studies of luminous quasars because one can achieve a large ratio of host to quasar light. We have measured the stellar velocity dispersion of PG1426+015 from 0.1'' to 1'' (0.16 kpc to 1.6 kpc) to be 217+/-15 km/s based on high signal-to-noise ratio measurements of Si I, Mg I, and several CO bandheads. This new measurement is a factor of four more precise than a previous measurement obtained with long-slit spectroscopy and good, natural seeing, yet was obtained with a shorter net integration time. We find that PG1426+015 has a velocity disp...

  19. Kelu-1 is a Binary L Dwarf: First Brown Dwarf Science from Laser Guide Star Adaptive Optics

    CERN Document Server

    Liu, M C; Liu, Michael C.; Leggett, Sandy K.

    2005-01-01

    (Abridged) We present near-IR imaging of the nearby L dwarf Kelu-1 obtained with the Keck sodium laser guide star adaptive optics (LGS AO) system as part of a high angular resolution survey for substellar binaries. Kelu-1 was one of the first free-floating L dwarfs identified, and the origin of its overluminosity compared to other similar objects has been a long-standing question. Our images clearly resolve Kelu-1 into a 0.29'' (5.4 AU) binary, and a previous non-detection by HST demonstrates that the system is a true physical pair. Binarity explains the properties of Kelu-1 that were previously noted to be anomalous compared to other early-L dwarfs. We estimate spectral types of L1.5-L3 and L3-L4.5 for the two components, giving model-derived masses of 0.05-0.07 Msun and 0.045-0.065 Msun for an estimated age of 0.3-0.8 Gyr. More distant companions are not detected to a limit of 5-9 Mjup. The presence of lithium absorption indicates that both components are substellar, but the weakness of this feature relativ...

  20. A near-infrared tip-tilt sensor for the Keck I laser guide star adaptive optics system

    Science.gov (United States)

    Wizinowich, Peter; Smith, Roger; Biasi, Roberto; Cetre, Sylvain; Dekany, Richard; Femenia-Castella, Bruno; Fucik, Jason; Hale, David; Neyman, Chris; Pescoller, Dietrich; Ragland, Sam; Stomski, Paul; Andrighettoni, Mario; Bartos, Randy; Bui, Khanh; Cooper, Andrew; Cromer, John; van Dam, Marcos; Hess, Michael; James, Ean; Lyke, Jim; Rodriguez, Hector; Stalcup, Thomas

    2014-07-01

    The sky coverage and performance of laser guide star (LGS) adaptive optics (AO) systems is limited by the natural guide star (NGS) used for low order correction. This limitation can be dramatically reduced by measuring the tip and tilt of the NGS in the near-infrared where the NGS is partially corrected by the LGS AO system and where stars are generally several magnitudes brighter than at visible wavelengths. We present the design of a near-infrared tip-tilt sensor that has recently been integrated with the Keck I telescope's LGS AO system along with some initial on-sky results. The implementation involved modifications to the AO bench, real-time control system, and higher level controls and operations software that will also be discussed. The tip-tilt sensor is a H2RG-based near-infrared camera with 0.05 arc second pixels. Low noise at high sample rates is achieved by only reading a small region of interest, from 2×2 to 16×16 pixels, centered on an NGS anywhere in the 100 arc second diameter field. The sensor operates at either Ks or H-band using light reflected by a choice of dichroic beamsplitters located in front of the OSIRIS integral field spectrograph.

  1. Astronomical Science with Laser Guide Star Adaptive Optics: A Brief Review, a Current Snapshot, and a Bright Future

    CERN Document Server

    Liu, M C

    2006-01-01

    We briefly discuss the past, present, and future state of astronomical science with laser guide star adaptive optics (LGS AO). We present a tabulation of refereed science papers from LGS AO, amounting to a total of 23 publications as of May 2006. The first decade of LGS AO science (1995-2004) was marked by modest science productivity (~1 paper/year), as LGS systems were being implemented and commissioned. The last two years have seen explosive science growth (~1 paper/month), largely due to the new LGS system on the Keck II 10-meter telescope, and point to an exciting new era for high angular resolution science. To illustrate the achievable on-sky performance, we present an extensive collection of Keck LGS performance measurements from the first year of our brown dwarf near-IR imaging survey. We summarize the current strengths and weaknesses of LGS compared to Hubble Space Telescope, offer a list of desired improvements, and look forward to a bright future for LGS given its wide-scale implementation on large ...

  2. Advanced Adaptive Optics Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  3. Line sensing device for ultrafast laser acoustic inspection using adaptive optics

    Science.gov (United States)

    Hale, Thomas C.; Moore, David S.

    2003-11-04

    Apparatus and method for inspecting thin film specimens along a line. A laser emits pulses of light that are split into first, second, third and fourth portions. A delay is introduced into the first portion of pulses and the first portion of pulses is directed onto a thin film specimen along a line. The third portion of pulses is directed onto the thin film specimen along the line. A delay is introduced into the fourth portion of pulses and the delayed fourth portion of pulses are directed to a photorefractive crystal. Pulses of light reflected from the thin film specimen are directed to the photorefractive crystal. Light from the photorefractive crystal is collected and transmitted to a linear photodiode array allowing inspection of the thin film specimens along a line.

  4. Optical ballast and adaptive dynamic stable resonator

    Institute of Scientific and Technical Information of China (English)

    Zhang Guang-Yin; Jiao Zhi-Yong; Guo Shu-Guang; Zhang Xiao-Hua; Gu Xue-Wen; Yan Cai-Fan; Wu Ding-Er; Song Feng

    2004-01-01

    In this paper a new concept of ‘optical ballast' is put forward. Optical ballast is a kind of device that can be used to decrease the variation and fluctuation of the propagation characteristics of light beams caused by the disturbance of refractive index of the medium. To illustrate the idea clearly and concretely, a fully adaptive dynamic stable solid-state laser resonator is presented as application example of optical ballast.

  5. Overview of Advanced LIGO Adaptive Optics

    OpenAIRE

    Brooks, Aidan F.; Abbott, Benjamin; Arain, Muzammil A.; Ciani, Giacomo; Cole, Ayodele; Grabeel, Greg; Gustafson, Eric; Guido, Chris; Heintze, Matthew; Heptonstall, Alastair; Jacobson, Mindy; KIM, WON; King, Eleanor; Lynch, Alexander; O'Connor, Stephen

    2016-01-01

    This is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The thermal compensation system was designed to minimize thermally-induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO$_{2}$ laser projectors and Hartmann wavefront sensors. The system meets the requirements...

  6. Gigashot Optical Laser Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  7. Fiber optic laser rod

    Science.gov (United States)

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  8. Optics, light and lasers

    CERN Document Server

    Meschede, Dieter

    2008-01-01

    Starting from the concepts of classical optics, Optics, Light and Lasers introduces in detail the phenomena of linear and nonlinear light matter interaction, the properties of modern laser sources, and the concepts of quantum optics. Several examples taken from the scope of modern research are provided to emphasize the relevance of optics in current developments within science and technology. The text has been written for newcomers to the topic and benefits from the author's ability to explain difficult sequences and effects in a straightforward and easily comprehensible way. To this second, c

  9. Pulse front control with adaptive optics

    Science.gov (United States)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  10. High-power optics lasers and applications

    CERN Document Server

    Apollonov, Victor V

    2015-01-01

    This book covers the basics, realization and materials for high power laser systems and high power radiation interaction with  matter. The physical and technical fundamentals of high intensity laser optics and adaptive optics and the related physical processes in high intensity laser systems are explained. A main question discussed is: What is power optics? In what way is it different from ordinary optics widely used in cameras, motion-picture projectors, i.e., for everyday use? An undesirable consequence of the thermal deformation of optical elements and surfaces was discovered during studies of the interaction with powerful incident laser radiation. The requirements to the fabrication, performance and quality of optical elements employed within systems for most practical applications are also covered. The high-power laser performance is generally governed by the following: (i) the absorption of incident optical radiation (governed primarily by various absorption mechanisms), (ii) followed by a temperature ...

  11. Adaptive Optical Scanning Holography

    Science.gov (United States)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  12. Adaptive micro axicons for laser applications

    Directory of Open Access Journals (Sweden)

    Wallrabe Ulrike

    2015-01-01

    Full Text Available We report on the design, fabrication and testing of novel types of low-dispersion axicons for the adaptive shaping of ultrashort laser pulses. An overview is given on the basic geometries and operating principles of our purely reflective adaptive MEMS-type devices based on thermal or piezoelectric actuation. The flexible formation of nondiffracting beams at pulse durations down to a few oscillations of the optical field enables new applications in optical communication, pulse diagnostics, laser-matter interaction and particle manipulation. As an example, we show first promising results of adaptive autocorrelation. The combination of excellent pulse transfer, self-reconstruction properties and propagation invariance of nondiffracting beams with an adaptive approach promises to extend the field of practical applications significantly.

  13. Adaptive optics program at TMT

    Science.gov (United States)

    Boyer, C.; Adkins, Sean; Andersen, David R.; Atwood, Jenny; Bo, Yong; Byrnes, Peter; Caputa, Kris; Cavaco, Jeff; Ellerbroek, Brent; Gilles, Luc; Gregory, James; Herriot, Glen; Hickson, Paul; Ljusic, Zoran; Manter, Darren; Marois, Christian; Otárola, Angel; Pagès, Hubert; Schoeck, Matthias; Sinquin, Jean-Christophe; Smith, Malcolm; Spano, Paolo; Szeto, Kei; Tang, Jinlong; Travouillon, Tony; Véran, Jean-Pierre; Wang, Lianqi; Wei, Kai

    2014-07-01

    The TMT first light Adaptive Optics (AO) facility consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). NFIRAOS is a 60 × 60 laser guide star (LGS) multi-conjugate AO (MCAO) system, which provides uniform, diffraction-limited performance in the J, H, and K bands over 17-30 arc sec diameter fields with 50 per cent sky coverage at the galactic pole, as required to support the TMT science cases. NFIRAOS includes two deformable mirrors, six laser guide star wavefront sensors, and three low-order, infrared, natural guide star wavefront sensors within each client instrument. The first light LGSF system includes six sodium lasers required to generate the NFIRAOS laser guide stars. In this paper, we will provide an update on the progress in designing, modeling and validating the TMT first light AO systems and their components over the last two years. This will include pre-final design and prototyping activities for NFIRAOS, preliminary design and prototyping activities for the LGSF, design and prototyping for the deformable mirrors, fabrication and tests for the visible detectors, benchmarking and comparison of different algorithms and processing architecture for the Real Time Controller (RTC) and development and tests of prototype candidate lasers. Comprehensive and detailed AO modeling is continuing to support the design and development of the first light AO facility. Main modeling topics studied during the last two years include further studies in the area of wavefront error budget, sky coverage, high precision astrometry for the galactic center and other observations, high contrast imaging with NFIRAOS and its first light instruments, Point Spread Function (PSF) reconstruction for LGS MCAO, LGS photon return and sophisticated low order mode temporal filtering.

  14. The ERIS adaptive optics system

    Science.gov (United States)

    Marchetti, Enrico; Fedrigo, Enrico; Le Louarn, Miska; Madec, Pierre-Yves; Soenke, Christian; Brast, Roland; Conzelmann, Ralf; Delabre, Bernard; Duchateau, Michel; Frank, Christoph; Klein, Barbara; Amico, Paola; Hubin, Norbert; Esposito, Simone; Antichi, Jacopo; Carbonaro, Luca; Puglisi, Alfio; Quirós-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO's VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX's (IR imager) and SPIFFI's entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.

  15. Optical Profilometers Using Adaptive Signal Processing

    Science.gov (United States)

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  16. Pulse front adaptive optics in multiphoton microscopy

    Science.gov (United States)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The accurate focusing of ultrashort laser pulses is extremely important in multiphoton microscopy. Using adaptive optics to manipulate the incident ultrafast beam in either the spectral or spatial domain can introduce significant benefits when imaging. Here we introduce pulse front adaptive optics: manipulating an ultrashort pulse in both the spatial and temporal domains. A deformable mirror and a spatial light modulator are operated in concert to modify contours of constant intensity in space and time within an ultrashort pulse. Through adaptive control of the pulse front, we demonstrate an enhancement in the measured fluorescence from a two photon microscope.

  17. Adaptive Optics for Industry and Medicine

    Science.gov (United States)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  18. Dynamic optics for ultrafast laser processing

    Directory of Open Access Journals (Sweden)

    Salter Patrick

    2013-11-01

    Full Text Available We present a range of dynamic optical methods to control focal fields for material processing using ultrafast lasers. Adaptive aberration correction maintains focal quality when focusing deep into materials. Dynamic parallelisation methods permit independent control of hundreds of fabrication spots. New adaptive methods for control of pulse front tilt are also presented.

  19. Adaptive optics for space debris tracking

    Science.gov (United States)

    Bennet, Francis; D'Orgeville, Celine; Gao, Yue; Gardhouse, William; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian T.; Smith, Craig H.; Uhlendorf, Kristina; Wang, Yanjie

    2014-07-01

    Space debris in Low Earth Orbit (LEO) is becoming an increasing threat to satellite and spacecraft. A reliable and cost effective method for detecting possible collisions between orbiting objects is required to prevent an exponential growth in the number of debris. Current RADAR survey technologies used to monitor the orbits of thousands of space debris objects are relied upon to manoeuvre operational satellites to prevent possible collisions. A complimentary technique, ground-based laser LIDAR (Light Detection and Ranging) have been used to track much smaller objects with higher accuracy than RADAR, giving greater prediction of possible collisions and avoiding unnecessary manoeuvring. Adaptive optics will play a key role in any ground based LIDAR tracking system as a cost effective way of utilising smaller ground stations or less powerful lasers. The use of high power and high energy lasers for the orbital modification of debris objects will also require an adaptive optic system to achieve the high photon intensity on the target required for photon momentum transfer and laser ablation. EOS Space Systems have pioneered the development of automated laser space debris tracking for objects in low Earth orbit. The Australian National University have been developing an adaptive optics system to improve this space debris tracking capability at the EOS Space Systems Mount Stromlo facility in Canberra, Australia. The system is integrated with the telescope and commissioned as an NGS AO system before moving on to LGS AO and tracking operations. A pulsed laser propagated through the telescope is used to range the target using time of flight data. Adaptive optics is used to increase the maximum range and number or targets available to the LIDAR system, by correcting the uplink laser beam. Such a system presents some unique challenges for adaptive optics: high power lasers reflecting off deformable mirrors, high slew rate tracking, and variable off-axis tracking correction. A

  20. Overview of Advanced LIGO Adaptive Optics

    CERN Document Server

    Brooks, Aidan F; Arain, Muzammil A; Ciani, Giacomo; Cole, Ayodele; Grabeel, Greg; Gustafson, Eric; Guido, Chris; Heintze, Matthew; Heptonstall, Alastair; Jacobson, Mindy; Kim, Won; King, Eleanor; Lynch, Alexander; O'Connor, Stephen; Ottaway, David; Mailand, Ken; Mueller, Guido; Munch, Jesper; Sannibale, Virginio; Shao, Zhenhua; Smith, Michael; Veitch, Peter; Vo, Thomas; Vorvick, Cheryl; Willems, Phil

    2016-01-01

    This is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The thermal compensation system was designed to minimize thermally-induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO$_{2}$ laser projectors and Hartmann wavefront sensors. The system meets the requirements of correcting for nominal distortion in Advanced LIGO to a maximum residual error of 5.4nm, weighted across the laser beam, for up to 125W of laser input power into the interferometer.

  1. Aurora laser optical system

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory KrF Aurora laser optical system is described. Conceptual, first-order, and detailed designs are presented for the major 248-nm ultraviolet optical, subsystems. In Aurora, a 5-ns front-end pulse is replicated and time encoded into a 96-beam, 480-ns pulse train, angle encoded, amplified, and then time and angle decoded so that all the 5-ns pulses arrive at the target plane simultaneously. The encoder and the centered optical system that directs the pulse train through the amplifiers have been installed, on major alignment system has been built and tested, and most decoder optical components have been designed and ordered. The plan is to have the entire optical system installed and initial integration completed by October 1987

  2. PROPAGATION OF ADAPTIVELY CORRECTED LASER BEAMS THROUGH A TURBULENT ATMOSPHERE

    OpenAIRE

    Bissonnette, L

    1980-01-01

    This paper describes a mathematical model for solving the propagation problem of laser beams travelling in atmospheric turbulence and corrected by adaptive optics. The modeling of the adaptive optics is mathematically simple but sufficiently general to encompass the majority of the existing systems. The method allows the prediction of the average irradiance and the irradiance variance beam profiles for arbitrary scintillation levels. Typical solutions are presented for 3.8 and 10.6 µm laser b...

  3. Aurora laser optical system

    International Nuclear Information System (INIS)

    Aurora is the Los Alamos short-pulse high-power krypton fluoride laser system. It is primarily an end-to-end technology demonstration prototype for large-scale UV laser systems of interest for short-wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and aerial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. A program of high-energy density plasma physics investigations is now planned, and a sophisticated target chamber was constructed. The authors describe the design of the optical system for Aurora and report its status. This optical system was designed and is being constructed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. Installation should be complete, and some performance results should be available. The second phase provides demultiplexing and carries the laser light to target. The complete design is reported

  4. Adaptive optical zoom sensor.

    Energy Technology Data Exchange (ETDEWEB)

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  5. The Adaptive Optics Summer School Laboratory Activities

    CERN Document Server

    Ammons, S Mark; Armstrong, J D; Crossfield, Ian; Do, Tuan; Fitzgerald, Mike; Harrington, David; Hickenbotham, Adam; Hunter, Jennifer; Johnson, Jess; Johnson, Luke; Li, Kaccie; Lu, Jessica; Maness, Holly; Morzinski, Katie; Norton, Andrew; Putnam, Nicole; Roorda, Austin; Rossi, Ethan; Yelda, Sylvana

    2011-01-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO sys...

  6. Optical coatings for fiber lasers

    Institute of Scientific and Technical Information of China (English)

    HONG Dong-mei; ZHU Zhen; YUE Wei

    2005-01-01

    Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.

  7. Electron density measurements for plasma adaptive optics

    Science.gov (United States)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  8. Thermo-optically driven adaptive mirror

    Science.gov (United States)

    Reinert, Felix; Lüthy, Willy

    2006-02-01

    The ideal adaptive optical mirror combines large aperture with high spatial and temporal resolution and a phase shift of at least 2π. Further, a simple low-cost solution is preferred. No adaptive system can perfectly fulfill all these requirements. We present a system that has the potential to reach this goal with the exception of high temporal resolution. But even with a moderate temporal resolution of one second such a system can find practical applications. For example as a laser resonator mirror that allows to modify the intensity distribution of the emission, or to correct slowly varying aberrations of optical systems. Two possible mechanisms can be used to change the optical path length of the adaptive mirror: thermal expansion of the mirror substrate or the thermally induced change of the refractive index (thermal dispersion) of a medium in front of the mirror. Both mechanisms have been shown to lead to promising results. In both cases heating was performed by irradiation of light in the active medium. The thermal dispersion based adaptive mirror is built with a thin layer of a liquid in front of a mirror. To allow a modification of the refractive index by irradiation with a diode laser at 808 nm, a suitable absorber is dissolved in the water. With chopped irradiation a resolution of 3.8 Hz at 30 % contrast is measured. This mirror has been used in a laser resonator to modify the output distribution of the laser. The thermal expansion based adaptive mirror is built with a thin layer of a silicon elastomer with a gold coated front side. We present a preparation method to produce thin films of Sylgard on sapphire. With an irradiated intensity of only 370 mW/cm2 surface modulations of up to 350 nm are obtained. With a test pattern a resolution of 1.6 line-pairs per millimeter at 30 % contrast is measured. The temporal resolution is better than one second.

  9. Adaptive laser beam forming for laser shock micro-forming for 3D MEMS devices fabrication

    Science.gov (United States)

    Zou, Ran; Wang, Shuliang; Wang, Mohan; Li, Shuo; Huang, Sheng; Lin, Yankun; Chen, Kevin P.

    2016-07-01

    Laser shock micro-forming is a non-thermal laser forming method that use laser-induced shockwave to modify surface properties and to adjust shapes and geometry of work pieces. In this paper, we present an adaptive optical technique to engineer spatial profiles of the laser beam to exert precision control on the laser shock forming process for free-standing MEMS structures. Using a spatial light modulator, on-target laser energy profiles are engineered to control shape, size, and deformation magnitude, which has led to significant improvement of the laser shock processing outcome at micrometer scales. The results presented in this paper show that the adaptive-optics laser beam forming is an effective method to improve both quality and throughput of the laser forming process at micrometer scales.

  10. A Star-Forming Shock Front in Radio Galaxy 4C+41.17 Resolved with Laser-Assisted Adaptive Optics Spectroscopy

    CERN Document Server

    Steinbring, Eric

    2014-01-01

    Near-infrared integral-field spectroscopy of redshifted [O III], H-beta and optical continuum emission from z=3.8 radio galaxy 4C+41.17 is presented, obtained with the laser-guide-star adaptive optics facility on the Gemini North telescope. Employing a specialized dithering technique, a spatial resolution of 0.10 arcsec or 0.7 kpc is achieved in each spectral element, with velocity resolution of ~70 km/s. Spectra similar to local starbursts are found for bright knots coincident in archival Hubble Space Telescope (HST) restframe-ultraviolet images, which also allows a key line diagnostic to be mapped together with new kinematic information. There emerges a clearer picture of the nebular emission associated with the jet in 8.3 GHz and 15 GHz Very Large Array maps, closely tied to a Ly-alpha-bright shell-shaped structure seen with HST. This supports a previous interpretation of that arc tracing a bow shock, inducing 10^10-11 M_solar star-formation regions that comprise the clumpy broadband optical/ultraviolet mo...

  11. Micromirror Arrays for Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Carr, E.J.

    2000-08-07

    The long-range goal of this project is to develop the optical and mechanical design of a micromirror array for adaptive optics that will meet the following criteria: flat mirror surface ({lambda}/20), high fill factor (> 95%), large stroke (5-10 {micro}m), and pixel size {approx}-200 {micro}m. This will be accomplished by optimizing the mirror surface and actuators independently and then combining them using bonding technologies that are currently being developed.

  12. Field guide to adaptive optics

    CERN Document Server

    Tyson, Robert K

    2004-01-01

    ""...These field guides will be immensely useful to all scientists and engineers who wish to brush up on authentic definitions, equations, and tables of data in optics. And the format is really user friendly! I...wonder now how I ever got along in optics without this ready reference....a real winner!"" --Dr. Leno S. Pedrotti, Center for Occupational Research and Development (CORD) Third in the Field Guide Series, this is a summary of the methods for determining the requirements of an adaptive optics system, the performance of the system, and the requirements for the components of th

  13. Fluorescent scanning laser ophthalmoscopy for cellular resolution in vivo mouse retinal imaging: benefits and drawbacks of implementing adaptive optics (Conference Presentation)

    Science.gov (United States)

    Zhang, Pengfei; Goswami, Mayank; Pugh, Edward N.; Zawadzki, Robert J.

    2016-03-01

    Scanning Laser Ophthalmoscopy (SLO) is a very important imaging tool in ophthalmology research. By combing with Adaptive Optics (AO) technique, AO-SLO can correct for ocular aberrations resulting in cellular level resolution, allowing longitudinal studies of single cells morphology in the living eyes. The numerical aperture (NA) sets the optical resolution that can be achieve in the "classical" imaging systems. Mouse eye has more than twice NA of the human eye, thus offering theoretically higher resolution. However, in most SLO based imaging systems the imaging beam size at mouse pupil sets the NA of that instrument, while most of the AO-SLO systems use almost the full NA of the mouse eye. In this report, we first simulated the theoretical resolution that can be achieved in vivo for different imaging beam sizes (different NA), assumingtwo cases: no aberrations and aberrations based on published mouse ocular wavefront data. Then we imaged mouse retinas with our custom build SLO system using different beam sizes to compare these results with theory. Further experiments include comparison of the SLO and AO-SLO systems for imaging different type of fluorescently labeled cells (microglia, ganglion, photoreceptors, etc.). By comparing those results and taking into account systems complexity and ease of use, the benefits and drawbacks of two imaging systems will be discussed.

  14. Integral Field Spectroscopy of High-Redshift Star Forming Galaxies with Laser Guided Adaptive Optics: Evidence for Dispersion-Dominated Kinematics

    CERN Document Server

    Law, David R; Erb, Dawn K; Larkin, James E; Pettini, Max; Shapley, Alice E; Wright, Shelley A

    2007-01-01

    We present early results from an ongoing study of the kinematic structure of star-forming galaxies at redshift z ~ 2 - 3 using integral-field spectroscopy of rest-frame optical nebular emission lines in combination with Keck laser guide star adaptive optics (LGSAO). We show kinematic maps of 3 target galaxies Q1623-BX453, Q0449-BX93, and DSF2237a-C2 located at redshifts z = 2.1820, 2.0067, and 3.3172 respectively, each of which is well-resolved with a PSF measuring approximately 0.11 - 0.15 arcsec (~ 900 - 1200 pc at z ~ 2-3) after cosmetic smoothing. Neither galaxy at z ~ 2 exhibits substantial kinematic structure on scales >~ 30 km/s; both are instead consistent with largely dispersion-dominated velocity fields with sigma ~ 80 km/s along any given line of sight into the galaxy. In contrast, DSF2237a-C2 presents a well-resolved gradient in velocity over a distance of ~ 4 kpc with peak-to-peak amplitude of 140 km/s. It is unlikely that DSF2237a-C2 represents a dynamically cold rotating disk of ionized gas as ...

  15. Acousto-optic laser optical feedback imaging

    CERN Document Server

    Jacquin, Olivier; Lacot, Eric; Hugon, Olivier; De Chatellus, Hugues Guillet; François, Ramaz

    2012-01-01

    We present a photon noise and diffraction limited imaging method combining the imaging laser and ultrasonic waves. The laser optical feedback imaging (LOFI) technique is an ultrasensitive imaging method for imaging objects through or embedded within a scattering medium. However, LOFI performances are dramatically limited by parasitic optical feedback occurring in the experimental setup. In this work, we have tagged the ballistic photons by an acousto-optic effect in order to filter the parasitic feedback effect and to reach the theoretical and ultimate sensitivity of the LOFI technique. We present the principle and the experimental setup of the acousto-optic laser optical feedback imaging (AO-LOFI) technique, and we demonstrate the suppression of the parasitic feedback.

  16. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B J

    2003-11-26

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro

  17. Beaconless adaptive-optics technique for HEL beam control

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  18. The First Laser Guide Star Adaptive Optics Observations of the Galactic Center: Sgr A*'s Infrared Color and the Extended Red Emission in its Vicinity

    CERN Document Server

    Ghez, A M; Bouchez, A; Le Mignant, D; Van Dam, M A; Wizinowich, P; Matthews, K; Morris, M; Becklin, E E; Campbell, R D; Chin, J C Y; Hartman, S K; Johansson, E M; Lafon, R E; Stomski, P J; Summers, D M

    2005-01-01

    (Abridged) We present the first Laser Guide Star Adaptive Optics (LGS-AO) observations of the Galactic center. LGS-AO has dramatically improved the quality, robustness, and versatility with which high angular resolution infrared images of the Galactic center can be obtained with the W. M. Keck II 10-meter telescope. Specifically, Strehl ratios of 0.7 and 0.3 at L'[3.8 micron] and K'[2.1 micron], respectively, are achieved in these LGS-AO images. During our observations, the infrared counterpart to the central supermassive black hole, Sgr A*-IR, showed significant infrared intensity variations, with observed L' magnitudes ranging from 12.6 to 14.5 mag. The faintest end of our L' detections, 1.3 mJy (dereddened), is the lowest level of emission yet observed for this source by a factor of 3. No significant variation in the location of SgrA*-IR is detected as a function of either wavelength or intensity. Near a peak in its intensity, we obtained the first measurement of SgrA*-IR's K'-L' color (3.0 +- 0.2 mag, obs...

  19. Keck Laser Guide Star Adaptive Optics Monitoring of 2MASS J1534-2952AB: First Dynamical Mass Determination of a Binary T Dwarf

    CERN Document Server

    Liu, Michael C; Ireland, Michael J

    2008-01-01

    (Abridged) We present multi-epoch imaging of the T5.0+T5.5 binary 2MASS J1534-2952AB obtained with the Keck laser guide star adaptive optics system. Combined with an extensive (re-)analysis of archival HST imaging, we find a total mass of 0.056+/-0.003 Msun (59+/-3 Mjup). This is the first field binary for which both components are directly confirmed to be substellar. This is also the coolest and lowest mass binary with a dynamical mass determination to date. Using evolutionary models, we derive an age of 0.78+/-0.09 Gyr for the system, and we find Teff = 1028+/-17 K and 978+/-17 K and masses of 0.0287+/-0.0016 Msun (30.1+/-1.7 Mjup) and 0.0269+/-0.0016 Msun (28.2+/-1.7 Mjup) for the individual components. These precise measurements generally agree with previous studies of T dwarfs and affirm the current theoretical models. However, (1) the temperatures are about 100 K cooler than derived for similar objects and suggest that the ages of field brown dwarfs may be overestimated. Also, (2) the H-R diagram positi...

  20. Object-oriented Matlab adaptive optics toolbox

    Science.gov (United States)

    Conan, R.; Correia, C.

    2014-08-01

    Object-Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO) systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales. OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are object-oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to simulate and to design the Multi-Object AO prototype Raven at the Subaru telescope and the Laser Tomography AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is simulated with OOMAO. In the first part, we set-up the class parameters and we link the instantiated objects to create the source optical path. Then we build the tomographic reconstructor and write the script for the pseudo-open-loop controller.

  1. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  2. Optical-vortex laser ablation

    OpenAIRE

    Hamazaki, Junichi; Morita, Ryuji; Chujo, Keisuke; Kobayashi, Yusuke; Tanda, Satoshi; Omatsu, Takashige

    2010-01-01

    Laser ablation of Ta plates using nanosecond optical vortex pulses was carried out, for the first time. It was suggested that owing to orbital angular momentum of optical vortex, clearer and smoother processed surfaces were obtained with less ablation threshold fluence, in comparison with the ablation by a nonvortex annular beam modified from a spatially Gaussian beam.

  3. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    Science.gov (United States)

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  4. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    Science.gov (United States)

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  5. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    Science.gov (United States)

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  6. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  7. Adaptive interferometric velocity measurements using a laser guide star

    Science.gov (United States)

    Czarske, J.; Radner, H.; Büttner, L.

    2015-07-01

    We have harnessed the power of programmable photonics devices for an interferometric measurement technique. Laser interferometers are widely used for flow velocity measurements, since they offer high temporal and spatial resolutions. However, often optical wavefront distortions deteriorate the measurement properties. In principle, adaptive optics enables the correction of these disturbances. One challenge is to generate a suitable reference signal for the closed loop operation of the adaptive optics. An adaptive Mach Zehnder interferometer is presented to measure through a dynamic liquid-gas phase boundary, which can lead to a misalignment of the interfering laser beams. In order to generate the reference signal for the closed loop control, the Fresnel reflex of the phase boundary is used as Laser Guide Star (LGS) for the first time to the best of the authors' knowledge. The concept is related to the generation of artificial stars in astronomy, where the light transmitted by the atmosphere is evaluated. However, the adaptive interferometric flow velocity measurements at real world experiments require a different concept, since only the reflected light can be evaluated. The used LGS allows to measure the wavefront distortions induced by the dynamic phase boundary. Two biaxial electromagnetically driven steering mirrors are employed to correct the wavefront distortions. This opens up the possibility for accurate flow measurements through a dynamic phase boundary using only one optical access. Our work represents a paradigm shift in interferometric velocity measurement techniques from using static to dynamic optical elements.

  8. The Tesat transportable adaptive optical ground station

    Science.gov (United States)

    Saucke, Karen; Seiter, Christoph; Heine, Frank; Gregory, Mark; Tröndle, Daniel; Fischer, Edgar; Berkefeld, Thomas; Feriencik, Mikael; Feriencik, Marco; Richter, Ines; Meyer, Rolf

    2016-03-01

    Tesat together with Synopta have built a Transportable Adaptive Optical Ground Station (TAOGS) under contract of German Aerospace Center DLR for communication with the 1st and 2nd generation of Tesat's spaceborne Laser Communication Terminals (LCTs), which employ coherent homodyne optical communication with 1064 nm and binary phase shift keying (BPSK) modulation. The TAOGS is able to communicate with space segments on low earth orbit (LEO, high pointing and tracking dynamics, 5.625 Gbps), and with space segments on geostationary orbit (GEO, low pointing dynamics, up to 40,000 km distance, optical data rate of 2.8125 Gbps and user data rate of 1.8 Gbps). After an alignment and testing phase at the location of Izana, Tenerife, using the TDP1 LCT on geostationary Alphasat as counter terminal, the TAOGS is now fully functioning. Several up-links, down-links and bi-directional links have been performed. Experimental results of some of these links are presented. An outlook to further activities is given.

  9. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    Science.gov (United States)

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-07-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor `beacon' can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains.

  10. Plenoptic microscope based on laser optical feedback imaging (LOFI)

    CERN Document Server

    Glastre, W; Jacquin, O; de Chatellus, H Guillet; Lacot, E

    2015-01-01

    We present an overview of the performances of a plenoptic microscope which combines the high sensitivity of a laser optical feedback imaging setup , the high resolution of optical synthetic aperture and a shot noise limited signal to noise ratio by using acoustic photon tagging. By using an adapted phase filtering, this microscope allows phase drift correction and numerical aberration compensation (defocusing, coma, astigmatism ...). This new kind of microscope seems to be well adapted to make deep imaging through scattering and heterogeneous media.

  11. Initial concepts for CELT adaptive optics

    Science.gov (United States)

    Dekany, Richard G.; Bauman, Brian J.; Gavel, Donald T.; Troy, Mitchell; Macintosh, Bruce A.; Britton, Matthew C.

    2003-02-01

    The California Extremely Large Telescope (CELT) project has recently completed a 12-month conceptual design phase that has investigated major technology challenges in a number of Observatory subsystems, including adaptive optics (AO). The goal of this effort was not to adopt one or more specific AO architectures. Rather, it was to investigate the feasibility of adaptive optics correction of a 30-meter diameter telescope and to suggest realistic cost ceilings for various adaptive optics capabilities. We present here the key design issues uncovered during conceptual design and present two non-exclusive ‘baseline" adaptive optics concepts that are expected to be further developed during the following preliminary design phase. Further analysis, detailed engineering trade studies, and certain laboratory and telescope experiments must be performed, and key component technology prototypes demonstrated, prior to adopting one or more adaptive optics systems architectures for realization.

  12. The Coming of Age of Adaptive Optics

    Science.gov (United States)

    1995-10-01

    How Ground-Based Astronomers Beat the Atmosphere Adaptive Optics (AO) is the new ``wonder-weapon'' in ground-based astronomy. By means of advanced electro-optical devices at their telescopes, astronomers are now able to ``neutralize'' the image-smearing turbulence of the terrestrial atmosphere (seen by the unaided eye as the twinkling of stars) so that much sharper images can be obtained than before. In practice, this is done with computer-controlled, flexible mirrors which refocus the blurred images up to 100 times per second, i.e. at a rate that is faster than the changes in the atmospheric turbulence. This means that finer details in astronomical objects can be studied and also - because of the improved concentration of light in the telescope's focal plane - that fainter objects can be observed. At the moment, Adaptive Optics work best in the infrared part of spectrum, but at some later time it may also significantly improve observations at the shorter wavelengths of visible light. The many-sided aspects of this new technology and its impact on astronomical instrumentation was the subject of a recent AO conference [1] with over 150 participants from about 30 countries, presenting a total of more than 100 papers. The Introduction of AO Techniques into Astronomy The scope of this meeting was the design, fabrication and testing of AO systems, characterisation of the sources of atmospheric disturbance, modelling of compensation systems, individual components, astronomical AO results, non-astronomical applications, laser guide star systems, non-linear optical phase conjugation, performance evaluation, and other areas of this wide and complex field, in which front-line science and high technology come together in a new and powerful symbiosis. One of the specific goals of the meeting was to develop contacts between AO scientists and engineers in the western world and their colleagues in Russia and Asia. For the first time at a conference of this type, nine Russian

  13. Adaptive optics imaging of the retina.

    Science.gov (United States)

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  14. VASAO: visible all sky adaptive optics

    Science.gov (United States)

    Veillet, Christian; Lai, Olivier; Salmon, Derrick; Pique, Jean-Paul

    2006-06-01

    Building on an extensive and successful experience in Adaptive Optics (AO) and on recent developments made in its funding nations, the Canada-France-Hawaii-Telescope Corporation (CFHT) is studying the VASAO concept: an integrated AO system that would allow diffraction limited imaging of the whole sky in the visible as well as in the infrared. At the core of VASAO, Pueo-Hou (the new Pueo) is built on Pueo, the current CFHT AO bonnette. Pueo will be refurbished and improved to be able to image the isoplanetic field at 700 nm with Strehl ratios of 30% or better, making possible imaging with a resolution of 50 milliarcseconds between 500 and 700nm, and at the telescope limit of diffraction above. The polychromatic tip-tilt laser guide star currently envisioned will be generated by a single 330nm mode-less laser, and the relative position of the 330nm and 589nm artificial stars created on the mesosphere by the 330nm excitation of the sodium layer will be monitored to provide the atmospheric tip-tilt along the line of sight, following the philosophy developed for the ELP-OA project. The feasibility study of VASAO will take most of 2006 in parallel with the development of a science case making the best possible use of the unique capabilities of the system, If the feasibility study is encouraging, VASAO development could start in 2007 for a full deployment on the sky by 2011-2012.

  15. Laser beam modeling in optical storage systems

    Science.gov (United States)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  16. Continuous optical discharge in a laser cavity

    Science.gov (United States)

    Chivel', Yu. A.

    2016-08-01

    Optical discharge in a laser cavity is experimentally studied. A significant increase in the absorption of laser radiation (up to total absorption) is revealed. Optical schemes for initiation and maintaining of optical discharge in the cavity are proposed for technological applications of the optical discharge.

  17. Large Binocular Telescope Adaptive Optics System: New achievements and perspectives in adaptive optics

    CERN Document Server

    Esposito, Simone; Pinna, Enrico; Puglisi, Alfio; Quirós-Pacheco, Fernando; Arcidiacono, Carmelo; Xompero, Marco; Briguglio, Runa; Agapito, Guido; Busoni, Lorenzo; Fini, Luca; Argomedo, Javier; Gherardi, Alessandro; Brusa, Guido; Miller, Douglas; Guerra, Juan Carlos; Stefanini, Paolo; Salinari, Piero; 10.1117/12.898641

    2012-01-01

    The Large Binocular Telescope (LBT) is a unique telescope featuring two co-mounted optical trains with 8.4m primary mirrors. The telescope Adaptive Optics (AO) system uses two innovative key components, namely an adaptive secondary mirror with 672 actuators and a high-order pyramid wave-front sensor. During the on-sky commissioning such a system reached performances never achieved before on large ground-based optical telescopes. Images with 40mas resolution and Strehl Ratios higher than 80% have been acquired in H band (1.6 micron). Such images showed a contrast as high as 10e-4. Based on these results, we compare the performances offered by a Natural Guide Star (NGS) system upgraded with the state-of-the-art technology and those delivered by existing Laser Guide Star (LGS) systems. The comparison, in terms of sky coverage and performances, suggests rethinking the current role ascribed to NGS and LGS in the next generation of AO systems for the 8-10 meter class telescopes and Extremely Large Telescopes (ELTs)...

  18. Sequential optimization of adaptive arrays in coherent laser communications

    OpenAIRE

    Belmonte Molina, Aniceto; Kahn, J. M.

    2013-01-01

    In optical wireless communications, a channelmatched adaptive coherent receiver may be implemented using an array of receive apertures. After atmospheric channel fading estimation, several replicas of a message received through the atmosphere are combined. As an alternative to training-based channel estimation, we analyze the performance of sequential techniques for direct optimization of multi-aperture array receivers in free-space coherent laser communications.

  19. Photonic crystal-adaptive optical devices

    DEFF Research Database (Denmark)

    Buss, Thomas

    -doped liquid crystal gain medium for the realization of cheap and compact optically pumped, electrically tunable lasers. Finally, a transparent projection display is presented which uses sub-wavelength gratings for redirection of light guided inside a waveguide and facilitates electro-optic switching by means...

  20. Adaptive optical interconnects: the ADDAPT project

    Science.gov (United States)

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  1. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  2. 4th International Workshop on Adaptive Optics for Industry and Medicine

    CERN Document Server

    Wittrock, Ulrich

    2005-01-01

    This book treats the development and application of adaptive optics for industry and medicine. The contributions describe recently developed components for adaptive-optics systems such as deformable mirrors, wavefront sensors, and mirror drivers as well as complete adaptive optical systems and their applications in industry and medicine. Applications range from laser-beam forming and adaptive aberration correction for high-power lasers to retinal imaging in ophthalmology. The contributions are based on presentations made at the 4th International Workshop on Adaptive Optics in Industry and Medicine which took place in Münster, Germany, in October 2003. This highly successful series of workshops on adaptive optics started in 1997 and continues with the 5th workshop in Beijing in 2005.

  3. Teaching Optics and Systems Engineering With Adaptive Optics Workbenches

    CERN Document Server

    Harrington, David; Hunter, Lisa; Max, Claire; Hoffmann, Mark; Pitts, Mark; Armstrong, J D

    2010-01-01

    Adaptive optics workbenches are fully functional optical systems that can be used to illustrate and teach a variety of concepts and cognitive processes. Four systems have been funded, designed and constructed by various institutions and people as part of education programs associated with the Center for Adaptive Optics, the Professional Development Program and the Institute for Science and Engineer Educators. Activities can range from first-year undergraduate explorations to professional level training. These workbenches have been used in many venues including the Center for Adaptive Optics AO Summer School, the Maui Community College hosted Akamai Maui Short Course, classrooms, training of new staff in laboratories and other venues. The activity content has focused on various elements of systems thinking, characterization, feedback and system control, basic optics and optical alignment as well as advanced topics such as phase conjugation, wave-front sensing and correction concepts and system design. The work...

  4. Laser-induced damage in optical materials

    CERN Document Server

    Ristau, Detlev

    2014-01-01

    Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of hi

  5. Springer handbook of lasers and optics

    CERN Document Server

    2012-01-01

    The Springer Handbook of Lasers and Optics provides fast, up-to-date, comprehensive and authoritative coverage of the wide fields of optics and lasers. It is written for daily use in the office or laboratory and offers explanatory text, data, and references needed for anyone working with lasers and optical instruments. This second edition features numerous updates and additions. Especially four new chapters on Fiber Optics, Integrated Optics, Frequency Combs, and Interferometry reflect the major changes. In addition, chapters Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit have been thoroughly revised and updated. The now 25 chapters are grouped into four parts which cover basic principles and materials, fabrication and properties of optical components, coherent and incoherent light sources, and, finally, selected applications and special fields such as terahertz photonics, x-ray optics and holography. Each chapter is authored by respected exp...

  6. An optical device for laser tuning

    Energy Technology Data Exchange (ETDEWEB)

    Sinyitiro, A.

    1984-01-31

    This invention is intended to improve on the design of an optical device which is used to execute high precision tuning of the optical elements in laser systems. A laser tuning scheme is given and the tuning method is described in detail. The tuning system includes a laser emission source in the visible spectral range and a semitransparent plate at an angle of 45 degrees with respect to the optical axis of the laser. When a test beam passes through the plate, a portion of the emission is reflected to a screen containing a reference mark. The remaining portion of the emission passes through the plate and is reflected from the rear dark mirror in the laser under tuning. The second beam is reflected from the plate to the other screen. The reference marks on the screens represent the optimum position of the optical elements of the laser system, which provides good laser tuning accuracy.

  7. Fiber laser coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  8. Active reflective components for adaptive optical zoom systems

    Science.gov (United States)

    Jungwirth, Matthew Edward Lewis

    This dissertation presents the theoretical and experimental exploration of active reflective components specifically for large-aperture adaptive optical zoom systems. An active reflective component can change its focal length by physically deforming its reflecting surface. Adaptive optical zoom (AOZ) utilizes active components in order to change magnification and achieve optical zoom, as opposed to traditional zooming systems that move elements along the optical axis. AOZ systems are theoretically examined using a novel optical design theory that enables a full-scale tradespace analysis, where optical design begins from a broad perspective and optimizes to a particular system. The theory applies existing strategies for telescope design and aberration simulation to AOZ, culminating in the design of a Cassegrain objective with a 3.3X zoom ratio and a 375mm entrance aperture. AOZ systems are experimentally examined with the development of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  9. Adaptive Optics at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media and must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.

  10. Laser systems with diamond optical elements

    International Nuclear Information System (INIS)

    High power laser systems with optical elements of diamond having a thermal conductivity of at least 10 W/cm. 0K at 3000K and an optical absorption at the laser beam wavelength of no more than 10 to 20 percent are described. (U.S.)

  11. Advanced Optics with Laser Pointer and Metersticks

    OpenAIRE

    Kezerashvili, Roman Ya.

    2005-01-01

    We are using a laser pointer as a light source, and metersticks as an optical branch and the screen for wave optics experiments. It is shown the setup for measurements of wavelength of laser light and rating radial spacing of the CD, diffraction on a wire and a slit, observation of a polarization of light and observation of a hologram.

  12. Adaptive optics applications in vision science

    Science.gov (United States)

    Olivier, Scot S.

    2003-06-01

    Adaptive optics can be used to correct the aberrations in the human eye caused by imperfections in the cornea and the lens and thereby, improve image quality both looking into and out of the eye. Under the auspices of the NSF Center for Adaptive Optics and the DOE Biomedical Engineering Program, Lawrence Livermore National Laboratory has joined together with leading vision science researchers around the country to develop and test new ophthalmic imaging systems using novel wavefront corrector technologies. Results of preliminary comparative evaluations of these technologies in initial system tests show promise for future clinical utility.

  13. The ERIS Adaptive Optics System

    CERN Document Server

    Riccardi, A; Agapito, G; Antichi, J; Biliotti, V; Blain, C; Briguglio, R; Busoni, L; Carbonaro, L; Di Rico, G; Giordano, C; Pinna, E; Puglisi, A; Spanò, P; Xompero, M; Baruffolo, A; Kasper, M; Egner, S; Valles, M Suàrez; Soenke, C; Downing, M; Reyes, J

    2016-01-01

    ERIS is the new AO instrument for VLT-UT4 led by a Consortium of Max-Planck Institut fuer Extraterrestrische Physik, UK-ATC, ETH-Zurich, ESO and INAF. The ERIS AO system provides NGS mode to deliver high contrast correction and LGS mode to extend high Strehl performance to large sky coverage. The AO module includes NGS and LGS wavefront sensors and, with VLT-AOF Deformable Secondary Mirror and Laser Facility, will provide AO correction to the high resolution imager NIX (1-5um) and the IFU spectrograph SPIFFIER (1-2.5um). In this paper we present the preliminary design of the ERIS AO system and the estimated correction performance.

  14. Adaptive optics at the Subaru telescope: current capabilities and development

    Science.gov (United States)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  15. Applications of lasers and electro-optics

    Science.gov (United States)

    Tan, B. C.; Low, K. S.; Chen, Y. H.; Ahmad, Harith; Tou, T. Y.

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: (1) industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes -- prototype operational systems have been developed; (2) Medical applications of lasers for cancer treatment using the technique of photodynamic therapy -- a new and more effective treatment protocol has been proposed; (3) agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies -- fruit ripeness signature has been developed and palm oil oxidation level were investigated; (4) development of atmospheric pollution monitoring systems using laser lidar techniques -- laboratory scale systems were developed; and (5) other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials.

  16. Cn2 and wind profiler method to quantify the frozen flow decay using wide-field laser guide stars adaptive optics

    CERN Document Server

    Guesalaga, Andrés; Cortes, Angela; Béchet, Clémentine; Guzmán, Dani

    2014-01-01

    We use spatio-temporal cross-correlations of slopes from five Shack-Hartmann wavefront sensors to analyse the temporal evolution of the atmospheric turbulence layers at different altitudes. The focus is on the verification of the frozen flow assumption. The data is coming from the Gemini South Multi-Conjugate Adaptive Optics System (GeMS). First, the Cn2 and wind profiling technique is presented. This method provides useful information for the AO system operation such as the number of existing turbulence layers, their associated velocities, altitudes and strengths and also a mechanism to estimate the dome seeing contribution to the total turbulence. Next, by identifying the turbulence layers we show that it is possible to estimate the rate of decay in time of the correlation among turbulence measurements. We reduce on-sky data obtained during 2011, 2012 and 2013 campaigns and the first results suggest that the rate of temporal de-correlation can be expressed in terms of a single parameter that is independent ...

  17. Plasma optical modulators for intense lasers

    CERN Document Server

    Yu, Lu-Le; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D A; Mori, W B; Zhang, Jie

    2016-01-01

    Optical modulators can be made nowadays with high modulation speed, broad bandwidth, while being compact, owing to the recent advance in material science and microfabrication technology. However, these optical modulators usually work for low intensity light beams. Here, we present an ultrafast, plasma-based optical modulator, which can directly modulate high power lasers with intensity up to 10^16 W/cm^2 level to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser beams in a sub-mm-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser beam is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are presented. Such optical modulators may enable new applications in the high field physics.

  18. Adaptive slit beam shaping for direct laser written waveguides

    OpenAIRE

    Salter, P. S.; Jesacher, A.; Spring, J.B.; Metcalf, B. J.; Thomas-Peter, N.; Simmonds, R. D.; Langford, N. K.; Walmsley, I.A.; Booth, M. J.

    2013-01-01

    We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-tim...

  19. Optical axis jitter rejection for double overlapped adaptive optics systems

    Science.gov (United States)

    Luo, Qi; Luo, Xi; Li, Xinyang

    2016-04-01

    Optical axis jitters, or vibrations, which arise from wind shaking and structural oscillations of optical platforms, etc., cause a deleterious impact on the performance of adaptive optics systems. When conventional integrators are utilized to reject such high frequency and narrow-band disturbance, the benefits are quite small despite their acceptable capabilities to reject atmospheric turbulence. In our case, two suits of complete adaptive optics systems called double overlapped adaptive optics systems (DOAOS) are used to counteract both optical jitters and atmospheric turbulence. A novel algorithm aiming to remove vibrations is proposed by resorting to combine the Smith predictor and notch filer. With the help of loop shaping method, the algorithm will lead to an effective and stable controller, which makes the characteristics of error transfer function close to notch filters. On the basis of the spectral analysis of observed data, the peak frequency and bandwidth of vibrations can be identified in advance. Afterwards, the number of notch filters and their parameters will be determined using coordination descending method. The relationship between controller parameters and filtering features is discussed, and the robustness of the controller against varying parameters of the control object is investigated. Preliminary experiments are carried out to validate the proposed algorithms. The overall control performance of DOAOS is simulated. Results show that time delays are a limit of the performance, but the algorithm can be successfully implemented on our systems, which indicate that it has a great potential to reject jitters.

  20. Non-iterative adaptive optical microscopy using wavefront sensing

    Science.gov (United States)

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  1. Handbook of optical and laser scanning

    CERN Document Server

    Marshall, Gerald F

    2011-01-01

    From its initial publication titled Laser Beam Scanning in 1985 to Handbook of Optical and Laser Scanning, now in its second edition, this reference has kept professionals and students at the forefront of optical scanning technology. Carefully and meticulously updated in each iteration, the book continues to be the most comprehensive scanning resource on the market. It examines the breadth and depth of subtopics in the field from a variety of perspectives. The Second Edition covers: Technologies such as piezoelectric devices Applications of laser scanning such as Ladar (laser radar) Underwater

  2. Adaptive holography for optical sensing applications

    Science.gov (United States)

    Residori, S.; Bortolozzo, U.; Peigné, A.; Molin, S.; Nouchi, P.; Dolfi, D.; Huignard, J. P.

    2016-03-01

    Adaptive holography is a promising method for high sensitivity phase modulation measurements in the presence of slow perturbations from the environment. The technique is based on the use of a nonlinear recombining medium, here an optically addressed spatial light modulator specifically realized to operate at 1.55 μm. Owing to the physical mechanisms involved, the interferometer adapts to slow phase variations within a range of 5-10 Hz, thus filtering out low frequency noise while transmitting higher frequency phase modulations. We present the basic principles of the adaptive interferometer and show that it can be used in association with a sensing fiber in order to detect phase modulations. Finally, a phase-OTDR architecture using the adaptive holographic interferometer is presented and shown to allows the detection of localized perturbations along the sensing fiber.

  3. The numerical simulation tool for the MAORY multiconjugate adaptive optics system

    CERN Document Server

    Arcidiacono, Carmelo; Bregoli, Giovanni; Diolaiti, Emiliano; Foppiani, Italo; Agapito, Guido; Puglisi, Alfio; Xompero, Marco; Oberti, Sylvain; Cosentino, Giuseppe; Lombini, Matteo; Butler, Chris R; Ciliegi, Paolo; Cortecchia, Fausto; Patti, Mauro; Esposito, Simone; Feautrier, Philippe

    2016-01-01

    The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is a hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turbulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implements the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and uses libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.

  4. Plasma optical modulators for intense lasers

    Science.gov (United States)

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-06-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm-2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations.

  5. Plasma optical modulators for intense lasers

    Science.gov (United States)

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  6. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    CERN Document Server

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  7. Adaptive tracking and compensation of laser spot based on ant colony optimization

    Science.gov (United States)

    Yang, Lihong; Ke, Xizheng; Bai, Runbing; Hu, Qidi

    2009-05-01

    Because the effect of atmospheric scattering and atmospheric turbulence on laser signal of atmospheric absorption,laser spot twinkling, beam drift and spot split-up occur ,when laser signal transmits in the atmospheric channel. The phenomenon will be seriously affects the stability and the reliability of laser spot receiving system. In order to reduce the influence of atmospheric turbulence, we adopt optimum control thoughts in the field of artificial intelligence, propose a novel adaptive optical control technology-- model-free optimized adaptive control technology, analyze low-order pattern wave-front error theory, in which an -adaptive optical system is employed to adjust errors, and design its adaptive structure system. Ant colony algorithm is the control core algorithm, which is characteristic of positive feedback, distributed computing and greedy heuristic search. . The ant colony algorithm optimization of adaptive optical phase compensation is simulated. Simulation result shows that, the algorithm can effectively control laser energy distribution, improve laser light beam quality, and enhance signal-to-noise ratio of received signal.

  8. Adaptive optics implementation with a Fourier reconstructor.

    Science.gov (United States)

    Glazer, Oded; Ribak, Erez N; Mirkin, Leonid

    2007-02-01

    Adaptive optics takes its servo feedback error cue from a wavefront sensor. The common Hartmann-Shack spot grid that represents the wavefront slopes is usually analyzed by finding the spot centroids. In a novel application, we used the Fourier decomposition of a spot pattern to find deviations from grid regularity. This decomposition was performed either in the Fourier domain or in the image domain, as a demodulation of the grid of spots. We analyzed the system, built a control loop for it, and tested it thoroughly. This allowed us to close the loop on wavefront errors caused by turbulence in the optical system.

  9. Adaptive optics without altering visual perception

    OpenAIRE

    Koenig,, I.; NW, Hart; HJ, Hofer

    2014-01-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer, H. J., Blaschke, J., Patolia, J., & Koenig, D. E. (2012). Fixation light hue bias revisited: Implications for ...

  10. Advanced optic fabrication using ultrafast laser radiation

    Science.gov (United States)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  11. Adaptive fiber optics collimator based on flexible hinges.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  12. Adaptive optics optical coherence tomography for retina imaging

    Institute of Scientific and Technical Information of China (English)

    Guohua Shi; Yun Dai; Ling Wang; Zhihua Ding; Xuejun Rao; Yudong Zhang

    2008-01-01

    When optical coherence tomography (OCT) is used for human retina imaging, its transverse resolution is limited by the aberrations of human eyes. To overcome this disadvantage, a high resolution imaging system for living human retina, which consists of a time domain OCT system and a 37-elements adaptive optics (AO) system, has been developed. The AO closed loop rate is 20 frames per second, and the OCT has a 6.7-μm axial resolution. In this paper, this system is introduced and the high resolution imaging results for retina are presented.

  13. Evaluation of laser diode based optical switches for optical processors

    Science.gov (United States)

    Swanson, Paul D.; Parker, Michael A.; Libby, Stuart I.

    1993-07-01

    Three optical switching elements have been designed, fabricated, and tested for use in an integrated, optical signal processor. The first, an optical NOR logic gate, uses gain quenching as a means of allowing one (or more) light beam(s) to control the output light. This technique, along with the use of a two pad bistable output laser, is used in demonstrating the feasibility of the second device, an all optical RS flip flop. The third device consists of a broad area orthogonal model switching laser, whose corollary outputs correspond to the sign of the voltage difference between its two high impedance electrical inputs. This device also has possible memory applications if bistable mode switching within the broad area laser can be achieved.

  14. Principles of laser spectroscopy and quantum optics

    CERN Document Server

    Berman, Paul R

    2011-01-01

    Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorptio

  15. Adaptive optics scanning ophthalmoscopy with annular pupils.

    Science.gov (United States)

    Sulai, Yusufu N; Dubra, Alfredo

    2012-07-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

  16. The CHARA Array Adaptive Optics Program

    Science.gov (United States)

    Ten Brummelaar, Theo; Che, Xiao; McAlister, Harold A.; Ireland, Michael; Monnier, John D.; Mourard, Denis; Ridgway, Stephen T.; sturmann, judit; Sturmann, Laszlo; Turner, Nils H.; Tuthill, Peter

    2016-01-01

    The CHARA array is an optical/near infrared interferometer consisting of six 1-meter diameter telescopes the longest baseline of which is 331 meters. With sub-millisecond angular resolution, the CHARA array is able to spatially resolve nearby stellar systems to reveal the detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011, and by NSF-MRI in 2015, for an upgrade of adaptive optics (AO) systems to all six telescopes. The initial grant covers Phase I of the adaptive optics system, which includes an on-telescope Wavefront Sensor and non-common-path (NCP) error correction. The WFS use a fairly standard Shack-Hartman design and will initially close the tip tilt servo and log wavefront errors for use in data reduction and calibration. The second grant provides the funding for deformable mirrors for each telescope which will be used closed loop to remove atmospheric aberrations from the beams. There are then over twenty reflections after the WFS at the telescopes that bring the light several hundred meters into the beam combining laboratory. Some of these, including the delay line and beam reducing optics, are powered elements, and some of them, in particular the delay lines and telescope Coude optics, are continually moving. This means that the NCP problems in an interferometer are much greater than those found in more standard telescope systems. A second, slow AO system is required in the laboratory to correct for these NCP errors. We will breifly describe the AO system, and it's current status, as well as discuss the new science enabled by the system with a focus on our YSO program.

  17. Space Optical Communications Using Laser Beam Amplification

    Science.gov (United States)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  18. Phase sensor for solar adaptive-optics

    CERN Document Server

    Kellerer, Aglae

    2011-01-01

    Wavefront sensing in solar adaptive-optics is currently done with correlating Shack-Hartmann sensors, although the spatial- and temporal-resolutions of the phase measurements are then limited by the extremely fast computing required to correlate the sensor signals at the frequencies of daytime atmospheric-fluctuations. To avoid this limitation, a new wavefront-sensing technique is presented, that makes use of the solar brightness and is applicable to extended sources. The wavefront is sent through a modified Mach-Zehnder interferometer. A small, central part of the wavefront is used as reference and is made to interfere with the rest of the wavefront. The contrast of two simultaneously measured interference-patterns provides a direct estimate of the wavefront phase, no additional computation being required. The proposed optical layout shows precise initial alignment to be the critical point in implementing the new wavefront-sensing scheme.

  19. Design considerations for CELT adaptive optics

    Science.gov (United States)

    Dekany, Richard G.; Nelson, Jerry E.; Bauman, Brian J.

    2000-07-01

    California Institute of Technology and University of California have begun conceptual design studies for a new telescope for astronomical research at visible and infrared wavelengths. The California Extremely Large Telescope (CELT) is currently envisioned as a filled-aperture, steerable, segmented telescope of approximately 30 m diameter. The key to satisfying many of the science goals of this observatory is the availability of diffraction-limited wavefront control. We describe potential observing modes of CELT, including a discussion of the several major outstanding AO system architectural design issues to be resolved prior to the initiation of the detailed design of the adaptive optics capability.

  20. Adaptive Holographic Fiber-Optic Interferometer

    Science.gov (United States)

    Kozhevnikov, Nikolai M.; Lipovskaya, Margarita J.

    1990-04-01

    Interaction of phase-modulated light beams in photorefractive local inertial responce media was analysed. Interaction of this type allows to registrate phase-modulated signals adaptively under low frequency phase disturbtion. The experiments on multimode fiber-optic interferometer with demodulation element based on photorefractive bacteriorhodopsin-doped polimer film are described. As the writing of dynamic phase hologram is an inertial process the signal fluctuations with the frequencies up to 100 Hz can be canceled. The hologram efficiencies are enough to registrate high frequency phase shifts ~10-4 radn.

  1. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  2. Faraday-effect light-valve arrays for adaptive optical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Hirleman, E.D.; Dellenback, P.A.

    1987-01-01

    The ability to adapt to a range of measurement conditions by autonomously configuring software or hardware on-line will be an important attribute of next-generation intelligent sensors. This paper reviews the characteristics of spatial light modulators (SLM) with an emphasis on potential integration into adaptive optical instruments. The paper focuses on one type of SLM, a magneto-optic device based on the Faraday effect. Finally, the integration of the Faraday-effect SLM into a laser-diffraction particle-sizing instrument giving it some ability to adapt to the measurement context is discussed.

  3. Metal Optics For Laser Profile Scanners

    Science.gov (United States)

    Klauke, T.; Hock, F.

    1987-01-01

    Laser scanners are a valuable tool for qualitiy control in hostile hot and vibrating environments. Their high measuring speed allows time minimisation of disturbing influences. The loss of accuracy of systems due to thermal distortion could be minimised by designing mechanical-optical systems with low temperature gradients and small differences between thermal expansions of the components. For application in the forging production a laser scanner measuring in situ a series of profile lines describing the hot forging tools has been designed using aluminium for all distortion sensitive mechanical and optical components.

  4. Laser and Optical Fiber Metrology in Romania

    Science.gov (United States)

    Sporea, Dan; Sporea, Adelina

    2008-04-01

    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical and optoelectronic parts, tests run under the EU's Fusion Program.

  5. Optical eye simulator for laser dazzle events.

    Science.gov (United States)

    Coelho, João M P; Freitas, José; Williamson, Craig A

    2016-03-20

    An optical simulator of the human eye and its application to laser dazzle events are presented. The simulator combines optical design software (ZEMAX) with a scientific programming language (MATLAB) and allows the user to implement and analyze a dazzle scenario using practical, real-world parameters. Contrary to conventional analytical glare analysis, this work uses ray tracing and the scattering model and parameters for each optical element of the eye. The theoretical background of each such element is presented in relation to the model. The overall simulator's calibration, validation, and performance analysis are achieved by comparison with a simpler model based uponCIE disability glare data. Results demonstrate that this kind of advanced optical eye simulation can be used to represent laser dazzle and has the potential to extend the range of applicability of analytical models. PMID:27140558

  6. Optical monitoring of laser-generated plasma during laser welding

    Science.gov (United States)

    Connolly, John O.; Beirne, Gareth J.; O'Connor, Gerard M.; Glynn, Thomas J.; Conneely, Alan J.

    2000-03-01

    Process monitoring is a vital part of industrial laser applications that enables intelligent control of processes by observing acoustic, optical, thermal and other emissions. By monitoring these emission during laser processing, it is possible to ascertain characteristics that help diagnose features of the laser processed material and hence to optimize the technique. An experimental set up of observing plasmas during laser spot welding is described here. A pulsed Nd:YAG laser was used to spot-weld a variety of materials of different thickness, the plasmas generated during welding were monitored by a number of techniques, and the data obtained was used to characterize the welds. In the study photodiodes were set at different angles and observed the intensity and generation of the plasmas during the laser spot-welding process thereby giving a weld 'signature.' A portable spectrometer was used off-axis to obtain spectra of the emissions from the plasmas. Post process analysis was performed on the materials by mechanical polishing and chemical etching and observations of weld penetration depth and weld quality were correlated with the data collected on the plasmas. Different cover gases were also used during laser welding and the results of the effects of the various gases on the plasma are shown. The results indicate the relationship between laser weld generated plasma characteristics and weld features such as penetration depth. A direct correlation between the intensities of the photodiode and portable spectrometer signals was observed with weld penetration depth.

  7. Laser beam characteristic for laser resonators with diffraction optical elements

    Institute of Scientific and Technical Information of China (English)

    Xuanhui Lu(陆璇辉); Kaikai Huang(黄凯凯); Dajian Xue(薛大建); Lei Zhang(张蕾); Sailing He(何赛灵)

    2003-01-01

    The matrix eigenvalue method is used to analyze a laser resonator composed of diffraction optical ele-ments. The results show that this type of resonator can separate fundamental mode and high order modeseffectively. The output beams can be designed for different requests.

  8. Optical turbulence in fiber lasers.

    Science.gov (United States)

    Wabnitz, Stefan

    2014-03-15

    We analyze the nonlinear stage of modulation instability in passively mode-locked fiber lasers leading to chaotic or noise-like emission. We present the phase-transition diagram among different regimes of chaotic emission in terms of the key cavity parameters: amplitude or phase turbulence, and spatio-temporal intermittency. PMID:24690788

  9. Adaptive-optic approach to mitigating aero-optic disturbances for a forced shear layer

    Science.gov (United States)

    Nightingale, Alice M.

    Non-uniform, variable-density fields, resulting from compressibility effects in turbulent flows, are the source of aero-optical distortions which cause significant reductions in optical system performance. As a laser beam transverses through an optically active medium, containing index-of-refraction variations, several optical phenomena occur including beam wander, image distortion, and beam defocus. When encountering a variation in the index field, light waves refract causing an otherwise planar wavefront of a laser beam to become aberrated, contributing to the adverse effects mentioned above. Adaptive-Optics (AO) is a technique used to correct for such spatially and temporally varying aberrations on an optical beam by applying a conjugate waveform correction prior to the beams transmission through the flow. Conventional AO systems are bandwidth limited by real-time processing issues and wavefront sensor limitations. Therefore, an alternative to the conventional AO approach has been proposed, developed and evaluated with the goal of overcoming such bandwidth limitations. The alternative AO system, presented throughout this document, consists of two main features; feed-forward flow control and a phase-locked-loop AO control strategy. Initially irregular, unpredictable large-scale structures within a shear layer are regularized using flow control. Subsequently, the resulting optical wavefront, and corresponding optical signal, emerging from the regularized flow becomes more periodic and predictable effectively reducing the bandwidth necessary to make real-time corrections. A phase-lock-loop controller is then used to perform real-time corrections. Wavefront corrections are estimated based upon the regularized flow, while two small aperture laser beams provide a non-intrusive means of acquiring amplitude and phase error measurements. The phase-lock-loop controller uses these signals as feedback to synchronize the deformable mirror's waveform to that of the shear

  10. Adaptive optics sky coverage modeling for extremely large telescopes.

    Science.gov (United States)

    Clare, Richard M; Ellerbroek, Brent L; Herriot, Glen; Véran, Jean-Pierre

    2006-12-10

    A Monte Carlo sky coverage model for laser guide star adaptive optics systems was proposed by Clare and Ellerbroek [J. Opt. Soc. Am. A 23, 418 (2006)]. We refine the model to include (i) natural guide star (NGS) statistics using published star count models, (ii) noise on the NGS measurements, (iii) the effect of telescope wind shake, (iv) a model for how the Strehl and hence NGS wavefront sensor measurement noise varies across the field, (v) the focus error due to imperfectly tracking the range to the sodium layer, (vi) the mechanical bandwidths of the tip-tilt (TT) stage and deformable mirror actuators, and (vii) temporal filtering of the NGS measurements to balance errors due to noise and servo lag. From this model, we are able to generate a TT error budget for the Thirty Meter Telescope facility narrow-field infrared adaptive optics system (NFIRAOS) and perform several design trade studies. With the current NFIRAOS design, the median TT error at the galactic pole with median seeing is calculated to be 65 nm or 1.8 mas rms.

  11. Direct laser cooling Al+ ions optical clocks

    CERN Document Server

    Zhang, J; Luo, J; Lu, Z H

    2016-01-01

    Al$^+$ ions optical clock is a very promising optical frequency standard candidate due to its extremely small blackbody radiation shift. It has been successfully demonstrated with indirect cooled, quantum-logic-based spectroscopy technique. Its accuracy is limited by second-order Doppler shift, and its stability is limited by the number of ions that can be probed in quantum logic processing. We propose a direct laser cooling scheme of Al$^+$ ions optical clocks where both the stability and accuracy of the clocks are greatly improved. In the proposed scheme, two Al$^+$ ions traps are utilized. The first trap is used to trap a large number of Al$^+$ ions to improve the stability of the clock laser, while the second trap is used to trap a single Al$^+$ ions to provide the ultimate accuracy. Both traps are cooled with a continuous wave 167 nm laser. The expected clock laser stability can reach $9.0\\times10^{-17}/\\sqrt{\\tau}$. For the second trap, in addition to 167 nm laser Doppler cooling, a second stage pulsed ...

  12. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    Science.gov (United States)

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information.

  13. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    Science.gov (United States)

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information. PMID:26831389

  14. All Optical Flip-Flop Based on Coupled Laser Diodes

    OpenAIRE

    Hill, MT Martin

    1999-01-01

    An all optical set-reset flip flop is presented that is based on two coupled identical laser diodes. The lasers are coupled so that when one of the lasers lases it quenches lasing in the other laser. The state of the flip flop is determined by which laser is currently lasing. Rate equations are used to model the flip flop and obtain steady state characteristics. The flip flop is experimentally demonstrated by use of antireflection coated laser diodes and free space optics.

  15. Durham adaptive optics real-time controller.

    Science.gov (United States)

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems.

  16. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    OpenAIRE

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2010-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrins...

  17. Optical Design and Optimization of Translational Reflective Adaptive Optics Ophthalmoscopes

    Science.gov (United States)

    Sulai, Yusufu N. B.

    The retina serves as the primary detector for the biological camera that is the eye. It is composed of numerous classes of neurons and support cells that work together to capture and process an image formed by the eye's optics, which is then transmitted to the brain. Loss of sight due to retinal or neuro-ophthalmic disease can prove devastating to one's quality of life, and the ability to examine the retina in vivo is invaluable in the early detection and monitoring of such diseases. Adaptive optics (AO) ophthalmoscopy is a promising diagnostic tool in early stages of development, still facing significant challenges before it can become a clinical tool. The work in this thesis is a collection of projects with the overarching goal of broadening the scope and applicability of this technology. We begin by providing an optical design approach for AO ophthalmoscopes that reduces the aberrations that degrade the performance of the AO correction. Next, we demonstrate how to further improve image resolution through the use of amplitude pupil apodization and non-common path aberration correction. This is followed by the development of a viewfinder which provides a larger field of view for retinal navigation. Finally, we conclude with the development of an innovative non-confocal light detection scheme which improves the non-invasive visualization of retinal vasculature and reveals the cone photoreceptor inner segments in healthy and diseased eyes.

  18. Adaptive optics optical coherence tomography at 1 MHz.

    Science.gov (United States)

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band.

  19. Laser-driven polyplanar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.; Biscardi, C.; Brewster, C.; DeSanto, L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Beiser, L. [Leo Beiser Inc., Flushing, NY (United States)

    1998-01-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the DLP chip, the optomechanical design and viewing angle characteristics.

  20. Optical modeling of laser ablated microstructures

    Science.gov (United States)

    Gower, M. C.; Davies, E.; Holmes, A. S.

    2012-11-01

    From only an a priori knowledge of the optical parameters of a laser beam, the delivery system together with a substrate's material properties, a ray-tracing model capable of predicting the 3-D topology of micro/nanostructures machined by pulsed laser ablation has been developed. The model includes secondary illumination effects produced by the microstructure created by successive pulses (wall reflections, refraction, wave guiding, shadowing, etc.) as well as the complete optical properties of the beam delivery system. We have used material ablation by pulsed excimer lasers and associated beam delivery systems to demonstrate some of the capabilities of the model. Good agreement is obtained between computations and experimental results in terms of the predicted ablation depth per pulse and the wall taper angle of channels and holes. The model can predict ablated profiles of holes and indicate the most efficient drilling strategy in terms of material removal rates. The model also shows diffraction effects are not required to explain the tapering vertical walls observed when ablating microstructures. Finally, the model has been used to demonstrate aberrations in an optical imaging system limiting the creation of submicron features in an ablated microstructure. Provided photons are absorbed linearly in a substrate according to Beer's law with negligible thermal diffusion effects, the model is equally applicable to using other types of pulsed laser sources and systems with imaged or focused beams.

  1. Using Site Testing Data for Adaptive Optics Simulations

    OpenAIRE

    Herriot, Glen; Andersen, David; Conan, Rod; Ellerbroek, Brent; Gilles, Luc; Hickson, Paul; Jackson, Kate; Lardière, Olivier; Pfrommer, Thomas; Véran, Jean-Pierre; Wang, Lianqi

    2011-01-01

    Astronomical Site testing data plays a vital role in the simulation, design, evaluation and operation of adaptive optics systems for large telescope. We present the example of TMT and its first light facilitiy adaptive optics system NFIRAOS, and illustrate the many simulations done based on site testing data.

  2. Optical materials for space based laser systems

    Science.gov (United States)

    Buoncristiani, A. M.; Armagan, G.; Byvik, C. E.; Albin, S.

    1989-01-01

    The design features and performance characteristics of a sensitized holmium laser applicable to differential lidar and Doppler windshear measurements are presented, giving attention to the optimal choice of sensitizing/activating dopant ions. This development of a 2-micron region eye-safe laser, where holmium is sensitized by either hulium or erbium, has called for interionic energy transfer processes whose rate will not result in gain-switched pulses that are excessively long for atmospheric lidar and Doppler windshear detection. The application of diamond films for optical component hardening is noted.

  3. Laser-induced contamination on high-reflective optics

    OpenAIRE

    Wagner, Paul

    2014-01-01

    Operating high power space-based laser systems in the visible and UV range is problematic due to laser-induced contamination. Organic materials are outgassing in vacuum and deposit on irradiated optical components. To provide reliable space-based laser systems the optical components quality plays a major role. In this thesis laser-induced contamination growth on high-reflective coated optics is investigated for UV irradiation of 355nm with naphthalene as contamination material. Four different...

  4. Adaptive Optics Concept For Multi-Objects 3D Spectroscopy on ELTs

    CERN Document Server

    Neichel, B; Puech, M; Conan, J M; Lelouarn, M; Gendron, E; Hammer, F; Rousset, G; Jagourel, P; Bouchet, P

    2005-01-01

    In this paper, we present a first comparison of different Adaptive Optics (AO) concepts to reach a given scientific specification for 3D spectroscopy on Extremely Large Telescope (ELT). We consider that a range of 30%-50% of Ensquarred Energy (EE) in H band (1.65um) and in an aperture size from 25 to 100mas is representative of the scientific requirements. From these preliminary choices, different kinds of AO concepts are investigated : Ground Layer Adaptive Optics (GLAO), Multi-Object AO (MOAO) and Laser Guide Stars AO (LGS). Using Fourier based simulations we study the performance of these AO systems depending on the telescope diameter.

  5. An adaptive optics approach to the reduction of misalignments and beam jitters in gravitational wave interferometers

    International Nuclear Information System (INIS)

    We describe a study and the preliminary experimental results on the possibility of using adaptive optics systems for the reduction of geometrical fluctuations of input laser beams in long baseline interferometric detectors of gravitational waves. The experimental tests aimed to test the efficiency of Hermite-Gauss versus Shack-Hartmann wavefront reconstruction and feedback diagonalization. These preliminary results seem to indicate that the adaptive optics systems may be integrated in the near future as stabilization stages before a passive mode cleaner cavity, provided that the operational band of the mirror is increased together with the efficiency of the control system

  6. Optimized micromirror arrays for adaptive optics

    Science.gov (United States)

    Michalicek, M. Adrian; Comtois, John H.; Hetherington, Dale L.

    1999-01-01

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 μm minimum feature sizes and 0.1 μm mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces can be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2-3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98% or better. Combining the process planarization with a ``planarized-by-design'' approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics.

  7. Lasers and optical fibers in medicine

    CERN Document Server

    Katzir, Abraham

    1993-01-01

    The increasing use of fiber optics in the field of medicine has created a need for an interdisciplinary perspective of the technology and methods for physicians as well as engineers and biophysicists. This book presents a comprehensive examination of lasers and optical fibers in an hierarchical, three-tier system. Each chapter is divided into three basic sections: the Fundamentals section provides an overview of basic concepts and background; the Principles section offers an in-depth engineering approach; and the Advances section features specific information on systems an

  8. Picosecond electron-optic diagnostics in laser studies

    Science.gov (United States)

    Prokhorov, A. M.

    The papers included in this volume provide an overview of research aimed at the development of methods and instrumentation for ultrahigh-speed electron-optic detection and of their applications in laser physics, laser fusion, fiber-optic communication, picosecond spectroscopy, and photobiology. Topics discussed include the physics of a picosecond electron-optic converter, the aberration theory for cathode lenses, picosecond and subpicosecond laser sources, and a beam deflection system for a subpicosecond electron-optic converter.

  9. Electro-optic and acousto-optic laser beam scanners

    Science.gov (United States)

    Heberle, Johannes; Bechtold, Peter; Strauß, Johannes; Schmidt, Michael

    2016-03-01

    Electro-optical deflectors (EOD) and acousto-optical deflectors (AOD) are based on deflection of laser light within a solid state medium. As they do not contain any moving parts, they yield advantages compared to mechanical scanners which are conventionally used for laser beam deflection. Even for arbitrary scan paths high feed rates can be achieved. In this work the principles of operation and characteristic properties of EOD and AOD are presented. Additionally, a comparison to mirror based mechanical deflectors regarding deflection angles, speed and accuracy is made in terms of resolvable spots and the rate of resolvable spots. Especially, the latter one is up to one order of magnitude higher for EOD and AOD systems compared to conventional systems. Further characteristic properties such as response time, damage threshold, efficiency and beam distortions are discussed. Solid state laser beam deflectors are usually characterized by small deflection angles but high angular deflection velocities. As mechanical deflectors exhibit opposite properties an arrangement of a mechanical scanner combined with a solid state deflector provides a solution with the benefits of both systems. As ultrashort pulsed lasers with average power above 100 W and repetition rates in the MHz range have been available for several years this approach can be applied to fully exploit their capabilities. Thereby, pulse overlap can be reduced and by this means heat affected zones are prevented to provide proper processing results.

  10. Diamond diffraction optics for CO2 lasers

    International Nuclear Information System (INIS)

    A laser ablation method for the formation of a phase microrelief on diamond optical diffraction components, intended for the far-IR range, was proposed and implemented. A one-dimensional diffraction component was made for CO2 laser radiation (λ = 10.6 μm): it was a cylindrical lens of 4 mmx4 mm aperture and with a focal length 25 mm. Microstructuring of the surface was performed by selective ablation etching of diamond with KrF excimer laser radiation (λ = 248 nm). The distribution of the field intensity in the focal region of the lens, its depth of focus, and the diffraction efficiency were determined. A high degree of correlation was found between the experimental characteristics of the lens and the results of computer modelling. (letters to the editor)

  11. Stellar photometry with Multi Conjugate Adaptive Optics

    CERN Document Server

    Fiorentino, Giuliana; McConnachie, Alan; Stetson, Peter B; Bono, Giuseppe; Turri, Paolo; Andersen, David; Veran, Jean-Pierre; Diolaiti, Emiliano; Schreiber, Laura; Ciliegi, Paolo; Bellazzini, Michele; Tolstoy, Eline; Monelli, Matteo; Iannicola, Giacinto; Ferraro, Ivan; Testa, Vincenzo

    2016-01-01

    We overview the current status of photometric analyses of images collected with Multi Conjugate Adaptive Optics (MCAO) at 8-10m class telescopes that operated, or are operating, on sky. Particular attention will be payed to resolved stellar population studies. Stars in crowded stellar systems, such as globular clusters or in nearby galaxies, are ideal test particles to test AO performance. We will focus the discussion on photometric precision and accuracy reached nowadays. We briefly describe our project on stellar photometry and astrometry of Galactic globular clusters using images taken with GeMS at the Gemini South telescope. We also present the photometry performed with DAOPHOT suite of programs into the crowded regions of these globulars reaching very faint limiting magnitudes Ks ~21.5 mag on moderately large fields of view (~1.5 arcmin squared). We highlight the need for new algorithms to improve the modeling of the complex variation of the Point Spread Function across the ?eld of view. Finally, we outl...

  12. Optical properties of laser spinel

    Science.gov (United States)

    Mironova-Ulmane, Nina; Skvortsova, Vera; Smirnovs, Andrejs; Riekstinya, Daina; Litvinov, L.; Sildos, Ilmo; Osvet, Andris

    1997-02-01

    The present work summarizes the results of absorption and luminescence spectra investigation of natural and synthetic magnesium aluminum spinels (MgO*nAl2O3) containing chromium and manganese ions. The spectra have been analyzed with an aim to determine the effect of stoichiometry 'n' on distribution of emitting ions. The Mn2+ is observed in both tetrahedral and octahedral coordinations providing green or orange emission. Absorption bands have been explained in terms of the Mn2+ configuration model. Laser excitation of chromium-comprising magnesium aluminum spinel crystals has been carried out at 7 K with the purpose to detect the nearest neighbors of Cr3+ ions. Luminescence emission spectra have been obtained for natural sample and three synthetic samples (MgO*nAl2O3, n equals 1, 2, 2.8). Decay time has been measured at different wavelengths and compared for crystals of different stoichiometry. In case n equals 2 or 2.8, computer simulation has been used to decompose smeared luminescence spectra in the 680 - 700 nm region. Gaussian curves corresponding to R- and N-lines of natural spinel spectrum have been applied as components in the calculations of nonstoichiometric spinel spectra. This suggests that there aren't normally arranged Cr-occupied octahedral positions in nonstoichiometric spinel (n equals 2.8, e.g.).

  13. Key optical components for spaceborne lasers

    Science.gov (United States)

    Löhring, J.; Winzen, M.; Faidel, H.; Miesner, J.; Plum, D.; Klein, J.; Fitzau, O.; Giesberts, M.; Brandenburg, W.; Seidel, A.; Schwanen, N.; Riesters, D.; Hengesbach, S.; Hoffmann, H.-D.

    2016-03-01

    Spaceborne lidar (light detection and ranging) systems have a large potential to become powerful instruments in the field of atmospheric research. Obviously, they have to be in operation for about three years without any maintenance like readjusting. Furthermore, they have to withstand strong temperature cycles typically in the range of -30 to +50 °C as well as mechanical shocks and vibrations, especially during launch. Additionally, the avoidance of any organic material inside the laser box is required, particularly in UV lasers. For atmospheric research pulses of about several 10 mJ at repetition rates of several 10 Hz are required in many cases. Those parameters are typically addressed by DPSSL that comprise components like: laser crystals, nonlinear crystals in pockels cells, faraday isolators and frequency converters, passive fibers, diode lasers and of course a lot of mirrors and lenses. In particular, some components have strong requirements regarding their tilt stability that is often in the 10 μrad range. In most of the cases components and packages that are used for industrial lasers do not fulfil all those requirements. Thus, the packaging of all these key components has been developed to meet those specifications only making use of metal and ceramics beside the optical component itself. All joints between the optical component and the laser baseplate are soldered or screwed. No clamps or adhesives are used. Most of the critical properties like tilting after temperature cycling have been proven in several tests. Currently, these components are used to build up first prototypes for spaceborne systems.

  14. Adaptive optics ophthalmologic systems using dual deformable mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  15. Comparison of Adaptive Optics and Phase-Conjugate Mirrors for Correction of Aberrations in Double-Pass Amplifiers

    Science.gov (United States)

    Jackel, Steven; Moshe, Inon; Lavi, Raphy

    2003-02-01

    Correction of birefringence-induced effects (depolarization and bipolar focusing) were achieved in double-pass amplifiers by use of a Faraday rotator between the laser rod and the retroreflecting optic. A necessary condition was ray retrace. Retrace was limited by imperfect conjugate-beam fidelity and by nonreciprocal refractive indices. We compared various retroreflectors: stimulated-Brillouin-scatter phase-conjugate mirrors (PCMs), PCMs with rod-to-PCM relay imaging (IPCM), IPCMs with astigmatism-correcting adaptive optics, and all-adaptive-optics imaging variable-radius mirrors. Results with flash-lamp-pumped, Nd:Cr:GSGG double-pass amplifiers showed the superiority of adaptive optics over nonlinear optics retroreflectors in terms of maximum average power, improved beam quality, and broader oscillator pulse duration /bandwidth operating range. Hybrid PCM-adaptive optics retroreflectors yielded intermediate power /beam-quality results.

  16. Initial alignment method for free space optics laser beam

    Science.gov (United States)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  17. Adaptive optics retinal imaging in the living mouse eye.

    Science.gov (United States)

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H; Sharma, Robin; Libby, Richard T; Williams, David R

    2012-04-01

    Correction of the eye's monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo.

  18. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Science.gov (United States)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  19. Adaptive optics parallel near-confocal scanning ophthalmoscopy.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-08-15

    We present an adaptive optics parallel near-confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high-speed line camera to acquire the image and using adaptive optics to compensate the ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy.

  20. Adaptive optics parallel near-confocal scanning ophthalmoscopy.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-08-15

    We present an adaptive optics parallel near-confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high-speed line camera to acquire the image and using adaptive optics to compensate the ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy. PMID:27519106

  1. Grating THz laser with optical pumping

    Science.gov (United States)

    Khoury, Jed; Haji-saeed, Bahareh; Woods, Charles; Kierstead, John

    2010-04-01

    In this paper, we present a design for a widely tunable solid-state optically and electrically pumped THz laser based on the Smith-Purcell free-electron laser. In the free-electron laser, an energetic electron beam pumps a metallic grating to generate surface plasmons. Our solid-state optically pumped design consists of a thin layer of dielectic, such as SiNx, sandwiched between a corrugated structure and a thin metal or semiconductor layer. The lower layer is for current streaming, and replaces the electron beam in the original design. The upper layer consists of one micro-grating for coupling the electromagnetic field in, another for coupling out, and a nano-grating for coupling with the current in the lower layer for electromagnetic field generation. The surface plasmon waves generated from the upper layer by an external electromagnetic field, and the lower layer by the applied current, are coupled. Emission enhancement occurs when the plasmonic waves in both layers are resonantly coupled.

  2. Wave-Chaotic Optical Resonators and Lasers

    Science.gov (United States)

    Stone, A. Douglas

    2001-10-01

    Deformed cylindrical and spherical dielectric optical resonators and lasers are analyzed from the perspective of non-linear dynamics and quantum chaos theory. In the short-wavelength limit such resonators behave like billiard systems with non-zero escape probability due to refraction. A ray model is introduced to predict the resonance lifetimes and emission patterns from such a cavity. A universal wavelength-independent broadening is predicted and found for large deformations of the cavity. However there are significant wave-chaotic corrections to the model which arise from chaos-assisted tunneling and dynamical localization effects. Highly directional emission from lasers based on these resonators is predicted from chaotic "whispering gallery" modes for index of refraction less than two. The detailed nature of the emission pattern can be understood from the nature of the phase-space flow in the billiard, and a dramatic variation of this pattern with index of refraction is found due to an effect we term "dynamical eclipsing". Semiconductor lasers of this type also show highly directional emission and high output power but from different modes associated with periodic orbits, both stable and unstable. A semiclassical approach to these modes is briefly reviewed. These asymmetric resonant cavities (ARCs) show promise as components in future integrated optical devices, providing perhaps the first application of quantum chaos theory.

  3. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo;

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized.......We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  4. Fabrication of Micro -Optical Devices by a Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    Kazuyuki; Hirao

    2003-01-01

    Femtosecond laser is a perfect laser source for materials processing when high accuracy and small structure size are required. Due to the ultra short interaction time and the high peak power, the process is generally characterized by the absence of heat diffusion and, consequently molten layers. Various induced structures have been observed in materials after the femtosecond laser irradiation. Here, we report on fabrication of micro-optical devices by the femtosecond laser. 1) formation of optical waveg...

  5. Polarization sensitive optical elements by ultrafast laser nanostructuring of glass

    OpenAIRE

    Gecevičius, Mindaugas

    2015-01-01

    In this theses I will concentrate on femtosecond laser induced modification in silica glass. One type of modification in fused silica is subwavelength nanogratings. This modification exhibits form birefringence and therefore optical elements can be fabricated based on nanogratings. The main goal of my work was development and fabrication of practical optical elements based on femtosecond laser induced nanogratings. In order to be able to fabricate optical elements, laser induced modificat...

  6. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  7. Architecture and performance of astronomical adaptive optics systems

    Science.gov (United States)

    Bloemhof, E.

    2002-01-01

    In recent years the technological advances of adaptive optics have enabled a great deal of innovative science. In this lecture I review the system-level design of modern astronomical AO instruments, and discuss their current capabilities.

  8. Optical reprogramming with ultrashort femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  9. Astronomy applications of adaptive optics at Lawrence Livermore National Laboratory

    Science.gov (United States)

    Bauman, Brian J.; Gavel, Donald T.

    2003-06-01

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  10. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  11. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    OpenAIRE

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in ...

  12. Contrast-based sensorless adaptive optics for retinal imaging

    OpenAIRE

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T. O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In thi...

  13. Solar adaptive optics at the Observatorio del Teide, Tenerife

    Science.gov (United States)

    Soltau, Dirk; Berkefeld, Thomas; Schmidt, Dirk; von der Lühe, Oskar

    2013-10-01

    Observing the Sun with high angular resolution is difficult because the turbulence in the atmosphere is strongest during day time. In this paper we describe the principles of solar adaptive optics exemplified by the two German solar telescopes VTT and GREGOR at the Observatorio del Teide. With theses systems we obtain near diffraction limited images of the Sun. Ways to overcome the limits of conventional AO by applying multiconjugate adaptive optics (MCAO) are shown.

  14. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Science.gov (United States)

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network. PMID:26832033

  15. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Science.gov (United States)

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  16. Adaptable beam profiles from a dual-cavity Nd:YAG laser.

    Science.gov (United States)

    Kim, D J; Mackenzie, J I; Kim, J W

    2016-04-15

    We report a technique to tailor a laser beam profile from a donut to quasi-top-hat intensity distribution, directly from the laser, simply achieved by simultaneous excitation and control of the relative contributions of the fundamental (TEM00) and first-order Laguerre-Gaussian (LG01) transverse modes. Exploiting a dual-cavity configuration with a single Nd:YAG gain element, adaptable continuous-wave laser beam profiles from the primary cavity could be obtained by varying the diffraction loss of an acousto-optic modulator in the secondary cavity. We investigate the resultant beam profiles as a function of pump power and the AOM diffraction loss, and discuss the prospects for tunable laser beams profiles.

  17. Laser annealing of amorphous silicon core optical fibers

    OpenAIRE

    Healy, N; Mailis, S.; Day, T. D.; Sazio, P.J.A.; Badding, J. V.; A.C. Peacock

    2012-01-01

    Laser annealing of an optical fiber with an amorphous silicon core is demonstrated. The annealing process produces a fiber that has a highly crystalline core, whilst reducing the optical transmission losses by ~3 orders of magnitude.

  18. Optical design considerations for laser fusion reactors

    International Nuclear Information System (INIS)

    The plan for the development of commercial inertial confinement fusion (ICF) power plants is discussed, emphasizing the utilization of the unique features of laser fusion to arrive at conceptual designs for reactors and optical systems which minimize the need for advanced materials and techniques requiring expensive test facilities. A conceptual design for a liquid lithium fall reactor is described which successfully deals with the hostile x-ray and neutron environment and promises to last the 30 year plant lifetime. Schemes for protecting the final focusing optics are described which are both compatible with this reactor system and show promise of surviving a full year in order to minimize costly downtime. Damage mechanisms and protection techniques are discussed, and a recommendation is made for a high f-number metal mirror final focusing system

  19. Adaptive optics in digital micromirror based confocal microscopy

    Science.gov (United States)

    Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.

    2016-03-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.

  20. Design of smart composite platforms for adaptive trust vector control and adaptive laser telescope for satellite applications

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.

    2013-04-01

    This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been

  1. International Conference on Laser Physics and Quantum Optics

    CERN Document Server

    Xie, Shengwu; Zhu, Shi-Yao; Scully, Marlan

    2000-01-01

    Since the advent of the laser about 40 years ago, the field of laser physics and quantum optics have evolved into a major discipline. The early studies included the optical coherence theory and the semiclassical and quantum mechanical theories of the laser. More recently many new and interesting effects have been predicted. These include the role of coherent atomic effects in lasing without inversion and electromagnetically induced transparency, atom optics, laser cooling and trapping, teleportation, the single-atom micromaser and its role in quantum measurement theory, to name a few. The International Conference on Laser Physics and Quantum Optics was held in Shanghai from August 25 to August 28, 1999, to discuss these and many other exciting developments in laser physics and quantum optics. The international character of the conference was manifested by the fact that scientists from over 13 countries participated and lectured at the conference. There were four keynote lectures delivered by Nobel laureate Wi...

  2. Properties of Optical and Laser-Related Materials: A Handbook

    Science.gov (United States)

    Nikogosyan, David N.

    2003-05-01

    Properties of Optical and Laser-Related Materials-A Handbook offers the reader a self-contained, concise and up-to-date collection of the key properties of 125 of the most common and important optical materials used in modern optics, laser physics and technology, spectroscopy and laser spectroscopy, nonlinear optics, quantum electronics and laser applications. This comprehensive volume presents not only the classical properties but also those that have appeared in the three decades since the invention of the laser. The presentation of the material is given in a clear tabular form with more than 1000 references. A wide variety of readers, ranging from workers in both industry and academia, to lecturers and students at postgraduate and undergraduate levels, will find Properties of Optical and Laser-Related Materials-A Handbook an invaluable resource.

  3. Multiple Isotope Magneto Optical Trap from a single diode laser

    CERN Document Server

    Valenzuela, V M; Gutierrez, M; Gomez, E; 10.1364/JOSAB.30.001205

    2013-01-01

    We present a Dual Isotope Magneto Optical Trap produced using a single diode laser. We generate all the optical frequencies needed for trapping both species using a fiber intensity modulator. All the optical frequencies are amplified simultaneously using a tapered amplifier. The independent control of each frequency is on the RF side rather than on the optical side. This introduces an enormous simplification for laser cooling applications that often require an acousto-optic modulator for each laser beam. Frequency changing capabilities are limited by the modulator bandwidth (10 GHz). Traps for more isotopes can be simply added by including additional RF frequencies to the modulator.

  4. CO2 laser and plasma microjet process for improving laser optics

    Science.gov (United States)

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Butler, James A.; Grundler, Walter; Governo, George K.

    2003-09-16

    A optic is produced for operation at the fundamental Nd:YAG laser wavelength of 1.06 micrometers through the tripled Nd:YAG laser wavelength of 355 nanometers by the method of reducing or eliminating the growth of laser damage sites in the optics by processing the optics to stop damage in the optics from growing to a predetermined critical size. A system is provided of mitigating the growth of laser-induced damage in optics by virtue of very localized removal of glass and absorbing material.

  5. New challenges for Adaptive Optics Extremely Large Telescopes

    CERN Document Server

    Le Louarn, M; Sarazin, M; Tokovinin, A

    2000-01-01

    The performance of an adaptive optics (AO) system on a 100m diameter ground based telescope working in the visible range of the spectrum is computed using an analytical approach. The target Strehl ratio of 60% is achieved at 0.5um with a limiting magnitude of the AO guide source near R~10, at the cost of an extremely low sky coverage. To alleviate this problem, the concept of tomographic wavefront sensing in a wider field of view using either natural guide stars (NGS) or laser guide stars (LGS) is investigated. These methods use 3 or 4 reference sources and up to 3 deformable mirrors, which increase up to 8-fold the corrected field size (up to 60\\arcsec at 0.5 um). Operation with multiple NGS is limited to the infrared (in the J band this approach yields a sky coverage of 50% with a Strehl ratio of 0.2). The option of open-loop wavefront correction in the visible using several bright NGS is discussed. The LGS approach involves the use of a faint (R ~22) NGS for low-order correction, which results in a sky cov...

  6. Novel adaptive fiber-optics collimator for coherent beam combination.

    Science.gov (United States)

    Zhi, Dong; Ma, Pengfei; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2014-12-15

    In this manuscript, we experimentally validate a novel design of adaptive fiber-optics collimator (AFOC), which utilizes two levers to enlarge the movable range of the fiber end cap. The enlargement of the range makes the new AFOC possible to compensate the end-cap/tilt aberration in fiber laser beam combining system. The new AFOC based on flexible hinges and levers was fabricated and the performance of the new AFOC was tested carefully, including its control range, frequency response and control accuracy. Coherent beam combination (CBC) of two 5-W fiber amplifiers array with simultaneously end-cap/tilt control and phase-locking control was implemented successfully with the novel AFOC. Experimental results show that the average normalized power in the bucket (PIB) value increases from 0.311 to 0.934 with active phasing and tilt aberration compensation simultaneously, and with both controls on, the fringe contrast improves to more than 82% from 0% for the case with both control off. This work presents a promising structure for tilt aberration control in high power CBC system.

  7. Optical Cutting Interruption Sensor for Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Benedikt Adelmann

    2015-09-01

    Full Text Available We report on an optical sensor system attached to a 4 kW fiber laser cutting machine to detect cutting interruptions. The sensor records the thermal radiation from the process zone with a modified ring mirror and optical filter arrangement, which is placed between the cutting head and the collimator. The process radiation is sensed by a Si and InGaAs diode combination with the detected signals being digitalized with 20 kHz. To demonstrate the function of the sensor, signals arising during fusion cutting of 1 mm stainless steel and mild steel with and without cutting interruptions are evaluated and typical signatures derived. In the recorded signals the piercing process, the laser switch on and switch off point and waiting period are clearly resolved. To identify the cutting interruption, the signals of both Si and InGaAs diodes are high pass filtered and the signal fluctuation ranges being subsequently calculated. Introducing a correction factor, we identify that only in case of a cutting interruption the fluctuation range of the Si diode exceeds the InGaAs diode. This characteristic signature was successfully used to detect 80 cutting interruptions of 83 incomplete cuts (alpha error 3.6% and system recorded no cutting interruption from 110 faultless cuts (beta error of 0. This particularly high detection rate in combination with the easy integration of the sensor, highlight its potential for cutting interruption detection in industrial applications.

  8. Electro-optics and lasers in Israel

    Science.gov (United States)

    Van Zwaren, Joesph

    1992-05-01

    With over 3,000 scientists, engineers, and technicians spread out in some 86 companies, and in 10 universities and research institutes, all within less than a 2 hour drive from one another, Israel has no doubt one of the largest concentrations of researchers and skilled manpower in electro-optics and lasers in the world. This report presents an up-to-date picture of the field in Israel, covering the industry, academia and education. The recent wave of Russian immigration is bringing thousands of scientists and tens of thousands of engineers and is expected to make an impact on the field of electro-optics and lasers. A million immigrants from Russia are expected to come between 1990 and 1995. There were 3,700 scientists and 2,800 engineers among the first 200,000 Soviet immigrants. As most of this qualified manpower can not be expected to be absorbed by the existing industry, the Israeli government is actively encouraging local and foreign investors and local and multinational companies to help develop new and expanded high-tech enterprises in Israel. The Ministry of Industry and Trade has embarked upon a broad ranged program for industrial growth and immigrant absorption with the goal of doubling technology-based exports in the next four years. The Ministry of Science and Technology has started a program supporting R&D projects at the different universities for immigrant scientists with the goal of capitalizing on the talents of the newcomers to strengthen academia.

  9. Optical diagnostics integrated with laser spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  10. Amplitude variations on the Extreme Adaptive Optics testbed

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B

    2007-08-14

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.

  11. Optical System Design and Integration of the Mercury Laser Altimeter

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  12. Monte-Carlo modelling of multi-object adaptive optics performance on the European Extremely Large Telescope

    Science.gov (United States)

    Basden, A. G.; Morris, T. J.

    2016-09-01

    The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-object adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcseconds per pixel, and a field of view of at least 7 arcseconds, that EMCCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is necessary, and that sky coverage can be improved by a slight reduction in natural guide star sub-aperture count without significantly affecting tomographic performance. We find that adaptive optics correction can be maintained across a wide field of view, up to 7 arcminutes in diameter. We also recommend the use of at least 4 laser guide stars, and include ground-layer and multi-object adaptive optics performance estimates.

  13. Experimental research on dual polarized laser optical feedback microscope

    Institute of Scientific and Technical Information of China (English)

    MAO Wei; ZHANG Shu-lian; TAN Yi-dong

    2005-01-01

    The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to detect the two polarized lights' intensities separately with a Wollaston prism instead of to detect the whole light's intensity. The second is that both of the two orthogonally polarized lights of a birefringent dual frequency laser are fed back. The third one is that only one of the orthogonally polarized lights is fed back. The experimental results show that the modes competition between orthogonally polarized lights can be used to improve the vertical resolution of laser optical feedback microscope effectively.

  14. Laser-induced microwave generation with nonlinear optical crystals

    Science.gov (United States)

    Borghesani, Francesco; Braggio, Caterina; Carugno, Giovanni; Della Valle, Federico; Ruoso, Giuseppe

    2014-05-01

    We report about a novel technique to generate microwave radiation by the irradiation of a nonlinear optical crystal with uniformly spaced, ultrashort optical pulses delivered by a mode-locked laser. We study systematically the laser polarization and intensity dependence of the microwave signal to conclusively show that it is a nonlinear phenomenon and that it originates from optical rectification. The measurements have been conducted using KTP, LBO and ZnSe crystals. The observed pulsed microwave signals are harmonically related to the laser pulses repetition rate, a feature that can be exploited to develop an innovative ultrafast laser detector.

  15. Fiber Optic Laser Delivery For Endarterectomy Of Experimental Atheromas

    Science.gov (United States)

    Eugene, John; Pollock, Marc E.; McColgan, Stephen J.; Hammer-Wilson, Marie; Berns, Michael W.

    1986-08-01

    Fiber optic delivery of argon ion laser energy and Nd-YAG laser energy were compared by the performance of open laser endarterectomy in the rabbit arteriosclerosis model. In Group I, 6 open laser endarterectomies were performed with an argon ion laser (488 nm and 514.5 nm) with the laser beam directed through a 400 pm quartz fiber optic. In Group II, 6 open laser endarterectomies were performed with a Nd-YAG laser (1.06 pm) with the laser beam directed through a 600 pm quartz fiber optic. Gross and light microscopic examination revealed smooth endarterectomy surfaces with tapered end points in Group I. In Group II, the endarterectomy surfaces were uneven and perforation occurred at 5/6 end points. Although energy could be precisely delivered with each laser by fiber optics, satisfactory results could only be achieved with the argon ion laser because argon ion energy was well absorbed by atheromas. Successful intravascular laser use requires a strong interaction between wavelength and atheroma as well as a precise delivery system.

  16. Theoretical study of laser diodes with double optical feedbacks

    Institute of Scientific and Technical Information of China (English)

    Chunlin Wang(王春林); Jian Wu(伍剑); Jintong Lin(林金桐)

    2003-01-01

    A new set of nonlinear rate equations that can describe the external cavity semiconductor laser with twooptical feedbacks is proposed. The dynamics of the semiconductor laser with two optical feedbacks arestudied. It is found that when lasers are biased above the threshold and operate in regime V, anotherfeedback can induce low frequency fluctuations.

  17. The Laser Level as an Optics Laboratory Tool

    Science.gov (United States)

    Kutzner, Mickey

    2013-01-01

    For decades now, the laser has been used as a handy device for performing ray traces in geometrical optics demonstrations and laboratories. For many ray- trace applications, I have found the laser level 3 to be even more visually compelling and easy for student use than the laser pointer.

  18. Digital adaptive optics line-scanning confocal imaging system

    Science.gov (United States)

    Liu, Changgeng; Kim, Myung K.

    2015-11-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  19. Optical and structural characterization of crystalline oxides for laser applications

    OpenAIRE

    Chiriu, Daniele

    2007-01-01

    The development of new solid-state lasers, especially those operating between 0.9 and 3.0 µm, has renewed general interest in the optical properties of rare-earth ions (Re3+) in crystalline oxides with garnet structure. At this purpose, the aim of this study concerns the optical and structural characterization of crystalline oxides for laser application, with the prospective of enhancing efficiency and tunability of solid state lasers, and the experimentation of new materials able to meet spe...

  20. Lasers and holography an introduction to coherent optics

    CERN Document Server

    KOCK, Winston

    1972-01-01

    Science Study Series No. 39: Lasers and Holography: An Introduction to Coherent Optics focuses on the processes, methodologies, and techniques involved in optics, including wave diffraction and patterns, zone plates, holograms, and diffraction. The publication first ponders on holograms as wave patterns, coherence, and lasers. Topics include reflectors and resonators, natural line width, semiconductor lasers, reflectors and spatial coherence, energy conservation with reflectors, frequency coherence and stability, coherent waves from small sources, photographic grating, and properties o

  1. PASSATA - Object oriented numerical simulation software for adaptive optics

    CERN Document Server

    Agapito, G; Esposito, S

    2016-01-01

    We present the last version of the PyrAmid Simulator Software for Adaptive opTics Arcetri (PASSATA), an IDL and CUDA based object oriented software developed in the Adaptive Optics group of the Arcetri observatory for Monte-Carlo end-to-end adaptive optics simulations. The original aim of this software was to evaluate the performance of a single conjugate adaptive optics system for ground based telescope with a pyramid wavefront sensor. After some years of development, the current version of PASSATA is able to simulate several adaptive optics systems: single conjugate, multi conjugate and ground layer, with Shack Hartmann and Pyramid wavefront sensors. It can simulate from 8m to 40m class telescopes, with diffraction limited and resolved sources at finite or infinite distance from the pupil. The main advantages of this software are the versatility given by the object oriented approach and the speed given by the CUDA implementation of the most computational demanding routines. We describe the software with its...

  2. Monte-Carlo modelling of multi-conjugate adaptive optics performance on the European Extremely Large Telescope

    CERN Document Server

    Basden, Alastair

    2015-01-01

    The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-conjugate adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, number of deformable mirrors, mirror conjugation and actuator pitch. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost. We conclude that a 6 laser guide star system using 3 DMs seems to be a sweet spot for performance and cost compromise.

  3. Requirements and approaches to adapting laser writers for fabrication of gray-scale masks

    Science.gov (United States)

    Korolkov, Victor P.; Shimansky, Ruslan; Poleshchuk, Alexander G.; Cherkashin, Vadim V.; Kharissov, Andrey A.; Denk, Dmitry

    2001-11-01

    The photolithography using gray-scale masks (GSM) with multilevel transmittance is now one of promising ways for manufacturing of high efficiency diffractive optical elements and microoptics. Such masks can be most effectively fabricated by laser or electron-beam writers on materials with a transmittance changing under influence of high-energy beams. The basic requirements for adaptation of existing and developed scanning laser writers are formulated. These systems create an image by continuous movement of a writing beam along one coordinate and overlapping of adjacent written tracks along another coordinate. Several problems must be solved at the GSM manufacturing: the calibration of the influence of the laser beam on a recording material without transferring the gray-scale structure into photoresist; the transmittance at the current exposed pixel depends on surrounding structures generated before recording of the current track and a character of the laser beam power modulation; essential increasing of the computed data in comparison with binary elements. The offered solutions are based on the results of investigations of the materials with variable transmittance (LDW-glass, a-Si film) and takes into account the specificity of diffractive blazed microstructures. The reduction of data amount for fabrication of multi-level DOEs is effectively performed using offered vector-gradient data format, which is based on piecewise-linear approximation of phase profile. The presented approaches to adaptation of laser writers are realized in software and hardware, and they allow to solve the basic problems of manufacturing GSMs.

  4. Wavelet methods in multi-conjugate adaptive optics

    CERN Document Server

    Helin, Tapio

    2013-01-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domain. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate gradient based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simul...

  5. Wavelet methods in multi-conjugate adaptive optics

    Science.gov (United States)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  6. Temporal laser pulse manipulation using multiple optical ring-cavities

    Science.gov (United States)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  7. Advanced in Nonlinear Optics and Laser Research and Development

    International Nuclear Information System (INIS)

    The Nonlinear Optics Group (NLOG) at Soreq NRC is engaged in the development of fundamental and applied technology in the related fields of nonlinear optics and laser development. Our work in nonlinear optics started with the goal of improving laser performance. These efforts were successful and opened the way for R and D in nonlinear optics for other applications. Today we use nonlinear optics to enable continuous tunability of lasers, control the path of light beams, modulate a light signal rapidly, provide optical data storage, and supply new means of microscopically probing biological and inorganic samples. Technology maturation and interaction with users will show which aspects of nonlinear optics will make the most impact

  8. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn;

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  9. Hybrid Deconvolution of Adaptive Optics Retinal Images from Wavefront Sensing

    Institute of Scientific and Technical Information of China (English)

    TIAN Yu; RAO Chang-Hui; RAO Xue-Jun; WANG Cheng; YU Xiang; LIU Qian; XUE Li-Xia; LING Ning; JIANG Wen-Han

    2008-01-01

    Adaptive optics can be used to compensate for the wave aberration of the human eyes to achieve high-resolution imaging in real time.However the correction is partial due to the limitation of hardware.We propose a kind of hybrid image post-processing method.which uses the blind deconvolution combined with the residual data in wavefront sensor to restore the partially adaptive optics corrected retinal image.This method is applied in the image restoration of the vivid human retinal images.The results show that it is effective to improve the retinal image quality.

  10. A real-time simulation facility for astronomical adaptive optics

    CERN Document Server

    Basden, Alastair

    2014-01-01

    In this paper we introduce the concept of real-time hardware-in-the-loop simulation for astronomical adaptive optics, and present the case for the requirement for such a facility. This real-time simulation, when linked with an adaptive optics real-time control system, provides an essential tool for the validation, verification and integration of the Extremely Large Telescope real-time control systems prior to commissioning at the telescope. We demonstrate that such a facility is crucial for the success of the future extremely large telescopes.

  11. Hybrid Deconvolution of Adaptive Optics Retinal Images from Wavefront Sensing

    International Nuclear Information System (INIS)

    Adaptive optics can be used to compensate for the wave aberration of the human eyes to achieve high-resolution imaging in real time. However the correction is partial due to the limitation of hardware. We propose a kind of hybrid image post-processing method, which uses the blind deconvolution combined with the residual data in wavefront sensor to restore the partially adaptive optics corrected retinal image. This method is applied in the image restoration of the vivid human retinal images. The results show that it is effective to improve the retinal image quality

  12. Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, A; Bauman, B; Gavel, D; Olivier, S; Jones, S; Hardy, J L; Barnes, T; Werner, J S

    2003-02-05

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations have been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.

  13. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    Science.gov (United States)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  14. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    Science.gov (United States)

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  15. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems.

    Science.gov (United States)

    Downie, J D; Goodman, J W

    1989-10-15

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.

  16. Limitations to adaptive optics image quality in rodent eyes

    OpenAIRE

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2012-01-01

    Adaptive optics (AO) retinal image quality of rodent eyes is inferior to that of human eyes, despite the promise of greater numerical aperture. This paradox challenges several assumptions commonly made in AO imaging, assumptions which may be invalidated by the very high power and dioptric thickness of the rodent retina. We used optical modeling to compare the performance of rat and human eyes under conditions that tested the validity of these assumptions. Results showed that AO image quality ...

  17. Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source.

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-04-01

    In this paper, a reflective semiconductor optical amplifier (RSOA) is configured to demodulate dynamic spectral shifts of a fiber Bragg grating (FBG) dynamic strain sensor. The FBG sensor and the RSOA source form an adaptive fiber cavity laser. As the reflective spectrum of the FBG sensor changes due to dynamic strains, the wavelength of the laser output shifts accordingly, which is subsequently converted into a corresponding phase shift and demodulated by an unbalanced Michelson interferometer. Due to the short transition time of the RSOA, the RSOA-FBG cavity can respond to dynamic strains at high frequencies extending to megahertz. A demodulator using a PID controller is used to compensate for low-frequency drifts induced by temperature and large quasi-static strains. As the sensitivity of the demodulator is a function of the optical path difference and the FBG spectral width, optimal parameters to obtain high sensitivity are presented. Multiplexing to demodulate multiple FBG sensors is also discussed. PMID:27139682

  18. Advanced metaheuristic algorithms for laser optimization in optical accelerator technologies

    Science.gov (United States)

    Tomizawa, Hiromitsu

    2011-10-01

    Lasers are among the most important experimental tools for user facilities, including synchrotron radiation and free electron lasers (FEL). In the synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for X-ray-FELs, lasers play important roles as seed light sources or photocathode-illuminating light sources to generate a high-brightness electron bunch. For future accelerators, laser-based techonologies such as electro-optic (EO) sampling to measure ultra-short electron bunches and optical-fiber-based femtosecond timing systems have been intensively developed in the last decade. Therefore, controls and optimizations of laser pulse characteristics are strongly required for many kinds of experiments and improvement of accelerator systems. However, people believe that lasers should be tuned and customized for each requirement manually by experts. This makes it difficult for laser systems to be part of the common accelerator infrastructure. Automatic laser tuning requires sophisticated algorithms, and the metaheuristic algorithm is one of the best solutions. The metaheuristic laser tuning system is expected to reduce the human effort and time required for laser preparations. I have shown some successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles, and a hill-climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each machine requirement.

  19. Development of applied optical techniques using lasers

    International Nuclear Information System (INIS)

    Researches on laser isotope separation of deuterium using Infrared Multi-photon Absorption/Dissociation (IR MPA/D) and UV predissociation were reviewed and several kinds of lasers were built for this purpose. A tunable TEA COsub(2) laser with power of about 10 MW was assembled and a HF chemical laser with output energy of 300 mJ was built. These lasers are not ready to be used as sources for IR MPA/D experiment yet. The TEA CO2 laser needs modification for more stable output and higher repetition rate and the HF chemical laser needs improvement for more output energy and tunability. Also, a KrF excimer laser was built for UV predissociation experiment, but requires modification for stable output. Furthermore, laser welding of Zr was surveyed and a few samples were welded using Nd:YAG laser. Finally, a remote inspection instrument was designed using a He-Ne laser and a CCD array. (Author)

  20. Gemini multi-conjugate adaptive optics system review I: Design, trade-offs and integration

    CERN Document Server

    Rigaut, Francois; Boccas, Maxime; d'Orgeville, Céline; Vidal, Fabrice; van Dam, Marcos A; Arriagada, Gustavo; Fesquet, Vincent; Galvez, Ramon L; Gausachs, Gaston; Cavedoni, Chad; Ebbers, Angelic W; Karewicz, Stan; James, Eric; Lührs, Javier; Montes, Vanessa; Perez, Gabriel; Rambold, William N; Rojas, Roberto; Walker, Shane; Bec, Matthieu; Trancho, Gelys; Sheehan, Michael; Irarrazaval, Benjamin; Boyer, Corinne; Ellerbroek, Brent L; Flicker, Ralf; Gratadour, Damien; Garcia-Rissmann, Aurea; Daruich, Felipe

    2013-01-01

    The Gemini Multi-conjugate adaptive optics System (GeMS) at the Gemini South telescope in Cerro Pach{\\'o}n is the first sodium-based multi-Laser Guide Star (LGS) adaptive optics system. It uses five LGSs and two deformable mirrors to measure and compensate for atmospheric distortions. The GeMS project started in 1999, and saw first light in 2011. It is now in regular operation, producing images close to the diffraction limit in the near infrared, with uniform quality over a field of view of two square arcminutes. The present paper (I) is the first one in a two-paper review of GeMS. It describes the system, explains why and how it was built, discusses the design choices and trade-offs, and presents the main issues encountered during the course of the project. Finally, we briefly present the results of the system first light.

  1. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence.

    Science.gov (United States)

    Sinefeld, David; Paudel, Hari P; Ouzounov, Dimitre G; Bifano, Thomas G; Xu, Chris

    2015-11-30

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity.

  2. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create opt

  3. Reliability of high power laser diodes with external optical feedback

    Science.gov (United States)

    Bonsendorf, Dennis; Schneider, Stephan; Meinschien, Jens; Tomm, Jens W.

    2016-03-01

    Direct diode laser systems gain importance in the fields of material processing and solid-state laser pumping. With increased output power, also the influence of strong optical feedback has to be considered. Uncontrolled optical feedback is known for its spectral and power fluctuation effects, as well as potential emitter damage. We found that even intended feedback by use of volume Bragg gratings (VBG) for spectral stabilization may result in emitter lifetime reduction. To provide stable and reliable laser systems design, guidelines and maximum feedback ratings have to be found. We present a model to estimate the optical feedback power coupled back into the laser diode waveguide. It includes several origins of optical feedback and wide range of optical elements. The failure thresholds of InGaAs and AlGaAs bars have been determined not only at standard operation mode but at various working points. The influence of several feedback levels to laser diode lifetime is investigated up to 4000h. The analysis of the semiconductor itself leads to a better understanding of the degradation process by defect spread. Facet microscopy, LBIC- and electroluminescence measurements deliver detailed information about semiconductor defects before and after aging tests. Laser diode protection systems can monitor optical feedback. With this improved understanding, the emergency shutdown threshold can be set low enough to ensure laser diode reliability but also high enough to provide better machine usability avoiding false alarms.

  4. Wavefront reconstruction in adaptive optics systems using nonlinear multivariate splines

    NARCIS (Netherlands)

    De Visser, C.C.; Verhaegen, M.H.G.

    2012-01-01

    This paper presents a new method for zonal wavefront reconstruction (WFR) with application to adaptive optics systems. This new method, indicated as Spline based ABerration REconstruction (SABRE), uses bivariate simplex B-spline basis functions to reconstruct the wavefront using local wavefront slop

  5. MICADO : The E-ELT adaptive optics imaging camera

    NARCIS (Netherlands)

    Davies, Richard; Ageorges, N.; Barl, L.; Bedin, L. R.; Bender, R.; Bernardi, P.; Chapron, F.; Clenet, Y.; Deep, A.; Deul, E.; Drost, M.; Eisenhauer, F.; Falomo, R.; Fiorentino, G.; Förster Schreiber, N. M.; Gendron, E.; Genzel, R.; Gratadour, D.; Greggio, L.; Grupp, F.; Held, E.; Herbst, T.; Hess, H.-J.; Hubert, Z.; Jahnke, K.; Kuijken, K.; Lutz, D.; Magrin, D.; Muschielok, B.; Navarro, R.; Noyola, E.; Paumard, T.; Piotto, G.; Ragazzoni, R.; Renzini, A.; Rousset, G.; Rix, H.-W.; Saglia, R.; Tacconi, L.; Thiel, M.; Tolstoy, E.; Trippe, S.; Tromp, N.; Valentijn, E. A.; Verdoes Kleijn, G.; Wegner, M.; McLean, I.S.; Ramsay, S.K.; Takami, H.

    2010-01-01

    MICADO is the adaptive optics imaging camera for the E-ELT. It has been designed and optimised to be mounted to the LGS-MCAO system MAORY, and will provide diffraction limited imaging over a wide (~1 arcmin) field of view. For initial operations, it can also be used with its own simpler AO module th

  6. New algorithms for adaptive optics point-spread function reconstruction

    CERN Document Server

    Gendron, E; Fusco, T; Rousset, G; Gendron, Eric; Cl\\'{e}net, Yann; Fusco, Thierry

    2006-01-01

    Context. The knowledge of the point-spread function compensated by adaptive optics is of prime importance in several image restoration techniques such as deconvolution and astrometric/photometric algorithms. Wavefront-related data from the adaptive optics real-time computer can be used to accurately estimate the point-spread function in adaptive optics observations. The only point-spread function reconstruction algorithm implemented on astronomical adaptive optics system makes use of particular functions, named $U\\_{ij}$. These $U\\_{ij}$ functions are derived from the mirror modes, and their number is proportional to the square number of these mirror modes. Aims. We present here two new algorithms for point-spread function reconstruction that aim at suppressing the use of these $U\\_{ij}$ functions to avoid the storage of a large amount of data and to shorten the computation time of this PSF reconstruction. Methods. Both algorithms take advantage of the eigen decomposition of the residual parallel phase covari...

  7. Data-Driven Optimal Control for Adaptive Optics

    NARCIS (Netherlands)

    Hinnen, K.J.G.

    2007-01-01

    Adaptive optics (AO) is a technique to actively correct the wavefront distortions introduced in a light beam as it propagates through a turbulent medium. Nowadays, it is commonly applied in ground-based telescopes to counteract the devastating effect of atmospheric turbulence. This thesis focuses on

  8. On the influence of the Illuminati in astronomical adaptive optics

    CERN Document Server

    Morzinski, Katie M

    2012-01-01

    Astronomical adaptive optics (AO) has come into its own. Major O/IR telescopes are achieving diffraction-limited imaging; major facilities are being built with AO as an integral part. To the layperson, it may seem that AO has developed along a serpentine path. However, with a little illumination, the mark of Galileo's heirs becomes apparent in explaining the success of AO.

  9. Optically pumped terahertz lasers with high pulse repetition frequency: theory and design

    Institute of Scientific and Technical Information of China (English)

    Yude Sun; Shiyou Fu; Jing Wang; Zhenghe Sun; Yanchao Zhang; Zhaoshuo Tian; Qi Wang

    2009-01-01

    Optically pumped terahertz (THz) lasers with high pulse repetition frequency are designed. Such a laser includes two parts: the optically pumping laser and the THz laser. The structures of the laser are described and analyzed. The rate equations for the pulsed THz laser are given. The kinetic process and laser pulse waveform for this kind of laser are numerically calculated based on the theory of rate equations. The theoretical results give a helpful guide to the research of such lasers.

  10. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.

    Science.gov (United States)

    Eikema, Diderik Jan A; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A; Scott-Pandorf, Melissa M; Bloomberg, Jacob J; Mukherjee, Mukul

    2016-02-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, are believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study, we therefore investigated the effect of optic flow on tactile-stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetries were

  11. Adaptive wide-field optical tomography

    Science.gov (United States)

    Venugopal, Vivek; Intes, Xavier

    2013-03-01

    We describe a wide-field optical tomography technique, which allows the measurement-guided optimization of illumination patterns for enhanced reconstruction performances. The iterative optimization of the excitation pattern aims at reducing the dynamic range in photons transmitted through biological tissue. It increases the number of measurements collected with high photon counts resulting in a dataset with improved tomographic information. Herein, this imaging technique is applied to time-resolved fluorescence molecular tomography for preclinical studies. First, the merit of this approach is tested by in silico studies in a synthetic small animal model for typical illumination patterns. Second, the applicability of this approach in tomographic imaging is validated in vitro using a small animal phantom with two fluorescent capillaries occluded by a highly absorbing inclusion. The simulation study demonstrates an improvement of signal transmitted (˜2 orders of magnitude) through the central portion of the small animal model for all patterns considered. A corresponding improvement in the signal at the emission wavelength by 1.6 orders of magnitude demonstrates the applicability of this technique for fluorescence molecular tomography. The successful discrimination and localization (˜1 mm error) of the two objects with higher resolution using the optimized patterns compared with nonoptimized illumination establishes the improvement in reconstruction performance when using this technique.

  12. Validation Through Simulations of a Cn2 Profiler for the ESO/VLT Adaptive Optics Facility

    CERN Document Server

    Garcia-Rissmann, A; Kolb, J; Louarn, M Le; Madec, P -Y; Neichel, B

    2015-01-01

    The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence corrected wavefronts. For MUSE and HAWK-I this correction will be achieved through the GALACSI and GRAAL AO modules working in conjunction with a 1170 actuators Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). Multiple wavefront sensors will enable GLAO and LTAO capabilities, whose performance can greatly benefit from a knowledge about the stratification of the turbulence in the atmosphere. This work, totally based on end-to-end simulations, describes the validation tests conducted on a Cn2 profiler adapted for the AOF specifications. Because an absolute profile calibration is strongly dependent on a reliable knowledge of turbulence parameters r0 and L0, the tests presented here refer only to normalized output profiles. Uncertainties in the input parameters inherent t...

  13. Electro-optic and Acousto-optic Laser Beam Scanners

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Bechtold, P.

    2014-01-01

    Optical solid state deflectors rely on the electro-optical or acousto-optic effect. These Electro-Optical Deflectors (EODs) and Acousto-Optical Deflectors (AODs) do not contain moving parts and therefore exhibit high deflection velocities and are free of drawbacks associated with mechanical scanners. A

  14. Adaptive optics assisted Fourier domain OCT with balanced detection

    Science.gov (United States)

    Meadway, A.; Bradu, A.; Hathaway, M.; Van der Jeught, S.; Rosen, R. B.; Podoleanu, A. Gh.

    2011-03-01

    Two factors are of importance to optical coherence tomography (OCT), resolution and sensitivity. Adaptive optics improves the resolution of a system by correcting for aberrations causing distortions in the wave-front. Balanced detection has been used in time domain OCT systems by removing excess photon noise, however it has not been used in Fourier domain systems, as the cameras used in the spectrometers saturated before excess photon noise becomes a problem. Advances in camera technology mean that this is no longer the case and balanced detection can now be used to improve the signal to noise ratio in a Fourier domain (FD) OCT system. An FD-OCT system, enhanced with adaptive optics, is presented and is used to show the improvement that balanced detection can provide. The signal to noise ratios of single camera detection and balanced detection are assessed and in-vivo retinal images are acquired to demonstrate better image quality when using balance detection.

  15. The AVES adaptive optics spectrograph for the VLT: status report

    Science.gov (United States)

    Pallavicini, Roberto; Delabre, Bernard; Pasquini, Luca; Zerbi, Filippo M.; Bonanno, Giovanni; Comari, Maurizio; Conconi, Paolo; Mazzoleni, Ruben; Santin, Paolo; Damiani, Francesco; Di Marcantonio, Paolo; Franchini, Mariagrazia; Spano, Paolo; Bonifacio, P.; Catalano, Santo; Molaro, Paolo P.; Randich, S.; Rodono, Marcello

    2003-03-01

    We report on the status of AVES, the Adaptive-optics Visual Echelle Spectrograph proposed for the secondary port of the Nasmyth Adaptive Optics System (NAOS) recently installed at the VLT. AVES is an intermediate resolution (R ≍ 16,000) high-efficiency fixed- format echelle spectrograph which operates in the spectral band 500 - 1,000 nm. In addition to a high intrinsic efficiency, comparable to that of ESI at Keck II, it takes advantage of the adaptive optics correction provided by NAOS to reduce the sky and detector contribution in background-limited observations of weak sources, thus allowing a further magnitude gain with respect to comparable non-adaptive optics spectrographs. Simulations show that the instrument will be capable of reaching a magnitude V = 22.5 at S/N > 10 in two hours, two magnitudes weaker than GIRAFFE at the same resolution and 3 magnitudes weaker than the higher resolution UVES spectrograph. Imaging and coronographic functions have also been implemented in the design. We present the results of the final design study and we dicuss the technical and operational issues related to its implementation at the VLT as a visitor instrument. We also discuss the possibility of using a scaled-up non-adaptive optics version of the same design as an element of a double- or triple-arm intermediate-resolution spectrograph for the VLT. Such an option looks attractive in the context of a high-efficiency large-bandwidth (320 - 1,500 nm) spectrograph ("fast-shooter") being considered by ESO as a 2nd-generation VLT instrument.

  16. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    OpenAIRE

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimi...

  17. Optical coatings for laser fusion applications

    International Nuclear Information System (INIS)

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting, antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation

  18. Optical coatings for laser fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, W.H.; Milam, D.; Rainer, F.

    1980-04-24

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting, antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  19. Fabrication of Micro -Optical Devices by a Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    Jianrong Qiu; Kazuyuki Hirao

    2003-01-01

    Femtosecond laser is a perfect laser source for materials processing when high accuracy and small structure size are required. Due to the ultra short interaction time and the high peak power, the process is generally characterized by the absence of heat diffusion and, consequently molten layers. Various induced structures have been observed in materials after the femtosecond laser irradiation. Here, we report on fabrication of micro-optical devices by the femtosecond laser. 1) formation of optical waveguide with internal loss less than 0.5dB/cm in the wavelength region from 1.2 to 1.6 mm, by translating a silica glass perpendicular to the axis of the focused femtosecond laser beam; 2) nano-scale valence state manipulation of active ions inside transparent materials; 3) space-selective precipitation and control of metal nanoparticles inside transparent materials; The mechanisms and applications of the femtosecond laser induced phenomena were also discussed.

  20. Integrated Electro-optical Laser-Beam Scanners

    Science.gov (United States)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  1. Laser Transmitters for the optical link systems used in CMS

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    In the CMS experiment of the now new flagship LHC optical links will be used for the tracker readout system. One part of this components will be semiconductor laser (~50.000 !!!), named correctly: 1310 nm InGaAsP (DCPBH-MQW) edge-emitting laser. They are foreseen as transmitter in the Tx Hybrid part of the optical link system.

  2. Fast binarized time-reversed adapted-perturbation (b-TRAP) optical focusing inside scattering media

    CERN Document Server

    Ma, Cheng; Liu, Yan; Wang, Lihong V

    2015-01-01

    Light scattering inhibits high-resolution optical imaging, manipulation and therapy deep inside biological tissue by preventing focusing. To form deep foci, wavefront-shaping and time-reversal techniques that break the optical diffusion limit have been developed. For in vivo applications, such focusing must provide high gain, high speed, and a large number of spatial modes. However, none of the previous techniques meet these requirements simultaneously. Here, we overcome this challenge by rapidly measuring the perturbed optical field within a single camera exposure followed by adaptively time-reversing the phase-binarized perturbation. Consequently, a phase-conjugated wavefront is synthesized within a millisecond, two orders of magnitude shorter than the digitally achieved record. We demonstrated real-time focusing in dynamic scattering media, and extended laser speckle contrast imaging to new depths. The unprecedented combination of fast response, high gain, and large mode count makes this work a major strid...

  3. A Comparison of Two Prototype Laser-Optical Firing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gregg L. Morelli; Michelle R. Bright

    2008-08-11

    The design and characterization of small, ruggedized laser-optical subsystems is required for the continued development of robust laser-optical firing systems. Typically, these subsystems must be capable of generating the needed laser optical energy, delivering that energy via fiber-optical cables while taking up occupying a volume as small as possible. A novel beam splitting and fiber injection scheme has been proposed which utilizes two diffractive optical components. These components were utilized to reduce the volume of a previously designed system. A laser-optical prototype system was assembled and tested which utilized this beam splitting and fiber injection scheme along other modifications to the laser module and the power supply. This prototype was based on earlier designs that utilized environmentally proven opto-mechanical sub-assemblies. The system was tested to characterize the laser performance, the splitter-coupler transmission efficiency, channel-to-channel energy balance and fiber interchangeability. The results obtained for this design will be compared to the performance of a prototype system based on a more traditional beam splitting and fiber injection scheme. The traditional design utilized partially reflecting mirrors for beam splitting and plano-convex lenses for fiber injection. These results will be discussed as will their ultimate impact on future designs and packaging strategies.

  4. Electro-Optic Tunable Laser Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop a compact, rugged, rapidly and widely tunable laser based on a quantum cascade diode laser at...

  5. Proton irradiation of liquid crystal based adaptive optical devices

    International Nuclear Information System (INIS)

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (1010p/cm2). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  6. Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    CERN Document Server

    Minozzi, M; Sergienko, A V; Vallone, G; Villoresi, P

    2012-01-01

    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon coincidence counts. We also demonstrated the improvement of the two-photon coupling into single mode fibers.

  7. Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    OpenAIRE

    Minozzi, M.; Bonora, S.; Sergienko, A. V.; G. Vallone; Villoresi, P.

    2012-01-01

    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon co...

  8. Characterization of the Los Alamos IPG YLR-6000 fiber laser using multiple optical paths and laser focusing optics

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, John O [Los Alamos National Laboratory; Bernal, John E [Los Alamos National Laboratory

    2009-01-01

    Fiber laser technology has been identified as the replacement power source for the existing Los Alamos TA-55 production laser welding system. An IPG YLR-6000 fiber laser was purchased, installed at SM-66 R3, and accepted in February 2008. No characterization of the laser and no welding was performed in the Feb 2008 to May 2009 interval. T. Lienert and J. Bernal (Ref. 1, July 2009) determined the existing 200 mm Rofin collimator and focus heads used with the Rofin diode pumped lasers were inadequate for use with the IPG laser due to clipping of the IPG laser beam. Further efforts in testing of the IPG laser with Optoskand fiber delivery optics and a Rofin 120 mm collimator proved problematic due to optical fiber damage. As a result, IPG design optical fibers were purchased as replacements for subsequent testing. Within the same interval, an IPG fiber-to-fiber (F2F) connector, custom built for LANL, (J. Milewski, S. Gravener, Ref.2) was demonstrated and accepted at IPG Oxford, MA in August 2009. An IPG service person was contracted to come to LANL to assist in the installation, training, troubleshooting and characterization of the multiple beam paths and help perform laser head optics characterization. The statement of work is provided below: In summary the laser system, optical fibers, F2F connector, Precitec head, and a modified Rofin type (w/120mm Optoskand collimator) IWindowIBoot system focus head (Figure 1) were shown to perform well at powers up to 6 kW CW. Power measurements, laser spot size measurements, and other characterization data and lessons learned are contained within this report. In addition, a number of issues were identified that will require future resolution.

  9. Nonlinear dynamics of quantum cascade lasers with optical feedback

    Science.gov (United States)

    Jumpertz, L.; Ferré, S.; Schires, K.; Carras, M.; Grillot, F.

    2015-01-01

    Quantum Cascade (QC) lasers are widely used in optical communications, high-resolution spectroscopy, imaging, and remote sensing due to their wide spectral range, going from mid-infrared to the terahertz regime. The dynamics of QClasers are dominated by their ultrafast carrier lifetime, typically of the order of a few picoseconds. The combination of optical nonlinearities and ultrafast dynamics is an interesting feature of QC-lasers, and investigating the dynamical properties of such lasers gives unprecedented insights into the underlying physics of the components, which is of interest for the next generation of QC devices. A particular feature of QC-lasers is the absence of relaxation oscillations, which is the consequence of the relatively short carrier lifetime compared to photon lifetime. Optical feedback (i.e. self-injection) is known to be a robust technique for stabilizing or synchronizing a free-running laser, however its effect on QC-lasers remains mostly unexplored. This work aims at discussing the dynamical properties of QC-lasers operating under optical feedback by employing a novel set of rate equations taking into account the upper and lower lasing levels, the bottom state as well as the gain stage's cascading. This work analyzes the static laser properties subject to optical feedback and provides a comparison with experiments. Spectral analysis reveals that QC-lasers undergo distinct feedback regimes depending on the phase and amplitude of the reinjected field, and that the coherence-collapse regime only appears in a very narrow range of operation, making such lasers much more stable than their interband counterparts.

  10. Cooperative Effect Radiation Loss of Optical Pump Solid Laser

    Institute of Scientific and Technical Information of China (English)

    NING Guo-bin; SONG Gui-cai

    2006-01-01

    The cooperative effect radiation loss of the optical pumped solid laser has been investigated. The characteristics and the cause of coherent spontaneous are discussed using Maxwell-Bloch equation in the paper. By laser rate equation, the expression of upper energy level lifetime shortening due to the cooperative effect radiation is given.The influence of the cooperative effect on laser threshold and the loss are analyzed. By a series of experiments, the relation ship of coherent spontaneous radiation intensity and direction with reversal population and the power of optical pump are obtained.

  11. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N2, NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author)

  12. A birefringent cavity He-Ne laser and optical feedback

    Institute of Scientific and Technical Information of China (English)

    Liu Gang; Zhang Shu-Lian; Li Yan; Zhu Jun

    2004-01-01

    Strong modes competition makes only one of o-light and e-light oscillate in a birefringent dual-frequency laser when the angle between the crystalline axis and the laser beam is nearly zero. When the oscillated mode is in a different part of the gain curve, the detected intensity curves of o-light and e-light are quite different in the existence of optical feedback. The curves are divided into five cases. Three cases of the experimental results can be used for direction discrimination. The polarization characteristics of the birefringent cavity He-Ne laser are also discussed without optical feedback.

  13. Optical design of high power excimer laser system

    International Nuclear Information System (INIS)

    Image relay and angular multiplexing,which should be considered together in the design of high power excimer laser system, is reviewed. It's important to select proper illumination setup and laser beam shaping techniques. Given the complex and special angular multiplexing scheme in high power excimer laser systems, some detailed conceptual layout schemes are given in the paper. After a brief description of lens array and reflective telescope objective, which combine the incoming beams to a common focus, a new schematic layout which uses the final targeting optics and one optical delay line array, to realize multiplexing and de-multiplexing simultaneously is first proposed in the paper. (authors)

  14. Femtosecond Optical Parametric Amplifier for Petawatt Nd:Glass Lasers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Min; QIAN Lie-Jia; YUAN Peng; LUO Hang; ZHU He-Yuan; ZHU Qi-Hua; WEI Xiao-Feng; FAN Dian-Yuan

    2006-01-01

    @@ We study a femtosecond Ti:sapphire laser pumped optical parametric amplifier (OPA) at 1053nm. The OPA generates stable signal pulses with duration smaller than 100 fs, wavelength drift smaller than 0.5nm, and pulse-to-pulse fluctuation of about ±4%, by employing an external seeder. In a terawatt laser pumped large-aperture LiNbO3 OPA, pulse energy at signal has been scaled up to 4mJ. This m J-class femtosecond OPA at 1053nm presents a feasible alternative to optical parametric chirped-pulse amplification, and is ready to be applied to petawatt lasers.

  15. Diffractive optical elements for transformation of modes in lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2015-09-01

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  16. Diffractive optical elements for transformation of modes in lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Arun K; Pax, Paul H; Heebner, John E; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2016-06-21

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  17. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    Science.gov (United States)

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review. PMID:22747717

  18. Fast calibration of high-order adaptive optics systems.

    Science.gov (United States)

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star. PMID:15191182

  19. Infinite impulse response modal filtering in visible adaptive optics

    CERN Document Server

    Agapito, G; Quirós-Pacheco, F; Puglisi, A; Esposito, S

    2012-01-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  20. Infinite impulse response modal filtering in visible adaptive optics

    Science.gov (United States)

    Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.

    2012-07-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  1. Adaptive optics for improved retinal surgery and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Humayun, M S; Sadda, S R; Thompson, C A; Olivier, S S; Kartz, M W

    2000-08-21

    It is now possible to field a compact adaptive optics (AO) system on a surgical microscope for use in retinal diagnostics and surgery. Recent developments in integrated circuit technology and optical photonics have led to the capability of building an AO system that is compact and significantly less expensive than traditional AO systems. It is foreseen that such an AO system can be integrated into a surgical microscope while maintaining a package size of a lunchbox. A prototype device can be developed in a manner that lends itself well to large-scale manufacturing.

  2. Adaptive Data Rates for Flexible Transceivers in Optical Networks

    Directory of Open Access Journals (Sweden)

    Brian Thomas Teipen

    2012-05-01

    Full Text Available Efforts towards commercializing higher-speed optical transmission have demonstrated the need for advanced modulation formats, several of which require similar transceiver hardware architecture. Adaptive transceivers can be built to have a number of possible operational configurations selected by software. Such software-defined transceiver configurations can create specific modulation formats to support sets of data rates, corresponding tolerances to system impairments, and sets of electronic digital signal processing schemes chosen to best function in a given network environment. In this paper, we discuss possibilities and advantages of reconfigurable, bit-rate flexible transceivers, and their potential applications in future optical networks.

  3. Fiber laser master oscillators for optical synchronization systems

    International Nuclear Information System (INIS)

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  4. Fiber laser master oscillators for optical synchronization systems

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A.

    2008-04-15

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  5. Laser measurement method of forced vibration in optical systems

    International Nuclear Information System (INIS)

    A forced vibration measurement method by laser combining the laser signal and high frequency CCD in optical systems is introduced. The method solves the conversion problem between the vibration signal and laser signal in optical systems, which can not only measure the impact of vibration on the beam stability, but also acquire the frequency characteristics of vibration signals. Forced vibration in an optical system is measured when the frequencies of vibration signals are 150 Hz and 200 Hz by using the method and the attributes of the vibration signals obtained fits those of the input signals. Test and analysis results demonstrate that the method has a time amplitude uncertainty of 6.25 μm and frequency resolution of 2 Hz. The handy and efficient method, whose measurement is precise, has been applied to the beam pointing stability study of the multiplexing excimer MOPA laser targeting test platform accordingly. (authors)

  6. SOAR Adaptive Module (SAM): seeing improvement with a UV laser

    CERN Document Server

    Tokovinin, Andrei; Tighe, Roberto; Schurter, Patricio; Martinez, Manuel; Thomas, Sandrine; van der Bliek, Nicole

    2016-01-01

    The adaptive module of the 4.1-m SOAR telescope, SAM, corrects ground-layer turbulence using a UV laser guide star. It has been commissioned in 2013 and it is in regular science operation since 2014. SAM works with the CCD imager covering a 3' field or with the speckle camera. It operates routinely and stably, delivering resolution in the I band equal to the free-atmosphere seeing. This paper describes the SAM system as a whole, providing essential reference for its users and technical information of interest to instrumentalists. Operation of the instrument, its performance, and science projects done with SAM so far are reviewed.

  7. Adaptation technology between IP layer and optical layer in optical Internet

    Science.gov (United States)

    Ji, Yuefeng; Li, Hua; Sun, Yongmei

    2001-10-01

    Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.

  8. Optical Frequency Comb Generation based on Erbium Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Droste Stefan

    2016-06-01

    Full Text Available Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

  9. Laser Cooling of Lanthanides: from Optical Clocks to Quantum Simulators

    Directory of Open Access Journals (Sweden)

    Golovizin A.

    2015-01-01

    Full Text Available We discuss current progress in laser cooling of lanthanides (Er, Yb, Dy, Tm etc. focusing on applications. We describe some important peculiarities taking Thulium atom as an example: Two stage laser cooling, trapping in an optical lattice, anisotropic interactions and spectroscopy of narrow transitions. Specific level structure and presence of magic wavelengths make ultracold Thulium a favorable candidate for optical clock applications. On the other hand, abundance of Feshbach resonances allow to tune interactions in ultracold gases and thus reach quantum degeneracy. It opens intriguing perspectives for novel quantum simulators employing dipole-dipole interactions in an optical lattice.

  10. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.;

    2008-01-01

    This paper describes the development of a measuring equipment capable of analysing the beam profile at high optical powers emitted by delivery fibers used in manufacturing processes. Together with the optical delivery system, the output beam quality from the delivery fiber and the shape...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  11. Optical Frequency Comb Generation based on Erbium Fiber Lasers

    Science.gov (United States)

    Droste, Stefan; Ycas, Gabriel; Washburn, Brian R.; Coddington, Ian; Newbury, Nathan R.

    2016-06-01

    Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

  12. Laser vision based adaptive fill control system for TIG welding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The variation of joint groove size during tungsten inert gas (TIG) welding will result in the non-uniform fill of deposited metal. To solve this problem, an adaptive fill control system was developed based on laser vision sensing. The system hardware consists of a modular development kit (MDK) as the real-time image capturing system, a computer as the controller, a D/A conversion card as the interface of controlled variable output, and a DC TIG welding system as the controlled device. The system software is developed and the developed feature extraction algorithm and control strategy are of good accuracy and robustness. Experimental results show that the system can implement adaptive fill of melting metal with high stability, reliability and accuracy. The groove is filled well and the quality of the weld formation satisfies the relevant industry criteria.

  13. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  14. Optical trapping of nanoparticles by ultrashort laser pulses.

    Science.gov (United States)

    Usman, Anwar; Chiang, Wei-Yi; Masuhara, Hiroshi

    2013-01-01

    Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional optical ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field. PMID:23738434

  15. Automatic Laser Glare Suppression in Electro-Optical Sensors

    Directory of Open Access Journals (Sweden)

    Gunnar Ritt

    2015-01-01

    Full Text Available Progress in laser technology has led to very compact but nevertheless powerful laser sources. In the visible and near infrared spectral region, lasers of any wavelength can be purchased. Continuous wave laser sources pose an especially serious threat to the human eye and electro-optical sensors due to their high proliferation and easy availability. The manifold of available wavelengths cannot be covered by conventional safety measures like absorption or interference filters. We present a protection concept for electro-optical sensors to suppress dazzling in the visible spectral region. The key element of the concept is the use of a digital micromirror device (DMD in combination with wavelength multiplexing. This approach allows selective spectral filtering in defined regions of interest in the scene. The system offers the possibility of automatic attenuation of dazzling laser radiation.

  16. Quantum confined laser devices optical gain and recombination in semiconductors

    CERN Document Server

    Blood, Peter

    2015-01-01

    The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent...

  17. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.; Macintosh, B.A.; Gibbard, S.; Gavel, D.T.; Roe, H.; De Pater, I.; Ghez, A.M.; Acton, S.; Wizinowich, P.L.; Lai, O.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  18. Contrast-based sensorless adaptive optics for retinal imaging.

    Science.gov (United States)

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  19. High energy laser optics manufacturing: a preliminary study

    International Nuclear Information System (INIS)

    This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included

  20. Tunable optical microwave source using spatially resolved laser eigenstates.

    Science.gov (United States)

    Brunel, M; Bretenaker, F; Le Floch, A

    1997-03-15

    A two-propagation-axis solid-state laser is shown to provide a widely tunable optical microwave source. The spatial separation of the laser eigenstates is shown to enable an étalon to act as a coarse tuner, forcing oscillation in any nonadjacent cavity modes. The frequency difference between opposite helicoidal eigenstates operating in nonadjacent cavity modes can then be tuned continuously. The beat note from such a solid-state laser is shown to vary from dc to 26 GHz, i.e., 30 times the laser free-spectral range, and is limited only by the free-spectral range of the étalon.

  1. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  2. Stellar populations from adaptive optics observations four test cases

    CERN Document Server

    Bedding, T R; Courbin, F; Sams, B J

    1997-01-01

    We describe a first attempt to apply adaptive optics to the study of resolved stellar populations in galaxies. Advantages over traditional approaches are (i) improved spatial resolution and point-source sensitivity through adaptive optics, and (ii) use of the near-infrared region, where the peak of the spectral energy distribution for old populations is found. Disadvantages are the small area covered and the need for excellent seeing. We made observations with the ADONIS system at the European Southern Observatory of the peculiar elliptical galaxy NGC 5128; the irregular galaxy IC 5152 (a possible outer member of the Local Group); the Sc galaxy NGC 300 (a member of the Sculptor group); and the Sgr window in the bulge of the Milky Way. These different fields give excellent test cases for the potential of adaptive optics. In the first two cases, we failed to obtain photometry of individual stars, which would have required excellent seeing. For NGC 300 we measured magnitudes for nine individual supergiants (H = ...

  3. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources

  4. A Status Report on the Thirty Meter Telescope Adaptive Optics Program

    Indian Academy of Sciences (India)

    B. L. Ellerbroek

    2013-06-01

    We provide an update on the recent development of the adaptive optics (AO) systems for the Thirty Meter Telescope (TMT) since mid-2011. The first light AO facility for TMT consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). This order 60 × 60 laser guide star (LGS) multi-conjugate AO (MCAO) architecture will provide uniform, diffraction-limited performance in the J, H and K bands over 17–30 arcsec diameter fields with 50 per cent sky coverage at the galactic pole, as is required to support TMT science cases. The NFIRAOS and LGSF subsystems completed successful preliminary and conceptual design reviews, respectively, in the latter part of 2011. We also report on progress in AO component prototyping, control algorithm development, and system performance analysis, and conclude with an outline of some possible future AO systems for TMT.

  5. Simulation of a ground-layer adaptive optics system for the Kunlun Dark Universe Survey Telescope

    Institute of Scientific and Technical Information of China (English)

    Peng Jia; Sijiong Zhang

    2013-01-01

    Ground Layer Adaptive Optics (GLAO) is a recently developed technique extensively applied to ground-based telescopes,which mainly compensates for the wavefront errors induced by ground-layer turbulence to get an appropriate point spread function in a wide field of view.The compensation results mainly depend on the turbulence distribution.The atmospheric turbulence at Dome A in the Antarctic is mainly distributed below 15 meters,which is an ideal site for applications of GLAO.The GLAO system has been simulated for the Kunlun Dark Universe Survey Telescope,which will be set up at Dome A,and uses a rotating mirror to generate several laser guide stars and a wavefront sensor with a wide field of view to sequentially measure the wavefronts from different laser guide stars.The system is simulated on a computer and parameters of the system are given,which provide detailed information about the design of a practical GLAO system.

  6. Optimizing Photon Collection from Point Sources with Adaptive Optics

    Science.gov (United States)

    Hill, Alexander; Hervas, David; Nash, Joseph; Graham, Martin; Burgers, Alexander; Paudel, Uttam; Steel, Duncan; Kwiat, Paul

    2015-05-01

    Collection of light from point-like sources is typically poor due to the optical aberrations present with very high numerical-aperture optics. In the case of quantum dots, the emitted mode is nonisotropic and may be quite difficult to couple into single- or even few-mode fiber. Wavefront aberrations can be corrected using adaptive optics at the classical level by analyzing the wavefront directly (e.g., with a Shack-Hartmann sensor); however, these techniques are not feasible at the single-photon level. We present a new technique for adaptive optics with single photons using a genetic algorithm to optimize collection from point emitters with a deformable mirror. We first demonstrate our technique for improving coupling from a subwavelength pinhole, which simulates isotropic emission from a point source. We then apply our technique in situto InAs/GaAs quantum dots, obtaining coupling increases of up to 50% even in the presence of an artificial source of drift.

  7. Lens-based wavefront sensorless adaptive optics swept source OCT

    Science.gov (United States)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  8. Manufacturing of glassy thin shell for adaptive optics: results achieved

    Science.gov (United States)

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  9. Anisoplanatism in adaptive optics systems due to pupil aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B

    2005-08-01

    Adaptive optics systems typically include an optical relay that simultaneously images the science field to be corrected and also a set of pupil planes conjugate to the deformable mirror of the system. Often, in the optical spaces where DM's are placed, the pupils are aberrated, leading to a displacement and/or distortion of the pupil that varies according to field position--producing a type of anisoplanatism, i.e., a degradation of the AO correction with field angle. The pupil aberration phenomenon is described and expressed in terms of Seidel aberrations. An expression for anisoplanatism as a function of pupil distortion is derived, an example of an off-axis parabola is given, and a convenient method for controlling pupil-aberration-generated anisoplanatism is proposed.

  10. Quality control agent: Self-adaptive laser vibrometry for on-line diagnostics

    Science.gov (United States)

    Serafini, S.; Paone, N.; Castellini, P.

    2012-06-01

    It is presented the development of a self-adaptive diagnostic system based on laser vibrometry for production line quality control. The vibration measurement system consists of a laser Doppler vibrometer, equipped with scanning mirrors and a smart camera, which implements self-adaptivity for compensating target mis-positioning under guidance by a vision system and for the achievement of the best condition for measurement by optimizing the Doppler signal level. This system is designed as a Quality Control Agent (QCA) and it is part of a Multi Agent System (MAS) that supervises all the production line. The QCA behavior is defined so to perform a minimization of measurement uncertainty during the on line tests; for this purpose the QCA exhibits a self-adaptive behavior. Best measurement conditions are defined in terms of amplitude of the optical Doppler beat signal (signal quality - SQ). In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed.

  11. Impact of environmental contamination on laser induced damage of silica optics in Laser MegaJoule

    International Nuclear Information System (INIS)

    Laser induced damage impact of molecular contamination on fused polished silica samples in a context of high power laser fusion facility, such as Laser MegaJoule (LMJ) has been studied. One of the possible causes of laser induced degradation of optical component is the adsorption of molecular or particular contamination on optical surfaces. In the peculiar case of LMJ, laser irradiation conditions are a fluence of 10 J/cm2, a wavelength of 351 nm, a pulse duration of 3 ns for a single shot/days frequency. Critical compounds have been identified thanks to environmental measurements, analysis of material outgassing, and identification of surface contamination in the critical environments. Experiments of controlled contamination involving these compounds have been conducted in order to understand and model mechanisms of laser damage. Various hypotheses are proposed to explain the damage mechanism. (author)

  12. High resolution mesospheric sodium properties for adaptive optics applications

    Science.gov (United States)

    Pfrommer, T.; Hickson, P.

    2014-05-01

    Context. The performance of laser guide star adaptive optics (AO) systems for large optical and infrared telescopes is affected by variability of the sodium layer, located at altitudes between 80 and 120 km in the upper mesosphere and lower thermosphere. The abundance and density structure of the atomic sodium found in this region is subject to local and global weather effects, planetary and gravity waves and magnetic storms, and is variable on time scales down to tens of milliseconds, a range relevant to AO. Aims: It is therefore important to characterize the structure and dynamical evolution of the sodium region on small, as well as large spatial and temporal scales. Parameters of particular importance for AO are the mean sodium altitude, sodium layer width and the temporal power spectrum of the centroid altitude. Methods: We have conducted a three-year campaign employing a high-resolution lidar system installed on the 6-m Large Zenith Telescope (LZT) located near Vancouver, Canada. During this period, 112 nights of useful data were obtained. Results: The vertical density profile of atomic sodium shows remarkable structure and variability. Smooth Gaussian-shaped profiles rarely occur. Multiple internal layers are frequently found. These layers often have sharp lower edges, with scale heights of just a few hundred meters, and tend to drift downwards at a typical rate of one kilometer every two to three hours. Individual layers can persist for many hours, but their density and internal structure can be highly variable. Sporadic layers are seen reaching peak densities several times the average, often in just a few minutes. Coherent vertical oscillations are often found, typically extending over tens of kilometers in altitude. Regions of turbulence are evident and Kelvin-Helmholtz instability are sometimes seen. The mean value of the centroid altitude is found to be 90.8 ± 0.1 km. The sodium layer width was determined by computing the altitude range that contains a

  13. Analysis of laser-induced heating in optical neuronal guidance

    DEFF Research Database (Denmark)

    Ebbesen, Christian L.; Bruus, Henrik

    2012-01-01

    Recently, it has been shown that it is possible to control the growth direction of neuronal growth cones by stimulation with weak laser light; an effect dubbed optical neuronal guidance. The effect exists for a broad range of laser wavelengths, spot sizes, spot intensities, optical intensity...... guided neuron have been neglected in the optical neuronal guidance literature. The results of our finite-element-method simulations show the relevance of the temperature field in optical guidance experiments and are consistent with published experimental results and modeling in the field of optical traps....... Furthermore, we propose two experiments designed to test this hypotheses experimentally. For one of these experiments, we have designed a microfluidic platform, to be made using standard microfabrication techniques, for incubation of neurons in temperature gradients on micrometer lengthscales....

  14. Gemini multi-conjugate adaptive optics system review II: Commissioning, operation and overall performance

    CERN Document Server

    Neichel, Benoit; Vidal, Fabrice; van Dam, Marcos A; Garrel, Vincent; Carrasco, Eleazar Rodrigo; Pessev, Peter; Winge, Claudia; Boccas, Maxime; d'Orgeville, Céline; Arriagada, Gustavo; Serio, Andrew; Fesquet, Vincent; Rambold, William N; Lührs, Javier; Moreno, Cristian; Gausachs, Gaston; Galvez, Ramon L; Montes, Vanessa; Vucina, Tomislav B; Marin, Eduardo; Urrutia, Cristian; Lopez, Ariel; Diggs, Sarah J; Marchant, Claudio; Ebbers, Angelic W; Trujillo, Chadwick; Bec, Matthieu; Trancho, Gelys; McGregor, Peter; Young, Peter J; Colazo, Felipe; Edwards, Michelle L

    2014-01-01

    The Gemini Multi-conjugate Adaptive Optics System - GeMS, a facility instrument mounted on the Gemini South telescope, delivers a uniform, near diffraction limited images at near infrared wavelengths (0.95 microns- 2.5 microns) over a field of view of 120 arc seconds. GeMS is the first sodium layer based multi laser guide star adaptive optics system used in astronomy. It uses five laser guide stars distributed on a 60 arc seconds square constellation to measure for atmospheric distortions and two deformable mirrors to compensate for it. In this paper, the second devoted to describe the GeMS project, we present the commissioning, overall performance and operational scheme of GeMS. Performance of each sub-system is derived from the commissioning results. The typical image quality, expressed in full with half maximum, Strehl ratios and variations over the field delivered by the system are then described. A discussion of the main contributor to performance limitation is carried-out. Finally, overheads and future ...

  15. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy.

    Science.gov (United States)

    Hunter, Jennifer J; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R

    2010-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  16. Optical diagnostics of femtosecond laser plasmas

    Institute of Scientific and Technical Information of China (English)

    LI; Yutong

    2001-01-01

    [1]Benattar, R., Popovics, C., Sigel, R., Polarized light interferometer for laser fusion studies, Rev. Sci. Instrum., 979, 50(2): 583.[2]Young, P. E., Hammer, J. H., Wilks, S. C. et al., Laser beam propagation and channel formation in underdense plasmas, Phys. Plasmas, 995, 2(7): 2825.[3]Zhang, P., He, J.T., Chen, D.B. et al., Effects of a prepulse on γ-ray radiation produced by a femtosecond laser with only mJ energy, Phys. Rev. E., 998, 57: R3746.[4]Stamper, J. A., Review on spontaneous magnetic fields in laser-produced plasmas: phenomena and measurements, Laser and Particle Beams, 99, 9(4): 84.[5]Stamper, J. A., McLean, E. A., Ripin, B. H., Studies of spontaneous magnetic fields in laser-produced plasmas by Faraday rotation, Phys. Rev. Lett., 978, 40(8): 77.[6]Raven, A., Willi, O., Rumsby, P. T., Megagauss magnetic field profiles in laser-produced plasmas, Phys. Rev. Lett., 978, 4(8): 554.[7]Burgess, M. D. J., Luther-Davis, B., Nugent, K. A., An experimental study of magnetic fields in plasmas created by high intensity one micron laser radiation, Phys. Fluids, 985, 28(7): 2286.[8]Borghesi, M., Mackinnon, A. J., Bell, A. R. et al., Megagauss magnetic field generation and plasma jet formation on solid targets irradiated by an ultraintense picosecond laser pulse, Phys. Rev. Lett., 998, 8(): 2.

  17. A semiconductor laser device employing optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Tosikhiro, F.; Akimoto, S.; Katsuyuki, F.; Kun, I.

    1984-06-22

    A method is proposed for obtaining stable lasing parameters using a single longitudinal mode with reduced noise. This method involves reflecting a portion of the laser emission from the semiconductor laser back into the active region. An angular reflector with an angle other than a right angle is used. The laser emission which exits this end of the resonator is collimated by a lens into a parallel beam, which, when reflected off the angular reflector, strikes the lens at specific angles, and is focused at two points on this same end. This makes it possible to obtain single longitudinal mode lasing with significant submodal structure attenuation and a total absence of noise.

  18. Fiber optics interface for a dye laser oscillator and method

    Science.gov (United States)

    Johnson, Steve A.; Seppala, Lynn G.

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  19. Marginal adaptation analysis performed with en face optical coherence tomography in fixed partial dentures

    Science.gov (United States)

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Antonie, Sergiu; Dobre, George; Bradu, Adrian; Hughes, Michael; Rominu, Mihai; Podoleanu, Adrian Gh.

    2009-02-01

    Frameworks for fixed partial denture made out of dental alloys thought classic techniques currently involve many errors like marginal and internal gaps. The aim of this study is to present alternative technologies in making frameworks from dental alloys using selective laser sintering/ selective laser melting (SLS/ SLM) and to investigate the marginal adaptation of the fixed dental prostheses using the en face optical coherence tomography. These procedures imply the use of a scanning device PROBIS, SMART OPTICS with the help of 3D Dental Scanner software. For digitizing the 3D model we used the Dental Wings Kunde Software. The files obtained were sent to a SLS/ SLM machine, Hint-Els rapidPro, where the CoCr powder was sintered/melt by selectively consolidating successive layers of powder material on top of each other, using thermal energy supplied by a focused and computer controlled laser beam. Through this technique can be produced up to 80 pieces in only one step. A parallel between the classic casting technique and this new technology reveal the least has several advantages: fast finishing time, excellent marginal and internal fit, biocompatibility and superior chemical properties. SLS/ SLM proved to be a promising technology that may overcome the classic ones, because of the superior marginal fit of the fixed dental prostheses to the teeth.

  20. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    Science.gov (United States)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  1. Acousto-optic laser projection systems for displaying TV information

    Science.gov (United States)

    Gulyaev, Yu V.; Kazaryan, M. A.; Mokrushin, Yu M.; Shakin, O. V.

    2015-04-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation.

  2. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  3. An Integrated Optical Memory based on Laser Written Waveguides

    CERN Document Server

    Corrielli, Giacomo; Mazzera, Margherita; Osellame, Roberto; de Riedmatten, Hugues

    2016-01-01

    We report on the first realization of an integrated optical memory for light based on a laser written waveguide in a doped crystal. Using femto-second laser micromachining, we fabricate waveguides in Pr$^{3+}$:Y$_2$SiO$_5$ crystal. We demonstrate that the waveguide inscription does not affect the coherence properties of the material and that the light confinement in the waveguide increases the interaction with the active ions by a factor 6. We also demonstrate that, analogously to the bulk crystals, we can operate the optical pumping protocols necessary to prepare the population in atomic frequency combs, that we use to demonstrate light storage in excited and spin states of the Praseodymium ions. Our results represent the first realization of laser written waveguides in a Pr$^{3+}$:Y$_2$SiO$_5$ crystal and the first implementation of an integrated on-demand spin wave optical memory. They open new perspectives for integrated quantum memories.

  4. Laser pulse spectral shaping based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    Yanhai Wang; Jiangfeng Wang; You'en Jiang; Yan Bao; Xuechun Li; Zunqi Lin

    2008-01-01

    A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the directrelationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.

  5. Dual-Wavelength Internal-Optically-Pumped Semiconductor Laser Diodes

    Science.gov (United States)

    Green, Benjamin

    Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser diode would enable further advances and deployment of these technologies. The output of conventional laser diodes is however limited to a single wavelength band with a few subsequent lasing modes depending on the device design. This thesis investigates a novel semiconductor laser device design with a single cavity waveguide capable of dual-wavelength laser output with large spectral separation. The novel dual-wavelength semiconductor laser diode uses two shorter- and longer-wavelength active regions that have separate electron and hole quasi-Fermi energy levels and carrier distributions. The shorter-wavelength active region is based on electrical injection as in conventional laser diodes, and the longer-wavelength active region is then pumped optically by the internal optical field of the shorter-wavelength laser mode, resulting in stable dual-wavelength laser emission at two different wavelengths quite far apart. Different designs of the device are studied using a theoretical model developed in this work to describe the internal optical pumping scheme. The carrier transport and separation of the quasi-Fermi distributions are then modeled using a software package that solves Poisson's equation and the continuity equations to simulate semiconductor devices. Three different designs are grown using molecular beam epitaxy, and broad-area-contact laser diodes are processed using conventional methods. The modeling and experimental results of the first generation design indicate that the optical confinement factor of the

  6. Graphite/Cyanate Ester Face Sheets for Adaptive Optics

    Science.gov (United States)

    Bennett, Harold; Shaffer, Joseph; Romeo, Robert

    2008-01-01

    It has been proposed that thin face sheets of wide-aperture deformable mirrors in adaptive-optics systems be made from a composite material consisting of cyanate ester filled with graphite. This composite material appears to offer an attractive alternative to low-thermal-expansion glasses that are used in some conventional optics and have been considered for adaptive-optics face sheets. Adaptive-optics face sheets are required to have maximum linear dimensions of the order of meters or even tens of meters for some astronomical applications. If the face sheets were to be made from low-thermal-expansion glasses, then they would also be required to have thicknesses of the order of a millimeter so as to obtain the optimum compromise between the stiffness needed for support and the flexibility needed to enable deformation to controlled shapes by use of actuators. It is difficult to make large glass sheets having thicknesses less than 3 mm, and 3-mm-thick glass sheets are too stiff to be deformable to the shapes typically required for correction of wavefronts of light that has traversed the terrestrial atmosphere. Moreover, the primary commercially produced candidate low-thermal-expansion glass is easily fractured when in the form of thin face sheets. Graphite-filled cyanate ester has relevant properties similar to those of the low-expansion glasses. These properties include a coefficient of thermal expansion (CTE) of the order of a hundredth of the CTEs of other typical mirror materials. The Young s modulus (which quantifies stiffness in tension and compression) of graphite-filled cyanate ester is also similar to the Young's moduli of low-thermal-expansion glasses. However, the fracture toughness of graphite-filled cyanate ester is much greater than that of the primary candidate low-thermal-expansion glass. Therefore, graphite-filled cyanate ester could be made into nearly unbreakable face sheets, having maximum linear dimensions greater than a meter and thicknesses of

  7. Optical molasses, laser traps, and ultracold atoms

    International Nuclear Information System (INIS)

    There is dramatic progress in the demonstration of the mechanical effects of light on atoms. The laser cooling and stopping of atoms in an atomic beam were followed by the 3-D cooling and confinement of atoms with laser light. The authors survey the recent major experimental advances and try to point out some interesting physics that can be done in this newly accessible domain of gaseous atoms at low temperatures and possibly high densities

  8. Synchronization of laser oscillators, associative memory, and optical neurocomputing

    Science.gov (United States)

    Hoppensteadt, Frank C.; Izhikevich, Eugene M.

    2000-09-01

    We investigate here possible neurocomputational features of networks of laser oscillators. Our approach is similar to classical optical neurocomputing where artificial neurons are lasers and connection matrices are holographic media. However, we consider oscillatory neurons communicating via phases rather than amplitudes. Memorized patterns correspond to synchronized states where the neurons oscillate with equal frequencies and with prescribed phase relations. The mechanism of recognition is related to phase locking.

  9. Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical Communications

    Science.gov (United States)

    Liu, Jia-Ming; Chen, How-Foo; Tang, Shuo

    The objective of this chapter is to provide a complete picture of the nonlinear dynamics and chaos synchronization of single-mode semiconductor lasers for chaotic optical communications. Basic concepts and theoretical framework are reviewed. Experimental results are presented to demonstrate the fundamental concepts. Numerical computations are employed for mapping the dynamical states and for illustrating certain detailed characteristics of the chaotic states. Three different semiconductor laser systems, namely, the optical injection system, the optical feedback system, and the optoelectronic feedback system, that are of most interest for high-bit-rate chaotic optical communications are considered. The optical injection system is a nonautonomous system that follows a period-doubling route to chaos. The optical feedback system is a phase-sensitive delayed-feedback autonomous system for which all three known routes, namely, period-doubling, quasiperiodicity, and intermittency, to chaos can be found. The optical feedback system is a phase-insensitive delayed-feedback autonomous system that follows a quasiperiodicity route to chaotic pulsing. Identical synchronization in unidirectionally coupled configurations is the focus of discussions for chaotic communications. For optical injection and optical feedback systems, the frequency, phase, and amplitude of the optical fields of both transmitter and receiver lasers are all locked in synchronism when complete synchronization is accomplished. For the optoelectronic feedback system, chaos synchronization involves neither the locking of the optical frequency nor the synchronization of the optical phase. For both optical feedback and optoelectronic feedback systems, where the transmitter is configured with a delayed feedback loop, anticipated and retarded synchronization can be observed as the difference between the feedback delay time and the propagation time from the transmitter laser to the receiver laser is varied. For a

  10. Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses

    Directory of Open Access Journals (Sweden)

    Li-wei Liu

    2015-08-01

    Full Text Available This study investigates near-infrared region Ag2S quantum dots (QDs and their nonlinear optical response under 532 nm nanosecond laser pulses. Our experimental result shows that nonlinear transmission is reduced from 0.084 to 0.04. The observed narrowing behavior of the output pulse width shows superior optical limiting. We discuss the physical mechanisms responsible for the nonlinear optical response of the QDs. The average size of the nanocrystals was 5.5 nm. Our results suggest the possibility of using these Ag2S QDs for photoelectric, biosensor, optical ranging, and self-adaptive technologies.

  11. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.

    Science.gov (United States)

    Steinbock, Michael J; Hyde, Milo W; Schmidt, Jason D

    2014-06-20

    Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors. PMID:24979411

  12. Coherent VUV- and X-ray generation with optical lasers

    CERN Document Server

    Sandner, W

    2000-01-01

    The laser concept, i.e. the active control over coherence properties of light, has partially transformed optical sciences into one of the most important key technologies of the next century. Consequently, various attempts have long been made to extend this concept towards VUV- and X-ray wavelengths, but have met considerable practical difficulties. Low-energy efficiency in inversion creation is one of the typical obstacles, extremely high-power requirements (e.g. for optical driver lasers) another. Only very recently several new, independent concepts have been successfully realized, and promise real breakthroughs in short-wavelength generation and application. Compact 'table-top' X-ray lasers have been operated in a saturated gain conditions, either through electric discharge pumping in a capillary or through short-pulse optical laser pumping in a transient inversion scheme. In addition, direct conversion of optical laser light into the VUV- and soft X-ray region has been accomplished. These new sources are r...

  13. Optical design of a laser system for nuclear fusion research.

    Science.gov (United States)

    de Metz, J

    1971-07-01

    High power laser improvements, high quality aspheric lenses, and sharp focusing on a solid deuterium target enable us to get numerous nuclear fusion reactions inside the deuterium plasma. Since Maiman successfully built the first light amplifier in 1960 [Nature 187, 493 (1960)] and Terhune performed air breakdown experiments in 1962 ["Optical Third Harmonic Generation," Comptes rendus de la 3ème Conférence Internationale d'Electronique Quantique, Paris, 11-15 février 1963, P. Grivet and N. Bloembergen, Eds. (Dunod, Paris, 1964), pp. 1559-15761, the laser has been thought of as a valuable energy source for fusion devices. Now a kind of race has started toward high temperature plasmas created by powerful lasers. However, the peak power of solid state laser is limited by glass damage, pump efficiences, and unwanted effects such as superradiance. So it is necessary to improve all the optical properties of the laser and the focusing of the lens on the target. In this paper, requirements for fusion implying a very high flux will be stated. Successive optical designs will be described together with measurement methods, and the contribution of optical improvements to the occurrence of nuclear fusion reaction in deuterium targets will be evaluated.

  14. Laser and Optical Subsystem for NASA's Cold Atom Laboratory

    Science.gov (United States)

    Kohel, James; Kellogg, James; Elliott, Ethan; Krutzik, Markus; Aveline, David; Thompson, Robert

    2016-05-01

    We describe the design and validation of the laser and optics subsystem for NASA's Cold Atom Laboratory (CAL), a multi-user facility being developed at NASA's Jet Propulsion Laboratory for studies of ultra-cold quantum gases in the microgravity environment of the International Space Station. Ultra-cold atoms will be generated in CAL by employing a combination of laser cooling techniques and evaporative cooling in a microchip-based magnetic trap. Laser cooling and absorption imaging detection of bosonic mixtures of 87 Rb and 39 K or 41 K will be accomplished using a high-power (up to 500 mW ex-fiber), frequency-agile dual wavelength (767 nm and 780 nm) laser and optical subsystem. The CAL laser and optical subsystem also includes the capability to generate high-power multi-frequency optical pulses at 784.87 nm to realize a dual-species Bragg atom interferometer. Currently at Humboldt-Universität zu Berlin.

  15. Airborne molecular contamination: quality criterion for laser and optical components

    Science.gov (United States)

    Otto, Michael

    2015-02-01

    Airborne molecular contaminations (AMCs) have been recognized as a major problem in semiconductor fabrication. Enormous technical and financial efforts are made to remove or at least reduce these contaminations in production environments to increase yield and process stability. It can be shown that AMCs from various sources in laser devices have a negative impact on quality and lifetime of lasers and optical systems. Outgassing of organic compounds, especially condensable compounds were identified as the main source for deterioration of optics. These compounds can lead to hazing on surfaces of optics, degradation of coating, reducing the signal transmission or the laser signal itself and can enhance the probability of laser failure and damage. Sources of organic outgassing can be molding materials, resins, seals, circuit boards, cable insulation, coatings, paints and others. Critical compounds are siloxanes, aromatic amines and high boiling aromatic hydrocarbons like phthalates which are used as softeners in plastic materials. Nowadays all sensitive assembly steps are performed in controlled cleanroom environments to reduce risks of contamination. We will demonstrate a high efficient air filter concept to remove AMCs for production environments with special AMC filters and methods for the qualification and monitoring of these environments. Additionally, we show modern techniques and examples for the pre-qualification of materials. For assembled components, we provide sampling concepts for a routine measurement for process, component and product qualification. A careful selection of previously tested and certified materials and components is essential to guarantee the quality of lasers and optical devices.

  16. Sensitivity of synthetic aperture laser optical feedback imaging

    CERN Document Server

    Glastre, Wilfried; Jacquin, Olivier; Hugon, Olivier; De Chatellus, Hugues Guillet

    2012-01-01

    In this paper we compare the sensitivity of two imaging configurations both based on Laser Optical Feedback Imaging (LOFI). The first one is direct imaging, which uses conventional optical focalisation on target and the second one is made by Synthetic Aperture (SA) Laser, which uses numerical focalisation. We show that SA configuration allows to obtain good resolutions with high working distance and that the drawback of SA imagery is that it has a worse photometric balance in comparison to conventional microscope. This drawback is partially compensated by the important sensitivity of LOFI. Another interest of SA relies on the capacity of getting a 3D information in a single x-y scan.

  17. Fiber optic coherent laser radar 3d vision system

    International Nuclear Information System (INIS)

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  18. A microring multimode laser using hollow polymer optical fibre

    Indian Academy of Sciences (India)

    M Kailasnath; V P N Nampoori; P Radhakrishnan

    2010-11-01

    We report the observation of multimode laser operation at wavelengths corresponding to whispering-gallery modes from a freestanding microring cavity based on rhodamine B dye-doped PMMA hollow optical fibre. Cylindrical microcavities with diameters 155, 340 and 615 m were fabricated from a dye-doped hollow polymer optical fibre preform. An average mode spacing of 0.17 nm was observed for the 340 m cavity. This shows that the laser mode intensity distribution is concentrated on the outer edge of the cavity.

  19. Optical pumping of rubidium atoms with tunable laser diodes

    International Nuclear Information System (INIS)

    A number of experiments on optical pumping of vapors of a mixture of rubidium isotopes is performed using diode lasers tunable in the vicinity of the D1-line. It is shown that the absorption spectrum of vapors changes drastically under laser irradiation tuned to certain components of the hyperfine structure of the D1-line. The absorption spectrum exhibits narrow peaks and holes related to the velocity-selective optical pumping and cross resonances. By using pulsed pumping across the magnetic field, Larmor oscillations of absorption are induced for a probe beam directed across the magnetic field

  20. Return-map for semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Tromborg, Bjarne; Sabbatier, H.;

    1999-01-01

    It is well known that a semiconductor laser exposed to moderate optical feedback and biased near threshold exhibits the phenomenon of low-frequency intensity fluctuations (LFF). While this behavior can be numerically simulated using the so-called Lang-Kobayshi model, the interpretation of the phe......It is well known that a semiconductor laser exposed to moderate optical feedback and biased near threshold exhibits the phenomenon of low-frequency intensity fluctuations (LFF). While this behavior can be numerically simulated using the so-called Lang-Kobayshi model, the interpretation...

  1. Application and the key technology on high power fiber-optic laser in laser weapon

    Science.gov (United States)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  2. Integrated Laboratory Demonstrations of Multi-Object Adaptive Optics on a Simulated 10-Meter Telescope at Visible Wavelengths

    CERN Document Server

    Ammons, S Mark; Laag, Edward A; Kupke, Renate; Gavel, Donald T; Bauman, Brian J; Max, Claire E

    2009-01-01

    One important frontier for astronomical adaptive optics (AO) involves methods such as Multi-Object AO and Multi-Conjugate AO that have the potential to give a significantly larger field of view than conventional AO techniques. A second key emphasis over the next decade will be to push astronomical AO to visible wavelengths. We have conducted the first laboratory simulations of wide-field, laser guide star adaptive optics at visible wavelengths on a 10-meter-class telescope. These experiments, utilizing the UCO/Lick Observatory's Multi-Object / Laser Tomography Adaptive Optics (MOAO/LTAO) testbed, demonstrate new techniques in wavefront sensing and control that are crucial to future on-sky MOAO systems. We (1) test and confirm the feasibility of highly accurate atmospheric tomography with laser guide stars, (2) demonstrate key innovations allowing open-loop operation of Shack-Hartmann wavefront sensors (with errors of ~30 nm) as will be needed for MOAO, and (3) build a complete error budget model describing sy...

  3. Automated system for laser damage testing of coated optics

    Science.gov (United States)

    Ness, Dale C.; Streater, Alan D.

    2005-12-01

    Research Electro-Optics Inc. (REO) has recently developed a new laser damage testing facility for the purpose of optimizing process parameters for fabrication and coating of high-damage optics. It also enables full or sample qualification of optics with laser damage specifications. The fully automated laser damage testing system uses microscope photography for detection of damage and a 3 ns pulse length 1064 nm laser for irradiation of the sample. It can test and statistically analyze damage events from a large number of shots, enabling large area testing for low probability events. The system measures and maps sizes and locations of damage sites down to a few microns in diameter. The results are not subject to variations due to the human operator. For coatings deposited by ion beam sputtering, small defects (less than 20 microns) are found to be most prevalent at the fluences specified for small optics for the National Ignition Facility. The ability to measure and characterize small defects has improved REO's ability to optimize their processes for making coated optics with high damage thresholds. In addition to qualifying particular parts, the periodic testing also assures that equipment and processes remain optimized.

  4. Fiber Optic Coupling of CW Linear Laser Diode Array

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowei; XIAO Jianwei; MA Xiaoyu; WANG Zhongming; FANG Gaozhan

    2002-01-01

    Based on a set of microoptics the output radiation from a continuous wave (CW) linear laser diode array is coupled into a multi-mode optical fiber of 400 μm diameter.The CW linear laser diode array is a 1 cm laser diode bar with 19 stripes with 100 μm aperture spaced on 500 μm centers.The coupling system contains packaged laser diode bar,fast axis collimator,slow axis collimation array,beam transformation system and focusing system.The high brightness,high power density and single fiber output of a laser diode bar is achieved.The coupling efficiency is 65% and the power density is up to 1.03×104 W/cm2.

  5. Laser ablation plasmas for diagnostics of structured electronic and optical materials during or after laser processing

    Science.gov (United States)

    Russo, Richard E.; Bol'shakov, Alexander A.; Yoo, Jong H.; González, Jhanis J.

    2012-03-01

    Laser induced plasma can be used for rapid optical diagnostics of electronic, optical, electro-optical, electromechanical and other structures. Plasma monitoring and diagnostics can be realized during laser processing in real time by means of measuring optical emission that originates from the pulsed laser-material interaction. In post-process applications, e.g., quality assurance and quality control, surface raster scanning and depth profiling can be realized with high spatial resolution (~10 nm in depth and ~3 μm lateral). Commercial instruments based on laser induced breakdown spectrometry (LIBS) are available for these purposes. Since only a laser beam comes in direct contact with the sample, such diagnostics are sterile and non-disruptive, and can be performed at a distance, e.g. through a window. The technique enables rapid micro-localized chemical analysis without a need for sample preparation, dissolution or evacuation of samples, thus it is particularly beneficial in fabrication of thin films and structures, such as electronic, photovoltaic and electro-optical devices or circuits of devices. Spectrum acquisition from a single laser shot provides detection limits for metal traces of ~10 μg/g, which can be further improved by accumulating signal from multiple laser pulses. LIBS detection limit for Br in polyethylene is 90 μg/g using 50-shot spectral accumulation (halogen detection is a requirement for semiconductor package materials). Three to four orders of magnitude lower detection limits can be obtained with a femtosecond laser ablation - inductively coupled plasma mass spectrometer (LA-ICP-MS), which is also provided on commercial basis. Laser repetition rate is currently up to 20 Hz in LIBS instruments and up to 100 kHz in LA-ICP-MS.

  6. Optical power supply unit utilizing high power laser diode module developed for fiber laser pumping

    Science.gov (United States)

    Sakamoto, Akira; Kiyoyama, Wataru; Yamauchi, Ryozo

    2014-05-01

    High power laser diode developed for fiber laser pumping is evaluated as a light source for an optical power supply unit. The output power of the newly developed laser diode module exceeds 15 W with 105 μm core fiber. It is estimated that more than 1600 mW power supply can be achieved with the single emitter laser diode module and a polycrystalline silicon cell over 1 km away from the light source. This unit can be used for sensor nodes in the fiber sensor network.

  7. Optical cell cleaning with NIR femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-03-01

    Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.

  8. Adaptive optical design in surface plasma resonance sensor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng; ZHONG Jin-gang

    2006-01-01

    A double-prism adaptive optical design in surface plasma resonance (SPR) sensor is proposed,which consists of two identical isosceles right-triangular prisms. One prism is used as a component of Kretschmann configuration,and the other is for regulation of the optical path. When double-prism structure is angle-scanned by an immovable incident ray,the output ray will be always parallel with the incident ray and just has a small displacement with the shift of output point.The output ray can be focused on a fixed photodetector by a convex lens.Thus it can be avoided that a prism and a photodetector rotate by θ and 2θ respectively in conventional angular scanning SPR sensor.This new design reduces the number of the movable components,makes the structure simple and compact,and makes the manipulation convenient.

  9. Six-channel adaptive fibre-optic interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Romashko, R V; Bezruk, M N; Kamshilin, A A; Kulchin, Yurii N

    2012-06-30

    We have proposed and analysed a scheme for the multiplexing of orthogonal dynamic holograms in photorefractive crystals which ensures almost zero cross talk between the holographic channels upon phase demodulation. A six-channel adaptive fibre-optic interferometer was built, and the detection limit for small phase fluctuations in the channels of the interferometer was determined to be 2.1 Multiplication-Sign 10{sup -8} rad W{sup 1/2} Hz{sup -1/2}. The channel multiplexing capacity of the interferometer was estimated. The formation of 70 channels such that their optical fields completely overlap in the crystal reduces the relative detection limit in the working channel by just 10 %. We found conditions under which the maximum cross talk between the channels was within the intrinsic noise level in the channels (-47 dB).

  10. High Resolution Observations using Adaptive Optics: Achievements and Future Needs

    Indian Academy of Sciences (India)

    K. Sankarasubramanian; T. Rimmele

    2008-03-01

    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solarAOare enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5 m expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented.

  11. Self-characterization of linear and nonlinear adaptive optics systems.

    Science.gov (United States)

    Hampton, Peter J; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan

    2008-01-10

    We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM. PMID:18188192

  12. Role of Optical Coherence Tomography on Corneal Surface Laser Ablation

    OpenAIRE

    Ventura, Bruna V.; Moraes, Haroldo V.; Newton Kara-Junior; Santhiago, Marcony R.

    2012-01-01

    This paper focuses on reviewing the roles of optical coherence tomography (OCT) on corneal surface laser ablation procedures. OCT is an optical imaging modality that uses low-coherence interferometry to provide noninvasive cross-sectional imaging of tissue microstructure in vivo. There are two types of OCTs, each with transverse and axial spatial resolutions of a few micrometers: the time-domain and the fourier-domain OCTs. Both have been increasingly used by refractive surgeons and have spec...

  13. Optical Fiber Multiplexer For Industrial Nd:YAG Lasers

    Science.gov (United States)

    Goethals, Walther A.

    1989-03-01

    A lot of industrial Nd:YAG lasers are now being equipped with fiber optics for application in flexible manufacturing. One laser can be supplied with several fibers so different processing positions can receive laser power according to the time-and/or energy sharing principle. Most of the time-sharing devices (multiplexers) are based on a galvanometer mirror that couples a converging laser beam into different fibers respectively. From the industry several questions have risen to make these multiplexers faster, more reliable and suitable for smaller diameter fibers. The current designs are limited by the positioning accuracy of the galvanometer mirror and by their sensitiveness to variations in the parameters of the laser beam due to thermal lensing effects. In the patented design of the multiplexer presented here, based on a telescopic image relay and a precision fiber positioning unit, these problems were solved. A prototype has been built which addresses five fibers with 200 μm cores at a switching rate higher than 100 times per second. The fibers have special termination connectors and can be exchanged easily without losing the alignment of the optical system. For spot welding applications with pulsed Nd:YAG lasers this means that this type of multiplexer could be used to take advantage of the high laser pulse rates and the pulse shape and energy programming possibilities that manufacturers of these types of lasers offer nowadays. Another application that has been shown now is the use of several remote laser engraving units served by a single CW/Q-Switched Nd:YAG laser and a fiber multiplexer.

  14. Novel fiber optic tip designs and devices for laser surgery

    Science.gov (United States)

    Hutchens, Thomas Clifton

    Fiber optic delivery of laser energy has been used for years in various types of surgical procedures in the human body. Optical energy provides several benefits over electrical or mechanical surgery, including the ability to selectively target specific tissue types while preserving others. Specialty fiber optic tips have also been introduced to further customize delivery of laser energy to the tissue. Recent evolution in lasers and miniaturization has opened up opportunities for many novel surgical techniques. Currently, ophthalmic surgeons use relatively invasive mechanical tools to dissect retinal deposits which occur in proliferative diabetic retinopathy. By using the tight focusing properties of microspheres combined with the short optical penetration depth of the Erbium:YAG laser and mid-IR fiber delivery, a precise laser scalpel can be constructed as an alternative, less invasive and more precise approach to this surgery. Chains of microspheres may allow for a self limiting ablation depth of approximately 10 microm based on the defocusing of paraxial rays. The microsphere laser scalpel may also be integrated with other surgical instruments to reduce the total number of handpieces for the surgeon. In current clinical laser lithotripsy procedures, poor input coupling of the Holmium:YAG laser energy frequently damages and requires discarding of the optical fiber. However, recent stone ablation studies with the Thulium fiber laser have provided comparable results to the Ho:YAG laser. The improved spatial beam profile of the Thulium fiber laser can also be efficiently coupled into a fiber approximately one third the diameter and reduces the risk of damaging the fiber input. For this reason, the trunk optical fiber minus the distal fiber tip can be preserved between procedures. The distal fiber tip, which degrades during stone ablation, could be made detachable and disposable. A novel, low-profile, twist-locking, detachable distal fiber tip interface was designed

  15. An adaptive optics imaging system designed for clinical use.

    Science.gov (United States)

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R; Rossi, Ethan A

    2015-06-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2-3 arc minutes, (arcmin) 2) ~0.5-0.8 arcmin and, 3) ~0.05-0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3-5 arcmin, 2) ~0.7-1.1 arcmin and 3) ~0.07-0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing.

  16. One-step synthesis of hybrid inorganic-organic nanocomposite coatings by novel laser adaptive ablation deposition technique

    Science.gov (United States)

    Serbezov, Valery; Sotirov, Sotir

    2013-03-01

    A novel approach for one-step synthesis of hybrid inorganic-organic nanocomposite coatings by new modification of Pulsed Laser Deposition technology called Laser Adaptive Ablation Deposition (LAAD) is presented. Hybrid nanocomposite coatings including Mg- Rapamycin and Mg- Desoximetasone were produced by UV TEA N2 laser under low vacuum (0.1 Pa) and room temperature onto substrates from SS 316L, KCl and NaCl. The laser fluence for Mg alloy was 1, 8 J/cm2 and for Desoximetasone 0,176 J/cm2 and for Rapamycin 0,118 J/cm2 were respectively. The threedimensional two-segmented single target was used to adapt the interaction of focused laser beam with inorganic and organic material. Magnesium alloy nanoparticles with sizes from 50 nm to 250 nm were obtained in organic matrices. The morphology of nanocomposites films were studied by Bright field / Fluorescence optical microscope and Scanning Electron Microscope (SEM). Fourier Transform Infrared (FTIR) spectroscopy measurements were applied in order to study the functional properties of organic component before and after the LAAD process. Energy Dispersive X-ray Spectroscopy (EDX) was used for identification of Mg alloy presence in hybrid nanocomposites coatings. The precise control of process parameters and particularly of the laser fluence adjustment enables transfer on materials with different physical chemical properties and one-step synthesis of complex inorganic- organic nanocomposites coatings.

  17. Development of a stereo-laser-profile-system for the optical inspection of welding seams

    Science.gov (United States)

    Ekkel, T.; Meyer, A. M.; Luhmann, T.; Hastedt, H.; Bethmann, F.

    2013-10-01

    This research project focuses on the development of an optical 3D measuring system that enables high accurate surface measurements of welding seams in order to detect impurities. The systems concept is based on a stereo camera system in conjunction with a projecting line laser. A second camera system is used as tracking or positioning component to obtain the position of the measuring systems in object space. The complete stereo laser-profile system will be used as a hand-held system. The development, optimization and testing of the system components (stereo camera system with projecting laser line and tracking component) for surface measurements as well as calibration and accuracy evaluations are the main objectives within this research project. Testing procedures and probes are constructed and evaluated to verify the results. The development considers conditions for a future adaption to underwater use.

  18. Spatial beam shaping using a micro-structured optical fiber and all-fiber laser amplification system for large-scale laser facilities seeding

    International Nuclear Information System (INIS)

    Spatial beam shaping is an important topic for the lasers applications. For various industrial areas (marking, drilling, laser-matter interaction, high-power laser seeding...) the optical beam has to be flattened. Currently, the state of the art of the beam shaping: 'free-space' solutions or highly multimode fibers, are not fully suitable. The first ones are very sensitive to any perturbations and the maintenance is challenging, the second ones cannot deliver a coherent beam. For this reason, we present in this manuscript a micro-structured optical single-mode fiber delivering a spatially flattened beam. This 'Top-Hat' fiber can shape any beam in a spatially coherent beam what is a progress with respect to the highly multimode fibers used in the state of the art. The optical fibers are easy to use and very robust, what is a strong benefit with respect to the 'free-space' solutions. Thanks to this fiber, we could realize an all-fiber multi-stage laser chain to amplify a 10 ns pulse to 100 μJ. Moreover the temporal, spectral and spatial properties were preserved. We adapted this 'Top-Hat' fiber to this multi-stage laser chain, we proved the capability and the interest of this fiber for the spatial beam shaping of the laser beams in highly performing and robust laser systems. (author)

  19. Optical trapping and laser ablation of microtubules in fission yeast.

    Science.gov (United States)

    Maghelli, Nicola; Tolić-Nørrelykke, Iva M

    2010-01-01

    Manipulation has been used as a powerful investigation technique since the early history of biology. Every technical advance resulted in more refined instruments that led to the discovery of new phenomena and to the solution of old problems. The invention of laser in 1960 gave birth to what is now called optical manipulation: the use of light to interact with matter. Since then, the tremendous progress of laser technology made optical manipulation not only an affordable, reliable alternative to traditional manipulation techniques but disclosed also new, intriguing applications that were previously impossible, such as contact-free manipulation. Currently, optical manipulation is used in many fields, yet has the potential of becoming an everyday technique in a broader variety of contexts. Here, we focus on two main optical manipulation techniques: optical trapping and laser ablation. We illustrate with selected applications in fission yeast how in vivo optical manipulation can be used to study organelle positioning and the force balance in the microtubule cytoskeleton. PMID:20719271

  20. Design of fiber optic probes for laser light scattering

    Science.gov (United States)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  1. Image restoration of the open-loop adaptive optics retinal imaging system based on optical transfer function analysis

    Science.gov (United States)

    Yu, Lei; Qi, Yue; Li, Dayu; Xia, Mingliang; Xuan, Li

    2013-07-01

    The residual aberrations of the adaptive optics retinal imaging system will decrease the quality of the retinal images. To overcome this obstacle, we found that the optical transfer function (OTF) of the adaptive optics retinal imaging system can be described as the Levy stable distribution. Then a new method is introduced to estimate the OTF of the open-loop adaptive optics system, based on analyzing the residual aberrations of the open-loop adaptive optics system in the residual aberrations measuring mode. At last, the estimated OTF is applied to restore the retinal images of the open-loop adaptive optics retinal imaging system. The contrast and resolution of the restored image is significantly improved with the Laplacian sum (LS) from 0.0785 to 0.1480 and gray mean grads (GMG) from 0.0165 to 0.0306.

  2. Development of Laser Beam Transmission Strategies for Future Ground-to-Space Optical Communications

    Science.gov (United States)

    Wilson, Keith E.; Kovalik, Joseph M.; Biswas, Abhijit; Roberts, William T.

    2007-01-01

    Optical communications is a key technology to meet the bandwidth expansion required in the global information grid. High bandwidth bi-directional links between sub-orbital platforms and ground and space terminals can provide a seamless interconnectivity for rapid return of critical data to analysts. The JPL Optical Communications Telescope Laboratory (OCTL) is located in Wrightwood California at an altitude of 2.2.km. This 200 sq-m facility houses a state-of- the-art 1-m telescope and is used to develop operational strategies for ground-to-space laser beam propagation that include safe beam transmission through navigable air space, adaptive optics correction and multi-beam scintillation mitigation, and line of sight optical attenuation monitoring. JPL has received authorization from international satellite owners to transmit laser beams to more than twenty retro-reflecting satellites. This paper presents recent progress in the development of these operational strategies tested by narrow laser beam transmissions from the OCTL to retro-reflecting satellites. We present experimental results and compare our measurements with predicted performance for a variety of atmospheric conditions.

  3. Laser adaptive holographic system for microweighing of nanoobjects

    Energy Technology Data Exchange (ETDEWEB)

    Romashko, R V; Efimov, T A; Kul' chin, Yu N [Institute for Automation and Control Processes, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok (Russian Federation)

    2014-03-28

    A system for measuring the mass of micro- and nanoobjects based on resonance microweighing using the principles of adaptive holographic interferometry is proposed and experimentally implemented. The sensitive element of the system is a microcantilever to which the objects to be weighted are attached. The eigenoscillations of the microcantilever are excited with a laser pulse. The detection of oscillations is implemented using the adaptive holographic interferometer, the key element of which, the dynamic hologram, is formed in the photorefractive crystal CdTe. The detected variation in mass of the particles, attached to the microcantilever, amounted to (420 ± 9) × 10{sup -12} g, the measurement error being 8.5 × 10{sup -12} g. The sensitivity of the measurement system is 1.7 × 10{sup -12} Hz g{sup -1}. The possibility of increasing the sensitivity of the system by 6.5 × 10{sup 6} times and reducing the mass detection threshold by 1.5 × 10{sup 7} times by microcantilevers of submicron size is experimentally demonstrated. (nanoobjects)

  4. Laser adaptive holographic system for microweighing of nanoobjects

    International Nuclear Information System (INIS)

    A system for measuring the mass of micro- and nanoobjects based on resonance microweighing using the principles of adaptive holographic interferometry is proposed and experimentally implemented. The sensitive element of the system is a microcantilever to which the objects to be weighted are attached. The eigenoscillations of the microcantilever are excited with a laser pulse. The detection of oscillations is implemented using the adaptive holographic interferometer, the key element of which, the dynamic hologram, is formed in the photorefractive crystal CdTe. The detected variation in mass of the particles, attached to the microcantilever, amounted to (420 ± 9) × 10-12 g, the measurement error being 8.5 × 10-12 g. The sensitivity of the measurement system is 1.7 × 10-12 Hz g-1. The possibility of increasing the sensitivity of the system by 6.5 × 106 times and reducing the mass detection threshold by 1.5 × 107 times by microcantilevers of submicron size is experimentally demonstrated. (nanoobjects)

  5. In situ window cleaning by laser blowoff through optical fiber

    International Nuclear Information System (INIS)

    The feasibility of a window cleaning system based on the laser blowoff technique is investigated to remove the impurity deposition on vacuum windows of the modified reversed field experiment fusion device. The laser pulse is sent to the window through a fused silica fiber optic (φ=1 mm), then focused on its internal surface, single shot ablating up to ∼5 mm2 of the impurity layer; the focused pulse is scanned across the window to clean its entire surface. The composition of the deposited layer is studied through the secondary ion mass spectrometry and profilometry techniques. Effectiveness of cleaning is analyzed in terms of quality of the cleaned spot, its dimension, repetition rate of the laser, and its wavelength. The energy damage threshold of the fiber optic is also investigated. Three different lasers (microjoule Nd:YAG, Nd:YLF, and ruby) are first tested directly on the window; then only the ruby laser beam is propagated through an optical fiber and tested.

  6. In situ window cleaning by laser blowoff through optical fibera)

    Science.gov (United States)

    Alfier, A.; Barison, S.; Danieli, T.; Giudicotti, L.; Pagura, C.; Pasqualotto, R.

    2008-10-01

    The feasibility of a window cleaning system based on the laser blowoff technique is investigated to remove the impurity deposition on vacuum windows of the modified reversed field experiment fusion device. The laser pulse is sent to the window through a fused silica fiber optic (φ=1mm), then focused on its internal surface, single shot ablating up to ˜5mm2 of the impurity layer; the focused pulse is scanned across the window to clean its entire surface. The composition of the deposited layer is studied through the secondary ion mass spectrometry and profilometry techniques. Effectiveness of cleaning is analyzed in terms of quality of the cleaned spot, its dimension, repetition rate of the laser, and its wavelength. The energy damage threshold of the fiber optic is also investigated. Three different lasers (microjoule Nd:YAG, Nd:YLF, and ruby) are first tested directly on the window; then only the ruby laser beam is propagated through an optical fiber and tested.

  7. Optical Communications: Single-laser super-channel

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2011-01-01

    Increasing bandwidth capacities while reducing the number of power-hungry components required to achieve this goal may seem like a contradiction in terms. However, researchers in Europe have now demonstrated a feasible technique whereby a single laser can carry optical data at transmission rates ...

  8. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of...

  9. Quantum mechanical features of optically pumped CW FIR lasers

    Science.gov (United States)

    Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.

    1977-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  10. Toward laser welding of glasses without optical contacting

    Science.gov (United States)

    Richter, S.; Zimmermann, F.; Eberhardt, R.; Tünnermann, A.; Nolte, S.

    2015-10-01

    The welding of transparent materials with ultrashort laser pulse at high repetition rates has attracted much attention due to its potential applications in fields such as optics, microfluidics, optofluidics and precision machinery. One demanding issue is the stable and reliable welding of different materials without the utilization of an intermediate layer or an optical contact. In this work, we maximized the size of the molten volume in order to generate a large pool of molten material which is able to fill an existing gap between the samples. To this end, we used bursts of ultrashort laser pulses with an individual pulse energy of up to . The laser-induced welding seams exhibit a base area with a size of up to . Using these large modifications, we are able to overcome the requirement of an optical contact and weld even gaps with a height of about . Bulging of the sample surface and ejection of molten material in the gap between the two samples allow to bridge the gap and enable successful welding. We also determined the breaking strength of laser-welded fused silica samples without an optical contact by a three-point bending test. The determined value of up to 73 MPa is equivalent to 85 % of stability of the pristine bulk material.

  11. AVES: an adaptive optics visual echelle spectrograph for the VLT

    Science.gov (United States)

    Pasquini, Luca; Delabre, Bernard; Avila, Gerardo; Bonaccini, Domenico

    1998-07-01

    We present the preliminary study of a low cost, high performance spectrograph for the VLT, for observations in the V, R and I bands. This spectrograph is meant for intermediate (R equals 16,000) resolution spectroscopy of faint (sky and/or detector limited) sources, with particular emphasis on the study of solar-type (F-G) stars belonging to the nearest galaxies and to distant (or highly reddened) galactic clusters. The spectrograph is designed to use the adaptive optics (AO) systems at the VLT Telescope. Even if these AO systems will not provide diffraction limited images in the V, R and I bands, the photon concentration will still be above approximately 60% of the flux in an 0.3 arcsecond aperture for typical Paranal conditions. This makes the construction of a compact, cheap and efficient echelle spectrograph possible. AVES will outperform comparable non adaptive optic instruments by more than one magnitude for sky- and/or detector-limited observations, and it will be very suitable for observations in crowded fields.

  12. Adaptive Optics and Lucky Imager (AOLI): presentation and first light

    CERN Document Server

    Velasco, S; Mackay, C; Oscoz, A; King, D L; Crass, J; Díaz-Sánchez, A; Femenía, B; González-Escalera, V; Labadie, L; López, R L; Garrido, A Pérez; Puga, M; Rodríguez-Ramos, L F; Zuther, J

    2015-01-01

    In this paper we present the Adaptive Optics Lucky Imager (AOLI), a state-of-the-art instrument which makes use of two well proved techniques for extremely high spatial resolution with ground-based telescopes: Lucky Imaging (LI) and Adaptive Optics (AO). AOLI comprises an AO system, including a low order non-linear curvature wavefront sensor together with a 241 actuators deformable mirror, a science array of four 1024x1024 EMCCDs, allowing a 120x120 down to 36x36 arcseconds field of view, a calibration subsystem and a powerful LI software. Thanks to the revolutionary WFS, AOLI shall have the capability of using faint reference stars ({\\it I\\/} $\\sim$ 16.5-17.5), enabling it to be used over a much wider part of the sky than with common Shack-Hartmann AO systems. This instrument saw first light in September 2013 at William Herschel Telescope. Although the instrument was not complete, these commissioning demonstrated its feasibility, obtaining a FWHM for the best PSF of 0.151$\\pm$0.005 arcsec and a plate scale o...

  13. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Laag, E A; Canalizo, G; van Breugel, W; Gates, E L; de Vries, W; Stanford, S A

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

  14. Large optical cavity AlGaAs buried heterostructure window lasers

    OpenAIRE

    Blauvelt, H.; Margalit, S.; Yariv, A.

    1982-01-01

    Large optical cavity buried heterostructure window lasers in which only the transparent AlGaAs waveguiding layers, and not the active layer, extend to the laser mirrors have been fabricated. These lasers have threshold currents and differential quantum efficiencies comparable to those of regular large optical cavity buried heterostructure lasers in which the active region extends to the laser mirrors, however the window lasers have been operated under pulsed conditions at three times the powe...

  15. Test Port for Fiber-Optic-Coupled Laser Altimeter

    Science.gov (United States)

    Ramos Izquierdo, Luis; Scott, V. Stanley; Rinis, Haris; Cavanaugh, John

    2011-01-01

    A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as

  16. Compact femtosecond fiber laser with integrated optical components

    International Nuclear Information System (INIS)

    A compact femtosecond ytterbium-doped fiber laser has been developed with integrated optical components. The femtosecond fiber laser oscillator was miniaturized by integrating the intracavity wavelength division multiplexer and optical isolator with collimators, and placing a quarter-wave plate before a transmission grating pair to get light retroflection from the intracavity dispersive delay line. Stretched-pulse mode-locking could be self-started at a repetition rate of 65 MHz with pump power as low as 100 mW. The compact femtosecond fiber laser oscillator could be optimized to generate 86 fs pulse duration and 0.5 nJ pulse energy. (paper)

  17. Reinforced direct bonding of optical materials by femtosecond laser welding.

    Science.gov (United States)

    Hélie, David; Bégin, Michael; Lacroix, Fabrice; Vallée, Réal

    2012-04-20

    A process for reinforcing a direct bond between optical materials using femtosecond laser welding is presented. As a side benefit, the optical transmission properties of the joined components are shown not to be altered by the joining process. The joints exhibits higher shear breakage loads, yielding a maximum measured joint strength of 5.25 MPa for an applied load of 75 kg in fused silica. The laser sealing of direct bonds between dissimilar materials improves their resistance to thermal shocks. Direct bonds sealed by a circular weld seam can withstand thermal shocks at temperatures at least twice as great as nonreinforced direct bonds. The combination of ultrashort laser welding and direct bonding provides an innovative joining method that benefits from the advantages of both contributing physical processes. PMID:22534922

  18. Laser-heating-based active optics for synchrotron radiation applications

    CERN Document Server

    Yang, Fugui; Zhang, Xiaowei

    2016-01-01

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities, because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as sub-nanometer scale, and that variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a surface correction experiment. The developed method is a promising new approach towards effective x-ray active optics coupled with at-wavelength metrology techniques.

  19. Optical Feedback Characteristics in He-Ne Dual Frequency Lasers

    Institute of Scientific and Technical Information of China (English)

    MAO Wei; ZHANG Shu-Lian; ZHANG Lian-Qing; ZHU Jun; LI Yan

    2006-01-01

    @@ Optical feedback characteristics in He-Ne dual frequency lasers are studied systematically in different feedback power ratios with a variable attenuator. Feedback power ratios vary from 0.010 up to 0.998. Five distinct regimes of self-interference effects are found and defined as regimes Ⅰ, Ⅱ, Ⅲ,Ⅳ and V. Accordingly, five optical feedback levels have been put forward in He-Ne dual frequency lasers. Strong mode competitions are observed in regimes Ⅲ and Ⅳ. In regime Ⅴ, multiple feedback effects are investigated. The basic theoretical analysis is also presented.Our reults can advance the research ofself-mixing interferometer and displacement sensor of He-Ne orthogonally polarized dual frequency lasers.

  20. CRAO: a compact and refractive adaptive-optics

    Science.gov (United States)

    Fujishiro, Naofumi; Kitao, Eiji; Shimizu, Tomo; Matsui, Takuya; Ikeda, Yuji; Kawakita, Hideyo; Oya, Shin

    2014-08-01

    CRAO is a demonstrator of a compact and low-cost adaptive-optics (AO) with a double-pass lens configuration. Owing to its compact optical layout compared to conventional reflective AOs, the instrument size can be reduced to only 0.03 square meters. We plan to apply this miniaturization technique into future AOs on a variety of telescopes ranging from 1m- to 30m-class. CRAO is installed at a Nasmyth focus of the 1.3m Araki telescope at Koyama Astronomical Observatory in Kyoto Sangyo University. CRAO adopts a closed-loop single-conjugate system with wavelength coverage of 400 - 700 nm and the field of view of 30 arcsec. For low cost, we also employ commercial products on its wavefront sensor (WFS), deformable mirror (DM), and tip-tilt (TT) stage. CRAO is designed to improve the atmospheric seeing from 2.5 to 0.6arcsec under a typical condition at Koyama Astronomical Observatory with 12x12 subapertures in the WFS, 48 electrodes in the membrane DM and the control bandwidth of 200Hz. In order to examine key issues inherent in refractive optical system such as chromatic aberration, temperature aberration and ghost images, room and on-sky experiments are currently underway. CRAO has seen first light in May 2014, and we have confirmed that effects of chromatic aberration and ghost images induced by its refractive optics are negligible for at least TT correction. In this paper, we present experimental results as well as the design of optics, opto-mechanics and control system.

  1. Effective Linewidth of Semiconductor Lasers for Coherent Optical Data Links

    Directory of Open Access Journals (Sweden)

    Miguel Iglesias Olmedo

    2016-06-01

    Full Text Available We discuss the implications of using monolithically integrated semiconductor lasers in high capacity optical coherent links suitable for metro applications, where the integration capabilities of semiconductor lasers make them an attractive candidate to reduce transceiver cost. By investigating semiconductor laser frequency noise profiles we show that carrier induced frequency noise plays an important role in system performance. We point out that, when such lasers are employed, the commonly used laser linewidth fails to estimate system performance, and we propose an alternative figure of merit that we name “Effective Linewidth”. We derive this figure of merit analytically, explore it by numerical simulations and experimentally validate our results by transmitting a 28 Gbaud DP-16QAM over an optical link. Our investigations cover the use of semiconductor lasers both in the transmitter side and as a local oscillator at the receiver. The obtained results show that our proposed “effective linewidth” is easy to measure and accounts for frequency noise more accurately, and hence the penalties associated to phase noise in the received signal.

  2. Optical diagnostics for laser wakefields in plasma channels

    Science.gov (United States)

    Gaul, E. W.; Le Blanc, S. P.; Downer, M. C.

    1998-11-01

    Laser wakefield accelerators can excite large amplitude electrostatic fields (E >= 100 GV/m) which are potentially suitable for compact accelerators and advanced high energy colliders. An accurate diagnostic tool is necessary to test the physical effects in the wakefield predicted by theory and numerical simulations, and to have control over experiments. Frequency domain interferometry (FDI) (C. W. Siders et. al.), Phys. Rev. Lett. 76, 3570 (1995) has been developed in previous work. We experimentally demonstrate single-shot FDI as a sensitive diagnostic technique for probing laser wakefields. To generate wakefields longer than the diffraction limit, optical guiding of the laser pulse is necessary. An optical guide is formed by the hydrodynamic expansion of a cylindrical shock wave driven by a laser heated plasma, which is generated by laser pulse focused with an axicon lens (C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993)) to intensities of ~= 10^13 W/cm^2. These are too low to reach multi-photon ionization or significant collisional ionization in <= 1 atm helium. We preionize Helium gas with an electrical discharge for efficient inverse bremsstrahlung absorption of the laser pulse and formation of a plasma channel. Spatially resolved chirped pulse interferometry is used to measure the radial electron density profile of the channel.

  3. Laser Plasmas : Optical guiding of laser beam in nonuniform plasma

    Indian Academy of Sciences (India)

    Tarsem Singh Gill

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi (Phys. Plasmas 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.

  4. Monitoring changes of optical attenuation coefficients of acupuncture points during laser acupuncture by optical coherence tomography

    Science.gov (United States)

    Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen

    2010-11-01

    The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.

  5. Controllable Dispersion in an Optical Laser Gyroscope

    Science.gov (United States)

    Wolfe, Owen; Du, Shuangli; Rochester, Simon; Budker, Dmitry; Novikova, Irina; Mikhailov, Eugeniy

    2016-05-01

    Optical gyroscopes use Sagnac interferometry to make precise measurements of angular velocity. Increased gyroscope sensitivity will allow for more accurate control of aerospace systems and allow for more precise measurements of the Earth's rotation. Severalfold improvements to optical gyroscope sensitivity were predicted for fast light regimes (ng gyroscope response via tuning the experimental parameters. Gyroscope sensitivity was shown to be dependent on several parameters including pump power, pump detunning, and vapor density. This work was supported by the NSF and Naval Air Warfare Center STTR program N68335-11-C-0428.

  6. Optical gene transfer by femtosecond laser pulses

    Science.gov (United States)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  7. Optical Bistability And Hysteresis In A Solid State Ring Laser

    Science.gov (United States)

    Kornienko, L. S.; Kravtsov, N. S.; Shelaev, A. N.

    1985-01-01

    The phenomena of optical bistability, hysteresis and memory under the interaction of oppositely directed (OD) light waves in a CW YAG:Nd3+ solid state ring laser (SRL) have been experimentally discovered. The possibilities of spontaneous or forced (with modulated SRL parameters) commutation of the radiation direction without transients at the relaxation frequency (typical for solid state lasers) have been established both in the single-mode and in the mode-locking regimes with various feedback circuits. The mode-locking band was found to be substantially broadened by more than an order of magnitude when OD light waves primarily diffracted on a standing ultrasonic wave were returned into the acousto-optical modulator. With such acousto-optical feedback the mode-locking regime has been obtained using a modulator on a running ultrasonic wave.

  8. Strong optical feedback in birefringent dual frequency laser

    Institute of Scientific and Technical Information of China (English)

    Mao Wei; Zhang Shu-Lian

    2006-01-01

    Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes are demonstrated in two different optical feedback cases: one is for both modes being fed back and the other is for only one of the modes being fed back. Strong mode competition can be observed between the two modes with strong optical feedback. And when one mode's intensity is near its maximum, the other mode is nearly extinguished. When both modes are fed back into the laser cavity, the mode competition is stronger than when only one mode is fed back. The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition, which has been experimentally and theoretically demonstrated.

  9. CO2 laser induced refractive index changes in optical polymers.

    Science.gov (United States)

    Liu, Qing; Chiang, Kin Seng; Reekie, Laurence; Chow, Yuk Tak

    2012-01-01

    We study the infrared photosensitivity properties of two optical polymer materials, benzocyclobutene (BCB) and epoxy OPTOCAST 3505, with a 10.6 μm CO2 laser. We discover that the CO2 laser radiation can lower the refractive index of BCB by as much as 5.5 × 10(-3), while inducing no measurable index change in the epoxy. As confirmed by Fourier transform infrared spectroscopy, the observed index change in BCB can be attributed to photothermal modification of chemical bonds in the material by the CO2 laser radiation. Our findings open up a new possibility of processing polymer materials with a CO2 laser, which could be further developed for application in the areas of post-processing and direct-writing of polymer waveguide devices.

  10. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    Science.gov (United States)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  11. Fiber-optic laser sensor for mine detection and verification

    Science.gov (United States)

    Bohling, Christian; Scheel, Dirk; Hohmann, Konrad; Schade, Wolfgang; Reuter, Matthias; Holl, Gerhard

    2006-06-01

    What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to Ep=1 mJ, a repetition rate of frep.=2-20 kHz and a pulse duration of tp=620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis.

  12. Optical feedback characteristics in a dual-frequency laser during laser cavity tuning

    Institute of Scientific and Technical Information of China (English)

    Liu Gang; Zhang Shu-Lian; Li Yan; Zhu Jun

    2005-01-01

    The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back; (ii) only (┴)-light is fed back; (iii) both lights are fed back. A compact displacement sensor is designed using the experimental result that there is a nearly 90 degrees phase delay between the two lights' cosine optical feedback signals when both lights are fed back into the laser cavity. The priority order that the two lights' intensity curves appear can be used for direction discrimination. The resolution of the displacement sensor is at least 79 nm, and the sensor can discriminate the target's moving direction easily.

  13. Adaptive Optics: Arroyo Simulation Tool and Deformable Mirror Actuation Using Golay Cells

    Science.gov (United States)

    Lint, Adam S.

    2005-01-01

    The Arroyo C++ libraries, written by Caltech post-doc student Matthew Britton, have the ability to simulate optical systems and atmospheric signal interference. This program was chosen for use in an end-to-end simulation model of a laser communication system because it is freely distributed and has the ability to be controlled by a remote system or "smart agent." Proposed operation of this program by a smart agent has been demonstrated, and the results show it to be a suitable simulation tool. Deformable mirrors, as a part of modern adaptive optics systems, may contain thousands of tiny, independently controlled actuators used to modify the shape of the mirror. Each actuator is connected to two wires, creating a cumbersome and expensive device. Recently, an alternative actuation method that uses gas-filled tubes known as Golay cells has been explored. Golay cells, operated by infrared lasers instead of electricity, would replace the actuator system thereby creating a more compact deformable mirror. The operation of Golay cells and their ability to move a deformable mirror in excess of the required 20 microns has been demonstrated. Experimentation has shown them to be extremely sensitive to pressure and temperature, making them ideal for use in a controlled environment.

  14. Coherent beam combination of adaptive fiber laser array with tilt-tip and phase-locking control

    Institute of Scientific and Technical Information of China (English)

    Wang Xiong; Wang Xiao-Lin; Zhou Pu; Su Rong-Tao; Geng Chao; Li Xin-Yang; Xu Xiao-Jun

    2013-01-01

    We present an experimental study on tilt-tip (TT) and phase-locking (PL) control in a coherent beam combination (CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator (AFOC),and the PL control is realized by the phase modulator (PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent (SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector (PD) are employed,and a computer and a control circuit based on field programmable gate array (FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.

  15. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    Science.gov (United States)

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  16. Beam-guidance optics for high-power fiber laser systems

    Science.gov (United States)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  17. Robust focusing optics for high-power laser welding

    Science.gov (United States)

    McAllister, Blake

    2014-02-01

    As available power levels from both fiber and disc lasers rapidly increase, so does the need for more robust beam delivery solutions. Traditional transmissive optics for 1 micron lasers have proven to be problematic in the presence of higher power densities and are more susceptible to focal shift. A new, fully-reflective, optical solution has been developed using mirrors rather than lenses and windows to achieve the required stable focal spot, while still protecting the delicate fiber end. This patent-approved beam focusing solution, referred to as high power reflective focusing optic (HPRFO), involves specialty mirrors and a flowing gas orifice that prevents ingress of contaminants into the optically sensitive region of the assembly. These mirrors also provide a unique solution for increasing the distance between the sensitive optics and the contamination-filled region at the work, without sacrificing spot size. Longer focal lengths and lower power densities on large mass, water-cooled, copper mirrors deliver the robustness needed at increasingly high power levels. The HPRFO exhibits excellent beam quality and minimal focal shift at a fraction of commercially available optics, and has demonstrated consistent reliability on applications requiring 15 kW with prolonged beam-on times.

  18. Fabrication of optical cavities with femtosecond laser pulses

    Science.gov (United States)

    Lin, Jintian; Song, Jiangxin; Tang, Jialei; Fang, Wei; Sugioka, Koji; Cheng, Ya

    2014-03-01

    We report on fabrication of three-dimensional (3D) high-quality (Q) whispering-gallery-mode microcavities by femtosecond laser micromachining. The main fabrication procedures include the formation of on-chip freestanding microdisk through selective material removal by femtosecond laser pulses, followed by surface smoothing processes (CO2 laser reflow for amorphous glass and focused ion beam (FIB) sidewall milling for crystalline materials) to improve the Q factors. Fused silica microcavities with 3D geometries are demonstrated with Q factors exceeding 106. A microcavity laser based on Nd:glass has been fabricated, showing a threshold as low as 69μW via free space continuous-wave optical excitation at the room temperature. CaF2 crystalline microcavities with Q factor of ~4.2×104 have also been demonstrated. This technique allows us to fabricate 3D high-Q microcavities in various transparent materials such as glass and crystals, which will benefit a broad spectrum of applications such as nonlinear optics, quantum optics, and bio-sensing.

  19. Polyethylene laser welding based on optical absorption variations

    Science.gov (United States)

    Galtieri, G.; Visco, A.; Nocita, D.; Torrisi, L.; Ceccio, G.; Scolaro, C.

    2016-04-01

    Polymeric materials, both pure and containing nanostructures, can be prepared as thin sheets in order to produce joints with an interface between an optically transparent sheet and an optically absorbent substrate to be welded by infrared pulsed laser irradiation. The Laser Transmission Welding (LTW) technique has been successfully applied in order to join two or more thermoplastic polymeric sheets that must have a similar chemical composition. In this research work, polymeric joints of Ultra High Molecular Weight Polyethylene sheets were realized, characterized and welded. Some polymer sheets were doped, at different concentrations, with carbon nano-particles absorbent the laser radiation. A pulsed laser operating in the wavelength region 532 nm with intensity of the order of 109 Watt/cm2 was employed to be transmitted by the transparent polymer and to be absorbed by the carbon enriched surface. At the interface of the two polymers the released energy induces melting, that is assisted by pressure, producing a fast and resistant welding zone. Mechanical and optical characterizations and surface analyses are presented and discussed.

  20. The adaptation of methods in multilayer optics for the calculation of specular neutron reflection

    International Nuclear Information System (INIS)

    The adaptation of standard methods in multilayer optics to the calculation of specular neutron reflection is described. Their application is illustrated with examples which include a glass optical flat and a deuterated Langmuir-Blodgett film. (author)

  1. Suppresion of Self-Phase Modulation in a Laser Transfer System using Optical Fiber on the Subaru Telescope

    CERN Document Server

    Ito, Meguru; Saito, Yoshihiko; Takami, Hideki; Saito, Norihito; Akagawa, Kazuyuki; Iye, Masanori

    2012-01-01

    We are developing the Laser Guide Star Adaptive Optics (LGS/AO188) system for the Subaru Telescope at Mauna Kea, Hawaii. This system utilizes a combination of an all-solid-state mode-locked sum-frequency generation (SFG) laser (1.7-GHz bandwidth, 0.7-ns pulse width) as a light source and a single-mode optical fiber for beam transference. However, optical fibers induce nonlinear effects, especially self-phase modulation (SPM). We studied SPM in our photonic crystal fiber (PCF). SPM broadens the spectrum of a laser beam and decrease the efficiency of bright laser guide star generation. We measured the spectrum width using a spectrum analyzer. We found a spectrum width of 8.4 GHz at full width at half maximum (FWHM). The original FWHM of our laser spectrum was 1.4 GHz. This was equivalent to a 70 % loss in laser energy. We also measured the brightness of the sodium cell and evaluated its performance as a function of laser wavelength. The cell's brightness showed a peculiar tendency; specifically, it did not exti...

  2. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy.

    Science.gov (United States)

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R; Roorda, Austin; Rossi, Ethan A

    2014-09-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10-15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66-2.56 μm or ~0.34-0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20-0.25 μm or ~0.04-0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported.

  3. Monte-Carlo modelling of multi-object adaptive optics performance on the European Extremely Large Telescope

    CERN Document Server

    Basden, Alastair

    2016-01-01

    The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-object adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcseconds per pixel, and a field of view of at least 7 arcseconds, that EMCCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is nece...

  4. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  5. `imaka - a ground-layer adaptive optics system on Maunakea

    CERN Document Server

    Chun, Mark; Toomey, Douglas; Lu, Jessica; Service, Max; Baranec, Christoph; Thibault, Simon; Brousseau, Denis; Hayano, Yutaka; Oya, Shin; Santi, Shane; Kingery, Christopher; Loss, Keith; Gardiner, John; Steele, Brad

    2016-01-01

    We present the integration status for `imaka, the ground-layer adaptive optics (GLAO) system on the University of Hawaii 2.2-meter telescope on Maunakea, Hawaii. This wide-field GLAO pathfinder system exploits Maunakea's highly confined ground layer and weak free-atmosphere to push the corrected field of view to ~1/3 of a degree, an areal field approaching an order of magnitude larger than any existing or planned GLAO system, with a FWHM ~ 0.33 arcseconds in the visible and near infrared. We discuss the unique design aspects of the instrument, the driving science cases and how they impact the system, and how we will demonstrate these cases on the sky.

  6. Synthetic Modeling of Astronomical Closed Loop Adaptive Optics

    CERN Document Server

    Jolissaint, Laurent

    2010-01-01

    We present an analytical model of a single natural guide star astronomical adaptive optics system, in closed loop mode. The model is used to simulate the long exposure system point spread function, using the spatial frequency (or Fourier) approach, and complement an initial open loop model. Applications range from system design, science case analysis and AO data reduction. All the classical phase errors have been included: deformable mirror fitting error, wavefront sensor spatial aliasing, wavefront sensor noise, and the correlated anisoplanatic and servo-lag error. The model includes the deformable mirror spatial transfer function, and the actuator array geometry can be different from the wavefront sensor lenslet array geometry. We also include the dispersion between the sensing and the correction wavelengths. Illustrative examples are given at the end of the paper.

  7. MICADO: the E-ELT Adaptive Optics Imaging Camera

    CERN Document Server

    Davies, R

    2010-01-01

    MICADO is the adaptive optics imaging camera for the E-ELT. It has been designed and optimised to be mounted to the LGS-MCAO system MAORY, and will provide diffraction limited imaging over a wide (about 1 arcmin) field of view. For initial operations, it can also be used with its own simpler AO module that provides on-axis diffraction limited performance using natural guide stars. We discuss the instrument's key capabilities and expected performance, and show how the science drivers have shaped its design. We outline the technical concept, from the opto-mechanical design to operations and data processing. We describe the AO module, summarise the instrument performance, and indicate some possible future developments.

  8. Multiple Object Adaptive Optics: Mixed NGS/LGS tomography

    Science.gov (United States)

    Morris, Tim; Gendron, Eric; Basden, Alastair; Martin, Olivier; Osborn, James; Henry, David; Hubert, Zoltan; Sivo, Gaetano; Gratadour, Damien; Chemla, Fanny; Sevin, Arnaud; Cohen, Matthieu; Younger, Eddy; Vidal, Fabrice; Wilson, Richard; Batterley, Tim; Bitenc, Urban; Reeves, Andrew; Bharmal, Nazim; Raynaud, Henri-François; Kulcsar, Caroline; Conan, Jean-Marc; Guzman, Dani; De Cos Juez, Javier; Huet, Jean-Michel; Perret, Denis; Dickson, Colin; Atkinson, David; Baillie, Tom; Longmore, Andy; Todd, Stephen; Talbot, Gordon; Morris, Simon; Myers, Richard; Rousset, Gérard

    2013-12-01

    Open-loop adaptive optics has been successfully demonstrated on-sky by several groups, including the fully tomographic MOAO demonstration made using CANARY. MOAO instrumentation such as RAVEN will deliver the first astronomical science and other planned instruments aim to extend both open-loop AO performance and the number of corrected fields. Many of these planned systems rely on the use of tomographic open-loop LGS wavefront sensing. Here we present results from the combined NGS/LGS tomographic CANARY system and then compare the NGS- and LGS-based tomographic system performance. We identify the major system performance drivers, and highlight some potential routes for further exploitation of open-loop tomographic AO.

  9. Kalman filtering to suppress spurious signals in Adaptive Optics control

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  10. High-redshift quasar host galaxies with adaptive optics

    CERN Document Server

    Kuhlbrodt, B; Wisotzki, L; Jahnke, K

    2005-01-01

    We present K band adaptive optics observations of three high-redshift (z ~ 2.2) high-luminosity quasars, all of which were studied for the first time. We also bserved several point spread function (PSF) calibrators, non-simultaneously because of the small field of view. The significant temporal PSF variations on timescales of minutes inhibited a straightforward scaled PSF removal from the quasar images. Characterising the degree of PSF concentration by the radii encircling 20% and 80% of the total flux, respectively, we found that even under very different observing conditions the r20 vs. r80 relation varied coherently between individual short exposure images, delineating a well-defined relation for point sources. Placing the quasar images on this relation, we see indications that all three objects were resolved. We designed a procedure to estimate the significance of this result, and to estimate host galaxy parameters, by reproducing the statistical distribution of the individual short exposure images. We fi...

  11. Enhancing stellar spectroscopy with extreme adaptive optics and photonics

    CERN Document Server

    Jovanovic, Nemanja; Cvetojevic, Nick; Guyon, Olivier; Martinache, Frantz

    2016-01-01

    Extreme adaptive optics systems are now in operation across the globe. These systems, capable of high order wavefront correction, deliver Strehl ratios of 90% in the near-infrared. Originally intended for the direct imaging of exoplanets, these systems are often equipped with advanced coronagraphs that suppress the on-axis-star, interferometers to calibrate wavefront errors, and low order wavefront sensors to stabilize any tip/tilt residuals to a degree never seen before. Such systems are well positioned to facilitate the detailed spectroscopic characterization of faint substellar companions at small angular separations from the host star. Additionally, the increased light concentration of the point-spread function and the unprecedented stability create opportunities in other fields of astronomy as well, including spectroscopy. With such Strehl ratios, efficient injection into single-mode fibers or photonic lanterns becomes possible. With diffraction-limited components feeding the instrument, calibrating a sp...

  12. Performance of the Keck Observatory adaptive optics system

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, M A; Mignant, D L; Macintosh, B A

    2004-01-19

    In this paper, the adaptive optics (AO) system at the W.M. Keck Observatory is characterized. The authors calculate the error budget of the Keck AO system operating in natural guide star mode with a near infrared imaging camera. By modeling the control loops and recording residual centroids, the measurement noise and band-width errors are obtained. The error budget is consistent with the images obtained. Results of sky performance tests are presented: the AO system is shown to deliver images with average Strehl ratios of up to 0.37 at 1.58 {micro}m using a bright guide star and 0.19 for a magnitude 12 star.

  13. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, & Binary Stars

    CERN Document Server

    Hinkley, Sasha

    2011-01-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Fu...

  14. Adaptive optics imaging of low and intermediate redshift quasars

    CERN Document Server

    Márquez, I; Theodore, B; Bremer, M; Monnet, G; Beuzit, J L

    2001-01-01

    We present the results of adaptive-optics imaging in the H and K bands of 12 low and intermediate redshift (z15.0) themselves as reference for the correction, have typical spatial resolution of FWHM~0.3 arcsec before deconvolution. The deconvolved H-band image of PG1700+514 has a spatial resolution of 0.16 arcsec and reveals a wealth of details on the companion and the host-galaxy. Four out of the twelve quasars have close companions and obvious signs of interactions. The two-dimensional images of three of the host-galaxies unambiguously reveal bars and spiral arms. The morphology of the other objects are difficult to determine from one dimensional surface brightness profile and deeper images are needed. Analysis of mocked data shows that elliptical galaxies are always recognized as such, whereas disk hosts can be missed for small disk scale lengths and large QSO contributions.

  15. Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts

    OpenAIRE

    Zawadzki, RJ; Capps, AG; Kim, DY; Panorgias, A.; Stevenson, SB; Hamann, B; Werner, JS

    2014-01-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acqu...

  16. Limitations of synthetic aperture laser optical feedback imaging

    CERN Document Server

    Glastre, Wilfried; Hugon, Olivier; De Chatellus, Hugues Guillet; Lacot, Eric

    2012-01-01

    In this paper we present the origin and the effect of amplitude and phase noise on Laser Optical Feedback Imaging (LOFI) associated with Synthetic Aperture (SA) imaging system. Amplitude noise corresponds to photon noise and acts as an additive noise, it can be reduced by increasing the global measurement time. Phase noise can be divided in three families: random, sinusoidal and drift phase noise; we show that it acts as a multiplicative noise. We explain how we can reduce it by making oversampling or multiple measurements depending on its type. This work can easily be extended to all SA systems (Radar, Laser or Terahertz), especially when raw holograms are acquired point by point.

  17. Fabrication of magneto-optical microstructure by femtosecond laser pulses

    Institute of Scientific and Technical Information of China (English)

    Yudong Li; Xiangyang Gao; Meiling Jiang; Qian Sun; Jianguo Tian

    2012-01-01

    We investigate femtosecond laser direct writing (FLDW) in the fabrication of magneto-optical (MO) microstructures.The experimental results show that FDLW can introduce positive refractive index change in the MO materials.With the increase of the writing intensity of femtosecond laser pulses,refractive index change increases,whereas Verdet constant of the damaged area decreases nonlinearly.With suitable writing intensity,we obtain a single-mode waveguide in which Verdet constant is 80% of the bulkMO glass.

  18. Optical laue diffraction on photonic structures designed by laser lithography

    Science.gov (United States)

    Samusev, K. B.; Rybin, M. V.; Lukashenko, S. Yu.; Limonov, M. F.

    2016-06-01

    Two-dimensional photonic crystals with square symmetry C 4v were obtained using the laser lithography method. The structure of these samples was studied by scanning electron microscopy. Optical Laue diffraction for monochromatic light was studied experimentally depending on the incidence angle of laser beam and lattice constant. Interpretation of the observed diffraction patterns is given in the framework of the Laue diffraction mechanism for an one-dimensional chain of scattering elements. Red thresholds for different diffraction orders were determined experimentally and theoretically. The results of calculations are in an excellent agreement with experiment.

  19. COMPUTER MODEL OF TEMPERATURE DISTRIBUTION IN OPTICALLY PUMPED LASER RODS

    Science.gov (United States)

    Farrukh, U. O.

    1994-01-01

    Managing the thermal energy that accumulates within a solid-state laser material under active pumping is of critical importance in the design of laser systems. Earlier models that calculated the temperature distribution in laser rods were single dimensional and assumed laser rods of infinite length. This program presents a new model which solves the temperature distribution problem for finite dimensional laser rods and calculates both the radial and axial components of temperature distribution in these rods. The modeled rod is either side-pumped or end-pumped by a continuous or a single pulse pump beam. (At the present time, the model cannot handle a multiple pulsed pump source.) The optical axis is assumed to be along the axis of the rod. The program also assumes that it is possible to cool different surfaces of the rod at different rates. The user defines the laser rod material characteristics, determines the types of cooling and pumping to be modeled, and selects the time frame desired via the input file. The program contains several self checking schemes to prevent overwriting memory blocks and to provide simple tracing of information in case of trouble. Output for the program consists of 1) an echo of the input file, 2) diffusion properties, radius and length, and time for each data block, 3) the radial increments from the center of the laser rod to the outer edge of the laser rod, and 4) the axial increments from the front of the laser rod to the other end of the rod. This program was written in Microsoft FORTRAN77 and implemented on a Tandon AT with a 287 math coprocessor. The program can also run on a VAX 750 mini-computer. It has a memory requirement of about 147 KB and was developed in 1989.

  20. Fiber Optic Solutions for Short Pulse Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Beach, R; Dawson, J; Liao, Z; Jovanovic, I; Wattellier, B; Payne, S; Barty, C P

    2003-01-29

    For applications requiring high beam quality radiation from efficient, compact and rugged sources, diffraction limited fiber lasers are ideal, and to date have been demonstrated at average CW power levels exceeding 100 W with near diffraction limited: output. For conventional single-core step-index single-mode fibers, this power level represents the sealing limit because of nonlinear and laser damage considerations. Higher average powers would exceed nonlinear process thresholds such as the Raman and stimulated Brillouin scattering limit, or else damage the fiber due to the high intensity level in the fiber's core. The obvious way to increase the average power capability of fibers is to increase the area of their core. Simply expanding the core dimensions of the fiber allows a straightforward power sealing due to enhanced nonlinear and power handling characteristics that scale directly with the core area. Femtosecond, chirped-pulse, fiber lasers with pulse energies greater than 1mJ have been demonstrated in the literature [2] using this technique. This output energy was still limited by the onset of stimulated Raman scattering. We have pursued an alternative and complimentary approach which is to reduce the intensity of light propagating in the core by distributing it more evenly across the core area via careful design of the refractive index profile [3]. We have also sought to address the primary issue that results from scaling the core. The enhanced power handling capability comes at the expense of beam quality, as increasing the core diameter in standard step index fibers permits multiple transverse modes to lase simultaneously. Although this problem of multimode operation can be mitigated to some extent by appropriately designing the fiber's waveguide structure, limitations such as bend radius loss, sensitivity to thermally induced perturbations of the waveguide structure, and refractive index control, all become more stringent as the core diameter

  1. Optical mirror from laser-trapped mesoscopic particles.

    Science.gov (United States)

    Grzegorczyk, Tomasz M; Rohner, Johann; Fournier, Jean-Marc

    2014-01-17

    Trapping of mesoscopic particles by optical forces usually relies on the gradient force, whereby particles are attracted into optical wells formed by landscaping the intensity of an optical field. This is most often achieved by optical Gaussian beams, interference patterns, general phase contrast methods, or other mechanisms. Hence, although the simultaneous trapping of several hundreds of particles can be achieved, these particles remain mostly independent with negligible interaction. Optical matter, however, relies on close packing and binding forces, with fundamentally different electrodynamic properties. In this Letter, we build ensembles of optically bound particles to realize a reflective surface that can be used to image an object or to focus a light beam. To our knowledge, this is the first experimental proof of the creation of a mirror by optical matter, and represents an important step toward the realization of a laser-trapped mirror (LTM) in space. From a theoretical point of view, optically bound close packing requires an exact solver of Maxwell's equations in order to precisely compute the field scattered by the collection of particles. Such rigorous calculations have been developed and are used here to study the focusing and resolving power of an LTM. PMID:24484014

  2. Robo-AO KP: A new era in robotic adaptive optics

    Science.gov (United States)

    Riddle, Reed L.; Baranec, Christoph; Law, Nicholas M.; Kulkarni, Shrinivas R.; Duev, Dmitry; Ziegler, Carl; Jensen-Clem, Rebecca M.; Atkinson, Dani Eleanor; Tanner, Angelle M.; Zhang, Celia; Ray, Amy

    2016-01-01

    Robo-AO is the first and only fully automated adaptive optics laser guide star AO instrument. It was developed as an instrument for 1-3m robotic telescopes, in order to take advantage of their availability to pursue large survey programs and target of opportunity observations that aren't possible with other AO systems. Robo-AO is currently the most efficient AO system in existence, and it can achieve an observation rate of 20+ science targets per hour. In more than three years of operations at Palomar Observatory, it has been quite successful, producing technology that is being adapted by other AO systems and robotic telescope projects, as well as several high impact scientific publications. Now, Robo-AO has been selected to take over operation of the Kitt Peak National Observatory 2.1m telescope. This will give Robo-AO KP the opportunity to pursue multiple science programs consisting of several thousand targets each during the three years it will be on the telescope. One-sixth of the observing time will be allocated to the US community through the NOAO TAC process. This presentation will discuss the process adapting Robo-AO to the KPNO 2.1m telescope, the plans for integration and initial operations, and the science operations and programs to be pursued.

  3. In-vivo imaging of inner retinal cellular morphology with adaptive optics - optical coherence tomography: challenges and possible solutions

    Science.gov (United States)

    Zawadzki, Robert J.; Jones, Steven M.; Kim, Dae Yu; Poyneer, Lisa; Capps, Arlie G.; Hamann, Bernd; Olivier, Scot S.; Werner, John S.

    2012-03-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the outer layers of the human retina. Despite the significant progress in imaging cone and rod photoreceptor mosaics, visualization of cellular structures in the inner retina has been achieved only with extrinsic contrast agents that have not been approved for use with humans. In this paper we describe the main limiting factors in visualizing inner retinal cells and the methods we implemented to reduce their effects on images acquired with AO-OCT. These include improving the system point spread function (AO performance), monitoring of motion artifacts (retinal motion tracking), and speckle pattern reduction (temporal and spatial averaging). Results of imaging inner retinal morphology and the improvement offered by the new UC Davis AOOCT system with spatio-temporal image averaging are presented.

  4. Hole drilling on glass optical fibers by a femtosecond laser

    Science.gov (United States)

    Hamasaki, Masayuki; Gouya, Kenji; Watanabe, Kazuhiro

    2012-01-01

    A novel optical fiber sensor has been developed for gaseous material detection by means of a femto-second laser which has ultrashort pulse and ultrahigh peak power. This sensor has attractive sensor potion consisted of drilling holes array which is machined on the glass optical fiber. Additionally, the sensor potion is coated with thin gold film. This work expects that an interaction could be induced between transmitted light through fiber core and a bottom of the drilled holes which reaches the fiber core. The interaction could induce near-field optical phenomenon excited by transmitted light through the fiber core. This scheme could make it possible to detect gaseous-material phase substances around the optical fiber. In this study, we found that localized surface plasmon (LSP) was excited by the transmitted light through the fiber core. This paper shows experiment to obtain optimum irradiation conditions and investigation for sensor principle for the development of a novel fiber sensor.

  5. PREFACE: Second International Conference on Optical and Laser Diagnostics

    Science.gov (United States)

    Arcoumanis, C.; Grattan, K. T. V.

    2006-08-01

    The area of optical and laser diagnostics continues to expand and develop, and is now an essential part of many fields in engineering. Indeed it is one of the most interdisciplinary of the topics of today's research, impacting upon areas from fundamental physics to IT and encompassing a wide number of specific fields in engineering today. The proceedings of this, the second International Conference on Optical and Laser Diagnostics (ICOLAD 2005), follows upon the very successful first conference held in 2002, and reflects in its content many of the developments in this area since that time. The aim of a Conference which is an international forum for new ideas and developments in this exciting branch of optical engineering continues, building upon the foundation of research in optical diagnostics and optical sensing for a number of industrial and biomedical application areas at the City University, London. The Conference was structured into a number of sessions, held over three days in London, with the contributed talks led by invited papers from many internationally known and respected experts in their field from the UK, mainland Europe, the United States and Japan. The material covered includes such major themes as laser diagnostics, reciprocating engine-related applications and flow velocity measurement, extending to encompass, for example, biomedical and structural monitoring using advanced optical techniques. The papers draw their authority from the reputations of the authors and the groups and companies internationally that they represent and this volume brings together a valuable cross-section of such world-leading research. The local Organizing Committee would like to acknowledge and thank the industrial sponsors of the Conference and the members of the local and the International Steering Committee for their contribution to the success of this Conference. In particular thanks are due to Ms Claire Pantlin and the Institute of Physics for their work to make

  6. Optical truss and retroreflector modeling for picometer laser metrology

    Science.gov (United States)

    Hines, Braden E.

    1993-09-01

    Space-based astrometric interferometer concepts typically have a requirement for the measurement of the internal dimensions of the instrument to accuracies in the picometer range. While this level of resolution has already been achieved for certain special types of laser gauges, techniques for picometer-level accuracy need to be developed to enable all the various kinds of laser gauges needed for space-based interferometers. Systematic errors due to retroreflector imperfections become important as soon as the retroreflector is allowed to either translate in position or articulate in angle away from its nominal zero-point. Also, when combining several laser interferometers to form a three-dimensional laser gauge (a laser optical truss), systematic errors due to imperfect knowledge of the truss geometry are important as the retroreflector translates away from its nominal zero-point. In order to assess the astrometric performance of a proposed instrument, it is necessary to determine how the effects of an imperfect laser metrology system impact the astrometric accuracy. This paper show the development of an error propagation model from errors in the 1-D metrology measurements through the impact on the overall astrometric accuracy for OSI. Simulations are then presented based on this development which were used to define a multiplier which determines the 1-D metrology accuracy required to produce a given amount of fringe position error.

  7. Optical mode control of surface-plasmon quantum cascade lasers

    Science.gov (United States)

    Moreau, V.; Bahriz, M.; Palomo, J.; Wilson, L. R.; Krysa, A. B.; Sirtori, C.; Austin, D. A.; Cockburn, J. W.; Roberts, J. S.; Colombelli, R.

    2007-04-01

    Surface-plasmon waveguides based on metallic strips can provide a two dimensional optical confinement. This concept has been successfully applied to quantum cascade lasers, processed as ridge waveguides, to demonstrate that the lateral extension of the optical mode can be influenced solely by the width of the device top contact. For devices operating at a wavelength of λ ≈7.5 μm, the room-temperature threshold current density was reduced from 6.3 kA/cm2 to 4.4 kA/cm2 with respect to larger devices with full top metallization.

  8. Development of fluorides for high power laser optics

    International Nuclear Information System (INIS)

    The laser-assisted thermonuclear fusion program has significant needs for improved optical materials with high transmission in the ultraviolet, and with low values of nonlinear index of refraction. Lithium fluoride (LiF) possesses a combination of optical properties which are of potential use. Single-crystalline LiF is limited by low mechanical strength. In this program, we investigated the technique of press-forging to increase the mechanical strength. LiF single crystals were press-forged over the temperature range 300 to 6000C to produce fine-grained polycrystalline material

  9. Acoustic fiber laser array architecture with reduced optical feedback limitations

    Science.gov (United States)

    Molin, S.; Bouffaron, R.; Peigné, A.; Doisy, M.; Mugnier, A.; Pureur, D.

    2014-05-01

    Many sensing applications would benefit of multiplexing a maximum number of Distributed FeedBack Fiber Lasers (DFB FLs) on the same optical fiber. However, in such configurations, some physical mechanisms may impact DFB FLs stable operation, limiting, for instance, the number of DFB FLs spliced on the same fiber and the distance between them. The aim of this experimental study is to investigate the impact of optical feedback on DFB FLs stability. The results of our study are used to propose possible associated architectures.

  10. Optical accelerometer design based on laser self-mixing interference

    Science.gov (United States)

    Yang, Ying; Li, Xingfei; Kou, Ke; Zhang, Limin

    2015-03-01

    A novel optical accelerometer based on laser self-mixing effect is presented and experimentally demonstrated, which consists of a mass-loaded elastic-beam assembly and laser self-mixing interferometer. Under external acceleration, an inertial force is applied to the mass, flexible beams deflect from their equilibrium position. The deflection can be read out by the self-mixing interferometer. In order to reduce the impact of higher harmonic, wavelet analysis is introduced to remove singular points. Preliminary results indicate that the resolution is 0.19μg/Hz1/2 within a bandwidth of 100Hz. The optical accelerometer has the potential to achieve high-precision, compact accelerometers.

  11. Coherent Semiconductor Laser Systems For Optical Intersatellite Links

    Science.gov (United States)

    Somerset, R. J.; Fletcher, G. D.

    1990-04-01

    Semiconductor laser based optical intersatellite links are attractive for use in both DRS type applications, and as links in the existing satellite-based telecommunications networks (for example between EUTELSAT SMS and INTELSAT IBS business services satellites). Initial ISL experiments will demonstrate direct detection systems using intensity modulation. Coherent systems offer significant improvements over these: the use of frequency shift keying modulation and heterodyne receivers provide significantly improved system sensitivities, which will allow practical systems with reliable laser sources (50 mW CW), and small optical telescopes (20 cm diameter). The SILEX ADD-ON CHANNEL is intended to demonstrate the potential of such systems within the framework of the ESA SILEX program.

  12. Picosecond laser welding of optical to metal components

    Science.gov (United States)

    Carter, Richard M.; Troughton, Michael; Chen, Jinanyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-03-01

    We report on practical, industrially relevant, welding of optical components to themselves and aluminum alloy components. Weld formation is achieved through the tight focusing of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. By selecting suitable surface preparation, clamping and laser parameters, the plasma can be confined, even with comparatively rough surfaces, by exploiting the melt properties of the glass. The short interaction time allows for a permanent weld to form between the two materials with heating limited to a region ~300 µm across. Practical application of these weld structures is typically limited due to the induced stress within the glass and, critically, the issues surrounding post-weld thermal expansion. We report on the measured strength of the weld, with a particular emphasis on laser parameters and surface preparation.

  13. Programmable current source for diode lasers stabilized optical fiber

    International Nuclear Information System (INIS)

    In this paper, we present the electronic design of a programmable stabilized current source. User can access to the source through a password, which, it has a database with the current and voltage operating points. This source was successfully used as current source in laser diode in optical fiber sensors. Variations in the laser current were carried out by a monitoring system and a control of the Direct Current (DC), which flowing through a How land source with amplifier. The laser current can be stabilized with an error percent of ± 1 μA from the threshold current (Ith) to its maximum operation current (Imax) in DC mode. The proposed design is reliable, cheap, and its output signal of stabilized current has high quality. (Author)

  14. Soft X-Ray Optics by Pulsed Laser Deposition

    Science.gov (United States)

    Fernandez, Felix E.

    1996-01-01

    Mo/Si and C/Co multilayers for soft x-ray optics were designed for spectral regions of interest in possible applications. Fabrication was effected by Pulsed Laser Deposition using Nd:YAG (355 nm) or excimer (248 nm) lasers in order to evaluate the suitability of this technique. Results for Mo/Si structures were not considered satisfactory due mainly to problems with particulate production and target surface modification during Si ablation. These problems may be alleviated by a two-wavelength approach, using separate lasers for each target. Results for C/Co multilayers are much more encouraging, since indication of good layering was observed for extremely thin layers. We expect to continue investigating this possibility. In order to compete with traditional PVD techniques, it is necessary to achieve film coverage uniformity over large enough areas. It was shown that this is feasible, and novel means of achieving it were devised.

  15. 2nd International Conference on Photonics, Optics and Laser Technology

    CERN Document Server

    Raposo, Maria

    2016-01-01

    This collection of the selected papers presented to the Second International Conference on Photonics, Optics and laser technology PHOTOPTICS 2014 covers the three main conference scientific areas of “Optics”, “Photonics” and “Lasers”. The selected papers, in two classes full and short, result from a double blind review carried out by conference Program Committee members who are highly qualified experts in the conference topic areas.

  16. Refractory period of an excitable semiconductor laser with optical injection

    CERN Document Server

    Garbin, Bruno; Prati, Franco; Javaloyes, Julien; Tissoni, Giovanna; Barland, Stéphane

    2016-01-01

    Injection-locked semiconductor lasers can be brought to a neuron-like excitable regime when parameters are set close to the unlocking transition. Here we study experimentally the response of this system to repeated optical perturbations and observe the existence of a refractory period during which perturbations are not able to elicit an excitable response. The results are analyzed via simulations of a set of dynamical equations which reproduced adequately the experimental results.

  17. Optical parametric amplifier pumped by two mutually incoherent laser beams

    Science.gov (United States)

    Tamošauskas, G.; Dubietis, A.; Valiulis, G.; Piskarskas, A.

    2008-05-01

    We report on the experimental proof-of-principle demonstration of the ultrashort pulse single-pass beta-barium borate, BBO optical parametric amplifier pumped by two mutually incoherent laser sources. We show that the amplified signal at 1054 nm gains energy from both pump pulses with wavelengths of 680 and 527 nm, respectively, with overall energy conversion of 36%, and exhibits low wavefront distortions and improved energy stability in the gain saturation regime.

  18. 3rd International Conference on Photonics, Optics and Laser Technology

    CERN Document Server

    Raposo, Maria

    2016-01-01

    The book provides a collection of selected papers presented to the third International Conference on Photonics, Optics and Laser Technology PHOTOPTICS 2015, covering the three main conference scientific areas of “Optics”, “Photonics” and “Lasers”. The selected papers, in two classes full and short, result from a double blind review carried out by the conference program committee members which are highly qualified experts in conference topic areas.

  19. Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications

    Science.gov (United States)

    Grivas, Christos

    2016-01-01

    The field of optically pumped planar waveguide lasers has seen a rapid development over the last two decades driven by the requirements of a range of applications. This sustained research effort has led to the demonstration of a large variety of miniature highly efficient laser sources by combining different gain media and resonator geometries. One of the most attractive features of waveguide lasers is the broad range of regimes that they can operate, spanning from continuous wave and single frequency through to the generation of femtosecond pulses. Furthermore, their technology has experienced considerable advances to provide increased output power levels, deriving benefits from the relative immunity from the heat generated in the gain medium during laser operation and the use of cladding-pumped architectures. This second part of the review on optically pumped planar waveguide lasers provides a snapshot of the state-of-the-art research in this field in terms of gain materials, laser system designs, and as well as a perspective on the status of their application as real devices in various research areas.

  20. Final optics for laser-driven inertial fusion reactors

    International Nuclear Information System (INIS)

    If Inertial Confinement Fusion (ICF) power plants utilizing laser drivers are to be considered for electrical power generation, a method for delivering the driver energy into the reactor must be developed. This driver-reactor interface will necessarily employ final optics, which must survive in the face of fast neutrons, x-rays, hot vapors and condensates, and high-speed droplets. The most difficult to protect against is fast neutron damage since no optically transmissive shielding material for 14-MeV neutrons is available. Multilayer dielectric mirrors are judged to be unsuitable because radiation-induced chemical change, diffusion, and thickness changes will destroy their reflectivity within a few months of plant operation. Recently, grazing incidence metal mirrors were proposed, but optical damage issues are unresolved for this approach. In this paper, the authors consider the use of refractive optics. a major question to be answered is: what duration of reactor operation can this optic withstand?To answer this question the authors have reviewed the literature bearing on radiation-induced optical damage in fused silica and assessed its implications for reactor operation with the baseline final optics scheme. It appears possible to continuously anneal the neutron damage in the silica by keeping the wedge at a modestly elevated temperature

  1. Optical Shaping of X-Ray Free-Electron Lasers

    Science.gov (United States)

    Marinelli, A.; Coffee, R.; Vetter, S.; Hering, P.; West, G. N.; Gilevich, S.; Lutman, A. A.; Li, S.; Maxwell, T.; Galayda, J.; Fry, A.; Huang, Z.

    2016-06-01

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

  2. Role of Optical Coherence Tomography on Corneal Surface Laser Ablation

    Directory of Open Access Journals (Sweden)

    Bruna V. Ventura

    2012-01-01

    Full Text Available This paper focuses on reviewing the roles of optical coherence tomography (OCT on corneal surface laser ablation procedures. OCT is an optical imaging modality that uses low-coherence interferometry to provide noninvasive cross-sectional imaging of tissue microstructure in vivo. There are two types of OCTs, each with transverse and axial spatial resolutions of a few micrometers: the time-domain and the fourier-domain OCTs. Both have been increasingly used by refractive surgeons and have specific advantages. Which of the current imaging instruments is a better choice depends on the specific application. In laser in situ keratomileusis (LASIK and in excimer laser phototherapeutic keratectomy (PTK, OCT can be used to assess corneal characteristics and guide treatment decisions. OCT accurately measures central corneal thickness, evaluates the regularity of LASIK flaps, and quantifies flap and residual stromal bed thickness. When evaluating the ablation depth accuracy by subtracting preoperative from postoperative measurements, OCT pachymetry correlates well with laser ablation settings. In addition, OCT can be used to provide precise information on the morphology and depth of corneal pathologic abnormalities, such as corneal degenerations, dystrophies, and opacities, correlating with histopathologic findings.

  3. Multimode laser beam analyzer instrument using electrically programmable optics.

    Science.gov (United States)

    Marraccini, Philip J; Riza, Nabeel A

    2011-12-01

    Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M(2). Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M(2) experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.

  4. PREFACE: Third International Conference on Optical and Laser Diagnostics

    Science.gov (United States)

    Arcoumanis, C.; Grattan, K. T. V.

    2007-09-01

    The International Conference on Optical and Laser Diagnostics (ICOLAD 2007), held at City University in May 2007, was the third meeting in this well established series, following upon the first in 2002 and the second in 2005. During that time the area of optical and laser diagnostics has continued to develop and to expand with both the changes seen in the technology and the availability of new optical components and laser systems. The field remains one of the most interdisciplinary of the topics of today's research, impacting upon areas from fundamental physics to IT and encompassing a number of different areas in engineering today. These proceedings are a record of current practice in this area from a Conference which remains an international forum for new ideas and developments in this exciting branch of optical engineering. It builds upon the foundation of research in the broad field of optical diagnostics in a number of industrial and biomedical application areas at the City University, London. The Conference was structured into a number of sessions reflecting topical developments in engine research, optical sensing and measurement and biomedical engineering held over three days in London, with the contributed talks led by invited papers from many internationally known and respected experts in their field from mainland Europe, the United States and Japan and the UK. The material covered encompasses such major themes as laser diagnostics, reciprocating engine-related applications and flow velocity measurement, extending to include biomedical and structural monitoring using advanced optical techniques. The papers at this Conference continue to draw their authority from the reputations of the authors and the groups and companies internationally that they represent. This volume brings together a valuable cross-section of world-leading research at the time. The local Organizing Committee would like to acknowledge and thank the industrial sponsors of the Conference

  5. Frequency doubled telecom fiber laser for a cold atom interferometer using optical lattices

    CERN Document Server

    Theron, Fabien; Dieu, Emily; Zahzam, Nassim; Cadoret, Malo; Zahzam, Nassim; Bresson, Alexandre

    2016-01-01

    A compact and robust laser system, based on a frequency-doubled telecom laser, providing all the lasers needed for a rubidium cold atom interferometer using optical lattices is presented. Thanks to an optical switch at 1.5 \\mu m and a dual-wavelength second harmonic generation system, only one laser amplifier is needed for all the laser system. Our system delivers at 780 nm a power of 900 mW with a detuning of 110 GHz for the optical lattice and a power of 650 mW with an adjustable detuning between 0 and -1 GHz for the laser cooling, the detection and the Raman transitions.

  6. Application of a photorefractive bismuth titanate crystal for the construction of adaptive fiber optic seismic receivers

    International Nuclear Information System (INIS)

    The possibility of using a photorefractive Bi12TiO20 crystal to create an adaptive fiber optic geophone has been studied. It is shown that this crystal provides efficient phase demodulation in and adaptive interferometer scheme at low optical powers

  7. Advances in lasers and optical micro-nano-systems

    Science.gov (United States)

    Laurell, F.; Fazio, E.

    2010-09-01

    Lasers represent a well consolidated technology: nevertheless, research in this field remains very active and productive, in both basic and applied directions. At the moment significant attention is given to those sources that bring together high power and compactness. Such high power lasers find important applications for material treatments and such applications are presented by Ehsani et al and Saiedeh Saghafi et al, in the treatment of dielectric thin films (Alteration of optical and morphological properties of polycarbonate illuminated by visible/IR laser beams) or of biological tissues like pistachio seeds (Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis). In particular the latter paper show how laser sources can find very important applications in new domains, preserving goods and food without the need for preservatives or pesticides by simply sterilizing them using light. Optical Micro and Nano Systems presents a new domain for exploration. In this framework this special issue is very attractive, because it assembles papers reporting new results in three directions: new techniques for monitoring integrated micro- and nano-systems, new integrated systems and novel high performance metamaterial configurations. Integrated micro-components can be monitored and controlled using reflectance measurements as presented by Piombini et al (Toward the reflectance measurement of micro components). Speckle formation during laser beam reflection can also be a very sophisticated tool for detecting ultra-precise displacements, as presented by Filter et al (High resolution displacement detection with speckles : accuracy limits in linear displacement speckle metrology). Three dimensional integrated optical structures is indeed a big challenge and a peculiarity of photonics, they can be formed through traditional holography or using more sophisticated and novel ! technologies. Thus, special

  8. Wavelength-tunable laser based on nonlinear dispersive-wave generation in a tapered optical waveguide

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method and a wavelength tunable laser comprising a first laser source configured to emit a first optical pulse having a pump wavelength, the first optical pulse being emitted in a first longitudinal direction. Furthermore, the wavelength tunable laser comprises ...

  9. Performance and production requirements for the optical components in a high-average-power laser system

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  10. Aladin transmit-receive optics (TRO): the optical interface between laser, telescope and spectrometers

    Science.gov (United States)

    Mosebach, Herbert; Erhard, Markus; Camus, Fabrice

    2005-09-01

    This paper presents the design and key technologies of the Transmit-Receive Optics (TRO) for the Aladin lidar instrument. The TRO as the central optical interface on the Aladin instrument leading the optical signals from the laser source to the emitting/receiving telescope, and vice versa, the received back scattered signals from the telescope to the spectrometers for Doppler shift evaluation. Additionally, the TRO contains a calibration branch bypassing the telescope and aims at levelling out the received signals in terms of wavelength and signal height changes due to wavelength and intensity variations of the laser. The opto-mechanical concept of the TRO consists of afocal optical groups, which are connected by parallel beams. Extreme requirements have been defined for the TRO on the end-to-end transmission (>=73 %) with an associated effective bandwidth of less than 1 nm over the 200 - 1100 nm spectral range. The achieved solution is presented in this paper. A further feature of the TRO is the use of two so-called aberration generators on the emitting and calibration branch, with which an artificial astigmatism can be realised for eye safety reasons. Its effect on astigmatism is presented. This article also addresses the effort on stray light suppression, which is of extreme importance for the TRO. Special ion plated (IP) optical coatings have been used with superior performance for the TRO, particulary on laser energy resistance and air/vacuum stability. The development of special mounting technologies of optical elements to meet the stringent WFE, stability, and stray light requirements for the TRO are described. Key words : Aeolus Satellite, ALADIN instrument, Lidar, optical design, UV optics manufacturing technologies

  11. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.

    Science.gov (United States)

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott

    2016-03-10

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered. PMID:26974799

  12. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode.

    Science.gov (United States)

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-16

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  13. Laser camp: shining a light on optics careers

    Science.gov (United States)

    Donnelly, Judith; Goyette, Donna; Magnani, Nancy; Wosczyna-Birch, Karen

    2008-08-01

    Three Rivers Community College offers two associate degree programs in optics/photonics, and graduates have their choice of jobs in New England and across the United States. Nonetheless, students, their parents, teachers and guidance counselors are largely unaware of the career opportunities in the photonics industry. To promote optics/photonics career awareness, we hosted two versions of "Laser Camp" in 2007 and 2008. Hands-on activities were chosen to promote awareness of optical science and technology careers and to provide "take home" information and souvenirs to share with family and friends. In this paper, we discuss the logistics of funding, marketing, permissions, transportation and food service and share our student-tested activities.

  14. Single-laser, one beam, tetrahedral magneto-optical trap

    CERN Document Server

    Vangeleyn, Matthieu; Riis, Erling; Arnold, Aidan S

    2009-01-01

    We have realised a 4-beam pyramidal magneto-optical trap ideally suited for future microfabrication. Three mirrors split and steer a single incoming beam into a tripod of reflected beams, allowing trapping in the four-beam overlap volume. We discuss the influence of mirror angle on cooling and trapping, finding optimum efficiency in a tetrahedral configuration. We demonstrate the technique using an ex-vacuo mirror system to illustrate the previously inaccessible supra-plane pyramid MOT configuration. Unlike standard pyramidal MOTs both the pyramid apex and its mirror angle are non-critical and our MOT offers improved molasses free from atomic shadows in the laser beams. The MOT scheme naturally extends to a 2-beam refractive version with high optical access. For quantum gas experiments, the mirror system could also be used for a stable 3D tetrahedral optical lattice.

  15. Fiber optic coherent laser radar 3D vision system

    International Nuclear Information System (INIS)

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution

  16. 80-channel optical recording unit for laser plotter

    Science.gov (United States)

    Okazaki, Masahide; Hayashi, Takahisa; Wakimoto, Zenji

    1993-04-01

    This paper explains a new optical recording unit with 80 semiconductor lasers ((lambda) equals 780 nm), and it can be used in the drum rotation type prepress equipment for film exposure. The optical system consists of three units: a unit composed of an off-axis paraboloid mirror and a stereographic projection lens, a both-side telocentric zoom lens unit, and an afocal reduction lens unit. A both side telocentrical optical design has been adopted for each of the units. The stereographic projection lens and the off-axis paraboloid mirror combine to keep the beam intervals regular. As a result, excellent imaging performance and telocentric characteristics at the exposure plane are now available for all magnification ranges.

  17. Adaptive Optics for the 8 meter Chinese Giant Solar Telescope

    Science.gov (United States)

    Beckers, Jacques; Liu, Zhong; Deng, Yuanyong; Ji, Haisheng

    2013-12-01

    Solar ELTs enable diffraction limited imaging of the basic structure of the solar atmosphere. Magneto-hydrodynamic considerations limit their size to about 0.03 arcsec. To observe them in the near-infrared 8-meter class telescopes are needed. The Chinese Giant Solar Telescope, or CGST, is such a NIR solar ELT. It is a Ring Telescope with 8-meter outer diameter and a central clear aperture of about 6-meter diameter. At present various options for such a Gregorian type telescope are under study like a continuous ring made of segments or a multiple aperture ring made of 7 off-axis telescopes. The advantages of such a ring telescope is that its MTF covers all spatial frequencies out to those corresponding to its outer diameter, that its circular symmetry makes it polarization neutral, and that its large central hole helps thermal control and provides ample space for MCAO and Gregorian instrumentation. We present the current status of the design of the CGST. Our thinking is guided by the outstanding performance of the 1-meter vacuum solar telescope of the Yunnan Solar Observatory which like the CGST uses both AO and image reconstruction. Using it with a ring-shape aperture mask the imaging techniques for the CGST are being explored. The CGST will have Multi-Conjugate Adaptive Optics (MCAO). The peculiarities of Atmospheric Wavefront Tomography for Ring Telescopes are aided by the ample availability of guide stars on the Sun. IR MCAO-aided diffraction limited imaging offers the advantage of a large FOV, and high solar magnetic field sensitivity. Site testing is proceeding in western China, (e.g. northern Yunnan Province and Tibet). The CGST is a Chinese solar community project originated by the Yunnan Astronomical Observatory, the National Astronomical Observatories, the Purple Mountain Observatory, the Nanjing University, the Nanjing Institute of Astronomical Optics & Technology and the Beijing Normal University.

  18. Quartz optical filter for wavelength selection of frequency-doubled laser based on optical rotatory dispersion effect

    Institute of Scientific and Technical Information of China (English)

    Shan Zhang; Fuquan Wu; Wendi Wu; Haifeng Wang

    2007-01-01

    Based on the optical rotatory dispersion effect, an optical filter for selecting the second harmonic of a frequency-doubled laser is constructed from quartz in combination with polarizers. The operating principle is analyzed by matrix formulation, and the result indicates that the second harmonic of a frequency-doubled laser will be obtained when the rotation angle has a difference of (2n + 1)π/2 (n = 0, 1, 2, 3,… ) between the two polarizations of the second-harmonic laser and the fundamental laser. The spectrum of the output laser is taken by the AQ-6315A spectrometer, and the experimental results are in good agreement with the theoretical results.

  19. Towards in vivo laser coagulation and concurrent optical coherence tomography through double-clad fiber devices

    Science.gov (United States)

    Beaudette, Kathy; Lo, William; Villiger, Martin; Shishkov, Milen; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline

    2016-03-01

    There is a strong clinical need for an optical coherence tomography (OCT) system capable of delivering concurrent coagulation light enabling image-guided dynamic laser marking for targeted collection of biopsies, as opposed to a random sampling, to reduce false-negative findings. Here, we present a system based on double-clad fiber (DCF) capable of delivering pulsed laser light through the inner cladding while performing OCT through the core. A previously clinically validated commercial OCT system (NVisionVLE, Ninepoint Medical) was adapted to enable in vivo esophageal image-guided dynamic laser marking. An optimized DCF coupler was implemented into the system to couple both modalities into the DCF. A DCF-based rotary joint was used to couple light to the spinning DCF-based catheter for helical scanning. DCF-based OCT catheters, providing a beam waist diameter of 62μm at a working distance of 9.3mm, for use with a 17-mm diameter balloon sheath, were used for ex vivo imaging of a swine esophagus. Imaging results using the DCF-based clinical system show an image quality comparable with a conventional system with minimal crosstalk-induced artifacts. To further optimize DCF catheter optical design in order to achieve single-pulse marking, a Zemax model of the DCF output and its validation are presented.

  20. High power coatings for line beam laser optics of up to 2-meter in length

    Science.gov (United States)

    Mende, Mathias; Kohlhaas, Jürgen; Ebert, Wolfgang

    2016-03-01

    Laser material processing plays an important role in the fabrication of the crucial parts for state-of-the-art smartphones and tablets. With industrial line beam systems a line shaped beam with a length above one meter and an average power of several thousand watts can be realized. To ensure excellent long axis beam homogeneity, demanding specifications regarding the substrate surface form tolerances and the coating uniformity have to be achieved for each line beam optic. In addition, a high laser damage threshold and a low defect density are required for the coatings. In order to meet these requirements, the MAXIMA ion beam sputtering machine was developed and built by LASEROPTIK. This contribution describes the functional principle of MAXIMA deposition machine, which adapts the ion beam sputtering technology with its highest coating quality to the field of large area deposition. Furthermore, recent developments regarding the process control by optical broadband monitoring are discussed. Finally experimental results on different thin film characteristics as for example the coating uniformity, the microstructure and the laser damage resistance of multilayers are presented.