WorldWideScience

Sample records for adaptive optics laser

  1. Adaptive optics and laser guide stars at Lick observatory

    Energy Technology Data Exchange (ETDEWEB)

    Brase, J.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  2. Horizontal path laser communications employing MEMS adaptive optics correction

    Science.gov (United States)

    Thompson, Charles A.; Wilks, Scott C.; Brase, James M.; Young, Richard A.; Johnson, Gary W.; Ruggiero, Anthony J.

    2002-02-01

    Horizontal path laser communications are beginning to provide attractive alternatives for high-speed optical communications. In particular, companies are beginning to sell fiberless alternatives for intranet and sporting event video. These applications are primarily aimed at short distance applications (on the order of 1 km pathlength). There exists a potential need to extend this pathlength to distances much greater than a 1km. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method of improved signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors as well as improved communication and computational components. In this paper we detail two Adaptive Optics approaches for improved through-put, the first is the compensated receiver (the traditional Adaptive Optics approach), the second is the compensated transmitter/receiver. The second approach allows for correction of the optical wavefront before transmission from the transmitter and prior to detection at the receiver.

  3. Optical design of the adaptive optics laser guide star system

    Energy Technology Data Exchange (ETDEWEB)

    Bissinger, H. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  4. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Directory of Open Access Journals (Sweden)

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  5. Based on ground station adaptive optics for laser communications demonstration platform structures

    Science.gov (United States)

    Zhang, Lei; Tong, Shoufeng; Wang, Haozeng; Yang, Hongkun

    2013-08-01

    With the rapid development of modern science and technology in astronomical imaging, optical communications, optical radar, optical information processing, high-precision ranging, tracking, guidance, and remote sensing, light waves propagating in the medium, especially in the turbulent atmosphere spread more and more important. Atmospheric turbulence is one of the main factors which have influence on the performance of a laser communication system. Adaptive optics technology is an important means to solve the problem of atmospheric turbulence. This paper states how adaptive optics technique can be used in space laser communication system to compensate atmospheric turbulence when laser beam transmission through it. The core content of adaptive optics is correct laser beam wave-front disturbance in real-time,with it to enhance optical system imaging quality and the next aim is reach the level of diffraction limitation. Adaptive optics system consists of wave-front detection, wave-front control and wave-front correction . The demo platform including: atmospheric turbulence simulation unit、adaptive correction unit、signal transmitting and receiving unit. Liquid crystal spatial light modulator applications in adaptive optics system and the turbulence simulation system introduced. And used zernike polynomials method to produce atmospheric turbulence phase screen simulation analysis. Simulation results show that: in the low spatial frequency components, the atmospheric turbulence phase screen generated by Zernike polynomial method consistent with the theoretical values, but in the high spatial frequency components, the simulation results with large difference between the theoretical values. In addition, the simulation results also show that: we can change the distribution of turbulence in the atmospheric turbulence phase screen by increasing the Zernike polynomials of orders or change the receiving apertures, but to calculate the large calculate the complex and

  6. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update.

    Science.gov (United States)

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.

  7. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2017-11-01

    Full Text Available Adaptive optics scanning laser ophthalmoscopy (AO-SLO has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography. Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods, fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.

  8. Optical Design of Adaptive Optics Confocal Scanning Laser Ophthalmoscope with Two Deformable Mirrors.

    Science.gov (United States)

    Yang, Jinsheng; Wang, Yuanyuan; Rao, Xuejun; Wei, Ling; Li, Xiqi; He, Yi

    2017-01-01

    We describe the optical design of a confocal scanning laser ophthalmoscope with two deformable mirrors. Spherical mirrors are used for pupil relay. Defocus aberration of the human eye is corrected by a Badal focusing structure and astigmatism aberration is corrected by a deformable mirror. The main optical system achieves a diffraction-limited performance through the entire scanning field (6 mm pupil, 3 degrees on pupil plane). The performance of the optical system, with correction of defocus and astigmatism, is also evaluated.

  9. Testing and integrating the laser system of ARGOS: the ground layer adaptive optics for LBT

    Science.gov (United States)

    Loose, C.; Rabien, S.; Barl, L.; Borelli, J.; Deysenroth, M.; Gaessler, W.; Gemperlein, H.; Honsberg, M.; Kulas, M.; Lederer, R.; Raab, W.; Rahmer, G.; Ziegleder, J.

    2012-07-01

    The Laser Guide Star facility ARGOS will provide Ground Layer Adaptive Optics to the Large Binocular Telescope (LBT). The system operates three pulsed laser beacons above each of the two primary mirrors, which are Rayleigh scattered in 12km height. This enables correction over a wide field of view, using the adaptive secondary mirror of the LBT. The ARGOS laser system is designed around commercially available, pulsed Nd:YAG lasers working at 532 nm. In preparation for a successful commissioning, it is important to ascertain that the specifications are met for every component of the laser system. The testing of assembled, optical subsystems is likewise necessary. In particular it is required to confirm a high output power, beam quality and pulse stability of the beacons. In a second step, the integrated laser system along with its electronic cabinets are installed on a telescope simulator. This unit is capable of carrying the whole assembly and can be tilted to imitate working conditions at the LBT. It allows alignment and functionality testing of the entire system, ensuring that flexure compensation and system diagnosis work properly in different orientations.

  10. Adaptive optics scanning laser ophthalmoscopy in combination with en-face optical coherence tomography

    International Nuclear Information System (INIS)

    Felberer, F.

    2014-01-01

    The human retina is a most important tissue and plays a fundamental role for the vision. Diseases of the eye affect the normal retinal function which, if untreated, may lead to vision loss or ultimately to blindness. Thus, in vivo diagnostic tools that provide detailed information on the retinal status are required in order to improve diagnosis and treatment. In recent years, several new optical imaging methods of the human retina have been developed and now represent the key part in a standard ophthalmic examination process. One of these technologies is optical coherence tomography (OCT), which provides images of the retina noninvasively and with a high axial resolution. However, imperfections of the eye's optics cause aberrations of the wavefront of the imaging light, thus limiting the transverse resolution of such systems. Improvements in the resolution of retinal images are necessary to resolve individual cells (e.g. photoreceptors) which may provide new opportunities in retinal diagnostics and therapy control. Adaptive optics (AO), a technology known from astronomy, may be used to increase image resolution. Aberrations of the imaging light are measured and corrected, resulting in an increase of lateral resolution up to the diffraction limit. Within this thesis, AO was combined with a scanning laser ophthalmoscope (SLO) that enables high resolution imaging of the retina. Measurements on healthy subjects demonstrated the ability of the system to resolve foveal cones (the smallest cone photoreceptors within the retina) and even rod photoreceptors. However, the depth resolution of the system remained limited compared to OCT instruments. Thus, in a second step, the instrument was extended to a combined AO-SLO/OCT system. The OCT system is based on transversal scanning (TS)-OCT which records en-face images of the retina and incorporates a high-speed axial eye tracking device. Together with transverse motion correction based on the AO-SLO images, the system

  11. Adaptive Bit Rate Video Streaming Through an RF/Free Space Optical Laser Link

    Directory of Open Access Journals (Sweden)

    A. Akbulut

    2010-06-01

    Full Text Available This paper presents a channel-adaptive video streaming scheme which adjusts video bit rate according to channel conditions and transmits video through a hybrid RF/free space optical (FSO laser communication system. The design criteria of the FSO link for video transmission to 2.9 km distance have been given and adaptive bit rate video streaming according to the varying channel state over this link has been studied. It has been shown that the proposed structure is suitable for uninterrupted transmission of videos over the hybrid wireless network with reduced packet delays and losses even when the received power is decreased due to weather conditions.

  12. The ARGOS laser system: green light for ground layer adaptive optics at the LBT

    Science.gov (United States)

    Raab, Walfried; Rabien, Sebastian; Gässler, Wolfgang; Esposito, Simone; Barl, Lothar; Borelli, Jose; Daysenroth, Matthias; Gemperlein, Hans; Kulas, Martin; Ziegleder, Julian

    2014-07-01

    We report on the development of the laser system of ARGOS, the multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT). The system uses a total of six high powered, pulsed Nd:YAG lasers frequency-doubled to a wavelength of 532 nm to generate a set of three guide stars above each of the LBT telescopes. The position of each of the LGS constellations on sky as well as the relative position of the individual laser guide stars within this constellation is controlled by a set of steerable mirrors and a fast tip-tilt mirror within the laser system. The entire opto-mechanical system is housed in two hermetically sealed and thermally controlled enclosures on the SX and DX side of the LBT telescope. The laser beams are propagated through two refractive launch telescopes which focus the beams at an altitude of 12 km, creating a constellation of laser guide stars around a 4 arcminute diameter circle by means of Rayleigh scattering. In addition to the GLAO Rayleigh beacon system, ARGOS has also been designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system was successfully installed at the LBT in April 2013. Extensive functional tests have been carried out and have verified the operation of the systems according to specifications. The alignment of the laser system with respect to the launch telescope was carried out during two more runs in June and October 2013, followed by the first propagation of laser light on sky in November 2013.

  13. Adaptive optics for reduced threshold energy in femtosecond laser induced optical breakdown in water based eye model

    Science.gov (United States)

    Hansen, Anja; Krueger, Alexander; Ripken, Tammo

    2013-03-01

    In ophthalmic microsurgery tissue dissection is achieved using femtosecond laser pulses to create an optical breakdown. For vitreo-retinal applications the irradiance distribution in the focal volume is distorted by the anterior components of the eye causing a raised threshold energy for breakdown. In this work, an adaptive optics system enables spatial beam shaping for compensation of aberrations and investigation of wave front influence on optical breakdown. An eye model was designed to allow for aberration correction as well as detection of optical breakdown. The eye model consists of an achromatic lens for modeling the eye's refractive power, a water chamber for modeling the tissue properties, and a PTFE sample for modeling the retina's scattering properties. Aberration correction was performed using a deformable mirror in combination with a Hartmann-Shack-sensor. The influence of an adaptive optics aberration correction on the pulse energy required for photodisruption was investigated using transmission measurements for determination of the breakdown threshold and video imaging of the focal region for study of the gas bubble dynamics. The threshold energy is considerably reduced when correcting for the aberrations of the system and the model eye. Also, a raise in irradiance at constant pulse energy was shown for the aberration corrected case. The reduced pulse energy lowers the potential risk of collateral damage which is especially important for retinal safety. This offers new possibilities for vitreo-retinal surgery using femtosecond laser pulses.

  14. High-Altitude Airborne Platform Characterisation of Adaptive Optic Corrected Ground Based Laser

    Science.gov (United States)

    Bennet, F.; Petkovic, M.; Sheard, B.; Greene, B.

    Adaptive optics can be used for more than astronomical imaging with large telescopes. The Research School of Astronomy and Astrophysics (RSAA) and the Space Environment Management Research Centre (SERC) at the Mount Stromlo Observatory in Canberra, Australia, have been developing adaptive optics (AO) for space environment management. Turbulence in the atmosphere causes optical signals to become degraded during propagation, which reduces the effective aperture of your transmitting or receiving telescope. An AO system measures and corrects for the turbulence in the atmosphere, allowing for greater resolution of optical signals. AO can be used to correct a laser beam propagating from the ground into space, or high-altitude airborne platform. The AO system performance depends heavily on the chosen site and system design. In order to properly design and implement a cost-effective AO system to propagate a laser into orbit, we propose using high-altitude platforms to measure AO system performance directly as a precursor in-orbit measurements. SERC plan on demonstrating remote manoeuvre of an orbiting object using photon pressure from an AO corrected high power ground based laser. The manoeuvre target will be a suitable piece of debris, or a dedicated satellite mission which is instrumented and tracked to measure the applied photon pressure and resulting orbit perturbation. High-altitude airborne platforms such as weather balloons or UAVs enable us to efficiently de-risk elements of this program by validating our numerical simulations of AO system performance with actual measurements. We are then able to confidently move towards in-orbit measurement of an AO corrected ground based laser, and remote manoeuvre with photon pressure. We present simulations along with experimental results for the development of array detectors which can be used to directly measure AO system performance.

  15. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Science.gov (United States)

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  16. Robo-AO: autonomous and replicable laser-adaptive-optics and science system

    Science.gov (United States)

    Baranec, C.; Riddle, R.; Ramaprakash, A. N.; Law, N.; Tendulkar, S.; Kulkarni, S.; Dekany, R.; Bui, K.; Davis, J.; Burse, M.; Das, H.; Hildebrandt, S.; Punnadi, S.; Smith, R.

    2012-07-01

    We have created a new autonomous laser-guide-star adaptive-optics (AO) instrument on the 60-inch (1.5-m) telescope at Palomar Observatory called Robo-AO. The instrument enables diffraction-limited resolution observing in the visible and near-infrared with the ability to observe well over one-hundred targets per night due to its fully robotic operation. Robo-AO is being used for AO surveys of targets numbering in the thousands, rapid AO imaging of transient events and long-term AO monitoring not feasible on large diameter telescope systems. We have taken advantage of cost-effective advances in deformable mirror and laser technology while engineering Robo-AO with the intention of cloning the system for other few-meter class telescopes around the world.

  17. ASSOCIATIONS BETWEEN MACULAR EDEMA AND CIRCULATORY STATUS IN EYES WITH RETINAL VEIN OCCLUSION: An Adaptive Optics Scanning Laser Ophthalmoscopy Study.

    Science.gov (United States)

    Iida, Yuto; Muraoka, Yuki; Uji, Akihito; Ooto, Sotaro; Murakami, Tomoaki; Suzuma, Kiyoshi; Tsujikawa, Akitaka; Arichika, Shigeta; Takahashi, Ayako; Miwa, Yuko; Yoshimura, Nagahisa

    2017-10-01

    To investigate associations between parafoveal microcirculatory status and foveal pathomorphology in eyes with macular edema (ME) secondary to retinal vein occlusion (RVO). Ten consecutive patients (10 eyes) with acute retinal vein occlusion were enrolled, 9 eyes of which received intravitreal ranibizumab (IVR) injections. Foveal morphologic changes were examined via optical coherence tomography (OCT), and parafoveal circulatory status was assessed via adaptive optics scanning laser ophthalmoscopy (AO-SLO). The mean parafoveal aggregated erythrocyte velocity (AEV) measured by adaptive optics scanning laser ophthalmoscopy in eyes with retinal vein occlusion was 0.99 ± 0.43 mm/second at baseline, which was significantly lower than that of age-matched healthy subjects (1.41 ± 0.28 mm/second, P = 0.042). The longitudinal adaptive optics scanning laser ophthalmoscopy examinations of each patient showed that parafoveal AEV was strongly inversely correlated with optical coherence tomography-measured central foveal thickness (CFT) over the entire observation period. Using parafoveal AEV and central foveal thickness measurements obtained at the first and second examinations, we investigated associations between differences in parafoveal AEV and central foveal thickness, which were significantly and highly correlated (r = -0.84, P = 0.002). Using adaptive optics scanning laser ophthalmoscopy in eyes with retinal vein occlusion macular edema, we could quantitatively evaluate the parafoveal AEV. A reduction or an increase in parafoveal AEV may be a clinical marker for the resolution or development/progression of macular edema respectively.

  18. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration.

    Science.gov (United States)

    Zayit-Soudry, Shiri; Duncan, Jacque L; Syed, Reema; Menghini, Moreno; Roorda, Austin J

    2013-11-15

    To evaluate cone spacing using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with nonneovascular AMD, and to correlate progression of AOSLO-derived cone measures with standard measures of macular structure. Adaptive optics scanning laser ophthalmoscopy images were obtained over 12 to 21 months from seven patients with AMD including four eyes with geographic atrophy (GA) and four eyes with drusen. Adaptive optics scanning laser ophthalmoscopy images were overlaid with color, infrared, and autofluorescence fundus photographs and spectral domain optical coherence tomography (SD-OCT) images to allow direct correlation of cone parameters with macular structure. Cone spacing was measured for each visit in selected regions including areas over drusen (n = 29), at GA margins (n = 14), and regions without drusen or GA (n = 13) and compared with normal, age-similar values. Adaptive optics scanning laser ophthalmoscopy imaging revealed continuous cone mosaics up to the GA edge and overlying drusen, although reduced cone reflectivity often resulted in hyporeflective AOSLO signals at these locations. Baseline cone spacing measures were normal in 13/13 unaffected regions, 26/28 drusen regions, and 12/14 GA margin regions. Although standard clinical measures showed progression of GA in all study eyes, cone spacing remained within normal ranges in most drusen regions and all GA margin regions. Adaptive optics scanning laser ophthalmoscopy provides adequate resolution for quantitative measurement of cone spacing at the margin of GA and over drusen in eyes with AMD. Although cone spacing was often normal at baseline and remained normal over time, these regions showed focal areas of decreased cone reflectivity. These findings may provide insight into the pathophysiology of AMD progression. (ClinicalTrials.gov number, NCT00254605).

  19. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites and Astronomical Targets

    Science.gov (United States)

    Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.

    2015-12-01

    Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x

  20. NASA Laser Communications with Adaptive Optics and Linear Mode Photon Counting, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this effort, the Optical Sciences Company (tOSC) and Raytheon Vision Systems (RVS) will team to provide NASA with a long range laser communications system for...

  1. Lasers, lenses and light curves : adaptive optics microscopy and peculiar transiting exoplanets

    NARCIS (Netherlands)

    Werkhoven, Theodorus Isaak Mattheus van

    2014-01-01

    In the first part of this thesis, we present an adaptive optics implementation for multi-photon microscopy correcting sample-induced wavefront aberrations using either direct wavefront sensing to run a close-loop adaptive optics system (Chapter 3), or use a model-based sensorless approach to

  2. Intelligent correction of laser beam propagation through turbulent media using adaptive optics

    Science.gov (United States)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2014-10-01

    Adaptive optics methods have long been used by researchers in the astronomy field to retrieve correct images of celestial bodies. The approach is to use a deformable mirror combined with Shack-Hartmann sensors to correct the slightly distorted image when it propagates through the earth's atmospheric boundary layer, which can be viewed as adding relatively weak distortion in the last stage of propagation. However, the same strategy can't be easily applied to correct images propagating along a horizontal deep turbulence path. In fact, when turbulence levels becomes very strong (Cn 2>10-13 m-2/3), limited improvements have been made in correcting the heavily distorted images. We propose a method that reconstructs the light field that reaches the camera, which then provides information for controlling a deformable mirror. An intelligent algorithm is applied that provides significant improvement in correcting images. In our work, the light field reconstruction has been achieved with a newly designed modified plenoptic camera. As a result, by actively intervening with the coherent illumination beam, or by giving it various specific pre-distortions, a better (less turbulence affected) image can be obtained. This strategy can also be expanded to much more general applications such as correcting laser propagation through random media and can also help to improve designs in free space optical communication systems.

  3. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    Science.gov (United States)

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  4. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  5. Increasing the field of view of adaptive optics scanning laser ophthalmoscopy.

    Science.gov (United States)

    Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K; Pircher, Michael

    2017-11-01

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) set-up with two deformable mirrors (DM) is presented. It allows high resolution imaging of the retina on a 4°×4° field of view (FoV), considering a 7 mm pupil diameter at the entrance of the eye. Imaging on such a FoV, which is larger compared to classical AO-SLO instruments, is allowed by the use of the two DMs. The first DM is located in a plane that is conjugated to the pupil of the eye and corrects for aberrations that are constant in the FoV. The second DM is conjugated to a plane that is located ∼0.7 mm anterior to the retina. This DM corrects for anisoplanatism effects within the FoV. The control of the DMs is performed by combining the classical AO technique, using a Shack-Hartmann wave-front sensor, and sensorless AO, which uses a criterion characterizing the image quality. The retinas of four healthy volunteers were imaged in-vivo with the developed instrument. In order to assess the performance of the set-up and to demonstrate the benefits of the 2 DM configuration, the acquired images were compared with images taken in conventional conditions, on a smaller FoV and with only one DM. Moreover, an image of a larger patch of the retina was obtained by stitching of 9 images acquired with a 4°×4° FoV, resulting in a total FoV of 10°×10°. Finally, different retinal layers were imaged by shifting the focal plane.

  6. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    Science.gov (United States)

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  7. Laser beam propagation through turbulence and adaptive optics for beam delivery improvement

    Science.gov (United States)

    Nicolas, Stephane

    2015-10-01

    We report results from numerical simulations of laser beam propagation through atmospheric turbulence. In particular, we study the statistical variations of the fractional beam energy hitting inside an optical aperture placed at several kilometer distance. The simulations are performed for different turbulence conditions and engagement ranges, with and without the use of turbulence mitigation. Turbulence mitigation is simulated with phase conjugation. The energy fluctuations are deduced from time sequence realizations. It is shown that turbulence mitigation leads to an increase of the mean energy inside the aperture and decrease of the fluctuations even in strong turbulence conditions and long distance engagement. As an example, the results are applied to a high energy laser countermeasure system, where we determine the probability that a single laser pulse, or one of the pulses in a sequence, will provide a lethal energy inside the target aperture. Again, turbulence mitigation contributes to increase the performance of the system at long-distance and for strong turbulence conditions in terms of kill probability. We also discuss a specific case where turbulence contributes to increase the pulse energy within the target aperture. The present analysis can be used to evaluate the performance of a variety of systems, such as directed countermeasures, laser communication, and laser weapons.

  8. Laser-only Adaptive Optics Achieves Significant Image Quality Gains Compared to Seeing-limited Observations over the Entire Sky

    Science.gov (United States)

    Howard, Ward S.; Law, Nicholas M.; Ziegler, Carl A.; Baranec, Christoph; Riddle, Reed

    2018-02-01

    Adaptive optics laser guide-star systems perform atmospheric correction of stellar wavefronts in two parts: stellar tip-tilt and high-spatial-order laser correction. The requirement of a sufficiently bright guide star in the field-of-view to correct tip-tilt limits sky coverage. In this paper, we show an improvement to effective seeing without the need for nearby bright stars, enabling full sky coverage by performing only laser-assisted wavefront correction. We used Robo-AO, the first robotic AO system, to comprehensively demonstrate this laser-only correction. We analyze observations from four years of efficient robotic operation covering 15000 targets and 42000 observations, each realizing different seeing conditions. Using an autoguider (or a post-processing software equivalent) and the laser to improve effective seeing independent of the brightness of a target, Robo-AO observations show a 39% ± 19% improvement to effective FWHM, without any tip-tilt correction. We also demonstrate that 50% encircled energy performance without tip-tilt correction remains comparable to diffraction-limited, standard Robo-AO performance. Faint-target science programs primarily limited by 50% encircled energy (e.g., those employing integral field spectrographs placed behind the AO system) may see significant benefits to sky coverage from employing laser-only AO.

  9. Adaptive optics in microscopy.

    Science.gov (United States)

    Booth, Martin J

    2007-12-15

    The imaging properties of optical microscopes are often compromised by aberrations that reduce image resolution and contrast. Adaptive optics technology has been employed in various systems to correct these aberrations and restore performance. This has required various departures from the traditional adaptive optics schemes that are used in astronomy. This review discusses the sources of aberrations, their effects and their correction with adaptive optics, particularly in confocal and two-photon microscopes. Different methods of wavefront sensing, indirect aberration measurement and aberration correction devices are discussed. Applications of adaptive optics in the related areas of optical data storage, optical tweezers and micro/nanofabrication are also reviewed.

  10. Statistical properties of single-mode fiber coupling of satellite-to-ground laser links partially corrected by adaptive optics.

    Science.gov (United States)

    Canuet, Lucien; Védrenne, Nicolas; Conan, Jean-Marc; Petit, Cyril; Artaud, Geraldine; Rissons, Angelique; Lacan, Jerome

    2018-01-01

    In the framework of satellite-to-ground laser downlinks, an analytical model describing the variations of the instantaneous coupled flux into a single-mode fiber after correction of the incoming wavefront by partial adaptive optics (AO) is presented. Expressions for the probability density function and the cumulative distribution function as well as for the average fading duration and fading duration distribution of the corrected coupled flux are given. These results are of prime interest for the computation of metrics related to coded transmissions over correlated channels, and they are confronted by end-to-end wave-optics simulations in the case of a geosynchronous satellite (GEO)-to-ground and a low earth orbit satellite (LEO)-to-ground scenario. Eventually, the impact of different AO performances on the aforementioned fading duration distribution is analytically investigated for both scenarios.

  11. [Adaptive optics for ophthalmology].

    Science.gov (United States)

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE).

    Science.gov (United States)

    Pilar, Jan; Slezak, Ondrej; Sikocinski, Pawel; Divoky, Martin; Sawicka, Magdalena; Bonora, Stefano; Lucianetti, Antonio; Mocek, Tomas; Jelinkova, Helena

    2014-05-20

    We report numerical and experimental results obtained with an optical setup that simulates the heating and cooling processes expected in a multi-slab high-average-power laser head. We have tested the performance of an adaptive optics system consisting of a photo-controlled deformable mirror (PCDM) and a Shack-Hartmann wavefront sensor for the effective correction of the generated wavefront aberrations. The performance of the adaptive optics system is characterized for different layouts of the actuator array and for different configurations of the heating mechanisms. The numerical results are benchmarked using a PCDM, which allowed us to experimentally compare the performances of different deformable mirrors.

  13. Adaptive optics photoacoustic microscopy.

    Science.gov (United States)

    Jiang, Minshan; Zhang, Xiangyang; Puliafito, Carmen A; Zhang, Hao F; Jiao, Shuliang

    2010-10-11

    We have developed an adaptive optics photoacoustic microscope (AO-PAM) for high-resolution imaging of biological tissues, especially the retina. To demonstrate the feasibility of AO-PAM we first designed the AO system to correct the wavefront errors of the illuminating light of PAM. The aberrations of the optical system delivering the illuminating light to the sample in PAM was corrected with a close-loop AO system consisting of a 141-element MEMS-based deformable mirror (DM) and a Shack-Hartmann (SH) wavefront sensor operating at 15 Hz. The photoacoustic signal induced by the illuminating laser beam was detected by a custom-built needle ultrasonic transducer. When the wavefront errors were corrected by the AO system, the lateral resolution of PAM was measured to be better than 2.5 µm using a low NA objective lens. We tested the system on imaging ex vivo ocular samples, e.g., the ciliary body and retinal pigment epithelium (RPE) of a pig eye. The AO-PAM images showed significant quality improvement. For the first time we were able to resolve single RPE cells with PAM.

  14. Lasers and optical engineering

    CERN Document Server

    Das, P

    1991-01-01

    A textbook on lasers and optical engineering should include all aspects of lasers and optics; however, this is a large undertaking. The objective of this book is to give an introduction to the subject on a level such that under­ graduate students (mostly juniors/seniors), from disciplines like electrical engineering, physics, and optical engineering, can use the book. To achieve this goal, a lot of basic background material, central to the subject, has been covered in optics and laser physics. Students with an elementary knowledge of freshman physics and with no formal courses in electromagnetic theory should be able to follow the book, although for some sections, knowledge of electromagnetic theory, the Fourier transform, and linear systems would be highly beneficial. There are excellent books on optics, laser physics, and optical engineering. Actually, most of my knowledge was acquired through these. However, when I started teaching an undergraduate course in 1974, under the same heading as the title of th...

  15. A Miniaturized Adaptive Optic Device for Optical Telecommunications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To advance the state-of-the-art uplink laser communication technology, new adaptive optic beam compensation techniques are needed for removing various time-varying...

  16. Wavelength-versatile optical vortex lasers

    Science.gov (United States)

    Omatsu, Takashige; Miyamoto, Katsuhiko; Lee, Andrew J.

    2017-12-01

    The unique properties of optical vortex beams, in particular their spiral wavefront, have resulted in the emergence of a wide range of unique applications for this type of laser output. These applications include optical tweezing, free space optical communications, microfabrication, environmental optics, and astrophysics. However, much like the laser in its infancy, the adaptation of this type of laser output requires a diversity of wavelengths. We report on recent progress on development of optical vortex laser sources and in particular, focus on their wavelength extension, where nonlinear optical processes have been used to generate vortex laser beams with wavelengths which span the ultraviolet to infrared. We show that nonlinear optical conversion can be used to not only diversify the output wavelength of these sources, but can be used to uniquely engineer the wavefront and spatial properties of the laser output.

  17. Volumetric imaging of rod and cone photoreceptor structure with a combined adaptive optics-optical coherence tomography-scanning laser ophthalmoscope.

    Science.gov (United States)

    Wells-Gray, Elaine M; Choi, Stacey S; Zawadzki, Robert J; Finn, Susanna C; Greiner, Cherry; Werner, John S; Doble, Nathan

    2018-03-01

    We have designed and implemented a dual-mode adaptive optics (AO) imaging system that combines spectral domain optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) for in vivo imaging of the human retina. The system simultaneously acquires SLO frames and OCT B-scans at 60 Hz with an OCT volume acquisition time of 4.2 s. Transverse eye motion measured from the SLO is used to register the OCT B-scans to generate three-dimensional (3-D) volumes. Key optical design considerations include: minimizing system aberrations through the use of off-axis relay telescopes, conjugate pupil plane requirements, and the use of dichroic beam splitters to separate and recombine the OCT and SLO beams around the nonshared horizontal scanning mirrors. To demonstrate system performance, AO-OCT-SLO images and measurements are taken from three normal human subjects ranging in retinal eccentricity from the fovea out to 15-deg temporal and 20-deg superior. Also presented are en face OCT projections generated from the registered 3-D volumes. The ability to acquire high-resolution 3-D images of the human retina in the midperiphery and beyond has clinical importance in diseases, such as retinitis pigmentosa and cone-rod dystrophy. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Adaptive optics in ophthalmology

    Science.gov (United States)

    Iroshnikov, Nikita G.; Larichev, Andrey V.

    2006-09-01

    We present the experimental implementation of ophthalmic diagnostic systems with adaptive optics compensation of human eye aberration. The systems feature high speed operation and utilize deformable bimorph mirrors for wavefront correction. The results of aberration measurements and correction are discussed.

  19. Gigashot Optical Laser Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  20. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.

    Science.gov (United States)

    Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma

    2017-07-20

    Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.

  1. Integration of adaptive optics into highEnergy laser modeling and simulation

    Science.gov (United States)

    2017-06-01

    studies. 1 THIS PAGE INTENTIONALLY LEFT BLANK 2 CHAPTER TWO Overview of Directed Energy Directed- energy weapons include all weapons that project ...weapon projects include the High Energy Liquid Laser (2001-present), the Laser Weapons System (LaWS, 2010-present) shown in Figure 2.1 that has seen...cascading effect ends in viscous dissipation at the smallest size-scale, whereby kinetic energy transfers into thermal energy . The size of the eddies

  2. Optics, light and lasers

    CERN Document Server

    Meschede, Dieter

    2008-01-01

    Starting from the concepts of classical optics, Optics, Light and Lasers introduces in detail the phenomena of linear and nonlinear light matter interaction, the properties of modern laser sources, and the concepts of quantum optics. Several examples taken from the scope of modern research are provided to emphasize the relevance of optics in current developments within science and technology. The text has been written for newcomers to the topic and benefits from the author's ability to explain difficult sequences and effects in a straightforward and easily comprehensible way. To this second, c

  3. High-power optics lasers and applications

    CERN Document Server

    Apollonov, Victor V

    2015-01-01

    This book covers the basics, realization and materials for high power laser systems and high power radiation interaction with  matter. The physical and technical fundamentals of high intensity laser optics and adaptive optics and the related physical processes in high intensity laser systems are explained. A main question discussed is: What is power optics? In what way is it different from ordinary optics widely used in cameras, motion-picture projectors, i.e., for everyday use? An undesirable consequence of the thermal deformation of optical elements and surfaces was discovered during studies of the interaction with powerful incident laser radiation. The requirements to the fabrication, performance and quality of optical elements employed within systems for most practical applications are also covered. The high-power laser performance is generally governed by the following: (i) the absorption of incident optical radiation (governed primarily by various absorption mechanisms), (ii) followed by a temperature ...

  4. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  5. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  6. Adaptive optics scanning laser ophthalmoscope using liquid crystal on silicon spatial light modulator: Performance study with involuntary eye movement

    Science.gov (United States)

    Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi

    2017-09-01

    The performance of an adaptive optics scanning laser ophthalmoscope (AO-SLO) using a liquid crystal on silicon spatial light modulator and Shack-Hartmann wavefront sensor was investigated. The system achieved high-resolution and high-contrast images of human retinas by dynamic compensation for the aberrations in the eyes. Retinal structures such as photoreceptor cells, blood vessels, and nerve fiber bundles, as well as blood flow, could be observed in vivo. We also investigated involuntary eye movements and ascertained microsaccades and drifts using both the retinal images and the aberrations recorded simultaneously. Furthermore, we measured the interframe displacement of retinal images and found that during eye drift, the displacement has a linear relationship with the residual low-order aberration. The estimated duration and cumulative displacement of the drift were within the ranges estimated by a video tracking technique. The AO-SLO would not only be used for the early detection of eye diseases, but would also offer a new approach for involuntary eye movement research.

  7. Adaptive optics compensation using active illumination

    Science.gov (United States)

    Higgs, Charles; Barclay, Herbert T.; Kansky, Jan E.; Murphy, Daniel V.; Primmerman, Charles A.

    1998-09-01

    We have conducted atmospheric compensation experiments using active illumination for both adaptive-optics and tracking. Tests were performed in support of the Air Force's Airborne Laser program. The tests utilized the 5.4-km horizontal propagation range at the Lincoln Laboratory Firepond facility. The adaptive-optics beacon was provided by actively illuminating the target with a multibeam laser illuminator. A second multibeam laser illuminator was used to provide a beacon for an imaging tracker. Experiments were conducted using two different adaptive-optics illuminator configurations, as well as with point-source beacons. Data were collected over a range of atmospheric conditions. Results from these tests have helped to provide a performance benchmark for the Airborne Laser program.

  8. Cone Photoreceptor Irregularity on Adaptive Optics Scanning Laser Ophthalmoscopy Correlates With Severity of Diabetic Retinopathy and Macular Edema.

    Science.gov (United States)

    Lammer, Jan; Prager, Sonja G; Cheney, Michael C; Ahmed, Amel; Radwan, Salma H; Burns, Stephen A; Silva, Paolo S; Sun, Jennifer K

    2016-12-01

    To determine whether cone density, spacing, or regularity in eyes with and without diabetes (DM) as assessed by high-resolution adaptive optics scanning laser ophthalmoscopy (AOSLO) correlates with presence of diabetes, diabetic retinopathy (DR) severity, or presence of diabetic macular edema (DME). Participants with type 1 or 2 DM and healthy controls underwent AOSLO imaging of four macular regions. Cone assessment was performed by independent graders for cone density, packing factor (PF), nearest neighbor distance (NND), and Voronoi tile area (VTA). Regularity indices (mean/SD) of NND (RI-NND) and VTA (RI-VTA) were calculated. Fifty-three eyes (53 subjects) were assessed. Mean ± SD age was 44 ± 12 years; 81% had DM (duration: 22 ± 13 years; glycated hemoglobin [HbA1c]: 8.0 ± 1.7%; DM type 1: 72%). No significant relationship was found between DM, HbA1c, or DR severity and cone density or spacing parameters. However, decreased regularity of cone arrangement in the macular quadrants was correlated with presence of DM (RI-NND: P = 0.04; RI-VTA: P = 0.04), increasing DR severity (RI-NND: P = 0.04), and presence of DME (RI-VTA: P = 0.04). Eyes with DME were associated with decreased density (P = 0.04), PF (P = 0.03), and RI-VTA (0.04). Although absolute cone density and spacing don't appear to change substantially in DM, decreased regularity of the cone arrangement is consistently associated with the presence of DM, increasing DR severity, and DME. Future AOSLO evaluation of cone regularity is warranted to determine whether these changes are correlated with, or predict, anatomic or functional deficits in patients with DM.

  9. Science with Adaptive Optics

    CERN Document Server

    Brandner, Wolfgang; ESO Workshop

    2005-01-01

    The field of Adaptive Optics (AO) for astronomy has matured in recent years, and diffraction-limited image resolution in the near-infrared is now routinely achieved by ground-based 8 to 10m class telescopes. This book presents the proceedings of the ESO Workshop on Science with Adaptive Optics held in the fall of 2003. The book provides an overview on AO instrumentation, data acquisition and reduction strategies, and covers observations of the sun, solar system objects, circumstellar disks, substellar companions, HII regions, starburst environments, late-type stars, the galactic center, active galaxies, and quasars. The contributions present a vivid picture of the multitude of science topics being addressed by AO in observational astronomy.

  10. Dynamic optics for ultrafast laser processing

    Directory of Open Access Journals (Sweden)

    Salter Patrick

    2013-11-01

    Full Text Available We present a range of dynamic optical methods to control focal fields for material processing using ultrafast lasers. Adaptive aberration correction maintains focal quality when focusing deep into materials. Dynamic parallelisation methods permit independent control of hundreds of fabrication spots. New adaptive methods for control of pulse front tilt are also presented.

  11. Efficiency of adaptive laser emission focusing systems

    Science.gov (United States)

    Kandidov, V. P.; Chesnokov, S. S.

    The adaptive compensation for the nonlinear distortions of laser beams associated with thermal self-defocusing effects is investigated theoretically and experimentally. The principles of the modal control of the beam wave front in a class of lower optical aberrations are developed. A multicriterial control algorithm, based on an analysis of the beam image in the observation plane, is proposed and verified experimentally.

  12. Aurora laser optical system

    International Nuclear Information System (INIS)

    Hanlon, J.A.; McLeod, J.

    1987-01-01

    Aurora is the Los Alamos short-pulse high-power krypton fluoride laser system. It is primarily an end-to-end technology demonstration prototype for large-scale UV laser systems of interest for short-wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and aerial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. A program of high-energy density plasma physics investigations is now planned, and a sophisticated target chamber was constructed. The authors describe the design of the optical system for Aurora and report its status. This optical system was designed and is being constructed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. Installation should be complete, and some performance results should be available. The second phase provides demultiplexing and carries the laser light to target. The complete design is reported

  13. Optically pumped laser systems

    International Nuclear Information System (INIS)

    DeMaria, A.J.; Mack, M.E.

    1975-01-01

    Laser systems which are pumped by an electric discharge formed in a gas are disclosed. The discharge is in the form of a vortex stabilized electric arc which is triggered with an auxiliary energy source. At high enough repetition rates residual ionization between successive pulses contributes to the pulse stabilization. The arc and the gain medium are positioned inside an optical pumping cavity where light from the arc is coupled directly into the gain medium

  14. Optical Profilometers Using Adaptive Signal Processing

    Science.gov (United States)

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  15. LGS adaptive optics system with long-pulsed sodium laser on Lijiang 1.8 meter telescope 2014-2016 observation campaign

    Science.gov (United States)

    Wei, Kai; Li, Min; Jiang, Changchun; Wei, Ling; Zheng, Wenjia; Li, Wenru; Ma, Xiaoyu; Zhou, Luchun; Jin, Kai; Bo, Yong; Zuo, Junwei; Wang, Pengyuan; Cheng, Feng; Zhang, Xiaojun; Chen, Donghong; Deng, Jijiang; Gao, Yang; Shen, Yu; Bian, Qi; Yao, Ji; Huang, Jiang; Dong, Ruoxi; Deng, Keran; Peng, Qinjun; Rao, Changhui; Xu, Zuyan; Zhang, Yudong

    2016-07-01

    During 2014-2016, the Laser guide star (LGS) adaptive optics (AO) system observation campaign has been carried out on Lijiang 1.8 meter telescope. During the campaign, two generation LGS AO systems have been developed and installed. In 2014, a long-pulsed solid Sodium prototype laser with 20W@400Hz, a beam transfer optical (BTO) system, and a laser launch telescope (LLT) with 300mm diameter were mounted onto the telescope and moved with telescope azimuth journal. At the same time, a 37-elements compact LGS AO system had been mounted on the Bent-Cassegrain focus and got its first light on observing HIP43963 (mV= 8.18mv) and reached Sr=0.27 in J Band after LGS AO compensation. In 2016, the solid Sodium laser has been upgrade to stable 32W@800Hz while D2a plus D2b repumping is used to increase the photon return, and a totally new LGS AO system with 164-elements Deformable Mirror, Linux Real Time Controller, inner closed loop Tip/tilt mirror, Multiple-PMT tracking detector is established and installed on the telescope. And the throughput for the BTO/LLT is improved nearly 20%. The campaign process, the performance of the two LGS AO systems especially the latter one, the characteristics of the BTO/LLT system and the result are present in this paper.

  16. Adaptive Optical Scanning Holography

    Science.gov (United States)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  17. Self-referencing Mach-Zehnder interferometer as a laser system diagnostic: Active and adaptive optical systems

    International Nuclear Information System (INIS)

    Feldman, M.; Mockler, D.J.; English, R.E. Jr.; Byrd, J.L.; Salmon, J.T.

    1991-01-01

    We are incorporating a novel self-referencing Mach-Zehnder interferometer into a large scale laser system as a real time, interactive diagnostic tool for wavefront measurement. The instrument is capable of absolute wavefront measurements accurate to better than λ/10 pv over a wavelength range > 300 nm without readjustment of the optical components. This performance is achieved through the design of both refractive optics and catadioptric collimator to achromatize the Mach-Zehnder reference arm. Other features include polarization insensitivity through the use of low angles of incidence on all beamsplitters as well as an equal path length configuration that allows measurement of either broad-band or closely spaced laser-line sources. Instrument accuracy is periodically monitored in place by means of a thermally and mechanically stable wavefront reference source that is calibrated off-line with a phase conjugate interferometer. Video interferograms are analyzed using Fourier transform techniques on a computer that includes dedicated array processor. Computer and video networks maintain distributed interferometers under the control of a single analysis computer with multiple user access. 7 refs., 11 figs

  18. Adaptive Optics for Industry and Medicine

    Science.gov (United States)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  19. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE)

    Czech Academy of Sciences Publication Activity Database

    Pilař, Jan; Slezák, Jiří; Sikocinski, Pawel; Divoký, Martin; Sawicka, Magdalena; Bonora, Stefano; Lucianetti, Antonio; Mocek, Tomáš; Jelínková, H.

    2014-01-01

    Roč. 53, č. 15 (2014), 3255-3261 ISSN 1559-128X R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : adaptive optics * multislab * amplifier * wavefront Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.784, year: 2014

  20. Overview of Advanced LIGO adaptive optics.

    Science.gov (United States)

    Brooks, Aidan F; Abbott, Benjamin; Arain, Muzammil A; Ciani, Giacomo; Cole, Ayodele; Grabeel, Greg; Gustafson, Eric; Guido, Chris; Heintze, Matthew; Heptonstall, Alastair; Jacobson, Mindy; Kim, Won; King, Eleanor; Lynch, Alexander; O'Connor, Stephen; Ottaway, David; Mailand, Ken; Mueller, Guido; Munch, Jesper; Sannibale, Virginio; Shao, Zhenhua; Smith, Michael; Veitch, Peter; Vo, Thomas; Vorvick, Cheryl; Willems, Phil

    2016-10-10

    This is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The TCS was designed to minimize thermally induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO2 laser projectors, and Hartmann wavefront sensors. The system meets the requirements of correcting for nominal distortion in aLIGO to a maximum residual error of 5.4 nm rms, weighted across the laser beam, for up to 125 W of laser input power into the interferometer.

  1. Efficiency of adaptive laser emission focusing systems

    Energy Technology Data Exchange (ETDEWEB)

    Kandidov, V.P.; Chesnokov, S.S. (Moskovskii Gosudarstvennyi Universitet, Moscow (USSR))

    1990-01-01

    The adaptive compensation for the nonlinear distortions of laser beams associated with thermal self-defocusing effects is investigated theoretically and experimentally. The principles of the modal control of the beam wave front in a class of lower optical aberrations are developed. A multicriterial control algorithm, based on an analysis of the beam image in the observation plane, is proposed and verified experimentally. 18 refs.

  2. Electron density measurements for plasma adaptive optics

    Science.gov (United States)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  3. Free space optical communications utilizing MEMS adaptive optics correction

    Science.gov (United States)

    Thompson, Charles A.; Kartz, Michael W.; Flath, Laurence M.; Wilks, Scott C.; Young, Richard A.; Johnson, Gary W.; Ruggiero, Anthony J.

    2002-12-01

    Free space optical communications (FSO) are beginning to provide attractive alternatives to fiber-based solutions in many situations. Currently, a handful of companies provide fiberless alternatives especially aimed at corporate intranet and sporting event video. These solutions are geared toward solving the 'last mile' connectivity issues. There exists a potential need to extend this pathlength to distances much greater than a 1 km, particularly for government and military applications. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method of improved signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal and slant path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors as well as improved communication and computational components.

  4. Adaptive optics in gravitational wave interferometers

    Science.gov (United States)

    Avino, Saverio; Barone, Fabrizio; Calloni, Enrico; de Rosa, Rosario; di Fiore, Luciano; Milano, Leopoldo; Restaino, Sergio R.; Tierno, Alessio

    2004-10-01

    In this paper we briefly discuss the possibility to use Adaptive Optics in long baseline interferometric gravitational wave detectors. Analisys is carried out to demonstrate the usefulness of Adaptive Optics as a method to integrate double-mode-cleaner systems, presently used or foreseen in the next generation detectors as systems for the reduction of geometrical fluctuations of input laser beam. Finally a prototype of (AO) system for the control of geometrical fluctuations in a laser beam, based on the interferometric detection of phase front, is presented. By comparison with the usual Shack-Hartmann based AO system, we show that this technique is of particular interest when high sensitivity and high band-pass are required for correction of small perturbations like, for instance, the control of the input beam of gravitational waves interferometric detectors.

  5. Adaptive optics in coherent lidar wind measurements: A feasibility study

    Science.gov (United States)

    Leland, Robert P.

    1991-01-01

    Laser Doppler radar (lidar) is widely used for remote sensing of wind velocities. Usable wavelengths for the laser are limited by the effects of atmospheric turbulence. An adaptive optical system is proposed to compensate for turbulence effects on signal power. The feasibility of an adaptive system is considered in light of the effects of speckle from the aerosol target. It is concluded that adaptive optics is a promising technique for improving the performance of a 2 micron lidar wind measurement system. The chief technical challenges are a laser that will give the required output and pulse repetition rate, a combined Hartmann sensor and heterodyne detector, and a suitable reconstruction algorithm.

  6. Accuracies Of Optical Processors For Adaptive Optics

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1992-01-01

    Paper presents analysis of accuracies and requirements concerning accuracies of optical linear-algebra processors (OLAP's) in adaptive-optics imaging systems. Much faster than digital electronic processor and eliminate some residual distortion. Question whether errors introduced by analog processing of OLAP overcome advantage of greater speed. Paper addresses issue by presenting estimate of accuracy required in general OLAP that yields smaller average residual aberration of wave front than digital electronic processor computing at given speed.

  7. Pair production and optical lasers.

    Science.gov (United States)

    Blaschke, D B; Prozorkevich, A V; Roberts, C D; Schmidt, S M; Smolyansky, S A

    2006-04-14

    Electron-positron pair creation in a standing wave is explored using a parameter-free quantum kinetic equation. Field strengths and frequencies corresponding to modern optical lasers induce a material polarization of the QED vacuum, which may be characterized as a plasma of e+e- quasiparticle pairs with a density of approximately 10(20) cm-3. The plasma vanishes almost completely when the laser field is zero, leaving a very small residual pair density n(r) which is the true manifestation of vacuum decay. The average pair density per period is proportional to the laser intensity but independent of the frequency nu. The density of residual pairs also grows with laser intensity but n(r) proportional to nu(2). With optical lasers at the forefront of the current generation, these dynamical QED vacuum effects can plausibly generate 5-10 observable two-photon annihilation events per laser pulse.

  8. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  9. Development of optical surface contouring technique using laser

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Sung Hoon; Kim, Min Suk; Park, Seung Kyu

    1998-12-01

    Laser contouring system capable of measuring relief profiles using a line-shaped laser beam with anisotropic magnification optics composed with two cylindrical lenses was developed. The anisotropic magnification optical system allows it to obtain higher resolution in the relief profile measurements. The image processing and 3-D display software are developed to reconstruct 3-D shape. The power supply of laser diode with adaptive current control circuit is designed. (author). 4 refs., 5 tabs., 33 figs.

  10. Fluorescent scanning laser ophthalmoscopy for cellular resolution in vivo mouse retinal imaging: benefits and drawbacks of implementing adaptive optics (Conference Presentation)

    Science.gov (United States)

    Zhang, Pengfei; Goswami, Mayank; Pugh, Edward N.; Zawadzki, Robert J.

    2016-03-01

    Scanning Laser Ophthalmoscopy (SLO) is a very important imaging tool in ophthalmology research. By combing with Adaptive Optics (AO) technique, AO-SLO can correct for ocular aberrations resulting in cellular level resolution, allowing longitudinal studies of single cells morphology in the living eyes. The numerical aperture (NA) sets the optical resolution that can be achieve in the "classical" imaging systems. Mouse eye has more than twice NA of the human eye, thus offering theoretically higher resolution. However, in most SLO based imaging systems the imaging beam size at mouse pupil sets the NA of that instrument, while most of the AO-SLO systems use almost the full NA of the mouse eye. In this report, we first simulated the theoretical resolution that can be achieved in vivo for different imaging beam sizes (different NA), assumingtwo cases: no aberrations and aberrations based on published mouse ocular wavefront data. Then we imaged mouse retinas with our custom build SLO system using different beam sizes to compare these results with theory. Further experiments include comparison of the SLO and AO-SLO systems for imaging different type of fluorescently labeled cells (microglia, ganglion, photoreceptors, etc.). By comparing those results and taking into account systems complexity and ease of use, the benefits and drawbacks of two imaging systems will be discussed.

  11. Maritime Adaptive Optics Beam Control

    Science.gov (United States)

    2010-09-01

    Griot Helium Neon Class II laser with output power of 0.5 mW, operating at a wavelength of 633 nm. The science camera is an IDS uEye-2210SE CCD camera...produced by Edmund Optics, Newport/New Focus, Thor Labs, and CVI Melles Griot . Two computer controllers are used for the full experimental system. The

  12. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  13. Optimization of the Laser Hardening Process by Adapting the Intensity Distribution to Generate a Top-hat Temperature Distribution Using Freeform Optics

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2017-06-01

    Full Text Available Laser hardening is a surface hardening process which enables high quality results due to the controllability of the energy input. The hardened area is determined by the heat distribution caused by the intensity profile of the laser beam. However, commonly used top-hat laser beams do not provide an ideal temperature profile. Therefore, in this paper the beam profile, and thus the temperature profile, is optimized using freeform optics. The intensity distribution is modified to generate a top-hat temperature profile on the surface. The results of laser hardening with the optimized distribution are thereupon compared with results using a top-hat intensity distribution.

  14. The research and development of the adaptive optics in ophthalmology

    Science.gov (United States)

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  15. Intelligent Optical Systems Using Adaptive Optics

    Science.gov (United States)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  16. Image registration for daylight adaptive optics.

    Science.gov (United States)

    Hart, Michael

    2018-03-15

    Daytime use of adaptive optics (AO) at large telescopes is hampered by shot noise from the bright sky background. Wave-front sensing may use a sodium laser guide star observed through a magneto-optical filter to suppress the background, but the laser beacon is not sensitive to overall image motion. To estimate that, laser-guided AO systems generally rely on light from the object itself, collected through the full aperture of the telescope. Daylight sets a lower limit to the brightness of an object that may be tracked at rates sufficient to overcome the image jitter. Below that limit, wave-front correction on the basis of the laser alone will yield an image that is approximately diffraction limited but that moves randomly. I describe an iterative registration algorithm that recovers high-resolution long-exposure images in this regime from a rapid series of short exposures with very low signal-to-noise ratio. The technique takes advantage of the fact that in the photon noise limit there is negligible penalty in taking short exposures, and also that once the images are recorded, it is not necessary, as in the case of an AO tracker loop, to estimate the image motion correctly and quickly on every cycle. The algorithm is likely to find application in space situational awareness, where high-resolution daytime imaging of artificial satellites is important.

  17. The Performance of the Robo-AO Laser Guide Star Adaptive Optics System at the Kitt Peak 2.1 m Telescope

    Science.gov (United States)

    Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Salama, Maïssa; Baranec, Christoph; Law, Nicholas M.; Kulkarni, S. R.; Ramprakash, A. N.

    2018-01-01

    Robo-AO is an autonomous laser guide star adaptive optics (AO) system recently commissioned at the Kitt Peak 2.1 m telescope. With the ability to observe every clear night, Robo-AO at the 2.1 m telescope is the first dedicated AO observatory. This paper presents the imaging performance of the AO system in its first 18 months of operations. For a median seeing value of 1.″44, the average Strehl ratio is 4% in the i\\prime band. After post processing, the contrast ratio under sub-arcsecond seeing for a 2≤slant i\\prime ≤slant 16 primary star is five and seven magnitudes at radial offsets of 0.″5 and 1.″0, respectively. The data processing and archiving pipelines run automatically at the end of each night. The first stage of the processing pipeline shifts and adds the rapid frame rate data using techniques optimized for different signal-to-noise ratios. The second “high-contrast” stage of the pipeline is eponymously well suited to finding faint stellar companions. Currently, a range of scientific programs, including the synthetic tracking of near-Earth asteroids, the binarity of stars in young clusters, and weather on solar system planets are being undertaken with Robo-AO.

  18. Cost Effective, Scalable Optically Pumped Molecular Laser

    National Research Council Canada - National Science Library

    Nicholson, Jeff

    2001-01-01

    An optically pumped, For laser was demonstrated operating at 4.0 micrometers. This is the first demonstration of an HBr laser by direct optical pumping of the 0 right arrow 3 vibrational overtone band at 1.34 micrometers...

  19. Problems of Aero-optics and Adaptive Optical Systems: Analytical Review

    Directory of Open Access Journals (Sweden)

    Yu. I. Shanin

    2017-01-01

    Full Text Available The analytical review gives the basic concepts of the aero-optics problem arising from the radiation propagation in the region of the boundary layers of a laser installation carrier aircraft. Estimates the radiation wave front distortions at its propagation in the near and far field. Presents main calculation approaches and methods to solve the gas-dynamic and optical problems in propagating laser radiation. Conducts a detailed analysis of the flows and their generating optical aberrations introduced by the aircraft turret (a projection platform of the on-board laser. Considers the effect of various factors (shock wave, difference in wall and flow temperatures on the flow pattern and the optical aberrations. Provides research data on the aero-optics obtained in the flying laboratory directly while in flight. Briefly considers the experimental research methods, diagnostic equipment, and synthesis of results while studying the aero-optics problem. Discusses some methods for mitigating the aerodynamic effects on the light propagation under flight conditions. Presents data about the passive, active, and hybrid effects on the flow in the boundary layers in order to reduce aberrations through improving the flow aerodynamics.The paper considers operation of adaptive optical systems under conditions of aero-optical distortions. Presents the study results concerning the reduction of the aero-optics effect on the characteristics of radiation in far field. Gives some research results regarding the effect on the efficiency of the adaptive system of a laser beam jitter and a time delay in the feedback signal transmission, which occur under application conditions. Provides data on adaptive correction of aero-optical wave fronts of radiation. Considers some application aspects in control systems of the on-board adaptive optics of adaptive filtration as a way to improve the efficiency of adaptive optical systems. The project in mind is to use obtained results

  20. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-01-01

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  1. Functional planar thin film optical waveguide lasers

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav

    2012-01-01

    Roč. 9, č. 2 (2012), 91-99 ISSN 1612-2011 R&D Projects: GA ČR(CZ) GAP106/10/1477 Institutional research plan: CEZ:AV0Z10100522 Keywords : waveguide laser * planar waveguides * thin films * pulsed laser deposition * optical waveguides * laser materials Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.714, year: 2012

  2. Pulse front adaptive optics in two-photon microscopy.

    Science.gov (United States)

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-11-01

    Adaptive optics has been extensively studied for the correction of phase front aberrations in optical systems. In systems using ultrafast lasers, distortions can also exist in the pulse front (contour of constant intensity in space and time), but until now their correction has been mostly unexplored due to technological limitations. In this Letter, we apply newly developed pulse front adaptive optics, for the first time to our knowledge, to practical compensation of a two-photon fluorescence microscope. With adaptive correction of the system-induced pulse front distortion, improvements beyond conventional phase correction are demonstrated.

  3. Adaptive Optics Metrics & QC Scheme

    Science.gov (United States)

    Girard, Julien H.

    2017-09-01

    "There are many Adaptive Optics (AO) fed instruments on Paranal and more to come. To monitor their performances and assess the quality of the scientific data, we have developed a scheme and a set of tools and metrics adapted to each flavour of AO and each data product. Our decisions to repeat observations or not depends heavily on this immediate quality control "zero" (QC0). Atmospheric parameters monitoring can also help predict performances . At the end of the chain, the user must be able to find the data that correspond to his/her needs. In Particular, we address the special case of SPHERE."

  4. Design of an optimized adaptive optics system with a photo-controlled deformable mirror

    Czech Academy of Sciences Publication Activity Database

    Pilař, Jan; Bonora, Stefano; Lucianetti, Antonio; Jelínková, H.; Mocek, Tomáš

    2016-01-01

    Roč. 28, č. 13 (2016), s. 1422-1425 ISSN 1041-1135 Institutional support: RVO:68378271 Keywords : adaptive optics * closed loop systems * deformable mirror Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.375, year: 2016

  5. Adaptive optical probe design for optical coherence tomography and microscopy using tunable optics.

    Science.gov (United States)

    Choi, Minseog; Lee, Seungwan; Chang, Jong-Hyeon; Lee, Eunsung; Jung, Kyu-Dong; Kim, Woonbae

    2013-01-28

    We present a tunable, adaptive optical imaging probe for multimodal imaging such as optical coherence tomography and microscopy. The probe is compatible with forward-looking scanning laser imaging devices such as an endoscope. The lens configuration includes a tunable iris and two varifocal lenses, both driven by microelectrofluidics, as well as several conventional fixed focus lenses. The modulation transfer function and spot size in the focal plane is evaluated, and we show using optical simulations that there are three possible imaging modes with different transverse resolutions and focal depths.

  6. A Status Report on the Thirty Meter Telescope Adaptive Optics

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We provide an update on the recent development of the adaptive optics (AO) systems for the Thirty Meter Telescope (TMT) since mid-2011. The first light AO facility for TMT consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). This order 60 × 60 ...

  7. A Status Report on the Thirty Meter Telescope Adaptive Optics ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We provide an update on the recent development of the adaptive optics (AO) systems for the Thirty Meter Telescope (TMT) since mid-2011. The first light AO facility for TMT consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). This order 60 × 60 ...

  8. Launch telescope for astronomical adaptive optics

    Science.gov (United States)

    Caruso, Alberto; Novi, Andrea; Basile, Giuseppe

    2005-09-01

    The Launch Telescope Assembly (LTA) consists of a 50 cm class beam expander (angular magnification 12.5x) and it is an essential subsystem of Laser Guide Star Facility (LGSF), which provides an artificial reference star for adaptive compensation of atmospheric turbulence for one of the VLT (Very Large Telescope) 8-meters telescopes of ESO (European Southern Observatory). LTA is an afocal system, with parabolic primary and secondary mirrors, a flat 45° tertiary mirror and an exit window. It is fed with collimated Sodium laser beam, expanding and directing it along the line of sight of the 8-m telescope. Resonance backscatter from atmospheric Sodium layer at about 90 km altitude produces a point like artificial source at this altitude. The high optical quality requested for very fast optics, the severe constraints of the layout accommodation and the mass reduction made LTA a technological challenge that Galileo Avionica has been able to design, realise, align and test as requested. LTA will be positioned atop the secondary mirror unit of one of the four VLTs.

  9. Laser-induced damage in optical materials

    CERN Document Server

    Ristau, Detlev

    2014-01-01

    Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of hi

  10. Springer handbook of lasers and optics

    CERN Document Server

    2012-01-01

    The Springer Handbook of Lasers and Optics provides fast, up-to-date, comprehensive and authoritative coverage of the wide fields of optics and lasers. It is written for daily use in the office or laboratory and offers explanatory text, data, and references needed for anyone working with lasers and optical instruments. This second edition features numerous updates and additions. Especially four new chapters on Fiber Optics, Integrated Optics, Frequency Combs, and Interferometry reflect the major changes. In addition, chapters Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit have been thoroughly revised and updated. The now 25 chapters are grouped into four parts which cover basic principles and materials, fabrication and properties of optical components, coherent and incoherent light sources, and, finally, selected applications and special fields such as terahertz photonics, x-ray optics and holography. Each chapter is authored by respected exp...

  11. Feedback control of laser welding based on frequency analysis of light emissions and adaptive beam shaping

    Czech Academy of Sciences Publication Activity Database

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    2012-01-01

    Roč. 39, NOV (2012), s. 784-791 ISSN 1875-3892. [LANE 2012. Laser Assisted Net Shape Engineering /7./ International Conference on Photonic Technologies. Fürth, 12.11.2012-15.12.2012] Institutional support: RVO:68081731 Keywords : laser weld ing * feedback control * frequency analysis * adaptive beam shaping Subject RIV: BH - Optics, Masers, Lasers

  12. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    Science.gov (United States)

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779

  13. Modeling for deformable mirrors and the adaptive optics optimization program

    International Nuclear Information System (INIS)

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-01-01

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language

  14. A study of optical design and optimization of laser optics

    Science.gov (United States)

    Tsai, C.-M.; Fang, Yi-Chin

    2013-09-01

    This paper propose a study of optical design of laser beam shaping optics with aspheric surface and application of genetic algorithm (GA) to find the optimal results. Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using collimated laser beam light, aspheric lenses in order to achieve best results.

  15. Wavefront measurement using computational adaptive optics.

    Science.gov (United States)

    South, Fredrick A; Liu, Yuan-Zhi; Bower, Andrew J; Xu, Yang; Carney, P Scott; Boppart, Stephen A

    2018-03-01

    In many optical imaging applications, it is necessary to correct for aberrations to obtain high quality images. Optical coherence tomography (OCT) provides access to the amplitude and phase of the backscattered optical field for three-dimensional (3D) imaging samples. Computational adaptive optics (CAO) modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations without using a deformable mirror, as is commonly done in hardware-based adaptive optics (AO). This provides improvement of image quality throughout the 3D volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, the CAO aberration correction has a complicated relation to the imaging pupil and is not a direct measurement of the pupil aberrations. Here we present new methods for recovering the wavefront aberrations directly from the OCT data without the use of hardware adaptive optics. This enables both computational measurement and correction of optical aberrations.

  16. NIF small optics laser damage test specifications

    International Nuclear Information System (INIS)

    Sheehan, L

    1999-01-01

    The Laser Damage Group is currently conducting tests on small optics samples supplied for initial evaluation of potential NIF suppliers. This document is meant to define the specification of laser-induced damage for small optics and the test methods used to collect the data. A rating system which will be applied for vendor selection is presented

  17. Adaptive multilayer optics for extreme ultraviolet wavelengths

    NARCIS (Netherlands)

    Bayraktar, Muharrem

    2015-01-01

    In this thesis we describe the development of a new class of optical components to enhance the imaging performance by enabling adaptations of the optics. When used at extreme ultraviolet (EUV) wavelengths, such ‘adaptive optics’ offers the potential to achieve the highest spatial resolution in

  18. Optical simulations of laser focusing for optimization of laser betatron

    Czech Academy of Sciences Publication Activity Database

    Stanke, Ladislav; Thakur, Anita; Šmíd, Michal; Gu, Yanjun; Falk, Kateřina

    2017-01-01

    Roč. 12, May (2017), 1-14, č. článku P05004. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : matter * accelerator modelling and simulations * multi- particle dynamics * single- particle dynamics * Beam Optics Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.220, year: 2016

  19. Adaptive optics imaging of the retina

    Directory of Open Access Journals (Sweden)

    Rajani Battu

    2014-01-01

    Full Text Available Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO and American Academy of Ophthalmology (AAO meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  20. Discovery of a Highly Unequal-mass Binary T Dwarf with Keck Laser Guide Star Adaptive Optics: A Coevality Test of Substellar Theoretical Models and Effective Temperatures

    Science.gov (United States)

    Liu, Michael C.; Dupuy, Trent J.; Leggett, S. K.

    2010-10-01

    Highly unequal-mass ratio binaries are rare among field brown dwarfs, with the mass ratio distribution of the known census described by q (4.9±0.7). However, such systems enable a unique test of the joint accuracy of evolutionary and atmospheric models, under the constraint of coevality for the individual components (the "isochrone test"). We carry out this test using two of the most extreme field substellar binaries currently known, the T1 + T6 epsilon Ind Bab binary and a newly discovered 0farcs14 T2.0 + T7.5 binary, 2MASS J12095613-1004008AB, identified with Keck laser guide star adaptive optics. The latter is the most extreme tight binary resolved to date (q ≈ 0.5). Based on the locations of the binary components on the Hertzsprung-Russell (H-R) diagram, current models successfully indicate that these two systems are coeval, with internal age differences of log(age) = -0.8 ± 1.3(-1.0+1.2 -1.3) dex and 0.5+0.4 -0.3(0.3+0.3 -0.4) dex for 2MASS J1209-1004AB and epsilon Ind Bab, respectively, as inferred from the Lyon (Tucson) models. However, the total mass of epsilon Ind Bab derived from the H-R diagram (≈ 80 M Jup using the Lyon models) is strongly discrepant with the reported dynamical mass. This problem, which is independent of the assumed age of the epsilon Ind Bab system, can be explained by a ≈ 50-100 K systematic error in the model atmosphere fitting, indicating slightly warmer temperatures for both components; bringing the mass determinations from the H-R diagram and the visual orbit into consistency leads to an inferred age of ≈ 6 Gyr for epsilon Ind Bab, older than previously assumed. Overall, the two T dwarf binaries studied here, along with recent results from T dwarfs in age and mass benchmark systems, yield evidence for small (≈100 K) errors in the evolutionary models and/or model atmospheres, but not significantly larger. Future parallax, resolved spectroscopy, and dynamical mass measurements for 2MASS J1209-1004AB will enable a more

  1. Meaning of visualizing retinal cone mosaic on adaptive optics images.

    Science.gov (United States)

    Jacob, Julie; Paques, Michel; Krivosic, Valérie; Dupas, Bénédicte; Couturier, Aude; Kulcsar, Caroline; Tadayoni, Ramin; Massin, Pascale; Gaudric, Alain

    2015-01-01

    To explore the anatomic correlation of the retinal cone mosaic on adaptive optics images. Retrospective nonconsecutive observational case series. A retrospective review of the multimodal imaging charts of 6 patients with focal alteration of the cone mosaic on adaptive optics was performed. Retinal diseases included acute posterior multifocal placoid pigment epitheliopathy (n = 1), hydroxychloroquine retinopathy (n = 1), and macular telangiectasia type 2 (n = 4). High-resolution retinal images were obtained using a flood-illumination adaptive optics camera. Images were recorded using standard imaging modalities: color and red-free fundus camera photography; infrared reflectance scanning laser ophthalmoscopy, fluorescein angiography, indocyanine green angiography, and spectral-domain optical coherence tomography (OCT) images. On OCT, in the marginal zone of the lesions, a disappearance of the interdigitation zone was observed, while the ellipsoid zone was preserved. Image recording demonstrated that such attenuation of the interdigitation zone co-localized with the disappearance of the cone mosaic on adaptive optics images. In 1 case, the restoration of the interdigitation zone paralleled that of the cone mosaic after a 2-month follow-up. Our results suggest that the interdigitation zone could contribute substantially to the reflectance of the cone photoreceptor mosaic. The absence of cones on adaptive optics images does not necessarily mean photoreceptor cell death. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Optically pumped microplasma rare gas laser.

    Science.gov (United States)

    Rawlins, W T; Galbally-Kinney, K L; Davis, S J; Hoskinson, A R; Hopwood, J A; Heaven, M C

    2015-02-23

    The optically pumped rare-gas metastable laser is a chemically inert analogue to three-state optically pumped alkali laser systems. The concept requires efficient generation of electronically excited metastable atoms in a continuous-wave (CW) electric discharge in flowing gas mixtures near atmospheric pressure. We have observed CW optical gain and laser oscillation at 912.3 nm using a linear micro-discharge array to generate metastable Ar(4s, 1s(5)) atoms at atmospheric pressure. We observed the optical excitation of the 1s(5) → 2p(9) transition at 811.5 nm and the corresponding fluorescence, optical gain and laser oscillation on the 2p(10) ↔ 1s(5) transition at 912.3 nm, following 2p(9)→2p(10) collisional energy transfer. A steady-state kinetics model indicates efficient collisional coupling within the Ar(4s) manifold.

  3. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  4. 4th International Workshop on Adaptive Optics for Industry and Medicine

    CERN Document Server

    Wittrock, Ulrich

    2005-01-01

    This book treats the development and application of adaptive optics for industry and medicine. The contributions describe recently developed components for adaptive-optics systems such as deformable mirrors, wavefront sensors, and mirror drivers as well as complete adaptive optical systems and their applications in industry and medicine. Applications range from laser-beam forming and adaptive aberration correction for high-power lasers to retinal imaging in ophthalmology. The contributions are based on presentations made at the 4th International Workshop on Adaptive Optics in Industry and Medicine which took place in Münster, Germany, in October 2003. This highly successful series of workshops on adaptive optics started in 1997 and continues with the 5th workshop in Beijing in 2005.

  5. Optics with an Atom Laser Beam

    International Nuclear Information System (INIS)

    Bloch, Immanuel; Koehl, Michael; Greiner, Markus; Haensch, Theodor W.; Esslinger, Tilman

    2001-01-01

    We report on the atom optical manipulation of an atom laser beam. Reflection, focusing, and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin flip in the inhomogeneous magnetic field. More than 98% of the incident atom laser beam is reflected specularly

  6. Atmospheric free-space coherent optical communications with adaptive optics

    Science.gov (United States)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  7. Small Optics Laser Damage Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Justin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    This specification defines the requirements and procedure for laser damage testing of coatings and bare surfaces designated for small optics in the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL).

  8. Applications of lasers and electro-optics

    International Nuclear Information System (INIS)

    Tan, B.C.; Low, K.S.; Chen, Y.H.; Harith bin Ahmad; Tou, T.Y.

    1994-01-01

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: 1. Industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes. Prototype operational systems have been developed. 2. Medical applications of lasers for cancer treatment using the technique of photodynamic therapy. A new and more effective treatment protocol has been proposed. 3. Agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies. Fruit ripeness signature has been developed and palm oil oxidation level were investigated. 4. Development of atmospheric pollution monitoring systems using laser lidar techniques. Laboratory scale systems were developed. 5. Other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials. The activities of the group (from 1988-1990) have resulted in the submission of a patent for a laser device, publication of many research paper sin local and overseas journals and conference proceedings, completion of 1 Ph.D. dissertation and 6 M. Phil theses. Currently (1991), a total of 3 Ph.D., 6 M. Phil research programmes are involved in this research and development programme

  9. Coupled optical resonance laser locking

    CSIR Research Space (South Africa)

    Burd, CC

    2014-10-01

    Full Text Available We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different...

  10. Mobile fiber-optic laser Doppler anemometer.

    Science.gov (United States)

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  11. Adaptive Optics, LLLFT Interferometry, Astronomy

    National Research Council Canada - National Science Library

    2002-01-01

    We propose to build a three telescope Michelson optical interferometer equipped with wavefront compensation technology as a demonstration and test bed for high resolution Deep Space Surveillance (DSS) and Astronomy...

  12. Laser damage test bench for space optics

    Science.gov (United States)

    Riede, Wolfgang; Allenspacher, Paul

    2017-11-01

    At the German Aerospace Center in Stuttgart a laser damage test bench is run to evaluate damage thresholds of various optical components. The system setup is based on the current ISO standards 11254 [1-3] for single shot and multiple pulse operation. The laser damage test bench contains two repetitively pulsed laser sources, a Ti:Sapphire and a Nd:YAG laser, operating at wavelengths of 775 nm and 1064 nm, respectively. Harmonic wavelength converters to the visible spectral range are available. Both lasers are supplying the same damage testing rig. Online damage assessment techniques like sensitive scatter probe monitoring and video microscopy monitoring are used. The system is suited and has been tested extensively in the past for dielectric coated optics like beam turning mirrors, reflectors and windows, nonlinear optical components, semiconductors, and laser crystals. The damage test bench is located in a class 10,000 cleanroom environment under a laminar flowbox providing an additional isolation factor of >103. The tests can also be performed in sealed optical compartments in partial vacuum and under long term irradiation conditions. All experiments are supported by theoretical simulation of laser-material interactions, down to the sub-ps timescale [4].

  13. Principles of laser spectroscopy and quantum optics

    CERN Document Server

    Berman, Paul R

    2011-01-01

    Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorptio

  14. Space Optical Communications Using Laser Beam Amplification

    Science.gov (United States)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  15. Terahertz adaptive optics with a deformable mirror.

    Science.gov (United States)

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  16. Active polarimeter optical system laser hazard analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Augustoni, Arnold L.

    2005-07-01

    A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

  17. Direct Laser Cooling Al{}^{+} Ion Optical Clocks

    Science.gov (United States)

    Zhang, Jie; Deng, Ke; Luo, Jun; Lu, Ze-Huang

    2017-05-01

    The Al{}+ ion optical clock is a very promising optical frequency standard candidate due to its extremely small black-body radiation shift. It has been successfully demonstrated with the indirect cooled, quantum-logic-based spectroscopy technique. Its accuracy is limited by second-order Doppler shift, and its stability is limited by the number of ions that can be probed in quantum logic processing. We propose a direct laser cooling scheme of Al{}+ ion optical clocks where both the stability and accuracy of the clocks are greatly improved. In the proposed scheme, two Al{}+ traps are utilized. The first trap is used to trap a large number of Al{}+ ions to improve the stability of the clock laser, while the second trap is used to trap a single Al{}+ ion to provide the ultimate accuracy. Both traps are cooled with a continuous wave 167 nm laser. The expected clock laser stability can reach 9.0× {10}-17/\\sqrt{τ }. For the second trap, in addition to 167 nm laser Doppler cooling, a second stage pulsed 234 nm two-photon cooling laser is utilized to further improve the accuracy of the clock laser. The total systematic uncertainty can be reduced to about 1× {10}-18. The proposed Al{}+ ion optical clock has the potential to become the most accurate and stable optical clock. Supported by the National Basic Research Program of China under Grant No 2012CB821300, the National Natural Science Foundation of China under Grant Nos 91336213, 11304109, 91536116 and 11174095, and the Program for New Century Excellent Talents by the Ministry of Education under Grant No NCET-11-0176.

  18. Atom lasers and nonlinear atom optics

    International Nuclear Information System (INIS)

    Deng Lu

    2000-01-01

    Two recent experimental breakthroughs in the field of atomic physics are reported: the realization of a well-collimated, widely tunable, quasi-continuous wave atom laser, and the generation of matter waves via coherent multi-wave mixing. The former is a critical step towards a continuous wave, high brightness atom laser while the latter has opened a new field of research: nonlinear atom optics

  19. OPTICAL DEFLECTOR CREATION FOR LASER THERAPEUTIC DEVICES

    Directory of Open Access Journals (Sweden)

    V. N. Baranov

    2014-03-01

    Full Text Available The paper deals with creation of optical deflector for management of laser radiation in physiotherapeutic devices. Design features and operation principles of electro-optical, optical-acoustic and mechanical deflectors, giving the possibility to carry out continuous or discrete scanning of a laser beam are shown. Operation mechanism of the mechanical type deflector on the example of domestic laser therapeutic scanners is described in detail. Application possibility in clinical practice for heating technique of the acupuncture points by volumetric scanning of tissues by the radiation of semiconductor lasers on wave lengths equal to 0,67 and 0,85 μm is investigated. Creation justification of the new type deflector is given. Comparison between stable and labile techniques of radiation is carried out. It is shown that more intensive warming up of a skin surface in acupuncture point projection is observed at volumetric scanning, rather than at planar scanning by laser beams. Temperature increase on a skin surface in projection of acupuncture points is detected at radiation in both the visible spectrum range (0,67 μm and the infrared range (0,85 μm. It gives the possibility to apply this scanning method to thermal photo-activation of the point and to extend an existing arsenal of laser reflexology methods. The optical deflector is offered for medical industry, making it possible to carry out volumetric scanning of a laser beam and to facilitate the medical personnel’s work in laser therapy and reflexology consulting rooms.

  20. Laser conoscopy of large-sized optical crystals

    Science.gov (United States)

    Kolesnikov, A. I.; Grechishkin, R. M.; Tretiakov, S. A.; Molchanov, V. Ya; Ivanova, A. I.; Kaplunova, E. I.; Vorontsova, E. Yu

    2013-12-01

    Conoscopic interferometry provides a simple method of non-destructive control of the quality of a number of ferro-piezoelectric and optical crystals. Standard optical microscopes, including some commercial instruments, are easily adapted for implementation of conoscopic studies, though limited to small handy samples with a thickness of the order of 0.5 mm. In the present work we show that the usage of wide convergent or divergent conical laser beams in a simple benchtop configuration makes it possible to examine large-sized optical crystals by the method of conoscopy, including samples elongated along the optical axis direction. As distinct from traditional optical microscopy the conoscopic figures obtained with the aid of the laser installment may contain tens and hundreds of isochrome fringes thus increasing the informative capabilities of the method. Large-sized crystals of LiNbO3 (Ø57×95 mm), TeO2 prisms (44×41×14mm) were examined experimentally at different angles between the optical axis and normal to the crystal surface. The experimental studies of different optical anomalies are confirmed by calculations based on the theoretical analysis given in a previous work of the authors.

  1. Photonic crystal-adaptive optical devices

    DEFF Research Database (Denmark)

    Buss, Thomas

    is investigated and switching times and driving voltages are competitive with existing non-projection liquid crystal displays. The principle has been investigated for use in projection displays but may also be applied to other applications such as cell manipulation in lab-on-a-chip systems and reconfigurable...... are minimized, thus allowing a homogeneous, glare-free, white-light daylighting into the room. Even more functionality can be achieved when the optical effects are tunable or reconfigurable. This is investigated with photonic crystal dye lasers. These lasers combine a photonic crystal resonator with a dye-doped...

  2. The theory of optical black hole lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gaona-Reyes, José L., E-mail: jgaona@fis.cinvestav.mx; Bermudez, David, E-mail: dbermudez@fis.cinvestav.mx

    2017-05-15

    The event horizon of black holes and white holes can be achieved in the context of analogue gravity. It was proven for a sonic case that if these two horizons are close to each other their dynamics resemble a laser, a black hole laser, where the analogue of Hawking radiation is trapped and amplified. Optical analogues are also very successful and a similar system can be achieved there. In this work we develop the theory of optical black hole lasers and prove that the amplification is also possible. Then, we study the optical system by determining the forward propagation of modes, obtaining an approximation for the phase difference which governs the amplification, and performing numerical simulations of the pulse propagation of our system. - Highlights: • We develop the conditions to obtain the kinematics of the optical black hole laser. • We prove the amplification of Hawking radiation for the optical case. • We derive the forward propagation of modes and check the result of the backward case. • A model is proposed to calculate the phase difference and the amplification rate. • We perform numerical simulations of a pulse between two solitons forming a cavity.

  3. High Resolution Observations using Adaptive Optics: Achievements ...

    Indian Academy of Sciences (India)

    Abstract. Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5m ...

  4. Adaptive optics multiphoton microscopy to study ex vivo ocular tissues.

    Science.gov (United States)

    Bueno, Juan M; Gualda, Emilio J; Artal, Pablo

    2010-01-01

    We develop an adaptive optics (AO) multiphoton microscope by incorporating a deformable mirror and a Hartmann-Shack wavefront sensor. The AO module operating in closed-loop is used to correct for the aberrations of the illumination laser beam. This increases the efficiency of the nonlinear processes in reducing tissue photodamage, improves contrast, and enhances lateral resolution in images of nonstained ocular tissues. In particular, the use of AO in the multiphoton microscope provides a better visualization of ocular structures, which are relevant in ophthalmology. This instrument might be useful to explore the possible connections between changes in ocular structures and the associated pathologies.

  5. Adaptive search and detection of laser radiation

    International Nuclear Information System (INIS)

    Efendiev, F.A.; Kasimova, F.I.

    2008-01-01

    Formation of cosmic optical line connected with the solving of difficult problems, among which stand out spatial search task, detection and target tracking. Indeed, the main advantage of systems of the optical diapason, high radiation direction leads to a challenging task of entering in communication, consisting in mutual targeting antenna receiving and transmitting systems. Algorithm detection, obtained by solving the corresponding statistical optimal detection test synthesis tasks detector determines the structure and quality of his work which depend on the average characteristics of the signal and the background radiation of the thermal noise require full priori certainty about the conditions of observation. Algorithm of the optimal detector of laser light modulated on a sub carrier frequency of intensity assumes a priori known intensity and efficiency background radiation and internal noise power photo detector

  6. Note: A four-pass acousto-optic modulator system for laser cooling of sodium atoms.

    Science.gov (United States)

    Lu, Bo; Wang, Dajun

    2017-07-01

    We present a four-pass acousto-optic modulator (AOM) system for providing the repumping light for laser cooling of sodium atoms. With only one 400 MHz AOM, we achieve a tunable laser frequency shift around 1.6 GHz with total efficiency up to 30%. This setup provides an alternative over conventional methods to generate a sodium repumping light using more expensive high frequency AOMs or electro-optical modulators (EOMs) in the GHz domain. This compact and reliable setup can be easily adapted to other frequencies and may find applications in laser spectroscopy, laser cooling and trapping, and coherent manipulation of atomic quantum states.

  7. Laser-driven polyplanar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.; Biscardi, C.; Brewster, C.; DeSanto, L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Beiser, L. [Leo Beiser Inc., Flushing, NY (United States)

    1998-01-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the DLP chip, the optomechanical design and viewing angle characteristics.

  8. Optical distortion coefficients of laser windows

    International Nuclear Information System (INIS)

    Klein, C.A.

    1989-01-01

    This paper addresses the problem of describing and evaluating thermal lensing phenomena that occur as a result of the absorption of laser light in solid windows. The aberration-function expansion method is applied for deriving the two optical distortion coefficients χ + and χ - that characterize the degradation in light intensity at the Gaussian focus of an initially diffraction-limited laser beam passing through a weakly absorbing stress-birefringent window. In a pulsed mode of operation, the concept of an effective optical distortion coefficient. χ eff, which properly combines the coefficients χ + and χ - in terms of potential impact on focal irradiances, then leads to the definition of a figure of merit for distortion. The theory and the calculations presented in this papers provide simple analytical tools for predicting the optical performance of a window-material candidate in a specific system's environment

  9. Adaptive fiber optics collimator based on flexible hinges.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  10. Light wave transmission through free space using atmospheric laser links with adaptive equalization

    Science.gov (United States)

    Hussein, Gamal A.; Mohamed, Abd El-Naser A.; Oraby, Osama A.; Hassan, Emad S.; Eldokany, Ibrahim M.; El-Rabaie, El-Sayed M.; Dessouky, Moawad I.; Alshebeili, Saleh A.; El-Samie, Fathi E. Abd

    2013-07-01

    The utilization of adaptive equalization in the design of atmospheric laser link transceiver architectures that can be used for television and broadcast signal interconnect between the external place of event and the master control room is suggested. At the transmitter side of the proposed transceiver; an array of atmospheric laser sources, digital signal processing, and optical radiators are used to send light waves in free space. At the receiver side, an adaptive finite impulse response least mean square (LMS) equalizer with activity detection guidance (ADG) and tap decoupling (TD) is used to mitigate the effect of channel impairments. The performance of the suggested adaptive equalizer is compared with that of the conventional adaptive equalizer based only on the standard LMS algorithm. The simulation results revealed that the adaptive LMS equalizer with ADG and TD is a promising solution for the inter-symbol interference problem in optical wireless communication systems.

  11. SOCRATE: an optical bench dedicated to the understanding and improvement of a laser conditioning process

    Science.gov (United States)

    Bertussi, Bertrand; Piombini, Hervé; Damiani, David; Pommies, Matthieu; Le Borgne, Xavier; Plessis, Daniel

    2006-11-01

    We present an automatic excimer laser bench (SOCRATE) allowing for the treatment of optical components by laser conditioning. This apparatus, developed at the Commissariat a l'Energie Atomique-Le Ripault, has been designed to add to this conditioning process an in situ, accurate laser-induced damage threshold (LIDT) measurement and different nondestructive optical techniques for the characterization of the component during treatment. Through different examples, we demonstrate the importance of these characterizations to improve the understanding of the laser conditioning. The role of an in situ adapted metrology associated in real time with a laser conditioning bench offers new opportunities to analyze laser-induced damage mechanisms and subsequently to increase the LIDT of optical components.

  12. Optical turbulence parameters characterized via optical measurements over a 2.33 km free-space laser path.

    Science.gov (United States)

    Tunick, Arnold

    2008-09-15

    Optical turbulence research contributes to improved laser communications, adaptive optics, and long-range imaging systems. This paper presents experimental measurements of scintillation and focal spot displacement to obtain optical turbulence information along a near-horizontal 2.33 km free-space laser propagation path. Calculated values for the refractive index structure constant (C(n)(2)) and Fried parameter (r0) are compared to scintillometer-based measurements for several cases in winter and spring. Optical measurements were investigated using two different laser sources for the first and second parts of the experiment. Scintillation index estimates from recorded signal intensities were corrected to account for aperture averaging. As a result, we found that an earlier calculation algorithm based on analysis of log-amplitude intensity variance was the best estimator of optical turbulence parameters over the propagation path considered.

  13. Adaptive optics in digital micromirror based confocal microscopy

    OpenAIRE

    Pozzi, P.; Wilding, D.; Soloviev, O.A.; Vdovine, Gleb; Verhaegen, M.H.G.; Bifano, Thomas G.; Kubby, Joel; Gigan, Sylvain

    2016-01-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront senso...

  14. Easy and versatile adaptive optics setup with deformable lens for high-resolution microscopy

    Science.gov (United States)

    Pozzi, P.; Quintavalla, M.; Verstraete, H.; Bijlsma, H.; Bonora, S.; Verhaegen, M.

    2017-06-01

    It has been widely proven in literature that most optical microscopy techniques can greatly benefit from the application of adaptive optics correction of phase aberrations through an adaptive optical element, such as a deformable mirror or a spatial light modulator. However, adaptive optics is not yet widely adopted in the life sciences community, mostly due to the lack of adaptive commercial microscopy systems, and the inherent technical difficulty in modifying an existing microscopy setup to integrate an adaptive element, both on the software and hardware sides. We present a plug-and-play adaptive optics module for generic optical microscopes, based on a prototype refractive 18 actuators adaptive optical element, which can be inserted in any microscope between the objective and the microscope body. Correction is performed in a sensorless fashion, optimizing image quality metrics of the image presented to the user on screen. The results presented show how an end-user oriented commercial confocal laser scanning microscope (Leica SP5) can be upgraded with adaptive optics with minor hardware modifications, and no changes to the microscope control software.

  15. Laser beam propagation in nonlinear optical media

    CERN Document Server

    Guha, Shekhar

    2013-01-01

    ""This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then

  16. Laser-induced contamination on high-reflective optics

    OpenAIRE

    Wagner, Paul

    2014-01-01

    Operating high power space-based laser systems in the visible and UV range is problematic due to laser-induced contamination. Organic materials are outgassing in vacuum and deposit on irradiated optical components. To provide reliable space-based laser systems the optical components quality plays a major role. In this thesis laser-induced contamination growth on high-reflective coated optics is investigated for UV irradiation of 355nm with naphthalene as contamination material. Four different...

  17. Adaption of optical Fresnel transform to optical Wigner transform

    International Nuclear Information System (INIS)

    Lv Cuihong; Fan Hongyi

    2010-01-01

    Enlightened by the algorithmic isomorphism between the rotation of the Wigner distribution function (WDF) and the αth fractional Fourier transform, we show that the optical Fresnel transform performed on the input through an ABCD system makes the output naturally adapting to the associated Wigner transform, i.e. there exists algorithmic isomorphism between ABCD transformation of the WDF and the optical Fresnel transform. We prove this adaption in the context of operator language. Both the single-mode and the two-mode Fresnel operators as the image of classical Fresnel transform are introduced in our discussions, while the two-mode Wigner operator in the entangled state representation is introduced for fitting the two-mode Fresnel operator.

  18. Statistical learning methods for aero-optic wavefront prediction and adaptive-optic latency compensation

    Science.gov (United States)

    Burns, W. Robert

    Since the early 1970's research in airborne laser systems has been the subject of continued interest. Airborne laser applications depend on being able to propagate a near diffraction-limited laser beam from an airborne platform. Turbulent air flowing over the aircraft produces density fluctuations through which the beam must propagate. Because the index of refraction of the air is directly related to the density, the turbulent flow imposes aberrations on the beam passing through it. This problem is referred to as Aero-Optics. Aero-Optics is recognized as a major technical issue that needs to be solved before airborne optical systems can become routinely fielded. This dissertation research specifically addresses an approach to mitigating the deleterious effects imposed on an airborne optical system by aero-optics. A promising technology is adaptive optics: a feedback control method that measures optical aberrations and imprints the conjugate aberrations onto an outgoing beam. The challenge is that it is a computationally-difficult problem, since aero-optic disturbances are on the order of kilohertz for practical applications. High control loop frequencies and high disturbance frequencies mean that adaptive-optic systems are sensitive to latency in sensors, mirrors, amplifiers, and computation. These latencies build up to result in a dramatic reduction in the system's effective bandwidth. This work presents two variations of an algorithm that uses model reduction and data-driven predictors to estimate the evolution of measured wavefronts over a short temporal horizon and thus compensate for feedback latency. The efficacy of the two methods are compared in this research, and evaluated against similar algorithms that have been previously developed. The best version achieved over 75% disturbance rejection in simulation in the most optically active flow region in the wake of a turret, considerably outperforming conventional approaches. The algorithm is shown to be

  19. Adaptive optics in digital micromirror based confocal microscopy

    NARCIS (Netherlands)

    Pozzi, P.; Wilding, D.; Soloviev, O.A.; Vdovine, Gleb; Verhaegen, M.H.G.; Bifano, Thomas G.; Kubby, Joel; Gigan, Sylvain

    2016-01-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light

  20. Reflective afocal broadband adaptive optics scanning ophthalmoscope

    Science.gov (United States)

    Dubra, Alfredo; Sulai, Yusufu

    2011-01-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  1. Extragalactic Fields Optimized for Adaptive Optics

    Science.gov (United States)

    2011-03-01

    field (§ 5.2). 14Prom the list compiled by 1. Brinchmann; see http://www.strw.leidenuniv.nV -jadelSurveys/ DeepFields /index.html. ISNote that in Fig...single-laser, single wave- front sensor ) AO. 5.1. Figure of Merit Any number of figures of merit can be devised for intercom- paring the performance of...optics (MOAO) and systems with faint IR tip-tilt sensors whose images are sharpened by the AO system. Future AO systems are expected to be less sensitive

  2. Nonlinear Optics and Nonlinear Dynamics in Semiconductor Lasers Subject to External Optical Injection

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2000-01-01

    ...) arrays, and analysis of chaotic dynamics that can be induced by optical injection. Under external optical injection, all semiconductor lasers tested, conventional edge emitting Fabry Perot laser diodes, VCSELs, and distributed feedback (DFB...

  3. Integrated optic chip for laser threat identification

    Science.gov (United States)

    McAulay, Alastair D.

    2010-04-01

    In this conference last year, we proposed free-space gratings, Fizeau interferometers and wavefront estimation for detecting the different lasers deployed in the battlefield for range finding, target designation, communications, dazzle, location of targets, munitions guidance, and destruction. Since last year, advanced laser weapons of the electron cyclotron type, are in development, such as the free-electron laser, that are tunable and can, unlike conventional bound-electron state lasers, be used at any wavelength from microwaves to soft X-rays. We list the characteristics of the nine dominant laser weapons because we assume that the free-electron lasers will initially use one of the current threat wavelengths because of availability of components and instrumentation. In this paper we replace the free-space grating with a higher performing array waveguide grating integrated optic chip, similar to that used in telecommunications, because integrated circuits are more robust and less expensive. It consists of a star coupler that fans out amongst waveguides of different length followed by a star coupler that focuses different wavelengths to different outputs in order to separate them. Design equations are derived to cover a range of frequencies at specific frequency spacing relevant to this application.

  4. Lasers and optical fibers in medicine

    CERN Document Server

    Katzir, Abraham

    1993-01-01

    The increasing use of fiber optics in the field of medicine has created a need for an interdisciplinary perspective of the technology and methods for physicians as well as engineers and biophysicists. This book presents a comprehensive examination of lasers and optical fibers in an hierarchical, three-tier system. Each chapter is divided into three basic sections: the Fundamentals section provides an overview of basic concepts and background; the Principles section offers an in-depth engineering approach; and the Advances section features specific information on systems an

  5. Optical trapping with femtosecond laser pulses

    Science.gov (United States)

    Devi, Anita; Dhamija, Shaina; De, Arijit K.

    2017-08-01

    Laser trapping of 100nm diameter polystyrene bead under high repetition rate ultrafast pulsed excitation is studied theoretically as well as experimentally. In our theoretical analysis, we explore the role of optical Kerr effect at 50mW average power under pulsed excitation. In our experiment, we use a CMOS camera to record two-photon fluorescence signal from the trapped particle which decays with time due to photo-bleaching.

  6. Adaptive optics scanning ophthalmoscopy with annular pupils

    Science.gov (United States)

    Sulai, Yusufu N.; Dubra, Alfredo

    2012-01-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections. PMID:22808435

  7. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique.

    Science.gov (United States)

    Tang, Jianyong; Germain, Ronald N; Cui, Meng

    2012-05-29

    Biological tissues are rarely transparent, presenting major challenges for deep tissue optical microscopy. The achievable imaging depth is fundamentally limited by wavefront distortions caused by aberration and random scattering. Here, we report an iterative wavefront compensation technique that takes advantage of the nonlinearity of multiphoton signals to determine and compensate for these distortions and to focus light inside deep tissues. Different from conventional adaptive optics methods, this technique can rapidly measure highly complicated wavefront distortions encountered in deep tissue imaging and provide compensations for not only aberration but random scattering. The technique is tested with a variety of highly heterogeneous biological samples including mouse brain tissue, skull, and lymph nodes. We show that high quality three-dimensional imaging can be realized at depths beyond the reach of conventional multiphoton microscopy and adaptive optics methods, albeit over restricted distances for a given correction. Moreover, the required laser excitation power can be greatly reduced in deep tissues, deviating from the power requirement of ballistic light excitation and thus significantly reducing photo damage to the biological tissue.

  8. Adaptive laser link reconfiguration using constraint propagation

    Science.gov (United States)

    Crone, M. S.; Julich, P. M.; Cook, L. M.

    1993-01-01

    This paper describes Harris AI research performed on the Adaptive Link Reconfiguration (ALR) study for Rome Lab, and focuses on the application of constraint propagation to the problem of link reconfiguration for the proposed space based Strategic Defense System (SDS) Brilliant Pebbles (BP) communications system. According to the concept of operations at the time of the study, laser communications will exist between BP's and to ground entry points. Long-term links typical of RF transmission will not exist. This study addressed an initial implementation of BP's based on the Global Protection Against Limited Strikes (GPALS) SDI mission. The number of satellites and rings studied was representative of this problem. An orbital dynamics program was used to generate line-of-site data for the modeled architecture. This was input into a discrete event simulation implemented in the Harris developed COnstraint Propagation Expert System (COPES) Shell, developed initially on the Rome Lab BM/C3 study. Using a model of the network and several heuristics, the COPES shell was used to develop the Heuristic Adaptive Link Ordering (HALO) Algorithm to rank and order potential laser links according to probability of communication. A reduced set of links based on this ranking would then be used by a routing algorithm to select the next hop. This paper includes an overview of Constraint Propagation as an Artificial Intelligence technique and its embodiment in the COPES shell. It describes the design and implementation of both the simulation of the GPALS BP network and the HALO algorithm in COPES. This is described using a 59 Data Flow Diagram, State Transition Diagrams, and Structured English PDL. It describes a laser communications model and the heuristics involved in rank-ordering the potential communication links. The generation of simulation data is described along with its interface via COPES to the Harris developed View Net graphical tool for visual analysis of communications

  9. Optics detection and laser countermeasures on a combat vehicle

    Science.gov (United States)

    Sjöqvist, Lars; Allard, Lars; Pettersson, Magnus; Börjesson, Per; Lindskog, Nils; Bodin, Johan; Widén, Anders; Persson, Hâkan; Fredriksson, Jan; Edström, Sten

    2016-10-01

    Magnifying optical assemblies used for weapon guidance or rifle scopes may possess a threat for a combat vehicle and its personnel. Detection and localisation of optical threats is consequently of interest in military applications. Typically a laser system is used in optics detection, or optical augmentation, to interrogate a scene of interest to localise retroreflected laser radiation. One interesting approach for implementing optics detection on a combat vehicle is to use a continuous scanning scheme. In addition, optics detection can be combined with laser countermeasures, or a laser dazzling function, to efficiently counter an optical threat. An optics detection laser sensor demonstrator has been implemented on a combat vehicle. The sensor consists of a stabilised gimbal and was integrated together with a LEMUR remote electro-optical sight. A narrow laser slit is continuously scanned around the horizon to detect and locate optical threats. Detected threats are presented for the operator within the LEMUR presentation system, and by cueing a countermeasure laser installed in the LEMUR sensor housing threats can be defeated. Results obtained during a field demonstration of the optics detection sensor and the countermeasure laser will be presented. In addition, results obtained using a dual-channel optics detection system designed for false alarm reduction are also discussed.

  10. Bifurcation analysis of a semiconductor laser with filtered optical feedback

    NARCIS (Netherlands)

    Erzgraeber, H.; Krauskopf, B.; Lenstra, D.

    2007-01-01

    We study the dynamics and bifurcations of a semiconductor laser with delayed filtered optical feedback, where a part of the output of the laser reenters after spectral filtering. This type of coherent optical feedback is more challenging than the case of conventional optical feedback from a simple

  11. Adaptive optics system application for solar telescope

    Science.gov (United States)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Kovadlo, P. G.; Krivolutskiy, N. P.; Lavrionova, L. N.; Skomorovski, V. I.

    2008-07-01

    The possibility of applying adaptive correction to ground-based solar astronomy is considered. Several experimental systems for image stabilization are described along with the results of their tests. Using our work along several years and world experience in solar adaptive optics (AO) we are assuming to obtain first light to the end of 2008 for the first Russian low order ANGARA solar AO system on the Big Solar Vacuum Telescope (BSVT) with 37 subapertures Shack-Hartmann wavefront sensor based of our modified correlation tracker algorithm, DALSTAR video camera, 37 elements deformable bimorph mirror, home made fast tip-tip mirror with separate correlation tracker. Too strong daytime turbulence is on the BSVT site and we are planning to obtain a partial correction for part of Sun surface image.

  12. Laser optical pumping of sodium and lithium atom beams

    International Nuclear Information System (INIS)

    Cusma, J.T.

    1983-01-01

    The method of optical pumping with a continuous wave dye laser has been used to produce beams of polarized 23 Na atoms and polarized 6 Li atoms. Optical pumping of a 23 Na atom beam using either a multimode dye laser or a single frequency dye laser with a double passed acousto-optic modulator results in electron spin polarizations of 0.70-0.90 and nuclear spin polarizations of 0.75-0.90. Optical pumping of a 6 Li atom beam using a single frequency dye laser either with an acousto-optic modulator or with Doppler shift pumping results in electron spin polarizations of 0.77-0.95 and nuclear spin polarizations greater than 0.90. The polarization of the atom beam is measured using either the laser induced fluorescence in an intermediate magnetic field or a 6-pole magnet to determine the occupation probabilities of the ground hyperfine sublevels following optical pumping. The results of the laser optical pumping experiments agree with the results of a rate equation analysis of the optical pumping process which predicts that nearly all atoms are transferred into a single sublevel for our values of laser intensity and interaction time. The use of laser optical pumping in a polarized ion source for nuclear scattering experiments is discussed. The laser optical pumping method provides a means of constructing an intense source of polarized Li and Na ions

  13. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized.......We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  14. Optical laser systems at the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R.

    2015-01-01

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS

  15. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  16. Status of the ARGOS ground layer adaptive optics system

    Science.gov (United States)

    Gässler, Wolfgang; Rabien, Sebastian; Esposito, Simone; Lloyd-Hart, Michael; Barl, Lothar; Beckmann, Udo; Bluemchen, Thomas; Bonaglia, Marco; Borelli, José Luis; Brusa, Guido; Brynnel, Joar; Buschkamp, Peter; Busoni, Lorenzo; Carbonaro, Luca; Connot, Claus; Davies, Richard; Deysenroth, Matthias; Durney, Olivier; Green, Richard; Gemperlein, Hans; Gasho, Victor; Haug, Marcus; Hubbard, Pete; Ihle, Sebastian; Kulas, Martin; Lederer, Reinhard; Lewis, Jason; Loose, Christina; Lehmitz, Michael; Noenickx, Jamison; Nussbaum, Edmund; Orban de Xivry, Gilles; Peter, Diethard; Quirrenbach, Andreas; Rademacher, Matt; Raab, Walfried; Storm, Jesper; Schwab, Christian; Vaitheeswaran, Vidhya; Ziegleder, Julian

    2012-07-01

    ARGOS the Advanced Rayleigh guided Ground layer adaptive Optics System for the LBT (Large Binocular Telescope) is built by a German-Italian-American consortium. It will be a seeing reducer correcting the turbulence in the lower atmosphere over a field of 2' radius. In such way we expect to improve the spatial resolution over the seeing of about a factor of two and more and to increase the throughput for spectroscopy accordingly. In its initial implementation, ARGOS will feed the two near-infrared spectrograph and imager - LUCI I and LUCI II. The system consist of six Rayleigh lasers - three per eye of the LBT. The lasers are launched from the back of the adaptive secondary mirror of the LBT. ARGOS has one wavefront sensor unit per primary mirror of the LBT, each of the units with three Shack-Hartmann sensors, which are imaged on one detector. In 2010 and 2011, we already mounted parts of the instrument at the telescope to provide an environment for the main sub-systems. The commissioning of the instrument will start in 2012 in a staged approach. We will give an overview of ARGOS and its goals and report about the status and new challenges we encountered during the building phase. Finally we will give an outlook of the upcoming work, how we will operate it and further possibilities the system enables by design.

  17. Optical reprogramming with ultrashort femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  18. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    Science.gov (United States)

    2016-07-07

    are very useful for scientific and industrial applications. 15. SUBJECT TERMS Fibre Lasers, Laser Dynamics, Nonlinear Optical Materials 16. SECURITY...AFRL-AFOSR-JP-TR-2016-0059 Optical material researches for frontier optical ceramics and visible fiber laser technologies Yasushi Fujimoto Osaka...07-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 18 Apr 2013 to 17 Apr 2016 4. TITLE AND SUBTITLE Optical material researches for frontier

  19. International Conference on Laser Physics and Quantum Optics

    CERN Document Server

    Xie, Shengwu; Zhu, Shi-Yao; Scully, Marlan

    2000-01-01

    Since the advent of the laser about 40 years ago, the field of laser physics and quantum optics have evolved into a major discipline. The early studies included the optical coherence theory and the semiclassical and quantum mechanical theories of the laser. More recently many new and interesting effects have been predicted. These include the role of coherent atomic effects in lasing without inversion and electromagnetically induced transparency, atom optics, laser cooling and trapping, teleportation, the single-atom micromaser and its role in quantum measurement theory, to name a few. The International Conference on Laser Physics and Quantum Optics was held in Shanghai from August 25 to August 28, 1999, to discuss these and many other exciting developments in laser physics and quantum optics. The international character of the conference was manifested by the fact that scientists from over 13 countries participated and lectured at the conference. There were four keynote lectures delivered by Nobel laureate Wi...

  20. Adaptive optics optical coherence tomography at 1 MHz.

    Science.gov (United States)

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band.

  1. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    International Nuclear Information System (INIS)

    Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ('Medipix2') with individual pixels that amplify, discriminate and count input events. The detector has 256x256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7x7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest

  2. Adaptive High Frequency Laser Sonar System

    National Research Council Canada - National Science Library

    Cray, Benjamin A

    2007-01-01

    .... Antivibration mounts are joined between said scanning laser vibrometer and said housing. In further embodiments, the scanning laser vibrometer detects vibrations at a plurality of locations on the acoustic window forming a virtual array...

  3. Static optical sorting in a laser interference field

    Czech Academy of Sciences Publication Activity Database

    Jákl, Petr; Čižmár, Tomáš; Šerý, Mojmír; Zemánek, Pavel

    2008-01-01

    Roč. 92, č. 16 (2008), 161110: 1-3 ISSN 0003-6951 R&D Projects: GA AV ČR KJB100650601; GA MŠk(CZ) LC06007 Institutional research plan: CEZ:AV0Z20650511 Keywords : standing wave * optical lattice * optical sorting * optical micromanipulations Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.726, year: 2008

  4. PASSATA - Object oriented numerical simulation software for adaptive optics

    OpenAIRE

    Agapito, G.; Puglisi, A.; Esposito, S.

    2016-01-01

    We present the last version of the PyrAmid Simulator Software for Adaptive opTics Arcetri (PASSATA), an IDL and CUDA based object oriented software developed in the Adaptive Optics group of the Arcetri observatory for Monte-Carlo end-to-end adaptive optics simulations. The original aim of this software was to evaluate the performance of a single conjugate adaptive optics system for ground based telescope with a pyramid wavefront sensor. After some years of development, the current version of ...

  5. Receding-horizon adaptive contyrol of aero-optical wavefronts

    NARCIS (Netherlands)

    Tesch, J.; Gibson, S.; Verhaegen, M.

    2013-01-01

    A new method for adaptive prediction and correction of wavefront errors in adaptive optics (AO) is introduced. The new method is based on receding-horizon control design and an adaptive lattice filter. Experimental results presented illustrate the capability of the new adaptive controller to predict

  6. Electro-optics and lasers in Israel

    Science.gov (United States)

    Van Zwaren, Joesph

    1992-05-01

    With over 3,000 scientists, engineers, and technicians spread out in some 86 companies, and in 10 universities and research institutes, all within less than a 2 hour drive from one another, Israel has no doubt one of the largest concentrations of researchers and skilled manpower in electro-optics and lasers in the world. This report presents an up-to-date picture of the field in Israel, covering the industry, academia and education. The recent wave of Russian immigration is bringing thousands of scientists and tens of thousands of engineers and is expected to make an impact on the field of electro-optics and lasers. A million immigrants from Russia are expected to come between 1990 and 1995. There were 3,700 scientists and 2,800 engineers among the first 200,000 Soviet immigrants. As most of this qualified manpower can not be expected to be absorbed by the existing industry, the Israeli government is actively encouraging local and foreign investors and local and multinational companies to help develop new and expanded high-tech enterprises in Israel. The Ministry of Industry and Trade has embarked upon a broad ranged program for industrial growth and immigrant absorption with the goal of doubling technology-based exports in the next four years. The Ministry of Science and Technology has started a program supporting R&D projects at the different universities for immigrant scientists with the goal of capitalizing on the talents of the newcomers to strengthen academia.

  7. Optical Cutting Interruption Sensor for Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Benedikt Adelmann

    2015-09-01

    Full Text Available We report on an optical sensor system attached to a 4 kW fiber laser cutting machine to detect cutting interruptions. The sensor records the thermal radiation from the process zone with a modified ring mirror and optical filter arrangement, which is placed between the cutting head and the collimator. The process radiation is sensed by a Si and InGaAs diode combination with the detected signals being digitalized with 20 kHz. To demonstrate the function of the sensor, signals arising during fusion cutting of 1 mm stainless steel and mild steel with and without cutting interruptions are evaluated and typical signatures derived. In the recorded signals the piercing process, the laser switch on and switch off point and waiting period are clearly resolved. To identify the cutting interruption, the signals of both Si and InGaAs diodes are high pass filtered and the signal fluctuation ranges being subsequently calculated. Introducing a correction factor, we identify that only in case of a cutting interruption the fluctuation range of the Si diode exceeds the InGaAs diode. This characteristic signature was successfully used to detect 80 cutting interruptions of 83 incomplete cuts (alpha error 3.6% and system recorded no cutting interruption from 110 faultless cuts (beta error of 0. This particularly high detection rate in combination with the easy integration of the sensor, highlight its potential for cutting interruption detection in industrial applications.

  8. Adaptive optics for structured illumination microscopy.

    Science.gov (United States)

    Débarre, Delphine; Botcherby, Edward J; Booth, Martin J; Wilson, Tony

    2008-06-23

    We implement wave front sensor-less adaptive optics in a structured illumination microscope. We investigate how the image formation process in this type of microscope is affected by aberrations. It is found that aberrations can be classified into two groups, those that affect imaging of the illumination pattern and those that have no influence on this pattern. We derive a set of aberration modes ideally suited to this application and use these modes as the basis for an efficient aberration correction scheme. Each mode is corrected independently through the sequential optimisation of an image quality metric. Aberration corrected imaging is demonstrated using fixed fluorescent specimens. Images are further improved using differential aberration imaging for reduction of background fluorescence.

  9. A Simplified Laser and Optics System for Laser-Cooled RB Fountain Frequency Standards

    National Research Council Canada - National Science Library

    Kunz, P. D; Heavner, T. P; Jefferts, S. R

    2007-01-01

    ...) atomic fountain frequency standard. This system uses DFB (Distributed Feedback) diode lasers and a frequency offset-locking scheme to generate the optical frequencies needed for laser-cooling, launching, post-cooling, and detection of Rb atoms...

  10. Robust adaptive optics systems for vision science

    Science.gov (United States)

    Burns, S. A.; de Castro, A.; Sawides, L.; Luo, T.; Sapoznik, K.

    2018-02-01

    Adaptive Optics (AO) is of growing importance for understanding the impact of retinal and systemic diseases on the retina. While AO retinal imaging in healthy eyes is now routine, AO imaging in older eyes and eyes with optical changes to the anterior eye can be difficult and requires a control and an imaging system that is resilient when there is scattering and occlusion from the cornea and lens, as well as in the presence of irregular and small pupils. Our AO retinal imaging system combines evaluation of local image quality of the pupil, with spatially programmable detection. The wavefront control system uses a woofer tweeter approach, combining an electromagnetic mirror and a MEMS mirror and a single Shack Hartmann sensor. The SH sensor samples an 8 mm exit pupil and the subject is aligned to a region within this larger system pupil using a chin and forehead rest. A spot quality metric is calculated in real time for each lenslet. Individual lenslets that do not meet the quality metric are eliminated from the processing. Mirror shapes are smoothed outside the region of wavefront control when pupils are small. The system allows imaging even with smaller irregular pupils, however because the depth of field increases under these conditions, sectioning performance decreases. A retinal conjugate micromirror array selectively directs mid-range scatter to additional detectors. This improves detection of retinal capillaries even when the confocal image has poorer image quality that includes both photoreceptors and blood vessels.

  11. Analysis of laser-induced heating in optical neuronal guidance

    DEFF Research Database (Denmark)

    Ebbesen, Christian L.; Bruus, Henrik

    2012-01-01

    Recently, it has been shown that it is possible to control the growth direction of neuronal growth cones by stimulation with weak laser light; an effect dubbed optical neuronal guidance. The effect exists for a broad range of laser wavelengths, spot sizes, spot intensities, optical intensity...

  12. Effect of External Optical Feedback for Nano-laser Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2013-01-01

    We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers.......We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers....

  13. Optical System Design and Integration of the Mercury Laser Altimeter

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  14. Versatile optical manipulation system for inspection, laser processing, and isolation of individual living cells

    Science.gov (United States)

    Stuhrmann, B.; Jahnke, H.-G.; Schmidt, M.; Jähn, K.; Betz, T.; Müller, K.; Rothermel, A.; Käs, J.; Robitzki, A. A.

    2006-06-01

    Isolation of individual cells from a heterogeneous cell population is an invaluable step in the analysis of single cell properties. The demands in molecular and cellular biology as well as molecular medicine are the selection, isolation, and monitoring of single cells and cell clusters of biopsy material. Of particular interest are methods which complement a passive optical or spectroscopic selection with a variety of active single cell processing techniques such as mechanical, biochemical, or genetic manipulation prior to isolation. Sophisticated laser-based cell processing systems are available which can perform single cell processing in a contact-free and sterile manner. Until now, however, these multipurpose turnkey systems offer only basic micromanipulation and are not easily modified or upgraded, whereas laboratory situations often demand simple but versatile and adaptable solutions. We built a flexible laser micromanipulation platform combining contact-free microdissection and catapulting capabilities using a pulsed ultraviolet (337nm) laser with simultaneous generation of optical tweezing forces using a continuous wave infrared (1064nm) laser. The potential of our platform is exemplified with techniques such as local laser-induced injection of biomolecules into individual living cells, laser surgery, isolation of single cells by laser catapulting, and control of neuronal growth using optical gradient forces. Arbitrary dynamic optical force patterns can be created by fast laser scanning with acousto-optical deflectors and galvanometer mirrors, allowing multibeam contact-free micromanipulation, a prerequisite for reliable handling of material in laboratory-on-a-chip applications. All common microscopy techniques can be used simultaneously with the offered palette of micromanipulation methods. Taken together, we show that advanced optical micromanipulation systems can be designed which combine quality, cost efficiency, and adaptability.

  15. Optical pumping of Rb by Ti:Sa laser and high-power laser diode

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Rychnovský, Jan; Lazar, Josef

    2006-01-01

    Roč. 8, č. 1 (2006), s. 350-354 ISSN 1454-4164 R&D Projects: GA AV ČR IAA1065303; GA ČR GA102/04/2109 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical pumping * Ti:Sa laser * laser diode * emission linewidth * spectroscopy * laser frequency stabilization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.106, year: 2006

  16. Design of the Dual Conjugate Adaptive Optics Test-bed

    Science.gov (United States)

    Sharf, Inna; Bell, K.; Crampton, D.; Fitzsimmons, J.; Herriot, Glen; Jolissaint, Laurent; Lee, B.; Richardson, H.; van der Kamp, D.; Veran, Jean-Pierre

    In this paper, we describe the Multi-Conjugate Adaptive Optics laboratory test-bed presently under construction at the University of Victoria, Canada. The test-bench will be used to support research in the performance of multi-conjugate adaptive optics, turbulence simulators, laser guide stars and miniaturizing adaptive optics. The main components of the test-bed include two micro-machined deformable mirrors, a tip-tilt mirror, four wavefront sensors, a source simulator, a dual-layer turbulence simulator, as well as computational and control hardware. The paper will describe in detail the opto-mechanical design of the adaptive optics module, the design of the hot-air turbulence generator and the configuration chosen for the source simulator. Below, we present a summary of these aspects of the bench. The optical and mechanical design of the test-bed has been largely driven by the particular choice of the deformable mirrors. These are continuous micro-machined mirrors manufactured by Boston Micromachines Corporation. They have a clear aperture of 3.3 mm and are deformed with 140 actuators arranged in a square grid. Although the mirrors have an open-loop bandwidth of 6.6 KHz, their shape can be updated at a sampling rate of 100 Hz. In our optical design, the mirrors are conjugated at 0km and 10 km in the atmosphere. A planar optical layout was achieved by using four off-axis paraboloids and several folding mirrors. These optics will be mounted on two solid blocks which can be aligned with respect to each other. The wavefront path design accommodates 3 monochromatic guide stars that can be placed at either 90 km or at infinity. The design relies on the natural separation of the beam into 3 parts because of differences in locations of the guide stars in the field of view. In total four wavefront sensors will be procured from Adaptive Optics Associates (AOA) or built in-house: three for the guide stars and the fourth to collect data from the science source output in

  17. Comparison of closed loop and sensorless adaptive optics in widefield optical microscopy.

    OpenAIRE

    Bourgenot, C.; Saunter, C.D.; Love, G.D.; Girkin, J.M.

    2013-01-01

    We report on a closed loop widefield adaptive optics, optical microscopy system in which the feedback signal is provided by backscattered light from the sample acting as a guide star. The improvement in imaging performance is compared to an adaptive optics system controlled via an image optimisation routine commonly described as sensorless adaptive optics. The samples viewed were imaged without fluorescence to ensure that photobleaching and other potential variations did not affect the compar...

  18. Linear diode laser bar optical stretchers for cell deformation

    Science.gov (United States)

    Sraj, Ihab; Marr, David W.M.; Eggleton, Charles D.

    2010-01-01

    To investigate the use of linear diode laser bars to optically stretch cells and measure their mechanical properties, we present numerical simulations using the immersed boundary method (IBM) coupled with classic ray optics. Cells are considered as three-dimensional (3D) spherical elastic capsules immersed in a fluid subjected to both optical and hydrodynamic forces in a periodic domain. We simulate cell deformation induced by both single and dual diode laser bar configurations and show that a single diode laser bar induces significant stretching but also induces cell translation of speed < 10 µm/sec for applied 6.6 mW/µm power in unconfined systems. The dual diode laser bar configuration, however, can be used to both stretch and optically trap cells at a fixed position. The net cell deformation was found to be a function of the total laser power and not the power distribution between single or dual diode laser bar configurations. PMID:21258483

  19. The Laser Level as an Optics Laboratory Tool

    Science.gov (United States)

    Kutzner, Mickey

    2013-01-01

    For decades now, the laser has been used as a handy device for performing ray traces in geometrical optics demonstrations and laboratories. For many ray- trace applications, I have found the laser level 3 to be even more visually compelling and easy for student use than the laser pointer.

  20. 2nd Topical Workshop on Laser Technology and Optics Design

    CERN Document Server

    2013-01-01

    Lasers have a variety of applications in particle accelerator operation and will play a key role in the development of future particle accelerators by improving the generation of high brightness electron and exotic ion beams and through increasing the acceleration gradient. Lasers will also make an increasingly important contribution to the characterization of many complex particle beams by means of laser-based beam diagnostics methods. The second LANET topical workshop will address the key aspects of laser technology and optics design relevant to laser application to accelerators. The workshop will cover general optics design, provide an overview of different laser sources and discuss methods to characterize beams in details. Participants will be able to choose from a range of topical areas that go deeper in more specific aspects including tuneable lasers, design of transfer lines, noise sources and their elimination and non-linear optics effects. The format of the workshop will be mainly training-based wit...

  1. The Durham Adaptive Optics Simulation Platform (DASP): Current status

    Science.gov (United States)

    Basden, A. G.; Bharmal, N. A.; Jenkins, D.; Morris, T. J.; Osborn, J.; Peng, J.; Staykov, L.

    2018-01-01

    The Durham Adaptive Optics Simulation Platform (DASP) is a Monte-Carlo modelling tool used for the simulation of astronomical and solar adaptive optics systems. In recent years, this tool has been used to predict the expected performance of the forthcoming extremely large telescope adaptive optics systems, and has seen the addition of several modules with new features, including Fresnel optics propagation and extended object wavefront sensing. Here, we provide an overview of the features of DASP and the situations in which it can be used. Additionally, the user tools for configuration and control are described.

  2. Optical Injection into Laser Wake Field Accelerators

    CERN Document Server

    Cary, John R; Esarey, Eric; Geddes, Cameron G R; Giacone, Rodolfo; Leemans, Wim; Nieter, Chet

    2005-01-01

    The accelerating gradient of laser-generated wake fields in plasmas can be orders of magnitude greater than the gradients obtainable in traditional, rf structures. One of the hurdles to overcome on the road to practical utilization of said plasma wake fields for production of high energy particles is the creation of quality beams having significant charge, low emittance, and narrow energy spread. To generate appropriate beams, various injection methods have been proposed. Injection by conventional means of beam prepartion using conventional technology is very difficult, as the accelerating buckets are only tens of microns long. Therefore, the field has turned to all-optical injection schemes, which include injection by colliding pulses, plasma ramps, wave breaking, and self-trapping through pulse evolution. This talk will review the various concepts proposed for injection, including plasma ramps, colliding pulses, and self trapping. The results of simulations and experiments will be discussed along with propo...

  3. Electro-optical sensor with automatic suppression of laser dazzling

    OpenAIRE

    Ritt, Gunnar; Eberle, Bernd

    2012-01-01

    The progress in laser technology leads to very compact but nevertheless powerful laser sources. In the visible and near infrared spectral region, lasers of any wavelength can be purchased. Especially continuous wave laser sources pose a serious threat to the human eye and electro-optical sensors due to their high proliferation and easy availability. The manifold of wavelengths cannot be encountered by conventional safety measures like absorption or interference filters. We present a protectio...

  4. Temporal laser pulse manipulation using multiple optical ring-cavities

    Science.gov (United States)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  5. All-Optical Laser-Wakefield Electron Injector

    International Nuclear Information System (INIS)

    Umstadter, Donald P.

    2003-01-01

    Demonstrated the principle of optical control of laser accelerators, namely, that one laser pulse could modify the properties (e.g., emittance and electron number) of an electron beam accelerated by a separate but synchronized laser pulse. Another recent highlight was that, using our new 30-fs 10-TW laser system, we accelerated with a laser accelerator an electron beam with a record low divergence (0.2 degrees). This is more than 100 times lower than the 30-degree divergence that was reported recently by a French group using a laser with similar parameters

  6. Linear zonal atmospheric prediction for adaptive optics

    Science.gov (United States)

    McGuire, Patrick C.; Rhoadarmer, Troy A.; Coy, Hanna A.; Angel, J. Roger P.; Lloyd-Hart, Michael

    2000-07-01

    We compare linear zonal predictors of atmospheric turbulence for adaptive optics. Zonal prediction has the possible advantage of being able to interpret and utilize wind-velocity information from the wavefront sensor better than modal prediction. For simulated open-loop atmospheric data for a 2- meter 16-subaperture AO telescope with 5 millisecond prediction and a lookback of 4 slope-vectors, we find that Widrow-Hoff Delta-Rule training of linear nets and Back- Propagation training of non-linear multilayer neural networks is quite slow, getting stuck on plateaus or in local minima. Recursive Least Squares training of linear predictors is two orders of magnitude faster and it also converges to the solution with global minimum error. We have successfully implemented Amari's Adaptive Natural Gradient Learning (ANGL) technique for a linear zonal predictor, which premultiplies the Delta-Rule gradients with a matrix that orthogonalizes the parameter space and speeds up the training by two orders of magnitude, like the Recursive Least Squares predictor. This shows that the simple Widrow-Hoff Delta-Rule's slow convergence is not a fluke. In the case of bright guidestars, the ANGL, RLS, and standard matrix-inversion least-squares (MILS) algorithms all converge to the same global minimum linear total phase error (approximately 0.18 rad2), which is only approximately 5% higher than the spatial phase error (approximately 0.17 rad2), and is approximately 33% lower than the total 'naive' phase error without prediction (approximately 0.27 rad2). ANGL can, in principle, also be extended to make non-linear neural network training feasible for these large networks, with the potential to lower the predictor error below the linear predictor error. We will soon scale our linear work to the approximately 108-subaperture MMT AO system, both with simulations and real wavefront sensor data from prime focus.

  7. Advanced in Nonlinear Optics and Laser Research and Development

    International Nuclear Information System (INIS)

    Jackel, S.; Kotler, Z; Lavi, R.; Sternklar, S.

    1996-01-01

    The Nonlinear Optics Group (NLOG) at Soreq NRC is engaged in the development of fundamental and applied technology in the related fields of nonlinear optics and laser development. Our work in nonlinear optics started with the goal of improving laser performance. These efforts were successful and opened the way for R and D in nonlinear optics for other applications. Today we use nonlinear optics to enable continuous tunability of lasers, control the path of light beams, modulate a light signal rapidly, provide optical data storage, and supply new means of microscopically probing biological and inorganic samples. Technology maturation and interaction with users will show which aspects of nonlinear optics will make the most impact

  8. Fiber optic and laser sensors III

    International Nuclear Information System (INIS)

    Moore, E.L.; Ramer, O.G.

    1985-01-01

    Fiber Optic and Laser Sensors III is the third of a planned series of conferences dealing with state-of-the-art advancement in this technology area. Historically this conference has evolved due to the pioneering work aimed at acoustic and rotation sensing at several government and university laboratories (e.g., Naval Research Laboratory, MIT, and Stanford). At this point, if it can be sensed (temperature, magnetic field, blood pressure, rotation, flow, liquid level, current, voltage, gas and liquid chemistry, etc.) someone is trying to do it with fibers; many of these activities are recorded in this publication. A new activity, broadband sensors, was introduced at this conference; the major thrust is to use the large bandwidth of the optical fiber and conventional sensor to record single occurrence events (e.g., a nuclear explosion). Other important areas of presentation were: stress in composites, distributed sensors, and sensors for biological/medical applications. Although several papers were presented by major industrial companies related to the continuing development of the rotation sensor, the participation was limited by the evolution toward products, a natural path (as new technology progresses research and development become specific to proprietary designs)

  9. REFINED MODEL OF THE OPTICAL SYSTEM FOR SPACE MINI-VEHICLES WITH LASER PROPULSION

    Directory of Open Access Journals (Sweden)

    M. S. Egorov

    2015-09-01

    Full Text Available Simulation results for on-board optical system of a space mini-vehicle with laser propulsion are presented. This system gives the possibility for receiving theremote laser radiation power independently of a system telescope mutual orientation to the vehicle orbiting direction. The on-board optical system is designed with the use of such optical elements as optical hinges and turrets. The system incorporates the optical switch that is a special optical system adapting optically both receiving telescope and laser propulsion engines. Modeling and numerical simulation of the system have been performed with the use of ZEMAX software (Radiant Ltd. The object matter of calculations lied in size definition of system optical elements, requirements to accuracy of their manufacturing and reciprocal adjusting to achieve an efficient radiation energy delivery to laser propulsion engine. Calculations have been performed with account to the limitations on the mini-vehicle mass, its overall dimensions, and radiation threshold density of the optical elements utilized. The requirements to the laser beam quality at the entrance aperture of laser propulsion engine have been considered too. State-of-the-art optical technologies make it possible to manufacture space reflectors made of CO-115M glassceramics with weight-reducing coefficient of 0.72 and the radiation threshold of 5 J/cm2 for the radiation with a 1.064 microns wavelength at 10-20 ns pulse duration. The optimal diameter of a receiving telescope primary mirror has been 0.5 m when a coordinated transmitting telescope diameter is equal to 1 m. This provides the reception of at least 84% of laser energy. The main losses of radiation energy are caused by improper installation of receiving telescope mirrors and by in-process errors arising at manufacturing the telescope mirrors with a parabolic surface. It is shown that requirements to the in-process admissible errors for the on-board optical system elements

  10. Advanced metaheuristic algorithms for laser optimization in optical accelerator technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tomizawa, Hiromitsu, E-mail: hiro@spring8.or.jp [Japan Synchrotron Radiation Research Institute (JASRI), XFEL Joint Project/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo (Japan)

    2011-10-15

    Lasers are among the most important experimental tools for user facilities, including synchrotron radiation and free electron lasers (FEL). In the synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for X-ray-FELs, lasers play important roles as seed light sources or photocathode-illuminating light sources to generate a high-brightness electron bunch. For future accelerators, laser-based techonologies such as electro-optic (EO) sampling to measure ultra-short electron bunches and optical-fiber-based femtosecond timing systems have been intensively developed in the last decade. Therefore, controls and optimizations of laser pulse characteristics are strongly required for many kinds of experiments and improvement of accelerator systems. However, people believe that lasers should be tuned and customized for each requirement manually by experts. This makes it difficult for laser systems to be part of the common accelerator infrastructure. Automatic laser tuning requires sophisticated algorithms, and the metaheuristic algorithm is one of the best solutions. The metaheuristic laser tuning system is expected to reduce the human effort and time required for laser preparations. I have shown some successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles, and a hill-climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each machine requirement.

  11. Advanced metaheuristic algorithms for laser optimization in optical accelerator technologies

    International Nuclear Information System (INIS)

    Tomizawa, Hiromitsu

    2011-01-01

    Lasers are among the most important experimental tools for user facilities, including synchrotron radiation and free electron lasers (FEL). In the synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for X-ray-FELs, lasers play important roles as seed light sources or photocathode-illuminating light sources to generate a high-brightness electron bunch. For future accelerators, laser-based techonologies such as electro-optic (EO) sampling to measure ultra-short electron bunches and optical-fiber-based femtosecond timing systems have been intensively developed in the last decade. Therefore, controls and optimizations of laser pulse characteristics are strongly required for many kinds of experiments and improvement of accelerator systems. However, people believe that lasers should be tuned and customized for each requirement manually by experts. This makes it difficult for laser systems to be part of the common accelerator infrastructure. Automatic laser tuning requires sophisticated algorithms, and the metaheuristic algorithm is one of the best solutions. The metaheuristic laser tuning system is expected to reduce the human effort and time required for laser preparations. I have shown some successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles, and a hill-climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each machine requirement.

  12. Design of least-mean-square based adaptive optical equalizers

    Science.gov (United States)

    Ghosh, Anjan; Barner, Jim; Paparao, Palacharla

    1992-07-01

    Dispersion effects and attenuation over long distances cause degradation to a signal waveform in any communication channel, even optical fibers. Equalization is the process of restoring the shape of the signal waveform. Most current equalization techniques to combat signal distortion in optical fibers rely upon complex electronic realizations to process data converted from the optical signal of interest. The focus of this paper is to study the feasibility of designing efficient optical adaptive equalizers for the optical processing of guided lightwave signal waveforms corrupted by dispersion and attenuation effects varying slowly with time. The least-mean-square algorithm is used to adapt an equalizer's weights in real-time as the optical channel varies. The convergence and learning capabilities of the equalizer are analyzed as a function of the equalizer parameters and optical hardware errors. Optimal equalizer parameters are determined through analysis and numerical simulation such that the effects of optical errors and noise are reduced.

  13. Adaptive optics retinal imaging in the living mouse eye

    Science.gov (United States)

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H.; Sharma, Robin; Libby, Richard T.; Williams, David R.

    2012-01-01

    Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo. PMID:22574260

  14. Laser cooling in a feedback-controlled optical shaker

    International Nuclear Information System (INIS)

    Vilensky, Mark Y.; Averbukh, Ilya Sh.; Prior, Yehiam

    2006-01-01

    We explore the prospects of optical shaking, a recently suggested generic approach to laser cooling of neutral atoms and molecules. Optical shaking combines elements of Sisyphus cooling and of stochastic cooling techniques and is based on feedback-controlled interaction of particles with strong nonresonant laser fields. The feedback loop guarantees a monotonous energy decrease without a loss of particles. We discuss two types of feedback algorithms and provide an analytical estimation of their cooling rate. We study the robustness of optical shaking against noise and establish minimal stability requirements for the lasers. The analytical predictions are in a good agreement with the results of detailed numerical simulations

  15. Research on the compensation of laser launch optics to improve the performance of the LGS spot.

    Science.gov (United States)

    Liu, Jie; Wang, Jianli; Wang, Yuning; Tian, Donghe; Zheng, Quan; Lin, Xudong; Wang, Liang; Yang, Qingyun

    2018-02-01

    To improve the beam quality of the uplink laser, a 37 channel piezo-ceramic deformable mirror was inserted into the laser launch optics to compensate the static aberrations. An interferometer was used as the calibration light source as well as the wavefront sensor to perform closed-loop correction for the moment. About 0.38λ root mean square (rms) aberrations, including the deformable mirror's initial figure error, were compensated, and the residual error was less than 0.07λ rms. Field observations with a 2 m optical telescope demonstrated that the peak intensity value of the laser guide star (LGS) spot increased from 5650 to 7658, and the full width at half-maximum (FWHM) size reduced from 4.07 arcseconds to 3.52 arcseconds. With the compensation, an improved guide star spot can be obtained, which is crucial for the adaptive optics systems of ground-based large telescopes.

  16. Adaptive Filtering, Identification, and Control with Applications to Adaptive Optics

    National Research Council Canada - National Science Library

    Gibson, Steve

    2003-01-01

    .... Additional application areas included optical communication systems, blind identification and deconvolution, active control of noise and vibration, and detection of damage in elastic structures...

  17. IR-laser assisted additive freeform optics manufacturing.

    Science.gov (United States)

    Hong, Zhihan; Liang, Rongguang

    2017-08-02

    Computer-controlled additive manufacturing (AM) processes, also known as three-dimensional (3D) printing, create 3D objects by the successive adding of a material or materials. While there have been tremendous developments in AM, the 3D printing of optics is lagging due to the limits in materials and tight requirements for optical applicaitons. We propose a new precision additive freeform optics manufacturing (AFOM) method using an pulsed infrared (IR) laser. Compared to ultraviolet (UV) curable materials, thermally curable optical silicones have a number of advantages, such as strong UV stability, non-yellowing, and high transmission, making it particularly suitable for optical applications. Pulsed IR laser radiation offers a distinct advantage in processing optical silicones, as the high peak intensity achieved in the focal region allows for curing the material quickly, while the brief duration of the laser-material interaction creates a negligible heat-affected zone.

  18. Optical-Thermal Response of Laser-Irradiated Tissue

    CERN Document Server

    Welch, Ashley J

    2011-01-01

    The second edition of 'Optical-Thermal Response of Laser-Irradiated Tissue' maintains the standard of excellence established in the first edition, while adjusting the content to reflect changes in tissue optics and medical applications since 1995. The material concerning light propagation now contains new chapters devoted to electromagnetic theory for coherent light. The material concerning thermal laser-tissue interactions contains a new chapter on pulse ablation of tissue. The medical applications section now includes several new chapters on Optical Coherent Tomography, acoustic imaging, molecular imaging, forensic optics and nerve stimulation. A detailed overview is provided of the optical and thermal response of tissue to laser irradiation along with diagnostic and therapeutic examples including fiber optics. Sufficient theory is included in the book so that it is suitable for a one or two semester graduate or for senior elective courses. Material covered includes: 1. light propagation and diagnostic appl...

  19. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain.

    Science.gov (United States)

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain.

  20. Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas.

    Science.gov (United States)

    Gualda, Emilio J; Vázquez de Aldana, Javier R; Martínez-García, M Carmen; Moreno, Pablo; Hernández-Toro, Juan; Roso, Luis; Artal, Pablo; Bueno, Juan M

    2011-11-01

    The performance of femtosecond (fs) laser intrastromal ablation was evaluated with backscattering-mode adaptive-optics multiphoton microscopy in ex vivo chicken corneas. The pulse energy of the fs source used for ablation was set to generate two different ablation patterns within the corneal stroma at a certain depth. Intrastromal patterns were imaged with a custom adaptive-optics multiphoton microscope to determine the accuracy of the procedure and verify the outcomes. This study demonstrates the potential of using fs pulses as surgical and monitoring techniques to systematically investigate intratissue ablation. Further refinement of the experimental system by combining both functions into a single fs laser system would be the basis to establish new techniques capable of monitoring corneal surgery without labeling in real-time. Since the backscattering configuration has also been optimized, future in vivo implementations would also be of interest in clinical environments involving corneal ablation procedures.

  1. Optical implementations of associative networks with versatile adaptive learning capabilities.

    Science.gov (United States)

    Fisher, A D; Lippincott, W L; Lee, J N

    1987-12-01

    Optical associative, parallel-processing architectures are being developed using a multimodule approach, where a number of smaller, adaptive, associative modules are nonlinearly interconnected and cascaded under the guidance of a variety of organizational principles to structure larger architectures for solving specific problems. A number of novel optical implementations with versatile adaptive learning capabilities are presented for the individual associative modules, including holographic configurations and five specific electrooptic configurations. The practical issues involved in real optical architectures are analyzed, and actual laboratory optical implementations of associative modules based on Hebbian and Widrow-Hoff learning rules are discussed, including successful experimental demonstrations of their operation.

  2. Semiconductor Laser Complex Dynamics: From Optical Neurons to Optical Rogue Waves

    Science.gov (United States)

    2017-02-11

    AFRL-AFOSR-UK-TR-2017-0009 Semiconductor laser complex dynamics: from optical neurons to optical rogue waves Christina Masoller UNIVERSIDAD...11-02-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 30 Sep 2014 to 29 Sep 2016 4. TITLE AND SUBTITLE Semiconductor laser complex dynamics...dynamics of semiconductor lasers with two main goals: i) to advance our understanding of nonlinear and stochastic phenomena and ii) to exploit the

  3. ADAPTIVE OPTICS IMAGING OF FOVEAL SPARING IN GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION.

    Science.gov (United States)

    Querques, Giuseppe; Kamami-Levy, Cynthia; Georges, Anouk; Pedinielli, Alexandre; Capuano, Vittorio; Blanco-Garavito, Rocio; Poulon, Fanny; Souied, Eric H

    2016-02-01

    To describe adaptive optics (AO) imaging of foveal sparing in geographic atrophy (GA) secondary to age-related macular degeneration. Flood-illumination AO infrared (IR) fundus images were obtained in four consecutive patients with GA using an AO retinal camera (rtx1; Imagine Eyes). Adaptive optics IR images were overlaid with confocal scanning laser ophthalmoscope near-IR autofluorescence images to allow direct correlation of en face AO features with areas of foveal sparing. Adaptive optics appearance of GA and foveal sparing, preservation of functional photoreceptors, and cone densities in areas of foveal sparing were investigated. In 5 eyes of 4 patients (all female; mean age 74.2 ± 11.9 years), a total of 5 images, sized 4° × 4°, of foveal sparing visualized on confocal scanning laser ophthalmoscope near-IR autofluorescence were investigated by AO imaging. En face AO images revealed GA as regions of inhomogeneous hyperreflectivity with irregularly dispersed hyporeflective clumps. By direct comparison with adjacent regions of GA, foveal sparing appeared as well-demarcated areas of reduced reflectivity with less hyporeflective clumps (mean 14.2 vs. 3.2; P = 0.03). Of note, in these areas, en face AO IR images revealed cone photoreceptors as hyperreflective dots over the background reflectivity (mean cone density 3,271 ± 1,109 cones per square millimeter). Microperimetry demonstrated residual function in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence. Adaptive optics allows the appreciation of differences in reflectivity between regions of GA and foveal sparing. Preservation of functional cone photoreceptors was demonstrated on en face AO IR images in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence.

  4. Pretty Lights and Glowing Rocks: Using Lasers Pointers to Demonstrate Optical Phenomena

    Science.gov (United States)

    Huang, A.; Bodner, G.; Zheng, C.

    2011-12-01

    Green and violet lasers have recently become both inexpensive and portable, more than 70 years after the first laser was built. Despite the technology's age, the general public is still fascinated by the exotic nature of laser light. This activity uses green and violet laser pointers to produce a veritable rainbow of colors from household items and common minerals. Our objective is to create an educational experience which uses vivid colors and appealing effects to engage the audience, while teaching basic optical concepts such as scattering, fluorescence, Snell's law, and the quantum nature of light. The activity can be adapted to a lecture demonstration or to a laboratory exercise in which students handle the lasers and test samples. Learning outcomes have not been formally measured, but this demonstration will still captivate audiences in museum settings, community outreach programs, and introductory science courses.

  5. Effective Linewidth of Semiconductor Lasers for Coherent Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Pang, Xiaodan; Schatz, Richard

    2016-01-01

    We discuss the implications of using monolithically integrated semiconductor lasers in high capacity optical coherent links suitable for metro applications, where the integration capabilities of semiconductor lasers make them an attractive candidate to reduce transceiver cost. By investigating...... semiconductor laser frequency noise profiles we show that carrier induced frequency noise plays an important role in system performance. We point out that, when such lasers are employed, the commonly used laser linewidth fails to estimate system performance, and we propose an alternative figure of merit that we...... name “Effective Linewidth”. We derive this figure of merit analytically, explore it by numerical simulations and experimentally validate our results by transmitting a 28 Gbaud DP-16QAM over an optical link. Our investigations cover the use of semiconductor lasers both in the transmitter side...

  6. Optical vortex generation from a diode-pumped alexandrite laser

    Science.gov (United States)

    Thomas, G. M.; Minassian, A.; Damzen, M. J.

    2018-04-01

    We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.

  7. Electro-optical sensor with automatic suppression of laser dazzling

    Science.gov (United States)

    Ritt, G.; Eberle, B.

    2012-10-01

    The progress in laser technology leads to very compact but nevertheless powerful laser sources. In the visible and near infrared spectral region, lasers of any wavelength can be purchased. Especially continuous wave laser sources pose a serious threat to the human eye and electro-optical sensors due to their high proliferation and easy availability. The manifold of wavelengths cannot be encountered by conventional safety measures like absorption or interference filters. We present a protection concept for electro-optical sensors to suppress dazzling in the visible spectral region. The key element of the concept is the use of a digital micromirror device (DMD) in combination with wavelength multiplexing. This approach allows selective spectral filtering in defined regions of interest in the scene. The system offers the possibility of automatic attenuation of dazzling laser radiation. An anti-dazzle algorithm comprises the analysis of the laser wavelength and the subsequent activation of the appropriate micromirrors of the DMD.

  8. Theory of optical cavity and laser with output coupling

    OpenAIRE

    氏原, 紀公雄

    2006-01-01

    A quantum-mechanical analysis of an optical cavity having output coupling is presented withapplications to the laser theory. The rigorous treatment of the output coupling allows unifiedanalysis of the optical field inside and outside of the cavity. This treatment had lead to a newexpression for the laser line-width that contained the influences of non-uniform oscillating fielddistribution of the real cavity mode as well as the deviation from the cavity field mode due to non-uniformgain satura...

  9. Laser Transmitters for the optical link systems used in CMS

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    In the CMS experiment of the now new flagship LHC optical links will be used for the tracker readout system. One part of this components will be semiconductor laser (~50.000 !!!), named correctly: 1310 nm InGaAsP (DCPBH-MQW) edge-emitting laser. They are foreseen as transmitter in the Tx Hybrid part of the optical link system.

  10. Proceedings of the IEEE laser and electro-optics society annual meeting

    International Nuclear Information System (INIS)

    Hudson, M.J.B.; Raney, H.; Raney, D.; Spalaris, C.N.

    1990-01-01

    This book is covered under the following headings: Electro-optic systems; Emerging laser technology; Optical sensors and measurements; Optoelectronics; Semiconductor diode lasers; Solid state lasers; UV and short wavelength; Applied optical diagnostics of semiconductor materials and devices symposium and optical sensors and measurements; and Applied optical diagnostics of semiconductor materials and devices symposium

  11. Adaptive optics compensation of atmospheric turbulence: the past, the present, and the promise

    Science.gov (United States)

    Tyson, Robert K.

    1994-06-01

    An overview of adaptive optics systems development is presented with emphasis on its power to compensate for atmospheric turbulence in imaging and laser propagation. A brief history from the conceptual thinking in the 1950s through laboratory implementation in the 1970s to practical reality in the 1990s will be covered. With ongoing research to solve the problem of atmospheric anisoplanatism, the use of artificial guide stars has become as a prominent point of discussion. The understanding of the artificial guide star phenomena and advances in laser technology are bringing systems from the research and technology development mode into systems with scientific utility. Conflicting technical limitations of guide star brightness, laser psoower, and compensation spatial frequency are traded to achieve the most scientific benefit with the least cost. a summary ore recent results from operating adaptive optics systems in observatories around the world will be followed by a brief look at the future promise of adaptive optics in the commercia sector, including requirements of mass market systems for the amateur astronomer.

  12. Optical emission from laser-produced chromium and magnesium

    Indian Academy of Sciences (India)

    Parametric study of optical emission from two successive laser pulses produced chromium and magnesium plasma is presented. The line emission from chromium and magnesium plasma showed an increase by more than six times for double laser pulse excitation than for single-pulse excitation. An optimum increase in ...

  13. Optical emission from laser-produced chromium and magnesium ...

    Indian Academy of Sciences (India)

    Abstract. Parametric study of optical emission from two successive laser pulses pro- duced chromium and magnesium plasma is presented. The line emission from chromium and magnesium plasma showed an increase by more than six times for double laser pulse excitation than for single-pulse excitation. An optimum ...

  14. Optical emission from laser-produced chromium and magnesium ...

    Indian Academy of Sciences (India)

    Parametric study of optical emission from two successive laser pulses produced chromium and magnesium plasma is presented. The line emission from chromium and magnesium plasma showed an increase by more than six times for double laser pulse excitation than for single-pulse excitation. An optimum increase in ...

  15. Mathematical model of an optically pumped molecular laser

    CSIR Research Space (South Africa)

    Botha, LR

    2009-07-01

    Full Text Available A mathematical model was developed that accurately predicts the performance of an optically pumped HBr laser. Relatively high conversion efficiency was achieved. Tm pumped Ho:YLF is a viable source for pumping HBr laser, while HBr can be scaled...

  16. Intracavity optical trapping with Ytterbium doped fiber ring laser

    Science.gov (United States)

    Sayed, Rania; Kalantarifard, Fatemeh; Elahi, Parviz; Ilday, F. Omer; Volpe, Giovanni; Maragò, Onofrio M.

    2013-09-01

    We propose a novel approach for trapping micron-sized particles and living cells based on optical feedback. This approach can be implemented at low numerical aperture (NA=0.5, 20X) and long working distance. In this configuration, an optical tweezers is constructed inside a ring cavity fiber laser and the optical feedback in the ring cavity is controlled by the light scattered from a trapped particle. In particular, once the particle is trapped, the laser operation, optical feedback and intracavity power are affected by the particle motion. We demonstrate that using this configuration is possible to stably hold micron-sized particles and single living cells in the focal spot of the laser beam. The calibration of the optical forces is achieved by tracking the Brownian motion of a trapped particle or cell and analysing its position distribution.

  17. Synergy of adaptive thresholds and multiple transmitters in free-space optical communication.

    Science.gov (United States)

    Louthain, James A; Schmidt, Jason D

    2010-04-26

    Laser propagation through extended turbulence causes severe beam spread and scintillation. Airborne laser communication systems require special considerations in size, complexity, power, and weight. Rather than using bulky, costly, adaptive optics systems, we reduce the variability of the received signal by integrating a two-transmitter system with an adaptive threshold receiver to average out the deleterious effects of turbulence. In contrast to adaptive optics approaches, systems employing multiple transmitters and adaptive thresholds exhibit performance improvements that are unaffected by turbulence strength. Simulations of this system with on-off-keying (OOK) showed that reducing the scintillation variations with multiple transmitters improves the performance of low-frequency adaptive threshold estimators by 1-3 dB. The combination of multiple transmitters and adaptive thresholding provided at least a 10 dB gain over implementing only transmitter pointing and receiver tilt correction for all three high-Rytov number scenarios. The scenario with a spherical-wave Rytov number R=0.20 enjoyed a 13 dB reduction in the required SNR for BER's between 10(-5) to 10(-3), consistent with the code gain metric. All five scenarios between 0.06 and 0.20 Rytov number improved to within 3 dB of the SNR of the lowest Rytov number scenario.

  18. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Atanasov, P.A.; Nikov, Ru.G.; Nikov, R.G.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Fukata, N. [International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Ns-laser (266, 355, 532 and 1064 nm) processing of medical grade PDMS is performed. • Investigation of the optical transmittance as a function of the laser beam parameters. • Analyses of laser treated area by optical & laser microscope and μ-Raman spectrometry. • Application as (MEAs) neural interface for monitor and stimulation of neural activity. - Abstract: This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm{sup −2} for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm{sup −2} and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm{sup −2}. The threshold laser fluence needed to induce incubation process after certain

  19. Laser optical equipment; Le Ottiche per i laser: un mercato difficile

    Energy Technology Data Exchange (ETDEWEB)

    Emiliani, G.

    1992-12-31

    The Italian laser optics market is currently experiencing difficulties in providing a satisfactory response to demand by national industry and research institutes for unconventional laser optical equipment, e.g., high reflectance metallic mirrors for CO/sub 2/ lasers, and optics for laser cavities. This paper analyzes the underlying reasons for this situation, examines the industry`s requirements for improved products (e.g., greater flexibility on the part of equipment designers, designer skills up-grading, advanced materials research, new laboratories, etc.), offers some suggestions with regard to R&D investment planning in this sector, and outlines the role to be played by ENEA (the Italian Agency for New Technology, Energy and the Environment) in laser optics equipment commercialization.

  20. DYNAMISM OF DOT SUBRETINAL DRUSENOID DEPOSITS IN AGE-RELATED MACULAR DEGENERATION DEMONSTRATED WITH ADAPTIVE OPTICS IMAGING.

    Science.gov (United States)

    Zhang, Yuhua; Wang, Xiaolin; Godara, Pooja; Zhang, Tianjiao; Clark, Mark E; Witherspoon, C Douglas; Spaide, Richard F; Owsley, Cynthia; Curcio, Christine A

    2018-01-01

    To investigate the natural history of dot subretinal drusenoid deposits (SDD) in age-related macular degeneration, using high-resolution adaptive optics scanning laser ophthalmoscopy. Six eyes of four patients with intermediate age-related macular degeneration were studied at baseline and 1 year later. Individual dot SDD within the central 30° retina were examined with adaptive optics scanning laser ophthalmoscopy and optical coherence tomography. A total of 269 solitary SDD were identified at baseline. Over 12.25 ± 1.18 months, all 35 Stage 1 SDD progressed to advanced stages. Eighteen (60%) Stage 2 lesions progressed to Stage 3 and 12 (40%) remained at Stage 2. Of 204 Stage 3 SDD, 12 (6.4%) disappeared and the rest remained. Twelve new SDD were identified, including 6 (50%) at Stage 1, 2 (16.7%) at Stage 2, and 4 (33.3%) at Stage 3. The mean percentage of the retina affected by dot SDD, measured by the adaptive optics scanning laser ophthalmoscopy, increased in 5/6 eyes (from 2.31% to 5.08% in the most changed eye) and decreased slightly in 1/6 eye (from 10.67% to 10.54%). Dynamism, the absolute value of the areas affected by new and regressed lesions, ranged from 0.7% to 9.3%. Adaptive optics scanning laser ophthalmoscopy reveals that dot SDD, like drusen, are dynamic.

  1. Electro-Optic Tunable Laser Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop a compact, rugged, rapidly and widely tunable laser based on a quantum cascade diode laser at...

  2. Prototyping of two-beam laser interferometer for measurement of optical turbulence along extended paths. Master's thesis

    Energy Technology Data Exchange (ETDEWEB)

    Barbour, C.S.

    1992-12-01

    This thesis demonstrates a proof-of-concept experimental validation of a prototype two-beam, division of wavefront laser interferometer that provides real-time measurement of the optical path difference, and subsequent phase distortion, caused by atmospheric turbulence along an extended horizontal path. Prototype's signal processing incorporates use of specialized phase comparator circuit developed by author's advisor, D.S. Davis. Photographs and results cited of the prototype receiver's output offer proof of the validity of the basic design. Further research of this technology is expected to support future laser/adaptive optics long range weapon applications....Two-beam laser interferometer, Optical turbulence, Adaptive optics, Phase comparator.

  3. Iterative Decoding for an Optical CDMA based Laser communication System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young; Kim, Eun Cheol [Kwangwoon Univ., Seoul (Korea, Republic of); Cha, Jae Sang [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2008-11-15

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications.

  4. Iterative Decoding for an Optical CDMA based Laser communication System

    International Nuclear Information System (INIS)

    Kim, Jin Young; Kim, Eun Cheol; Cha, Jae Sang

    2008-01-01

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications

  5. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    Science.gov (United States)

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review.

  6. Nanomechanical characterization of adaptive optics components in microprojectors

    International Nuclear Information System (INIS)

    Palacio, Manuel; Bhushan, Bharat

    2010-01-01

    Compact microprojectors are being developed for information display in mobile electronic devices. A key component of the microprojector is the green laser package, which consists of an adaptive optics component with a drive mechanism. A crucial concern is the mechanical wear of key drive mechanism components, such as the carbon fiber reinforced polymer (CFRP) driving rod, the Zn alloy body and the stainless steel friction plate, after prolonged operation. Since friction and wear are dependent on the mechanical properties, nanoindentation experiments were conducted on these drive mechanism components using a depth-sensing nanoindenter at room and elevated temperatures up to 100 °C. The hardness and elastic modulus of all the materials studied decrease at increasing test temperatures. From plasticity index analysis, a correlation between the tendency for plastic deformation and the mechanical properties was obtained. Nanoscratch studies were also conducted in order to simulate wear, as well as examine the scratch resistance and deformation modes of these materials, where it was found that the CFRP rod exhibited the highest scratch resistance. The CFRP rod undergoes mostly brittle deformation, while the Zn alloy body and friction plate undergo plastic deformation.

  7. W.M. Keck Observatory Adaptive Optics Science Capabilities

    Science.gov (United States)

    Wizinowich, Peter; Campbell, R.

    2009-05-01

    Over 200 refereed science papers have been published using data from the W. M. Keck Observatory adaptive optics (AO) systems through 2008, including over 50 with the laser guide star (LGS) system. Community demand is high with 35% of the Keck II telescope science nights assigned to LGS AO and 10% to natural guide star (NGS) AO in the first half of 2009. A wide range of solar system, galactic and extragalactic science has been performed with the AO systems from weather monitoring on solar system planets and their moons, to the discovery of companions and the determination of the masses of asteroids, Kuiper Belt Objects and brown dwarfs, to measuring the fundamental properties of the black hole at the center of our galaxy, to quantifying the kinematics and morphologies of high redshift galaxies and revealing the structure of galaxies through gravitational lensing observations. The Keck AO facilities feed a variety of near to mid-infrared science instruments including an imager, a slit spectrometer, an integral field spectrometer and the Keck Interferometer. We will describe the current capabilities, performance and limitations of the AO facilities, including science instruments, with an emphasis on how this relates to the science. We will also provide a short introduction to future planned capabilities.

  8. Novel adaptive fiber-optics collimator for coherent beam combination.

    Science.gov (United States)

    Zhi, Dong; Ma, Pengfei; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2014-12-15

    In this manuscript, we experimentally validate a novel design of adaptive fiber-optics collimator (AFOC), which utilizes two levers to enlarge the movable range of the fiber end cap. The enlargement of the range makes the new AFOC possible to compensate the end-cap/tilt aberration in fiber laser beam combining system. The new AFOC based on flexible hinges and levers was fabricated and the performance of the new AFOC was tested carefully, including its control range, frequency response and control accuracy. Coherent beam combination (CBC) of two 5-W fiber amplifiers array with simultaneously end-cap/tilt control and phase-locking control was implemented successfully with the novel AFOC. Experimental results show that the average normalized power in the bucket (PIB) value increases from 0.311 to 0.934 with active phasing and tilt aberration compensation simultaneously, and with both controls on, the fringe contrast improves to more than 82% from 0% for the case with both control off. This work presents a promising structure for tilt aberration control in high power CBC system.

  9. Optical design of high power excimer laser system

    International Nuclear Information System (INIS)

    Zhang Yongsheng; Zhao Jun; Ma Lianying; Yi Aiping; Liu Jingru

    2011-01-01

    Image relay and angular multiplexing,which should be considered together in the design of high power excimer laser system, is reviewed. It's important to select proper illumination setup and laser beam shaping techniques. Given the complex and special angular multiplexing scheme in high power excimer laser systems, some detailed conceptual layout schemes are given in the paper. After a brief description of lens array and reflective telescope objective, which combine the incoming beams to a common focus, a new schematic layout which uses the final targeting optics and one optical delay line array, to realize multiplexing and de-multiplexing simultaneously is first proposed in the paper. (authors)

  10. Skin optical clearing for improvement of laser tattoo removal

    Science.gov (United States)

    Bashkatov, A. N.; Genina, E. A.; Tuchin, V. V.; Altshuler, G. B.

    2009-06-01

    The possibility of improvement of laser tattoo removal due to the optical clearing of human skin is investigated. It is shown experimentally that previously perforation of skin stratum corneum allows increasing tattoo image contrast at topical administration of immersion agent in contrast with non-perforated skin. Computer Monte Carlo simulation shows that at the optical clearing of upper skin layers the tattoo image contrast and the photon fraction absorbed in the tattoo area at the depths of 0.5 or 1.0 mm increase, that allows significant decreasing of the power of laser radiation used at laser thermolysis.

  11. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    Silva, V.L. da.

    1986-01-01

    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N 2 , NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N 2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author) [pt

  12. Virtual Mie particle model of laser damage to optical elements

    Directory of Open Access Journals (Sweden)

    Kazuya Hirata

    2011-12-01

    Full Text Available In recent years, devices being developed for application systems have used laser beams that have high average power, high peak power, short pulse width, and short wavelength. Therefore, optical elements using such application systems require a high laser damage threshold. The laser damage threshold is provided by International Organization for Standardization 11254 (ISO11254. One of the measurement methods of the laser damage threshold provided by ISO11254 is an online method to measure the intensity of light scattering due to a laser damage trace. In this paper, we propose a measurement method for the laser damage threshold that realizes high sensitivity and high accuracy by using polarized light and lock-in detection. Since the scattering light with laser damage is modeled on the asperity of the optical element-surface as Mie particles (virtual Mie particles, we consider the intensity change of scattering light as a change in the radius of a virtual Mie particle. To evaluate this model, the laser damage trace on the optical element-surface was observed by an atomic force microscopy (AFM. Based on the observed AFM image, we analyzed the frequency domain by the Fourier transform, and estimated the dominant virtual Mie particle radius in the AFM measurement area. In addition, we measured the laser damage threshold. The light source was the fifth generation of a Nd:YAG laser (λ =213nm. The specifications of the laser were: repetition frequency 10Hz, pulse width 4ns, linear type polarization, laser pulse energy 4mJ, and laser transverse mode TEM00. The laser specifications were a repetition frequency, pulse width, pulse energy and beam diameter of 10Hz, 4ns, 4mJ and 13mm, respectively. The laser damage thresholds of an aluminum coated mirror and a dielectric multi-layer mirror designed at a wavelength of 213nm as measured by this method were 0.684 J/cm2 and 0.998J/cm2, respectively. These laser damage thresholds were 1/4 the laser damage

  13. Optical trapping with Bessel beams generated from semiconductor lasers

    International Nuclear Information System (INIS)

    Sokolovskii, G S; Dudelev, V V; Losev, S N; Soboleva, K K; Deryagin, A G; Kuchinskii, V I; Sibbett, W; Rafailov, E U

    2014-01-01

    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M 2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations

  14. Investigation of vortex laser beam injection into an optical fiber

    Science.gov (United States)

    Savelyev, D. A.; Khonina, S. N.

    2017-11-01

    We investigate Laguerre-Gaussian vortex laser beam injection into an optical fiber. Modelling of radiation entering an optical fiber with plane (cylinder) and axicon (cone with diffrent apex angle) micro-relief is numerically investigated by the finite difference time domain (FDTD) method.

  15. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  16. Fiber laser master oscillators for optical synchronization systems

    International Nuclear Information System (INIS)

    Winter, A.

    2008-04-01

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  17. Fiber laser master oscillators for optical synchronization systems

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A.

    2008-04-15

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  18. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.

    2008-01-01

    This paper describes the development of a measuring equipment capable of analysing the beam profile at high optical powers emitted by delivery fibers used in manufacturing processes. Together with the optical delivery system, the output beam quality from the delivery fiber and the shape...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  19. Laser Cooling of Lanthanides: from Optical Clocks to Quantum Simulators

    Directory of Open Access Journals (Sweden)

    Golovizin A.

    2015-01-01

    Full Text Available We discuss current progress in laser cooling of lanthanides (Er, Yb, Dy, Tm etc. focusing on applications. We describe some important peculiarities taking Thulium atom as an example: Two stage laser cooling, trapping in an optical lattice, anisotropic interactions and spectroscopy of narrow transitions. Specific level structure and presence of magic wavelengths make ultracold Thulium a favorable candidate for optical clock applications. On the other hand, abundance of Feshbach resonances allow to tune interactions in ultracold gases and thus reach quantum degeneracy. It opens intriguing perspectives for novel quantum simulators employing dipole-dipole interactions in an optical lattice.

  20. CHARACTERIZING PHOTORECEPTOR CHANGES IN ACUTE POSTERIOR MULTIFOCAL PLACOID PIGMENT EPITHELIOPATHY USING ADAPTIVE OPTICS.

    Science.gov (United States)

    Roberts, Philipp K; Nesper, Peter L; Onishi, Alex C; Skondra, Dimitra; Jampol, Lee M; Fawzi, Amani A

    2018-01-01

    To characterize lesions of acute posterior multifocal placoid pigment epitheliopathy (APMPPE) by multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO). We included patients with APMPPE at different stages of evolution of the placoid lesions. Color fundus photography, spectral domain optical coherence tomography, infrared reflectance, fundus autofluorescence, and AOSLO images were obtained and registered to correlate microstructural changes. Eight eyes of four patients (two women) were included and analyzed by multimodal imaging. Photoreceptor reflectivity within APMPPE lesions was more heterogeneous than in adjacent healthy areas. Hyperpigmentation on color fundus photography appeared hyperreflective on infrared reflectance and on AOSLO. Irregularity of the interdigitation zone and the photoreceptor inner and outer segment junctions (IS/OS) on spectral domain optical coherence tomography was associated with photoreceptor hyporeflectivity on AOSLO. Interruption of the interdigitation zone or IS/OS was associated with loss of photoreceptor reflectivity on AOSLO. Irregularities in the reflectivity of the photoreceptor mosaic are visible on AOSLO even in inactive APMPPE lesions, where the photoreceptor bands on spectral domain optical coherence tomography have recovered. Adaptive optics scanning laser ophthalmoscopy combined with multimodal imaging has the potential to enhance our understanding of photoreceptor involvement in APMPPE.

  1. Quantum confined laser devices optical gain and recombination in semiconductors

    CERN Document Server

    Blood, Peter

    2015-01-01

    The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent...

  2. High energy laser optics manufacturing: a preliminary study

    International Nuclear Information System (INIS)

    Baird, E.D.

    1980-07-01

    This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included

  3. Simplified freeform optics design for complicated laser beam shaping.

    Science.gov (United States)

    Feng, Zexin; Froese, Brittany D; Liang, Rongguang; Cheng, Dewen; Wang, Yongtian

    2017-11-20

    Control of the optical fields of laser beams, i.e., laser beam shaping, is of great importance to many laser applications. Freeform optics offers plenty of advantages for complex beam shaping requirements, including precise beam control, energy efficiency, compact structure, and relatively low cost. We present a modified ray-mapping method to simplify the freeform optics design for complicated optical field control and achieve a challenging task of producing two prescribed beam profiles on two successive target planes. This method begins by calculating an approximate output ray sequence that connects the two prescribed beam profiles and a corresponding input ray sequence. After setting an initial profile of the first freeform optical surface on the input ray sequence, we can obtain the second freeform optical surface based on the optical path length constancy between the given input wavefront and the computed output wavefront. Then, we can acquire all the normal vectors of the first freeform optical surface using Snell's law and approximately reconstruct the first freeform optical surface by solving a relationship between the surface points and normal vectors using a fast least squares method. The surface construction process is repeated until the stop criterion is satisfied. We design three freeform lenses, and Monte Carlo simulations demonstrate their abilities of simultaneously producing two challenging beam profiles from a divergent Gaussian beam.

  4. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Taylor, J.R.

    1995-01-01

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources

  5. Laser speckle contrast imaging in biomedical optics.

    Science.gov (United States)

    Boas, David A; Dunn, Andrew K

    2010-01-01

    First introduced in the 1980s, laser speckle contrast imaging is a powerful tool for full-field imaging of blood flow. Recently laser speckle contrast imaging has gained increased attention, in part due to its rapid adoption for blood flow studies in the brain. We review the underlying physics of speckle contrast imaging and discuss recent developments to improve the quantitative accuracy of blood flow measures. We also review applications of laser speckle contrast imaging in neuroscience, dermatology and ophthalmology.

  6. A three-photon microscope with adaptive optics for deep-tissue in vivo structural and functional brain imaging

    Science.gov (United States)

    Tao, Xiaodong; Lu, Ju; Lam, Tuwin; Rodriguez, Ramiro; Zuo, Yi; Kubby, Joel

    2017-02-01

    We developed a three-photon adaptive optics add-on to a commercial two-photon laser scanning microscope. We demonstrated its capability for structural and functional imaging of neurons labeled with genetically encoded red fluorescent proteins or calcium indicators deep in the living mouse brain with cellular and subcellular resolution.

  7. Digital adaptive optics line-scanning confocal imaging system

    Science.gov (United States)

    Liu, Changgeng; Kim, Myung K.

    2015-01-01

    Abstract. A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334

  8. Analysis of optical scheme for medium-range directed energy laser weapon system

    Science.gov (United States)

    Jabczyński, Jan K.; Kaśków, Mateusz; Gorajek, Łukasz; Kopczyński, Krzysztof

    2017-10-01

    The relations between range of operation and aperture of laser weapon system were investigated, taking into account diffraction and technical limitations as beam quality, accuracy of point tracking, technical quality of optical train, etc. As a result for the medium ranges of 1 - 2 km we restricted the analysis to apertures not wider than 150 mm and the optical system without adaptive optics. To choose the best laser beam shape, the minimization of aperture losses and thermooptical effects inside optics as well as the effective width of laser beam in far field should be taken into account. We have analyzed theoretically such a problem for the group of a few most interesting from that point of view profiles including for reference two limiting cases of Gaussian beam and `top hat' profile. We have found that the most promising is the SuperGaussian profile of index p = 2 for which the surfaces of beam shaper elements can be manufactured in the acceptable cost-effective way and beam quality does not decrease noticeably. Further, we have investigated the thermo-optic effects on the far field parameters of Gaussian and `top hat' beams to determine the influence of absorption in optical elements on beam quality degradation. The simplified formulae were derived for beam quality measures (parameter M2 and Strehl ratio) which enables to estimate the influence of absorption losses on degradation of beam quality.

  9. Impact of environmental contamination on laser induced damage of silica optics in Laser MegaJoule

    International Nuclear Information System (INIS)

    Bien-Aime, K.

    2009-11-01

    Laser induced damage impact of molecular contamination on fused polished silica samples in a context of high power laser fusion facility, such as Laser MegaJoule (LMJ) has been studied. One of the possible causes of laser induced degradation of optical component is the adsorption of molecular or particular contamination on optical surfaces. In the peculiar case of LMJ, laser irradiation conditions are a fluence of 10 J/cm 2 , a wavelength of 351 nm, a pulse duration of 3 ns for a single shot/days frequency. Critical compounds have been identified thanks to environmental measurements, analysis of material outgassing, and identification of surface contamination in the critical environments. Experiments of controlled contamination involving these compounds have been conducted in order to understand and model mechanisms of laser damage. Various hypotheses are proposed to explain the damage mechanism. (author)

  10. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    Science.gov (United States)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  11. Optimization-based adaptive optics for optical coherence tomography

    NARCIS (Netherlands)

    Verstraete, H.R.G.W.

    2017-01-01

    Optical coherence tomography (OCT) is a technique for non-invasive imaging based on low coherence interferometry. Its main application is found in ophthalmology, where it is used for 3D in vivo imaging of the cornea and the retina. OCT has evolved over the past decade as one of the most important

  12. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    Science.gov (United States)

    2016-07-07

    Optics) were used. The beam spot size dependence on the z-axis, which is defined as the laser propagation direction, was measured by a micro -beam...profiler (MBP-100- USB ; Newport). Fig. 5 Experimental setup for visible fiber laser oscillator in Pr:DC-WPFGF. a) Measurem ent for input-output

  13. Generation of optical vortices with an adaptive helical mirror.

    Science.gov (United States)

    Ghai, Devinder Pal

    2011-04-01

    Generation of optical vortices using a new design of adaptive helical mirror (AHM) is reported. The new AHM is a reflective device that can generate an optical vortex of any desired topological charge, both positive and negative, within its breakdown limits. The most fascinating feature of the AHM is that the topological charge of the optical vortex generated with it can be changed in real time by varying the excitation voltage. Generation of optical vortices up to topological charge 4 has been demonstrated. The presence of a vortex in the optical field generated with the AHM is confirmed by producing both fork and spiral fringes in an interferometric setup. Various design improvements to further enhance the performance of the reported AHM are discussed. Some of the important applications of AHM are also listed. © 2011 Optical Society of America

  14. Acousto-optic laser projection systems for displaying TV information

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, Yu V [V.A.Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); Kazaryan, M A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Mokrushin, Yu M [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russian Federation); Shakin, O V [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2015-04-30

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation. (review)

  15. Acousto-optic laser projection systems for displaying TV information

    International Nuclear Information System (INIS)

    Gulyaev, Yu V; Kazaryan, M A; Mokrushin, Yu M; Shakin, O V

    2015-01-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation. (review)

  16. Acousto-optic laser projection systems for displaying TV information

    Science.gov (United States)

    Gulyaev, Yu V.; Kazaryan, M. A.; Mokrushin, Yu M.; Shakin, O. V.

    2015-04-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation.

  17. Wavelet methods in multi-conjugate adaptive optics

    International Nuclear Information System (INIS)

    Helin, T; Yudytskiy, M

    2013-01-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory. (paper)

  18. Dual-Wavelength Internal-Optically-Pumped Semiconductor Laser Diodes

    Science.gov (United States)

    Green, Benjamin

    Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser diode would enable further advances and deployment of these technologies. The output of conventional laser diodes is however limited to a single wavelength band with a few subsequent lasing modes depending on the device design. This thesis investigates a novel semiconductor laser device design with a single cavity waveguide capable of dual-wavelength laser output with large spectral separation. The novel dual-wavelength semiconductor laser diode uses two shorter- and longer-wavelength active regions that have separate electron and hole quasi-Fermi energy levels and carrier distributions. The shorter-wavelength active region is based on electrical injection as in conventional laser diodes, and the longer-wavelength active region is then pumped optically by the internal optical field of the shorter-wavelength laser mode, resulting in stable dual-wavelength laser emission at two different wavelengths quite far apart. Different designs of the device are studied using a theoretical model developed in this work to describe the internal optical pumping scheme. The carrier transport and separation of the quasi-Fermi distributions are then modeled using a software package that solves Poisson's equation and the continuity equations to simulate semiconductor devices. Three different designs are grown using molecular beam epitaxy, and broad-area-contact laser diodes are processed using conventional methods. The modeling and experimental results of the first generation design indicate that the optical confinement factor of the

  19. Optics and laser processing of microstructures

    International Nuclear Information System (INIS)

    Duley, W.W.

    2003-01-01

    Full text: Laser processing of materials at the micron or sub-micron level has the potential to develop into an important new technology in the fabrication of micro- or nanostructures. While the relevant experimental techniques can be carried over from traditional macroprocessing technology, laser processing at the smallest scale introduces many additional factors related to aspects of physics and chemistry, that are not evident in larger systems. One of these is the well-known limit to the minimum focal size attainable in a tightly focussed light beam. This limitation, as well as a number of other constraints including the importance of photon energy, are discussed in this paper. It is shown that analogs of conventional laser welding, cutting and other operations exist at the molecular level. These processes offer additional insight into the ways in which laser radiation may be used for processing of nanoparticles and other microscopic systems

  20. Adaptive Optics Technology for High-Resolution Retinal Imaging

    Science.gov (United States)

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  1. Optical diagnostic technology of fusion laser system

    International Nuclear Information System (INIS)

    Kanabe, Tadashi; Nakatsuka, Masahiro

    1986-01-01

    As the lasers for nuclear fusion research, the construction of high power glass lasers has been rapidly carried out since 1970s. Around 1985, the glass laser of 100 kJ and 100 TW appeared, thus the remarkable technical development has been made. In the institute of Laser Engineering, Osaka University, a multi-beam system Gekko No.2 was installed in 1975 for the first time in Japan, and through a phosphate glass system Gekko No.4 as the first in the world, and Gekko M2 as the prototype of Gekko No.12, in 1983, Gekko No.12 of 20 kJ was completed. These laser systems are still in operation now. From November, 1983, high power amplifying test and target irradiation test were begun by using the Gekko No.12. In December, 1983, the largest output in the world of 57 TW was attained, and in the target implosion test, 4 x 10 10 neutrons were generated, which was the largest in the world at that time. Thereafter, the automatic operation of the laser, laser wave form correction, the adoption of high endurance, no reflection elements and the second higher harmonic wave conversion using a single crystal KDP of 38 cm diameter, the largest in the world, were carried out, and those enabled the supply of 0.53 μm light at the maximum conversion efficiency of 86 %. The constitution of measuring instruments for Gekko No.12, the measuring techniques at the oscillator and the laser system are described. (Kako, J.)

  2. Application and the key technology on high power fiber-optic laser in laser weapon

    Science.gov (United States)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  3. Skin optical clearing for improvement of laser tattoo removal

    Science.gov (United States)

    Genina, Elina A.; Bashkatov, Alexey N.; Gavrilova, Anna A.; Pravdin, Alexander B.; Tuchin, Valery V.; Yaroslavsky, Ilya V.; Altshuler, Gregory B.

    2007-06-01

    The removal of tattoo pigments by laser energy is effected through a process of selective photothermolysis. Dehydration and optical immersion based on refractive index matching of scattering centers with that of surrounding matter through introduction of an exogenous index-matching agent can improve laser tattoo removal by providing increased efficiency of laser delivery to embedded ink particles and enabling the use of shorter wavelength visible lasers more effective on certain inks. Effectiveness of a method of accelerating penetration of the index-matching compounds by enhancing skin permeability through creating a lattice of micro-zones of limited thermal damage in the stratum corneum was studied. As optical clearing agents 100% and 88%-aqueous glycerol solutions were used. The effect of stratum corneum perforation on the rate of the immersion clearing of skin was studied. Dynamics of refractive index alteration of glycerol solution during its interaction with skin samples was monitored. Improvement of tattoo visualization was observed. The results of the experiments have shown that the lattice of island damage method the is effective for transepidermal delivery of optical clearing agents and could be used successfully in in vivo conditions for the enhancement of optical clearing of treated skin area and as enabling improvement of laser tattoo removal.

  4. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved wit...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal.......On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...

  5. Optical pattern recognition via adaptive spatial homodyne detection.

    Science.gov (United States)

    Hsu, Magnus T L; Knittel, Joachim; Morizur, Jean-Francois; Bachor, Hans-A; Bowen, Warwick P

    2010-12-01

    We present an experimental demonstration of an optical pattern recognition scheme based on spatial homodyne detection. Our scheme is adaptive, all-optical, utilizes a single-element photo-detector, and provides a single parameter readout to quantify the efficacy of pattern recognition, thereby allowing very fast pattern recognition speeds. The spatial homodyne detector was applied to the identification of one- and two-dimensional phase profiles.

  6. Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, A; Bauman, B; Gavel, D; Olivier, S; Jones, S; Hardy, J L; Barnes, T; Werner, J S

    2003-02-05

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations have been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.

  7. Characterization and operation of a liquid crystal adaptive optics phoropter

    Science.gov (United States)

    Awwal, Abdul Ahad S.; Bauman, Brian J.; Gavel, Donald T.; Olivier, Scot S.; Jones, Steve; Silva, Dennis A.; Hardy, Joseph L.; Barnes, Thomas B.; Werner, John S.

    2003-12-01

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations have been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.

  8. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    Science.gov (United States)

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  9. Thermal optical effect in axisymmetric structural laser resonator

    Science.gov (United States)

    Xu, Yonggen; Li, Yude

    2012-02-01

    In order to study the thermal optical effect (TOE) resulting from the axisymmetrical sources of thermal energy at the output mirror of CO 2 laser, the Heat Conduction Poisson Equation (HCPE) has been solved in the output mirror. Then the temperature distribution is given. The temperature variations will cause the surface distortion and the phase shift at the output mirror. Therefore, the output laser beam will be subject to thermal optical distortion and phase change. The numerical examples are to confirm our calculated results.

  10. Fiber optic coherent laser radar 3d vision system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-01-01

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  11. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle.

    Science.gov (United States)

    Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao

    2018-02-19

    Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.

  12. Adaptive optics correction based on stochastic parallel gradient descent technique using Zernike polynomials

    Science.gov (United States)

    Ma, Huimin; Qiao, Yan; Shen, Chunshan

    2017-10-01

    Adaptive optics systems based on stochastic parallel gradient descent optimization (SPGD) have yet shown great potential on compensation of phase distortions induced by wave propagation through atmosphere turbulence. One of the key technique is increasing the converge rate of SPGD correction system. In the present study, it is shown that the convergence rate of the algorithm will be greatly reduced with the increase of the number of corrector units. In this paper, an improved SPGD optimization process which is based on Zernike-mode is developed. The optimized object is changed from the voltage to Zernike coefficient. Adaptive optics correction system simulation model base on SPGD for a laser beam projecting system, and the numerical simulation of compensation process of random atmosphere turbulence is proposed. To improve the converge speed, we explore to ameliorate the correction system by controlling the perturbation considering atmosphere aberration proportion. The results show that the system converges smoothly and increasingly after considering the aberration proportion by Zernike correction.

  13. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence.

    Science.gov (United States)

    Sinefeld, David; Paudel, Hari P; Ouzounov, Dimitre G; Bifano, Thomas G; Xu, Chris

    2015-11-30

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity.

  14. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of......, and ways to reduce high-frequency jitter is discussed. The main result of the thesis is a new design of the epitaxial structure that both enables simplified fabrication and improves the properties of monolithic lasers. 40 GHz monolithic lasers with record low jitter and high power is presented as well...

  15. Optical monitoring of the chorioretinal status during retinal laser thermotherapy

    Science.gov (United States)

    Rovati, Luigi; Zambelli, Nicola; Cattini, Stefano; Viola, Francesco; Staurenghi, Giovanni

    2007-02-01

    As a consequence of pigmentation inhomogeneities and/or different vascularizations of the retinal tissue, retinal laser thermo-treatments are often over- or under-exposed. Our study is focused on the determination of suitable parameters to identify a convenient end-point of the laser treatment. The proposed method is based on the analysis of the temporal fluctuations of the scattered light intensity from the spot area. Motion of molecules and thus frequency of the scattered light fluctuations changes during the laser exposure due to variations of temperature, blood flow and optical parameters, i.e. absorption and scattering coefficient.

  16. Optical coatings on laser crystals for HiPER project

    Science.gov (United States)

    Oulehla, Jindrich; Pokorný, Pavel; Lazar, Josef

    2011-12-01

    In this contribution we present a technology for deposition of interference coatings for optical components designed to operate as active media in power pulsed lasers. The aim of the technology is to prepare crystals for lasers for the HiPER project (High Power laser Energy Research facility) which should demonstrate the feasibility of laser driven fusion as a future energy source. Diode pumped solid state lasers (DPSSL) are the most likely option for fusion ignition. The choice of the material for the lasers' active medium is critical. Some of the most important properties include the ability to be antireflection coated to reduce the energy losses and increase the overall efficiency. This contribution deals with some of the materials considered to be candidates for slabs serving as the active medium of the DPSSLs. We tested Yb:YAG and Yb:CaF2 samples. As large amounts of heat need to be dissipated during laser operation, cryogenic cooling is necessary. Appropriate coating materials and techniques need to be chosen. Therefore differences between available coating techniques are investigated in terms of adhesion, enduring of stress from temperature shocks, etc. Coated samples were placed into cryogenic environment in order to simulate conditions similar to those in real life operation. Optical microscopy was used for coating investigation after the conducted experiments.

  17. Optical cell cleaning with NIR femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-03-01

    Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.

  18. Adaptive Forward Error Correction for Energy Efficient Optical Transport Networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert

    2013-01-01

    In this paper we propose a novel scheme for on the fly code rate adjustment for forward error correcting (FEC) codes on optical links. The proposed scheme makes it possible to adjust the code rate independently for each optical frame. This allows for seamless rate adaption based on the link state...... of the optical light path and the required amount of throughput going towards the destination node. The result is a dynamic FEC, which can be used to optimize the connections for throughput and/or energy efficiency, depending on the current demand....

  19. Wavefront sensorless adaptive optics versus sensor-based adaptive optics for in vivo fluorescence retinal imaging (Conference Presentation)

    Science.gov (United States)

    Wahl, Daniel J.; Zhang, Pengfei; Jian, Yifan; Bonora, Stefano; Sarunic, Marinko V.; Zawadzki, Robert J.

    2017-02-01

    Adaptive optics (AO) is essential for achieving diffraction limited resolution in large numerical aperture (NA) in-vivo retinal imaging in small animals. Cellular-resolution in-vivo imaging of fluorescently labeled cells is highly desirable for studying pathophysiology in animal models of retina diseases in pre-clinical vision research. Currently, wavefront sensor-based (WFS-based) AO is widely used for retinal imaging and has demonstrated great success. However, the performance can be limited by several factors including common path errors, wavefront reconstruction errors and an ill-defined reference plane on the retina. Wavefront sensorless (WFS-less) AO has the advantage of avoiding these issues at the cost of algorithmic execution time. We have investigated WFS-less AO on a fluorescence scanning laser ophthalmoscopy (fSLO) system that was originally designed for WFS-based AO. The WFS-based AO uses a Shack-Hartmann WFS and a continuous surface deformable mirror in a closed-loop control system to measure and correct for aberrations induced by the mouse eye. The WFS-less AO performs an open-loop modal optimization with an image quality metric. After WFS-less AO aberration correction, the WFS was used as a control of the closed-loop WFS-less AO operation. We can easily switch between WFS-based and WFS-less control of the deformable mirror multiple times within an imaging session for the same mouse. This allows for a direct comparison between these two types of AO correction for fSLO. Our results demonstrate volumetric AO-fSLO imaging of mouse retinal cells labeled with GFP. Most significantly, we have analyzed and compared the aberration correction results for WFS-based and WFS-less AO imaging.

  20. Data-based online nonlinear extremum-seeker for wavefront sensorless adaptive optics OCT (Conference Presentation)

    Science.gov (United States)

    Jian, Yifan; Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Verhaegen, Michel; Sarunic, Marinko V.

    2017-02-01

    Adaptive optics has been successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retina. Wavefront sensorless adaptive optics (WSAO) is a novel technique that facilitates high resolution ophthalmic imaging; it replaces the Hartmann-Shack Wavefront Sensor with an image-driven optimization algorithm and mitigates some the challenges encountered with sensor-based designs. However, WSAO generally requires longer time to perform aberrations correction than the conventional closed-loop adaptive optics. When used for in vivo retinal imaging applications, motion artifacts during the WSAO optimization process will affect the quality of the aberration correction. A faster converging optimization scheme needs to be developed to account for rapid temporal variation of the wavefront and continuously apply corrections. In this project, we investigate the Databased Online Nonlinear Extremum-seeker (DONE), a novel non-linear multivariate optimization algorithm in combination with in vivo human WSAO OCT imaging. We also report both hardware and software updates of our compact lens based WSAO 1060nm swept source OCT human retinal imaging system, including real time retinal layer segmentation and tracking (ILM and RPE), hysteresis correction for the multi-actuator adaptive lens, precise synchronization control for the 200kHz laser source, and a zoom lens unit for rapid switching of the field of view. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented.

  1. CONTROL OF LASER RADIATION PARAMETERS: Acousto-optic modulation of multicomponent Ar laser radiation

    Science.gov (United States)

    Kotov, V. M.

    1995-06-01

    Polarisation-independent acousto-optic diffraction, in which optical radiation propagates along the optic axis of a gyrotropic crystal and an acoustic wave travels along a tangent to 'inner' wave-vector surfaces of the crystal, is considered. This diffraction geometry is shown to be optimal for the modulation of multicomponent laser radiation. The results are given of theoretical and experimental investigations of acousto-optic diffraction of six-component Ar laser radiation in the blue—green part of the spectrum, propagating in a TeO2 single crystal. The highest diffraction efficiency (90%) is reported for a transverse acoustic wave of 90 MHz frequency when the acoustic wavefront is tilted at an angle of ~1.2o to the optic axis of the crystal. A method of 'angular correction' of the direction of propagation of the diffracted rays, which makes it possible to concentrate all the diffracted radiation in one spot, is proposed.

  2. Laser-based data acquisition in gas centrifuge environments using optical fibers

    International Nuclear Information System (INIS)

    Cates, M.R.; Allison, S.W.; Marshall, B.; Davies, T.J.; Franks, L.A.; Nelson, M.A.; Noel, B.W.

    1984-01-01

    The operating environment of gas centrifuges poses three basic experimental problems: rotating reference frame, corrosive effects of UF 6 gas, and vacuum coupling. Diagnostic experiments in this environment effectively use fiber optics as laser transport systems and data extraction channels. Access to the interior of rotating centrifuges is only from a central nonrotating column assembly. Optical paths are often long and difficult to measure in static conditions with precision necessary in operating conditions. Residual traces of HF gas, from UF 6 , damage exposed optical components over time. Diagnostic measurements requiring pulsed laser sources and analysis of fluorescence emissions, both from UF 6 gas and from temperature-sensitive phosphor are described, with emphasis on optical fiber components and experimental design configurations. The studies were done at Oak Ridge Gaseous Diffusion Plant through the Centrifuge Physics Department of the Centrifuge Division. The advantages of fiber optics methods include: optical path flexibility, small and adaptable size of components, utility in connection with moveable assemblies, and relative ease of vacuum isolation. 3 references, 6 figures

  3. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1989-10-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  4. Optically Pumped Carbon Monoxide Cascade Laser

    National Research Council Canada - National Science Library

    Sawruk, Nicholas W

    2005-01-01

    ...) overtone band of the CO, which induced lasing on the (3,2) and (2,1) bands around 4.7um. The laser output was spectrally separated to determine the spectral and temporal evolution of the CO lasing pulse...

  5. The main postulates of adaptive correction of distortions of the wave front in large-size optical systems

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2014-01-01

    Full Text Available In the development of optical telescopes, striving to increase the penetrating power of a telescope has been always the main trend. A real way to solve this problem is to raise the quality of the image (reduction of the image angular size under real conditions of distorting factor and increase a diameter of the main mirror. This is counteracted by the various distorting factors or interference occurring in realtime use of telescopes, as well as by complicated manufacturing processes of large mirrors.It is shown that the most effective method to deal with the influence of distorting factors on the image quality in the telescope is the minimization (through selecting the place to mount a telescope and choosing the rational optical scheme, creating materials and new technologies, improving a design, unloading the mirrors, mounting choice, etc., and then the adaptive compensation of remaining distortions.It should be noted that a domestic concept to design large-sized telescopes allows us to use, in our opinion, the most efficient ways to do this. It means to abandon the creation of "an absolutely rigid and well-ordered" design, providing the passively aligned state telescope optics under operating conditions. The design must just have such a level of residual deformations that their effect can be efficiently compensated by the adaptive system using the segmented elements of the primary mirror and the secondary mirror as a corrector.It has been found that in the transmission optical systems to deliver laser power to a remote object, it is necessary not only to overcome the distorting effect of factors inherent in optical information systems, but, additionally, find a way to overcome a number of new difficulties. The main ones have been identified to be as follows:• the influence of laser radiation on the structure components and the propagation medium and, as a consequence, the opposite effect of the structure components and the propagation

  6. Spatial beam shaping using a micro-structured optical fiber and all-fiber laser amplification system for large-scale laser facilities seeding

    International Nuclear Information System (INIS)

    Calvet, Pierre

    2014-01-01

    Spatial beam shaping is an important topic for the lasers applications. For various industrial areas (marking, drilling, laser-matter interaction, high-power laser seeding...) the optical beam has to be flattened. Currently, the state of the art of the beam shaping: 'free-space' solutions or highly multimode fibers, are not fully suitable. The first ones are very sensitive to any perturbations and the maintenance is challenging, the second ones cannot deliver a coherent beam. For this reason, we present in this manuscript a micro-structured optical single-mode fiber delivering a spatially flattened beam. This 'Top-Hat' fiber can shape any beam in a spatially coherent beam what is a progress with respect to the highly multimode fibers used in the state of the art. The optical fibers are easy to use and very robust, what is a strong benefit with respect to the 'free-space' solutions. Thanks to this fiber, we could realize an all-fiber multi-stage laser chain to amplify a 10 ns pulse to 100 μJ. Moreover the temporal, spectral and spatial properties were preserved. We adapted this 'Top-Hat' fiber to this multi-stage laser chain, we proved the capability and the interest of this fiber for the spatial beam shaping of the laser beams in highly performing and robust laser systems. (author) [fr

  7. Resonator fiber optic gyro employing a semiconductor laser.

    Science.gov (United States)

    Jin, Zhonghe; Yu, Xuhui; Ma, Huilian

    2012-05-20

    Resonator fiber optic gyro (RFOG) based on the Sagnac effect has the potential to achieve the inertial navigation system requirement with a short sensing coil. Semiconductor laser is one of the key elements for integration and miniaturization of the RFOG. In this paper, an RFOG employing a semiconductor laser is demonstrated. The model of the laser frequency noise induced error in the RFOG is described. To attenuate the laser frequency noise induced error, active frequency stabilization is applied. An online laser frequency noise observation is built, as a powerful optimum criterion for the loop parameters. Moreover, the laser frequency noise observation method is developed as a new measurement tool. With a fast digital proportional integrator based on a single field programmable gate array applied in the active stabilization loop, the laser frequency noise is reduced to 0.021 Hz (1σ). It is equivalent to a rotation rate of 0.07°/h, and close to the shot noise limit for the RFOG. As a result, a bias stability of open-loop gyro output is 9.5°/h (1σ) for the integration time 10 s in an hour observed in the RFOG. To the best of our knowledge, this result is the best long-term stability using the miniature semiconductor laser.

  8. Developing a more useful surface quality metric for laser optics

    Science.gov (United States)

    Turchette, Quentin; Turner, Trey

    2011-02-01

    Light scatter due to surface defects on laser resonator optics produces losses which lower system efficiency and output power. The traditional methodology for surface quality inspection involves visual comparison of a component to scratch and dig (SAD) standards under controlled lighting and viewing conditions. Unfortunately, this process is subjective and operator dependent. Also, there is no clear correlation between inspection results and the actual performance impact of the optic in a laser resonator. As a result, laser manufacturers often overspecify surface quality in order to ensure that optics will not degrade laser performance due to scatter. This can drive up component costs and lengthen lead times. Alternatively, an objective test system for measuring optical scatter from defects can be constructed with a microscope, calibrated lighting, a CCD detector and image processing software. This approach is quantitative, highly repeatable and totally operator independent. Furthermore, it is flexible, allowing the user to set threshold levels as to what will or will not constitute a defect. This paper details how this automated, quantitative type of surface quality measurement can be constructed, and shows how its results correlate against conventional loss measurement techniques such as cavity ringdown times.

  9. High precision optical fiber alignment using tube laser bending

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Herder, Justus Laurens

    2016-01-01

    In this paper, we present a method to align optical fibers within 0.2 μm of the optimal position, using tube laser bending and in situ measuring of the coupling efficiency. For near-UV wavelengths, passive alignment of the fibers with respect to the waveguides on photonic integrated circuit chips

  10. Novel Applications of High Speed Optical-Injection Locked Lasers

    Science.gov (United States)

    2010-07-31

    modulated vertical-cavity surface-emitting laser (VCSELs) are attractive candidates as cost-effective optical transmitters for metro -area networks (MANs...local area networks (LANs) and high-speed Ethernet applications. A directly modulated VCSEL is desirable because it is compact, cost-effective and

  11. Test Port for Fiber-Optic-Coupled Laser Altimeter

    Science.gov (United States)

    Ramos Izquierdo, Luis; Scott, V. Stanley; Rinis, Haris; Cavanaugh, John

    2011-01-01

    A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as

  12. Adaptive slab laser beam quality improvement using a weighted least-squares reconstruction algorithm.

    Science.gov (United States)

    Chen, Shanqiu; Dong, LiZhi; Chen, XiaoJun; Tan, Yi; Liu, Wenjin; Wang, Shuai; Yang, Ping; Xu, Bing; Ye, YuTang

    2016-04-10

    Adaptive optics is an important technology for improving beam quality in solid-state slab lasers. However, there are uncorrectable aberrations in partial areas of the beam. In the criterion of the conventional least-squares reconstruction method, it makes the zones with small aberrations nonsensitive and hinders this zone from being further corrected. In this paper, a weighted least-squares reconstruction method is proposed to improve the relative sensitivity of zones with small aberrations and to further improve beam quality. Relatively small weights are applied to the zones with large residual aberrations. Comparisons of results show that peak intensity in the far field improved from 1242 analog digital units (ADU) to 2248 ADU, and beam quality β improved from 2.5 to 2.0. This indicates the weighted least-squares method has better performance than the least-squares reconstruction method when there are large zonal uncorrectable aberrations in the slab laser system.

  13. BRIEF COMMUNICATIONS: Optically pumped ultraviolet BR2 laser

    Science.gov (United States)

    Kamrukov, A. S.; Kozlov, N. P.; Protasov, Yu S.; Ushmarov, E. Yu

    1989-12-01

    A report is given of lasing achieved for the first time in optically pumped molecular bromine (D' 3Π2g→A' 3π2u, λL approx 292 nm). It was pumped by thermal vacuum ultraviolet radiation emitted by plasmadynamic discharges of magnetoplasma compressors, formed directly in the laser active medium. An output energy of ~ 1.1 J was obtained per laser pulse of ~ 5-μs duration from a Br2:Ar approx 1:450 active mixture at a pressure of ~ 4 atm. A comparison was made of the experimental output parameters of optically pumped Br2, I2, and XeF (B-X) lasers when their geometries and excitation energies were identical.

  14. Laser speckle imaging of atherosclerotic plaques through optical fiber bundles

    Science.gov (United States)

    Nadkarni, Seemantini K.; Bouma, Brett E.; Yelin, Dvir; Gulati, Amneet; Tearney, Guillermo J.

    2009-01-01

    Laser speckle imaging (LSI), a new technique that measures an index of plaque viscoelasticity, has been investigated recently to characterize atherosclerotic plaques. These prior studies demonstrated the diagnostic potential of LSI for detecting high-risk plaques and were conducted ex vivo. To conduct intracoronary LSI in vivo, the laser speckle pattern must be transmitted from the coronary wall to the image detector in the presence of cardiac motion. Small-diameter, flexible optical fiber bundles, similar to those used in coronary angioscopy, may be incorporated into an intravascular catheter for this purpose. A key challenge is that laser speckle is influenced by inter-fiber leakage of light, which may be exacerbated during bundle motion. In this study, we tested the capability of optical fiber bundles to transmit laser speckle patterns obtained from atherosclerotic plaques and evaluated the influence of motion on the diagnostic accuracy of fiber bundle-based LSI. Time-varying helium-neon laser speckle images of aortic plaques were obtained while cyclically moving the flexible length of the bundle to mimic coronary motion. Our results show that leached fiber bundles may reliably transmit laser speckle images in the presence of cardiac motion, providing a viable option to conduct intracoronary LSI. PMID:19021396

  15. Adaptive metal mirror for high-power CO2 lasers

    Science.gov (United States)

    Jarosch, Uwe-Klaus

    1996-08-01

    Spherical mirrors with a variable radius of curvature are used inside laser resonators as well as in the beam path between the laser and the workpiece. Commercially-available systems use piezoelectric actuators, or the pressure of the coolant, to deform the mirror surface. In both cases, the actuator and the cooling system influence each other. This interaction is avoided through the integration of the cooling system with the flexible mirror membrane. A multi- channel design leads to an optimized cooling effect, which is necessary for high power applications. The contour of the variable metal mirror depends on the mounting between the membrane and the mirror body and on the distribution of forces. Four cases of deformation can be distinguished for a circular elastic membrane. The realization of an adaptive metal mirror requires a technical compromise to be made. A mechanical construction is presented which combines an elastic hinge with the inlet and outlet of the coolant. For the deformation of the mirror membranes two actuators with different character of deformation are used. The superposition of the two deformations results in smaller deviations from the spherical surface shape than can be achieved using a single actuator. DC proportional magnets have been introduced as cheap and rigid actuators. The use of this adaptive mirror, either in a low pressure atmosphere of a gas laser resonator, or in an extra-cavity beam path is made possible through the use of a ventilation system.

  16. Femtosecond laser inscription of optical circuits in the cladding of optical fibers

    Science.gov (United States)

    Grenier, Jason R.

    The aim of this dissertation was to address the question of whether the cladding of single-mode fibers (SMFs) could be modified to enable optical fibers to serve as a more integrated, highly functional platform for optical circuit devices that can efficiently interconnect with the pre-existing fiber core waveguide. The approach adopted in this dissertation was to employ femtosecond laser direct writing (FLDW), an inherently 3D fabrication technique that harnesses non-linear laser-material interactions to modify the fused silica fiber cladding. A fiber mounting and alignment technique was developed along with oil-immersion focusing to address the strong aberrations caused by the cylindrical fiber shape. The development of real-time device monitoring during the FLDW was instrumental to overcome the acute coupling sensitivity to laser alignment errors of +/-1 ?m positional uncertainty, and thereby opened a new practical direction for the precise fabrication of optical devices inside optical fibers. These powerful and flexible laser fabrication and characterization techniques were successfully employed to optimize optical waveguiding devices positioned within the core and cladding of optical fibers. X-, S-Bend, and directional couplers were developed to enable efficient coupling between the laser-formed cladding devices and the pre-existing core waveguide, enabling up to 62% power transfer over bandwidths up to 300 nm at telecommunication wavelengths. Precise alignment of femtosecond laser modification tracks were positioned inside or near the core waveguide of SMFs was further shown to enable a flexible reshaping of the optical properties to create multimode guiding sections arbitrarily along the fiber length. This core waveguide modification facilitated the precise formation of multimode interferometers along the core waveguide to precisely tailor the modal profiles, and control the spectral and polarization response. In-fiber multimode interference (MMI) splitters

  17. Monitoring changes of optical attenuation coefficients of acupuncture points during laser acupuncture by optical coherence tomography

    Science.gov (United States)

    Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen

    2010-11-01

    The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.

  18. Modeling the Laser Interferometer Space Antenna Optics

    Science.gov (United States)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, paul

    2005-01-01

    The Laser Interferometer Space Antenna (LISA), shown below, will detect gravitational waves produced by objects such as binary black holes or objects falling into black holes (extreme mass ratio inspirals) over a frequency range of l0(exp -4) to 0.1 Hz. Within the conceptual frame work of Newtonian physics, a gravitational wave produces a strain, (Delta)l/l, with magnitudes of the order of Earth based gravitational wave detectors, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) project, use Michelson interferometers with arm lengths l = 4 km to detect these strains. Earth induced seismic noise limits ground-based instruments detecting gravitational waves with frequencies lower than approx. 1 Hz.

  19. Space Optical Communications Using Laser Beams

    Science.gov (United States)

    Goorjian, Peter M. (Inventor)

    2017-01-01

    A system for communicating between an object in space and a ground station, between objects in space, or between ground stations, includes a telecentric lens. Photodetectors positioned upon a focal plane of the telecentric lens detect an inbound light beam, received from a source, that has passed through the telecentric lens to the focal plane. Lasers positioned upon the focal plane transmit light beams from the focal plane through the telecentric lens to an area that includes the source of the inbound light beam. A processor detect signals from individual photodetectors corresponding to light detected, and selectively signals individual lasers that are close to those photodetectors, resulting in a returning beam that arrives close to the source, and which carries encoded data.

  20. Analysis and Design of Adaptive OCDMA Passive Optical Networks

    Science.gov (United States)

    Hadi, Mohammad; Pakravan, Mohammad Reza

    2017-07-01

    OCDMA systems can support multiple classes of service by differentiating code parameters, power level and diversity order. In this paper, we analyze BER performance of a multi-class 1D/2D OCDMA system and propose a new approximation method that can be used to generate accurate estimation of system BER using a simple mathematical form. The proposed approximation provides insight into proper system level analysis, system level design and sensitivity of system performance to the factors such as code parameters, power level and diversity order. Considering code design, code cardinality and system performance constraints, two design problems are defined and their optimal solutions are provided. We then propose an adaptive OCDMA-PON that adaptively shares unused resources of inactive users among active ones to improve upstream system performance. Using the approximated BER expression and defined design problems, two adaptive code allocation algorithms for the adaptive OCDMA-PON are presented and their performances are evaluated by simulation. Simulation results show that the adaptive code allocation algorithms can increase average transmission rate or decrease average optical power consumption of ONUs for dynamic traffic patterns. According to the simulation results, for an adaptive OCDMA-PON with BER value of 1e-7 and user activity probability of 0.5, transmission rate (optical power consumption) can be increased (decreased) by a factor of 2.25 (0.27) compared to fixed code assignment.

  1. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    Science.gov (United States)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  2. Laser-induced damage testing of optics for the ALADIN laser

    Science.gov (United States)

    Reinhold, Elmar; Lien, Yngve; Wernham, Denny; Armandillo, Errico

    2017-11-01

    The European Space Agency is developing its first spaceborne LIDAR for global monitoring of wind velocities. ALADIN, to be launched on board ADMAeolus in 2008, is a pulsed Nd:YAG laser with about 120 mJ of pulse energy at 355 nm and a repetition rate of 100 Hz during bursts. Within the projected mission duration of three years, this gives a lifetime requirement of close to 5 billion pulses. While laser-induced damage thresholds of optics in vacuum (possibly contaminated by small amounts of organic compounds) can differ from atmospheric conditions, their damage behaviour is generally poorly understood. The European Space Agency has therefore established a test campaign to measure the power handling of all the instrument optics with several European laboratories participating. In the Optics and Opto-Electronics laboratory at ESTEC, a laser-induced damage threshold (LIDT) test facility has been set up with a 50 Hz Nd:YAG test laser. The pulse energy is 700 mJ at 1064 nm. This allows us to recreate the laser pulse conditions to which the ALADIN optics will be exposed. The flattop beam profile of the test laser irradiates the optics with uniform fluences and relatively large spots (up to 1mm across) at damaging intensities. Damage tests are performed with up to 1 million pulses per test spot according to the S-on-1 test ISO-11254 standard, requiring typically 10 days to test one sample. With such extended tests, we can predict the laser-induced damage threshold over the ALADIN lifetime with improved accuracy.

  3. Electrically controllable ionic polymeric gels as adaptive optical lenses

    Science.gov (United States)

    Salehpoor, Karim; Shahinpoor, Mohsen; Mojarrad, Mehran

    1996-02-01

    Reversible change in optical properties of ionic polymeric gels, 2-acrylamido-2-methylpropane sulfonic acid (PAMPS) and polyacrylic acid plus sodium acrylate cross-linked with bisacrylamide (PAAM), under the effect of an electric field is reported. The shape of a cylindrical piece of the gel, with flat top and bottom surfaces, changed when affected by an electric field. The top surface became curved and the sense of the curvature (whether concave or convex) depended on the polarity of the applied electric field. The curvature of the surface changed from concave to convex and vice versa by changing the polarity of the electric field. By the use of an optical apparatus, focusing capability of the curved surface was verified and the focal length of the deformed gel was measured. The effect of the intensity of the applied electric field on the surface curvature and thus, on the focal length of the gel are tested. Different mechanisms are discussed; either of them or their combination may explain the surface deformation and curvature. Practical difficulties in the test procedure and the future potential of the electrically adaptive and active optical lenses are also discussed. These adaptive lenses may be considered as smart adaptive lenses for contact lens or other optical applications requiring focal point undulation.

  4. Optical flip-flop: Based on two-coupled mode-locked ring lasers

    NARCIS (Netherlands)

    Tangdiongga, E.; Yang, X.X.; Li, Z.; Liu, Y.S.; Lenstra, D.; Khoe, G.D.; Dorren, H.J.S.

    2005-01-01

    We report an all-optical flip-flop that is based on two coupled actively mode-locked fiber ring lasers. The lasers are coupled so that when one of the lasers lases, it quenches lasing in the other laser. The state of the flip-flop is determined by the wavelength of the laser that is currently

  5. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    Science.gov (United States)

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  6. Beam-guidance optics for high-power fiber laser systems

    Science.gov (United States)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  7. Adaptation technology between IP layer and optical layer in optical Internet

    Science.gov (United States)

    Ji, Yuefeng; Li, Hua; Sun, Yongmei

    2001-10-01

    Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.

  8. Polyethylene laser welding based on optical absorption variations

    Science.gov (United States)

    Galtieri, G.; Visco, A.; Nocita, D.; Torrisi, L.; Ceccio, G.; Scolaro, C.

    2016-04-01

    Polymeric materials, both pure and containing nanostructures, can be prepared as thin sheets in order to produce joints with an interface between an optically transparent sheet and an optically absorbent substrate to be welded by infrared pulsed laser irradiation. The Laser Transmission Welding (LTW) technique has been successfully applied in order to join two or more thermoplastic polymeric sheets that must have a similar chemical composition. In this research work, polymeric joints of Ultra High Molecular Weight Polyethylene sheets were realized, characterized and welded. Some polymer sheets were doped, at different concentrations, with carbon nano-particles absorbent the laser radiation. A pulsed laser operating in the wavelength region 532 nm with intensity of the order of 109 Watt/cm2 was employed to be transmitted by the transparent polymer and to be absorbed by the carbon enriched surface. At the interface of the two polymers the released energy induces melting, that is assisted by pressure, producing a fast and resistant welding zone. Mechanical and optical characterizations and surface analyses are presented and discussed.

  9. Laser induced damage in optical materials: 7th ASTM symposium.

    Science.gov (United States)

    Glass, A J; Guenther, A H

    1976-06-01

    The Seventh ERDA-ASTM-ONR-NBS Symposium on Laser Induced Damage in Optical Materials was held at the National Bureau of Standards in Boulder, Colorado, on 29-31 July 1975. These Symposia are held as part of the activities in ASTM Subcommittee II on Lasers and Laser Materials, which is charged with the responsibilities of formulating standards and test procedures for laser materials, components, and devices. The Chairman of Subcommittee II is Haynes Lee, of Owens-Illinois, Inc. Co-chairmen for the Damage Symposia are Arthur Guenther of the Air Force Weapons Laboratory and Alexander J. Glass of Law-rence Livermore Laboratory. Over 150 attendees at the Symposium heard forty-five papers on topics relating fabrication procedures to laser induced damage in optical materials; on metal mirrors; in ir window materials; the multipulse, wavelength, and pulse length dependence of damage thresholds; damage in dielectric films and at exposed surfaces; as well as theoretical discussions on avalanche ionization and multiphoton processes of importance at shorter wavelengths. Of particular importance were the scaling relations developed from several parametric studies relating fundamental properties (refractive index, surface roughness etc.) to the damage threshold. This year many of the extrinsic influences tending to reduce a materials damage resistance were isolated such that measures of their egregious nature could be quantified. Much still needs to be accomplished to improve processing and fabrication procedures to allow a measurable approach to a materials intrinsic strength to be demonstrated.

  10. Optical emission spectroscopy of carbon laser plasma ion source

    Science.gov (United States)

    Balki, Oguzhan; Rahman, Md. Mahmudur; Elsayed-Ali, Hani E.

    2018-04-01

    Carbon laser plasma generated by an Nd:YAG laser (wavelength 1064 nm, pulse width 7 ns, fluence 4-52 J cm-2) is studied by optical emission spectroscopy and ion time-of-flight. Up to C4+ ions are detected with the ion flux strongly dependent on the laser fluence. The increase in ion charge with the laser fluence is accompanied by observation of multicharged ion lines in the optical spectra. The time-integrated electron temperature Te is calculated from the Boltzmann plot using the C II lines at 392.0, 426.7, and 588.9 nm. Te is found to increase from ∼0.83 eV for a laser fluence of 22 J cm-2 to ∼0.90 eV for 40 J cm-2. The electron density ne is obtained from the Stark broadened profiles of the C II line at 392 nm and is found to increase from ∼ 2 . 1 × 1017cm-3 for 4 J cm-2 to ∼ 3 . 5 × 1017cm-3 for 40 J cm-2. Applying an external electric field parallel to the expanding plume shows no effect on the line emission intensities. Deconvolution of ion time-of-flight signal with a shifted Maxwell-Boltzmann distribution for each charge state results in an ion temperature Ti ∼4.7 and ∼6.0 eV for 20 and 36 J cm-2, respectively.

  11. Optical microdevices fabricated using femtosecond laser processing (Conference Presentation)

    Science.gov (United States)

    Otuka, Adriano J. G.; Tomázio, Nathália B.; Tribuzi, Vinicius; Ferreira, Paulo Henrique D.; De Boni, Leonardo; Mendonça, Cleber R.

    2017-02-01

    Femtosecond laser processing techniques have been widely employed to produce micro or nanodevices with special features. These devices can be selectively doped with organic dyes, biological agents, nanoparticles or carbon nanotubes, increasing the range of applications. Acrylate polymers can be easily doped with various compounds, and therefore, they are interesting materials for laser fabrication techniques. In this work, we use multiphoton absorption polymerization (MAP) and laser ablation to fabricate polymeric microdevices for optical applications. The polymeric sample used in this work is composed in equal proportions of two three-acrylate monomers; while tris(2-hydroxyethyl)isocyanurate triacrylate gives hardness to the structure, the ethoxylated(6) trimethyl-lolpropane triacrylate reduces the shrinkage tensions upon polymerization. These monomers are mixed with a photoinitiator, the 2,4,6-trimetilbenzoiletoxifenil phosphine oxide, enabling the sample polymerization after laser irradiation. Using MAP, we fabricate three-dimensional structures doped with fluorescent dyes. These structures can be used in several optical applications, such as, RGB fluorescent microdevices or microresonators. Using azo compounds like dopant in the host resin, we can apply these structures in optical data storage devices. Using laser ablation technique, we can fabricate periodic microstructures inside polymeric bulks doped with xanthene dyes and single-walled carbon nanotubes, aiming applications in random laser experiments. In structured bulks we observed multi-narrow emission peaks over the xanthene fluorescence emission. Furthermore, in comparison with non-structured bulks, we observed that the periodic structure decreased the degree of randomness, reducing the number of peaks, but defining their position.

  12. Postural adaptations to repeated optic flow stimulation in older adults

    OpenAIRE

    O’Connor, Kathryn W.; Loughlin, Patrick J.; Redfern, Mark S.; Sparto, Patrick J.

    2008-01-01

    The purpose of this study is to understand the processes of adaptation (changes in within-trial postural responses) and habituation (reductions in between-trial postural responses) to visual cues in older and young adults. Of particular interest were responses to sudden increases in optic flow magnitude. The postural sway of 25 healthy young adults and 24 healthy older adults was measured while subjects viewed anterior-posterior 0.4 Hz sinusoidal optic flow for 45 s. Three trials for each of ...

  13. Segmented bimorph mirrors for adaptive optics: morphing strategy.

    Science.gov (United States)

    Bastaits, Renaud; Alaluf, David; Belloni, Edoardo; Rodrigues, Gonçalo; Preumont, André

    2014-08-01

    This paper discusses the concept of a light weight segmented bimorph mirror for adaptive optics. It focuses on the morphing strategy and addresses the ill-conditioning of the Jacobian of the segments, which are partly outside the optical pupil. Two options are discussed, one based on truncating the singular values and one called damped least squares, which minimizes a combined measure of the sensor error and the voltage vector. A comparison of various configurations of segmented mirrors was conducted; it is shown that segmentation sharply increases the natural frequency of the system with limited deterioration of the image quality.

  14. Application of optical processing to adaptive phased array radar

    Science.gov (United States)

    Carroll, C. W.; Vijaya Kumar, B. V. K.

    1988-01-01

    The results of the investigation of the applicability of optical processing to Adaptive Phased Array Radar (APAR) data processing will be summarized. Subjects that are covered include: (1) new iterative Fourier transform based technique to determine the array antenna weight vector such that the resulting antenna pattern has nulls at desired locations; (2) obtaining the solution of the optimal Wiener weight vector by both iterative and direct methods on two laboratory Optical Linear Algebra Processing (OLAP) systems; and (3) an investigation of the effects of errors present in OLAP systems on the solution vectors.

  15. Adaptive optics confocal microscopy using direct wavefront sensing.

    Science.gov (United States)

    Tao, Xiaodong; Fernandez, Bautista; Azucena, Oscar; Fu, Min; Garcia, Denise; Zuo, Yi; Chen, Diana C; Kubby, Joel

    2011-04-01

    Optical aberrations due to the inhomogeneous refractive index of tissue degrade the resolution and brightness of images in deep-tissue imaging. We introduce a confocal fluorescence microscope with adaptive optics, which can correct aberrations based on direct wavefront measurements using a Shack-Hartmann wavefront sensor with a fluorescent bead used as a point source reference beacon. The results show a 4.3× improvement in the Strehl ratio and a 240% improvement in the signal intensity for fixed mouse tissues at depths of up to 100 μm.

  16. Optical design of multi-multiple expander structure of laser gas analysis and measurement device

    Science.gov (United States)

    Fu, Xiang; Wei, Biao

    2018-03-01

    The installation and debugging of optical circuit structure in the application of carbon monoxide distributed laser gas analysis and measurement, there are difficult key technical problems. Based on the three-component expansion theory, multi-multiple expander structure with expansion ratio of 4, 5, 6 and 7 is adopted in the absorption chamber to enhance the adaptability of the installation environment of the gas analysis and measurement device. According to the basic theory of aberration, the optimal design of multi-multiple beam expander structure is carried out. By using image quality evaluation method, the difference of image quality under different magnifications is analyzed. The results show that the optical quality of the optical system with the expanded beam structure is the best when the expansion ratio is 5-7.

  17. Width-tunable pulse laser via optical injection induced gain modulation of semiconductor optical amplifiers

    Science.gov (United States)

    Pan, Honggang; Zhang, Ailing; Tong, Zhengrong; Zhang, Yue; Song, Hongyun; Yao, Yuan

    2018-03-01

    A width-tunable pulse laser via an optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated. When the pump current of the SOA is 330 mA or 400 mA and a continuous wave is injected into the laser cavity with different powers, bright or dark pulses with different pulse widths and frequency repetition rates are obtained. The bright and dark pulses are formed by the effect of gain dispersion and cross-gain modulation of the SOA.

  18. Short wavelength optics for future free electron lasers

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1984-04-01

    Although much free-electron laser work is directed toward achieving sufficient single-pass gain to be useful for research purposes, the availability of mirrors of high reflectance for the vacuum ultraviolet and soft x-ray regime would make resonant cavities a possibility. In addition, as in ordinary synchrotron radiation work, mirrors are required for the construction of realistic experiments and for beam manipulation purposes such as folding and extraction. The Working Group discussed a number of approaches to reflecting optics for free electron lasers, which are summarized here, and described in some detail. 16 references, 2 figures

  19. Laser Controlled Tunneling in a Vertical Optical Lattice

    Science.gov (United States)

    Beaufils, Q.; Tackmann, G.; Wang, X.; Pelle, B.; Pelisson, S.; Wolf, P.; Dos Santos, F. Pereira

    2011-05-01

    Raman laser pulses are used to induce coherent tunneling between neighboring sites of a vertical 1D optical lattice. Such tunneling occurs when the detuning of a probe laser from the atomic transition frequency matches multiples of the Bloch frequency, allowing for a spectroscopic control of the coupling between Wannier-Stark (WS) states. In particular, we prepare coherent superpositions of WS states of adjacent sites, and investigate the coherence time of these superpositions by realizing a spatial interferometer. This scheme provides a powerful tool for coherent manipulation of external degrees of freedom of cold atoms, which is a key issue for quantum information processing.

  20. Return-map for semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Tromborg, Bjarne; Sabbatier, H.

    1999-01-01

    It is well known that a semiconductor laser exposed to moderate optical feedback and biased near threshold exhibits the phenomenon of low-frequency intensity fluctuations (LFF). While this behavior can be numerically simulated using the so-called Lang-Kobayshi model, the interpretation...... recently. These results give insight into the behavior observed on a short time-scale, but do not explain some of the pronounced features of the LFF seen for moderate feedback levels; namely the stepwise build-up and its characteristic time of about 15 steps close to the solitary laser threshold. We...

  1. Optical Thomson scatter from laser-ablated plumes

    International Nuclear Information System (INIS)

    Delserieys, A.; Khattak, F. Y.; Lewis, C. L. S.; Riley, D.; Pedregosa Gutierrez, J.

    2008-01-01

    We have obtained density and temperature informations on an expanding KrF laser-ablated magnesium plume via optical Thomson scatter with a frequency doubled Nd:YAG laser. The electron temperature was found to decay with the expected T e ∝t -1 dependence. However, we have found the electron density to have a time dependence n e ∝t -4.95 which can be explained by strong recombination processes. We also observed atomic Raman satellites originating from transitions between the different angular momentum levels of the metastable 3 P 0 term in Mg I

  2. Application of adaptive Kalman filter in vehicle laser Doppler velocimetry

    Science.gov (United States)

    Fan, Zhe; Sun, Qiao; Du, Lei; Bai, Jie; Liu, Jingyun

    2018-03-01

    Due to the variation of road conditions and motor characteristics of vehicle, great root-mean-square (rms) error and outliers would be caused. Application of Kalman filter in laser Doppler velocimetry(LDV) is important to improve the velocity measurement accuracy. In this paper, the state-space model is built by using current statistical model. A strategy containing two steps is adopted to make the filter adaptive and robust. First, the acceleration variance is adaptively adjusted by using the difference of predictive observation and measured observation. Second, the outliers would be identified and the measured noise variance would be adjusted according to the orthogonal property of innovation to reduce the impaction of outliers. The laboratory rotating table experiments show that adaptive Kalman filter greatly reduces the rms error from 0.59 cm/s to 0.22 cm/s and has eliminated all the outliers. Road experiments compared with a microwave radar show that the rms error of LDV is 0.0218 m/s, and it proves that the adaptive Kalman filtering is suitable for vehicle speed signal processing.

  3. Optical system for UV-laser technological equipment

    Science.gov (United States)

    Fedosov, Yuri V.; Romanova, Galina E.; Afanasev, Maxim Ya.

    2017-09-01

    Recently there has been an intensive development of intelligent industrial equipment that is highly automated and can be rapidly adjusted for certain details. This equipment can be robotics systems, automatic wrappers and markers, CNC machines and 3D printers. The work equipment considered is the system for selective curing of photopolymers using a UV-laser and UV-radiation in such equipment that leads to additional technical difficulties. In many cases for transporting the radiation from the laser to the point processed, a multi-mirror system is used: however, such systems are usually difficult to adjust. Additionally, such multi-mirror systems are usually used as a part of the equipment for laser cutting of metals using high-power IR-lasers. For the UV-lasers, using many mirrors leads to crucial radiation losses because of many reflections. Therefore, during the development of the optical system for technological equipment using UV-laser we need to solve two main problems: to transfer the radiation for the working point with minimum losses and to include the system for controlling/handling the radiation spot position. We introduce a system for working with UV-lasers with 450mW of power and a wavelength of 0.45 μm based on a fiber system. In our modelling and design, we achieve spot sizes of about 300 μm, and the designed optical and mechanical systems (prototypes) were manufactured and assembled. In this paper, we present the layout of the technological unit, the results of the theoretical modelling of some parts of the system and some experimental results.

  4. Optical properties of photoreceptor and retinal pigment epithelium cells investigated with adaptive optics optical coherence tomography

    Science.gov (United States)

    Liu, Zhuolin

    Human vision starts when photoreceptors collect and respond to light. Photoreceptors do not function in isolation though, but share close interdependence with neighboring photoreceptors and underlying retinal pigment epithelium (RPE) cells. These cellular interactions are essential for normal function of the photoreceptor-RPE complex, but methods to assess these in the living human eye are limited. One approach that has gained increased promise is high-resolution retinal imaging that has undergone tremendous technological advances over the last two decades to probe the living retina at the cellular level. Pivotal in these advances has been adaptive optics (AO) and optical coherence tomography (OCT) that together allow unprecedented spatial resolution of retinal structures in all three dimensions. Using these high-resolution systems, cone photoreceptor are now routinely imaged in healthy and diseased retina enabling fundamental structural properties of cones to be studied such as cell spacing, packing arrangement, and alignment. Other important cell properties, however, have remained elusive to investigation as even better imaging performance is required and thus has resulted in an incomplete understanding of how cells in the photoreceptor-RPE complex interact with light. To address this technical bottleneck, we expanded the imaging capability of AO-OCT to detect and quantify more accurately and completely the optical properties of cone photoreceptor and RPE cells at the cellular level in the living human retina. The first objective of this thesis was development of a new AO-OCT method that is more precise and sensitive, thus enabling a more detailed view of the 3D optical signature of the photoreceptor-RPE complex than was previously possible (Chapter 2). Using this new system, the second objective was quantifying the waveguide properties of individual cone photoreceptor inner and outer segments across the macula (Chapter 3). The third objective extended the AO

  5. Modeling and analysis of laser active interference optical path

    Science.gov (United States)

    Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Chen, Jian-biao; Ren, Jian-ying

    2017-10-01

    By using the geometrical optics and physical optics method, the models of wedge plate interference optical path, Michelson interferometer and Mach Zehnder interferometer thus three different active interference pattern are built. The optical path difference (OPD) launched by different interference patterns, fringe spacing and contrast expression have been derived. The results show that far field interference peak intensity of the wedge plate interference is small, so the detection distance is limited, Michelson interferometer with low contrast affects the performance of detection system, Mach Zehnder interferometer has greater advantages in peak intensity, the variable range of interference fringe spacing and contrast ratio. The results of this study are useful for the theoretical research and practical application of laser active interference detection.

  6. Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-08-01

    Full Text Available Attracting increasing attention in recent years, the Free Space Optics (FSO technology has been recognized as a cost-effective wireless access technology for multi-Gigabit rate wireless networks. Radio on Free Space Optics (RoFSO provides a new approach to support various bandwidth-intensive wireless services in an optical wireless link. In an RoFSO system using wavelength-division multiplexing (WDM, it is possible to concurrently transmit multiple data streams consisting of various wireless services at very high rate. In this paper, we investigate the problem of optical power allocation under power budget and eye safety constraints for adaptive WDM transmission in RoFSO networks. We develop power allocation schemes for adaptive WDM transmissions to combat the effect of weather turbulence on RoFSO links. Simulation results show that WDM RoFSO can support high data rates even over long distance or under bad weather conditions with an adequate system design.

  7. Contrast-based sensorless adaptive optics for retinal imaging.

    Science.gov (United States)

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  8. Adaptive optics for enhanced signal in CARS microscopy.

    Science.gov (United States)

    Wright, A J; Poland, S P; Girkin, J M; Freudiger, C W; Evans, C L; Xie, X S

    2007-12-24

    We report the use of adaptive optics with coherent anti-Stokes Raman scattering (CARS) microscopy for label-free deep tissue imaging based on molecular vibrational spectroscopy. The setup employs a deformable membrane mirror and a random search optimization algorithm to improve signal intensity and image quality at large sample depths. We demonstrate the ability to correct for both system and sample-induced aberrations in test samples as well as in muscle tissue in order to enhance the CARS signal. The combined system and sample-induced aberration correction increased the signal by an average factor of approximately 3x for the test samples at a depth of 700 microm and approximately 6x for muscle tissue at a depth of 260 microm. The enhanced signal and higher penetration depth offered by adaptive optics will augment CARS microscopy as an in vivo and in situ biomedical imaging modality.

  9. Laser Induced Damage in Optical Materials: 1980.

    Science.gov (United States)

    1981-10-01

    developed in Japan for processing defect-free metallic surfaces was a highlight of the meeting. In the procedure employed, a slurry of abrasive...polishing with a slurry of Linde A in ethanol or propanol, and then drying under a heat lamp. Prior to the optical measurements the samples were stored...sample. Moreover, we can perform float polishing with various kind of powders, for example, SiO2, CeO2 , y-A1203 , Cr203, Fe2O,, ZrO2 , ZnO,MgO, CaC0 3

  10. Laser-controlled optical transconductance varistor system

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hoang T.; Stuart, Brent C.

    2017-07-11

    An optical transconductance varistor system having a modulated radiation source configured to provide modulated stimulus, a wavelength converter operably connected to the modulated radiation source to produce a modulated stimulus having a predetermined wavelength, and a wide bandgap semiconductor photoconductive material in contact between two electrodes. The photoconductive material is operably coupled, such as by a beam transport module, to receive the modulated stimulus having the predetermined wavelength to control a current flowing through the photoconductive material when a voltage potential is present across the electrodes.

  11. Laser induced damage in optical materials: ninth ASTM symposium.

    Science.gov (United States)

    Glass, A J; Guenther, A H

    1978-08-01

    The Ninth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 4-6 October 1977. The symposium was under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy (formerly ERDA), and the Office of Naval Research. About 185 scientists attended, including representatives of the United Kingdom, France, Canada, Australia, Union of South Africa, and the Soviet Union. The Symposium was divided into sessions concerning Laser Windows and Materials, Mirrors and Surfaces, Thin Films, Laser Glass and Glass Lasers, and Fundamental Mechanisms. As in previous years, the emphasis of the papers was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the uv region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength were also discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The Tenth Annual Symposium is scheduled for 12-14 September 1978 at the National Bureau of Standards, Boulder, Colorado.

  12. A superradiant clock laser on a magic wavelength optical lattice.

    Science.gov (United States)

    Maier, Thomas; Kraemer, Sebastian; Ostermann, Laurin; Ritsch, Helmut

    2014-06-02

    An ideal superradiant laser on an optical clock transition of noninteracting cold atoms is predicted to exhibit an extreme frequency stability and accuracy far below mHz-linewidth. In any concrete setup sufficiently many atoms have to be confined and pumped within a finite cavity mode volume. Using a magic wavelength lattice minimizes light shifts and allows for almost uniform coupling to the cavity mode. Nevertheless, the atoms are subject to dipole-dipole interaction and collective spontaneous decay which compromises the ultimate frequency stability. In the high density limit the Dicke superradiant linewidth enhancement will broaden the laser line and nearest neighbor couplings will induce shifts and fluctuations of the laser frequency. We estimate the magnitude and scaling of these effects by direct numerical simulations of few atom systems for different geometries and densities. For Strontium in a regularly filled magic wavelength configuration atomic interactions induce small laser frequency shifts only and collective spontaneous emission weakly broadens the laser. These interactions generally enhance the laser sensitivity to cavity length fluctuations but for optimally chosen operating conditions can lead to an improved synchronization of the atomic dipoles.

  13. 3D adaptive optics in a light sheet microscope.

    Science.gov (United States)

    Bourgenot, Cyril; Saunter, Christopher D; Taylor, Jonathan M; Girkin, John M; Love, Gordon D

    2012-06-04

    We report on a single plane illumination microscope (SPIM) incorporating adaptive optics in the imaging arm. We show how aberrations can occur from the sample mounting tube and quantify the aberrations both experimentally and computationally. A wavefront sensorless approach was taken to imaging a green fluorescent protein (GFP) labelled transgenic zebrafish. We show improvements in image quality whilst recording a 3D "z-stack" and show how the aberrations come from varying depths in the fish.

  14. Adaptive optics enables 3D STED microscopy in aberrating specimens.

    Science.gov (United States)

    Gould, Travis J; Burke, Daniel; Bewersdorf, Joerg; Booth, Martin J

    2012-09-10

    Stimulated emission depletion (STED) microscopy allows fluorescence far-field imaging with diffraction-unlimited resolution. Unfortunately, extending this technique to three-dimensional (3D) imaging of thick specimens has been inhibited by sample-induced aberrations. Here we present the first implementation of adaptive optics in STED microscopy to allow 3D super-resolution imaging in strongly aberrated imaging conditions, such as those introduced by thick biological tissue.

  15. Adaptive optics enables 3D STED microscopy in aberrating specimens

    Science.gov (United States)

    Gould, Travis J.; Burke, Daniel; Bewersdorf, Joerg; Booth, Martin J.

    2012-01-01

    Stimulated emission depletion (STED) microscopy allows fluorescence far-field imaging with diffraction-unlimited resolution. Unfortunately, extending this technique to three-dimensional (3D) imaging of thick specimens has been inhibited by sample-induced aberrations. Here we present the first implementation of adaptive optics in STED microscopy to allow 3D super-resolution imaging in strongly aberrated imaging conditions, such as those introduced by thick biological tissue. PMID:23037223

  16. Thermally tuneable optical modulator adapted for differential signaling

    Science.gov (United States)

    Zortman, William A.

    2016-01-12

    An apparatus for optical modulation is provided. The apparatus includes a modulator structure and a heater structure. The modulator structure comprises a ring or disk optical resonator having a closed curvilinear periphery and a pair of oppositely doped semiconductor regions within and/or adjacent to the optical resonator and conformed to modify the optical length of the optical resonator upon application of a bias voltage. The heater structure comprises a relatively resistive annulus of semiconductor material enclosed between an inner disk and an outer annulus of relatively conductive semiconductor material. The inner disk and the outer annulus are adapted as contact regions for a heater activation current. The heater structure is situated within the periphery of the optical resonator such that in operation, at least a portion of the resonator is heated by radial conductive heat flow from the heater structure. The apparatus further includes a substantially annular isolation region of dielectric or relatively resistive semiconductor material interposed between the heater structure and the modulator structure. The isolation region is effective to electrically isolate the bias voltage from the heater activation current.

  17. 100 GHz Externally Modulated Laser for Optical Interconnects Applications

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Pang, Xiaodan; Iglesias Olmedo, Miguel

    2017-01-01

    We report on a 116 Gb/s on-off keying (OOK), four pulse amplitude modulation (PAM) and 105-Gb/s 8-PAM optical transmitter using an InP-based integrated and packaged externally modulated laser for high-speed optical interconnects with up to 30 dB static extinction ratio and over 100-GHz 3-d......B bandwidth with 2 dB ripple. In addition, we study the tradeoff between power penalty and equalizer length to foresee transmission distances with standard single mode fiber....

  18. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  19. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    Science.gov (United States)

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2011-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  20. Application of laser tracker technology for measuring optical surfaces

    Science.gov (United States)

    Zobrist, Tom L.

    The pages of this dissertation detail the development of an advanced metrology instrument for measuring large optical surfaces. The system is designed to accurately guide the fabrication of the Giant Magellan Telescope and future telescopes through loose-abrasive grinding. The instrument couples a commercial laser tracker with an advanced calibration technique and a set of external references to mitigate a number of error sources. The system is also required to work as a verification test for the GMT principal optical interferometric test of the polished mirror segment to corroborate the measurements in several low-order aberrations. A set of system performance goals were developed to ensure that the system will achieve these purposes. The design, analysis, calibration results, and measurement performance of the Laser Tracker Plus system are presented in this dissertation.

  1. The dynamical complexity of optically injected semiconductor lasers

    International Nuclear Information System (INIS)

    Wieczorek, S.; Krauskopf, B.; Simpson, T.B.; Lenstra, D.

    2005-01-01

    This report presents a modern approach to the theoretical and experimental study of complex nonlinear behavior of a semiconductor laser with optical injection-an example of a widely applied and technologically relevant forced nonlinear oscillator. We show that the careful bifurcation analysis of a rate equation model yields (i) a deeper understanding of already studied physical phenomena, and (ii) the discovery of new dynamical effects, such as multipulse excitability. Different instabilities, cascades of bifurcations, multistability, and sudden chaotic transitions, which are often viewed as independent, are in fact logically connected into a consistent web of bifurcations via special points called organizing centers. This theoretical bifurcation analysis has predictive power, which manifests itself in good agreement with experimental measurements over a wide range of parameters and diversity of dynamics. While it is dealing with the specific system of an optically injected laser, our work constitutes the state-of-the-art in the understanding and modeling of a nonlinear physical system in general

  2. High-resolution lidar observations of mesospheric sodium and implications for adaptive optics.

    Science.gov (United States)

    Pfrommer, Thomas; Hickson, Paul

    2010-11-01

    Observations of sodium density variability in the upper mesosphere/lower thermosphere, obtained using a high-resolution lidar system, show rapid fluctuations in the sodium centroid altitude. The temporal power spectrum extends above 1 Hz and is well-fit by a power law having a slope that is -1.95±0.12. These fluctuations produce focus errors in adaptive optics systems employing continuous-wave sodium laser guide stars, which can be significant for large-aperture telescopes. For a 30 m aperture diameter, the associated rms wavefront error is approximately 4 nm per meter of altitude change and increases as the square of the aperture diameter. The vertical velocity of the sodium centroid altitude is found to be ~23 ms(-1) on a 1 s time scale. If these high-frequency fluctuations arise primarily from advection of horizontal structure by the mesospheric wind, our data imply that variations in the sodium centroid altitude on the order of tens of meters occur over the horizontal scales spanned by proposed laser guide star asterisms. This leads to substantial differential focus errors (~107 nm over a 1 arc min separation with a 30 m aperture diameter) that may impact the performance of wide-field adaptive optics systems. Short-lasting and narrow sodium density enhancements, more than 1 order of magnitude above the local sodium density, occur due to advection of meteor trails. These have the ability to change the sodium centroid altitude by as much as 1 km in less than 1 s, which could result in temporary disruption of adaptive optics systems.

  3. Wavefront sensing and adaptive optics in strong turbulence

    Science.gov (United States)

    Mackey, Ruth; Dainty, Christopher

    2005-06-01

    When light propagates through the atmosphere the fluctuating refractive index caused by temperature gradients, humidity fluctuations and the wind mixing of air cause the phase of the optical field to be corrupted. In strong turbulence, over horizontal paths or at large zenith angles, the phase aberration is converted to intensity variation (scintillation) as interference within the beam and diffraction effects produce the peaks and zeros of a speckle-like pattern. At the zeros of intensity the phase becomes indeterminate as both the real and imaginary parts of the field go to zero. The wavefront is no longer continuous but contains dislocations along lines connecting phase singularities of opposite rotation. Conventional adaptive optics techniques of wavefront sensing and wavefront reconstruction do not account for discontinuous phase functions and hence can only conjugate an averaged, continuous wavefront. We are developing an adaptive optics system that can cope with dislocations in the phase function for potential use in a line-of-sight optical communications link. Using a ferroelectric liquid crystal spatial light modulator (FLC SLM) to generate dynamic atmospheric phase screens in the laboratory, we simulate strong scintillation conditions where high densities of phase singularities exist in order to compare wavefront sensors for tolerance to scintillation and accuracy of wavefront recovery.

  4. Gaseous laser targets and optical diagnostics for studying compressible hydrodynamic instabilities

    International Nuclear Information System (INIS)

    Edwards, J M; Robey, H; Mackinnon, A

    2001-01-01

    Explore the combination of optical diagnostics and gaseous targets to obtain important information about compressible turbulent flows that cannot be derived from traditional laser experiments for the purposes of V and V of hydrodynamics models and understanding scaling. First year objectives: Develop and characterize blast wave-gas jet test bed; Perform single pulse shadowgraphy of blast wave interaction with turbulent gas jet as a function of blast wave Mach number; Explore double pulse shadowgraphy and image correlation for extracting velocity spectra in the shock-turbulent flow interaction; and Explore the use/adaptation of advanced diagnostics

  5. Laser metrology and optic active control system for GAIA

    Science.gov (United States)

    D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.

    2017-11-01

    The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.

  6. Programmable current source for diode lasers stabilized optical fiber

    International Nuclear Information System (INIS)

    Gomez, J.; Camas, J.; Garcia, L.

    2012-01-01

    In this paper, we present the electronic design of a programmable stabilized current source. User can access to the source through a password, which, it has a database with the current and voltage operating points. This source was successfully used as current source in laser diode in optical fiber sensors. Variations in the laser current were carried out by a monitoring system and a control of the Direct Current (DC), which flowing through a How land source with amplifier. The laser current can be stabilized with an error percent of ± 1 μA from the threshold current (Ith) to its maximum operation current (Imax) in DC mode. The proposed design is reliable, cheap, and its output signal of stabilized current has high quality. (Author)

  7. Analytic functions of optical choppers for Gaussian laser beams

    Science.gov (United States)

    Pop, Nicolina; Cira, Octavian; Duma, Virgil-Florin

    2017-06-01

    The paper presents a report on our current work on obtaining the analytic functions of the laser impulses generated by optical choppers with disks in their classical configuration - with windows that have linear margins. With regard to our previous researches, focused on choppers working with top-hat (i.e., with constant intensity) laser beams, in the present work Gaussian laser beam distributions of the light beams to be chopped have been considered, for the most common case, of a light bundle of a sufficient small diameter in the plane of the disk; this type of section can therefore be completely obscured and uncovered by the chopper wings and windows, respectively. The functions of the transmitted light flux of the device are approached. This allows for the designing calculus of choppers for different applications, taking into account their specific requirements. A comparison between analytical results obtained in this work and results from our previous numerical modeling is pointed out.

  8. 2nd International Conference on Photonics, Optics and Laser Technology

    CERN Document Server

    Raposo, Maria

    2016-01-01

    This collection of the selected papers presented to the Second International Conference on Photonics, Optics and laser technology PHOTOPTICS 2014 covers the three main conference scientific areas of “Optics”, “Photonics” and “Lasers”. The selected papers, in two classes full and short, result from a double blind review carried out by conference Program Committee members who are highly qualified experts in the conference topic areas.

  9. 3rd International Conference on Photonics, Optics and Laser Technology

    CERN Document Server

    Raposo, Maria

    2016-01-01

    The book provides a collection of selected papers presented to the third International Conference on Photonics, Optics and Laser Technology PHOTOPTICS 2015, covering the three main conference scientific areas of “Optics”, “Photonics” and “Lasers”. The selected papers, in two classes full and short, result from a double blind review carried out by the conference program committee members which are highly qualified experts in conference topic areas.

  10. All-optical, Three-axis Fiber Laser Magnetometer

    Science.gov (United States)

    2012-04-16

    force acting on a current carrying bridge in the presence of a magnetic field, which drives its oscillation measured with a fiber laser strain sensor... strain between two cores as a function of rotation for difference inclinations and (b) reported inclination vs. actual inclination for a bend angle of...such as those based on SQUIDS, giant magnetoresistance (GMR), scalar resonance magnetometers, and flux-gates; however, a fiber optic sensor enables

  11. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  12. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  13. Multimode laser beam analyzer instrument using electrically programmable optics.

    Science.gov (United States)

    Marraccini, Philip J; Riza, Nabeel A

    2011-12-01

    Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M(2). Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M(2) experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.

  14. Laser additive manufacturing of 3D meshes for optical applications.

    Directory of Open Access Journals (Sweden)

    Khamis Essa

    Full Text Available Selective laser melting (SLM is a widely used additive manufacturing process that can be used for printing of intricate three dimensional (3D metallic structures. Here we demonstrate the fabrication of titanium alloy Ti-6Al-4V alloy based 3D meshes with nodally-connected diamond like unit cells, with lattice spacing varying from 400 to 1000 microns. A Concept Laser M2 system equipped with laser that has a wavelength of 1075 nm, a constant beam spot size of 50μm and maximum power of 400W was used to manufacture the 3D meshes. These meshes act as optical shutters / directional transmitters and display interesting optical properties. A detailed optical characterisation was carried out and it was found that these structures can be optimised to act as scalable rotational shutters with high efficiencies and as angle selective transmission screens for protection against unwanted and dangerous radiations. The efficiency of fabricated lattice structures can be increased by enlarging the meshing size.

  15. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    International Nuclear Information System (INIS)

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-01

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an

  16. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.

    Science.gov (United States)

    Steinbock, Michael J; Hyde, Milo W; Schmidt, Jason D

    2014-06-20

    Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors.

  17. Optical fundamentals of an adaptive substance-on-surface chemical recognizer

    Science.gov (United States)

    Fauconier, Richard; Ndoye, Mandoye; Montlouis, Webert

    2017-10-01

    The objective is to identify the chemical composition of (isotropic and homogeneous) thin liquid and gel films on various surfaces by their infrared reflectance spectra. A bistatic optical sensing concept is proposed here in which a multi-wavelength laser source and a detector are physically displaced from each other. With the aid of the concept apparatus proposed, key optical variables can be measured in real time. The variables in question (substance thickness, refractive index, etc.) are those whose un-observability causes many types of monostatic sensor (in use today) to give ambiguous identifications. Knowledge of the aforementioned key optical variables would allow an adaptive signal-processing algorithm to make unambiguous identifications of the unknown chemicals by their infrared spectra, despite their variable presentations. The proposed bistatic sensor system consists of an optical transmitter and an optical receiver. The whole system can be mounted on a stable platform. Both the optical transmitter subsystem and the optical receiver subsystem contain auxiliary sensors to determine their relative spatial positions and orientations. For each subsystem, these auxiliary sensors include an orientation sensor, and rotational sensors for absolute angular position. A profilometer-and-machine-vision subsystem is also included. An important aspect of determining the necessary optical variables is an aperture that limits the interrogatory beams to a coherent pair, rejecting those resulting from successive multiple reflections. A set of equations is developed to characterize the propagation of a coherent pair of frequency-modulated thin beams through the system. It is also shown that frequency modulation can produce easily measurable beat frequencies for determination of sample thicknesses on the order of microns to millimeters. Also shown is how the apparatus's polarization features allow it to measure the refractive index of any isotropic, homogeneous dielectric

  18. Multipass laser amplification with near-field far-field optical separation

    Science.gov (United States)

    Hagen, Wilhelm F.

    1979-01-01

    This invention discloses two classes of optical configurations for high power laser amplification, one allowing near-field and the other allowing far-field optical separation, for the multiple passage of laser pulses through one or more amplifiers over an open optical path. These configurations may reimage the amplifier or any other part of the cavity on itself so as to suppress laser beam intensity ripples that arise from diffraction and/or non-linear effects. The optical cavities combine the features of multiple passes, spatial filtering and optical reimaging and allow sufficient time for laser gain recovery.

  19. Adaptive optics improves multiphoton super-resolution imaging

    Science.gov (United States)

    Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari

    2018-02-01

    Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.

  20. Laser gain spectra of quantum wells and multiplasmon optical transitions

    International Nuclear Information System (INIS)

    Gurau, V.

    2005-01-01

    A novel multi-plasmon concept of a light absorption and laser gain of low-dimensional structures are comprehensively discussed. A Generalized Semiconductor Bloch Equations are derived with account of multi-plasmon optical transitions in direct gap quantum wells, using the cumulant expansion method and fluctuation-dissipation theorem. We present results of computer simulations concerning gain spectra of In 0.05 Ga 0.95 As quantum wells with account of multiplasmon optical transitions in two-dimensional systems. Multi-quantum LO-phonon-plasmon optical transitions are investigated with account of coherent memory effects in quantum wells. It is shown that a red shift of the absorption edge can be caused, not only by known mechanism of band gap shrinkage, but also by multi-plasmon transitions. The electron-hole plasma properties in the active region of the laser device and its interaction with the optical field are studied on a microscopic level using obtained Generalized Semiconductor Bloch Equations. The comparison with other theories and experimental data measured in In 0.05 Ga 0.95 As quantum wells is performed. The gain value g=50 cm -1 in 8 nm In 0.05 Ga 0.95 As quantum wells is obtained at a surface density of electrons nd 0 =1.64 10 -12 cm -2 . (authors)

  1. Laser camp: shining a light on optics careers

    Science.gov (United States)

    Donnelly, Judith; Goyette, Donna; Magnani, Nancy; Wosczyna-Birch, Karen

    2008-08-01

    Three Rivers Community College offers two associate degree programs in optics/photonics, and graduates have their choice of jobs in New England and across the United States. Nonetheless, students, their parents, teachers and guidance counselors are largely unaware of the career opportunities in the photonics industry. To promote optics/photonics career awareness, we hosted two versions of "Laser Camp" in 2007 and 2008. Hands-on activities were chosen to promote awareness of optical science and technology careers and to provide "take home" information and souvenirs to share with family and friends. In this paper, we discuss the logistics of funding, marketing, permissions, transportation and food service and share our student-tested activities.

  2. Dispersion Compensation Requirements for Optical CDMA Using WDM Lasers

    International Nuclear Information System (INIS)

    Mendez, A J; Hendandez, V J; Feng, H X C; Heritage, J P; Lennon, W J

    2001-01-01

    Optical code division multiple access (O-CDMA) uses very narrow transmission pulses and is thus susceptible to fiber optic link impairments. When the O-CDMA is implemented as wavelength/time (W/T) matrices which use wavelength division multiplexing (WDM) sources such as multi-frequency laser transmitters, the susceptibility may be higher due to: (a) the large bandwidth utilized and (b) the requirement that the various wavelength components of the codes be synchronized at the point of modulation and encoding as well as after (optical) correlation. A computer simulation based on the nonlinear Schroedinger equation, developed to study optical networking on the National Transparent Optical Network (NTON), was modified to characterize the impairments on the propagation and decoding of W/T matrix codes over a link of the NTON. Three critical link impairments were identified by the simulation: group velocity dispersion (GVD); the flatness of the optical amplifier gain; and the slope of the GVD. Subsequently, experiments were carried out on the NTON link to verify and refine the simulations as well as to suggest improvements in the W/T matrix signal processing design. The NTON link measurements quantified the O-CDMA dispersion compensation requirements. Dispersion compensation management is essential to assure the performance of W/T matrix codes

  3. Fibre-optic laser-assisted infrared tumour diagnostics (FLAIR)

    International Nuclear Information System (INIS)

    Bindig, U; Mueller, G

    2005-01-01

    Laser based fibre-optic surgery procedures are commonly used in minimal invasive surgery. Despite the development of precise and efficient laser systems there are also innovative attempts in the field of bio-medical diagnostics. As a direct result of the tissue's optical properties most applications are focused on the visible wavelength range of the spectrum. The extension of the spectrum up to the mid-infrared (IR) region will offer a broad range of possibilities for novel strategies with a view to non-invasive diagnostics in medicine. We describe a method to detect differences between diseased and normal tissues, which involve Fourier transform IR microspectroscopy and fibre-optics methods. Regions of interest on 10 μm thin tissue sections were mapped using an IR microscope in transmission mode. After IR-mapping, the samples were analysed using standard pathological techniques. Quadratic discriminant and correlation analyses were applied to the IR maps obtained allowing differentiation between cancerous and normal tissue. The use of optical fibres, transparent in the mid-IR, allowed measurements to be made in the attenuated total reflectance (ATR)-mode at a remote location. The IR sensor is in contact with the sample that shows characteristic absorption lines. The total transmission of the fibre and the sample will decrease at these lines. This method can be used to determine the absorption of a sample in a non-destructive manner. In this paper we report on our efforts to develop an IR fibre-optic sensor for tissue identification as well as to differentiate between malignant and healthy tissue in vivo. We also describe the technical design of the laboratory set-up and the results of developments made. Silver halide fibres and a special sensor tip were used for the ATR measurements on tissue specimens. The results indicate that fibre-optic IR spectrometry will be a useful tool for bio-diagnostics

  4. Fibre-optic laser-assisted infrared tumour diagnostics (FLAIR)

    Science.gov (United States)

    Bindig, U.; Müller, G.

    2005-08-01

    Laser based fibre-optic surgery procedures are commonly used in minimal invasive surgery. Despite the development of precise and efficient laser systems there are also innovative attempts in the field of bio-medical diagnostics. As a direct result of the tissue's optical properties most applications are focused on the visible wavelength range of the spectrum. The extension of the spectrum up to the mid-infrared (IR) region will offer a broad range of possibilities for novel strategies with a view to non-invasive diagnostics in medicine. We describe a method to detect differences between diseased and normal tissues, which involve Fourier transform IR microspectroscopy and fibre-optics methods. Regions of interest on 10 µm thin tissue sections were mapped using an IR microscope in transmission mode. After IR-mapping, the samples were analysed using standard pathological techniques. Quadratic discriminant and correlation analyses were applied to the IR maps obtained allowing differentiation between cancerous and normal tissue. The use of optical fibres, transparent in the mid-IR, allowed measurements to be made in the attenuated total reflectance (ATR)-mode at a remote location. The IR sensor is in contact with the sample that shows characteristic absorption lines. The total transmission of the fibre and the sample will decrease at these lines. This method can be used to determine the absorption of a sample in a non-destructive manner. In this paper we report on our efforts to develop an IR fibre-optic sensor for tissue identification as well as to differentiate between malignant and healthy tissue in vivo. We also describe the technical design of the laboratory set-up and the results of developments made. Silver halide fibres and a special sensor tip were used for the ATR measurements on tissue specimens. The results indicate that fibre-optic IR spectrometry will be a useful tool for bio-diagnostics.

  5. Adapting smartphones for low-cost optical medical imaging

    Science.gov (United States)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  6. Agent-based station for on-line diagnostics by self-adaptive laser Doppler vibrometry

    Science.gov (United States)

    Serafini, S.; Paone, N.; Castellini, P.

    2013-12-01

    A self-adaptive diagnostic system based on laser vibrometry is proposed for quality control of mechanical defects by vibration testing; it is developed for appliances at the end of an assembly line, but its characteristics are generally suited for testing most types of electromechanical products. It consists of a laser Doppler vibrometer, equipped with scanning mirrors and a camera, which implements self-adaptive bahaviour for optimizing the measurement. The system is conceived as a Quality Control Agent (QCA) and it is part of a Multi Agent System that supervises all the production line. The QCA behaviour is defined so to minimize measurement uncertainty during the on-line tests and to compensate target mis-positioning under guidance of a vision system. Best measurement conditions are reached by maximizing the amplitude of the optical Doppler beat signal (signal quality) and consequently minimize uncertainty. In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed. Results from on-line tests are presented, which demonstrate the potential of the system for industrial quality control.

  7. Electro-Optic Laser Scanners for Space-Based Lidar, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this phase II SBIR is to design and build new non-mechanical, electro-optic (EO) laser scanners that will be suitable for space based laser ranging,...

  8. Electro-Optic Laser Scanners for Space-Based Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vescent Photonics propose to design and build revolutionary non-mechanical, electro-optic (EO) laser scanners that will be suitable for space based laser ranging,...

  9. An adaptive optics imaging system designed for clinical use

    Science.gov (United States)

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  10. Aberrations and adaptive optics in super-resolution microscopy

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-01-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194

  11. Fourier transform digital holographic adaptive optics imaging system

    Science.gov (United States)

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  12. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.

    Science.gov (United States)

    Antonello, Jacopo; van Werkhoven, Tim; Verhaegen, Michel; Truong, Hoa H; Keller, Christoph U; Gerritsen, Hans C

    2014-06-01

    Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration.

  13. Aberrations and adaptive optics in super-resolution microscopy.

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-08-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy - or rather nanoscopy - to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy.

  14. Adaptive phase measurements in linear optical quantum computation

    International Nuclear Information System (INIS)

    Ralph, T C; Lund, A P; Wiseman, H M

    2005-01-01

    Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state α vertical bar 0>+β vertical bar 1> can be prepared deterministically

  15. Laser-optical treatment for toothbrush bristles (nylon, synthetic, and polymeric materials, etc.)

    Science.gov (United States)

    Ma, Yangwu

    1994-08-01

    On the basis of the principle of laser radiation and materials interaction, a laser-optical treatment method for toothbrush bristles (nylon et al., synthetic and polymeric materials) is provided. In this process, laser irradiation is stopped during melting and followed by cooling, so the free end of each bristle of toothbrush is formed for a smooth globe. The toothbrush with laser-optical end-globed bristles have many remarkable functions.

  16. Progress on collisionally pumped optical-field-ionization soft x-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Sebban, S.; Mocek, Tomáš; Bettaibi, I.; Cros, B.; Maynard, G.; Butler, A.; Gonsavles, A.J.; McKenna, C.M.; Spence, D.J.; Hooker, S.M.; Upcraft, L. M.; Breger, P.; Agostini, P.; Le Pape, S.; Zeitoun, P.; Valentin, C.; Balcou, P.; Ros, D.; Kazamias, S.; Klisnick, A.; Jamelot, G.; Rus, Bedřich; Wyart, J. F.

    2004-01-01

    Roč. 10, - (2004), s. 1351-1362 ISSN 1077-260X Grant - others:EU(XE) HPRI-1999-CT-00086; EU(XE) HPMF-CT-2002-01554 Institutional research plan: CEZ:AV0Z1010921 Keywords : high intensity laser * laser plasma * optical field ionization (OFI) * x-ray laser (XRL) Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.048, year: 2004

  17. Optimal model-based sensorless adaptive optics for epifluorescence microscopy.

    Science.gov (United States)

    Pozzi, Paolo; Soloviev, Oleg; Wilding, Dean; Vdovin, Gleb; Verhaegen, Michel

    2018-01-01

    We report on a universal sample-independent sensorless adaptive optics method, based on modal optimization of the second moment of the fluorescence emission from a point-like excitation. Our method employs a sample-independent precalibration, performed only once for the particular system, to establish the direct relation between the image quality and the aberration. The method is potentially applicable to any form of microscopy with epifluorescence detection, including the practically important case of incoherent fluorescence emission from a three dimensional object, through minor hardware modifications. We have applied the technique successfully to a widefield epifluorescence microscope and to a multiaperture confocal microscope.

  18. Low-threshold terahertz molecular laser optically pumped by a quantum cascade laser

    Directory of Open Access Journals (Sweden)

    A. Pagies

    2016-06-01

    Full Text Available We demonstrate a low-threshold, compact, room temperature, and continuous-wave terahertz molecular laser optically pumped by a mid-infrared quantum cascade laser. These characteristics are obtained, thanks to large dipole transitions of the active medium: NH3 (ammonia in gas state. The low-power (<60 mW laser pumping excites the molecules, thanks to intense mid-infrared transitions around 10.3 μm. The molecules de-excite by stimulated emission on pure inversion “umbrella-mode” quantum transitions allowed by the tunnel effect. The tunability of the quantum cascade laser gives access to several pure inversion transitions with different rotation states: we demonstrate the continuous-wave generation of ten laser lines around 1 THz. At 1.07 THz, we measure a power of 34 μW with a very low-threshold of 2 mW and a high differential efficiency of 0.82 mW/W. The spectrum was measured showing that the linewidth is lower than 1 MHz. To our knowledge, this is the first THz molecular laser pumped by a solid-state source and this result opens the way for compact, simple, and efficient THz source at room temperature for imaging applications.

  19. Investigations of laser-induced damages in fused silica optics using x-ray laser interferometric microscopy

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Rus, Bedřich; Kozlová, Michaela; Nejdl, Jaroslav; Mocek, Tomáš; Homer, Pavel; Polan, Jiří; Stupka, Michal; Cassou, K.; Kazamias, S.; Lagron, J.C.; Ros, D.; Danson, C.; Hawkes, S.

    2010-01-01

    Roč. 107, č. 10 (2010), 103103/1-103103/7 ISSN 0021-8979 R&D Projects: GA MŠk(CZ) 7E08099; GA AV ČR IAA100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser beam effects * light interferometry * mirrors * optical materials * optical self-focusing * optical arrays * optical beam splitters Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.064, year: 2010 http://jap.aip.org/japiau/v107/i10/p103103_s1

  20. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    Science.gov (United States)

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  1. Synchronous pumping of picosecond dye laser using high efficiency second harmonic generation from optical fibres

    Science.gov (United States)

    Lawandy, N. M.; Bernardin, J. P.; Macdonald, R. L.; Demouchy, G.

    1991-01-01

    The stable operation of a mode-locked dye laser synchronously pumped by the second harmonic of an Nd:YAG laser produced in an Nd codoped germanosilicate optical fiber is reported. The optical fiber preparation technique, which results in a second harmonic conversion efficiency of 2 percent, is described. This optical fiber SHG conversion efficiency is the highest reported to date using a continuous-wave mode-locked laser.

  2. Development of A Microhand using Direct Laser Writing for IndirectOptical Manipulation

    Science.gov (United States)

    2016-12-01

    purposes, Ytterbium fibre laser (YLM-10-LP- SC), which emits 1070 nm wavelength light with a power of up to 10.6 watts (this is the optical output, the...Development of A Microhand using Direct Laser Writing for Indirect Optical Manipulation Ebubekir Avci1 and Guang-Zhong Yang2 Abstract— In this paper...we propose manipulation ability extension of the optical tweezers by developing microhands, which are to use as end-effectors of the laser beam

  3. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    Science.gov (United States)

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  4. K-space linear Fourier domain mode locked laser and applications for optical coherence tomography.

    Science.gov (United States)

    Eigenwillig, Christoph M; Biedermann, Benjamin R; Palte, Gesa; Huber, Robert

    2008-06-09

    We report on a Fourier Domain Mode Locked (FDML) wavelength swept laser source with a highly linear time-frequency sweep characteristic and demonstrate OCT imaging without k-space resampling prior to Fourier transformation. A detailed theoretical framework is provided and different strategies how to determine the optimum drive waveform of the piezo-electrically actuated optical bandpass-filter in the FDML laser are discussed. An FDML laser with a relative optical frequency deviation ??nu/nu smaller than 8 x10(-5) over a 100 nm spectral bandwidth at 1300 nm is presented, enabling high resolution OCT over long ranging depths. Without numerical time-to-frequency resampling and without spectral apodization a sensitivity roll off of 4 dB over 2 mm, 12.5 dB over 4 mm and 26.5 dB over 1 cm at 3.5 mus sweep duration and 106.6 dB maximum sensitivity at 9.2 mW average power is achieved. The axial resolution in air degrades from 14 to 21 mum over 4 mm imaging depth. The compensation of unbalanced dispersion in the OCT sample arm by an adapted tuning characteristic of the source is demonstrated. Good stability of the system without feedback-control loops is observed over hours.

  5. CHARACTERIZATION AND CORRELATION OF "JAMPOL DOTS" ON ADAPTIVE OPTICS WITH FOVEAL GRANULARITY ON CONVENTIONAL FUNDUS IMAGING.

    Science.gov (United States)

    Onishi, Alex C; Roberts, Philipp K; Jampol, Lee M; Nesper, Peter L; Fawzi, Amani A

    2017-11-22

    To describe features characteristic of multiple evanescent white dot syndrome (MEWDS) using adaptive optics scanning laser ophthalmoscopy (AOSLO). Six women (seven eyes) who presented with MEWDS between June 2014 and April 2017 underwent ophthalmologic examinations and multimodal imaging including infrared, AOSLO, and spectral domain optical coherence tomography. Bright hyperreflective lesions on AOSLO throughout the course of MEWDS could be correlated to the hyperreflective dots of foveal granularity on infrared imaging without apparent corresponding changes on spectral domain optical coherence tomography. During the acute phase of MEWDS, extrafoveal hyperreflective dots were also visible on AOSLO and infrared and were associated with accumulations of hyperreflective material above the retinal pigment epithelium on spectral domain optical coherence tomography. Foveal granularity on conventional fundus imaging could be correlated with hyperreflective lesions visible on AOSLO. We hypothesize that these hyperreflective lesions, "Jampol dots," are the foveal corollaries of the same process associated with the classic "dot" lesions in MEWDS. Based on the intact photoreceptor mosaic on AOSLO, we surmise that this material is accumulating at the level of the retinal pigment epithelium.

  6. Adaptive control of lasers and their interactions with matter using femtosecond pulse shaping

    Science.gov (United States)

    Efimov, Anatoly

    Coherent control of chemical reactions, atomic and molecular systems, lattice dynamics, and electronic motion rely on femtosecond laser sources capable of producing programmable arbitrarily shaped waveforms. To enter the time scale of natural dynamic processes in many systems, femtosecond pulse shaping techniques must be extended to the ultrashort pulse domain (ISRS). We chose this material as a candidate for possible nonlinear oscillations regime for its wide band gap and superior optical properties allowing for high-energy excitation. To enter a nonlinear regime, however, complex asymmetric multiple-pulse excitation is required. Therefore, we make a detailed proposal of the experimental adaptive feedback implementation for optimization of phonon amplitude based on the coherent probe scattering and a novel phase mask calculation algorithm for the real-time asymmetric pulse train generation.

  7. Laser-matter structuration of optical and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L., E-mail: hallo@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Mezel, C., E-mail: candice.mezel@cea.fr [CELIA, Universite Bordeaux 1 (France); CEA Le Ripault, 37260 Monts (France); Guillemot, F., E-mail: fabien.guillemot@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Chimier, B., E-mail: chimier@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Bourgeade, A., E-mail: antoine.bourgeade@cea.fr [CEA-CESTA, Le Barp (France); Regan, C., E-mail: regan@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Duchateau, G., E-mail: duchateau@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Souquet, A., E-mail: agnes.souquet@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Hebert, D., E-mail: david.hebert@cea.fr [CEA-CESTA, Le Barp (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer In this study we model nanomaterial structuring. Black-Right-Pointing-Pointer The laser energy deposition is discussed first. Black-Right-Pointing-Pointer Full and approximate models are discussed. Black-Right-Pointing-Pointer Dynamic material response is addressed via hydrodynamics. Black-Right-Pointing-Pointer Sild effects are accounted for - Abstract: Interaction of ultrafast laser, i.e. from the femtosecond (fs) to the nanosecond (ns) regime, with initially transparent matter may produce very high energy density hot spots in the bulk as well as at the material surface, depending on focusing conditions. In the fs regime, absorption is due to ionisation of the dielectric, which enables absorption process to begin, and then hydrodynamic to take place. In the ns regime both absorption and hydrodynamic are coupled to each other, which complexifies considerably the comprehension but matter structuration looks similar. A numerical tool including solution of 3D Maxwell equations and a rate equation for free electrons is first compared to some available simple models of laser energy absorption. Then, subsequent material deformation, i.e. structuration, is determined by solving hydrodynamic equations, including or not solid behaviour. We show that nature of the final structures strongly depends on the amount of deposited energy and on the shape of the absorption zone. Then we address some problems related to laser-matter structuration of optical and biological materials in the fs, ps and ns regimes.

  8. LEO-to-ground optical communications link using adaptive optics correction on the OPALS downlink

    Science.gov (United States)

    Wright, Malcolm W.; Kovalik, Joseph; Morris, Jeff; Abrahamson, Matthew; Biswas, Abhijit

    2016-03-01

    The Optical PAyload for Lasercomm Science (OPALS) experiment on the International Space Station (ISS) recently demonstrated successful optical downlinks to the NASA/JPL 1-m aperture telescope at the Optical Communication Telescope Laboratory (OCTL) located near Wrightwood, CA. A large area (200 μm diameter) free space coupled avalanche photodiode (APD) detector was used to receive video and a bit patterns at 50 Mb/s. We report on a recent experiment that used an adaptive optics system at OCTL to correct for atmospherically-induced refractive index fluctuations so that the downlink from the ISS could be coupled into a single mode fiber receiver. Stable fiber coupled power was achieved over an entire pass using a self-referencing interferometer based adaptive optics system that was provided and operated by Boeing Co. and integrated to OCTL. End-to-end transmission and reconstruction of an HD video signal verified the communication performance as in the original OPALS demonstration. Coupling the signal into a single mode fiber opens the possibility for higher bandwidth and efficiency modulation schemes and serves as a pilot experiment for future implementations.

  9. Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor.

    Science.gov (United States)

    Allen, Thomas J; Ogunlade, Olumide; Zhang, Edward; Beard, Paul C

    2018-02-01

    A laser scanning optical resolution photoacoustic microscopy (LS OR-PAM) system based on a stationary fibre optic sensor is described. The sensor comprises an optically resonant interferometric polymer cavity formed on the tip of a rounded single mode optical fibre. It provides low noise equivalent pressure (NEP = 68.7 Pa over a 20 MHz measurement bandwidth), a broad bandwidth that extends to 80 MHz and a near omnidirectional response. The latter is a significant advantage, as it allows large areas (>1cm 2 ) to be imaged without the need for translational mechanical scanning offering the potential for fast image acquisition. The system provides a lateral resolution of 8 µm, an axial resolution of 21 µm, and a field of view up to 10 mm × 10 mm. To demonstrate the system, in vivo 3D structural images of the microvasculature of a mouse ear were obtained, showing single capillaries overlaying larger vessels as well as functional images revealing blood oxygen saturation.

  10. Optical Measurement of the Connection State in Laser Brazing

    Science.gov (United States)

    Tenner, Felix; Ramoser, Stephan; Dobler, Michael; Zalevsky, Zeev; Schmidt, Michael

    The laser brazing of steel sheets is widely applied in car-body manufacturing. The critical value for the strength of the joint is the minimal connection width between the two sheets. However, this value is depending on the feed rate and power of the laser and the feed rate and preheating current of the filler wire used. Furthermore, the wetting behavior of the brazing solder is affected by the surface properties of the joining partners and is thus prone to errors. Currently, mostly destructive testing is used to evaluate the connection state. Therefore, we studied a novel optical measurement technique which is capable of remotely measuring oscillations of the joining partners. In the proposed study, we show how the oscillations are connected to the process behavior and the fusion area and how the setup might be applied as a post- and in-process measurement system.

  11. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    Science.gov (United States)

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  12. Experiment and Prediction of Ablation Depth in Excimer Laser Micromachining of Optical Polymer Waveguides

    Directory of Open Access Journals (Sweden)

    K. F. Tamrin

    2018-01-01

    Full Text Available Extending the data transfer rates through dense interconnections at inter- and intraboard levels is a well-established technique especially in consumer electronics at the expense of more cross talk, electromagnetic interference (EMI, and power dissipation. Optical transmission using optical fibre is practically immune to the aforementioned factors. Among the manufacturing methods, UV laser ablation using an excimer laser has been repeatedly demonstrated as a suitable technique to fabricate multimode polymer waveguides. However, the main challenge is to precisely control and predict the topology of the waveguides without the need for extensive characterisation which is both time consuming and costly. In this paper, the authors present experimental results of investigation to relate the fluence, scanning speed, number of shots, and passes at varying pulse repetition rate with the depth of ablation of an acrylate-based photopolymer. The depth of ablation essentially affects total internal reflection and insertion loss, and these must be kept at minimum for a successful optical interconnection on printed circuit boards. The results are then used to predict depth of ablation for this material by means of adaptive neurofuzzy inference system (ANFIS modelling. The predicted results, with a correlation of 0.9993, show good agreement with the experimental values. This finding will be useful in better predictions along with resource optimisation and ultimately helps in reducing cost of polymer waveguide fabrication.

  13. Investigation of diffractive optical element femtosecond laser machining

    Energy Technology Data Exchange (ETDEWEB)

    Chabrol, Grégoire R., E-mail: g.chabrol@ecam-strasbourg.eu [ECAM Strasbourg-Europe, Espace Européen de l’entreprise, 2, rue de Madrid – 67300 SCHILTIGHEIM, CS. 20013, 67012 Strasbourg CEDEX (France); Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Ciceron, Adline [ECAM Strasbourg-Europe, Espace Européen de l’entreprise, 2, rue de Madrid – 67300 SCHILTIGHEIM, CS. 20013, 67012 Strasbourg CEDEX (France); Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Twardowski, Patrice; Pfeiffer, Pierre [Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Télécom Physique Strasbourg – Pôle API – 300 Bd Sébastien Brant – CS 10413, Illkirch Graffenstaden F 67400 (France); and others

    2016-06-30

    Highlights: • A method for rapid manufacturing of optical diffractive element in BK7 is proposed. • A binary grating in BK7 was successfully machined by femtosecond laser pulses. • Process relying on nonlinear absorption in the dielectric due to photoionization. • The binary grating was analysed by SEM and interferometric microscopy. • Simulations by Fourier modal method supported the measured diffractive efficiency. - Abstract: This paper presents an explorative study on the machining of diffractive optical elements (DOEs) in transparent materials using a femtosecond laser source. A simple form of DOE, a binary phase grating with a period of 20.85 μm (σ = 0.5 μm), a groove depth and width of 0.7 μm (σ = 0.2 μm) and 8.8 μm (σ = 0.5 μm) respectively, was successfully machined in BK7. The topographic characteristics were measured by white light interferometry and scanning electron microscopy (SEM). The processing was carried out on high precision stages with an ultrafast fibre laser (350 fs) emitting a 343 nm pulse focused onto the sample with a stationary microscope objective. A diffracted efficiency of 27%, obtained with a spectro goniometer, was corroborated by the theoretical results obtained by the Fourier modal method (FMM), taking into account the measured topographic values. These encouraging results demonstrate that high-speed femtosecond laser manufacturing of DOE in bulk glasses can be achieved, opening the way to rapid prototyping of multi-layered-DOEs.

  14. Robust Frequency Combs and Lasers for Optical Clocks and Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical frequency combs are the key enabling technology that enabled the immense fractional stability of highly-stabilized lasers in the optical regime to be...

  15. An Alternative Method of Evaluating 1540NM Exposure Laser Damage using an Optical Tissue Phantom

    National Research Council Canada - National Science Library

    Jindra, Nichole M; Figueroa, Manuel A; Rockwell, Benjamin A; Chavey, Lucas J; Zohner, Justin J

    2006-01-01

    An optical phantom was designed to physically and optically resemble human tissue, in an effort to provide an alternative for detecting visual damage resulting from inadvertent exposure to infrared lasers...

  16. An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva

    2003-01-01

    An optical frequency-shift-keying (FSK) transmitter based on an integrated distributed feedback laser-electroabsorption modulator is proposed and demonstrated. The feasibility of its application in optical labeling is also validated by the experimental results. The generated optical signal, consi...

  17. Optical monitoring of scoliosis by 3D medical laser scanner

    Science.gov (United States)

    Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez

    2014-03-01

    Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.

  18. Optics designs and system MTF for laser scanning displays

    Science.gov (United States)

    Urey, Hakan; Nestorovic, Ned; Ng, Baldwin S.; Gross, Abraham A.

    1999-07-01

    The Virtual Retinal DisplayTM (VRDTM) technology is a new display technology being developed at Microvision Inc. The displayed image is scanned onto the viewer's retina using low- power red, green, and blue light sources. Microvision's proprietary miniaturized scanner designs make VRD system very well suited for head-mounted displays. In this paper we discuss some of the advantages of the VRD technology, various ocular designs for HMD and other applications, and details of constructing a system MTF budget for laser scanning systems that includes electronics, modulators, scanners, and optics.

  19. Optical Microstructures Fabricated with Direct Laser Writing Technique

    Directory of Open Access Journals (Sweden)

    Kowalczyk M.

    2014-12-01

    Full Text Available Three-dimensional photolitography, also known as Direct Laser Writing (DLW, is a powerful technique for fabrication of photonic microstructures. In this paper we present the basics of the relevant technology and discuss some features of the fabrication process. We also describe the experimental setup designed for making colour filters based on diffraction gratings, fibre-tip-integrated lens and anti-reflective coating designed for telecom wavelength (1550 nm. The results obtained demonstrate the DLW technique to be a promising fast prototyping fabrication method that may allow manipulating the properties of optical materials.

  20. Optical Refrigeration Science and Applications of Laser Cooling of Solids

    CERN Document Server

    Epstein, Richard

    2009-01-01

    Edited by the two top experts in the field with a panel of International contributors, this is a comprehensive up-to-date review of research and applications. Starting with the basic physical principles of laser cooling of solids, the monograph goes on to discuss the current theoretical issues being resolved and the increasing demands of growth and evaluation of high purity materials suitable for optical refrigeration, while also examining the design and applications of practical cryocoolers. An advanced text for scientists, researchers, engineers, and students (masters, PHDs and Postdoc) in l

  1. Strongly interacting atom lasers in three-dimensional optical lattices.

    Science.gov (United States)

    Hen, Itay; Rigol, Marcos

    2010-10-29

    We show that the dynamical melting of a Mott insulator in a three-dimensional lattice leads to condensation at nonzero momenta, a phenomenon that can be used to generate strongly interacting atom lasers in optical lattices. For infinite on-site repulsion, the case considered here, the momenta at which bosons condense are determined analytically and found to have a simple dependence on the hopping amplitudes. The occupation of the condensates is shown to scale linearly with the total number of atoms in the initial Mott insulator. Our results are obtained by using a Gutzwiller-type mean-field approach, gauged against exact-diagonalization solutions of small systems.

  2. Overview of deformable mirror technologies for adaptive optics and astronomy

    Science.gov (United States)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  3. Photometric Calibration of the Gemini South Adaptive Optics Imager

    Science.gov (United States)

    Stevenson, Sarah Anne; Rodrigo Carrasco Damele, Eleazar; Thomas-Osip, Joanna

    2017-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is an instrument available on the Gemini South telescope at Cerro Pachon, Chile, utilizing the Gemini Multi-Conjugate Adaptive Optics System (GeMS). In order to allow users to easily perform photometry with this instrument and to monitor any changes in the instrument in the future, we seek to set up a process for performing photometric calibration with standard star observations taken across the time of the instrument’s operation. We construct a Python-based pipeline that includes IRAF wrappers for reduction and combines the AstroPy photutils package and original Python scripts with the IRAF apphot and photcal packages to carry out photometry and linear regression fitting. Using the pipeline, we examine standard star observations made with GSAOI on 68 nights between 2013 and 2015 in order to determine the nightly photometric zero points in the J, H, Kshort, and K bands. This work is based on observations obtained at the Gemini Observatory, processed using the Gemini IRAF and gemini_python packages, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  4. SOAR Adaptive Optics Observations of Young Stellar Objects

    Science.gov (United States)

    Briceno, Cesar

    2018-01-01

    I present results from recent studies of nearby star-forming regions using the SOAR 4.1m telescope Ground-layer Adaptive Optics system.Using narrow-band Hα and [SII] imaging we discovered a spectacular extended Herbig-Haro jet powered by a 26 MJup young brown dwarf located in the vicinity of the σ Orionis cluster. The collimated structure of multiple knots spans 0.26 pc, making it a scaled down version of the parsec-length jets seen in T Tauri stars, and the first substellar analog of an HH jet system.In the ε Chamaeleon stellar group we carried out an Adaptive Optics-aided speckle imaging study of 47 members and candidate members, to characterize the multiplicity of this, one of the nearest groups of young (~3-5 Myr) stars. We resolved 10 new binary pairs, 5 previously know binaries and two triple systems. We find a companion frequency of 0.010±0.04 per decade of separation, in the 4 to 300 AU separation range, a result comparable to main sequence dwarfs in the field. However, the more massive association members, with B and A spectral types, all have companions in this separation range. Finally, we provide new constraints on the orbital elements of the ε Cha triple system.

  5. Large stroke actuators and mirror devices for ocular adaptive optics

    Science.gov (United States)

    Wu, Xingtao; Li, Hong; Yao, Li; Ou, Haijiang; Pang, Chaoyang

    2012-03-01

    After laboratory studies have demonstrated that the DM-based adaptive optics ophthalmic instruments are promising for future clinical applications, the next step would be to further enhance the functionality of ocular adaptive optics for research and commercialize it for clinical applications. The first essential requirement is the stroke which should cover most wavefront errors of the eyes in clinical population, for which, we presented here design, modeling, and experimental performance of PMN-PT unimorph actuators suitable for generating large stroke up to 50μm per 1-mm pixel in order to cover wavefront correction for older adults and patients with diseased eyes. Clinical acceptance will also requires DMs to be low cost, have a small form factor, running low power, have satisfactory speed, and be an easy add-on for system integration, thus we further presented an effort of developing a high voltage amplifier (HVA) based application specific integrated circuits (ASIC) for driving the mirror actuators with significantly reduced power and system form factors.

  6. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  7. Optical third-harmonic generation using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Stoker, D.; Keto, J.W.; Becker, M.F.

    2005-01-01

    To better predict optical third-harmonic generation (THG) in transparent dielectrics, we model a typical ultrashort pulsed Gaussian beam, including both group velocity mismatch and phase mismatch of the fundamental and harmonic fields. We find that competition between the group velocity mismatch and phase mismatch leads to third-harmonic generation that is sensitive only to interfaces. In this case, the spatial resolution is determined by the group velocity walk-off length. THG of modern femtosecond lasers in optical solids is a bulk process, without a surface susceptibility, but bears the signature of a surface enhancement effect in z-scan measurements. We demonstrate the accuracy of the model, by showing the agreement between the predicted spectral intensity and the measured third-harmonic spectrum from a thin sapphire crystal

  8. Light propagation studies on laser modified waveguides using scanning near-field optical microscopy

    DEFF Research Database (Denmark)

    Borrise, X.; Berini, Abadal Gabriel; Jimenez, D.

    2001-01-01

    microscope (SNOM) has been used. The laser modifications locally changes the optical properties of the waveguide. The change in the effective refractive index is attributed to a TE to TM mode conversion, Thus, the laser modification might be a new way to fabricate optical mode converters.......By means of direct laser writing on Al, a new method to locally modify optical waveguides is proposed. This technique has been applied to silicon nitride waveguides, allowing modifications of the optical propagation along the guide. To study the formed structures, a scanning near-held optical...

  9. Fiber-optic laser gyro with easily introduced phase-difference bias.

    Science.gov (United States)

    Hotate, K; Yoshida, Y; Higashiguchi, M; Niwa, N

    1981-12-15

    An optical system for easy introduction of phase-difference bias to optimize the sensitivity of the fiber-optic laser gyro is proposed. The theory of using a laser diode has been considered, and the rotation detection experiment has been performed. The experimental setup consists of a 300-m long single-mode optical fiber, individual optical components, and a laser diode stabilized by a thermal controller and an optical isolator. Short-time resolution of the rotation rate better than 0.87 mrad/sec has been achieved with good linearity.

  10. Mechanism of laser writing for optical data storage in an overcoated tellurium alloy trilayer

    Science.gov (United States)

    Holstein, W. L.; Begnoche, B. C.

    1986-10-01

    Mark formation by laser writing in an overcoated thin-film tellurium alloy-based optical storage media with a trilayer design was studied by transmission electron microscopy, scanning electron microscopy, optical microscopy, differential interference contrast optical microscopy, and optical interferometry. Mark formation was observed to occur through coalescence of the relatively uniform amorphous tellurium alloy film into discrete particles. The mark microstructure and, correspondingly, the optical properties of the mark, were dependent on the write laser power. At low power, incomplete breakup of the film occurred. At high power, the film coalesced into spherical particles. Laser writing also caused changes in the organic overcoat layer.

  11. Optical transmission through a polarization preserving single mode optical fiber at two Ar(+) laser wavelengths

    Science.gov (United States)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.

    1989-01-01

    The transmission characteristics of two Ar(+) laser wavelengths through a twenty meter Panda type Polarization Preserving Single Mode Optical Fiber (PPSMOF) were measured. The measurements were done with both single and multi-longitudinal mode radiation. In the single longitudinal mode case, a degrading Stimulated Brillouin Scattering (SBS) is observed as a backward scattering loss. By choosing an optimum coupling system and manipulating the input polarization, the threshold of the SBS onset can be raised and the transmission efficiency can be increased.

  12. Three wavelength optical alignment of the Nova laser

    International Nuclear Information System (INIS)

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Seppala, L.G.

    1983-01-01

    The Nova laser, presently under construction at Lawrence Livermore National Laboratory, will be capable of delivering more than 100 kJ of focused energy to an Inertial Confinement Fusion (ICF) target. Operation at the fundamental wavelength of the laser (1.05 μm) and at the second and third harmonic will be possible. This paper will discuss the optical alignment systems and techniques being implemented to align the laser output to the target at these wavelengths prior to each target irradiation. When experiments require conversion of the laser light to wavelengths of 0.53 μm and 0.35 μm prior to target irradiation, this will be accomplished in harmonic conversion crystals located at the beam entrances to the target chamber. The harmonic alignment system will be capable of introducing colinear alignment beams of all three wavelengths into the laser chains at the final spatial filter. The alignment beam at 1.05 μm will be about three cm in diameter and intense enough to align the conversion crystals. Beams at 0.53 μm and 0.35 μm will be expanded by the spatial filter to full aperture (74 cm) and used to illuminate the target and other alignment aids at the target chamber focus. This harmonic illumination system will include viewing capability as well. A final alignment sensor will be located at the target chamber. It will view images of the chamber focal plane at all three wavelengths. In this way, each beam can be aligned at the desired wavelength to produce the focal pattern required for each target irradiation. The design of the major components in the harmonic alignment system will be described, and a typical alignment sequence for alignment to a target will be presented

  13. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography

    OpenAIRE

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A.; Carney, P. Scott

    2016-01-01

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With ...

  14. Control algorithms and applications of the wavefront sensorless adaptive optics

    Science.gov (United States)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  15. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  16. Digital adaptive optics confocal microscopy based on iterative retrieval of optical aberration from a guidestar hologram.

    Science.gov (United States)

    Liu, Changgeng; Thapa, Damber; Yao, Xincheng

    2017-04-03

    Guidestar hologram based digital adaptive optics (DAO) is one recently emerging active imaging modality. It records each complex distorted line field reflected or scattered from the sample by an off-axis digital hologram, measures the optical aberration from a separate off-axis digital guidestar hologram, and removes the optical aberration from the distorted line fields by numerical processing. In previously demonstrated DAO systems, the optical aberration was directly retrieved from the guidestar hologram by taking its Fourier transform and extracting the phase term. For the direct retrieval method (DRM), when the sample is not coincident with the guidestar focal plane, the accuracy of the optical aberration retrieved by DRM undergoes a fast decay, leading to quality deterioration of corrected images. To tackle this problem, we explore here an image metrics-based iterative method (MIM) to retrieve the optical aberration from the guidestar hologram. Using an aberrated objective lens and scattering samples, we demonstrate that MIM can improve the accuracy of the retrieved aberrations from both focused and defocused guidestar holograms, compared to DRM, to improve the robustness of the DAO.

  17. Binary stars observed with adaptive optics at the starfire optical range

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, Jack D. [Air Force Research Laboratory, Directed Energy Directorate, RDSAM, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)

    2014-03-01

    In reviewing observations taken of binary stars used as calibration objects for non-astronomical purposes with adaptive optics on the 3.5 m Starfire Optical Range telescope over the past 2 years, one-fifth of them were found to be off-orbit. In order to understand such a high number of discrepant position angles and separations, all previous observations in the Washington Double Star Catalog for these rogue binaries were obtained from the Naval Observatory. Adding our observations to these yields new orbits for all, resolving the discrepancies. We have detected both components of γ Gem for the first time, and we have shown that 7 Cam is an optical pair, not physically bound.

  18. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization.

    Science.gov (United States)

    Tehrani, Kayvan F; Zhang, Yiwen; Shen, Ping; Kner, Peter

    2017-11-01

    Stochastic optical reconstruction microscopy (STORM) can achieve resolutions of better than 20nm imaging single fluorescently labeled cells. However, when optical aberrations induced by larger biological samples degrade the point spread function (PSF), the localization accuracy and number of localizations are both reduced, destroying the resolution of STORM. Adaptive optics (AO) can be used to correct the wavefront, restoring the high resolution of STORM. A challenge for AO-STORM microscopy is the development of robust optimization algorithms which can efficiently correct the wavefront from stochastic raw STORM images. Here we present the implementation of a particle swarm optimization (PSO) approach with a Fourier metric for real-time correction of wavefront aberrations during STORM acquisition. We apply our approach to imaging boutons 100 μm deep inside the central nervous system (CNS) of Drosophila melanogaster larvae achieving a resolution of 146 nm.

  19. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  20. Compact MEMS-based adaptive optics: optical coherence tomography for clinical use

    Science.gov (United States)

    Chen, Diana C.; Olivier, Scot S.; Jones, Steven M.; Zawadzki, Robert J.; Evans, Julia W.; Choi, Stacey S.; Werner, John S.

    2008-02-01

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography (OCT) system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of limitations on current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in previous AO-OCT instruments. In this instrument, we incorporate an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminates the tedious process of using trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  1. Postural adaptations to repeated optic flow stimulation in older adults

    Science.gov (United States)

    O’Connor, Kathryn W.; Loughlin, Patrick J.; Redfern, Mark S.; Sparto, Patrick J.

    2008-01-01

    The purpose of this study is to understand the processes of adaptation (changes in within-trial postural responses) and habituation (reductions in between-trial postural responses) to visual cues in older and young adults. Of particular interest were responses to sudden increases in optic flow magnitude. The postural sway of 25 healthy young adults and 24 healthy older adults was measured while subjects viewed anterior-posterior 0.4 Hz sinusoidal optic flow for 45 s. Three trials for each of three conditions were performed: 1) constant 12 cm optic flow amplitude (24 cm peak-to-peak), 2) constant 4 cm amplitude (8 cm p-t-p), and 3) a transition in amplitude from 4 to 12 cm. The average power of head sway velocity (Pvel) was calculated for consecutive 5 s intervals during the trial to examine the changes in sway within and between trials. A mixed factor repeated measures ANOVA was performed to examine the effects of subject Group, Trial, and Interval on the Pvel. Pvel was greater in older adults in all conditions (p Pvel of the older adults decreased significantly between all 3 trials, but decreased only between trial 1 and 2 in young adults. While the responses of the young adults to the transition in optic flow from 4 to 12 cm did not significantly change, older adults had an increase in Pvel following the transition, ranging from 6.5 dB for the first trial to 3.4 dB for the third trial. These results show that older adults can habituate to repeated visual perturbation exposures; however, this habituation requires a greater number of exposures than young adults. This suggests aging impacts the ability to quickly modify the relative weighting of the sensory feedback for postural stabilization. PMID:18329878

  2. Research on Adaptive Optics Image Restoration Algorithm by Improved Expectation Maximization Method

    OpenAIRE

    Zhang, Lijuan; Li, Dongming; Su, Wei; Yang, Jinhua; Jiang, Yutong

    2014-01-01

    To improve the effect of adaptive optics images’ restoration, we put forward a deconvolution algorithm improved by the EM algorithm which joints multiframe adaptive optics images based on expectation-maximization theory. Firstly, we need to make a mathematical model for the degenerate multiframe adaptive optics images. The function model is deduced for the points that spread with time based on phase error. The AO images are denoised using the image power spectral density and support constrain...

  3. Laser-induced damage in optical materials: sixteenth ASTM symposium.

    Science.gov (United States)

    Bennett, H E; Guenther, A H; Milam, D; Newnam, B E

    1987-03-01

    The Sixteenth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, CO, 15-17 Oct. 1984. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific Research. Approximately 180 scientists attended the Symposium, including representatives from England, France, The Netherlands, Scotland, and West Germany. The Symposium was divided into sessions concerning Materials and Measurements, Mirrors and Surfaces, Thin Films, and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6,microm to the UV region. Highlights included surface characterization, thin-film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. Harold E. Bennett of the U.S. Naval Weapons Center, Arthur H. Guenther of the U.S. Air Force Weapons Laboratory, David Milam of the Lawrence Livermore National Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the Symposium.

  4. Optical breakdown of helium in Bessel laser radiation beams

    International Nuclear Information System (INIS)

    Andreev, N E; Pleshanov, I V; Margolin, L Ya; Pyatnitskii, Lev N

    1998-01-01

    Numerical simulation is used to investigate the dynamics of formation of a helium plasma in Bessel beams, shaped by an axicon and a phase converter from a laser radiation pulse with Gaussian temporal and radial intensity profiles. The beam intensities at the breakdown threshold are determined as a function of the pulse duration for various radial field distributions in a beam characterised by Bessel functions of order m (m = 0 - 5). It is shown that in the investigated range of parameters the threshold intensity is independent of m. The temporal and spatial evolution of the resultant plasma, and the dependence of the plasma characteristics on the pulse parameters are considered. Conditions are found for the formation of tubular plasma channels in beams of orders m≥1. The adopted model of the optical breakdown of helium is shown to be satisfactory because of a good agreement between the results of calculations of the moment of breakdown in a zeroth-order Bessel beam and experimental results. (interaction of laser radiation with matter. laser plasma)

  5. Laser induced damage in optical materials: eleventh ASTM symposium.

    Science.gov (United States)

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1980-07-15

    The eleventh Symposium on Optical Materials for High-Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30-31 October 1979. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, and the Office of Naval Research. About 150 scientists attended the symposium, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and Denmark. The symposium was divided into sessions concerning transparent optical materials and the measurement of their properties, mirrors and surfaces, thin film characteristics, thin film damage, considerations for high-power systems, and finally theory and breakdown. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos Scientific Laboratory were cochairpersons. The twelfth annual symposium is scheduled for 30 September-1 October 1980 at the National Bureau of Standards, Boulder, Colorado.

  6. Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering

    Science.gov (United States)

    Qiu, Tiequn; Wu, Jianfeng; Strandjord, Lee K.; Sanders, Glen A.

    2014-05-01

    A bench-top resonator fiber optic gyroscope (RFOG) was assembled and tested, showing encouraging progress toward navigation grade performance. The gyro employed a fiber length of 19 meters of polarizing fiber for the sensing coil which was wound on an 11.5 cm diameter PZT cylinder. A bias stability of approximately 0.1 deg/hr was observed over a 2 hour timeframe, which is the best bias stability reported to date in an RFOG to our knowledge. Special care was taken to minimize laser phase noise, including stabilization to an optical cavity which was also used for optical filtering, giving angle random walk (ARW) values in the range of 0.008 deg/rt-hr. The ARW performance and bias stability are within 2x and 10x, respectively, of many civil inertial navigation grade requirements.

  7. Nuclear spin polarized alkali beams (Na, Li): Optical pumping with electro-optically modulated laser beam

    International Nuclear Information System (INIS)

    Reich, H.; Jaensch, H.J.

    1990-01-01

    An improvement of the Heidelberg source for polarized heavy ions (PSI) is described. To produce a nuclear spin polarized atomic Na beam an electro-optically modulated laser beam has been used for optical pumping. An electro-optic modulator (EOM) was constructed with a bandwidth of 1.8 GHz. Without a spin separating Stern-Gerlach magnet it is now possible to prepare a Na atomic beam in one single hyperfine magnetic substate. Thus the beam figure of merit (polarization 2 x intensity of the beam) has been improved by a factor of 4 as compared to the previous setup. Experiences with the new system collected from several beam times are discussed. (orig.)

  8. Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization.

    Science.gov (United States)

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K

    2013-02-01

    Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy.

  9. Effect of laser radiation wavelength and reepithelization process on optical quality of eye cornea after laser correction of vision

    Energy Technology Data Exchange (ETDEWEB)

    Kitai, M S; Semchishen, A V; Semchishen, V A [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2015-10-31

    The optical quality of the eye cornea surface after performing the laser vision correction essentially depends on the characteristic roughness scale (CRS) of the ablated surface, which is mainly determined by the absorption coefficient of the cornea at the laser wavelength. Thus, in the case of using an excimer ArF laser (λ = 193 nm) the absorption coefficient is equal to 39000 cm{sup -1}, the darkening by the dissociation products takes place, and the depth of the roughness relief can be as large as 0.23 mm. Under irradiation with the Er : YAG laser (λ = 2940 nm) the clearing is observed due to the rupture of hydrogen bonds in water, and the relief depth exceeds 1 μm. It is shown that the process of reepithelization that occurs after performing the laser vision correction leads to the improvement of the optical quality of the cornea surface. (interaction of laser radiation with matter)

  10. Gas laser having an integral optical resonator with external stabilizing means

    International Nuclear Information System (INIS)

    Hensolt, R.A.; Dowley, M.W.

    1975-01-01

    A gaseous laser having an internal optical resonator is provided with external stabilizing means for maintaining alignment of mirrors forming the optical resonator. Means are also provided for allowing expansion of the remainder of the gas-confining envelope relative to the stabilized resonator mirrors during the operation of the laser. (U.S.)

  11. Characterization of collisionally pumped optical-field-ionization soft X-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Mocek, Tomáš; Sebban, S.; Bettaibi, I.; Upcraft, L. M.; Balcou, P.; Breger, P.; Zeitoun, P.; Le Pape, S.; Ros, D.; Klisnick, A.; Carillon, A.; Jamelot, G.; Rus, Bedřich; Wyart, J. F.

    2004-01-01

    Roč. 78, - (2004), s. 939-944 ISSN 0946-2171 Grant - others:HPRI(XE) 199900086 Institutional research plan: CEZ:AV0Z1010921 Keywords : X-ray lasers * optical-field-ionization * collisional excitation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.215, year: 2004

  12. Optical signal inverter of erbium-doped yttrium aluminum garnet with red shift of laser diodes.

    Science.gov (United States)

    Maeda, Y

    1994-08-10

    An optical signal inverter was demonstrated in a simple structure that combined a laser diode with Er-doped YAG crystal. The optical signal inversion occurred at a response time of 7 ns and was caused by the decrease of transmission of Er:YAG against the red shift of the wavelength of the laser diode.

  13. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    Science.gov (United States)

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  14. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    Science.gov (United States)

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  15. Optical systems for high-power laser applications: principles and design aspects

    NARCIS (Netherlands)

    Beckmann, L.H.J.F.; Ehrlichmann, D.

    1995-01-01

    Starting from the optical properties of laser beams, the requirements of optical systems for manipulating laser radiation in industrial applications are derived. The relevant parameters, relations to the diffraction limit and the state-of-the-art design techniques are discussed. The three important

  16. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-09-01

    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  17. Femtosecond laser processing in magneto-optical glasses

    Science.gov (United States)

    Liu, Qiang; Gross, Simon; Withford, M. J.; Steel, M. J.

    2014-03-01

    Femtosecond laser direct writing (FLDW) is developing rapidly but to date, there is no native optical isolator (needed to mitigate reflections in any optical system) for the platform. As a step towards integrated glass isolators, we have investigated FLDW in kHz and MHz pulse rate regimes for two magneto-optical glasses (TG20 and MR3-2) to ultimately create one-way structures based on the Faraday effect. Previously, we fabricated basic waveguides obtaining single-mode guidance at 632 nm (the Faraday effect is strongest near the Tb3+ resonance at 485 nm) in both regimes. kHz regime waveguides were isotropic but had high propagation loss due to associated photodarkening (which could be post-annealed). The propagation loss of the MHz regime waveguides was acceptable due to lower photodarkening, but the waveguides were too narrow to confine light properly because of the very strong focus of the writing beam. To try to combine the lower loss with larger waveguide width, we created overlapping structures using a series of superposed waveguides arranged in rings in MHz regime. The confinement in these multi-ring structures was indeed improved and the structure propagation loss was intermediate between that of one-path waveguides created in kHz and MHz regimes. For most other glasses, MHz FLDW systems operate in a heat-accumulation regime, producing waveguide diameters much larger than the writing laser spot size and superposed waveguides that merge into one by melting. Here, the sub-unit waveguides maintained their individual identity indicating that the heat-accumulation effect was absent.

  18. W. M. Keck Observatory's next-generation adaptive optics facility

    Science.gov (United States)

    Wizinowich, P.; Adkins, S.; Dekany, R.; Gavel, D.; Max, C.; Bartos, R.; Bell, J.; Bouchez, A.; Chin, J.; Conrad, A.; Delacroix, A.; Johansson, E.; Kupke, R.; Lockwood, C.; Lyke, J.; Marchis, F.; McGrath, E.; Medeiros, D.; Morris, M.; Morrison, D.; Neyman, C.; Panteleev, S.; Pollard, M.; Reinig, M.; Stalcup, T.; Thomas, S.; Troy, M.; Tsubota, K.; Velur, V.; Wallace, K.; Wetherell, E.

    2010-07-01

    We report on the preliminary design of W.M. Keck Observatory's (WMKO's) next-generation adaptive optics (NGAO) facility. This facility is designed to address key science questions including understanding the formation and evolution of today's galaxies, measuring dark matter in our galaxy and beyond, testing the theory of general relativity in the Galactic Center, understanding the formation of planetary systems around nearby stars, and exploring the origins of our own solar system. The requirements derived from these science questions have resulted in NGAO being designed to have near diffraction-limited performance in the near-IR (K-Strehl ~ 80%) over narrow fields (benefit quantitative astronomy, a cooled science path to reduce thermal background, and a high-efficiency science instrument providing imaging and integral field spectroscopy.

  19. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy.

    Science.gov (United States)

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-06-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved.

  20. Closed loop adaptive optics for microscopy without a wavefront sensor.

    Science.gov (United States)

    Kner, Peter; Winoto, Lukman; Agard, David A; Sedat, John W

    2010-02-24

    A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity.

  1. Kalman filtering to suppress spurious signals in Adaptive Optics control

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  2. Laser distance measurement using a newly developed composite-type optical fiberscope for fetoscopic laser surgery

    Science.gov (United States)

    Seki, Takeshi; Oka, Kiyoshi; Naganawa, Akihiro; Yamashita, Hiromasa; Kim, Keri; Chiba, Toshio

    2010-10-01

    Twin-twin transfusion syndrome (TTTS) is a condition of twins disproportionately sharing blood by the communicating vessels in the shared placenta and resulting in the significantly high fetal and perinatal mortality rate. Fetoscopic laser surgery is performed to block these communicating vessels. It is difficult, however, to perceive the distance from the tip of the fetoscope to the placental surface with only a two-dimensional fetoscopic view. When the distance is too short it causes excessive irradiation and even the risk of inadvertent damage to the placenta. On the other hand, not only target vessels but also adjacent tissues can be irradiated when it is too long. We have developed a composite-type optical fiberscope (COF) that was able to observe the target area and also to perform laser irradiation at the same time. In this paper, we studied a method to estimate the distance from the tip of the COF to the target area. We combined the COF with a laser blood-flow meter. Using laser light from the meter, we measured the total amount of light received ("REFLEX") and estimated the relation between the "REFLEX" value and the laser irradiation distance. Further in vivo experiments were subsequently carried out using porcine mesenteric blood vessels. The results showed that the distance and the "REFLEX" value were inversely proportional, irrespective of the experimental environment (e.g. in air, water and amniotic fluid-like solution) and the target object. In the in vivo experiments, we quantitatively measured the distance within an accuracy of ±1 mm (approximately 10%). In conclusion, our new system was able to measure the distance in vivo enabling a surgeon to safely and effectively perform laser irradiation at a suitable distance. The system can be used not only for fetoscopic surgery but also for general endoscopic surgery.

  3. Optical and physical properties of ceramic crystal laser materials

    Science.gov (United States)

    Simmons, Jed A.

    Historically ceramic crystal laser material has had disadvantages compared to single crystal laser material. However, progress has been made in the last decade and a half to overcome the disadvantages associated with ceramic crystal. Today, because of the promise of ceramic crystal as a high power laser material, investigation into its properties, both physical and optical, is warranted and important. Thermal expansion was measured in this thesis for Nd:YAG (yttrium aluminum garnet) ceramic crystal using an interferometric method. The interferometer employed a spatially filtered HeNe at 633 nm wavelength. Thermal expansion coefficients measured for the ceramic crystal samples were near the reported values for single crystal Nd:YAG. With a similar experimental setup as that for the thermal expansion measurements, dn/dT for ceramic crystal Nd:YAG was measured and found to be slightly higher than the reported value for single crystal. Depolarization loss due to thermal gradient induced stresses can limit laser performance. As a result this phenomenon was modeled for ceramic crystal materials and compared to single crystals for slab and rod shaped gain media. This was accomplished using COMSOL Multiphysics, and MATLAB. Results indicate a dependence of the depolarization loss on the grain size where the loss decreases with decreased grain size even to the point where lower loss may be expected in ceramic crystals than in single crystal samples when the grain sizes in the ceramic crystal are sufficiently small. Deformation-induced thermal lensing was modeled for a single crystal slab and its relevance to ceramic crystal is discussed. Data indicates the most notable cause of deformation-induced thermal lensing is a consequence of the deformation of the top and bottom surfaces. Also, the strength of the lensing along the thickness is greater than the width and greater than that due to other causes of lensing along the thickness of the slab. Emission spectra, absorption

  4. Theoretical and experimental studies of optical feedback on solid-state lasers

    International Nuclear Information System (INIS)

    Kervevan, L.

    2006-12-01

    The main objective of this Phd thesis was to implement solid-state lasers based on codoped Yb 3+ :Er 3+ phosphate glasses pumped by laser diode and to study their behavior when submitted to an optical feedback. This kind of lasers presents as main advantages a very high sensibility to the optical feedback due to the optical properties of the Er 3+ ion enhancing the relaxation oscillations. Moreover, the emission wavelength around 1,535 μm belongs to the eye safe spectral domain. First, we have established the rate equations of the population inversion and the electric field for a three-level laser (Yb:Er) submitted to an optical feedback. We have done a comparative study of the influence of the amplifying medium (three-level system Yb:Er or four-level system LNA:Nd) and cavity parameters on the sensitivity due to the optical feedback. The home-made lasers were implemented in optical feedback experiments allowing original measurement of speed, absolute distance or vibration for optical detection of sound restitution. The fourth part of this thesis deals with the behavior a dual frequency laser submitted to a optical feedback. Such a laser oscillates simultaneously on two polarization eigenstates whose optical frequencies are slightly different. The beating mode between these two eigenstates allows self-heterodyne detection. (author)

  5. Effects of passive isolation on several optically pumped far-infrared laser lines

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, D.K.; Tesauro, G.J.; Johnson, L.C.; Semet, A.

    1981-05-01

    The effects of a recently introduced passive-isolation scheme for optically pumped far-infrared lasers have been investigated on several well-known far-infrared laser lines. In addition to increasing the laser output stability, the isolation scheme alters the pump-to-far-infrared power-conversion efficiency and the polarization state of the far-infrared output.

  6. Computer-Controlled 3D Laser Scanning Microscope Based On Optical Disk Technology.

    Science.gov (United States)

    Schweizer, P.; Neveux, L.; Chiaramello, M.; Monteil, P.; Ostrowsky, D. B...

    1987-08-01

    We describe RASCALS* (RAster SCAn Laser System) a 2D and 3D scanning laser microscope and outline it's performance. This system, based on optical disk technology and a PC compatible computer offers an interesting cost/performance ratio compared to existing laser scanning microscopes.

  7. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].

    Science.gov (United States)

    Wei, Hua-jiang; Xing, Da; Wu, Guo-yong; Jin, Ying; Gu, Huai-min

    2004-05-01

    A double-integrating-spheres system, basic principle of measuring technology of ray radiation, and optical model of biological tissues were used for the study. Optical properties of human normal small intestine tissue at 476.5, 488, 496.5, 514.5 and 532 nm laser and their linearly polarized laser irradiation were studied. The results of measurement showed that the total attenuation coefficient and scattering coefficient of the tissue at these wavelengths of laser and their linearly polarized laser irradiation increased with decreasing wavelengths. And obviously there was a distinction at 514.5 to 532 nm wavelength between lasers and their linearly polarized laser irradiation. Absorption coefficient of tissue at these wavelengths of laser and their linearly polarized laser irradiation increased with decreasing wavelengths. Absorption coefficient of tissue at 514.5 to 532 nm wavelength of laser was obviously decreasing, which was independent of these wavelengths of laser or their linearly polarized laser irradiation. Mean cosine of scattering of tissue at these wavelengths of laser and their linearly polarized laser irradiation also increased with decreasing wavelengths. But penetration depth of tissue at these wavelengths of laser and their linearly polarized laser irradiation also increased with increasing of wavelengths. Refractive index of tissue between these wavelengths of laser was within 1.38 to 1.48. Absorption coefficient, scattering coefficient, total attenuation coefficient, effective attenuation coefficients of tissue in Kubelka-Munk two-flux model at the same wavelength of laser and their linearly polarized laser irradiation showed no prominent distinction (P>0.01). Absorption coefficient, scattering coefficient, total attenuation coefficient, effective attenuation coefficients of tissue in Kubelka-Munk two-flux model at different wavelength of laser and their linearly polarized laser irradiation showed obvious distinction. Optical properties of tissue

  8. Adaptive Laser Sintering System for In-space Printed Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to enhance the Optomec Aerosol Jet(R) technology for additive manufacturing by introduction of an Adaptive Laser Sintering System (ALSS)...

  9. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-07-24

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities.

  10. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    International Nuclear Information System (INIS)

    Okishev, A.V.; Skeldon, M.D.; Keck, R.L.; Seka, W.

    2000-01-01

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities

  11. Communication with diode laser: short distance line of sight communication using fiber optics

    International Nuclear Information System (INIS)

    Mirza, A.H.

    1999-01-01

    The objective of this project is to carry audio signal from transmitting station to a short distance receiving station along line of sight and also communication through fiber optics is performed, using diode laser light as carrier. In this project optical communication system, modulation techniques, basics of laser and causes of using diode laser are discussed briefly. Transmitter circuit and receiver circuit are fully described. Communication was performed using pulse width modulation technique. Optical fiber communication have many advantages over other type of conventional communication techniques. This report contains the description of optical fiber communication and compared with other communication systems. (author)

  12. Status of the PALM-3000 high order adaptive optics instrument

    Science.gov (United States)

    Burruss, Rick S.; Dekany, Richard G.; Roberts, Jennifer E.; Shelton, J. C.; Wallace, J. K.; Tesch, Jonathan A.; Palmer, Dean L.; Hale, David; Bartos, Randall; Rykoski, Kevin M.; Heffner, Carolyn M.; Eriksen, Jamey E.; Vescelus, Fred

    2014-07-01

    We report on the status of PALM-3000, the second generation adaptive optics instrument for the 5.1 meter Hale telescope at Palomar Observatory. PALM-3000 was released as a facility class instrument in October 2011, and has since been used on the Hale telescope a total of over 250 nights. In the past year, the PALM-3000 team introduced several instrument upgrades, including the release of the 32x32 pupil sampling mode which allows for correction on fainter guide stars, the upgrade of wavefront sensor relay optics, the diagnosis and repair of hardware problems, and the release of software improvements. We describe the performance of the PALM-3000 instrument as a result of these upgrades, and provide on-sky results. In the 32x32 pupil sampling mode (15.8 cm per subaperture), we have achieved K-band strehl ratios as high as 11% on a 14.4 mv star, and in the 64x64 pupil sampling mode (8.1 cm per subaperture), we have achieved K-band strehl ratios as high as 86% on stars brighter than 7th mv.

  13. Optical and laser spectroscopic diagnostics for energy applications

    Science.gov (United States)

    Tripathi, Markandey Mani

    The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the

  14. Acute Solar Retinopathy Imaged With Adaptive Optics, Optical Coherence Tomography Angiography, and En Face Optical Coherence Tomography.

    Science.gov (United States)

    Wu, Chris Y; Jansen, Michael E; Andrade, Jorge; Chui, Toco Y P; Do, Anna T; Rosen, Richard B; Deobhakta, Avnish

    2018-01-01

    Solar retinopathy is a rare form of retinal injury that occurs after direct sungazing. To enhance understanding of the structural changes that occur in solar retinopathy by obtaining high-resolution in vivo en face images. Case report of a young adult woman who presented to the New York Eye and Ear Infirmary with symptoms of acute solar retinopathy after viewing the solar eclipse on August 21, 2017. Results of comprehensive ophthalmic examination and images obtained by fundus photography, microperimetry, spectral-domain optical coherence tomography (OCT), adaptive optics scanning light ophthalmoscopy, OCT angiography, and en face OCT. The patient was examined after viewing the solar eclipse. Visual acuity was 20/20 OD and 20/25 OS. The patient was left-eye dominant. Spectral-domain OCT images were consistent with mild and severe acute solar retinopathy in the right and left eye, respectively. Microperimetry was normal in the right eye but showed paracentral decreased retinal sensitivity in the left eye with a central absolute scotoma. Adaptive optics images of the right eye showed a small region of nonwaveguiding photoreceptors, while images of the left eye showed a large area of abnormal and nonwaveguiding photoreceptors. Optical coherence tomography angiography images were normal in both eyes. En face OCT images of the right eye showed a small circular hyperreflective area, with central hyporeflectivity in the outer retina of the right eye. The left eye showed a hyperreflective lesion that intensified in area from inner to middle retina and became mostly hyporeflective in the outer retina. The shape of the lesion on adaptive optics and en face OCT images of the left eye corresponded to the shape of the scotoma drawn by the patient on Amsler grid. Acute solar retinopathy can present with foveal cone photoreceptor mosaic disturbances on adaptive optics scanning light ophthalmoscopy imaging. Corresponding reflectivity changes can be seen on en face OCT, especially

  15. Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography

    International Nuclear Information System (INIS)

    Kirillin, M Yu; Sergeeva, E A; Agrba, P D; Krainov, A D; Ezhov, A A; Shuleiko, D V; Kashkarov, P K; Zabotnov, S V

    2015-01-01

    Due to their biocompatibility silicon nanoparticles have high potential in biomedical applications, especially in optical diagnostics. In this paper we analyze properties of the silicon nanoparticles formed via laser ablation in water and study the possibility of their application as contrasting agents in optical coherence tomography (OCT). The nanoparticles suspension was produced by picosecond laser irradiation of monocrystalline silicon wafers in water. According to transmission electron microcopy analysis the silicon nanoparticles in the obtained suspension vary in size from 2 to 200 nm while concentration of the particles is estimated as 10 13 cm −3 . The optical properties of the suspension in the range from 400 to 1000 nm were studied by spectrophotometry measurements revealing a scattering coefficient of about 0.1 mm −1 and a scattering anisotropy factor in the range of 0.2–0.4. In OCT study a system with a central wavelength of 910 nm was employed. Potential of the silicon nanoparticles as a contrasting agent for OCT is studied in experiments with agarose gel phantoms. Topical application of the nanoparticles suspension allowed the obtaining of the contrast of structural features of phantom up to 14 dB in the OCT image. (paper)

  16. Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics

    Directory of Open Access Journals (Sweden)

    Xiaofeng Cheng

    2014-01-01

    Full Text Available The large high-power solid lasers, such as the National Ignition Facility (NIF of America and the Shenguang-III (SG-III laser facility of China, can output over 2.1 MJ laser pulse for the inertial confinement fusion (ICF experiments. Because of the enhancement of operating flux and the expansion of laser driver scale, the problem of contamination seriously influences their construction period and operation life. During irradiation by intense laser beams, the contaminants on the metallic surface of beam tubes can be transmitted to the optical surfaces and lead to damage of optical components. For the high-power solid-state laser facilities, contamination control focuses on the slab amplifiers, spatial filters, and final-optical assemblies. In this paper, an effective solution to control contaminations including the whole process of the laser driver is put forward to provide the safe operation of laser facilities, and the detailed technical methods of contamination control such as washing, cleanliness metrology, and cleanliness protecting are also introduced to reduce the probability of laser-induced damage of optics. The experimental results show that the cleanliness level of SG-III laser facility is much better to ensure that the laser facility can safely operate at high energy flux.

  17. SILDENAFIL CITRATE INDUCED RETINAL TOXICITY-ELECTRORETINOGRAM, OPTICAL COHERENCE TOMOGRAPHY, AND ADAPTIVE OPTICS FINDINGS.

    Science.gov (United States)

    Yanoga, Fatoumata; Gentile, Ronald C; Chui, Toco Y P; Freund, K Bailey; Fell, Millie; Dolz-Marco, Rosa; Rosen, Richard B

    2018-02-27

    To report a case of persistent retinal toxicity associated with a high dose of sildenafil citrate intake. Single retrospective case report. A 31-year-old white man with no medical history presented with complaints of bilateral multicolored photopsias and erythropsia (red-tinted vision), shortly after taking sildenafil citrate-purchased through the internet. Patient was found to have cone photoreceptor damage, demonstrated using electroretinogram, optical coherence tomography, and adaptive optics imaging. The patient's symptoms and the photoreceptor structural changes persisted for several months. Sildenafil citrate is a widely used erectile dysfunction medication that is typically associated with transient visual symptoms in normal dosage. At high dosage, sildenafil citrate can lead to persistent retinal toxicity in certain individuals.

  18. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor

    International Nuclear Information System (INIS)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B.; May A, M.; Shlyagin, M.; Marquez B, I.

    2004-01-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  19. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Directory of Open Access Journals (Sweden)

    Virginijus Barzda

    2013-09-01

    Full Text Available Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red, which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  20. Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams.

    Science.gov (United States)

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-09-09

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  1. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Science.gov (United States)

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-01-01

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures. PMID:24022688

  2. Laser Polarimeter for Measurement of Optical Activity of Biological Objects

    Science.gov (United States)

    Protasov, E. A.; Protasov, D. E.; Ryzhkova, A. V.

    In this paper has been described the polarimetric device for measurement of optical activity of biological tissues, where the source of radiation is an infrared laser with a wave λ=0.808 micron. The polarizers used are polarizing prisms of Glan - Taylor. To obtain required angular resolution (0.180/cm) has been developed a device that converts the angle of rotation of the analyzer into electrical signal, which is fed to the appropriate scan digital oscilloscope. The passage of the polarized light through the fingers of the hand was established and the angles of rotation of the polarization vector of the transmitted radiation were measured, the values of which may be determined by the content of hemoglobin in the blood.

  3. Optical leak detection of oxygen using IR-laser diodes

    Science.gov (United States)

    Disimile, P. J.; Fox, C.; Toy, N.

    1991-01-01

    The ability to accurately measure the concentration of gaseous oxygen and its corresponding flow rate is becoming of greater importance. The technique being presented is based on the principal of light attenuation due to the absorption of radiation by the A-band of oxygen which is located in the 759-770 nm wavelength range. With an ability to measure the change in the light transmission to 0.05 percent, a sensitive optical leak detection system which has a rapid time response is possible. In this research program, the application of laser diode technology and its ability to be temperature tuned to a selected oxygen absorption spectral peak has allowed oxygen concentrations as low as 16,000 ppm to be detected.

  4. Pulsed-laser machining and polishing of silica micro-optical components using a CO2 laser and an acousto-optic modulator

    Science.gov (United States)

    Nowak, Krzysztof M.; Baker, Howard J.; Hall, Denis R.

    2003-04-01

    Laser ablation and laser smoothing of silica is investigated as a method of manufacturing custom micro-optics for use with high-power, diode laser arrays. A highly flexible machining regime has been identified that uses 30 to 60 microseconds square pulses, generated from a stabilized CO2 laser by an acousto-optical modulator (AOM). Refractive optical surfaces with apertures of 1 mm x 1 mm have been generated by the multi-pulse, raster scanning method with cut depths in the range of 10 to 30 μm controlled to an accuracy of better than 150 nm. A subsequent laser "fire polishing" step to smooth out the surface, using the same laser system as for machining, but in a long pulse mode at an energy fluence that just avoids further ablation of the surface. The objective of the research is to produce rapid prototyping of arrays of refractive elements, to avoid the tooling or mask-writing steps of alternative methods. A particular interest is in the generation of corrective optical elements to improve the beam quality of arrays of diode laser bars.

  5. Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space

    Science.gov (United States)

    Reasenberg, Robert D.; Babcock, Robert W.; Murison, Marc A.; Noecker, M. Charles; Phillips, James D.; Schumaker, Bonny L.; Ulvestad, James S.; McKinley, William; Zielinski, Robert J.; Lillie, Charles F.

    1996-01-01

    POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer

  6. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.

    Science.gov (United States)

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott

    2016-03-10

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered.

  7. Optically-ionized plasma recombination x-ray lasers

    International Nuclear Information System (INIS)

    Amendt, P.; Eder, D.C.; Wilks, S.C.; Dunning, M.J.; Keane, C.J.

    1991-01-01

    Design studies for recombination x-ray lasers based on plasmas ionized by high intensity, short pulse optical lasers are presented. Transient lasing on n = 3 to n = 2 transitions in Lithium-like Neon allows for moderately short wavelengths (≤ 100 angstrom) without requiring ionizing intensities associated with relativistic electron quiver energies. The electron energy distribution following the ionizing pulse affects directly the predicted gains for this resonance transition. Efficiencies of 10 -6 or greater are found for plasma temperatures in the vicinity of 40 eV. Simulation studies of parametric heating phenomena relating to stimulated Raman and Compton scattering are presented. For electron densities less than about 2.5 x 10 20 cm -3 and peak driver intensity of 2 x 10 17 W/cm 2 at 0.25 μm with pulse length of 100 fsec, the amount of electron heating is found to be marginally significant. For Lithium-like Aluminum, the required relativistic ionizing intensity gives excessive electron heating and reduced efficiency, thereby rendering this scheme impractical for generating shorter wavelength lasing (≤ 50 angstrom) in the transient case. Following the transient lasing phase, a slow hydrodynamic expansion into the surrounding cool plasma is accompanied by quasi-static gain on the n = 4 to n = 3 transition in Lithium-like Neon. Parametric heating effects on gain optimization in this regime are also discussed. 18 refs., 6 figs

  8. High-performance polymer optical fiber lasers and amplifiers

    Science.gov (United States)

    Kuriki, Ken; Kobayashi, Takeyuki; Imai, Nana; Tamura, Toshihiko; Tagaya, Akihiro; Koike, Yasuhiro; Okamoto, Yoshiyuki

    2000-05-01

    We report on the lasing action of the graded-index polymer optical fibers containing dyes, such as Rhodamine B, Rhodamine 6G, Perylene Orange, and Pyrromethene 567. These dyes have been incorporated into poly(methyl methacrylate- co-2-hydroxythyl methacrylate). These fibers were transversely pumped at 532 nm with a frequency-doubled Q- switched Nd:YAG laser. Slope efficiency of 24 percent and output of 1.2 mJ were obtained with a Rhodamine 6G-doped fiber. A lifetime of 200,000 pulses at 10 Hz was achieved with a Rhodamine B-doped fiber. GI POF containing a Nd- chelate have also been fabricated. The absorption spectrum of the fiber exhbit3ed several strong bands in the visible and IR regions. We have observed IR fluorescence of the Nd3+ ion of the fiber at room temperature when it was pumped with an Ar+-pumped dye laser at 580 nm. The Judd-Ofelt theory was applied to the absorption spectrum of Nd3+ in polymer to determine the Judd-Ofelt parameters. From the theory, various radiative properties, such as transition probability, branching ratio, and emission cross section for various emission levels, have been determined and reported.

  9. Automatic alignment of double optical paths in excimer laser amplifier

    Science.gov (United States)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  10. Laser induced damage in optical materials: twelfth ASTM symposium.

    Science.gov (United States)

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1981-09-01

    The twelfth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30 Sept.-l Oct., 1980. The symposium was held under the auspices of ASTM Committee F-l, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific research. Over 150 scientists attended the symposium, including representatives of the United Kingdom, France, Japan, and West Germany. The symposium was divided into sessions concerning materials and measurements, mirrors and surfaces, thin films, and finally fundamental mechanisms. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high power systems. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore National Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the symposium. The thirteenth annual symposium is scheduled for 17-18 Nov. 1981 at the National Bureau of Standards, Boulder, Colorado.

  11. A study of optical design and optimization applied to lens module of laser beam shaping of advanced modern optical device

    Science.gov (United States)

    Tsai, Cheng-Mu; Fang, Yi-Chin; Chen, Zhen Hsiang

    2011-10-01

    This study used the aspheric lens to realize the laser flat-top optimization, and applied the genetic algorithm (GA) to find the optimal results. Using the characteristics of aspheric lens to obtain the optimized high quality Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using two aspheric lenses in the aspheric surface optical system to complete 80% spot narrowing under standard deviation of 0.6142.

  12. Assignment of the /Li-7/2 optically pumped laser transitions pumped by Ar/+/ and Kr/+/ laser lines

    Science.gov (United States)

    Verma, K. K.; Stwalley, W. C.; Zemke, W. T.

    1981-01-01

    Welling and Wellegehausen (1977) have reported a list of Na2 and Li2 lines (belonging to B-X and A-X systems) which lase when vapors of these dimers are pumped with an Ar(+) or Kr(+) laser. A description is presented of a fluorescence study of the A-X system of the (Li-7)2 molecule excited by a Kr(+) laser (6471 A). The optically pumped laser lines are identified as P and R doublets in two different fluorescence series. The conditions which favor lasing action of these lines are pointed out. All but one of the known optically pumped laser lines of (Li-7)2 along with their assignments are presented in a table. For each pumping line, several additional wavelengths are listed which satisfy the condition for laser oscillations and which might well lase well under slightly improved conditions.

  13. Specification of optical components for a high average-power laser environment

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.; Chow, R.; Rinmdahl, K.A.; Willis, J.B.; Wong, J.N.

    1997-06-25

    Optical component specifications for the high-average-power lasers and transport system used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant must address demanding system performance requirements. The need for high performance optics has to be balanced against the practical desire to reduce the supply risks of cost and schedule. This is addressed in optical system design, careful planning with the optical industry, demonstration of plant quality parts, qualification of optical suppliers and processes, comprehensive procedures for evaluation and test, and a plan for corrective action.

  14. All-Optical flip-flop operation using a SOA and DFB laser diode optical feedback combination

    DEFF Research Database (Denmark)

    D'Oosterlinck, W.; Öhman, Filip; Buron, Jakob Due

    2007-01-01

    We report on the switching of an all-optical flip-flop consisting of a semiconductor optical amplifier (SOA) and a distributed feedback laser diode (DFB), bidirectionally coupled to each other. Both simulation and experimental results are presented. Switching times as low as 50ps, minimal required...

  15. Adaptive optics for fluorescence wide-field microscopy using spectrally independent guide star and markers.

    Science.gov (United States)

    Vermeulen, Pierre; Muro, Eleonora; Pons, Thomas; Loriette, Vincent; Fragola, Alexandra

    2011-07-01

    We describe the implementation and use of an adaptive optics loop in the imaging path of a commercial wide field microscope. We show that it is possible to maintain the optical performances of the original microscope when imaging through aberrant biological samples. The sources used for illuminating the adaptive optics loop are spectrally independent, in excitation and emission, from the sample, so they do not appear in the final image, and their use does not contribute to the sample bleaching. Results are compared with equivalent images obtained with an identical microscope devoid of adaptive optics system.

  16. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited

    Science.gov (United States)

    Pircher, Michael; Zawadzki, Robert J

    2017-01-01

    In vivo imaging of the human retina with a resolution that allows visualization of cellular structures has proven to be essential to broaden our knowledge about the physiology of this precious and very complex neural tissue that enables the first steps in vision. Many pathologic changes originate from functional and structural alterations on a cellular scale, long before any degradation in vision can be noted. Therefore, it is important to investigate these tissues with a sufficient level of detail in order to better understand associated disease development or the effects of therapeutic intervention. Optical retinal imaging modalities rely on the optical elements of the eye itself (mainly the cornea and lens) to produce retinal images and are therefore affected by the specific arrangement of these elements and possible imperfections in curvature. Thus, aberrations are introduced to the imaging light and image quality is degraded. To compensate for these aberrations, adaptive optics (AO), a technology initially developed in astronomy, has been utilized. However, the axial sectioning provided by retinal AO-based fundus cameras and scanning laser ophthalmoscope instruments is limited to tens of micrometers because of the rather small available numerical aperture of the eye. To overcome this limitation and thus achieve much higher axial sectioning in the order of 2-5µm, AO has been combined with optical coherence tomography (OCT) into AO-OCT. This enabled for the first time in vivo volumetric retinal imaging with high isotropic resolution. This article summarizes the technical aspects of AO-OCT and provides an overview on its various implementations and some of its clinical applications. In addition, latest developments in the field, such as computational AO-OCT and wavefront sensor less AO-OCT, are covered. PMID:28663890

  17. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited].

    Science.gov (United States)

    Pircher, Michael; Zawadzki, Robert J

    2017-05-01

    In vivo imaging of the human retina with a resolution that allows visualization of cellular structures has proven to be essential to broaden our knowledge about the physiology of this precious and very complex neural tissue that enables the first steps in vision. Many pathologic changes originate from functional and structural alterations on a cellular scale, long before any degradation in vision can be noted. Therefore, it is important to investigate these tissues with a sufficient level of detail in order to better understand associated disease development or the effects of therapeutic intervention. Optical retinal imaging modalities rely on the optical elements of the eye itself (mainly the cornea and lens) to produce retinal images and are therefore affected by the specific arrangement of these elements and possible imperfections in curvature. Thus, aberrations are introduced to the imaging light and image quality is degraded. To compensate for these aberrations, adaptive optics (AO), a technology initially developed in astronomy, has been utilized. However, the axial sectioning provided by retinal AO-based fundus cameras and scanning laser ophthalmoscope instruments is limited to tens of micrometers because of the rather small available numerical aperture of the eye. To overcome this limitation and thus achieve much higher axial sectioning in the order of 2-5µm, AO has been combined with optical coherence tomography (OCT) into AO-OCT. This enabled for the first time in vivo volumetric retinal imaging with high isotropic resolution. This article summarizes the technical aspects of AO-OCT and provides an overview on its various implementations and some of its clinical applications. In addition, latest developments in the field, such as computational AO-OCT and wavefront sensor less AO-OCT, are covered.

  18. Congenital optic tract syndrome: magnetic resonance imaging and scanning laser ophthalmoscopy findings.

    Science.gov (United States)

    Murphy, M A; Grosof, D H; Hart, W M

    1997-12-01

    Lesions of the optic tract produce a distinctive pattern of optic atrophy and visual field loss and may be due to either congenital or acquired causes. We report a case of a congenital optic tract syndrome and correlate the magnetic resonance imaging findings with the appearance of nerve fiber layer defects found by confocal scanning laser ophthalmoscopy.

  19. Optically-driven red blood cell rotor in linearly polarized laser tweezers

    Indian Academy of Sciences (India)

    produces less torque under the radiation pressure resulting in slower rotation at the same laser power. Keywords. Rotation of red blood cell; optical tweezers, dual optical trap. PACS Nos 87.80.Cc; 87.83.+a; 87.80.Fe; 89.20.-a. 1. Introduction. The application of optical tweezers in trapping and manipulating single cells [1].

  20. Laser-induced breakdown spectroscopy of solid aerosols produced by optical catapulting

    International Nuclear Information System (INIS)

    Fortes, F.J.; Cabalin, L.M.; Laserna, J.J.

    2009-01-01

    Laser-induced breakdown spectroscopy of particles ejected by optical catapulting is discussed for the first time. For this purpose, materials deposited on a substrate were ejected and transported from the surface in the form of a solid aerosol by optical catapulting using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 1064 nm. A Q-switched Nd:YAG laser at 532 nm was used for chemical characterization of the particles by laser-induced breakdown spectroscopy. Both lasers were synchronized in order to perform suitable spectral detection. The optical catapulting was optimized and evaluated using aluminum silicate particles, nickel spheres, and quartz and stainless steel particles. Experimental parameters such as the interpulse delay time, the sampling distance, the laser fluence, the sampling rate and the particle size have been studied. A correlation between these parameters and the particle size is reported and discussed.

  1. Digital adaptive optics for achieving space-invariant lateral resolution in optical coherence tomography

    International Nuclear Information System (INIS)

    Kumar, A.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive optical interferometric imaging technique that provides reflectivity profiles of the sample structures with high axial resolution. The high axial resolution is due to the use of low coherence (broad-band) light source. However, the lateral resolution in OCT depends on the numerical aperture (NA) of the focusing/imaging optics and it is affected by defocus and other higher order optical aberrations induced by the imperfect optics, or by the sample itself.Hardware based adaptive optics (AO) has been successfully combined with OCT to achieve high lateral resolution in combination with high axial resolution provided by OCT. AO, which conventionally uses Shack-Hartmann wavefront sensor (SH WFS) and deformable mirror for wavefront sensing and correction respectively, can compensate for optical aberration and can enable diffraction-limited resolution in OCT. Visualization of cone photoreceptors in 3-D has been successfully demonstrated using AO-OCT. However, OCT being an interferometric imaging technique can provide access to phase information.This phase information can be exploited by digital adaptive optics (DAO) techniques to correct optical aberration in the post-processing step to obtain diffraction-limited space invariant lateral resolution throughout the image volume. Thus, the need for hardware based AO can be eliminated, which in turn can reduce the system complexity and economical cost. In the first paper of this thesis, a novel DAO method based on sub-aperture correlation is presented which is the digital equivalent of SH WFS. The advantage of this method is that it is non-iterative in nature and it does not require a priori knowledge of any system parameters such wavelength, focal length, NA or detector pixel size. For experimental proof, a FF SS OCT system was used and the sample consisted of resolution test target and a plastic plate that introduced random optical aberration. Experimental results show that

  2. Design and application of a new modular adapter for laser diffraction characterization of inhalation aerosols

    NARCIS (Netherlands)

    de Boer, Anne; Gjaltema, D; Hagedoorn, P; Schaller, M; Witt, W; Frijlink, H W

    2002-01-01

    An inhaler adapter has been designed for the characterization of the aerosol clouds from medical aerosol generators such as nebulizers, dry powder inhalers (dpis) and metered dose inhalers (mdis) with laser diffraction technology. The adapter has a pre-separator, for separation of large particles

  3. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  4. Optical Protection Filters for Harmful Laser Beams and UV Radiation

    Science.gov (United States)

    Azim M., Osama A.

    2007-02-01

    Due to the rapid growth of radiation protection applications in various devices and instruments, it is essential to use suitable filters for eye protection of the personal working in the radiation field. Different protection filters were produced to protect from four laser beam wavelengths (at 532nm, 632.8nm, 694nm and 1064nm) and block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters used optical thin film technology. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production filter processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Dralo (mixture of oxides TiO2/Al2O3), and Lima (mixture of oxides SiO2/Al2O3); deposition by an electron beam gun. The output transmittance curves for both theoretical and experimental values of all filters are presented. To validate the suitability for use in a `real world', rather than laboratory test application, full environmental assessment was also carried out. These filters exhibited high endurance after exposing them to the durability tests (adhesion, abrasion resistance and humidity) according to military standards MIL-C-675C and MIL-C-48497A.

  5. Optical Protection Filters for Harmful Laser Beams and UV Radiation

    International Nuclear Information System (INIS)

    Azim M, Osama A.

    2007-01-01

    Due to the rapid growth of radiation protection applications in various devices and instruments, it is essential to use suitable filters for eye protection of the personal working in the radiation field. Different protection filters were produced to protect from four laser beam wavelengths (at 532nm, 632.8nm, 694nm and 1064nm) and block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters used optical thin film technology. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production filter processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Dralo (mixture of oxides TiO2/Al2O3), and Lima (mixture of oxides SiO2/Al2O3); deposition by an electron beam gun. The output transmittance curves for both theoretical and experimental values of all filters are presented. To validate the suitability for use in a 'real world', rather than laboratory test application, full environmental assessment was also carried out. These filters exhibited high endurance after exposing them to the durability tests (adhesion, abrasion resistance and humidity) according to military standards MIL-C-675C and MIL-C-48497A

  6. Noninvasive optical imaging of resistance training adaptations in human muscle

    Science.gov (United States)

    Warren, Robert V.; Cotter, Joshua; Ganesan, Goutham; Le, Lisa; Agustin, Janelle P.; Duarte, Bridgette; Cutler, Kyle; O'Sullivan, Thomas; Tromberg, Bruce J.

    2017-12-01

    A quantitative and dynamic analysis of skeletal muscle structure and function can guide training protocols and optimize interventions for rehabilitation and disease. While technologies exist to measure body composition, techniques are still needed for quantitative, long-term functional imaging of muscle at the bedside. We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used for long-term assessment of resistance training (RT). DOSI measures of tissue composition were obtained from 12 adults before and after 5 weeks of training and compared to lean mass fraction (LMF) from dual-energy X-ray absorptiometry (DXA). Significant correlations were detected between DXA LMF and DOSI-measured oxy-hemo/myoglobin, deoxy-hemo/myoglobin, total-hemo/myoglobin, water, and lipid. RT-induced increases of ˜6% in oxy-hemo/myoglobin (3.4±1.0 μM, p=0.00314) and total-hemo/myoglobin (4.9±1.1 μM, p=0.00024) from the medial gastrocnemius were detected with DOSI and accompanied by ˜2% increases in lean soft tissue mass (36.4±12.4 g, p=0.01641) and ˜60% increases in 1 rep-max strength (41.5±6.2 kg, p = 1.9E-05). DOSI measures of vascular and/or muscle changes combined with correlations between DOSI and DXA suggest that quantitative diffuse optical methods can be used to evaluate body composition, provide feedback on long-term interventions, and generate new insight into training-induced muscle adaptations.

  7. Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics.

    Science.gov (United States)

    Jonnal, Ravi S; Kocaoglu, Omer P; Wang, Qiang; Lee, Sangyeol; Miller, Donald T

    2012-01-01

    The cone photoreceptor's outer segment (OS) experiences changes in optical path length, both in response to visible stimuli and as a matter of its daily course of renewal and shedding. These changes are of interest, to quantify function in healthy cells and assess dysfunction in diseased ones. While optical coherence tomography (OCT), combined with adaptive optics (AO), has permitted unprecedented three-dimensional resolution in the living retina, it has not generally been able to measure these OS dynamics, whose scale is smaller than OCT's axial resolution of a few microns. A possible solution is to take advantage of the phase information encoded in the OCT signal. Phase-sensitive implementations of spectral-domain optical coherence tomography (SD-OCT) have been demonstrated, capable of resolving sample axial displacements much smaller than the imaging wavelength, but these have been limited to ex vivo samples. In this paper we present a novel technique for retrieving phase information from OCT volumes of the outer retina. The key component of our technique is quantification of phase differences within the retina. We provide a quantitative analysis of such phase information and show that-when combined with appropriate methods for filtering and unwrapping-it can improve the sensitivity to OS length change by more than an order of magnitude, down to 45 nm, slightly thicker than a single OS disc. We further show that phase sensitivity drops off with retinal eccentricity, and that the best location for phase imaging is close to the fovea. We apply the technique to the measurement of sub-resolution changes in the OS over matters of hours. Using custom software for registration and tracking, these microscopic changes are monitored in hundreds of cones over time. In two subjects, the OS was found to have average elongation rates of 150 nm/hr, values which agree with our previous findings. 2011 Optical Society of America

  8. Quantitative evaluation of enhanced laser tattoo removal by skin optical clearing

    Directory of Open Access Journals (Sweden)

    Caihua Liu

    2015-05-01

    Full Text Available Lasers have been widely used for tattoo removal, but the limited light penetration depth caused by high skin scattering property restricts the therapeutic outcome of deep tattoo. Skin optical clearing method, by introducing optical clearing agent (OCA into skin, has shown some improvement in the effect of laser tattoo removal. In this study, the enhanced laser tattoo removal has been quantitatively assessed. OCA was applied to the skin of tattoo animal model and Q-switched Nd:YAG laser (1064 nm irradiation was used to remove the tattoo. The skin evaluation instrument (Mexameter probe, MPA580 was applied to measure the content of tattoo pigment before and after laser treatment, and then the clearance rate of pigment was calculated. Further, Monte Carlo (MC method was utilized to simulate the effect of skin optical clearing on light transmission in tattoo skin model. By comparing the pigment change of tattoo areas respectively treated with OCA plus laser and single laser, it was found that pigment clearance of the former tattoo area was increased by 1.5-fold. Further, the MC simulation verified that the reduced light scattering in skin could increase the effective dose of luminous flux reaching to the deep tattoo regions. It can be concluded from both experiment and theoretical simulations that skin optical clearing technique could improve the outcome of laser tattoo removal, which should be beneficial for clinical laser tattoo removal and other laser pigment elimination.

  9. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics.

    Science.gov (United States)

    Patton, Brian R; Burke, Daniel; Owald, David; Gould, Travis J; Bewersdorf, Joerg; Booth, Martin J

    2016-04-18

    When imaging through tissue, the optical inhomogeneities of the sample generate aberrations that can prevent effective Stimulated Emission Depletion (STED) imaging. This is particularly problematic for 3D-enhanced STED. We present here an adaptive optics implementation that incorporates two adaptive optic elements to enable correction in all beam paths, allowing performance improvement in thick tissue samples. We use this to demonstrate 3D STED imaging of complex structures in Drosophila melanogaster brains.

  10. Piezoelectric deformable mirror for intra-cavity laser adaptive optics.

    CSIR Research Space (South Africa)

    Long, CS

    2008-03-01

    Full Text Available degree of freedom Fig. 5. Quadrilateral axisymmetric element with rotational degrees of freedom. The variational formulation of these elements employs the skew-symmetric part of the stress tensor as a Lagrange multiplier to enforce the continuum... mechanics definition of rotations in terms of displacement gradient. The stress tensor is therefore not a priori assumed to be symmetric. The finite element implementation starts with an eight-node ‘base element’ in the local coordinate system. The four...

  11. Airborne Laser (ABL): Issues for Congress

    National Research Council Canada - National Science Library

    Bolkcom, Christopher; Hildreth, Steven A

    2007-01-01

    Funding for the Airborne Laser (ABL) program began in FY1994, but the technologies supporting the ABL effort has evolved over 25 years of research and development concerning laser power concepts, pointing and tracking, and adaptive optics...

  12. Creating large second-order optical nonlinearity in optical waveguides written by femtosecond laser pulses in boro-aluminosilicate glass

    Science.gov (United States)

    An, Hong-Lin; Arriola, Alexander; Gross, Simon; Fuerbach, Alexander; Withford, Michael J.; Fleming, Simon

    2014-01-01

    The thermal poling technique was applied to optical waveguides embedded in a commercial boro-aluminosilicate glass, resulting in high levels of induced second-order optical nonlinearity. The waveguides were fabricated using the femtosecond laser direct-write technique, and thermally poled samples were characterized with second harmonic optical microscopy to reveal the distribution profile of the induced nonlinearity. It was found that, in contrast to fused silica, the presence of waveguides in boro-aluminosilicate glass led to an enhancement of the creation of the second-order nonlinearity, which is larger in the laser written waveguiding regions when compared to the un-modified substrate. The magnitude of the nonlinear coefficient d33 achieved in the core of the laser-written waveguides, up to 0.2 pm/V, was comparable to that in thermally poled fused silica, enabling the realization of compact integrated electro-optic devices in boro-aluminosilicate glasses.

  13. Packetisation in Optical Packet Switch Fabrics using adaptive timeout values

    DEFF Research Database (Denmark)

    Mortensen, Brian Bach

    2006-01-01

    Hybrid electro-optical packet switches utilize optics in the backplane to switch optical packets from inputs to outputs on electronic line cards. The optical packets are traditionally considerably larger than minimum size IP packets. IP packets entering the switch must be formatted (segmented) an...

  14. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  15. THREE-DIMENSIONAL ANALYSIS OF RETINAL MICROANEURYSMS WITH ADAPTIVE OPTICS OPTICAL COHERENCE TOMOGRAPHY.

    Science.gov (United States)

    Karst, Sonja G; Salas, Matthias; Hafner, Julia; Scholda, Christoph; Vogl, Wolf-Dieter; Drexler, Wolfgang; Pircher, Michael; Schmidt-Erfurth, Ursula

    2018-01-19

    To characterize retinal microaneurysms (MAs) in patients with diabetes using adaptive optics optical coherence tomography (AOOCT) and compare details found in AOOCT with those found in commercially available retinal imaging techniques. Patients with diabetes and MA in the macular area were included in this pilot study. The area of interest, identified in standard fluorescein angiography, was imaged using an AO fundus camera and AOOCT. Microaneurysms were characterized in AOOCT (visibility, reflectivity, feeding/draining vessels, and intraretinal location) and compared with findings in AO fundus camera, OCT angiography, and fluorescein angiography. Fifty-three MAs were imaged in 15 eyes of 10 patients. Feeding and/or draining vessels from both capillary plexus could be identified in 34 MAs in AOOCT images. Of 45 MAs imaged with OCT angiography, 18 (40%) were visible in the superior plexus, 12 (27%) in the deep capillary plexus, and 15 MAs (33%) could not be identified at all. Intraluminal hyperreflectivity, commonly seen in AO fundus camera, corresponded only in 8 of 27 cases (30%) to intraluminal densities seen in AOOCT. Adaptive optics OCT imaging revealed that MAs located in the inner nuclear layer were connected to the intermediate and/or deep capillary plexus. Intraluminal hyperreflectivity seen on AO fundus camera images originated from a strong reflection from the vessel wall and only in a third of the cases from intraluminal clots. Currently, AOOCT is the most expedient in vivo imaging method to capture morphologic details of retinal microvasculature in 3D and in the context of the surrounding retinal anatomy.

  16. Development of laser marking system with electro-optic Q-switch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs.

  17. Development of laser marking system with electro-optic Q-switch

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon.

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs

  18. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Science.gov (United States)

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  19. Adaptation and timing recovery for two-dimensional optical storage

    Science.gov (United States)

    Immink, Andre H.; Riani, Jamal; van Beneden, Steven; Bergmans, Jan; Ciacci, Massimo; Nowbakht Irani, Ali; Coene, Wim; van der Lee, Alexander; Bruls, Dominique

    2004-09-01

    This paper discusses several issues related to adaptation and timing recovery for two-dimensional (2D) optical storage. In the TwoDOS format bits are stored on a 2D hexagonal lattice which is formed by recording multiple bit rows with a fixed phase relation in a so-called broad spiral or meta-spiral. Besides a large increase in data rate by reading out with multiple spots, also a density increase by a factor of two compared to Blu-ray Disc is targeted. To increase the storage density, 2D signal processing is proposed including 2D PRML detection in the form of a stripe-wise Viterbi detector. This detector introduces an increasing detection delay when going from the outer rows towards the center of the broad spiral. For fast control loops in a decision-directed mode, special measures are needed to avoid instability due to this delay. Another issue is the large span of the 2D inter-symbol interference at higher densities and tilt, leading to a large 2D equalizer. Furthermore, in case the broad spiral is recorded with a multiple-pass mastering technology (e.g. for ROM TwoDOS discs), write-channel imperfections such as time-varying lattice distortion require independent timing recovery on each row within the broad spiral.

  20. Deblurring adaptive optics retinal images using deep convolutional neural networks.

    Science.gov (United States)

    Fei, Xiao; Zhao, Junlei; Zhao, Haoxin; Yun, Dai; Zhang, Yudong

    2017-12-01

    The adaptive optics (AO) can be used to compensate for ocular aberrations to achieve near diffraction limited high-resolution retinal images. However, many factors such as the limited aberration measurement and correction accuracy with AO, intraocular scatter, imaging noise and so on will degrade the quality of retinal images. Image post processing is an indispensable and economical method to make up for the limitation of AO retinal imaging procedure. In this paper, we proposed a deep learning method to restore the degraded retinal images for the first time. The method directly learned an end-to-end mapping between the blurred and restored retinal images. The mapping was represented as a deep convolutional neural network that was trained to output high-quality images directly from blurry inputs without any preprocessing. This network was validated on synthetically generated retinal images as well as real AO retinal images. The assessment of the restored retinal images demonstrated that the image quality had been significantly improved.