Seizure prediction using adaptive neuro-fuzzy inference system.
Rabbi, Ahmed F; Azinfar, Leila; Fazel-Rezai, Reza
2013-01-01
In this study, we present a neuro-fuzzy approach of seizure prediction from invasive Electroencephalogram (EEG) by applying adaptive neuro-fuzzy inference system (ANFIS). Three nonlinear seizure predictive features were extracted from a patient's data obtained from the European Epilepsy Database, one of the most comprehensive EEG database for epilepsy research. A total of 36 hours of recordings including 7 seizures was used for analysis. The nonlinear features used in this study were similarity index, phase synchronization, and nonlinear interdependence. We designed an ANFIS classifier constructed based on these features as input. Fuzzy if-then rules were generated by the ANFIS classifier using the complex relationship of feature space provided during training. The membership function optimization was conducted based on a hybrid learning algorithm. The proposed method achieved highest sensitivity of 80% with false prediction rate as low as 0.46 per hour. PMID:24110134
Adaptive neuro-fuzzy inference system based automatic generation control
Energy Technology Data Exchange (ETDEWEB)
Hosseini, S.H.; Etemadi, A.H. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)
2008-07-15
Fixed gain controllers for automatic generation control are designed at nominal operating conditions and fail to provide best control performance over a wide range of operating conditions. So, to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to compute control gains. A control scheme based on artificial neuro-fuzzy inference system (ANFIS), which is trained by the results of off-line studies obtained using particle swarm optimization, is proposed in this paper to optimize and update control gains in real-time according to load variations. Also, frequency relaxation is implemented using ANFIS. The efficiency of the proposed method is demonstrated via simulations. Compliance of the proposed method with NERC control performance standard is verified. (author)
Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference
Tran, Tung; Yang, Bo-Suk; Oh, Myung-Suck; Tan, Andy Chit Chiow
2009-01-01
This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and le...
Application of Adaptive Neuro-Fuzzy Inference System for Information Secuirty
Directory of Open Access Journals (Sweden)
Sureswaran Ramadass
2012-01-01
Full Text Available Problem statement: Computer networks are expanding at very fast rate and the number of network users is increasing day by day, for full utilization of networks it need to be secured against many threats including malware, which is harmful software with the capability to damage data and systems. Fuzzy rule based classification systems considered as an active research area in recent years, due to their unique capability of classifying. Approach: This study presents a neural fuzzy classifier based on Adaptive Neuro-Fuzzy Inference System (ANFIS for malware detection. Firstly, the malware exe files was analyzed and the most important API calls were selected and used as training and testing datasets, using the training data set the ANFIS classifier learned how to detect the malware in the test dataset. Results and Conclusion: The performances of the Neuro fuzzy classifier were evaluated based on the performance of training and accuracy of classification, the results show that the proposed Neuro fuzzy classifier can detect the malware exe files effectively.
Energy Technology Data Exchange (ETDEWEB)
Daldaban, Ferhat [Erciyes University, Faculty of Engineering, Department of Electronic Engineering, 38039 Kayseri (Turkey); Ustkoyuncu, Nurettin [Erciyes University, Faculty of Engineering, Department of Electronic Engineering, 38039 Kayseri (Turkey); Guney, Kerim [Erciyes University, Faculty of Engineering, Department of Electronic Engineering, 38039 Kayseri (Turkey)]. E-mail: kguney@erciyes.edu.tr
2006-03-15
A new method based on an adaptive neuro-fuzzy inference system (ANFIS) for estimating the phase inductance of switched reluctance motors (SRMs) is presented. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the ANFIS. The rotor position and the phase current of the 6/4 pole SRM are used to predict the phase inductance. The phase inductance results predicted by the ANFIS are in excellent agreement with the results of the finite element method.
Using Adaptive Neuro-Fuzzy Inference System in Alert Management of Intrusion Detection Systems
Directory of Open Access Journals (Sweden)
Zahra Atashbar Orang
2012-10-01
Full Text Available By ever increase in using computer network and internet, using Intrusion Detection Systems (IDS has been more important. Main problems of IDS are the number of generated alerts, alert failure as well as identifying the attack type of alerts. In this paper a system is proposed that uses Adaptive Neuro-Fuzzy Inference System to classify IDS alerts reducing false positive alerts and also identifying attack types of true positive ones. By the experimental results on DARPA KDD cup 98, the system can classify alerts, leading a reduction of false positive alerts considerably and identifying attack types of alerts in low slice of time.
Adaptive Neuro Fuzzy Inference System Based DTC Control for Matrix Converter
Directory of Open Access Journals (Sweden)
Venugopal Chitra
2012-04-01
Full Text Available In this study an Adaptive Neuro Fuzzy Inference System is introduced to select the switching states of Matrix Converters. Matrix converters have received more attention in research and industrial application due its advantages like four quadrant operation, sinusoidal input and output waveforms, controllable displacement factor, less number of switches etc., Matrix Converters are efficient in speed control of Induction motors than the conventional converters. There are two different control techniques namely field oriented control and Direct Torque Control systems available for closed loop operation of induction motors. The Direct Torque Control technique provides control of torque and flux directly. The major drawback of Direct Torque Control technique is the presence of ripples in torque and flux curves. This due to the presence of two level and three level hysteresis controllers in torque and flux control stages respectively. Also the conventional space vector and look up table method of switching state selection reduces the accuracy of switch state selection in the appropriate time width. This reduces the speed control performance of the motor. Also in this paper the hysteresis controllers are replaced by fuzzy controllers. the complete ANFIS based DTC for Matrix Converter is simulated in MATLAB/SIMULINK and the results shows that the use of Adaptive neuro fuzzy inference in Matrix Converter system increases the speed control performance of Induction Motor.
Exploration of the Adaptive Neuro - Fuzzy Inference System Architecture and its Applications
Directory of Open Access Journals (Sweden)
Okereke Eze Aru
2016-09-01
Full Text Available In this paper we exhibited an architecture and essential learning process basic in fuzzy inference system and adaptive neuro fuzzy inference system which is a hybrid network implemented in framework of adaptive network. In genuine figuring environment, soft computing techniques including neural network, fuzzy logic algorithms have been generally used to infer a real choice utilizing given input or output information traits, ANFIS can build mapping taking into account both human learning and hybrid algorithms. This study includes investigation of ANFIS methodology. ANFIS procedure is utilized to display nonlinear functions, to control a standout amongst the most essential parameters of the impelling machine and anticipate a turbulent time arrangement, all yielding more viable, quicker result.
UAV Controller Based on Adaptive Neuro-Fuzzy Inference System and PID
Directory of Open Access Journals (Sweden)
Ali Moltajaei Farid
2013-01-01
Full Text Available ANFIS is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper, an adaptive neuro-fuzzy inference system (ANFIS is employed to control an unmanned aircraft vehicle (UAV. First, autopilots structure is defined, and then ANFIS controller is applied, to control UAVs lateral position. The results of ANFIS and PID lateral controllers are compared, where it shows the two controllers have similar results. ANFIS controller is capable to adaptation in nonlinear conditions, while PID has to be tuned to preserves proper control in some conditions. The simulation results generated by Matlab using Aerosim Aeronautical Simulation Block Set, which provides a complete set of tools for development of six degree-of-freedom. Nonlinear Aerosonde unmanned aerial vehicle model with ANFIS controller is simulated to verify the capability of the system. Moreover, the results are validated by FlightGear flight simulator.
Directory of Open Access Journals (Sweden)
Mohammad Subhi Al-batah
2014-01-01
Full Text Available To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL and high-grade squamous intraepithelial lesion (HSIL. The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy.
Al-batah, Mohammad Subhi; Isa, Nor Ashidi Mat; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi
2014-01-01
To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza
2013-01-01
hydrogen, which is difficult and energy consuming to store and transport. The models include thermal equilibrium models of the individual components of the system. Models of the heating and cooling of the gas flows between components are also modeled and Adaptive Neuro-Fuzzy Inference System models...
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza
2014-01-01
hydrogen, which is difficult and energy consuming to store and transport. The models include thermal equilibrium models of the individual components of the system. Models of the heating and cooling of the gas flows between components are also modeled and Adaptive Neuro-Fuzzy Inference System models...
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza;
2013-01-01
This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS...
APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM IN INTEREST RATES EFFECTS ON STOCK RETURNS
Directory of Open Access Journals (Sweden)
ELEFTHERIOS GIOVANIS
2011-02-01
Full Text Available In the current study we examine the effects of interest rate changes on common stock returns of Greek banking sector. We examine theGeneralized Autoregressive Heteroskedasticity (GARCH process and an Adaptive Neuro-Fuzzy Inference System (ANFIS. The conclusions of our findings are that the changes of interest rates, based on GARCH model, are insignificant on common stock returns during the period we examine. On the other hand, with ANFIS we can get the rules and in each case we can have positive or negative effects depending on the conditions and the firing rules of inputs, which information is not possible to be retrieved with the traditional econometric modelling. Furthermore we examine the forecasting performance of both models and we conclude that ANFIS outperforms GARCH model in both in-sample and out-of-sample periods.
Adaptive Neuro-fuzzy Inference System as Cache Memory Replacement Policy
Directory of Open Access Journals (Sweden)
CHUNG, Y. M.
2014-02-01
Full Text Available To date, no cache memory replacement policy that can perform efficiently for all types of workloads is yet available. Replacement policies used in level 1 cache memory may not be suitable in level 2. In this study, we focused on developing an adaptive neuro-fuzzy inference system (ANFIS as a replacement policy for improving level 2 cache performance in terms of miss ratio. The recency and frequency of referenced blocks were used as input data for ANFIS to make decisions on replacement. MATLAB was employed as a training tool to obtain the trained ANFIS model. The trained ANFIS model was implemented on SimpleScalar. Simulations on SimpleScalar showed that the miss ratio improved by as high as 99.95419% and 99.95419% for instruction level 2 cache, and up to 98.04699% and 98.03467% for data level 2 cache compared with least recently used and least frequently used, respectively.
Directory of Open Access Journals (Sweden)
M. A. Sojitra
2015-08-01
Full Text Available The study was carried out to develop rainfall forecasting Models. Adaptive Neuro-Fuzzy Inference System (ANFIS was used for developing Models rainfall of Udaipur city. Two data sets were prepared using 35 year of weather parameters i.e. wet bulb temperature, mean temperature, relative humidity and evaporation of previous day and previous moving average week were used to prepare case I and case II respectively. Gaussian and Generalized Bell membership functions were used to prepare models. Statistical and hydrologic performance indices of ANFIS (Gaussian, 5 gave better performance among developed four models. The study showed that sensitivity analysis revealed wet bulb temperature is most sensible parameter followed by mean temperature, relative humidity and evaporation.
Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems
Energy Technology Data Exchange (ETDEWEB)
Shieh, M-Y; Chang, K-H [Department of E. E., Southern Taiwan University, 1 Nantai St., YungKang City, Tainan County 71005, Taiwan (China); Lia, Y-S [Executive Director Office, ITRI, Southern Taiwan Innovation Park, Tainan County, Taiwan (China)], E-mail: myshieh@mail.stut.edu.tw
2008-02-15
This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface.
REPLACEMENT SPARE PART INVENTORY MONITORING USING ADAPTIVE NEURO FUZZY INFERENCE SYSTEM
Directory of Open Access Journals (Sweden)
Hartono Hartono
2016-01-01
Full Text Available Abstract The amount of inventory is determined on the basis of the demand. So that users can know the demand forecasts need to be done on the request. This study uses the data to implement a replacement parts on the electronic module production equipment in the telecommunications transmission systems, switching, access and power, ie by replacing the electronic module in the system is trouble or damaged parts of a good electronic module spare parts inventory, while the faulty electronic modules shipped to the Repair Center for repaired again, so that the results of these improvements can replenish spare part inventory. Parameters speed on improvement process of electronic module broken (repaired, in the form of an average repair time at the repair centers, in order to get back into the electronic module that is ready for used as spare parts in compliance with the safe supply inventory warehouse. This research using the method of Adaptive Neuro Fuzzy Inference System (ANFIS in developing a decision support system for inventory control of spare parts available in Warehouse Inventory taking into account several parameters supporters, namely demand, improvement and fulfillment of spare parts and repair time. This study uses a recycling input parameter repair faulty electronic module of the customer to immediately replace the module in inventory warehouse, do improvements in the Repair Center. So the acceleration restoration factor is very influential as the input spare parts inventory supply in the warehouse and using the Adaptive Neuro-Fuzzy Inference System (ANFIS method. Keywords: ANFIS, inventory control, replacement
Heddam, Salim
2014-01-01
This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling. PMID:24057665
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Ehmsen, Mikkel Præstholm; Andersen, John;
2012-01-01
with following critical burner temperatures, and fuel cell stack anode starvation which significantly can increase the degradation of the fuel cell stack. Modeling of the reformer dynamics is conducted using an adaptive neuro-fuzzy interference system approach (ANFIS) based on measurement results from...
Changho Jhin; Keum Taek Hwang
2015-01-01
One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were...
Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)
International Nuclear Information System (INIS)
The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude
Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)
Energy Technology Data Exchange (ETDEWEB)
Kakar, Manish [Department of Radiation Biology, Norwegian Radium Hospital, Montebello, 0310 Oslo (Norway); Nystroem, Haakan [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Aarup, Lasse Rye [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Noettrup, Trine Jakobi [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Olsen, Dag Rune [Department of Radiation Biology, Norwegian Radium Hospital, Montebello, 0310 Oslo (Norway); Department of Medical Physics and Technology, Norwegian Radium Hospital, Oslo (Norway); Department of Physics, University of Oslo (Norway)
2005-10-07
The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude.
Modelling Dissolved Pollutants in Krishna River Using Adaptive Neuro Fuzzy Inference Systems
Matli, C. S.; Umamahesh, N. V.
2014-01-01
Water quality models are used to describe the discharge concentration relationships in the river. Number of models exists to simulate the pollutant loads in a river, of which some of them are based on simple cause effect relationships and others on highly sophisticated physical and mathematical approaches that require extensive data inputs. Fuzzy rule based modeling extensively used in other disciplines, is attempted in the present study for modeling water quality with respect of dissolved pollutants in Krishna river flowing in Southern part of India. Adaptive Neuro Fuzzy Inference Systems (ANFIS), a recent development in the area of neuro-computing, based on the concept of fuzzy sets is used to model highly non-linear relationships and are capable of adaptive learning. This paper presents the results of the application of ANFIS for modeling dissolved pollutants in the Krishna River. The application and validation of the models is carried out using water quality and flow data obtained from the monitoring stations on the river. The results indicate that the models are quite successful in simulating the physical processes of the relationships between discharge and concentrations.
Designing a Battlefield Fire Support System Using Adaptive Neuro-Fuzzy Inference System Based Model
Directory of Open Access Journals (Sweden)
Kerim Goztepe
2013-09-01
Full Text Available Fire support of the maneuver operation is a continuous process. It begins with the receiving the task by the maneuver commander and continues until the mission is completed. Yet it is a key issue in combat in the way gain success. Therefore, a real-time mannered solution to fire support problem is a vital component of tactical warfare to the sequence that auxiliary forces or logistic support arrives at the theatre. A new method for deciding on combat fire support is proposed using adaptive neuro-fuzzy inference system (ANFIS in this paper. This study addresses the design of an ANFIS as an efficient tool for real-time decision-making in order to produce the best fire support plan in battlefield. Initially, criteria that are determined for the problem are formed by applying ANFIS method. Then, the ANFIS structure is built up by using the data related to selected criteria. The proposed method is illustrated by a sample fire support planning in combat. Results showed us that ANFIS is valid especially for small unit fire support planning and is useful to decrease the decision time in battlefield.Defence Science Journal, 2013, 63(5, pp.497-501, DOI:http://dx.doi.org/10.14429/dsj.63.3716
Directory of Open Access Journals (Sweden)
Weiji Wang
2010-10-01
Full Text Available A Field Programmable Gate Array (FPGA is proposed to build an Adaptive Neuro Fuzzy Inference System(ANFIS for controlling a full vehicle nonlinear active suspension system. A Very High speed integratedcircuit Hardware Description Language (VHDL has been used to implement the proposed controller. Anoptimal Fraction Order PIlDμ (FOPID controller is designed for a full vehicle nonlinear activesuspension system. Evolutionary Algorithm (EA has been applied to modify the five parameters of theFOPID controller (i.e. proportional constant Kp, integral constant Ki, derivative constant Kd, integralorder l and derivative order μ. The data obtained from the FOPID controller are used as a reference todesign the ANFIS model as a controller for the controlled system. A hybrid approach is introduced to trainthe ANFIS. A Matlab Program has been used to design and simulate the proposed controller. The ANFIScontrol parameters obtained from the Matlab program are used to write the VHDL codes. Hardwareimplementation of the FPGA is dependent on the configuration file obtained from the VHDL program. Theexperimental results have proved the efficiency and robustness of the hardware implementation for theproposed controller. It provides a novel technique to be used to design NF controller for full vehiclenonlinear active suspension systems with hydraulic actuators.
Directory of Open Access Journals (Sweden)
Ammar A. Aldair
2010-10-01
Full Text Available A Field Programmable Gate Array (FPGA is proposed to build an Adaptive Neuro Fuzzy Inference System (ANFIS for controlling a full vehicle nonlinear active suspension system. A Very High speed integrated circuit Hardware Description Language (VHDL has been used to implement the proposed controller. An optimal Fraction Order PIλ D µ (FOPID controller is designed for a full vehicle nonlinear active suspension system. Evolutionary Algorithm (EA has been applied to modify the five parameters of the FOPID controller (i.e. proportional constant Kp, integral constant Ki , derivative constant Kd, integral order λ and derivative order µ. The data obtained from the FOPID controller are used as a reference to design the ANFIS model as a controller for the controlled system. A hybrid approach is introduced to train the ANFIS. A Matlab Program has been used to design and simulate the proposed controller. The ANFIS control parameters obtained from the Matlab program are used to write the VHDL codes. Hardware implementation of the FPGA is dependent on the configuration file obtained from the VHDL program. The experimental results have proved the efficiency and robustness of the hardware implementation for the proposed controller. It provides a novel technique to be used to design NF controller for full vehicle nonlinear active suspension systems with hydraulic actuators.
Directory of Open Access Journals (Sweden)
K.Ananda Kumar
2011-09-01
Full Text Available The increase in number of cancer is detected throughout the world. This leads to the requirement of developing a new technique which can detect the occurrence the cancer. This will help in better diagnosis in order to reduce the cancer patients. This paper aim at finding the smallest set of genes that can ensure highly accurate classification of cancer from micro array data by using supervised machine learning algorithms. The significance of finding the minimum subset is three fold: a The computational burden and noise arising from irrelevant genes are much reduced; b the cost for cancer testing is reduced significantly as it simplifies the gene expression tests to include only a very small number of genes rather than thousands of genes; c it calls for more investigation into the probable biological relationship between these small numbers of genes and cancer development and treatment. The proposed method involves two steps. In the first step, some important genes are chosen with the help of Analysis of Variance (ANOVA ranking scheme. In the second step, the classification capability is tested for all simple combinations of those important genes using a better classifier. The proposed method uses Fast Adaptive Neuro-Fuzzy Inference System (FANFIS as a classification model. This classification model uses Modified Levenberg-Marquardt algorithm for learning phase. The experimental results suggest that the proposed method results in better accuracy and also it takes lesser time for classification when compared to the conventional techniques.
Adaptive Neuro-Fuzzy Inference System for Dynamic Load Balancing in 3GPP LTE
Directory of Open Access Journals (Sweden)
Aderemi A Atayero
2012-04-01
Full Text Available ANFIS is applicable in modeling of key parameters when investigating the performance and functionality of wireless networks. The need to save both capital and operational expenditure in the management of wireless networks cannot be over-emphasized. Automation of network operations is a veritable means of achieving the necessary reduction in CAPEX and OPEX. To this end, next generations networks such WiMAX and 3GPP LTE and LTE-Advanced provide support for self-optimization, self-configuration and self-healing to minimize human-to-system interaction and hence reap the attendant benefits of automation. One of the most important optimization tasks is load balancing as it affects network operation right from planning through the lifespan of the network. Several methods for load balancing have been proposed. While some of them have a very buoyant theoretical basis, they are not practically implementable at the current state of technology. Furthermore, most of the techniques proposed employ iterative algorithm, which in itself is not computationally efficient. This paper proposes the use of soft computing, precisely adaptive neuro-fuzzy inference system for dynamic QoS-aware load balancing in 3GPP LTE. Three key performance indicators (i.e. number of satisfied user, virtual load and fairness distribution index are used to adjust hysteresis task of load balancing.
Energy Technology Data Exchange (ETDEWEB)
Rezazadeh, S.; Mirzaee, I. [Urmia Univ., Urmia (Iran, Islamic Republic of); Mehrabi, M. [University of Pretoria, Pretoria (South Africa)
2012-11-15
In this paper, an adaptive neuro fuzzy inference system (ANFIS) is used for modeling proton exchange membrane fuel cell (PEMFC) performance using some numerically investigated and compared with those to experimental results for training and test data. In this way, current density I (A/cm{sup 2}) is modeled to the variation of pressure at the cathode side P{sup C} (atm), voltage V (V), membrane thickness (mm), Anode transfer coefficient {alpha}{sup an}, relative humidity of inlet fuel RH{sup a} and relative humidity of inlet air RH{sup c} which are defined as input (design) variables. Then, we divided these data into train and test sections to do modeling. We instructed ANFIS network by 80% of numerical validated data. 20% of primary data which had been considered for testing the appropriateness of the models was entered ANFIS network models and results were compared by three statistical criterions. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states.
Designing a Battlefield Fire Support System Using Adaptive Neuro-Fuzzy Inference System Based Model
Directory of Open Access Journals (Sweden)
Kerim Goztepe
2014-07-01
Full Text Available Fire support of the maneuver operation is a continuous process. It begins with the receiving the task by the maneuver commander and continues until the mission is completed. Yet it is a key issue in combat in the way gain success. Therefore, a real-time mannered solution to fire support problem is a vital component of tactical warfare to the sequence that auxiliary forces or logistic support arrives at the theatre. A new method for deciding on combat fire support is proposed using adaptive neuro-fuzzy inference system (ANFIS in this paper. This study addresses the design of an ANFIS as an efficient tool for real-time decision-making in order to produce the best fire support plan in battlefield. Initially, criteria that are determined for the problem are formed by applying ANFIS method. Then, the ANFIS structure is built up by using the data related to selected criteria. The proposed method is illustrated by a sample fire support planning in combat. Results showed us that ANFIS is valid especially for small unit fire support planning and is useful to decrease the decision time in battlefield.
Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference system application.
Fernandes, Fabiano C; Rigden, Daniel J; Franco, Octavio L
2012-01-01
Antimicrobial peptides (AMPs) are widely distributed defense molecules and represent a promising alternative for solving the problem of antibiotic resistance. Nevertheless, the experimental time required to screen putative AMPs makes computational simulations based on peptide sequence analysis and/or molecular modeling extremely attractive. Artificial intelligence methods acting as simulation and prediction tools are of great importance in helping to efficiently discover and design novel AMPs. In the present study, state-of-the-art published outcomes using different prediction methods and databases were compared to an adaptive neuro-fuzzy inference system (ANFIS) model. Data from our study showed that ANFIS obtained an accuracy of 96.7% and a Matthew's Correlation Coefficient (MCC) of0.936, which proved it to be an efficient model for pattern recognition in antimicrobial peptide prediction. Furthermore, a lower number of input parameters were needed for the ANFIS model, improving the speed and ease of prediction. In summary, due to the fuzzy nature ofAMP physicochemical properties, the ANFIS approach presented here can provide an efficient solution for screening putative AMP sequences and for exploration of properties characteristic of AMPs. PMID:23193592
Static security-based available transfer capability using adaptive neuro fuzzy inference system
Energy Technology Data Exchange (ETDEWEB)
Venkaiah, C.; Vinod Kumar, D.M.
2010-07-01
In a deregulated power system, power transactions between a seller and a buyer can only be scheduled when there is sufficient available transfer capability (ATC). Internet-based, open access same-time information systems (OASIS) provide market participants with ATC information that is continuously updated in real time. Static security-based ATC can be computed for the base case system as well as for the critical line outages of the system. Since critical line outages are based on static security analysis, the computation of static security based ATC using conventional methods is both tedious and time consuming. In this study, static security-based ATC was computed for real-time applications using 3 artificial intelligent methods notably the back propagation algorithm (BPA), the radial basis function (RBF) neural network, and the adaptive neuro fuzzy inference system (ANFIS). An IEEE 24-bus reliability test system (RTS) and 75-bus practical system were used to test these 3 different intelligent methods. The results were compared with the conventional full alternating current (AC) load flow method for different transactions.
Estimation of Loose Status of Jigging Bed Based on Adaptive Neuro-Fuzzy Inference System
Institute of Scientific and Technical Information of China (English)
CHENG Jian; GUO Yi-nan; QIAN Jian-sheng
2006-01-01
In the separation process with a jig washer, an accurate on-line measurement of loose status of a jigging bed is essential for a successful control of coal quality and loose status is difficult to measure on-line directly in industrial process situations. So a soft-sensor technology is needed for this purpose. The soft-sensor model is developed in the experiment by an adaptive neuro-fuzzy inference system (ANFIS) which has a remarkable ability of learning and generalization. Based on the analysis of the technologic mechanism of jigging bed, the structure of the ANFIS is established to build the soft-sensor model of loose status estimation. The ANFIS is trained by a hybrid learning algorithm. Finally, the simulation results and comparison analysis are presented, which indicate that the ANFIS has better abilities of learning and generalization than the RBF and the BP networks. Thus, it is possible that the loose status of the jigging bed can be estimated on-line by using ANFIS.
Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system.
Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise
2016-05-01
In a new approach based on adaptive neuro-fuzzy inference systems (ANFIS), field heart rate (HR) measurements were used to classify work rate into four categories: very light, light, moderate, and heavy. Inter-participant variability (physiological and physical differences) was considered. Twenty-eight participants performed Meyer and Flenghi's step-test and a maximal treadmill test, during which heart rate and oxygen consumption (VO2) were measured. Results indicated that heart rate monitoring (HR, HRmax, and HRrest) and body weight are significant variables for classifying work rate. The ANFIS classifier showed superior sensitivity, specificity, and accuracy compared to current practice using established work rate categories based on percent heart rate reserve (%HRR). The ANFIS classifier showed an overall 29.6% difference in classification accuracy and a good balance between sensitivity (90.7%) and specificity (95.2%) on average. With its ease of implementation and variable measurement, the ANFIS classifier shows potential for widespread use by practitioners for work rate assessment. PMID:26851475
Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.
Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir
2015-01-01
Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems. PMID:25607665
A novel power swing blocking scheme using adaptive neuro-fuzzy inference system
Energy Technology Data Exchange (ETDEWEB)
Zadeh, Hassan Khorashadi; Li, Zuyi [Illinois Institute of Technology, Department of Electrical and Computer Engineering, 3301 S. Dearborn Street, Chicago, IL 60616 (United States)
2008-07-15
A power swing may be caused by any sudden change in the configuration or the loading of an electrical network. During a power swing, the impedance locus moves along an impedance circle with possible encroachment into the distance relay zone, which may cause an unnecessary tripping. In order to prevent the distance relay from tripping under such condition, a novel power swing blocking (PSB) scheme is proposed in this paper. The proposed scheme uses an adaptive neuro-fuzzy inference systems (ANFIS) for preventing distance relay from tripping during power swings. The input signals to ANFIS, include the change of positive sequence impedance, positive and negative sequence currents, and power swing center voltage. Extensive tests show that the proposed PSB has two distinct features that are advantageous over existing schemes. The first is that the proposed scheme is able to detect various kinds of power swings thus block distance relays during power swings, even if the power swings are fast or the power swings occur during single pole open conditions. The second distinct feature is that the proposed scheme is able to clear the blocking if faults occur within the relay trip zone during power swings, even if the faults are high resistance faults, or the faults occur at the power swing center, or the faults occur when the power angle is close to 180 . (author)
Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.
2015-01-01
The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and
Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems
Energy Technology Data Exchange (ETDEWEB)
Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)
2008-01-15
The aim of this study is to demonstrate the usefulness of an adaptive neuro-fuzzy inference system (ANFIS) for the modelling of ground-coupled heat pump (GCHP) system. The GCHP system connected to a test room with 16.24 m{sup 2} floor area in Firat University, Elazig (38.41 N, 39.14 E), Turkey, was designed and constructed. The heating and cooling loads of the test room were 2.5 and 3.1 kW at design conditions, respectively. The system was commissioned in November 2002 and the performance tests have been carried out since then. The average performance coefficients of the system (COPS) for horizontal ground heat exchanger (GHE) in the different trenches, at 1 and 2 m depths, were obtained to be 2.92 and 3.2, respectively. Experimental performances were performed to verify the results from the ANFIS approach. In order to achieve the optimal result, several computer simulations have been carried out with different membership functions and various number of membership functions. The most suitable membership function and number of membership functions are found as Gauss and 2, respectively. For this number level, after the training, it is found that root-mean squared (RMS) value is 0.0047, and absolute fraction of variance (R{sup 2}) value is 0.9999 and coefficient of variation in percent (cov) value is 0.1363. This paper shows that the values predicted with the ANFIS, especially with the hybrid learning algorithm, can be used to predict the performance of the GCHP system quite accurately. (author)
Prediction of Scour Depth around Bridge Piers using Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
Valyrakis, Manousos; Zhang, Hanqing
2014-05-01
Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health of river systems but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the application of a Machine Learning model that has been successfully employed in Water Engineering, namely an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation.
Directory of Open Access Journals (Sweden)
KAMPOUROPOULOS, K.
2014-02-01
Full Text Available This document presents an energy forecast methodology using Adaptive Neuro-Fuzzy Inference System (ANFIS and Genetic Algorithms (GA. The GA has been used for the selection of the training inputs of the ANFIS in order to minimize the training result error. The presented algorithm has been installed and it is being operating in an automotive manufacturing plant. It periodically communicates with the plant to obtain new information and update the database in order to improve its training results. Finally the obtained results of the algorithm are used in order to provide a short-term load forecasting for the different modeled consumption processes.
Institute of Scientific and Technical Information of China (English)
NURWAHA Deogratias; WANG Xin-hou
2008-01-01
This paper presents a comparison study of two models for predicting the strength of rotor spun cotton yarns from fiber properties. The adaptive neuro-fuzzy system inference (ANFIS) and Multiple Linear Regression models are used to predict the rotor spun yarn strength. Fiber properties and yarn count are used as inputs to train the two models and the count-strength-product (CSP) was the target. The predictive performances of the two models are estimated and compared. We found that the ANFIS has a better predictive power in comparison with linear multipleregression model. The impact of each fiber property is also illustrated.
Directory of Open Access Journals (Sweden)
Otilia Elena Dragomir
2015-11-01
Full Text Available The challenge for our paper consists in controlling the performance of the future state of a microgrid with energy produced from renewable energy sources. The added value of this proposal consists in identifying the most used criteria, related to each modeling step, able to lead us to an optimal neural network forecasting tool. In order to underline the effects of users’ decision making on the forecasting performance, in the second part of the article, two Adaptive Neuro-Fuzzy Inference System (ANFIS models are tested and evaluated. Several scenarios are built by changing: the prediction time horizon (Scenario 1 and the shape of membership functions (Scenario 2.
Energy Technology Data Exchange (ETDEWEB)
Chau, K.T.; Wu, K.C.; Chan, C.C. [University of Hong Kong (China). Dept. of Electrical and Electronic Engineering
2004-07-01
This paper describes a new adaptive neuro-fuzzy inference system (ANFIS) model to estimate accurately the battery residual capacity (BRC) of the lithium-ion (Li-ion) battery for modern electric vehicles (EVs). The key to this model is to adopt newly both the discharged/regenerative capacity distributions and the temperature distributions as the inputs and the state of available capacity (SOAC) as the output, which represents the BRC. Moreover, realistic EV discharge current profiles are newly used to formulate the proposed model. The accuracy of the estimated SOAC obtained from the model is verified by experiments under various EV discharge current profiles. (author)
Becerra, Miguel A; Orrego, Diana A; Delgado-Trejos, Edilson
2013-01-01
The heart's mechanical activity can be appraised by auscultation recordings, taken from the 4-Standard Auscultation Areas (4-SAA), one for each cardiac valve, as there are invisible murmurs when a single area is examined. This paper presents an effective approach for cardiac murmur detection based on adaptive neuro-fuzzy inference systems (ANFIS) over acoustic representations derived from Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) of 4-channel phonocardiograms (4-PCG). The 4-PCG database belongs to the National University of Colombia. Mel-Frequency Cepstral Coefficients (MFCC) and statistical moments of HHT were estimated on the combination of different intrinsic mode functions (IMFs). A fuzzy-rough feature selection (FRFS) was applied in order to reduce complexity. An ANFIS network was implemented on the feature space, randomly initialized, adjusted using heuristic rules and trained using a hybrid learning algorithm made up by least squares and gradient descent. Global classification for 4-SAA was around 98.9% with satisfactory sensitivity and specificity, using a 50-fold cross-validation procedure (70/30 split). The representation capability of the EMD technique applied to 4-PCG and the neuro-fuzzy inference of acoustic features offered a high performance to detect cardiac murmurs. PMID:24109851
A Neuro-Fuzzy Inference Model for Breast Cancer Recognitio
Directory of Open Access Journals (Sweden)
Bekaddour Fatima
2012-11-01
Full Text Available Breast cancer is known as one of the most common cancers to afflict the female population. Computerassisted diagnosis can be helpful for doctors in detection and diagnosing of potential abnormalities.Several techniques can be useful for accomplishing this task. This paper outlines an approach forrecognizing breast cancer diagnosis using neuro-fuzzy inference technique namely ANFIS (AdaptativeNeuro-Fuzzy Inference System. Wisconsin breast cancer diagnosis (WBCDdatabase developed atUniversity of California, Irvine (UCI is used to evaluate this method. Results show that the bestperformances are obtained by our model compared to others cited in literatur (an accuracy of 98, 25 % .
Vasheghani Farahani, Jamileh; Zare, Mehdi; Lucas, Caro
2012-04-01
Thisarticle presents an adaptive neuro-fuzzy inference system (ANFIS) for classification of low magnitude seismic events reported in Iran by the network of Tehran Disaster Mitigation and Management Organization (TDMMO). ANFIS classifiers were used to detect seismic events using six inputs that defined the seismic events. Neuro-fuzzy coding was applied using the six extracted features as ANFIS inputs. Two types of events were defined: weak earthquakes and mining blasts. The data comprised 748 events (6289 signals) ranging from magnitude 1.1 to 4.6 recorded at 13 seismic stations between 2004 and 2009. We surveyed that there are almost 223 earthquakes with M ≤ 2.2 included in this database. Data sets from the south, east, and southeast of the city of Tehran were used to evaluate the best short period seismic discriminants, and features as inputs such as origin time of event, distance (source to station), latitude of epicenter, longitude of epicenter, magnitude, and spectral analysis (fc of the Pg wave) were used, increasing the rate of correct classification and decreasing the confusion rate between weak earthquakes and quarry blasts. The performance of the ANFIS model was evaluated for training and classification accuracy. The results confirmed that the proposed ANFIS model has good potential for determining seismic events.
Mahandrio, Irsantyo; Budi, Andriantama; Liong, The Houw; Purqon, Acep
2015-09-01
The growing patterns in cultural and mining sectors are interesting particularly in developed country such as in Indonesia. Here, we investigate the local characteristics of stocks between the sectors of agriculture and mining which si representing two leading companies and two common companies in these sectors. We analyze the prediction by using Adaptive Neuro Fuzzy Inference System (ANFIS). The type of Fuzzy Inference System (FIS) is Sugeno type with Generalized Bell membership function (Gbell). Our results show that ANFIS is a proper method to predicting the stock market with the RMSE : 0.14% for AALI and 0.093% for SGRO representing the agriculture sectors, meanwhile, 0.073% for ANTM and 0.1107% for MDCO representing the mining sectors.
Kolus, Ahmet; Dubé, Philippe-Antoine; Imbeau, Daniel; Labib, Richard; Dubeau, Denise
2014-11-01
In new approaches based on adaptive neuro-fuzzy systems (ANFIS) and analytical method, heart rate (HR) measurements were used to estimate oxygen consumption (VO2). Thirty-five participants performed Meyer and Flenghi's step-test (eight of which performed regeneration release work), during which heart rate and oxygen consumption were measured. Two individualized models and a General ANFIS model that does not require individual calibration were developed. Results indicated the superior precision achieved with individualized ANFIS modelling (RMSE = 1.0 and 2.8 ml/kg min in laboratory and field, respectively). The analytical model outperformed the traditional linear calibration and Flex-HR methods with field data. The General ANFIS model's estimates of VO2 were not significantly different from actual field VO2 measurements (RMSE = 3.5 ml/kg min). With its ease of use and low implementation cost, the General ANFIS model shows potential to replace any of the traditional individualized methods for VO2 estimation from HR data collected in the field. PMID:24793823
Institute of Scientific and Technical Information of China (English)
Karami Alireza; Afiuni-Zadeh Somaieh
2013-01-01
One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation because it directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks. We developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80%passing size (K80) of Golgohar iron mine of Sirjan, Iran. Comparing the results of ANFIS and RBF models shows that although the statistical parame-ters RBF model is acceptable but ANFIS proposed model is superior and also simpler because ANFIS model is constructed using only two input parameters while seven input parameters used for construction of RBF model.
Directory of Open Access Journals (Sweden)
Zhixian Yang
2014-01-01
Full Text Available Background electroencephalography (EEG, recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE and sample entropy (SampEn in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved.
Directory of Open Access Journals (Sweden)
R. Latha
2013-01-01
Full Text Available During faulty condition voltage instability is one of the major crisis in power system networks. This study proposes a hybrid learning algorithm to improve the stability performance of a power system with Distributed Generations (DGs. Here the distribution system stability is maintained with reduced power loss using an Adaptive Neuro-Fuzzy Inference Systems (ANFIS and Particle Swarm Optimization (PSO techniques. In this study distributed generations is considered as several types of DGS connected together which is called as Microgrid (MG. Initially ANFIS is trained by instability parameters to give the optimal power capacity of the microgrid and then PSO algorithm is applied to find the optimum bus for connecting microgrid in the system. The effective improvements in voltage profile and reduction in power loss of the proposed ANFIS-PSO controller is tested on IEEE-30 bus system and has been presented with few comparative results.
Trianto, Andriantama Budi; Hadi, I. M.; Liong, The Houw; Purqon, Acep
2015-09-01
Indonesian economical development is growing well. It has effect for their invesment in Banks and the stock market. In this study, we perform prediction for the three blue chips of Indonesian bank i.e. BCA, BNI, and MANDIRI by using the method of Adaptive Neuro-Fuzzy Inference System (ANFIS) with Takagi-Sugeno rules and Generalized bell (Gbell) as the membership function. Our results show that ANFIS perform good prediction with RMSE for BCA of 27, BNI of 5.29, and MANDIRI of 13.41, respectively. Furthermore, we develop an active strategy to gain more benefit. We compare between passive strategy versus active strategy. Our results shows that for the passive strategy gains 13 million rupiah, while for the active strategy gains 47 million rupiah in one year. The active investment strategy significantly shows gaining multiple benefit than the passive one.
Yang, Zhixian; Wang, Yinghua; Ouyang, Gaoxiang
2014-01-01
Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3-9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved. PMID:24790547
Adaptive neuro-fuzzy controller of switched reluctance motor
Directory of Open Access Journals (Sweden)
Tahour Ahmed
2007-01-01
Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.
Institute of Scientific and Technical Information of China (English)
Karami Alireza; Afiuni-Zadeh Somaieh
2012-01-01
One of the most important characters of blasting,a basic step of surface mining,is rock fragmentation.It directly effects on the costs of drilling and economics of the subsequent operations of loading,hauling and crushing in mines.Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF)show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks.In this paper we developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80％ passing size (K80) of Golgohar iron ore mine of Sir jan,Iran.Comparing the results of ANFIS and RBF models shows that although the statistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler because the ANFIS model is constructed using only two input parameters while seven input parameters used for construction of the RBF model.
Energy Technology Data Exchange (ETDEWEB)
Metin Ertunc, H. [Department of Mechatronics Engineering, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey); Hosoz, Murat [Department of Mechanical Education, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey)
2008-12-15
This study deals with predicting the performance of an evaporative condenser using both artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques. For this aim, an experimental evaporative condenser consisting of a copper tube condensing coil along with air and water circuit elements was developed and equipped with instruments used for temperature, pressure and flow rate measurements. After the condenser was connected to an R134a vapour-compression refrigeration circuit, it was operated at steady state conditions, while varying both dry and wet bulb temperatures of the air stream entering the condenser, air and water flow rates as well as pressure, temperature and flow rate of the entering refrigerant. Using some of the experimental data for training, ANN and ANFIS models for the evaporative condenser were developed. These models were used for predicting the condenser heat rejection rate, refrigerant temperature leaving the condenser along with dry and wet bulb temperatures of the leaving air stream. Although it was observed that both ANN and ANFIS models yielded a good statistical prediction performance in terms of correlation coefficient, mean relative error, root mean square error and absolute fraction of variance, the accuracies of ANFIS predictions were usually slightly better than those of ANN predictions. This study reveals that, having an extended prediction capability compared to ANN, the ANFIS technique can also be used for predicting the performance of evaporative condensers. (author)
International Nuclear Information System (INIS)
Highlights: ► An ANFIS model is developed for predicting sour gas hydrate dissociation conditions. ► It can be used over wide ranges of operating conditions. ► At all H2S concentrations, the developed model outperforms the thermodynamic models. ► The presented model is useful for design of industrial sour gas handling systems. - Abstract: An adaptive neuro fuzzy inference system (ANFIS) has been proposed for predicting the sour gas hydrate equilibrium dissociation conditions. The proposed model predictions have been compared with those of the available thermodynamic models at different operating conditions. It is found that at all H2S concentrations especially at the concentrations higher than 10 mol%, the developed ANFIS model outperforms the existing thermodynamic models with the average absolute deviation of 2.18%. The proposed ANFIS model can be used for accurate and reliable predictions of sour gas hydrate equilibrium conditions over wide ranges of temperatures and acid gas concentrations and is a useful tool for proper design of sour natural gas flow assurance systems and gas hydrate energy storage processes in oil and gas industries.
Directory of Open Access Journals (Sweden)
Changho Jhin
Full Text Available One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS applied quantitative structure-activity relationship models (QSAR were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.
Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim
2016-11-01
In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.
Directory of Open Access Journals (Sweden)
Mosbeh R. Kaloop
2015-10-01
Full Text Available This study describes the performance assessment of the Huangpu Bridge in Guangzhou, China based on long-term monitoring in real-time by the kinematic global positioning system (RTK-GPS technique. Wavelet transformde-noising is applied to filter the GPS measurements, while the adaptive neuro-fuzzy inference system (ANFIS time series output-only model is used to predict the deformations of GPS-bridge monitoring points. In addition, GPS and accelerometer monitoring systems are used to evaluate the bridge oscillation performance. The conclusions drawn from investigating the numerical results show that: (1the wavelet de-noising of the GPS measurements of the different recording points on the bridge is a suitable tool to efficiently eliminate the signal noise and extract the different deformation components such as: semi-static and dynamic displacements; (2 the ANFIS method with two multi-input single output model is revealed to powerfully predict GPS movement measurements and assess the bridge deformations; and (3 The installed structural health monitoring system and the applied ANFIS movement prediction performance model are solely sufficient to assure bridge safety based on the analyses of the different filtered movement components.
Energy Technology Data Exchange (ETDEWEB)
Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)
1997-12-01
This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.
Jhin, Changho; Hwang, Keum Taek
2014-01-01
Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627
Jhin, Changho; Hwang, Keum Taek
2015-01-01
One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models. PMID:26474167
Energy Technology Data Exchange (ETDEWEB)
Ye, Z. [Department of Electrical & amp; Computer Engineering, Queen' s University, Kingston, Ont. (Canada K7L 3N6); Sadeghian, A. [Department of Computer Science, Ryerson University, Toronto, Ont. (Canada M5B 2K3); Wu, B. [Department of Electrical & amp; Computer Engineering, Ryerson University, Toronto, Ont. (Canada M5B 2K3)
2006-06-15
A novel online diagnostic algorithm for mechanical faults of electrical machines with variable speed drive systems is presented in this paper. Using Wavelet Packet Decomposition (WPD), a set of feature coefficients, represented with different frequency resolutions, related to the mechanical faults is extracted from the stator current of the induction motors operating over a wide range of speeds. A new integrated diagnostic system for electrical machine mechanical faults is then proposed using multiple Adaptive Neuro-fuzzy Inference Systems (ANFIS). This paper shows that using multiple ANFIS units significantly reduces the scale and complexity of the system and speeds up the training of the network. The diagnostic algorithm is validated on a three-phase induction motor drive system, and it is proven to be capable of detecting rotor bar breakage and air gap eccentricity faults with high accuracy. The algorithm is applicable to a variety of industrial applications where either continuous on-line monitoring or off-line fault diagnostics is required. (author)
Energy Technology Data Exchange (ETDEWEB)
Khorami, M. Tayebi [Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Poonak, Hesarak Tehran (Iran, Islamic Republic of); Chelgani, S. Chehreh [Surface Science Western, Research Park, University of Western Ontario, London (Canada); Hower, James C. [Center for Applied Energy Research, University of Kentucky, Kexington (United States); Jorjani, E. [Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Poonak, Hesarak Tehran (Iran, Islamic Republic of)
2011-01-01
The results of proximate, ultimate, and petrographic analysis for a wide range of Kentucky coal samples were used to predict Free Swelling Index (FSI) using multivariable regression and Adaptive Neuro Fuzzy Inference System (ANFIS). Three different input sets: (a) moisture, ash, and volatile matter; (b) carbon, hydrogen, nitrogen, oxygen, sulfur, and mineral matter; and (c) group-maceral analysis, mineral matter, moisture, sulfur, and R{sub max} were applied for both methods. Non-linear regression achieved the correlation coefficients (R{sup 2}) of 0.38, 0.49, and 0.70 for input sets (a), (b), and (c), respectively. By using the same input sets, ANFIS predicted FSI with higher R{sup 2} of 0.46, 0.82 and 0.95, respectively. Results show that input set (c) is the best predictor of FSI in both prediction methods, and ANFIS significantly can be used to predict FSI when regression results do not have appropriate accuracy. (author)
Directory of Open Access Journals (Sweden)
Ja’fari A.
2014-01-01
Full Text Available Image logs provide useful information for fracture study in naturally fractured reservoir. Fracture dip, azimuth, aperture and fracture density can be obtained from image logs and have great importance in naturally fractured reservoir characterization. Imaging all fractured parts of hydrocarbon reservoirs and interpreting the results is expensive and time consuming. In this study, an improved method to make a quantitative correlation between fracture densities obtained from image logs and conventional well log data by integration of different artificial intelligence systems was proposed. The proposed method combines the results of Adaptive Neuro-Fuzzy Inference System (ANFIS and Neural Networks (NN algorithms for overall estimation of fracture density from conventional well log data. A simple averaging method was used to obtain a better result by combining results of ANFIS and NN. The algorithm applied on other wells of the field to obtain fracture density. In order to model the fracture density in the reservoir, we used variography and sequential simulation algorithms like Sequential Indicator Simulation (SIS and Truncated Gaussian Simulation (TGS. The overall algorithm applied to Asmari reservoir one of the SW Iranian oil fields. Histogram analysis applied to control the quality of the obtained models. Results of this study show that for higher number of fracture facies the TGS algorithm works better than SIS but in small number of fracture facies both algorithms provide approximately same results.
Adaptive Neuro Fuzzy Inference Controller for Full Vehicle Nonlinear Active Suspension Systems
Directory of Open Access Journals (Sweden)
A. Aldair
2010-12-01
Full Text Available The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order PIλ Dμ (FOPID controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function.
DEFF Research Database (Denmark)
Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede
2015-01-01
by employing wavelet transform under different fault conditions. Then the fuzzy logic rules are automatically trained based on the fuzzified fault features to diagnose the different faults. Neither additional sensor nor the capacitor voltages are needed in the proposed method. The high accuracy, good...... for continuous operation and post-fault maintenance. In this article, a fault diagnosis technique is proposed for the short circuit fault in a modular multi-level converter sub-module using the wavelet transform and adaptive neuro fuzzy inference system. The fault features are extracted from output phase voltage...
Torshabi, Ahmad Esmaili
2014-12-01
In external radiotherapy of dynamic targets such as lung and breast cancers, accurate correlation models are utilized to extract real time tumor position by means of external surrogates in correlation with the internal motion of tumors. In this study, a correlation method based on the neuro-fuzzy model is proposed to correlate the input external motion data with internal tumor motion estimation in real-time mode, due to its robustness in motion tracking. An initial test of the performance of this model was reported in our previous studies. In this work by implementing some modifications it is resulted that ANFIS is still robust to track tumor motion more reliably by reducing the motion estimation error remarkably. After configuring new version of our ANFIS model, its performance was retrospectively tested over ten patients treated with Synchrony Cyberknife system. In order to assess the performance of our model, the predicted tumor motion as model output was compared with respect to the state of the art model. Final analyzed results show that our adaptive neuro-fuzzy model can reduce tumor tracking errors more significantly, as compared with ground truth database and even tumor tracking methods presented in our previous works. PMID:25412886
Computation of Magnetic Field Distribution by Using an Adaptive Neuro-Fuzzy Inference System
Directory of Open Access Journals (Sweden)
P. Dhana Lakshmi
2012-04-01
Full Text Available This paper proposes a set of mathematical models presenting magnetic fields caused by operations of an extra high voltage (EHV transmission line under normal loading and short-circuit condi t ions . The mathematical model s are expressed in second-order partial differential equations derived by analyzing magnetic field distribution around a 500- kV power transmission line. The problem of study is intentionally two-dimensional due to the property of long line field distribution. To verify its use, i single-circuit and ii double-circuit, 500-kV power transmission lines have been employed for test. Finite element methods (FEM for solving wave equations have been exploited. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment. This paper presents novel approach based on the use of adaptive network-based fuzzy inference system (ANFIS to estimate magnetic fields around an overhead power transmission lines. The ANFIS approach learns the rules and membership functions from training data. The hybrid system is tested by the use of the validation data. From all test cases, the calculation line of 1.0m above the ground level is set to investigate the magnetic fields acting on a human in c o m p a r a t i v e with ICNIRP standard.
Azeez, Dhifaf; Ali, Mohd Alauddin Mohd; Gan, Kok Beng; Saiboon, Ismail
2013-01-01
Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient's emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician's burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, %RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in
Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun
2012-01-01
With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy…
Designing a Battlefield Fire Support System Using Adaptive Neuro-Fuzzy Inference System Based Model
Kerim Goztepe
2013-01-01
Fire support of the maneuver operation is a continuous process. It begins with the receiving the task by the maneuver commander and continues until the mission is completed. Yet it is a key issue in combat in the way gain success. Therefore, a real-time mannered solution to fire support problem is a vital component of tactical warfare to the sequence that auxiliary forces or logistic support arrives at the theatre. A new method for deciding on combat fire support is proposed using adaptive ne...
Energy Technology Data Exchange (ETDEWEB)
Heidary, Saeed, E-mail: saeedheidary@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir
2015-01-11
This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous {sup 99m}Tc/{sup 201}Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of {sup 201}Tl (77±10% keV) and {sup 99m}Tc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.
Heidary, Saeed; Setayeshi, Saeed
2015-01-01
This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.
Chau, K T; Chan, C C; Shen, W X
2003-01-01
This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents.
Directory of Open Access Journals (Sweden)
S. S, Pathak
2012-10-01
Full Text Available Self-compacting concrete is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction even in congested reinforcement without segregation and bleeding. In the present study self compacting concrete mixes were developed using blend of fly ash and rice husk ash. Fresh properties of theses mixes were tested by using standards recommended by EFNARC (European Federation for Specialist Construction Chemicals and Concrete system. Compressive strength at 28 days was obtained for these mixes. This paper presents development of Adaptive Neuro-fuzzy Inference System (ANFIS model for predicting compressive strength of self compacting concrete using fly ash and rice husk ash. The input parameters used for model are cement, fly ash, rice husk ash and water content. Output parameter is compressive strength at 28 days. The results show that the implemented model is good at predicting compressive strength.
Energy Technology Data Exchange (ETDEWEB)
Salahshoor, Karim [Department of Instrumentation and Automation, Petroleum University of Technology, Tehran (Iran, Islamic Republic of); Kordestani, Mojtaba; Khoshro, Majid S. [Department of Control Engineering, Islamic Azad University South Tehran branch (Iran, Islamic Republic of)
2010-12-15
The subject of FDD (fault detection and diagnosis) has gained widespread industrial interest in machine condition monitoring applications. This is mainly due to the potential advantage to be achieved from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a new FDD scheme for condition machinery of an industrial steam turbine using a data fusion methodology. Fusion of a SVM (support vector machine) classifier with an ANFIS (adaptive neuro-fuzzy inference system) classifier, integrated into a common framework, is utilized to enhance the fault detection and diagnostic tasks. For this purpose, a multi-attribute data is fused into aggregated values of a single attribute by OWA (ordered weighted averaging) operators. The simulation studies indicate that the resulting fusion-based scheme outperforms the individual SVM and ANFIS systems to detect and diagnose incipient steam turbine faults. (author)
Energy Technology Data Exchange (ETDEWEB)
Chau, K.T. E-mail: ktchau@eee.hku.hk; Wu, K.C.; Chan, C.C.; Shen, W.X
2003-08-01
This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents.
Woo, Youngkeun; Lee, Juwon; Hwang, Sujin; Hong, Cheol Pyo
2013-03-01
The purpose of this study was to investigate the associations between gait performance, postural stability, and depression in patients with Parkinson's disease (PD) by using an adaptive neuro-fuzzy inference system (ANFIS). Twenty-two idiopathic PD patients were assessed during outpatient physical therapy by using three clinical tests: the Berg balance scale (BBS), Dynamic gait index (DGI), and Geriatric depression scale (GDS). Scores were determined from clinical observation and patient interviews, and associations among gait performance, postural stability, and depression in this PD population were evaluated. The DGI showed significant positive correlation with the BBS scores, and negative correlation with the GDS score. We assessed the relationship between the BBS score and the DGI results by using a multiple regression analysis. In this case, the GDS score was not significantly associated with the DGI, but the BBS and DGI results were. Strikingly, the ANFIS-estimated value of the DGI, based on the BBS and the GDS scores, significantly correlated with the walking ability determined by using the DGI in patients with Parkinson's disease. These findings suggest that the ANFIS techniques effectively reflect and explain the multidirectional phenomena or conditions of gait performance in patients with PD.
Indian Academy of Sciences (India)
D Panigrahy; P K Sahu
2015-06-01
Fetal electrocardiogram (ECG) gives information about the health status of fetus and so, an early diagnosis of any cardiac defect before delivery increases the effectiveness of appropriate treatment. In this paper, authors investigate the use of adaptive neuro-fuzzy inference system (ANFIS) with extended Kalman filter for fetal ECG extraction from one ECG signal recorded at the abdominal areas of the mother’s skin. The abdominal ECG is considered to be composite as it contains both mother’s and fetus’ ECG signals. We use extended Kalman filter framework to estimate the maternal component from abdominal ECG. The maternal component in the abdominal ECG signal is a nonlinear transformed version of maternal ECG. ANFIS network has been used to identify this nonlinear relationship, and to align the estimated maternal ECG signal with the maternal component in the abdominal ECG signal. Thus, we extract the fetal ECG component by subtracting the aligned version of the estimated maternal ECG from the abdominal signal. Our results demonstrate the effectiveness of the proposed technique in extracting the fetal ECG component from abdominal signal at different noise levels. The proposed technique is also validated on the extraction of fetal ECG from both actual abdominal recordings and synthetic abdominal recording.
Directory of Open Access Journals (Sweden)
P. N. Raghunath
2012-01-01
Full Text Available Problem statement: This study presents the results of ANFIS based model proposed for predicting the performance characteristics of reinforced HSC beams subjected to different levels of corrosion damage and strengthened with externally bonded glass fibre reinforced polymer laminates. Approach: A total of 21 beams specimens of size 150, 250×3000 mm were cast and tested. Results: Out of the 21 specimens, 7 specimens were tested without any corrosion damage (R-Series, 7 after inducing 10% corrosion damage (ASeries and another 7 after inducing 25% corrosion damage (B-Series. Out of the seven specimens in each series, one was tested without any laminate, three specimens were tested after applying 3 mm thick CSM, UDC and WR laminates and another three specimens after applying 5mm thick CSM, UDC and WR laminates. Conclusion/Recommendations: The test results show that the beams strengthened with externally bonded GFRP laminates exhibit increased strength, stiffness, ductility and composite action until failure. An Adaptive Neuro-Fuzzy Inference System (ANFIS model is developed for predicting the study parameters for input values lying within the range of this experimental study.
Ajay Kumar, M.; Srikanth, N.
2014-03-01
In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.
Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise
2015-09-01
This paper presents a new model based on adaptive neuro-fuzzy inference systems (ANFIS) to predict oxygen consumption (V˙O2) from easily measured variables. The ANFIS prediction model consists of three ANFIS modules for estimating the Flex-HR parameters. Each module was developed based on clustering a training set of data samples relevant to that module and then the ANFIS prediction model was tested against a validation data set. Fifty-eight participants performed the Meyer and Flenghi step-test, during which heart rate (HR) and V˙O2 were measured. Results indicated no significant difference between observed and estimated Flex-HR parameters and between measured and estimated V˙O2 in the overall HR range, and separately in different HR ranges. The ANFIS prediction model (MAE = 3 ml kg(-1) min(-1)) demonstrated better performance than Rennie et al.'s (MAE = 7 ml kg(-1) min(-1)) and Keytel et al.'s (MAE = 6 ml kg(-1) min(-1)) models, and comparable performance with the standard Flex-HR method (MAE = 2.3 ml kg(-1) min(-1)) throughout the HR range. The ANFIS model thus provides practitioners with a practical, cost- and time-efficient method for V˙O2 estimation without the need for individual calibration. PMID:25959320
Islam, Tanvir; Srivastava, Prashant K.; Rico-Ramirez, Miguel A.; Dai, Qiang; Han, Dawei; Gupta, Manika
2014-08-01
The authors have investigated an adaptive neuro fuzzy inference system (ANFIS) for the estimation of hydrometeors from the TRMM microwave imager (TMI). The proposed algorithm, named as Hydro-Rain algorithm, is developed in synergy with the TRMM precipitation radar (PR) observed hydrometeor information. The method retrieves rain rates by exploiting the synergistic relations between the TMI and PR observations in twofold steps. First, the fundamental hydrometeor parameters, liquid water path (LWP) and ice water path (IWP), are estimated from the TMI brightness temperatures. Next, the rain rates are estimated from the retrieved hydrometeor parameters (LWP and IWP). A comparison of the hydrometeor retrievals by the Hydro-Rain algorithm is done with the TRMM PR 2A25 and GPROF 2A12 algorithms. The results reveal that the Hydro-Rain algorithm has good skills in estimating hydrometeor paths LWP and IWP, as well as surface rain rate. An examination of the Hydro-Rain algorithm is also conducted on a super typhoon case, in which the Hydro-Rain has shown very good performance in reproducing the typhoon field. Nevertheless, the passive microwave based estimate of hydrometeors appears to suffer in high rain rate regimes, and as the rain rate increases, the discrepancies with hydrometeor estimates tend to increase as well.
Energy Technology Data Exchange (ETDEWEB)
Ayata, Tahir; Cam, Ertugrul; Yildiz, Osman [Kirikkale University, Faculty of Engineering, 71451, Campus, Kirikkale (Turkey)
2007-05-15
Natural ventilation in living and working places provides both circulation of clear air and a decrease of indoor temperature, especially during hot summer days. In addition to openings, the dimension ratio and position of buildings play a significant role to obtain a uniform indoor air velocity distribution. In this study, the potential use of natural ventilation as a passive cooling system in new building designs in Kayseri, a midsize city in Turkey, was investigated. First, indoor air velocity distributions with respect to changing wind direction and magnitude were simulated by the FLUENT package program, which employs finite element methods. Then, an adaptive neuro-fuzzy inference systems (ANFIS) model was employed to predict indoor average and maximum air velocities using the simulated data by FLUENT. The simulation results suggest that natural ventilation can be used to provide a thermally comfortable indoor environment during the summer season in the study area. Also, the ANFIS model can be proposed for estimation of indoor air velocity values in such studies. (author)
Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin
2014-01-01
Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population. PMID:24566279
Zarei, Kobra; Atabati, Morteza; Kor, Kamalodin
2014-06-01
A quantitative structure-activity relationship (QSAR) was developed to predict the toxicity of substituted benzenes to Tetrahymena pyriformis. A set of 1,497 zero- to three-dimensional descriptors were used for each molecule in the data set. A major problem of QSAR is the high dimensionality of the descriptor space; therefore, descriptor selection is one of the most important steps. In this paper, bee algorithm was used to select the best descriptors. Three descriptors were selected and used as inputs for adaptive neuro-fuzzy inference system (ANFIS). Then the model was corrected for unstable compounds (the compounds that can be ionized in the aqueous solutions or can easily metabolize under some conditions). Finally squared correlation coefficients were obtained as 0.8769, 0.8649 and 0.8301 for training, test and validation sets, respectively. The results showed bee-ANFIS can be used as a powerful model for prediction of toxicity of substituted benzenes to T. pyriformis. PMID:24638918
Adaptive Neuro-fuzzy approach in friction identification
Zaiyad Muda @ Ismail, Muhammad
2016-05-01
Friction is known to affect the performance of motion control system, especially in terms of its accuracy. Therefore, a number of techniques or methods have been explored and implemented to alleviate the effects of friction. In this project, the Artificial Intelligent (AI) approach is used to model the friction which will be then used to compensate the friction. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is chosen among several other AI methods because of its reliability and capabilities of solving complex computation. ANFIS is a hybrid AI-paradigm that combines the best features of neural network and fuzzy logic. This AI method (ANFIS) is effective for nonlinear system identification and compensation and thus, being used in this project.
Directory of Open Access Journals (Sweden)
Mehrbakhsh Nilashi, Mohammad Fathian, Mohammad Reza Gholamian, Othman bin Ibrahim
2011-08-01
Full Text Available If companies are to enjoy long-term success in the Internet marketplace, they must effectivelymanage the complex, multidimensional process of building online consumer trust. The onlineenvironment and the quality and usability of websites help the browser and consumer to beattracted and accessible to the information and the product and services available online. In thisPaper a new model would be suggested based on neuro-fuzzy System which depicts some of thehidden relationships between the critical factors such as security, familiarity, and designing in aB2C commercial website on other hand, and the competitive factor to other competitors on otherhand. Then, the impacts of these factors on purchasing decision of consumers in B2Ccommercial websites are extracted. We are going to find the impact of these factors on thedecision-making process of people to buy through the B2C commercial websites, and we also willanalyze how these factors influence the results of the B2C trading. The study also provides adevice for sellers to improve their commercial websites. Two questionnaires were used in thisstudy. The first questionnaire was developed for e-commerce experts, and the second one wasdesigned for the customers of commercial websites. Also, Expert Choice is used to determine thepriority of factors in the first questionnaire, and MATLAB and Excel are used for developing theFuzzy rules. Finally, the Fuzzy logical kit was use to analyze the generated factors in the model.
Energy Technology Data Exchange (ETDEWEB)
Entchev, Evgueniy; Yang, Libing [Integrated Energy Systems Laboratory, CANMET Energy Technology Centre, 1 Haanel Dr., Ottawa, Ontario (Canada)
2007-06-30
This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kW{sub el} SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc. The study revealed that both ANN and ANFIS models' predictions agreed well with variety of experimental data sets representing steady-state, start-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant parameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models' accuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of existing and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration system's performance could be modelled with minimum time demand and with a high degree of accuracy. (author)
Kentel, E.; Dogulu, N.
2015-12-01
In Turkey the experience and data required for a hydrological model setup is limited and very often not available. Moreover there are many ungauged catchments where there are also many planned projects aimed at utilization of water resources including development of existing hydropower potential. This situation makes runoff prediction at locations with lack of data and ungauged locations where small hydropower plants, reservoirs, etc. are planned an increasingly significant challenge and concern in the country. Flow duration curves have many practical applications in hydrology and integrated water resources management. Estimation of flood duration curve (FDC) at ungauged locations is essential, particularly for hydropower feasibility studies and selection of the installed capacities. In this study, we test and compare the performances of two methods for estimating FDCs in the Western Black Sea catchment, Turkey: (i) FDC based on Map Correlation Method (MCM) flow estimates. MCM is a recently proposed method (Archfield and Vogel, 2010) which uses geospatial information to estimate flow. Flow measurements of stream gauging stations nearby the ungauged location are the only data requirement for this method. This fact makes MCM very attractive for flow estimation in Turkey, (ii) Adaptive Neuro-Fuzzy Inference System (ANFIS) is a data-driven method which is used to relate FDC to a number of variables representing catchment and climate characteristics. However, it`s ease of implementation makes it very useful for practical purposes. Both methods use easily collectable data and are computationally efficient. Comparison of the results is realized based on two different measures: the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE) value. Ref: Archfield, S. A., and R. M. Vogel (2010), Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments, Water Resour. Res., 46, W10513, doi:10.1029/2009WR008481.
Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.
2015-12-01
This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.
Iphar, Melih; Yavuz, Mahmut; Ak, Hakan
2008-11-01
The aim of this study is to predict the peak particle velocity (PPV) values from both presently constructed simple regression model and fuzzy-based model. For this purpose, vibrations induced by bench blasting operations were measured in an open-pit mine operated by the most important magnesite producing company (MAS) in Turkey. After gathering the ordered pairs of distance and PPV values, the site-specific parameters were determined using traditional regression method. Also, an attempt has been made to investigate the applicability of a relatively new soft computing method called as the adaptive neuro-fuzzy inference system (ANFIS) to predict PPV. To achieve this objective, data obtained from the blasting measurements were evaluated by constructing an ANFIS-based prediction model. The distance from the blasting site to the monitoring stations and the charge weight per delay were selected as the input parameters of the constructed model, the output parameter being the PPV. Valid for the site, the PPV prediction capability of the constructed ANFIS-based model has proved to be successful in terms of statistical performance indices such as variance account for (VAF), root mean square error (RMSE), standard error of estimation, and correlation between predicted and measured PPV values. Also, using these statistical performance indices, a prediction performance comparison has been made between the presently constructed ANFIS-based model and the classical regression-based prediction method, which has been widely used in the literature. Although the prediction performance of the regression-based model was high, the comparison has indicated that the proposed ANFIS-based model exhibited better prediction performance than the classical regression-based model.
Adaptive Neuro-Fuzzy Extended Kalman Filtering for Robot Localization
Havangi, Ramazan; Teshnehlab, Mohammad
2010-01-01
Extended Kalman Filter (EKF) has been a popular approach to localization a mobile robot. However, the performance of the EKF and the quality of the estimation depends on the correct a priori knowledge of process and measurement noise covariance matrices (Qk and Rk, respectively). Imprecise knowledge of these statistics can cause significant degradation in performance. This paper proposed the development of an Adaptive Neuro- Fuzzy Extended Kalman Filtering (ANFEKF) for localization of robot. The Adaptive Neuro-Fuzzy attempts to estimate the elements of Qk and Rk matrices of the EKF algorithm, at each sampling instant when measurement update step is carried out. The ANFIS supervises the performance of the EKF with the aim of reducing the mismatch between the theoretical and actual covariance of the innovation sequences. The free parameters of ANFIS are trained using the steepest gradient descent (SD) to minimize the differences of the actual value of the covariance of the residual with its theoretical value as...
A New Neuro-Fuzzy Adaptive Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
ZHU Lili; ZHANG Huanchun; JING Yazhi
2003-01-01
Novel neuro-fuzzy techniques are used to dynamically control parameter settings of genetic algorithms (GAs). The benchmark routine is an adaptive genetic algorithm (AGA) that uses a fuzzy knowledge-based system to control GA parameters. The self-learning ability of the cerebellar model ariculation controller(CMAC) neural network makes it possible for on-line learning the knowledge on GAs throughout the run. Automatically designing and tuning the fuzzy knowledge-base system, neurofuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learning method. The Results from initial experiments show a Dynamic Parametric AGA system designed by the proposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a wide range of combinatorial optimization.
Adaptive Neuro-fuzzy Controller Design for Non-affine Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
JIA Li; GE Shu-zhi; QIU Ming-sen
2008-01-01
An adaptive neuro-fuzzy control is investigated for a class of noa-affine nonlinear systems.To do so,rigorous description and quantification of the approximation error of the neuro-fuzzy controller are firstly discussed.Applying this result and Lyapunov stability theory,a novel updating algorithm to adapt the weights,centers,and widths of the neuro-fuzzy controller is presented.Consequently,the proposed design method is able to guaranteg the stability of the closed-loop system and the convergence of the tracking error.Simulation results illustrate the effectiveness of the proposed adaptive neuro-fuzzy control scheme.
Adaptive neuro-fuzzy modeling of transient heat transfer in circular duct air flow
Energy Technology Data Exchange (ETDEWEB)
Hasiloglu, Abdulsamet [Department of Electronics and Telecommunications Engineering, Engineering Faculty, Ataturk University, Erzurum (Turkey); Yilmaz, Mehmet; Comakli, Omer [Department of Mechanical Engineering, Engineering Faculty, Ataturk University, Erzurum (Turkey); Ekmekci, Ismail [Department of Mechanical Engineering, Engineering Faculty, Sakarya University, Sakarya (Turkey)
2004-11-01
The aim of this study is to demonstrate the usefulness of an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of transient heat transfer. An ANFIS has been applied for the transient heat transfer in thermally and simultaneously developing circular duct flow, subjected to a sinusoidally varying inlet temperature. The experiments covered Reynolds numbers in the 2528{<=}Re{<=}4265 range and inlet heat input in the 0.01{<=}{beta}{<=}0.96 Hz frequency range. The accuracy of predictions and the adaptability of the ANFIS were examined, and good predictions were achieved for the temperature amplitudes of the transient heat transfer in thermally and simultaneously developing circular duct flow. The results show that the neuro-fuzzy can be used for modeling transient heat transfer in ducts. The results obtained with the ANFIS are also compared to those of a multiple linear regression and a neural network with a multi-layered feed-forward back-propagation algorithm. (authors)
Application of adaptive neuro-fuzzy inference system in motor soft start%自适应神经模糊推理系统在电动机软启动中的应用
Institute of Scientific and Technical Information of China (English)
李冬辉; 王莹莹; 马禹新
2012-01-01
Aimed at addressing serious grid impact entirely due to the impact of electricity resulting from direct start of induction motor,this paper introduces the application of the adaptive neuro-fuzzy inference system to the control of motor soft start.The method renders it possible to give a fuller play to the ability of adaptive learning of neural networks and fuzzy inference without the need to master the exact model of the object,and finally achieve the intelligent control of motor.The method consists of using the relationship of motor speed,load torque and the firing angle as training samples,and applying the hybrid learning algorithm to adjust the premise parameters and conclusion parameters,generating the fuzzy rules automatically and building the adaptive neuro-fuzzy inference system,and generating the appropriate thyristor trigger angle according to the given motor speed and torque.The simulation analysis shows that,the adaptive neuro-fuzzy inference system after training can afford a better control of motor speed,and thus promises to make possible the soft start of fan or pump load motor.%异步电动机直接启动产生的冲击电流会造成严重的电网冲击,因此提出将自适应神经模糊推理系统应用到电动机软启动控制中,充分发挥神经网络自适应学习和模糊推理不要求掌握被控对象精确模型处理结构化知识的能力,实现电动机软启动的智能控制。利用电机转速、负载转矩、触发角的对应关系作为训练样本,采用混合学习算法调整前提参数和结论参数,自动产生模糊规则,构建自适应神经模糊推理系统,根据给定的电机转速和转矩产生合适的晶闸管触发角。经仿真分析,结果表明：训练构建的自适应神经模糊推理系统能够很好地进行电机的速度控制,可以实现风机或泵类负载电动机的软启动。
Directory of Open Access Journals (Sweden)
Mehrbakhsh Nilashi, Mohammad Fathian, Mohammad Reza Gholamian, Othman Bin Ibrahim, Alireza Khoshraftar
2011-08-01
Full Text Available With the rapid development of Internet, the number of online customers is growing fast. Thisgrowth is supported by spreading of Internet usage around the globe. However, the questionof security and trust within e-commerce has always been in doubt. This study generatesgeneral knowledge about e-commerce. This study specifically gives an overview tounderstand different factors about security and trust between companies and theirconsumers. In order to Three e-stores and their websites were examined based on the modelproposed .This study also mentions that security and trust work parallel and close to eachother. If a consumer feels that an online deal is secured and they can trust the seller, it leadsto a confident e-commerce’s trade. The main focus of this study is to find out a suitable wayto resolve security and trust issues that make e-commerce an uncertain market place for allparties. The findings of this study indicate that, character of security is regarded as the mostimportant to building trust of B2C websites. The proposed model applies Adaptive Neuro-Fuzzy model to get the desired results. Two questionnaires were used in this study. The firstquestionnaire was developed for e-commerce experts, and the second one was designed forthe customers of commercial websites. Also, Expert Choice is used to determine the priorityof factors in the first questionnaire, and MATLAB and Excel are used for developing theFuzzy rules. Finally, the Fuzzy logical kit was used to analyze the generated factors in themodel.
Adaptive Neuro-Fuzzy Extended Kalman Filtering for Robot Localization
Directory of Open Access Journals (Sweden)
Ramazan Havangi
2010-03-01
Full Text Available Extended Kalman Filter (EKF has been a popular approach to localization a mobile robot. However, the performance of the EKF and the quality of the estimation depends on the correct a priori knowledge of process and measurement noise covariance matrices (Qk and Rk , respectively. Imprecise knowledge of these statistics can cause significant degradation in performance. This paper proposed the development of an Adaptive Neuro- Fuzzy Extended Kalman Filtering (ANFEKF for localization of robot. The Adaptive Neuro-Fuzzy attempts to estimate the elements of Qk and Rk matrices of the EKF algorithm, at each sampling instant when measurement update step is carried out. The ANFIS supervises the performance of the EKF with the aim of reducing the mismatch between the theoretical and actual covariance of the innovation sequences. The free parameters of ANFIS are trained using the steepest gradient descent (SD to minimize the differences of the actual value of the covariance of the residual with its theoretical value as much possible. The simulation results show the effectiveness of the proposed algorithm.
Students Classification With Adaptive Neuro Fuzzy
Directory of Open Access Journals (Sweden)
Mohammad Saber Iraji
2012-07-01
Full Text Available Identifying exceptional students for scholarships is an essential part of the admissions process in undergraduate and postgraduate institutions, and identifying weak students who are likely to fail is also important for allocating limited tutoring resources. In this article, we have tried to design an intelligent system which can separate and classify student according to learning factor and performance. a system is proposed through Lvq networks methods, anfis method to separate these student on learning factor . In our proposed system, adaptive fuzzy neural network(anfis has less error and can be used as an effective alternative system for classifying students
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
Video Smoke Detection Based on Adaptive Neuro-fuzzy Inference System%基于自适应神经模糊推理系统的视频烟雾检测
Institute of Scientific and Technical Information of China (English)
王涛; 刘渊; 谢振平
2011-01-01
This paper presents a video smoke detection algorithm based on Adaptive Neuro-fuzzy Inference System(ANFIS). The smoke features are extracted from video sequences, and the subtractive clustering is introduced to confirm the fuzzy rule number. The premise parameters and the consequent parameters are updated by hybrid learning rule. The fuzzy inference rules are obtained. Experimental results show that compared with the traditional BP neural network algorithm and Support Vector Machine(SVM) algorithm, the new algorithm has better performance on Receiver Operating Characteristic(ROC) curve.%提出一种基于自适应神经模糊推理系统的视频烟雾检测算法.从视频图像中提取烟雾特征,采用减法聚类确定模糊规则数,建立初始模糊系统.通过神经网络的自学习机制调整前提参数和结论参数,确定模糊推理规则.实验结果表明,与传统BP神经网络算法及支持向量机算法相比,该算法具有较优的ROC曲线特性.
Development of quantum-based adaptive neuro-fuzzy networks.
Kim, Sung-Suk; Kwak, Keun-Chang
2010-02-01
In this study, we are concerned with a method for constructing quantum-based adaptive neuro-fuzzy networks (QANFNs) with a Takagi-Sugeno-Kang (TSK) fuzzy type based on the fuzzy granulation from a given input-output data set. For this purpose, we developed a systematic approach in producing automatic fuzzy rules based on fuzzy subtractive quantum clustering. This clustering technique is not only an extension of ideas inherent to scale-space and support-vector clustering but also represents an effective prototype that exhibits certain characteristics of the target system to be modeled from the fuzzy subtractive method. Furthermore, we developed linear-regression QANFN (LR-QANFN) as an incremental model to deal with localized nonlinearities of the system, so that all modeling discrepancies can be compensated. After adopting the construction of the linear regression as the first global model, we refined it through a series of local fuzzy if-then rules in order to capture the remaining localized characteristics. The experimental results revealed that the proposed QANFN and LR-QANFN yielded a better performance in comparison with radial basis function networks and the linguistic model obtained in previous literature for an automobile mile-per-gallon prediction, Boston Housing data, and a coagulant dosing process in a water purification plant.
Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed
2016-06-01
In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.
Heidary, Saeed; Setayeshi, Saeed; Ghannadi-Maragheh, Mohammad
2014-09-01
The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99 m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman's rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.
Prediction of contact forces of underactuated finger by adaptive neuro fuzzy approach
Petković, Dalibor; Shamshirband, Shahaboddin; Abbasi, Almas; Kiani, Kourosh; Al-Shammari, Eiman Tamah
2015-12-01
To obtain adaptive finger passive underactuation can be used. Underactuation principle can be used to adapt shapes of the fingers for grasping objects. The fingers with underactuation do not require control algorithm. In this study a kinetostatic model of the underactuated finger mechanism was analyzed. The underactuation is achieved by adding the compliance in every finger joint. Since the contact forces of the finger depend on contact position of the finger and object, it is suitable to make a prediction model for the contact forces in function of contact positions of the finger and grasping objects. In this study prediction of the contact forces was established by a soft computing approach. Adaptive neuro-fuzzy inference system (ANFIS) was applied as the soft computing method to perform the prediction of the finger contact forces.
Motamedi, Shervin; Roy, Chandrabhushan; Shamshirband, Shahaboddin; Hashim, Roslan; Petković, Dalibor; Song, Ki-Il
2015-08-01
Ultrasonic pulse velocity is affected by defects in material structure. This study applied soft computing techniques to predict the ultrasonic pulse velocity for various peats and cement content mixtures for several curing periods. First, this investigation constructed a process to simulate the ultrasonic pulse velocity with adaptive neuro-fuzzy inference system. Then, an ANFIS network with neurons was developed. The input and output layers consisted of four and one neurons, respectively. The four inputs were cement, peat, sand content (%) and curing period (days). The simulation results showed efficient performance of the proposed system. The ANFIS and experimental results were compared through the coefficient of determination and root-mean-square error. In conclusion, use of ANFIS network enhances prediction and generation of strength. The simulation results confirmed the effectiveness of the suggested strategies. PMID:25957464
Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration
Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza
2003-01-01
Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.
Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System
Akhavan, P.; Karimi, M.; Pahlavani, P.
2014-10-01
Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.
Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System
Directory of Open Access Journals (Sweden)
P. Akhavan
2014-10-01
Full Text Available Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.
Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.
2016-02-01
All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.
Energy Technology Data Exchange (ETDEWEB)
Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)
2008-06-15
Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)
Research on Modeling with Adaptive Neuro-Fuzzy Inference System%自适应神经模糊推理系统建模研究
Institute of Scientific and Technical Information of China (English)
鲁斌; 何华灿
2003-01-01
With rapid development of the fuzzy control application field, the existing system for fuzzy inferring modeling cannot more and more suit the requirements of fuzzy control. About how to apply the theories of fuzzy control to practice rapidly and conveniently, this paper presents a reasonable and practical method, which supports all sorts of fuzzy inferring system of MAMDANI and SUGENO to be modeled not only by tuning references of membership functions, but also by tuning fuzzy inferring structure. The modeling instance shows that it's practical and effective.
Directory of Open Access Journals (Sweden)
Vipan K Sohpal
2014-06-01
Full Text Available Transesterification of Jatropha curcus for biodiesel production is a kinetic control process, which is complex in nature and controlled by temperature, the molar ratio, mixing intensity and catalyst process parameters. A precise choice of catalyst is required to improve the rate of transesterification and to simulate the kinetic study in a batch reactor. The present paper uses an Adaptive Neuro-Fuzzy Inference System (ANFIS approach to model and simulate the butyl ester production using alkaline catalyst (NaOH. The amounts of catalyst and time for reaction have been used as the model’s input parameters. The model is a combination of fuzzy inference and artificial neural network, including a set of fuzzy rules which have been developed directly from experimental data. The proposed modeling approach has been verified by comparing the expected results with the practical results which were observed and obtained through a batch reactor operation. The application of the ANFIS test shows which amount of catalyst predicted by the proposed model is suitable and in compliance with the experimental values at 0.5% level of significance.
An adaptive neuro fuzzy model for estimating the reliability of component-based software systems
Directory of Open Access Journals (Sweden)
Kirti Tyagi
2014-01-01
Full Text Available Although many algorithms and techniques have been developed for estimating the reliability of component-based software systems (CBSSs, much more research is needed. Accurate estimation of the reliability of a CBSS is difficult because it depends on two factors: component reliability and glue code reliability. Moreover, reliability is a real-world phenomenon with many associated real-time problems. Soft computing techniques can help to solve problems whose solutions are uncertain or unpredictable. A number of soft computing approaches for estimating CBSS reliability have been proposed. These techniques learn from the past and capture existing patterns in data. The two basic elements of soft computing are neural networks and fuzzy logic. In this paper, we propose a model for estimating CBSS reliability, known as an adaptive neuro fuzzy inference system (ANFIS, that is based on these two basic elements of soft computing, and we compare its performance with that of a plain FIS (fuzzy inference system for different data sets.
Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system
Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Md Nasir, Mohd Hairul Nizam; Pavlović, Nenad T.; Akib, Shatirah
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to predict MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using MATLAB/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology
Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
Training Hybrid Neuro-Fuzzy System to Infer Permeability in Wells on Maracaibo Lake, Venezuela
Hurtado, Nuri; Torres, Julio
2014-01-01
The high accuracy on inferrring of rocks properties, such as permeability ($k$), is a very useful study in the analysis of wells. This has led to development and use of empirical equations like Tixier, Timur, among others. In order to improve the inference of permeability we used a hybrid Neuro-Fuzzy System (NFS). The NFS allowed us to infer permeability of well, from data of porosity ($\\phi$) and water saturation ($Sw$). The work was performed with data from wells VCL-1021 (P21) and VCL-950 (P50), Block III, Maracaibo Lake, Venezuela. We evaluated the NFS equations ($k_{P50,i}(\\phi_i,Sw_i)$) with neighboring well data ($P21$), in order to verify the validity of the equations in the area. We have used ANFIS in MatLab.
Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.
Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin
2014-01-01
Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.
Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin
2014-01-01
Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621
Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system
Energy Technology Data Exchange (ETDEWEB)
Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)
2008-07-01
This article present a comparison of artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) applied for modelling a ground-coupled heat pump system (GCHP). The aim of this study is predicting system performance related to ground and air (condenser inlet and outlet) temperatures by using desired models. Performance forecasting is the precondition for the optimal design and energy-saving operation of air-conditioning systems. So obtained models will help the system designer to realize this precondition. The most suitable algorithm and neuron number in the hidden layer are found as Levenberg-Marquardt (LM) with seven neurons for ANN model whereas the most suitable membership function and number of membership functions are found as Gauss and two, respectively, for ANFIS model. The root-mean squared (RMS) value and the coefficient of variation in percent (cov) value are 0.0047 and 0.1363, respectively. The absolute fraction of variance (R{sup 2}) is 0.9999 which can be considered as very promising. This paper shows the appropriateness of ANFIS for the quantitative modeling of GCHP systems. (author)
Institute of Scientific and Technical Information of China (English)
徐春生; 王太勇
2009-01-01
对于混入色噪声的混合信号,如果可以通过测量得到产生色噪声的白噪声,对白噪声进行非线性训练即可逼近色噪声,达到非线性滤波的目的.自适应模糊推理系统(adaptive neuro-fuzzy unference system,ANFIS)可以实现上述非线性逼近.文中在上述算法的基础上,提出一种EMD(empirical mode decomposition)-ANFIS的自适应色噪声消除方法,首先对混合信号进行EMD分解,得到各个内禀模态函数分量(intrinsic mode function, IMF),然后对分解得到的内禀模态分量进行ANFIS模糊消噪,最后对消噪后的各个分量信号进行叠加.由于所得内禀模态函数为近似平稳信号,且图形越来越趋于平缓,减小了ANFIS方法的逼近难度.在混合信号信噪比为2.840 7 dB时,经过EMD-ANFIS消噪后的估计误差比只经过ANFIS消噪后的估计误差减少11.74 dB,证明EMD-ANFIS方法的有效性.
A neuro-fuzzy inference system tuned by particle swarm optimization algorithm for sensor monitoring
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Mauro Vitor de [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Div. de Instrumentacao e Confiabilidade Humana]. E-mail: mvitor@ien.gov.br; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Monitoracao de Processos
2005-07-01
A neuro-fuzzy inference system (ANFIS) tuned by particle swarm optimization (PSO) algorithm has been developed for monitor the relevant sensor in a nuclear plant using the information of other sensors. The antecedent parameters of the ANFIS that estimates the relevant sensor signal are optimized by a PSO algorithm and consequent parameters use a least-squares algorithm. The proposed sensor-monitoring algorithm was demonstrated through the estimation of the nuclear power value in a pressurized water reactor using as input to the ANFIS six other correlated signals. The obtained results are compared to two similar ANFIS using one gradient descendent (GD) and other genetic algorithm (GA), as antecedent parameters training algorithm. (author)
Directory of Open Access Journals (Sweden)
Paulchamy Balaiah
2012-01-01
Full Text Available Problem statement: This study presents an effective method for removing mixed artifacts (EOG-Electro-ocular gram, ECG-Electrocardiogram, EMG-Electromyogram from the EEG-Electroencephalogram records. The noise sources increases the difficulty in analyzing the EEG and obtaining clinical information. EEG signals are multidimensional, non-stationary (i.e., statistical properties are not invariant in time, time domain biological signals, which are not reproducible. It is supposed to contain information about what is going on in the ensemble of excitatory pyramidal neuron level, at millisecond temporal resolution scale. Since scalp EEG contains considerable amount of noise and artifacts and exactly where it is coming from is poorly determined, extracting information from it is extremely challenging. For this reason it is necessary to design specific filters to decrease such artifacts in EEG records. Approach: Some of the other methods that are really appealing are artifact removal through Independent Component Analysis (ICA, Wavelet Transforms, Linear filtering and Artificial Neural Networks. ICA method could be used in situations, where large numbers of noises need to be distinguished, but it is not suitable for on-line real time application like Brain Computer Interface (BCI. Wavelet transforms are suitable for real-time application, but there all success lies in the selection of the threshold function. Linear filtering is best when; the frequency of noises does not interfere or overlap with each other. In this study we proposed adaptive filtering and neuro-fuzzy filtering method to remove artifacts from EEG. Adaptive filter performs linear filtering. Neuro-fuzzy approaches are very promising for non-linear filtering of noisy image. The multiple-output structure is based on recursive processing. It is able to adapt the filtering action to different kinds of corrupting noise. Fuzzy reasoning embedded into the network structure aims at reducing errors
Adaptive Neuro-Fuzzy Modeling of Mechanical Behavior for Vertically Aligned Carbon Nanotube Turfs
Institute of Scientific and Technical Information of China (English)
Mohammad A1-Khedher; Charles Pezeshki; Jeanne McHale; GFritz Knorr
2011-01-01
Several characterization methods have been developed to investigate the mechanical and structural properties of vertically aligned carbon nanotubes (VACNTs). Establishing analytical models at nanoscale to interpret these properties is complicated due to the nonuniformity and irregularity in quality of as-grown samples.In this paper, we propose a new methodology to investigate the correlation between indentation resistance of multi-wall carbon nanotube (MWCNT) turfs, Raman spectra and the geometrical properties of the turf structure using adaptive neuro-fuzzy phenomenological modeling. This methodology yields a novel approach for modeling at the nanoscale by evaluating the effect of structural morphologies on nanomaterial properties using Raman spectroscopy.
Kazemipoor, Mahnaz; Hajifaraji, Majid; Radzi, Che Wan Jasimah Bt Wan Mohamed; Shamshirband, Shahaboddin; Petković, Dalibor; Mat Kiah, Miss Laiha
2015-01-01
This research examines the precision of an adaptive neuro-fuzzy computing technique in estimating the anti-obesity property of a potent medicinal plant in a clinical dietary intervention. Even though a number of mathematical functions such as SPSS analysis have been proposed for modeling the anti-obesity properties estimation in terms of reduction in body mass index (BMI), body fat percentage, and body weight loss, there are still disadvantages of the models like very demanding in terms of calculation time. Since it is a very crucial problem, in this paper a process was constructed which simulates the anti-obesity activities of caraway (Carum carvi) a traditional medicine on obese women with adaptive neuro-fuzzy inference (ANFIS) method. The ANFIS results are compared with the support vector regression (SVR) results using root-mean-square error (RMSE) and coefficient of determination (R(2)). The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ANFIS approach. The following statistical characteristics are obtained for BMI loss estimation: RMSE=0.032118 and R(2)=0.9964 in ANFIS testing and RMSE=0.47287 and R(2)=0.361 in SVR testing. For fat loss estimation: RMSE=0.23787 and R(2)=0.8599 in ANFIS testing and RMSE=0.32822 and R(2)=0.7814 in SVR testing. For weight loss estimation: RMSE=0.00000035601 and R(2)=1 in ANFIS testing and RMSE=0.17192 and R(2)=0.6607 in SVR testing. Because of that, it can be applied for practical purposes. PMID:25453384
Directory of Open Access Journals (Sweden)
Mehran Amani Juneghani
2012-09-01
Full Text Available For determination the number of broken rotor bars in squirrel-cage induction motors when these motors are working, this study presents a new method based on an intelligent processing of the stator transient starting current. In light load condition, distinguishing between safe and faulty rotors is difficult, because the characteristic frequencies of rotor with broken bars are very close to the fundamental component and their amplitudes are small in comparison. In this study, an advanced technique based on the Wavelet Adaptive Neuro-Fuzzy Interface System is suggested for processing the starting current of induction motors. In order to increase the efficiency of the proposed method, the results of the wavelet analysis, before applying to the Adaptive Neuro-Fuzzy Interface System, are processed by Principal Component Analysis (PCA. Then the outcome results are supposed as Adaptive Neuro-Fuzzy Interface System's training and testing data set. The trained Adaptive Neuro-Fuzzy Interface Systems undertake of determining the number of broken rotor bars. The given statistical results, announce the proposed method’s high ability to determine the number of broken rotor bars. The proposed method is independent from loading conditions of machine and it is useable even when the motor is unloaded.
Adaptive Neuro-Fuzzy Controller Experimental Design for DC Motor Connected to Unbalanced Load
Directory of Open Access Journals (Sweden)
Reza Nejati
2007-09-01
Full Text Available In two recent decades, fuzzy controllers have been used in controlling different systems successfully. In this article, a new method is given for controlling of permanent magnetic DC motor connected to unbalanced load. Imbalance of load leads to machine vibrations, fluctuation of power, making exhaustion in machine shaft, and equipment depreciation. In this article neuro-fuzzy controllers are used for controlling unbalanced load. Because of non-linear nature of load and machine, machine fluctuations are different in various speeds. For making controller adaptive with machine, using an artificial neural network, the input-output coefficients are be updated in any speed. Optimized coefficients obtained by using of direct search method, and with these coefficients, artificial neural network trained with Lauvenberg-Marcoardet method. Operational results obtained from developed system, shows the efficiency of given method.
Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.
Rahman, Syed Masiur; Khondaker, A N; Khan, Rouf Ahmad
2013-05-01
In arid regions, primary pollutants may contribute to the increase of ozone levels and cause negative effects on biotic health. This study investigates the use of adaptive neuro-fuzzy inference system (ANFIS) for ozone prediction. The initial fuzzy inference system is developed by using fuzzy C-means (FCM) and subtractive clustering (SC) algorithms, which determines the important rules, increases generalization capability of the fuzzy inference system, reduces computational needs, and ensures speedy model development. The study area is located in the Empty Quarter of Saudi Arabia, which is considered as a source of huge potential for oil and gas field development. The developed clustering algorithm-based ANFIS model used meteorological data and derived meteorological data, along with NO and NO₂ concentrations and their transformations, as inputs. The root mean square error and Willmott's index of agreement of the FCM- and SC-based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and 0.95, respectively. Based on the analysis of the performance measures and regression error characteristic curves, it is concluded that the FCM-based ANFIS model outperforms the SC-based ANFIS model. PMID:23111771
Energy Technology Data Exchange (ETDEWEB)
Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)
2009-08-15
The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)
Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin
2016-01-01
Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder. PMID:27219539
Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin
2016-01-01
Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder. PMID:27219539
Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm
Mitra, Sunanda; Pemmaraju, Surya
1992-01-01
Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.
International Nuclear Information System (INIS)
Highlights: • ANFIS technique is applied to propose a model for daily global radiation estimation. • Day of the year (nday) is utilized as a sole input element. • The potential of ANFIS model is compared with day of the year-based (DYB) models. • ANFIS model enjoys high accuracy and outperforms DYB models. • Applying ANFIS to estimate daily global radiation by nday is really appealing. - Abstract: Estimating the horizontal global solar radiation by day of the year (nday) is particularly appealing since there is no need to any specific meteorological input data or even pre-calculation analysis. In this study, an intelligent optimization scheme based upon the adaptive neuro-fuzzy inference system (ANFIS) was applied to develop a model for estimation of daily horizontal global solar radiation using nday as the only input. The chief goal was identifying the suitability of ANFIS technique for this aim. Long-term measured data for Iranian city of Tabass was used to train and test the ANFIS model. The statistical results verified that the ANFIS model provides accurate and reliable predictions. Making comparisons with the predictions of six day of the year-based empirical models revealed the superiority of ANFIS model. For the ANFIS model, the mean absolute percentage error, mean absolute bias error, root mean square error and correlation coefficient were 3.9569%, 0.6911 MJ/m2, 0.8917 MJ/m2 and 0.9908, respectively. Also, the daily bias errors between the ANFIS predictions and measured data fell in the favorable range of –3 to 3 MJ/m2. In a nutshell, the survey results highly encouraged the application of ANFIS to estimate daily horizontal global solar radiation using only nday
Petković, Dalibor; Nikolić, Vlastimir; Milovančević, Miloš; Lazov, Lyubomir
2016-07-01
Heat affected zone (HAZ) of the laser cutting process may be developed on the basis on combination of different factors. In this investigation was analyzed the HAZ forecasting based on the different laser cutting parameters. The main aim in this article was to analyze the influence of three inputs on the HAZ of the laser cutting process. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for HAZ forecasting. Three inputs are considered: laser power, cutting speed and gas pressure. According the results the cutting speed has the highest influence on the HAZ forecasting (RMSE: 0.0553). Gas pressure has the smallest influence on the HAZ forecasting (RMSE: 0.0801). The results can be used in order to simplify HAZ prediction and analyzing.
International Nuclear Information System (INIS)
Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency. - Highlights: • New NDT system for microstructural evaluation based on MBN using ANFIS modeling. • Sensitivity of magnetic Barkhausen noise to microstructure changes of the DP steels. • Accurate prediction of martensite by feeding multiple MBN outputs simultaneously. • Obtaining the modeled output without knowing the amount of the used frequency
Energy Technology Data Exchange (ETDEWEB)
Ghanei, S., E-mail: Sadegh.Ghanei@yahoo.com [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Vafaeenezhad, H. [Centre of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgical and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Kashefi, M. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Eivani, A.R. [Centre of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgical and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Mazinani, M. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of)
2015-04-01
Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency. - Highlights: • New NDT system for microstructural evaluation based on MBN using ANFIS modeling. • Sensitivity of magnetic Barkhausen noise to microstructure changes of the DP steels. • Accurate prediction of martensite by feeding multiple MBN outputs simultaneously. • Obtaining the modeled output without knowing the amount of the used frequency.
Ghanei, S.; Vafaeenezhad, H.; Kashefi, M.; Eivani, A. R.; Mazinani, M.
2015-04-01
Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency.
Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid
2016-08-01
This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS
Nikolić, Vlastimir; Petković, Dalibor; Lazov, Lyubomir; Milovančević, Miloš
2016-07-01
Water-jet assisted underwater laser cutting has shown some advantages as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. It is important to determine which parameters are the most important for the process. In this investigation was analyzed the water-jet assisted underwater laser cutting parameters forecasting based on the different parameters. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for water-jet assisted underwater laser cutting parameters forecasting. Three inputs are considered: laser power, cutting speed and water-jet speed. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the water-jet assisted underwater laser cutting parameters. According to the results the combination of laser power cutting speed forms the most influential combination foe the prediction of water-jet assisted underwater laser cutting parameters. The best prediction was observed for the bottom kerf-width (R2 = 0.9653). The worst prediction was observed for dross area per unit length (R2 = 0.6804). According to the results, a greater improvement in estimation accuracy can be achieved by removing the unnecessary parameter.
Parameter optimization for intelligent phishing detection using Adaptive Neuro-Fuzzy
Directory of Open Access Journals (Sweden)
P. A. Barraclough
2014-10-01
Full Text Available Phishing attacks has been growing rapidly in the past few years. As a result, a number of approaches have been proposed to address the problem. Despite various approaches proposed such as feature-based and blacklist-based via machine learning techniques, there is still a lack of accuracy and real-time solution. Most approaches applying machine learning techniques requires that parameters are tuned to solve a problem, but parameters are difficult to tune to a desirable output. This study presents a parameter tuning framework, using adaptive Neuron-fuzzy inference system with comprehensive data to maximize systems performance. Extensive experiment was conducted. During ten-fold cross-validation, the data is split into training and testing pairs and parameters are set according to desirable output and have achieved 98.74% accuracy. Our results demonstrated higher performance compared to other results in the field. This paper contributes new comprehensive data, novel parameter tuning method and applied a new algorithm in a new field. The implication is that adaptive neuron-fuzzy system with effective data and proper parameter tuning can enhance system performance. The outcome will provide a new knowledge in the field.
Directory of Open Access Journals (Sweden)
Radovanović Milan M.
2015-01-01
Full Text Available In this research we search for a functional dependence between the occurrence of forest fires in the USA and the factors which characterize the solar activity. For this purpose we used several methods (R/S analysis, Hurst index to establish potential links between the influx of some parameters from the sun and the occurrence of forest fires with lag of several days. We found evidence for a connection and developed a prognostic scenario based on the Adaptive neuro-fuzzy interference system (ANFIS technique. This scenario allows the prediction between 79-93% of forest fires. [Projekat Ministarstva nauke Republike Srbije, br. III47007
VLSI design of universal approximator neuro-fuzzy systems
Baturone, I.; Sánchez-Solano, Santiago; Barriga, Angel; Jiménez Fernández, Carlos Jesús; Senhadji, Raouf; D. R. López
2001-01-01
Neuro-fuzzy systems can theoretically solve any problem since they are universal approximators. Besides, they combine the advantages of the neuro and fuzzy paradigms. This paper describes and compares the different strategies that can be adopted to implement the learning and inference mechanisms involved in a neuro-fuzzy system. CAD tools, most of them integrated into the fuzzy system development environment Xfuzzy 2.0, have been developed to assist the designer in the implementation of ne...
Nonlinear Adaptive NeuroFuzzy Wavelet Based Damping Control Paradigm for SSSC
Directory of Open Access Journals (Sweden)
BADAR, R.
2012-08-01
Full Text Available Static Synchronous Series Compensator (SSSC is a series compensating Flexible AC Transmission System (FACTS controller with primary objective of power flow control on a line by injecting a voltage in series with transmission line. However, it can efficiently be used for improving the system stability by using a supplementary damping control system. In this work, Adaptive Neurofuzzy Wavelet Control (ANFWC paradigm for SSSC supplementary damping control system has been proposed and successfully applied to a Single Machine Infinite Bus (SMIB power system. Gradient descent based back propagation algorithm, being simple with sufficient efficiency, has been used to update the controller parameters. The robustness of the proposed control strategy has been validated using nonlinear time domain simulations for different faults and various operating conditions of power system. Finally, the results have been compared with Conventional Adaptive Takagi-Sugino Controller (CATC on the basis of different performance indices.
Clustering of noisy image data using an adaptive neuro-fuzzy system
Pemmaraju, Surya; Mitra, Sunanda
1992-01-01
Identification of outliers or noise in a real data set is often quite difficult. A recently developed adaptive fuzzy leader clustering (AFLC) algorithm has been modified to separate the outliers from real data sets while finding the clusters within the data sets. The capability of this modified AFLC algorithm to identify the outliers in a number of real data sets indicates the potential strength of this algorithm in correct classification of noisy real data.
Adaptive Critic Based Neuro-Fuzzy Tracker for Improving Conversion Efficiency in PV Solar Cells
Halimeh Rashidi; Saeed Niazi; Jamshid Khorshidi
2012-01-01
The output power of photovoltaic systems is directly related to the amount of solar energy collected by the system and it is therefore necessary to track the sun’s position with high accuracy. This study proposes multi-agent adaptive critic based nero fuzzy solar tracking system dedicated to PV panels. The proposed tracker ensures the optimal conversion of solar energy into electricity by properly adjusting the PV panels according to the position of the sun. To evaluate the usefulness of the ...
Neuro-Fuzzy DC Motor Speed Control Using Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Boumediene ALLAOUA
2009-12-01
Full Text Available This paper presents an application of Adaptive Neuro-Fuzzy Inference System (ANFIS control for DC motor speed optimized with swarm collective intelligence. First, the controller is designed according to Fuzzy rules such that the systems are fundamentally robust. Secondly, an adaptive Neuro-Fuzzy controller of the DC motor speed is then designed and simulated; the ANFIS has the advantage of expert knowledge of the Fuzzy inference system and the learning capability of neural networks. Finally, the ANFIS is optimized by Swarm Intelligence. Digital simulation results demonstrate that the deigned ANFIS-Swarm speed controller realize a good dynamic behavior of the DC motor, a perfect speed tracking with no overshoot, give better performance and high robustness than those obtained by the ANFIS alone.
Adaptive Four-Channel Neuro-Fuzzy Control of a Master-Slave Robot
Directory of Open Access Journals (Sweden)
Watcharin Po-Ngaen
2013-03-01
Full Text Available In bilateral control of tele‐manipulation based on a conventional approach, there are deficiencies in stability robustness and manoeuvrability against variations in the dynamics of the master input device and the task environment. In this study, an adaptive four‐channel neuro‐fuzzy bilateral control scheme is proposed. To evaluate whether the proposed algorithm is a suitable technique for improving the robustness and manoeuvrability of tele‐robot implementation, four‐channel neuro‐fuzzy and classical bilateral control frameworks have been investigated in a simulation experiment. Distinct bilateral control schemes in the form of four‐channel intelligent control and the classic form of position–force and position‐position have been implemented and compared using a one degree of freedom (DOF master‐slave system. The experimental results show that the application of a four‐channel neuro‐fuzzy control strategy effectively improves the overall performance.
Adaptive Critic Based Neuro-Fuzzy Tracker for Improving Conversion Efficiency in PV Solar Cells
Directory of Open Access Journals (Sweden)
Halimeh Rashidi
2012-08-01
Full Text Available The output power of photovoltaic systems is directly related to the amount of solar energy collected by the system and it is therefore necessary to track the sun’s position with high accuracy. This study proposes multi-agent adaptive critic based nero fuzzy solar tracking system dedicated to PV panels. The proposed tracker ensures the optimal conversion of solar energy into electricity by properly adjusting the PV panels according to the position of the sun. To evaluate the usefulness of the proposed method, some computer simulations are performed and compared with fuzzy PD controller. Obtained results show the proposed control strategy is very robust, flexible and could be used to get the desired performance levels. The response time is also very fast. Simulation results that have been compared with fuzzy PD controller show that our method has the better control performance than fuzzy PD controller.
Directory of Open Access Journals (Sweden)
Zahra Mohammadi
2011-07-01
Full Text Available This study presents a novel controller of magnetic levitation system by using new neuro-fuzzy structures which called flexible neuro-fuzzy systems. In this type of controller we use sliding mode control with neuro-fuzzy to eliminate the Jacobian of plant. At first, we control magnetic levitation system with Mamdanitype neuro-fuzzy systems and logical-type neuro-fuzzy systems separately and then we use two types of flexible neuro-fuzzy systems as controllers. Basic flexible OR-type neuro-fuzzy inference system and basic compromise AND-type neuro-fuzzy inference system are two new flexible neuro-fuzzy controllers which structure of fuzzy inference system (Mamdani or logical is determined in the learning process. We can investigate with these two types of controllers which of the Mamdani or logical type systems has better performance for control of this plant. Finally we compare performance of these controllers with sliding mode controller and RBF sliding mode controller.
Directory of Open Access Journals (Sweden)
Luis Daniel Lledó
2015-03-01
Full Text Available This paper presents an application formed by a classification method based on the architecture of ART neural network (Adaptive Resonance Theory and the Fuzzy Set Theory to classify physiological reactions in order to automatically and dynamically adapt a robot-assisted rehabilitation therapy to the patient needs, using a three-dimensional task in a virtual reality system. Firstly, the mathematical and structural model of the neuro-fuzzy classification method is described together with the signal and training data acquisition. Then, the virtual designed task with physics behavior and its development procedure are explained. Finally, the general architecture of the experimentation for the auto-adaptive therapy is presented using the classification method with the virtual reality exercise.
Energy Technology Data Exchange (ETDEWEB)
Alasha' ary, Haitham; Moghtaderi, Behdad; Page, Adrian; Sugo, Heber [Priority Research Centre for Energy, Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, the University of Newcastle, Callaghan, Newcastle, NSW 2308 (Australia)
2009-07-15
The Masonry Research Group at The University of Newcastle, Australia has embarked on an extensive research program to study the thermal performance of common walling systems in Australian residential buildings by studying the thermal behaviour of four representative purpose-built thermal test buildings (referred to as 'test modules' or simply 'modules' hereafter). The modules are situated on the university campus and are constructed from brick veneer (BV), cavity brick (CB) and lightweight (LW) constructions. The program of study has both experimental and analytical strands, including the use of a neuro-fuzzy approach to predict the thermal behaviour. The latter approach employs an experimental adaptive neuro-fuzzy inference system (ANFIS) which is used in this study to predict the room (indoor) temperatures of the modules under a range of climatic conditions pertinent to Newcastle (NSW, Australia). The study shows that this neuro-fuzzy model is capable of accurately predicting the room temperature of such buildings; thus providing a potential computationally efficient and inexpensive predictive tool for the more effective thermal design of housing. (author)
Institute of Scientific and Technical Information of China (English)
Jayant P. Sangole; Gopal R. Patil
2014-01-01
Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun-tries. Intersections with no specific priority to any move-ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom-etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neuro-fuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of right-turning vehicles at limited priority T-intersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four T-intersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver’s decision (accepted/rejected). ANFIS models are developed by using 80% of the extracted data (total data observations for major road right-turning vehicles are 722 and 1,066 for minor road right-turning vehicles) and remaining are used for model vali-dation. Four different combinations of input variables are considered for major and minor road right turnings sepa-rately. Correct prediction by ANFIS models ranges from 75.17% to 82.16% for major road right turning and 87.20% to 88.62% for minor road right turning. The models developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.
Position control of ionic polymer metal composite actuator based on neuro-fuzzy system
Nguyen, Truong-Thinh; Yang, Young-Soo; Oh, Il-Kwon
2009-07-01
This paper describes the application of Neuro-Fuzzy techniques for controlling an IPMC cantilever configuration under water to improve tracking ability for an IPMC actuator. The controller was designed using an Adaptive Neuro-Fuzzy Controller (ANFC). The measured input data based including the tip-displacements and electrical signals have been recorded for generating the training in the ANFC. These data were used for training the ANFC to adjust the membership functions in the fuzzy control algorithm. The comparison between actual and reference values obtained from the ANFC gave satisfactory results, which showed that Adaptive Neuro-Fuzzy algorithm is reliable in controlling IPMC actuator. In addition, experimental results show that the ANFC performed better than the pure fuzzy controller (PFC). Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the real-time control of the ionic polymer metal composite actuator for which the performance degrades under long-term actuation.
R.S. Hartati; Linawati; Widia Meindra S.
2015-01-01
Today electricity has been basic need for economical growth. One of measurement to identify electricity capacity in an area or a country is electricity consumption index per capita. The index in Bali, Indonesia is still lower than other developing countries in Asia. Therefore load forecasting of electricity in Bali is required to yield good electricity capacity planning. Thus this paper investigates accuracy of ANFIS implementation on forecasting electricity consumption hourly. The accuracy i...
DEFF Research Database (Denmark)
Achiche, S.; Shlechtingen, M.; Raison, M.;
2016-01-01
of the sampling frequency and sensor location on the model performance is investigated. The results obtained in this paper show that ANFIS models can be used to set up reliable force predictors for dynamical loaded flexible structures, when a certain degree of inaccuracy is accepted. Furthermore, the comparison...... the models using only current values have generally higher prediction errors in trained regions but are less sensitive to changes of the system dynamics history....
Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system
B. Tutmez (Bulent); Z. Hatipoglu (Z.); U. Kaymak (Uzay)
2006-01-01
textabstractElectrical conductivity is an important indicator for water quality assessment. Since the composition of mineral salts affects the electrical conductivity of groundwater, it is important to understand the relationships between mineral salt composition and electrical conductivity. In this
Modeling of a HTPEM fuel cell using Adaptive Neuro-Fuzzy Inference Systems
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Sahlin, Simon Lennart
2015-01-01
the expected operating range of the fuel cell is performed in a test station. The data from this experiment is then used to train ANFIS models with 2, 3, 4 and 5 membership functions. The performance of these models is then compared and it is found that using 3 membership functions provides the best compromise...
Digital Repository Service at National Institute of Oceanography (India)
Harish, N.; Mandal, S.; Rao, S.; Lokesha
coefficient (CC) and scatter index (SI) for test data are 8.072, 2.841, 0.92, and 0.218 respectively. Comparing with the artificial neural network model, ANFIS yields higher CC and lower SI. From the results it can be concluded that ANFIS can be an efficient...
Temperature dependent estimator for load cells using an adaptive neuro-fuzzy inference system
Energy Technology Data Exchange (ETDEWEB)
Lee, K-C [Department of Automation Engineering, National Formosa University, Huwei, Yunlin 63208, Taiwan (China)
2005-01-01
Accurate weighting of pieces in various temperature environments for load cells is a key feature in many industrial applications. This paper proposes a method to achieve high-precision {+-}0.56/3000 grams for a load-cell-based weighting system by using ANFIS. ANFIS is used to model the relationship between the reading of load cells and the actual weight of samples considering temperature-varying effect and nonlinearity of the load cells. The model of the load-cell-based weighting system can accurately estimate the weight of test samples from the load cell reading. The proposed ANFIS-based method is convenient for use and can improve the precision of digital load cell measurement systems. Experiments demonstrate the validity and effectiveness of fuzzy neural networks for modeling of load cells and the results show that the proposed ANFIS-based method outperforms some existing methods in terms of modeling and prediction accuracy.
Fuzzy Logic and Neuro-fuzzy Systems: A Systematic Introduction
Directory of Open Access Journals (Sweden)
Yue Wu
2011-05-01
Full Text Available Fuzzy logic is a rigorous mathematical field, and it provides an effective vehicle for modeling the uncertainty in human reasoning. In fuzzy logic, the knowledge of experts is modeled by linguistic rules represented in the form of IF-THEN logic. Like neural network models such as the multilayer perceptron (MLP and the radial basis function network (RBFN, some fuzzy inference systems (FISs have the capability of universal approximation. Fuzzy logic can be used in most areas where neural networks are applicable. In this paper, we first give an introduction to fuzzy sets and logic. We then make a comparison between FISs and some neural network models. Rule extraction from trained neural networks or numerical data is then described. We finally introduce the synergy of neural and fuzzy systems, and describe some neuro-fuzzy models as well. Some circuits implementations of neuro-fuzzy systems are also introduced. Examples are given to illustrate the cocepts of neuro-fuzzy systems.
Neuro-fuzzy controller to navigate an unmanned vehicle.
Selma, Boumediene; Chouraqui, Samira
2013-12-01
A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN). PMID:23705105
Alzheimer’s Disease Classification Using Hybrid Neuro Fuzzy Runge-Kutta (HNFRK Classifier
Directory of Open Access Journals (Sweden)
R. Sampath
2015-05-01
Full Text Available Alzheimer’s Disease (AD exists more prior to the over appearance of clinical symptoms and is characterized by brain changes. In this study, Functional Magnetic Resonance Imaging (FMRI offers considerable promise as a tool for detecting brain changes in Alzheimer disease pretentious patients. Therefore, FMRI may offer the unique ability to detention of the dynamic state of change in the collapsing brain. Improve the accuracy of brain FMRI image segmentation, a robust Spatial Fuzzy C-Means (SFCM is utilized and a combination of Adaptive Neuro Fuzzy Inference System and Runge-Kutta Learning Algorithm called Hybrid Neuro Fuzzy Runge-Kutta (HNFRK classifier is used for prediction of Alzheimer’s Disease (AD. The performance of the proposed classifier is compared with SVM and ANFIS classifier. The results show that the sensitivity and specificity of HNFRK classifier is more compared to the SVM and ANFIS. The sensitivity and specificity of HNFRK is above 90% which is below 90% in case of SVM and ANFIS classifier. Thus it can be shown that HNFRK performs accurate classification than SVM and ANFIS.
Khademi, Mahmoud; Manzuri-Shalmani, Mohammad T; Kiaei, Ali A
2010-01-01
In this paper an accurate real-time sequence-based system for representation, recognition, interpretation, and analysis of the facial action units (AUs) and expressions is presented. Our system has the following characteristics: 1) employing adaptive-network-based fuzzy inference systems (ANFIS) and temporal information, we developed a classification scheme based on neuro-fuzzy modeling of the AU intensity, which is robust to intensity variations, 2) using both geometric and appearance-based features, and applying efficient dimension reduction techniques, our system is robust to illumination changes and it can represent the subtle changes as well as temporal information involved in formation of the facial expressions, and 3) by continuous values of intensity and employing top-down hierarchical rule-based classifiers, we can develop accurate human-interpretable AU-to-expression converters. Extensive experiments on Cohn-Kanade database show the superiority of the proposed method, in comparison with support vect...
Potential of neuro-fuzzy methodology to estimate noise level of wind turbines
Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin
2016-01-01
Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.
Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach
Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata
2014-12-01
In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root
Neuro-Fuzzy Phasing of Segmented Mirrors
Olivier, Philip D.
1999-01-01
A new phasing algorithm for segmented mirrors based on neuro-fuzzy techniques is described. A unique feature of this algorithm is the introduction of an observer bank. Its effectiveness is tested in a very simple model with remarkable success. The new algorithm requires much less computational effort than existing algorithms and therefore promises to be quite useful when implemented on more complex models.
Neuro-fuzzy models for systems identification applied to the operation of nuclear power plants
International Nuclear Information System (INIS)
A nuclear power plant has a myriad of complex system and sub-systems that, working cooperatively, make the control of the whole plant. Nevertheless their operation be automatic most of the time, the integral understanding of their internal- logic can be away of the comprehension of even experienced operators because of the poor interpretability those controls offer. This difficulty does not happens only in nuclear power plants but in almost every a little more complex control system. Neuro-fuzzy models have been used for the last years in a attempt of suppress these difficulties because of their ability of modelling in linguist form even a system which behavior is extremely complex. This is a very intuitive human form of interpretation and neuro-fuzzy model are gathering increasing acceptance. Unfortunately, neuro-fuzzy models can grow up to become of hard interpretation because of the complexity of the systems under modelling. In general, that growing occurs in function of redundant rules or rules that cover a very little domain of the problem. This work presents an identification method for neuro-fuzzy models that not only allows models grow in function of the existent complexity but that beforehand they try to self-adapt to avoid the inclusion of new rules. This form of construction allowed to arrive to highly interpretative neuro-fuzzy models even of very complex systems. The use of this kind of technique in modelling the control of the pressurizer of a PWR nuclear power plant allowed verify its validity and how neuro-fuzzy models so built can be useful in understanding the automatic operation of a nuclear power plant. (author)
Neuro-fuzzy predictive control for nonlinear application
Institute of Scientific and Technical Information of China (English)
CHEN Dong-xiang; WANG Gang; LV Shi-xia
2008-01-01
Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. The neuro-fuzzy predictor has the capability of achieving high predictive accuracy due to its nonlinear mapping and interpolation features, and adaptively updating network parameters by a learning procedure to re-duce the model errors caused by changes of the process under control. To cope with the difficult problem of non-linear optimization, Pepanaqi method was applied to search the optimal or suboptimal solution. Comparisons were made among the objective function values of alternatives in initial space. The search was then confined to shrink the smaller region according to results of comparisons. The convergent point was finally approached to be considered as the optimal or suboptimal solution. Experimental results of the neuro-fuzzy predictive control for drier application reveal that the proposed control scheme has less tracking errors and can smooth control actions, which is applicable to changes of drying condition.
DEVELOPMENT OF NEURO FUZZY CONTROLLER ALGORITHM FOR AIR CONDITIONING SYSTEM
AMRIT KAUR; ARSHDEEP KAUR
2012-01-01
The paper presents the neuro-fuzzy controller algorithm for air conditioning system. Neuro-fuzzy control combines the learning capabilities of neural networks and control capabilities of fuzzy logic control. The neurofuzzy controller for air conditioning system takes two inputs from temperature and humidity sensors and controls the compressor speed. The experimental results of the developed system are also shown.
DEVELOPMENT OF NEURO FUZZY CONTROLLER ALGORITHM FOR AIR CONDITIONING SYSTEM
Directory of Open Access Journals (Sweden)
AMRIT KAUR
2012-04-01
Full Text Available The paper presents the neuro-fuzzy controller algorithm for air conditioning system. Neuro-fuzzy control combines the learning capabilities of neural networks and control capabilities of fuzzy logic control. The neurofuzzy controller for air conditioning system takes two inputs from temperature and humidity sensors and controls the compressor speed. The experimental results of the developed system are also shown.
Al-Shammari, Eiman Tamah; Petković, Dalibor; Danesh, Amir Seyed; Shamshirband, Shahaboddin; Issa, Mirna; Zentner, Lena
2016-05-01
Robotic operations need to be safe for unpredictable contacts. Joints with passive compliance with springs can be used for soft robotic contacts. However the joints cannot measure external collision forces. In this investigation was developed one passive compliant joint which have soft contacts with external objects and measurement capabilities. To ensure it, conductive silicone rubber was used as material for modeling of the compliant segments of the robotic joint. These compliant segments represent embedded sensors. The conductive silicone rubber is electrically conductive by deformations. The main task was to obtain elastic absorbers for the external collision forces. These absorbers can be used for measurement in the same time. In other words, the joint has an internal measurement system. Adaptive neuro fuzzy inference system (ANFIS) was used to estimate the safety level of the robotic joint by head injury criteria (HIC).
Zong, Lu-Hang; Gong, Xing-Long; Guo, Chao-Yang; Xuan, Shou-Hu
2012-07-01
In this paper, a magneto-rheological (MR) damper-based semi-active controller for vehicle suspension is developed. This system consists of a linear quadratic Gauss (LQG) controller as the system controller and an adaptive neuro-fuzzy inference system (ANFIS) inverse model as the damper controller. First, a modified Bouc-Wen model is proposed to characterise the forward dynamic characteristics of the MR damper based on the experimental data. Then, an inverse MR damper model is built using ANFIS technique to determine the input current so as to gain the desired damping force. Finally, a quarter-car suspension model together with the MR damper is set up, and a semi-active controller composed of the LQG controller and the ANFIS inverse model is designed. Simulation results demonstrate that the desired force can be accurately tracked using the ANFIS technique and the semi-active controller can achieve competitive performance as that of active suspension.
ON THE DESIGN OF A NEURO-FUZZY CONTROLLER - APPLICATION TO THE CONTROL OF A BIOREACTOR
Institute of Scientific and Technical Information of China (English)
Joseph HAGGEGE; Mohamed BENREJEB; Pierre BORNE
2005-01-01
This paper presents a new methodological approach for the synthesis of a neuro-fuzzy controller,using an on-line learning procedure. A simple algebraic formulation of a Sugeno fuzzy inference system that ensures a coherent universe of discourse, making easy its interpretation by a human being,is proposed and implemented in the case of the control of a bioreactor, which is considered as a complex non linear process.
Energy Technology Data Exchange (ETDEWEB)
Alves, Antonio Carlos Pinto Dias
2000-09-01
A nuclear power plant has a myriad of complex system and sub-systems that, working cooperatively, make the control of the whole plant. Nevertheless their operation be automatic most of the time, the integral understanding of their internal- logic can be away of the comprehension of even experienced operators because of the poor interpretability those controls offer. This difficulty does not happens only in nuclear power plants but in almost every a little more complex control system. Neuro-fuzzy models have been used for the last years in a attempt of suppress these difficulties because of their ability of modelling in linguist form even a system which behavior is extremely complex. This is a very intuitive human form of interpretation and neuro-fuzzy model are gathering increasing acceptance. Unfortunately, neuro-fuzzy models can grow up to become of hard interpretation because of the complexity of the systems under modelling. In general, that growing occurs in function of redundant rules or rules that cover a very little domain of the problem. This work presents an identification method for neuro-fuzzy models that not only allows models grow in function of the existent complexity but that beforehand they try to self-adapt to avoid the inclusion of new rules. This form of construction allowed to arrive to highly interpretative neuro-fuzzy models even of very complex systems. The use of this kind of technique in modelling the control of the pressurizer of a PWR nuclear power plant allowed verify its validity and how neuro-fuzzy models so built can be useful in understanding the automatic operation of a nuclear power plant. (author)
Directory of Open Access Journals (Sweden)
Gurrala Madhusudhan Rao
2014-10-01
Full Text Available Abstract: The main theme of the paper which deals with the enhancing steady-state and dynamics performance of the power grids by Flexible AC Transmission System (FACTS based on computational intelligence. The proposed technique will be applied to solve real problems in a power grid. The FACTS device, which will be used in the paper, is the most promising one, which known as the Distributed Power Flow Controller (DPFC. The paper achieves the optimization of the type, the location and the size of the power and control elements for DPFC to optimize the system performance. The paper derives the criteria to install the DPFC in an optimal location with optimal parameters and then designs an AI based damping controller for enhancing power system dynamic performance. In this paper, for every operating point genetic algorithm is used to search for controllers’ parameters, parameters found at certain operating point are different from those found at others. ANFISs are required in this case to recognize the appropriate parameters for each operating point.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The neuro-fuzzy network (NFN) is used to model the rules and experience of the process planner.NFN is to select the manufacturing operations sequences for the part features. A detailed description of the NFN system development is given. The rule structure utilizes sigmoid functions to fuzzify the inputs, multiplication to combine the if part of the rules and summation to integrate the fired rules. Expert knowledge from previous process plans is used in determining the initial network structure and parameters of the membership functions. A back-propagation (BP) training algorithm was developed to fine tune the knowledge to company standards using the input-output data from executions of previous plans. The method is illustrated by an industrial example.
CENTRIC MANAGEMENT SYSTEM BASED ON NEURO - FUZZY TOPOLOGY
Directory of Open Access Journals (Sweden)
Shumkov Y. A.
2014-11-01
Full Text Available The article describes the network-centric approach to a building control system based on the "inner teacher" neuro - fuzzy topology, which uses the principles of reinforcement learning
Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat
2016-05-01
The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.
Directory of Open Access Journals (Sweden)
G. Joselin Retna Kumar
2014-01-01
Full Text Available This study proposes an efficient channel-estimation scheme for Multiband (MB Orthogonal Frequency Division Multiplexing (OFDM-based Ultra Wide Band (UWB communication systems. One of the challenges in wireless system is the frequency selective fading caused due to multipath channel between the transmitter and receiver. The signal bandwidth in broad band cellular wireless systems typically exceeds the coherence bandwidth of the multipath channel. To overcome such a multipath fading environment with low complexity and to increase the performance, UWB OFDM system is used. To practically realize MB-OFDM UWB, one needs to cope with numerous design challenges, particularly in receiver designs such as symbol timing, Carrier Frequency Offset (CFO and sampling frequency offset compensation, as well as Channel Frequency Response (CFR estimation. A channel estimation scheme using a Takagi-Sugeno (T-S fuzzy based neural network under the time varying velocity of the mobile station in a UWB OFDM system is proposed in this study. In our proposal, by utilizing the learning capability of Adaptive Neuro-Fuzzy Inference System (ANFIS, the ANFIS is trained with correct channel state information then the trained network is used as a channel estimator. To validate the performance of our proposed method, simulation results are given and found that it gives more accurate prediction of channel coefficients as compared with fuzzy channel estimator under various highly noisy multipath channel conditions.
Bilgehan, Mahmut
2011-03-01
In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) model have been successfully used for the evaluation of relationships between concrete compressive strength and ultrasonic pulse velocity (UPV) values using the experimental data obtained from many cores taken from different reinforced concrete structures having different ages and unknown ratios of concrete mixtures. A comparative study is made using the neural nets and neuro-fuzzy (NF) techniques. Statistic measures were used to evaluate the performance of the models. Comparing of the results, it is found that the proposed ANFIS architecture with Gaussian membership function is found to perform better than the multilayer feed-forward ANN learning by backpropagation algorithm. The final results show that especially the ANFIS modelling may constitute an efficient tool for prediction of the concrete compressive strength. Architectures of the ANFIS and neural network established in the current study perform sufficiently in the estimation of concrete compressive strength, and particularly ANFIS model estimates closely follow the desired values. Both ANFIS and ANN techniques can be used in conditions where too many structures are to be examined in a restricted time. The presented approaches enable to practically find concrete strengths in the existing reinforced concrete structures, whose records of concrete mixture ratios are not available or present. Thus, researchers can easily evaluate the compressive strength of concrete specimens using UPV and density values. These methods also contribute to a remarkable reduction in the computational time without any significant loss of accuracy. A comparison of the results clearly shows that particularly the NF approach can be used effectively to predict the compressive strength of concrete using UPV and density values. In addition, these model architectures can be used as a nondestructive procedure for health monitoring of
Directory of Open Access Journals (Sweden)
Ravi Samikannu
2011-01-01
Full Text Available Problem statement: The temperature control in plastic extrusion machine is an important factor to produce high quality plastic products. The first order temperature control system in plastic extrusion comprises of coupling effects, long delay time and large time constants. Controlling temperature is very difficult as the process is multistage process and the system coupled with each other. In order to conquer this problem the system is premeditated with neuro fuzzy controller using LabVIEW. Approach: The existing technique involved is conventional PID controller, Neural controller, mamdani type Fuzzy Logic Controller and the proposed method is neuro fuzzy controller. Results: Manifest feature of the proposed method is smoothing of undesired control signal of conventional PID, neural controller and mamdani type FLC controller. The software incorporated the LabVIEW graphical programming language and MATLAB toolbox were used to design temperature control in plastic extrusion system. Hence neuro fuzzy controller is most powerful approach to retrieve the adaptiveness in the case of nonlinear system. Conclusion: The tuning of the controller was synchronized with the controlled variable and allowing the process at its desired operating condition. The results indicated that the use of proposed controller improve the process in terms of time domain specification, set point tracking and also reject disturbances with optimum stability.
Neuro-fuzzy modeling in bankruptcy prediction
Directory of Open Access Journals (Sweden)
Vlachos D.
2003-01-01
Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.
A Temporal Neuro-Fuzzy Monitoring System to Manufacturing Systems
Mahdaoui, Rafik; Mouss, Mohamed Djamel; Chouhal, Ouahiba
2011-01-01
Fault diagnosis and failure prognosis are essential techniques in improving the safety of many manufacturing systems. Therefore, on-line fault detection and isolation is one of the most important tasks in safety-critical and intelligent control systems. Computational intelligence techniques are being investigated as extension of the traditional fault diagnosis methods. This paper discusses the Temporal Neuro-Fuzzy Systems (TNFS) fault diagnosis within an application study of a manufacturing system. The key issues of finding a suitable structure for detecting and isolating ten realistic actuator faults are described. Within this framework, data-processing interactive software of simulation baptized NEFDIAG (NEuro Fuzzy DIAGnosis) version 1.0 is developed. This software devoted primarily to creation, training and test of a classification Neuro-Fuzzy system of industrial process failures. NEFDIAG can be represented like a special type of fuzzy perceptron, with three layers used to classify patterns and failures....
Institute of Scientific and Technical Information of China (English)
Guixia Liu; Lei Liu; Chunyu Liu; Ming Zheng; Lanying Su; Chunguang Zhou
2011-01-01
Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly, in this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.
A neuro-fuzzy approach as medical diagnostic interface
Brause, Rüdiger W.; Friedrich, F.
2010-01-01
In contrast to the symbolic approach, neural networks seldom are designed to explain what they have learned. This is a major obstacle for its use in everyday life. With the appearance of neuro-fuzzy systems which use vague, human-like categories the situation has changed. Based on the well-known mechanisms of learning for RBF networks, a special neuro-fuzzy interface is proposed in this paper. It is especially useful in medical applications, using the notation and habits of physicians and oth...
Energy Technology Data Exchange (ETDEWEB)
Castro, Antonio Orestes de Salvo [PETROBRAS, Rio de Janeiro, RJ (Brazil); Ferreira Filho, Virgilio Jose Martins [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)
2004-07-01
The hydraulic fracture operation is wide used to increase the oil wells production and to reduce formation damage. Reservoir studies and engineer analysis are made to select the wells for this kind of operation. As the reservoir parameters have some diffuses characteristics, Fuzzy Inference Systems (SIF) have been tested for this selection processes in the last few years. This paper compares the performance of a neuro fuzzy system and a genetic fuzzy system used for hydraulic Fracture well selection, with knowledge acquisition from an operational data base to set the SIF membership functions. The training data and the validation data used were the same for both systems. We concluded that, in despite of the genetic fuzzy system would be a younger process, it got better results than the neuro fuzzy system. Another conclusion was that, as the genetic fuzzy system can work with constraints, the membership functions setting kept the consistency of variables linguistic values. (author)
Condition monitoring with wind turbine SCADA data using Neuro-Fuzzy normal behavior models
DEFF Research Database (Denmark)
Schlechtingen, Meik; Santos, Ilmar
2012-01-01
in graphical and text format. Within the paper examples of real faults are provided, showing the capabilities of the method proposed. The method can be applied both to existing and new built turbines without the need of any additional hardware installation or manufacturers input.......This paper presents the latest research results of a project that focuses on normal behavior models for condition monitoring of wind turbines and their components, via ordinary Supervisory Control And Data Acquisition (SCADA) data. In this machine learning approach Adaptive Neuro-Fuzzy Interference...
Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng
2016-05-01
Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-01-01
This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.
Neuro-fuzzy system modeling based on automatic fuzzy clustering
Institute of Scientific and Technical Information of China (English)
Yuangang TANG; Fuchun SUN; Zengqi SUN
2005-01-01
A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.
International Nuclear Information System (INIS)
Parameter optimization in the process of inverse treatment planning for intensity modulated radiation therapy (IMRT) is mainly conducted by human planners in order to create a plan with the desired dose distribution. To automate this tedious process, an artificial intelligence (AI) guided system was developed and examined. The AI system can automatically accomplish the optimization process based on prior knowledge operated by several fuzzy inference systems (FIS). Prior knowledge, which was collected from human planners during their routine trial-and-error process of inverse planning, has first to be 'translated' to a set of 'if-then rules' for driving the FISs. To minimize subjective error which could be costly during this knowledge acquisition process, it is necessary to find a quantitative method to automatically accomplish this task. A well-developed machine learning technique, based on an adaptive neuro fuzzy inference system (ANFIS), was introduced in this study. Based on this approach, prior knowledge of a fuzzy inference system can be quickly collected from observation data (clinically used constraints). The learning capability and the accuracy of such a system were analyzed by generating multiple FIS from data collected from an AI system with known settings and rules. Multiple analyses showed good agreements of FIS and ANFIS according to rules (error of the output values of ANFIS based on the training data from FIS of 7.77 ± 0.02%) and membership functions (3.9%), thus suggesting that the 'behavior' of an FIS can be propagated to another, based on this process. The initial experimental results on a clinical case showed that ANFIS is an effective way to build FIS from practical data, and analysis of ANFIS and FIS with clinical cases showed good planning results provided by ANFIS. OAR volumes encompassed by characteristic percentages of isodoses were reduced by a mean of between 0 and 28%. The study demonstrated a feasible way
Automatic 3D object recognition and reconstruction based on neuro-fuzzy modelling
Samadzadegan, Farhad; Azizi, Ali; Hahn, Michael; Lucas, Curo
Three-dimensional object recognition and reconstruction (ORR) is a research area of major interest in computer vision and photogrammetry. Virtual cities, for example, is one of the exciting application fields of ORR which became very popular during the last decade. Natural and man-made objects of cities such as trees and buildings are complex structures and automatic recognition and reconstruction of these objects from digital aerial images but also other data sources is a big challenge. In this paper a novel approach for object recognition is presented based on neuro-fuzzy modelling. Structural, textural and spectral information is extracted and integrated in a fuzzy reasoning process. The learning capability of neural networks is introduced to the fuzzy recognition process by taking adaptable parameter sets into account which leads to the neuro-fuzzy approach. Object reconstruction follows recognition seamlessly by using the recognition output and the descriptors which have been extracted for recognition. A first successful application of this new ORR approach is demonstrated for the three object classes 'buildings', 'cars' and 'trees' by using aerial colour images of an urban area of the town of Engen in Germany.
Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis.
Chang, Fi-John; Chung, Chang-Han; Chen, Pin-An; Liu, Chen-Wuing; Coynel, Alexandra; Vachaud, Georges
2014-10-01
We propose a systematical approach to assessing arsenic concentration in a river through: important factor extraction by a nonlinear factor analysis; arsenic concentration estimation by the neuro-fuzzy network; and impact assessment of important factors on arsenic concentration by the membership degrees of the constructed neuro-fuzzy network. The arsenic-contaminated Huang Gang Creek in northern Taiwan is used as a study case. Results indicate that rainfall, nitrite nitrogen and temperature are important factors and the proposed estimation model (ANFIS(GT)) is superior to the two comparative models, in which 50% and 52% improvements in RMSE are made over ANFIS(CC) and ANFIS(all), respectively. Results reveal that arsenic concentration reaches the highest in an environment of lower temperature, higher nitrite nitrogen concentration and larger one-month antecedent rainfall; while it reaches the lowest in an environment of higher temperature, lower nitrite nitrogen concentration and smaller one-month antecedent rainfall. It is noted that these three selected factors are easy-to-collect. We demonstrate that the proposed methodology is a useful and effective methodology, which can be adapted to other similar settings to reliably model water quality based on parameters of interest and/or study areas of interest for universal usage. The proposed methodology gives a quick and reliable way to estimate arsenic concentration, which makes good contribution to water environment management. PMID:25046611
Neuro-fuzzy controller to navigate an unmanned vehicle
Selma, Boumediene; Chouraqui, Samira
2013-01-01
A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Contro...
SECURE ADHOC ROUTING FOR DATA TRANSFER USING NEURO FUZZY
Suganya; Nagarajan Srinivasan
2013-01-01
In the present world the security vulnerabilities are highly challenging in MANET. To get the maximum security and minimum threat there is lots of work going on. To effectively isolate the malicious node this paper proposes a Neuro fuzzy algorithm. By using fuzzy logic we can further improve the security level by identifying the malicious node more accurately. The concept behind the paper is as inreal life scenario, trust and sharing. Here in this paper we use the concept of trusting supporte...
Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model
Directory of Open Access Journals (Sweden)
Bogdan Gliwa
2011-01-01
Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.
Active Head Motion Compensation of TMS Robotic System Using Neuro-Fuzzy Estimation
Directory of Open Access Journals (Sweden)
Wan Zakaria W.N.
2016-01-01
Full Text Available Transcranial Magnetic Stimulation (TMS allows neuroscientist to study human brain behaviour and also become an important technique for changing the activity of brain neurons and the functions they sub serve. However, conventional manual procedure and robotized TMS are currently unable to precisely position the TMS coil because of unconstrained subject’s head movement and excessive contact force between the coil and subject’s head. This paper addressed this challenge by proposing an adaptive neuro-fuzzy force control to enable low contact force with a moving target surface. A learning and adaption mechanism is included in the control scheme to improve position disturbance estimation. The results show the ability of the proposed force control scheme to compensate subject’s head motions while maintaining desired contact force, thus allowing for more accurate and repeatable TMS procedures.
Direct-Torque Neuro-Fuzzy Control of Induction Motor
Institute of Scientific and Technical Information of China (English)
徐君鹏; CHEN Yan-feng; LI Guo-hou
2007-01-01
Fuzzy systems are currently being used in a wide field of industrial and scientific applications. Since the design and especially the optimization process of fuzzy systems can be very time consuming, it is convenient to have algorithms which construct and optimize them automatically. In order to improve the system stability and raise the response speed, a new control scheme, direct-torque neuro-fuzzy control for induction motor drive, was put forward. The design and tuning procedure have been described. Also, the improved stator flux estimation algorithm, which guarantees eccentric estimated flux has been proposed.
Neuro-fuzzy generalized predictive control of boiler steam temperature
Institute of Scientific and Technical Information of China (English)
Xiangjie LIU; Jizhen LIU; Ping GUAN
2007-01-01
Power plants are nonlinear and uncertain complex systems.Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modern power plant.A nonlinear generalized predictive controller based on neuro-fuzzy network(NFGPC)is proposed in this paper.The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant.From the experiments on the plant and the simulation of the plant,much better performance than the traditional controller is obtained.
Directory of Open Access Journals (Sweden)
Luis D Lledó
Full Text Available This paper presents the application of an Adaptive Resonance Theory (ART based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions.
Lledó, Luis D; Badesa, Francisco J; Almonacid, Miguel; Cano-Izquierdo, José M; Sabater-Navarro, José M; Fernández, Eduardo; Garcia-Aracil, Nicolás
2015-01-01
This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions.
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information.The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation.The results of function optimization show that the algorithm has good searching ability and high convergence speed.The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum.In order to avoid the combinatorial explosion of fuzzy.rules due to multivariable inputs,a state variable synthesis scheme is emploved to reduce the number of fuzzy rules greatly.The simulation results show that the designed controller can control the inverted pendulum successfully.
NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT
Directory of Open Access Journals (Sweden)
Dauda Olarotimi Araromi
2015-11-01
Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.
Directory of Open Access Journals (Sweden)
Aldo A. V. da Silva
2014-02-01
Full Text Available Atualmente, novas técnicas de processamento de dados, tais como redes neurais, lógica nebulosa (fuzzy e sistemas híbridos, são utilizadas para elaborar modelos de predição em sistemas complexos e estimar parâmetros desejados. Neste artigo investigou-se a habilidade de se desenvolver um modelo de inferência adaptativo neuro fuzzy para estimação da produtividade de trigo utilizando-se uma base de dados da combinação dos seguintes tratamentos: cinco doses de N (0, 50, 100, 150 e 200 kg ha-1; três fontes (Entec, sulfato de amônio e ureia; duas épocas de aplicação de N (na semeadura ou em cobertura e dois cultivares de trigo (E21 e IAC 370, avaliados durante dois anos, em Selvíria, MS. Através dos dados de entrada e saída o sistema de inferência neuro fuzzy adaptativo apreende e posteriormente pode estimar um novo valor de produção de trigo com base em doses diferenciadas de N. O erro de predição da produtividade de trigo em função das cinco doses de N, obtido com o sistema neuro fuzzy, foi menor que o valor obtido utilizando-se uma aproximação quadrática. Os resultados mostraram que o sistema neuro fuzzy é viável para desenvolver um modelo de predição visando estimar a produtividade de trigo em função da dose de N.
New concept of direct torque neuro-fuzzy control for induction motor drives. Simulation study
Energy Technology Data Exchange (ETDEWEB)
Grabowski, P.Z. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warsaw (Poland)
1997-12-31
This paper presents a new control strategy in the discrete Direct Torque Control (DTC) based on neuro-fuzzy structure. Two schemes are proposed: neuro-fuzzy switching times calculator and neuro-fuzzy incremental controller with space vector modulator. These control strategies guarantee very good dynamic and steady-states characteristics, with very low sampling time and constant switching frequency. The proposed techniques are verified by simulation study of the whole drive system and results are compared with conventional discrete Direct Torque Control method. (orig.) 18 refs.
S. S, Pathak; Dr. Sanjay Sharma; Dr. Hemant Sood; 4: Dr. R. K. Khitoliya
2012-01-01
Self-compacting concrete is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction even in congested reinforcement without segregation and bleeding. In the present study self compacting concrete mixes were developed using blend of fly ash and rice husk ash. Fresh properties of theses mixes were tested by using standards recommended by EFNARC (European Federation for S...
Ghaedi, M; Hosaininia, R; Ghaedi, A M; Vafaei, A; Taghizadeh, F
2014-10-15
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope(SEM), Brunauer-Emmett-Teller(BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55m(2)/g) and low pore size (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R(2)) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way. PMID:24858196
Ghaedi, M.; Hosaininia, R.; Ghaedi, A. M.; Vafaei, A.; Taghizadeh, F.
2014-10-01
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R2) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.
Directory of Open Access Journals (Sweden)
M. M. Krishan
2010-01-01
Full Text Available Problem statement: Neural networks and fuzzy inference systems are becoming well-recognized tools of designing an identifier/controller capable of perceiving the operating environment and imitating a human operator with high performance. Also, by combining these two features, more versatile and robust models, called neuro-fuzzy architectures have been developed. The mo Approach: Motivation behind the use of neuro-fuzzy approaches was based on the complexity of real life systems, ambiguities on sensory information or time-varying nature of the system under investigation. In this way, the present contribution concerns the application of neuro-fuzzy approach in order to perform the responses of the speed regulation, ensure more robustness of the overall system and to reduce the chattering phenomenon introduced by sliding mode control which is very harmful to the actuators in our case and may excite the unmodeled dynamics of the system. Results: In fact, the aim of such a research consists first in simplifying the control of the motor by decoupling between two principles variables which provoque the torque in the motor by using the feedback linearization method. Then, using sliding mode controllers to give our process more robustness towards the variation of different parameters of the motor. However, the latter technique of control called sliding mode control caused an indesirable phenomenon which harmful and could leads to the deterioration of the inverters components called chattering. So, here the authors propose to use neuro-fuzzy systems to reduce this phenomenon and perform the performances of the adopted control process. The type of the neuro-fuzzy system used here is called: Adaptive Neuro Fuzzy Inference System (ANFIS. This neuro-fuzzy is destined to replace the speed fuzzy sliding mode controller after its training process. Conclusion: Therefore, from a control design consideration, the adopted neuro-fuzzy system has opened up a new
Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.
Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla
2014-12-01
This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies. PMID:25406641
International Nuclear Information System (INIS)
Highlights: ► Solar radiation estimation based on Gene Expression Programming is unexplored. ► This approach is evaluated for the first time in this study. ► Other artificial intelligence models (ANN and ANFIS) are also included in the study. ► New alternatives for solar radiation estimation based on temperatures are provided. - Abstract: Surface incoming solar radiation is a key variable for many agricultural, meteorological and solar energy conversion related applications. In absence of the required meteorological sensors for the detection of global solar radiation it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). A comparison was also made among these techniques and traditional temperature based global solar radiation estimation equations. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models’ performances. An ANN (a four-input multilayer perceptron with 10 neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m−2 d−1 of RMSE). The ability of GEP approach to model global solar radiation based on daily atmospheric variables was found to be satisfactory.
Hoell, Simon; Omenzetter, Piotr
2016-04-01
Fueled by increasing demand for carbon neutral energy, erections of ever larger wind turbines (WTs), with WT blades (WTBs) with higher flexibilities and lower buckling capacities lead to increasing operation and maintenance costs. This can be counteracted with efficient structural health monitoring (SHM), which allows scheduling maintenance actions according to the structural state and preventing dramatic failures. The present study proposes a novel multi-step approach for vibration-based structural damage localization and severity estimation for application in operating WTs. First, partial autocorrelation coefficients (PACCs) are estimated from vibrational responses. Second, principal component analysis is applied to PACCs from the healthy structure in order to calculate scores. Then, the scores are ranked with respect to their ability to differentiate different damage scenarios. This ranking information is used for constructing hierarchical adaptive neuro-fuzzy inference systems (HANFISs), where cross-validation is used to identify optimal numbers of hierarchy levels. Different HANFISs are created for the purposes of structural damage localization and severity estimation. For demonstrating the applicability of the approach, experimental data are superimposed with signals from numerical simulations to account for characteristics of operational noise. For the physical experiments, a small scale WTB is excited with a domestic fan and damage scenarios are introduced non-destructively by attaching small masses. Numerical simulations are also performed for a representative fully functional small WT operating in turbulent wind. The obtained results are promising for future applications of vibration-based SHM to facilitate improved safety and reliability of WTs at lower costs.
Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi
2007-04-01
SummaryModeling of rainfall-runoff dynamics is one of the most studied topics in hydrology due to its essential application to water resources management. Recently, artificial intelligence has gained much popularity for calibrating the nonlinear relationships inherent in the rainfall-runoff process. In this study, the advantages of artificial neural networks and neuro-fuzzy system in continuous modeling of the daily and hourly behaviour of runoff were examined. Three different adaptive techniques were constructed and examined namely, Levenberg-Marquardt feed forward neural network, Bayesian regularization feed forward neural network, and neuro-fuzzy. In addition, the effects of data transformation on model performance were also investigated. This was done by examining the performance of the three network architectures and training algorithms using both raw and transformed data. Through inspection of the results it was found that although the model built on transformed data outperforms the model built on raw data, no significant differences were found between the forecast accuracies of the three examined models. A detailed comparison of the overall performance indicated that the neuro-fuzzy model performed better than both the Levenberg-Marquardt-FFNN and the Bayesian regularization-FFNN. In order to enable users to process the data easily, a graphic user interface (GUI) was developed. This program allows users to process the rainfall-runoff data, to train/test the model using various input options and to visualize results.
Estimation and Approximation Using Neuro-Fuzzy Systems
Directory of Open Access Journals (Sweden)
Nidhi Arora
2016-06-01
Full Text Available Estimation and Approximation plays an important role in planning for future. People especially the business leaders, who understand the significance of estimation, practice it very often. The act of estimation or approximation involves analyzing historical data pertaining to domain, current trends and expectations of people connected to it. Exercising estimation is not only complicated due to technological change in the world around, but also due to complexity of the problems. Traditional numerical based techniques for solution of ill-defined non-linear real world problems are not sufficient. Hence, there is a need of some robust methodologies which can deal with dynamic environment, imprecise facts and uncertainty in the available data to achieve practical applicability at low cost. Soft computing seeks to solve class of problems not suited for traditional algorithmic approaches. To address the common problems in business of inexactness, some models are put forward for servicing, support and monitoring by approximating and estimating important outcomes. This work illustrates some very general yet widespread problems which are of interest to common people. The suggested approaches can overcome the fuzziness in traditional methods by predicting some future events and getting better control on business. This includes study of various neuro-fuzzy architectures and their possible applications in various areas, where decision-making using classical methods fail.
SECURE ADHOC ROUTING FOR DATA TRANSFER USING NEURO FUZZY
Directory of Open Access Journals (Sweden)
Suganya
2013-04-01
Full Text Available In the present world the security vulnerabilities are highly challenging in MANET. To get the maximum security and minimum threat there is lots of work going on. To effectively isolate the malicious node this paper proposes a Neuro fuzzy algorithm. By using fuzzy logic we can further improve the security level by identifying the malicious node more accurately. The concept behind the paper is as inreal life scenario, trust and sharing. Here in this paper we use the concept of trusting supporters, sharing the companion list and routing through data. In order to get a secure high trust level, fuzzy logic is applied for evaluating routing response and isolates the malicious node. Trusted route is evaluated in sequence of operation and data is transferred at a most trusted level. Trust values are computed to each node by setting verge values. The values of each node is checked with the verge value. If the value higherthan the verge value mark it as high trusted node or else low trusted node.The fuzzy logic is implemented using aarmp routing protocol. Thus the level of trust is increased to obtain accuracy of identification. The goal of getting a robust route without any malicious node is achieved.
A Multitarget Tracking Video System Based on Fuzzy and Neuro-Fuzzy Techniques
Directory of Open Access Journals (Sweden)
Besada Juan A
2005-01-01
Full Text Available Automatic surveillance of airport surface is one of the core components of advanced surface movement, guidance, and control systems (A-SMGCS. This function is in charge of the automatic detection, identification, and tracking of all interesting targets (aircraft and relevant ground vehicles in the airport movement area. This paper presents a novel approach for object tracking based on sequences of video images. A fuzzy system has been developed to ponder update decisions both for the trajectories and shapes estimated for targets from the image regions extracted in the images. The advantages of this approach are robustness, flexibility in the design to adapt to different situations, and efficiency for operation in real time, avoiding combinatorial enumeration. Results obtained in representative ground operations show the system capabilities to solve complex scenarios and improve tracking accuracy. Finally, an automatic procedure, based on neuro-fuzzy techniques, has been applied in order to obtain a set of rules from representative examples. Validation of learned system shows the capability to learn the suitable tracker decisions.
Directory of Open Access Journals (Sweden)
GEMAN, O.
2014-02-01
Full Text Available Neurological diseases like Alzheimer, epilepsy, Parkinson's disease, multiple sclerosis and other dementias influence the lives of patients, their families and society. Parkinson's disease (PD is a neurodegenerative disease that occurs due to loss of dopamine, a neurotransmitter and slow destruction of neurons. Brain area affected by progressive destruction of neurons is responsible for controlling movements, and patients with PD reveal rigid and uncontrollable gestures, postural instability, small handwriting and tremor. Commercial activity-promoting gaming systems such as the Nintendo Wii and Xbox Kinect can be used as tools for tremor, gait or other biomedical signals acquisitions. They also can aid for rehabilitation in clinical settings. This paper emphasizes the use of intelligent optical sensors or accelerometers in biomedical signal acquisition, and of the specific nonlinear dynamics parameters or fuzzy logic in Parkinson's disease tremor analysis. Nowadays, there is no screening test for early detection of PD. So, we investigated a method to predict PD, based on the image processing of the handwriting belonging to a candidate of PD. For classification and discrimination between healthy people and PD people we used Artificial Neural Networks (Radial Basis Function - RBF and Multilayer Perceptron - MLP and an Adaptive Neuro-Fuzzy Classifier (ANFC. In general, the results may be expressed as a prognostic (risk degree to contact PD.
Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers
Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok
2016-01-01
In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.
Efficient neuro-fuzzy system and its Memristor Crossbar-based Hardware Implementation
Merrikh-Bayat, Farnood
2011-01-01
In this paper a novel neuro-fuzzy system is proposed where its learning is based on the creation of fuzzy relations by using new implication method without utilizing any exact mathematical techniques. Then, a simple memristor crossbar-based analog circuit is designed to implement this neuro-fuzzy system which offers very interesting properties. In addition to high connectivity between neurons and being fault-tolerant, all synaptic weights in our proposed method are always non-negative and there is no need to precisely adjust them. Finally, this structure is hierarchically expandable and can compute operations in real time since it is implemented through analog circuits. Simulation results show the efficiency and applicability of our neuro-fuzzy computing system. They also indicate that this system can be a good candidate to be used for creating artificial brain.
A Neuro-Fuzzy Approach in the Classification of Students’ Academic Performance
Directory of Open Access Journals (Sweden)
Quang Hung Do
2013-01-01
Full Text Available Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.
Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.
2012-04-01
The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the
Predictive neuro-fuzzy controller for multilink robot manipulator
Kaymaz, Emre; Mitra, Sunanda
1995-10-01
A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.
Characterizing root distribution with adaptive neuro-fuzzy analysis
Root-soil relationships are pivotal to understanding crop growth and function in a changing environment. Plant root systems are difficult to measure and remain understudied relative to above ground responses. High variation among field samples often leads to non-significance when standard statistics...
Adaptive neuro-fuzzy fusion of sensor data
Petković, Dalibor
2014-11-01
A framework is proposed, which consolidates the benefits of a fuzzy rationale and a neural system. The framework joins together Kalman separating and delicate processing guideline i.e. ANFIS to structure an effective information combination strategy for the target following framework. A novel versatile calculation focused around ANFIS is proposed to adjust logical progressions and to weaken the questionable aggravation of estimation information from multisensory. Fuzzy versatile combination calculation is a compelling device to make the genuine quality of the leftover covariance steady with its hypothetical worth. ANFIS indicates great taking in and forecast proficiencies, which makes it a productive device to manage experienced vulnerabilities in any framework. A neural system is presented, which can concentrate the measurable properties of the samples throughout the preparation sessions. Reproduction results demonstrate that the calculation can successfully alter the framework to adjust context oriented progressions and has solid combination capacity in opposing questionable data. This sagacious estimator is actualized utilizing Matlab/Simulink and the exhibitions are explored.
FDMS with Q-Learning: A Neuro-Fuzzy Approach to Partially Observable Markov Decision Problems
Levent Akin; Toygar Karadeniz
2004-01-01
Finding optimal solutions to Partially Observable Markov Decision Problems is known to be NP-hard. This paper describes a novel neuro-fuzzy approach to obtain fast, robust and easily interpreted solutions by utilizing a combination of several learning techniques including neural networks, fuzzy decision making and Q-learning.
Short-Term Electrical Load Forecasting using Neuro-Fuzzy Models
Energy Technology Data Exchange (ETDEWEB)
Park, Young Jin; Shim, Hyun Jeong; Wang, Bo Hyeun [Kang Nung National University (Korea)
2000-03-01
This paper proposes a systematic method to develop short-term electrical load forecasting systems using neuro-fuzzy models, The primary goal of the proposed method is to improve the performance of the prediction model in terms of accuracy and reliability. For this, the proposed method explores the advantages of the structure learning of the neuro-fuzzy model. The proposed load forecasting system first builds an initial structure off-line for each hour of four day types and then stores the resultant initial structures in the initial structure bank. Whenever a prediction needs to be made, the proposed system initializes the neuro-fuzzy model with the appropriate initial structure stored and trains the initialized model. In order to demonstrate the viability of the proposed method, we develop an one hour ahead load forecasting system by using the real load data collected during 1993 and 1994 at KEPCO. Simulation results reveal that the prediction system developed in this paper can achieve a remarkable improvement on both accuracy and reliability compared with the prediction systems based on multilayer perceptions, radial basis function networks, and neuro-fuzzy models without the structure learning. (author). 23 refs., 11 figs., 8 tabs.
FDMS with Q-Learning: A Neuro-Fuzzy Approach to Partially Observable Markov Decision Problems
Directory of Open Access Journals (Sweden)
Levent Akin
2008-11-01
Full Text Available Finding optimal solutions to Partially Observable Markov Decision Problems is known to be NP-hard. This paper describes a novel neuro-fuzzy approach to obtain fast, robust and easily interpreted solutions by utilizing a combination of several learning techniques including neural networks, fuzzy decision making and Q-learning.
Institute of Scientific and Technical Information of China (English)
Jie Zhang
2006-01-01
In this paper, the modelling and multi-objective optimal control of batch processes, using a recurrent neuro-fuzzy network, are presented. The recurrent neuro-fuzzy network, forms a "global" nonlinear long-range prediction model through the fuzzy conjunction of a number of "local" linear dynamic models. Network output is fed back to network input through one or more time delay units, which ensure that predictions from the recurrent neuro-fuzzy network are long-range. In building a recurrent neural network model, process knowledge is used initially to partition the processes non-linear characteristics into several local operating regions, and to aid in the initialisation of corresponding network weights. Process operational data is then used to train the network. Membership functions of the local regimes are identified, and local models are discovered via network training. Based on a recurrent neuro-fuzzy network model, a multi-objective optimal control policy can be obtained. The proposed technique is applied to a fed-batch reactor.
El-Sebakhy, Emad A.
2009-09-01
Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.
Energy Technology Data Exchange (ETDEWEB)
Sadeh, Javad; Afradi, Hamid [Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box: 91775-1111, Mashhad (Iran)
2009-11-15
This paper presents a new and accurate algorithm for locating faults in a combined overhead transmission line with underground power cable using Adaptive Network-Based Fuzzy Inference System (ANFIS). The proposed method uses 10 ANFIS networks and consists of 3 stages, including fault type classification, faulty section detection and exact fault location. In the first part, an ANFIS is used to determine the fault type, applying four inputs, i.e., fundamental component of three phase currents and zero sequence current. Another ANFIS network is used to detect the faulty section, whether the fault is on the overhead line or on the underground cable. Other eight ANFIS networks are utilized to pinpoint the faults (two for each fault type). Four inputs, i.e., the dc component of the current, fundamental frequency of the voltage and current and the angle between them, are used to train the neuro-fuzzy inference systems in order to accurately locate the faults on each part of the combined line. The proposed method is evaluated under different fault conditions such as different fault locations, different fault inception angles and different fault resistances. Simulation results confirm that the proposed method can be used as an efficient means for accurate fault location on the combined transmission lines. (author)
Nonlinear Modeling and Neuro-Fuzzy Control of PEMFC
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The proton exchange membrane generation technology is highly efficient, and clean and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online.This paper analyzed the characters of the PEMFC; and used the approach and self-study ability of artificial neural networks to build the model of nonlinear system, and adopted the adaptive neural-networks fuzzy infer system to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusted the model parameters to control online. The model and control were implemented in SIMULINK environment.The results of simulation show the test data and model have a good agreement. The model is useful for the optimal and real time control of PEMFC system.
Neuro-fuzzy Logic Control of Single Phase Matrix Converter Fed Induction Heating System
Directory of Open Access Journals (Sweden)
P. Umasankar
2015-02-01
Full Text Available This study presents a design and simulation of Neuro-Fuzzy Logic Controlled (NFLC Single Phase Matrix Converter (SPMC fed Induction Heating (IH system. Single phase matrix converter system is an AC-AC converter which eliminates the usage of reactive storage elements and its performance over varying operating frequencies can be controlled by varying the Pulse Width Modulation (PWM signal fed to the switches of single phase matrix converter. In the existing system a Fuzzy Logic Controller (FLC was designed to control the matrix converter which yielded low Total Harmonic Distortion (THD values when compared to previous systems. In this study a Neuro-Fuzzy Logic Controller was designed to control the single phase matrix converter and the results obtained prove its advantage over the existing Fuzzy Logic based control system.
Comparison of Fuzzy and Neuro Fuzzy Image Fusion Techniques and its Applications
Rao, D. Srinivasa; Seetha, M; Prasad, M. H. M. Krishna
2012-01-01
Image fusion is the process of integrating multiple images of the same scene into a single fused image to reduce uncertainty and minimizing redundancy while extracting all the useful information from the source images. Image fusion process is required for different applications like medical imaging, remote sensing, medical imaging, machine vision, biometrics and military applications where quality and critical information is required. In this paper, image fusion using fuzzy and neuro fuzzy lo...
Edge Detection with Neuro-Fuzzy Approach in Digital Synthesis Images
Directory of Open Access Journals (Sweden)
Fatma ZRIBI
2016-04-01
Full Text Available This paper presents an enhanced Neuro-Fuzzy (NF Approach of edge detection with an analysis of the characteristic of the method. The specificity of our method is an enhancement of the learning database of the diagonal edges compared to the original learning database. The original inspired NF edge detection model uses just one image learning database realized by Emin Yuksel. The tests are accomplished in synthesis images with a noised one of 20% of Gaussian noise.
CLASSIFICATION OF EEG SIGNAL DATA USING HYBRID OF NEURO-FUZZY
Pratibha Rana*, Ms. Jyotsna Singh
2016-01-01
Brain Computing interface technology represents a very highly growing field now-a-days for the research because of its unique applications system. In this paper we investigate classification methods of mental commands based on EEG data for BCI. The aim of this study is to present the work of training an artificial neural network (ANN) and Neuro-Fuzzy system provided with the data of a few healthy people who are in different mental states thinking about different activities like eating, walkin...
A Neuro-Fuzzy Approach to Classification of ECG Signals for Ischemic Heart Disease Diagnosis
Neagoe, Victor-Emil; Iatan, Iuliana-Florentina; Grunwald, Sorin
2003-01-01
The paper focuses on the neuro-fuzzy classifier called Fuzzy-Gaussian Neural Network (FGNN) to recognize the ECG signals for Ischemic Heart Disease (IHD) diagnosis. The proposed ECG processing cascade has two main stages: (a) Feature extraction from the QRST zone of ECG signals using either the Principal Component Analysis (PCA) or the Discrete Cosine Transform (DCT); (b) Pattern classification for IHD diagnosis using the FGNN. We have performed the software implementation and have experiment...
Evaluating Loans Using a Combination of Data Envelopment and Neuro-Fuzzy Systems
Rashmi Malhotra; D. K. Malhotra
2015-01-01
A business organization's objective is to make better decisions at all levels of the firm to improve performance. Typically organizations are multi-faceted and complex systems that use uncertain information. Therefore, making quality decisions to improve organizational performance is a daunting task. Organizations use decision support systems that apply different business intelligence techniques such as statistical models, scoring models, neural networks, expert systems, neuro-fuzzy systems, ...
NEURO FUZZY LINK BASED CLASSIFIER FOR THE ANALYSIS OF BEHAVIOR MODELS IN SOCIAL NETWORKS
Directory of Open Access Journals (Sweden)
Indira Priya Ponnuvel
2014-01-01
Full Text Available In this study, a new link based classifier using neuro fuzzy logic has been proposed for analyzing the social behavior based on Weblog dataset. In this system, data are processed using a multistage structure. This system provides a diagnosis using a neuro fuzzy link based classifier that analyses the user’s behavior to specific diagnostic categories based on their cluster category in social networks. It uses random walks method to organize the labels. Since the links present in the social network graph frequently represent relationships among the users with respect to social contacts and behaviours, this work observes the links of the graph in order to identify the relationships represented in the graph between the users of the social network based on some new social network metrics and the past behaviour of the users. This work is useful to provide connection between consolidated features of users based on network data and also using the traditional metrics used in the analysis of social network users. From the experiments conducted in this research work, it is observed that the proposed work provides better classification accuracy due to the application of neuro fuzzy classification method in link analysis.
Directory of Open Access Journals (Sweden)
Winters Jack M
2005-06-01
Full Text Available Abstract Background Intelligent management of wearable applications in rehabilitation requires an understanding of the current context, which is constantly changing over the rehabilitation process because of changes in the person's status and environment. This paper presents a dynamic recurrent neuro-fuzzy system that implements expert-and evidence-based reasoning. It is intended to provide context-awareness for wearable intelligent agents/assistants (WIAs. Methods The model structure includes the following types of signals: inputs, states, outputs and outcomes. Inputs are facts or events which have effects on patients' physiological and rehabilitative states; different classes of inputs (e.g., facts, context, medication, therapy have different nonlinear mappings to a fuzzy "effect." States are dimensionless linguistic fuzzy variables that change based on causal rules, as implemented by a fuzzy inference system (FIS. The FIS, with rules based on expertise and evidence, essentially defines the nonlinear state equations that are implemented by nuclei of dynamic neurons. Outputs, a function of weighing of states and effective inputs using conventional or fuzzy mapping, can perform actions, predict performance, or assist with decision-making. Outcomes are scalars to be extremized that are a function of outputs and states. Results The first example demonstrates setup and use for a large-scale stroke neurorehabilitation application (with 16 inputs, 12 states, 5 outputs and 3 outcomes, showing how this modelling tool can successfully capture causal dynamic change in context-relevant states (e.g., impairments, pain as a function of input event patterns (e.g., medications. The second example demonstrates use of scientific evidence to develop rule-based dynamic models, here for predicting changes in muscle strength with short-term fatigue and long-term strength-training. Conclusion A neuro-fuzzy modelling framework is developed for estimating
Feature Selection Based on Adaptive Fuzzy Membership Functions%基于自适应隶属度函数的特征选择
Institute of Scientific and Technical Information of China (English)
谢衍涛; 桑农; 张天序
2006-01-01
Neuro-fuzzy (NF) networks are adaptive fuzzy inference systems (FIS) and have been applied to feature selection by some researchers. However, their rule number will grow exponentially as the data dimension increases. On the other hand, feature selection algorithms with artificial neural networks (ANN) usually require normalization of input data, which will probably change some characteristics of original data that are important for classification. To overcome the problems mentioned above, this paper combines the fuzzification layer of the neuro-fuzzy system with the multi-layer perceptron (MLP) to form a new artificial neural network. Furthermore, fuzzification strategy and feature measurement based on membership space are proposed for feature selection.Finally, experiments with both natural and artificial data are carried out to compare with other methods, and the results approve the validity of the algorithm.
Evaluating Loans Using a Combination of Data Envelopment and Neuro-Fuzzy Systems
Directory of Open Access Journals (Sweden)
Rashmi Malhotra
2015-02-01
Full Text Available A business organization's objective is to make better decisions at all levels of the firm to improve performance. Typically organizations are multi-faceted and complex systems that use uncertain information. Therefore, making quality decisions to improve organizational performance is a daunting task. Organizations use decision support systems that apply different business intelligence techniques such as statistical models, scoring models, neural networks, expert systems, neuro-fuzzy systems, case-based systems, or simply rules that have been developed through experience. Managers need a decision-making approach that is robust, competent, effective, efficient, and integrative to handle the multi-dimensional organizational entities. The decision maker deals with multiple players in an organization such as products, customers, competitors, location, geographic structure, scope, internal organization, and cultural dimension [46]. Sound decisions include two important concepts: efficiency (return on invested resources and effectiveness (reaching predetermined goals. However, quite frequently, the decision maker cannot simultaneously handle data from different sources. Hence, we recommend that managers analyze different aspects of data from multiple sources separately and integrate the results of the analysis. This study proposes the design of a multi-attribute-decision-support-system that combines the analytical power of two different tools: data envelopment analysis (DEA and fuzzy logic. DEA evaluates and measures the relative efficiency of decision making units that use multiple inputs and outputs to provide non-objective measures without making any specific assumptions about data. On the other hand fuzzy logic's main strength lies in handling imprecise data. This study proposes a modeling technique that jointly uses the two techniques to benefit from the two methodologies. A major advantage of the DEA approach is that it clearly identifies the
Terrorism Event Classification Using Fuzzy Inference Systems
Inyaem, Uraiwan; Meesad, Phayung; Tran, Dat
2010-01-01
Terrorism has led to many problems in Thai societies, not only property damage but also civilian casualties. Predicting terrorism activities in advance can help prepare and manage risk from sabotage by these activities. This paper proposes a framework focusing on event classification in terrorism domain using fuzzy inference systems (FISs). Each FIS is a decision-making model combining fuzzy logic and approximate reasoning. It is generated in five main parts: the input interface, the fuzzification interface, knowledge base unit, decision making unit and output defuzzification interface. Adaptive neuro-fuzzy inference system (ANFIS) is a FIS model adapted by combining the fuzzy logic and neural network. The ANFIS utilizes automatic identification of fuzzy logic rules and adjustment of membership function (MF). Moreover, neural network can directly learn from data set to construct fuzzy logic rules and MF implemented in various applications. FIS settings are evaluated based on two comparisons. The first evaluat...
Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model.
Directory of Open Access Journals (Sweden)
Georgina Cosma
Full Text Available The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA level, the biopsy most common tumor pattern (Primary Gleason pattern and the second most common tumor pattern (Secondary Gleason pattern in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD or Extra-Prostatic Disease (ED using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC, with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812. The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR
Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model
Acampora, Giovanni; Brown, David; Rees, Robert C.
2016-01-01
The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA) level, the biopsy most common tumor pattern (Primary Gleason pattern) and the second most common tumor pattern (Secondary Gleason pattern) in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD) or Extra-Prostatic Disease (ED) using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA) Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC) points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC), with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812). The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR = 0.032, TPR
A neuro-fuzzy system for isolated hand-written digit recognition
Pinzolas, Miguel; Astrain Escola, José Javier; Villadangos Alonso, Jesús; González de Mendívil, José Ramón
2001-01-01
A neuro-fuzzy system for isolated hand-written digit recognition using a similarity fuzzy measure is presented. The system is composed of two main blocks: a first block that normalizes the input and compares it with a set of fuzzy patterns, and a second block with a multilayer perceptron to perform a neuronal classification. The comparison with the fuzzy patterns is performed via a fuzzy similarity measure that uses the Yager parametric t-norms and t-conorms. Along this work...
A Neuro-Fuzzy based System for Classification of Natural Textures
Jiji, G. Wiselin
2016-06-01
A statistical approach based on the coordinated clusters representation of images is used for classification and recognition of textured images. In this paper, two issues are being addressed; one is the extraction of texture features from the fuzzy texture spectrum in the chromatic and achromatic domains from each colour component histogram of natural texture images and the second issue is the concept of a fusion of multiple classifiers. The implementation of an advanced neuro-fuzzy learning scheme has been also adopted in this paper. The results of classification tests show the high performance of the proposed method that may have industrial application for texture classification, when compared with other works.
A new neuro-fuzzy training algorithm for identifying dynamic characteristics of smart dampers
International Nuclear Information System (INIS)
This paper proposes a new algorithm, named establishing neuro-fuzzy system (ENFS), to identify dynamic characteristics of smart dampers such as magnetorheological (MR) and electrorheological (ER) dampers. In the ENFS, data clustering is performed based on the proposed algorithm named partitioning data space (PDS). Firstly, the PDS builds data clusters in joint input–output data space with appropriate constraints. The role of these constraints is to create reasonable data distribution in clusters. The ENFS then uses these clusters to perform the following tasks. Firstly, the fuzzy sets expressing characteristics of data clusters are established. The structure of the fuzzy sets is adjusted to be suitable for features of the data set. Secondly, an appropriate structure of neuro-fuzzy (NF) expressed by an optimal number of labeled data clusters and the fuzzy-set groups is determined. After the ENFS is introduced, its effectiveness is evaluated by a prediction-error-comparative work between the proposed method and some other methods in identifying numerical data sets such as ‘daily data of stock A’, or in identifying a function. The ENFS is then applied to identify damping force characteristics of the smart dampers. In order to evaluate the effectiveness of the ENFS in identifying the damping forces of the smart dampers, the prediction errors are presented by comparing with experimental results. (paper)
NEURO FUZZY MODEL FOR FACE RECOGNITION WITH CURVELET BASED FEATURE IMAGE
Directory of Open Access Journals (Sweden)
SHREEJA R,
2011-06-01
Full Text Available A facial recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame from a video source. One of the ways to do this is by comparing selected facial features from the image and a facial database. It is typically used in security systems and can be compared to other biometric techniques such as fingerprint or iris recognition systems. Every face has approximately 80 nodal points like (Distance between the eyes, Width of the nose etc.The basic face recognition system capture the sample, extract feature, compare template and perform matching. In this paper two methods of face recognition are compared- neural networks and neuro fuzzy method. For this curvelet transform is used for feature extraction. Feature vector is formed by extracting statistical quantities of curve coefficients. From the statistical results it is concluded that neuro fuzzy method is the better technique for face recognition as compared to neural network.
Directory of Open Access Journals (Sweden)
Bayu Prasetyo Wibowo
2014-03-01
Full Text Available Penggunaan bahan bakar minyak untuk kendaraan bermotor yang semakin meningkat menyebabkan semakin menurunnya stok bahan bakar minyak di dunia. Hal ini menyebabkan terjadinya krisis energi di dunia.Selainitu, semakin banyaknya penggunaan bahan bakar minyak pada kendaraan bermotor menyebabkan semakin meningkatnya polusi udara. Polusi yang dihasilkan oleh kendaraan bermotor akan menyebabkan global warming sehingga suhu di atmosfer bumi akan meningkat. Dalam upaya menanggulangi krisis energi dan bahaya global warming yang dihasilkan oleh kendaraan bermotor, maka diciptakan suatu kendaraan alternatif yang hemat energi dan ramah lingkungan yang disebut Hybrid Electric Vehicle (HEV. HEV merupakan suatu kendaraan yang menggunakan Internal Combustion Engine (ICE dan motor listrik sebagai motor penggeraknya. Salah satu permasalahan yang masih terjadi pada HEV yaitu akselerasi. Kontroler Neuro-Fuzzy Prediktif digunakan untuk mengatur kecepatan motor DC ketika proses akselerasi HEV. Berdasarkan hasil pengujian didapatkan respon kecepatan HEV dapat mencapai model referensi yang diberikan pada t = 0,051 s sehingga dapat disimpulkan kontroler Neuro-Fuzzy Prediktif dapat mempercepat akselerasi pada HEV.
Securing jammed network using reliability behavior value through neuro-fuzzy analysis
Indian Academy of Sciences (India)
S Raja Ratna; R Ravi
2015-06-01
Wireless multi-hop networks are often exposed to serious physical layer jamming attack. In this attack, the jammer node corrupts the packet by injecting high level of noise and keeps the channel busy and thus blocks the legitimate communication. If multiple jammers collude together, this attack will become very severe. To prevent this attack, a simple yet effective Reliability Behavior Neuro-Fuzzy system has been proposed and it operates in three modules. In module one, each route node obtains its behavior value from the route path and neighboring paths using direct and indirect behavior observations. In module two, based on the behavior value, three factor identification methods have been presented to identify the reliability value of nodes. In module three, using the reliability value the route nodes are level positioned and classified into groups by a neuro-fuzzy classifier. By simulation studies, it is observed that the proposed scheme significantly not only identifies misbehaving nodes with higher detection rate and lower false positive and but also achieves higher network throughput and lower jamming throughput.
Performance Enhancement of Intrusion Detection using Neuro - Fuzzy Intelligent System
Directory of Open Access Journals (Sweden)
Dr. K. S. Anil Kumar
2014-10-01
Full Text Available This research work aims at developing hybrid algorithms using data mining techniques for the effective enhancement of anomaly intrusion detection performance. Many proposed algorithms have not addressed their reliability with varying amount of malicious activity or their adaptability for real time use. The study incorporates a theoretical basis for improvement in performance of IDS using K-medoids Algorithm, Fuzzy Set Algorithm, Fuzzy Rule System and Neural Network techniques. Also statistical significance of estimates has been looked into for finalizing the best one using DARPA network traffic datasets.
Energy Technology Data Exchange (ETDEWEB)
Sarrafan, Atabak; Zareh, Seiyed Hamid; Khayyat, Amir Ali Akbar; Zabihollah, Abolghassem [Sharif University of Technology, Teheran (Iran, Islamic Republic of)
2012-04-15
Magnetorheological (MR) damper is a prominent semi-active control device to vibrate mitigation of structures. Due to the inherent non-linear nature of MR damper, an intelligent non-linear neuro-fuzzy control strategy is designed to control wave-induced vibration of an offshore steel jacket platform equipped with MR dampers. In the proposed control system, a dynamic-feedback neural network is adapted to model non-linear dynamic system, and the fuzzy logic controller is used to determine the control forces of MR dampers. By use of two feed forward neural networks required voltages and actual MR damper forces are obtained, in which the first neural network and the second one acts as the inverse dynamics model, and the forward dynamics model of the MR dampers, respectively. The most important characteristic of the proposed intelligent control strategy is its inherent robustness and its ability to handle the non-linear behavior of the system. Besides, no mathematical model needed to calculate forces produced by MR dampers. According to linearized Morison equation, wave-induced forces are determined. The performance of the proposed neuro-fuzzy control system is compared with that of a traditional semi-active control strategy, i.e., clipped optimal control system with LQG-target controller, through computer simulations, while the uncontrolled system response is used as the baseline. It is demonstrated that the design of proposed control system framework is more effective than that of the clipped optimal control scheme with LQG-target controller to reduce the vibration of offshore structure. Furthermore, the control strategy is very important for semi-active control.
International Nuclear Information System (INIS)
Magnetorheological (MR) damper is a prominent semi-active control device to vibrate mitigation of structures. Due to the inherent non-linear nature of MR damper, an intelligent non-linear neuro-fuzzy control strategy is designed to control wave-induced vibration of an offshore steel jacket platform equipped with MR dampers. In the proposed control system, a dynamic-feedback neural network is adapted to model non-linear dynamic system, and the fuzzy logic controller is used to determine the control forces of MR dampers. By use of two feed forward neural networks required voltages and actual MR damper forces are obtained, in which the first neural network and the second one acts as the inverse dynamics model, and the forward dynamics model of the MR dampers, respectively. The most important characteristic of the proposed intelligent control strategy is its inherent robustness and its ability to handle the non-linear behavior of the system. Besides, no mathematical model needed to calculate forces produced by MR dampers. According to linearized Morison equation, wave-induced forces are determined. The performance of the proposed neuro-fuzzy control system is compared with that of a traditional semi-active control strategy, i.e., clipped optimal control system with LQG-target controller, through computer simulations, while the uncontrolled system response is used as the baseline. It is demonstrated that the design of proposed control system framework is more effective than that of the clipped optimal control scheme with LQG-target controller to reduce the vibration of offshore structure. Furthermore, the control strategy is very important for semi-active control
A neuro-fuzzy architecture for real-time applications
Ramamoorthy, P. A.; Huang, Song
1992-01-01
Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach.
International Nuclear Information System (INIS)
Highlights: • Film formation of Zr-based conversion coating under different conditions was investigated. • We study the effect of some parameters on anticorrosion performance of conversion coating. • Optimization of processing conditions for surface treatment of galvanized steel was obtained. • Modeling and predicting corrosion current density of treated surfaces was performed using ANN and ANFIS. - Abstract: A nano-ceramic Zr-based conversion solution was prepared and optimization of Zr concentration, pH, temperature and immersion time for the treatment of hot-dip galvanized steel (HDG) was performed. SEM microscopy was utilized to investigate the microstructure and film formation of the layer and the anticorrosion performance of conversion coating was studied using polarization test. Artificial intelligence systems (ANN and ANFIS) were applied on the data obtained from polarization test and the models for predicting corrosion current density values were attained. The outcome of these models showed proper predictability of the methods. The influence of input parameters was discussed and the optimized conditions for Zr-based conversion layer formation on the galvanized steel were obtained as follows: pH 3.8–4.5, Zr concentration of about 100 ppm, ambient temperature and immersion time of about 90 s
Energy Technology Data Exchange (ETDEWEB)
Mousavifard, S.M. [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Attar, M.M., E-mail: attar@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, A. [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Dadgar, M. [Textile Engineering Department, Neyshabur University, Neyshabur (Iran, Islamic Republic of)
2015-08-05
Highlights: • Film formation of Zr-based conversion coating under different conditions was investigated. • We study the effect of some parameters on anticorrosion performance of conversion coating. • Optimization of processing conditions for surface treatment of galvanized steel was obtained. • Modeling and predicting corrosion current density of treated surfaces was performed using ANN and ANFIS. - Abstract: A nano-ceramic Zr-based conversion solution was prepared and optimization of Zr concentration, pH, temperature and immersion time for the treatment of hot-dip galvanized steel (HDG) was performed. SEM microscopy was utilized to investigate the microstructure and film formation of the layer and the anticorrosion performance of conversion coating was studied using polarization test. Artificial intelligence systems (ANN and ANFIS) were applied on the data obtained from polarization test and the models for predicting corrosion current density values were attained. The outcome of these models showed proper predictability of the methods. The influence of input parameters was discussed and the optimized conditions for Zr-based conversion layer formation on the galvanized steel were obtained as follows: pH 3.8–4.5, Zr concentration of about 100 ppm, ambient temperature and immersion time of about 90 s.
Application of Adaptive Neuro-fuzzy Inference System in Position Servosystem%自适应神经模糊网络及其在位置伺服系统中的应用
Institute of Scientific and Technical Information of China (English)
王培良; 曹红苹
2005-01-01
针对一种旋转位置伺服系统,提出了基于T-S模型的自适应神经-模糊推理系统(ANFIS)的控制方法.文章讨论了ANFIS网络的结构和学习算法,并在MATLAB的Simulink环境下,实现了对系统的实时控制.实验结果表明,训练后的ANFIS能很好地控制实际的对象.
Kurtulus, Bedri; Razack, Moumtaz
2010-02-01
SummaryThis paper compares two methods for modeling karst aquifers, which are heterogeneous, highly non-linear, and hierarchical systems. There is a clear need to model these systems given the crucial role they play in water supply in many countries. In recent years, the main components of soft computing (fuzzy logic (FL), and Artificial Neural Networks, (ANNs)) have come to prevail in the modeling of complex non-linear systems in different scientific and technologic disciplines. In this study, Artificial Neural Networks and Adaptive Neuro-Fuzzy Interface System (ANFIS) methods were used for the prediction of daily discharge of karstic aquifers and their capability was compared. The approach was applied to 7 years of daily data of La Rochefoucauld karst system in south-western France. In order to predict the karst daily discharges, single-input (rainfall, piezometric level) vs. multiple-input (rainfall and piezometric level) series were used. In addition to these inputs, all models used measured or simulated discharges from the previous days with a specified delay. The models were designed in a Matlab™ environment. An automatic procedure was used to select the best calibrated models. Daily discharge predictions were then performed using the calibrated models. Comparing predicted and observed hydrographs indicates that both models (ANN and ANFIS) provide close predictions of the karst daily discharges. The summary statistics of both series (observed and predicted daily discharges) are comparable. The performance of both models is improved when the number of inputs is increased from one to two. The root mean square error between the observed and predicted series reaches a minimum for two-input models. However, the ANFIS model demonstrates a better performance than the ANN model to predict peak flow. The ANFIS approach demonstrates a better generalization capability and slightly higher performance than the ANN, especially for peak discharges.
Neuro fuzzy force control for soft dry contact Hertzian ultrasonic probe
Gallegos, E.; Baltazar, A.; Treesatayapun, C.
2016-02-01
In this work the use of a cartesian robotic manipulator as scanner for the automated identification of hidden defects in an aluminum test plate is proposed. The robotic manipulator includes a custom made soft deformable ultrasonic probe and a force sensor for the recollection of the ultrasonic signals and force feedback. The contact between the soft probe and the test plate is regulated using a Neuro Fuzzy controller in order to avoid the complex mathematical model produced by the interaction. Finally the use of the correlation coefficient is proposed for the post processing of the obtained ultrasonic signals and identification of hidden defects inside the test plate. Experimental studies demonstrated the efficiency of the method.
Prediction of photonic crystal fiber characteristics by Neuro-Fuzzy system
Pourmahyabadi, M.; Mohammad Nejad, S.
2009-10-01
The most common methods applied in the analysis of photonic crystal fibers (PCFs) are finite difference time/frequency domain (FDTD/FDFD) method and finite element method (FEM). These methods are very general and reliable (well tested). They describe arbitrary structure but are numerically intensive and require detailed treatment of boundaries and complex definition of calculation mesh. So these conventional models that simulate the photonic response of PCFs are computationally expensive and time consuming. Therefore, a practical design process with trial and error cannot be done in a reasonable amount of time. In this article, an artificial intelligence method such as Neuro-Fuzzy system is used to establish a model that can predict the properties of PCFs. Simulation results show that this model is remarkably effective in predicting the properties of PCF such as dispersion, dispersion slope and loss over the C communication band.
Vaganova, E. V.; Syryamkin, M. V.
2015-11-01
The purpose of the research is the development of evolutionary algorithms for assessments of promising scientific directions. The main attention of the present study is paid to the evaluation of the foresight possibilities for identification of technological peaks and emerging technologies in professional medical equipment engineering in Russia and worldwide on the basis of intellectual property items and neural network modeling. An automated information system consisting of modules implementing various classification methods for accuracy of the forecast improvement and the algorithm of construction of neuro-fuzzy decision tree have been developed. According to the study result, modern trends in this field will focus on personalized smart devices, telemedicine, bio monitoring, «e-Health» and «m-Health» technologies.
Extracting TSK-type Neuro-Fuzzy model using the Hunting search algorithm
Bouzaida, Sana; Sakly, Anis; M'Sahli, Faouzi
2014-01-01
This paper proposes a Takagi-Sugeno-Kang (TSK) type Neuro-Fuzzy model tuned by a novel metaheuristic optimization algorithm called Hunting Search (HuS). The HuS algorithm is derived based on a model of group hunting of animals such as lions, wolves, and dolphins when looking for a prey. In this study, the structure and parameters of the fuzzy model are encoded into a particle. Thus, the optimal structure and parameters are achieved simultaneously. The proposed method was demonstrated through modeling and control problems, and the results have been compared with other optimization techniques. The comparisons indicate that the proposed method represents a powerful search approach and an effective optimization technique as it can extract the accurate TSK fuzzy model with an appropriate number of rules.
FPGA implementation of neuro-fuzzy system with improved PSO learning.
Karakuzu, Cihan; Karakaya, Fuat; Çavuşlu, Mehmet Ali
2016-07-01
This paper presents the first hardware implementation of neuro-fuzzy system (NFS) with its metaheuristic learning ability on field programmable gate array (FPGA). Metaheuristic learning of NFS for all of its parameters is accomplished by using the improved particle swarm optimization (iPSO). As a second novelty, a new functional approach, which does not require any memory and multiplier usage, is proposed for the Gaussian membership functions of NFS. NFS and its learning using iPSO are implemented on Xilinx Virtex5 xc5vlx110-3ff1153 and efficiency of the proposed implementation tested on two dynamic system identification problems and licence plate detection problem as a practical application. Results indicate that proposed NFS implementation and membership function approximation is as effective as the other approaches available in the literature but requires less hardware resources. PMID:27136666
Decision Support System for the Intelligient Identification of Alzheimer using Neuro Fuzzy logic
Directory of Open Access Journals (Sweden)
Obi J.C
2011-05-01
Full Text Available Alzheimer Disease (AD is a form of dementia; it is a progressive, degenerative disease. Alzheimer is abrain disease that causes problems with memory, thinking and behavior. It is severe enough to interferewith daily activities. Alzheimer symptoms are characterized by memory loss that affects day-to-dayfunction, difficulty performing familiar tasks, problems with language, disorientation of time and place,poor or decreased judgment, problems with abstract thinking, misplacing things, changes in mood andbehavior, changes in personality and loss of initiative. Neuro-Fuzzy Logic explores approximationtechniques from neural networks to find the parameter of a fuzzy system. In this paper, the traditionalprocedure for the medical diagnosis of Alzheimer employed by physician is analyzed using neuro-fuzzyinference procedure. The proposed system is a useful decision support approach for the diagnosis ofAlzheimer.
A neuro-fuzzy controller for xenon spatial oscillations in load-following operation
Energy Technology Data Exchange (ETDEWEB)
Na, Man Gyun [Chosun University, Kwangju (Korea, Republic of); Upadhyaya, Belle R. [The University of Tennessee, Knoxville (United States)
1997-12-31
A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent method. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very responses to a step or a ramp change of target axial offest without any residual flux oscillations. 9 refs., 5 figs. (Author)
Institute of Scientific and Technical Information of China (English)
Hasan ABBASI NOZARI; Hamed DEHGHAN BANADAKI; Mohammad MOKHTARE; Somaveh HEKMATI VAHED
2012-01-01
This study deals with the neuro-fuzzy (NF) modelling of a real industrial winding process in which the acquired NF model can be exploited to improve control performance and achieve a robust fault-tolerant system.A new simulator model is proposed for a winding process using non-linear identification based on a recurrent local linear neuro-fuzzy (RLLNF) network trained by local linear model tree (LOLIMOT),which is an incremental tree-based learning algorithm.The proposed NF models are compared with other known intelligent identifiers,namely multilayer perceptron (MLP) and radial basis function (RBF).Comparison of our proposed non-linear models and associated models obtained through the least square error (LSE) technique (the optimal modelling method for linear systems) confirms that the winding process is a non-linear system.Experimental results show the effectiveness of our proposed NF modelling approach.
An efficient Neuro-Fuzzy approach to nuclear power plant transient identification
International Nuclear Information System (INIS)
Highlights: → We investigate a Neuro-Fuzzy modeling tool use for able transient identification. → The prelusive transient type identification is done by an artificial neural network. → After, the fuzzy-logic system analyzes the results emitting reliability degree of it. → The research support was made in a PWR simulator at the Brazilian Nuclear Engineering Institute. → The results show the potential to help operators' decisions in a nuclear power plant. - Abstract: Transient identification in nuclear power plants (NPP) is often a computational very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in NPPs. The bases for the transient identification relay on the evidence that different system faults and anomalies lead to different pattern evolution in the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments that represents a specific type of event. Recently, several works have been developed for transient identification. These works frequently present a non reliable response, using the 'don't know' as the system output. In this work, we investigate the possibility of using a Neuro-Fuzzy modeling tool for efficient transient identification, aiming to helping the operator crew to take decisions relative to the procedure to be followed in situations of accidents/transients at NPPs. The proposed system uses artificial neural networks (ANN) as first level transient diagnostic. After the ANN has done the preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. A validation of this identification system was made at the three loops Pressurized Water Reactor (PWR) simulator of the Human-System Interface Laboratory (LABIHS) of the Nuclear Engineering Institute (IEN
An efficient Neuro-Fuzzy approach to nuclear power plant transient identification
Energy Technology Data Exchange (ETDEWEB)
Gomes da Costa, Rafael [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Abreu Mol, Antonio Carlos de, E-mail: mol@ien.gov.br [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Instituto Nacional de C and T de Reatores Nucleares Inovadores (Brazil); Carvalho, Paulo Victor R. de, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Lapa, Celso Marcelo Franklin, E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Instituto Nacional de C and T de Reatores Nucleares Inovadores (Brazil)
2011-06-15
Highlights: > We investigate a Neuro-Fuzzy modeling tool use for able transient identification. > The prelusive transient type identification is done by an artificial neural network. > After, the fuzzy-logic system analyzes the results emitting reliability degree of it. > The research support was made in a PWR simulator at the Brazilian Nuclear Engineering Institute. > The results show the potential to help operators' decisions in a nuclear power plant. - Abstract: Transient identification in nuclear power plants (NPP) is often a computational very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in NPPs. The bases for the transient identification relay on the evidence that different system faults and anomalies lead to different pattern evolution in the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments that represents a specific type of event. Recently, several works have been developed for transient identification. These works frequently present a non reliable response, using the 'don't know' as the system output. In this work, we investigate the possibility of using a Neuro-Fuzzy modeling tool for efficient transient identification, aiming to helping the operator crew to take decisions relative to the procedure to be followed in situations of accidents/transients at NPPs. The proposed system uses artificial neural networks (ANN) as first level transient diagnostic. After the ANN has done the preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. A validation of this identification system was made at the three loops Pressurized Water Reactor (PWR) simulator of the Human-System Interface Laboratory (LABIHS) of the Nuclear Engineering Institute
An Improvement of Empirical Risk Functional in Neuro-Fuzzy Classifier
Directory of Open Access Journals (Sweden)
Elham Zamani
2013-09-01
Full Text Available This paper suggests a new method to improve of Empirical Risk Functional . Empirical Risk Functional acts as cost function for training neuro-fuzzy classifiers. Empirical risk minimization seeks the function that best fits the training data and it is equivalent to maximum likelihood estimation. The name of this cost function is Approximate Differentiable Empirical Risk Functional (ADERF.This function enables us to use a differentiable approximation of the misclassification rate so that the Empirical Risk Minimization Principle formulated in Statistical Learning Theory can be applied. Also there is a learning algorithm based on ADERF. With our new method,more component of output vector of fuzzy classifier map to 1.By evaluating the effects of the proposed method, we can see the convergence speed of the learning algorithm and the classification accuracy are improved,and causes improved ADERF. The effects of improved ADERF, was illustrated. Experimental results on a number of benchmark classification tasks and comparison between approaches are provided
Directory of Open Access Journals (Sweden)
Manjunatha K.C.
2015-03-01
Full Text Available A computer vision-based automated fire detection and suppression system for manufacturing industries is presented in this paper. Automated fire suppression system plays a very significant role in Onsite Emergency System (OES as it can prevent accidents and losses to the industry. A rule based generic collective model for fire pixel classification is proposed for a single camera with multiple fire suppression chemical control valves. Neuro-Fuzzy algorithm is used to identify the exact location of fire pixels in the image frame. Again the fuzzy logic is proposed to identify the valve to be controlled based on the area of the fire and intensity values of the fire pixels. The fuzzy output is given to supervisory control and data acquisition (SCADA system to generate suitable analog values for the control valve operation based on fire characteristics. Results with both fire identification and suppression systems have been presented. The proposed method achieves up to 99% of accuracy in fire detection and automated suppression.
Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A
2012-01-01
Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.
Kher, Rahul; Pawar, Tanmay; Thakar, Vishvjit; Shah, Hitesh
2015-02-01
The use of wearable recorders for long-term monitoring of physiological parameters has increased in the last few years. The ambulatory electrocardiogram (A-ECG) signals of five healthy subjects with four body movements or physical activities (PA)-left arm up down, right arm up down, waist twisting and walking-have been recorded using a wearable ECG recorder. The classification of these four PAs has been performed using neuro-fuzzy classifier (NFC) and support vector machines (SVM). The PA classification is based on the distinct, time-frequency features of the extracted motion artifacts contained in recorded A-ECG signals. The motion artifacts in A-ECG signals have been separated first by the discrete wavelet transform (DWT) and the time-frequency features of these motion artifacts have then been extracted using the Gabor transform. The Gabor energy feature vectors have been fed to the NFC and SVM classifiers. Both the classifiers have achieved a PA classification accuracy of over 95% for all subjects. PMID:25641014
Macroscopic Rock Texture Image Classification Using a Hierarchical Neuro-Fuzzy Class Method
Directory of Open Access Journals (Sweden)
Laercio B. Gonçalves
2010-01-01
Full Text Available We used a Hierarchical Neuro-Fuzzy Class Method based on binary space partitioning (NFHB-Class Method for macroscopic rock texture classification. The relevance of this study is in helping Geologists in the diagnosis and planning of oil reservoir exploration. The proposed method is capable of generating its own decision structure, with automatic extraction of fuzzy rules. These rules are linguistically interpretable, thus explaining the obtained data structure. The presented image classification for macroscopic rocks is based on texture descriptors, such as spatial variation coefficient, Hurst coefficient, entropy, and cooccurrence matrix. Four rock classes have been evaluated by the NFHB-Class Method: gneiss (two subclasses, basalt (four subclasses, diabase (five subclasses, and rhyolite (five subclasses. These four rock classes are of great interest in the evaluation of oil boreholes, which is considered a complex task by geologists. We present a computer method to solve this problem. In order to evaluate system performance, we used 50 RGB images for each rock classes and subclasses, thus producing a total of 800 images. For all rock classes, the NFHB-Class Method achieved a percentage of correct hits over 73%. The proposed method converged for all tests presented in the case study.
Directory of Open Access Journals (Sweden)
I Made Sajayasa
2009-05-01
Full Text Available Motor induksi tiga phasa, secara umum digunakan pada industri-industri besar sebagai alat untuk mengubah energi listrik menjadi energi mekanik yang digunakan untuk menggerakkan beban. Salah satu jenis gangguan dapat terjadi pada operasi atau kerja motor induksi tiga phasa yaitu terbukanya salah satuphasa penghantar pada rangkaian catu daya motor induksi tiga phasa. Kondisi seperti ini dapat menyebabkan kenaikan arus pada phasa normal yang dapat menimbulkan dan mengurangi kopel keluaran pada poros motor motorinduksi tiga phasa. Panas yang timbul akibat peningkatan arus phasa yang sehat dapat menyebabkan kenaikan temperatur pada motor induksi tiga phasa.Pada penelitian ini akan diamati perilaku motor induksi tiga phasa yang dioperasikan dengan dicatu sistem tiga phasa yang salah satu phasanya terganggu, antara lain perilaku arus, tegangan dan beban yang dikopel motor induksi tiga phasa yang disajikan melalui sistem pengendali Neuro Fuzzy System sebagai observer. Sistem pengemudian motor induksi disimulasikan dengan program komputer MatLab 6.1. Dari hasil simulasi diketahui bahwa sistemyang diusulkan memberikan performansi yang lebih baik daripada sistem kendali PI konvensional.
Improved control configuration of PWM rectifiers based on neuro-fuzzy controller.
Acikgoz, Hakan; Kececioglu, O Fatih; Gani, Ahmet; Yildiz, Ceyhun; Sekkeli, Mustafa
2016-01-01
It is well-known that rectifiers are used widely in many applications required AC/DC transformation. With technological advances, many studies are performed for AC/DC converters and many control methods are proposed in order to improve the performance of these rectifiers in recent years. Pulse width modulation (PWM) based rectifiers are one of the most popular rectifier types. PWM rectifiers have lower input current harmonics and higher power factor compared to classical diode and thyristor rectifiers. In this study, neuro-fuzzy controller (NFC) which has robust, nonlinear structure and do not require the mathematical model of the system to be controlled has been proposed for PWM rectifiers. Three NFCs are used in control scheme of proposed PWM rectifier in order to control the dq-axis currents and DC voltage of PWM rectifier. Moreover, simulation studies are carried out to demonstrate the performance of the proposed control scheme at MATLAB/Simulink environment in terms of rise time, settling time, overshoot, power factor, total harmonic distortion and power quality. PMID:27504240
Performance analysis of electronic power transformer based on neuro-fuzzy controller.
Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa
2016-01-01
In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions. PMID:27588243
Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling
Chiu, Stephen
1996-01-01
Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.
Development of Neuro-fuzzy System for Early Prediction of Heart Attack
Directory of Open Access Journals (Sweden)
Obanijesu Opeyemi
2012-08-01
Full Text Available This work is aimed at providing a neuro-fuzzy system for heart attack detection. Theneuro-fuzzy system was designed with eight input field and one output field. The input variables are heart rate, exercise, blood pressure, age, cholesterol, chest pain type, blood sugar and sex. The output detects the risk levels of patients which are classified into 4 different fields: very low, low, high and very high. The data set used was extracted from the database and modeled in order to make it appropriate for the training, then the initial FIS structure was generated, the network was trained with the set of training data after which it was tested and validated with the set of testing data. The output of the system was designed in a way that the patient can use it personally. The patient just need to supply some values which serve as input to the system and based on the values supplied the system will be able to predict the risk level of the patient.
Applying a neuro-fuzzy approach for transient identification in a nuclear power plant
Energy Technology Data Exchange (ETDEWEB)
Costa, Rafael G.; Mol, Antonio C.A.; Pereira, Claudio M.N.A.; Carvalho, Paulo V.R., E-mail: rgcosta@ien.gov.b, E-mail: mol@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: paulov@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2009-07-01
Transient identification in Nuclear Power Plant (NPP) is often a very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in NPPs. The bases for the transient identification relay on the evidence that different system faults and anomalies lead to different pattern evolution in the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments that represents a specific type of event. Several systems based on specialist systems, neural networks, and fuzzy logic have been developed for transient identification. In the work, we investigate the possibility of using a Neuro-Fuzzy modeling tool for efficient transient identification, aiming to helping the operator crew to take decisions relative to the procedure to be followed in situations of accidents/transients at NPPs. The proposed system uses artificial neural networks (ANN) as first level transient diagnostic. After the ANN has done the preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. A preliminary evaluation of the developed system was made at the Human-System Interface Laboratory (LABIHS). The obtained results show that the system can help the operators to take decisions during transients/accidents in the plant. (author)
Phase Angle Control of Three Level Inverter Based D-STATCOM Using Neuro-Fuzzy Controller
Directory of Open Access Journals (Sweden)
COTELI, R.
2012-02-01
Full Text Available Distribution Static Compensator (D-STATCOM is a shunt compensation device used to improve electric power quality in distribution systems. It is well-known that D-STATCOM is a nonlinear, semi-defined and time-varying system. Therefore, control of D-STATCOM by the conventional control techniques is very difficult task. In this paper, the control of D-STATCOM is carried out by the neuro-fuzzy controller (NFC which has non-linear and robust structure. For this aim, an experimental setup based on three-level H-bridge inverter is constructed. Phase angle control method is used for control of D-STATCOM's output reactive power. Control algorithm for this experimental setup is prepared in MATLAB/Simulink and downloaded to DS1103 controller card. A Mamdani type NFC is designed for control of D-STATCOM's reactive current. Output of NFC is integrated to increase tracking performance of controller in steady state. The performance of D-STATCOM is experimentally evaluated by changing reference reactive current as on-line. The experimental results show that the proposed controller gives very satisfactory performance under different loading conditions.
Julie, E Golden; Selvi, S Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269
Performance analysis of electronic power transformer based on neuro-fuzzy controller.
Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa
2016-01-01
In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions.
Directory of Open Access Journals (Sweden)
A. R Abdollahnejad Barough
2016-04-01
. Finally, a total amount of the second moment (m2 and matrix vectors of image were selected as features. Features and rules produced from decision tree fed into an Adaptable Neuro-fuzzy Inference System (ANFIS. ANFIS provides a neural network based on Fuzzy Inference System (FIS can produce appropriate output corresponding input patterns. Results and Discussion: The proposed model was trained and tested inside ANFIS Editor of the MATLAB software. 300 images, including closed shell, pithy and empty pistachio were selected for training and testing. This network uses 200 data related to these two features and were trained over 200 courses, the accuracy of the result was 95.8%. 100 image have been used to test network over 40 courses with accuracy 97%. The time for the training and testing steps are 0.73 and 0.31 seconds, respectively, and the time to choose the features and rules was 2.1 seconds. Conclusions: In this study, a model was introduced to sort non- split nuts, blank nuts and filled nuts pistachios. Evaluation of training and testing, shows that the model has the ability to classify different types of nuts with high precision. In the previously proposed methods, merely non-split and split pistachio nuts were sorted and being filled or blank nuts is unrecognizable. Nevertheless, accuracy of the mentioned method is 95.56 percent. As well as, other method sorted non-split and split pistachio nuts with an accuracy of 98% and 85% respectively for training and testing steps. The model proposed in this study is better than the other methods and it is encouraging for the improvement and development of the model.
Directory of Open Access Journals (Sweden)
P.Mithun
2013-04-01
Full Text Available In the recent years classification and compression plays a vital role in digital communication and their mishmash is handy for pull out explicit data and compress the classified data. In this paper weproposed a technique for mishmash of classification and compression in MRI brain images. Here we progress a computerized tumor recognition system for MRI brain images trailed by lossless compression technique in order to reduce the usage of data storage space. A neuro-fuzzy classifier is used to exploit and catalogue MRI brain based neoplasm and we use haar wavelet compression to compress the classified images.
Short-term and long-term thermal prediction of a walking beam furnace using neuro-fuzzy techniques
Directory of Open Access Journals (Sweden)
Banadaki Hamed Dehghan
2015-01-01
Full Text Available The walking beam furnace (WBF is one of the most prominent process plants often met in an alloy steel production factory and characterized by high non-linearity, strong coupling, time delay, large time-constant and time variation in its parameter set and structure. From another viewpoint, the WBF is a distributed-parameter process in which the distribution of temperature is not uniform. Hence, this process plant has complicated non-linear dynamic equations that have not worked out yet. In this paper, we propose one-step non-linear predictive model for a real WBF using non-linear black-box sub-system identification based on locally linear neuro-fuzzy (LLNF model. Furthermore, a multi-step predictive model with a precise long prediction horizon (i.e., ninety seconds ahead, developed with application of the sequential one-step predictive models, is also presented for the first time. The locally linear model tree (LOLIMOT which is a progressive tree-based algorithm trains these models. Comparing the performance of the one-step LLNF predictive models with their associated models obtained through least squares error (LSE solution proves that all operating zones of the WBF are of non-linear sub-systems. The recorded data from Iran Alloy Steel factory is utilized for identification and evaluation of the proposed neuro-fuzzy predictive models of the WBF process.
Paulchamy Balaiah; Ilavennila
2012-01-01
Problem statement: This study presents an effective method for removing mixed artifacts (EOG-Electro-ocular gram, ECG-Electrocardiogram, EMG-Electromyogram) from the EEG-Electroencephalogram records. The noise sources increases the difficulty in analyzing the EEG and obtaining clinical information. EEG signals are multidimensional, non-stationary (i.e., statistical properties are not invariant in time), time domain biological signals, which are not reproducible. It is supposed to contain info...
A comparative study of ANN and Neuro-fuzzy for the prediction of dynamic constant of rockmass
Indian Academy of Sciences (India)
T N Singh; R Kanchan; A K Verma; K Saigal
2005-02-01
Physico-mechanical properties of rocks have great significance in all operational parts in mining activities, from exploration to final dispatch of material. Compressional wave velocity (-wave velocity) and anisotropic behaviour of rocks are two such properties which help to understand the rock response under varying stress conditions. They also influence the breakage mechanism of rock. There are different methods to determine the -wave velocity and anisotropy in situ and in the laboratory. These methods are cumbersome and time consuming. Fuzzy set theory, Fuzzy logic and Neural Networks techniques seem very well suited for typical geotechnical problems. In conjunction with statistics and conventional mathematical methods, hybrid methods can be developed that may prove to be a step forward in modeling geotechnical problems. Here, we have developed and compared two di®erent models, Neuro-fuzzy systems (combination of fuzzy and artificial neural network systems) and Artificial neural network systems, for the prediction of compressional wave velocity.
Energy Technology Data Exchange (ETDEWEB)
Al-Hinti, I.; Sakhrieh, A. [Department of Mechanical Engineering, The Hashemite University, Zarqa 13115 (Jordan); Samhouri, M.; Al-Ghandoor, A. [Department of Industrial Engineering, The Hashemite University, Zarqa 13115 (Jordan)
2009-01-15
This paper uses a neuro-fuzzy interface system (ANFIS) to study the effect of boost pressure on the efficiency, brake mean effective pressure (BMEP), and the brake specific fuel consumption (BSFC) of a single cylinder diesel engine. Experimental data were used as inputs to ANFIS to simulate the engine performance characteristics. The experimental as well as the model results emphasize the role of boost pressure in improving the different engine characteristics. The results show that the ANFIS technique can be used adequately to identify the effect of boost pressure on the different engine characteristics. In addition, different data points that were not used for ANFIS training were used to validate the developed models. The results suggest that ANFIS can be used accurately to predict the effect of boost pressure on the different engine characteristics. (author)
Directory of Open Access Journals (Sweden)
Ashwani Kharola
2016-07-01
Full Text Available This paper illustrates a comparison study for control of highly non-linear Double Inverted Pendulum (DIP on cart. A Matlab-Simulink model of DIP has been built using Newton's second law. The Neuro-fuzzy controllers stabilizes pendulums at vertical position while cart moves in horizontal direction. This study proposes two soft-computing techniques namely Fuzzy logic reasoning and Neural networks (NN's for control of DIP systems. The results shows that Fuzzy controllers provides better results as compared to NN's controllers in terms of settling time (sec, maximum overshoot (degree and steady state error. The regression (R and mean square error (MSE values obtained after training of Neural network were satisfactory. The simulation results proves the validity of proposed techniques.
Tomato grading system using machine vision technology and neuro-fuzzy networks (ANFIS
Directory of Open Access Journals (Sweden)
H Izadi
2016-04-01
Full Text Available Introduction: The quality of agricultural products is associated with their color, size and health, grading of fruits is regarded as an important step in post-harvest processing. In most cases, manual sorting inspections depends on available manpower, time consuming and their accuracy could not be guaranteed. Machine Vision is known to be a useful tool for external features measurement (e.g. size, shape, color and defects and in recent century, Machine Vision technology has been used for shape sorting. The main purpose of this study was to develop new method for tomato grading and sorting using Neuro-fuzzy system (ANFIS and to compare the accuracies of the ANFIS predicted results with those suggested by a human expert. Materials and Methods: In this study, a total of 300 image of tomatoes (Rev ground was randomly harvested, classified in 3 ripeness stage, 3 sizes and 2 health. The grading and sorting mechanism consisted of a lighting chamber (cloudy sky, lighting source and a digital camera connected to a computer. The images were recorded in a special chamber with an indirect radiation (cloudy sky with four florescent lampson each sides and camera lens was entire to lighting chamber by a hole which was only entranced to outer and covered by a camera lens. Three types of features were extracted from final images; Shap, color and texture. To receive these features, we need to have images both in color and binary format in procedure shown in Figure 1. For the first group; characteristics of the images were analysis that could offer information an surface area (S.A., maximum diameter (Dmax, minimum diameter (Dmin and average diameters. Considering to the importance of the color in acceptance of food quality by consumers, the following classification was conducted to estimate the apparent color of the tomato; 1. Classified as red (red > 90% 2. Classified as red light (red or bold pink 60-90% 3. Classified as pink (red 30-60% 4. Classified as Turning
Active Inference, homeostatic regulation and adaptive behavioural control
Pezzulo, G; Rigoli, F.; Friston, K.
2015-01-01
We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a...
Lee, Jae-Neung; Lee, Myung-Won; Byeon, Yeong-Hyeon; Lee, Won-Sik; Kwak, Keun-Chang
2016-01-01
In this study, we classify four horse gaits (walk, sitting trot, rising trot, canter) of three breeds of horse (Jeju, Warmblood, and Thoroughbred) using a neuro-fuzzy classifier (NFC) of the Takagi-Sugeno-Kang (TSK) type from data information transformed by a wavelet packet (WP). The design of the NFC is accomplished by using a fuzzy c-means (FCM) clustering algorithm that can solve the problem of dimensionality increase due to the flexible scatter partitioning. For this purpose, we use the rider’s hip motion from the sensor information collected by inertial sensors as feature data for the classification of a horse’s gaits. Furthermore, we develop a coaching system under both real horse riding and simulator environments and propose a method for analyzing the rider’s motion. Using the results of the analysis, the rider can be coached in the correct motion corresponding to the classified gait. To construct a motion database, the data collected from 16 inertial sensors attached to a motion capture suit worn by one of the country’s top-level horse riding experts were used. Experiments using the original motion data and the transformed motion data were conducted to evaluate the classification performance using various classifiers. The experimental results revealed that the presented FCM-NFC showed a better accuracy performance (97.5%) than a neural network classifier (NNC), naive Bayesian classifier (NBC), and radial basis function network classifier (RBFNC) for the transformed motion data. PMID:27171098
Institute of Scientific and Technical Information of China (English)
Ahcene Boubakir; Fares Boudjema; Salim Labiod
2009-01-01
The aim of this paper is to develop a neuro-fuzzy-sliding mode controller (NFSMC) with a nonlinear sliding surface for a coupled tank system.The main purpose is to eliminate the chattering phenomenon and to overcome the problem of the equivalent control computation.A first-order nonlinear sliding surface is presented,on which the developed sliding mode controller (SMC) is based.Mathematical proof for the stability and convergence of the system is presented.In order to reduce the chattering in SMC,a fixed boundary layer around the switch surface is used.Within the boundary layer,where the fuzzy logic control is applied,the chattering phenomenon,which is inherent in a sliding mode control,is avoided by smoothing the switch signal.Outside the boundary,the sliding mode control is applied to drive the system states into the boundary layer.Moreover,to compute the equivalent controller,a feed-forward neural network (NN) is used.The weights of the net are updated such that the corrective control term of the NFSMC goes to zero.Then,this NN also alleviates the chattering phenomenon because a big gain in the corrective control term produces a more serious chattering than a small gain.Experimental studies carried out on a coupled tank system indicate that the proposed approach is good for control applications.
Lee, Jae-Neung; Lee, Myung-Won; Byeon, Yeong-Hyeon; Lee, Won-Sik; Kwak, Keun-Chang
2016-01-01
In this study, we classify four horse gaits (walk, sitting trot, rising trot, canter) of three breeds of horse (Jeju, Warmblood, and Thoroughbred) using a neuro-fuzzy classifier (NFC) of the Takagi-Sugeno-Kang (TSK) type from data information transformed by a wavelet packet (WP). The design of the NFC is accomplished by using a fuzzy c-means (FCM) clustering algorithm that can solve the problem of dimensionality increase due to the flexible scatter partitioning. For this purpose, we use the rider's hip motion from the sensor information collected by inertial sensors as feature data for the classification of a horse's gaits. Furthermore, we develop a coaching system under both real horse riding and simulator environments and propose a method for analyzing the rider's motion. Using the results of the analysis, the rider can be coached in the correct motion corresponding to the classified gait. To construct a motion database, the data collected from 16 inertial sensors attached to a motion capture suit worn by one of the country's top-level horse riding experts were used. Experiments using the original motion data and the transformed motion data were conducted to evaluate the classification performance using various classifiers. The experimental results revealed that the presented FCM-NFC showed a better accuracy performance (97.5%) than a neural network classifier (NNC), naive Bayesian classifier (NBC), and radial basis function network classifier (RBFNC) for the transformed motion data. PMID:27171098
Utilizing a Magnetic Abrasive Finishing Technique (MAF Via Adaptive Nero Fuzzy(ANFIS
Directory of Open Access Journals (Sweden)
Amer A. Moosa
2015-07-01
Full Text Available An experimental study was conducted for measuring the quality of surface finishing roughness using magnetic abrasive finishing technique (MAF on brass plate which is very difficult to be polish by a conventional machining process where the cost is high and much more susceptible to surface damage as compared to other materials. Four operation parameters were studied, the gap between the work piece and the electromagnetic inductor, the current that generate the flux, the rotational Spindale speed and amount of abrasive powder size considering constant linear feed movement between machine head and workpiece. Adaptive Neuro fuzzy inference system (ANFIS was implemented for evaluation of a series of experiments and a verification with respect to specimen roughness change has been optimized and usefully achieved by obtained results were an average of the error between the surface roughness predicted by model simulation and that of direct measure is 2.0222 %.
A Neuro Fuzzy Technique for Process Grain Scheduling of Parallel Jobs
S. V. Sudha; Thanushkodi, K.
2011-01-01
Problem statement: We present development of neural network based fuzzy inference system for scheduling of parallel Jobs with the help of a real life workload data. The performance evaluation of a parallel system mainly depends on how the processes are co scheduled? Various co scheduling techniques available are First Come First Served, Gang Scheduling, Flexible Co Scheduling and Agile Algorithm Approach: In order to use a wide range of objective functions, we used a rule bases scheduling str...
Directory of Open Access Journals (Sweden)
Julie M. David
2013-11-01
Full Text Available Learning Disability (LD is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.
Kumar, M. Ajay; Srikanth, N. V.
2014-11-01
The voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.
Applied to neuro-fuzzy models for signal validation in Angra 1 nuclear power plant
International Nuclear Information System (INIS)
This work develops two models of signal validation in which the analytical redundancy of the monitored signals from an industrial plant is made by neural networks. In one model the analytical redundancy is made by only one neural network while in the other it is done by several neural networks, each one working in a specific part of the entire operation region of the plant. Four cluster techniques were tested to separate the entire region of operation in several specific regions. An additional information of systems' reliability is supplied by a fuzzy inference system. The models were implemented in C language and tested with signals acquired from Angra I nuclear power plant, from its start to 100% of power. (author)
Liu, Cheng-Li
2009-05-01
Only a few studies in the literature have focused on the effects of age on virtual environment (VE) sickness susceptibility and even less research was carried out focusing on the elderly. In general, the elderly usually browse VEs on a thin film transistor liquid crystal display (TFT-LCD) at home or somewhere, not a head-mounted display (HMD). While the TFT-LCD is used to present VEs, this set-up does not physically enclose the user. Therefore, this study investigated the factors that contribute to cybersickness among the elderly when immersed into a VE on TFT-LCD, including exposure durations, navigation rotating speeds and angle of inclination. Participants were elderly, with an average age of 69.5 years. The results of the first experiment showed that the rate of simulator sickness questionnaire (SSQ) scores increases significantly with navigational rotating speed and duration of exposure. However, the experimental data also showed that the rate of SSQ scores does not increase with the increase in angle of inclination. In applying these findings, the neuro-fuzzy technology was used to develop a neuro-fuzzy cybersickness-warning system integrating fuzzy logic reasoning and neural network learning. The contributing factors were navigational rotating speed and duration of exposure. The results of the second experiment showed that the proposed system can efficiently determine the level of cybersickness based on the associated subjective sickness estimates and combat cybersickness due to long exposure to a VE.
Neuro-fuzzy and model-based motion control for mobile manipulator among dynamic obstacles
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
This paper focuses on autonomous motion control of a nonholonomic platform with a robotic arm, which is called mobile manipulator. It serves in transportation of loads in imperfectly known industrial environments with unknown dynamic obstacles. A union of both procedures is used to solve the general problems of collision-free motion. The problem of collision-free motion for mobile manipulators has been approached from two directions, Planning and Reactive Control. The dynamic path planning can be used to solve the problem of locomotion of mobile platform, and reactive approaches can be employed to solve the motion planning of the arm. The execution can generate the commands for the servo-systems of the robot so as to follow a given nominal trajectory while reacting in real-time to unexpected events. The execution can be designed as an Adaptive Fuzzy Neural Controller. In real world systems, sensor-based motion control becomes essential to deal with model uncertainties and unexpected obstacles.
Indian Academy of Sciences (India)
Tarkan Erdik; Zekai Şen
2008-12-01
Singh et al (2005)examined the potential of the ANN and neuro-fuzzy systems application for the prediction of dynamic constant of rockmass. However,the model proposed by them has some drawbacks according to fuzzy logic principles.This discussion will focus on the main fuzzy logic principles which authors and potential readers should take into consideration.
Do people treat missing information adaptively when making inferences?
Garcia-Retamero, Rocio; Rieskamp, Jörg
2009-10-01
When making inferences, people are often confronted with situations with incomplete information. Previous research has led to a mixed picture about how people react to missing information. Options include ignoring missing information, treating it as either positive or negative, using the average of past observations for replacement, or using the most frequent observation of the available information as a placeholder. The accuracy of these inference mechanisms depends on characteristics of the environment. When missing information is uniformly distributed, it is most accurate to treat it as the average, whereas when it is negatively correlated with the criterion to be judged, treating missing information as if it were negative is most accurate. Whether people treat missing information adaptively according to the environment was tested in two studies. The results show that participants were sensitive to how missing information was distributed in an environment and most frequently selected the mechanism that was most adaptive. From these results the authors conclude that reacting to missing information in different ways is an adaptive response to environmental characteristics.
Institute of Scientific and Technical Information of China (English)
李延沐; 袁鹏; 牟磊; 李彦明
2005-01-01
对于变压器油中局部放电超高频测量系统所得到的局部放电的特征量,首先,选择优先权较高的6个特征量作为自适应神经模糊推理系统(ANFIS)的输入量,其次,构建6输入单输出的ANFIS,它采用了Takagi-Sugeno模糊系统的if-then规则,利用梯度下降和最优平方估计相结合的混合学习算法进行训练.最后,对于模型的有效性进行了检验,检验结果表明利用ANFIS系统进行局部放电的模式识别是可行的.
Mehran Amani Juneghani; Babak Keyvani Boroujeni; Mostafa Abdollahi
2012-01-01
For determination the number of broken rotor bars in squirrel-cage induction motors when these motors are working, this study presents a new method based on an intelligent processing of the stator transient starting current. In light load condition, distinguishing between safe and faulty rotors is difficult, because the characteristic frequencies of rotor with broken bars are very close to the fundamental component and their amplitudes are small in comparison. In this study, an advanced techn...
Directory of Open Access Journals (Sweden)
Alireza Behrooznia
2010-11-01
Full Text Available This paper presents an adaptive-network-based fuzzy inference system (ANFISfor long-term natural Electric consumption prediction. Six models are proposed to forecastannual Electric demand. 104 ANFIS have been constructed and tested in order to find thebest ANFIS for Electric consumption. Two parameters have been considered in theconstruction and examination of plausible ANFIS models. The type of membership functionand the number of linguistic variables are two mentioned parameters. Six differentmembership functions are considered in building ANFIS, as follows: the built-inmembership function composed of the difference between two sigmoidal membershipfunctions (dsig, the Gaussian combination membership function (gauss2, the Gaussiancurve built-in membership function (gauss, the generalized bell-shaped built-inmembership function (gbell, the Π-shaped built-in membership function (pi, psig. Also, anumber for linguistic variables has been considered between 2 and 20. The proposedmodels consist of input variables such as: Gross Domestic Product (GDP and Population(POP. Six distinct models based on different inputs are defined. All of the trained ANFISare then compared with respect to the mean absolute percentage error (MAPE. To meetthe best performance of the intelligent based approaches, data are pre-processed (scaledand finally our outputs are post-processed (returned to its original scale. The ANFISmodel is capable of dealing with both complexity and uncertainty in the data set. To showthe applicability and superiority of the ANFIS, the actual Electric consumption inindustrialized nations including the Netherlands, Luxembourg, Ireland, and Italy from 1980to 2007 are considered. With the aid of an autoregressive model, the GDP and populationby 2015 is projected and then with yield value and best ANFIS model, Electric consumptionby 2015 is predicted.
Directory of Open Access Journals (Sweden)
Giuseppe Casalino
2013-01-01
Full Text Available Weld imperfections are tolerable defects as stated from the international standard. Nevertheless they can produce a set of drawbacks like difficulty to assembly, reworking, limited fatigue life, and surface imperfections. In this paper Ti6Al4V titanium butt welds were produced by CO2 laser welding. The following tolerable defects were analysed: weld undercut, excess weld metal, excessive penetration, incomplete filled groove, root concavity, and lack of penetration. A neuro-fuzzy model for the prediction and classification of the defects in the fused zone was built up using the experimental data. Weld imperfections were connected to the welding parameters by feed forward neural networks. Then the imperfections were clustered using the C-means fuzzy clustering algorithm. The clusters were named after the ISO standard classification of the levels of imperfection for electron and laser beam welding of aluminium alloys and steels. Finally, a single-value metric was proposed for the assessment of the overall bead geometry quality. It combined an index for each defect and functioned according to the criterion “the-smallest-the-best.”
Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; SubbaRao; Harish, N.; Lokesha
Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models...
A parameter-adaptive dynamic programming approach for inferring cophylogenies
DEFF Research Database (Denmark)
Merkle, Daniel; Middendorf, Martin; Wieseke, Nicolas
2010-01-01
Background: Coevolutionary systems like hosts and their parasites are commonly used model systems for evolutionary studies. Inferring the coevolutionary history based on given phylogenies of both groups is often done by employing a set of possible types of events that happened during coevolution....... Costs are assigned to the different types of events and a reconstruction of the common history with a minimal sum of event costs is sought.Results: This paper introduces a new algorithm and a corresponding tool called CoRe-PA, that can be used to infer the common history of coevolutionary systems....... The proposed method utilizes an event-based concept for reconciliation analyses where the possible events are cospeciations, sortings, duplications, and (host) switches. All known event-based approaches so far assign costs to each type of cophylogenetic events in order to find a cost-minimal reconstruction. Co...
DEFF Research Database (Denmark)
Møller, Jesper
.1 with the title ‘Inference'.) This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods using Markov chain Monte Carlo (MCMC) simulations. Due to space limitations the focus...
Directory of Open Access Journals (Sweden)
A. Konstantaras
2006-01-01
Full Text Available The method of Hybrid Adaptive Filtering (HAF aims to recover the recorded electric field signals from anomalies of magnetotelluric origin induced mainly by magnetic storms. An adaptive filter incorporating neuro-fuzzy technology has been developed to remove any significant distortions from the equivalent magnetic field signal, as retrieved from the original electric field signal by reversing the magnetotelluric method. Testing with further unseen data verifies the reliability of the model and demonstrates the effectiveness of the HAF method.
Energy Technology Data Exchange (ETDEWEB)
Malange, Fernando C.V. [Universidade do Estado de Mato Grosso (UEMT), Caceres, MT (Brazil). Dept. de Computacao], E-mail: fmalange@gmail.com; Minussi, Carlos R. [Universidade Estadual Paulista (UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica], E-mail: minussi@dee.feis.unesp.br
2009-07-01
A methodology for identifying and classifying voltage disturbances (harmonics, voltage sag, etc.) using fuzzy ARTMAP neural networks is presented. It is an ART (adaptive resonance theory) architecture family neural network that presents the stability and plasticity properties, which are fundamental requests for developing a reliable electrical systems with reduced processing time. Stability means a guarantee of good solutions; plasticity allows realize the training without restart the system every time there are new patterns to be stored in a weight matrix of the neural network. The training is realized from the wave forms provided by the acquisition data system, using the wavelets theory to generate the coefficients that constitute the input patterns of the neural network. Results from simulations show that the accuracy index is nearly 100%. (author)
Directory of Open Access Journals (Sweden)
A. Noriega
2005-01-01
Full Text Available En este trabajo se presentan algunos esquemas de control neuro-difuso para el diseño de un controlador difuso simplificado de dos entradas y una salida. La simplificación introducida ha permitido lograr una importante reducción en el tiempo de cálculo de la señal de control, pero es posible que en algunos sistemas se pueda afectar el desempeño del sistema de control. Para resolver este problema se ha incorporado una red neuronal de manera que se pueda mejorar la calidad en el control y se pueda controlar procesos de dinámica compleja. Los resultados de las aplicaciones demuestran que se puede disponer de una metodología de control neuro-difuso general, aplicable a cualquier sistema.In this work some neuro-fuzzy control schemes for the design of a simplified controller of two inputs and one output are presented. This simplification has allowed getting an important reduction in the calculation control time but it is possible that this can affect the performance of the control system. To solve this problem a neural network has been incorporated so that the control quality can be improved and problems of complex dynamics can be solved. The results of the applications show that it is possible to have a neuro-fuzzy control methodology applicable to any system.
An Adaptive Hybrid Multi-level Intelligent Intrusion Detection System for Network Security
Directory of Open Access Journals (Sweden)
P. Ananthi
2014-04-01
Full Text Available Intrusion Detection System (IDS plays a vital factor in providing security to the networks through detecting malicious activities. Due to the extensive advancements in the computer networking, IDS has become an active area of research to determine various types of attacks in the networks. A large number of intrusion detection approaches are available in the literature using several traditional statistical and data mining approaches. Data mining techniques in IDS observed to provide significant results. Data mining approaches for misuse and anomaly-based intrusion detection generally include supervised, unsupervised and outlier approaches. It is important that the efficiency and potential of IDS be updated based on the criteria of new attacks. This study proposes a novel Adaptive Hybrid Multi-level Intelligent IDS (AHMIIDS system which is the combined version of anomaly and misuse detection techniques. The anomaly detection is based on Bayesian Networks and then the misuse detection is performed using Adaptive Neuro Fuzzy Inference System (ANFIS. The outputs of both anomaly detection and misuse detection modules are applied to Decision Table Majority (DTM to perform the final decision making. A rule-base approach is used in this system. It is observed from the results that the proposed AHMIIDS performs better than other conventional hybrid IDS.
Keefe, Bruce D; Wincenciak, Joanna; Jellema, Tjeerd; Ward, James W; Barraclough, Nick E
2016-07-01
When observing another individual's actions, we can both recognize their actions and infer their beliefs concerning the physical and social environment. The extent to which visual adaptation influences action recognition and conceptually later stages of processing involved in deriving the belief state of the actor remains unknown. To explore this we used virtual reality (life-size photorealistic actors presented in stereoscopic three dimensions) to see how visual adaptation influences the perception of individuals in naturally unfolding social scenes at increasingly higher levels of action understanding. We presented scenes in which one actor picked up boxes (of varying number and weight), after which a second actor picked up a single box. Adaptation to the first actor's behavior systematically changed perception of the second actor. Aftereffects increased with the duration of the first actor's behavior, declined exponentially over time, and were independent of view direction. Inferences about the second actor's expectation of box weight were also distorted by adaptation to the first actor. Distortions in action recognition and actor expectations did not, however, extend across different actions, indicating that adaptation is not acting at an action-independent abstract level but rather at an action-dependent level. We conclude that although adaptation influences more complex inferences about belief states of individuals, this is likely to be a result of adaptation at an earlier action recognition stage rather than adaptation operating at a higher, more abstract level in mentalizing or simulation systems. PMID:27472496
DEFF Research Database (Denmark)
Møller, Jesper
2010-01-01
Chapter 9: This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods based on a maximum likelihood or Bayesian approach combined with markov chain Monte Carlo...
Nitrate leaching from a potato field using adaptive network-based fuzzy inference system
DEFF Research Database (Denmark)
Shekofteh, Hosein; Afyuni, Majid M; Hajabbasi, Mohammad-Ali;
2013-01-01
The conventional methods of application of nitrogen fertilizers might be responsible for the increased nitrate concentration in groundwater of areas dominated by irrigated agriculture. Appropriate water and nutrient management strategies are required to minimize groundwater pollution and to maxim......The conventional methods of application of nitrogen fertilizers might be responsible for the increased nitrate concentration in groundwater of areas dominated by irrigated agriculture. Appropriate water and nutrient management strategies are required to minimize groundwater pollution...... and to maximize nutrient use efficiency and production. Design and operation of a drip fertigation system requires understanding of nutrient leaching behavior in cases of shallow rooted crops such as potatoes which cannot extract nutrient from a lower soil depth. This study deals with neuro-fuzzy modeling...... of nitrate (NO3) leaching from a potato field under a drip fertigation system. In the first part of the study, a two-dimensional solute transport model was used to simulate nitrate leaching from a sandy soil with varying emitter discharge rates and fertilizer doses. The results from the modeling were used...
On-Line Real Time Realization and Application of Adaptive Fuzzy Inference Neural Network
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In this paper,a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm,combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear mu Iti-variable systems is introduced and discussed.
Incremental neuro-fuzzy systems
Fritzke, Bernd
1997-10-01
The poor scaling behavior of grid-partitioning fuzzy systems in case of increasing data dimensionality suggests using fuzzy systems with a scatter-partition of the input space. Jang has shown that zero-order Sugeno fuzzy systems are equivalent to radial basis function networks (RBFNs). Methods for finding scatter partitions for RBFNs are available, and it is possible to use them for creating scatter-partitioning fuzzy systems. A fundamental problem, however, is the structure identification problem, i.e., the determination of the number of fuzzy rules and their positions in the input space. The supervised growing neural gas method uses classification or regression error to guide insertions of new RBF units. This leads to a more effective positioning of RBF units (fuzzy rule IF-parts, resp.) than achievable with the commonly used unsupervised clustering methods. Example simulations of the new approach are shown demonstrating superior behavior compared with grid-partitioning fuzzy systems and the standard RBF approach of Moody and Darken.
Specificity and timescales of cortical adaptation as inferences about natural movie statistics
Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia
2016-01-01
Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation. PMID:27699416
Prudhomme, Serge
2015-09-17
Parameter estimation for complex models using Bayesian inference is usually a very costly process as it requires a large number of solves of the forward problem. We show here how the construction of adaptive surrogate models using a posteriori error estimates for quantities of interest can significantly reduce the computational cost in problems of statistical inference. As surrogate models provide only approximations of the true solutions of the forward problem, it is nevertheless necessary to control these errors in order to construct an accurate reduced model with respect to the observables utilized in the identification of the model parameters. Effectiveness of the proposed approach is demonstrated on a numerical example dealing with the Spalart–Allmaras model for the simulation of turbulent channel flows. In particular, we illustrate how Bayesian model selection using the adapted surrogate model in place of solving the coupled nonlinear equations leads to the same quality of results while requiring fewer nonlinear PDE solves.
Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi
2016-09-01
This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.
Directory of Open Access Journals (Sweden)
Lucimar M.F. de Carvalho
2008-06-01
Full Text Available OBJECTIVE: To investigate different fuzzy arithmetical operations to support in the diagnostic of epileptic events and non epileptic events. METHOD: A neuro-fuzzy system was developed using the NEFCLASS (NEuro Fuzzy CLASSIfication architecture and an artificial neural network with backpropagation learning algorithm (ANNB. RESULTS: The study was composed by 244 patients with a bigger frequency of the feminine sex. The number of right decisions at the test phase, obtained by the NEFCLASS and ANNB was 83.60% and 90.16%, respectively. The best sensibility result was attained by NEFCLASS (84.90%; the best specificity result were attained by ANNB with 95.65%. CONCLUSION: The proposed neuro-fuzzy system combined the artificial neural network capabilities in the pattern classifications together with the fuzzy logic qualitative approach, leading to a bigger rate of system success.OBJETIVO: Investigar diferentes operações aritméticas difusas para auxíliar no diagnóstico de eventos epilépticos e eventos não-epilépticos. MÉTODO: Um sistema neuro-difuso foi desenvolvido utilizando a arquitetura NEFCLASS (NEuro Fuzzy CLASSIfication e uma rede neural artificial com o algoritmo de aprendizagem backpropagation (RNAB. RESULTADOS: A amostra estudada foi de 244 pacientes com maior freqüência no sexo feminino. O número de decisões corretas na fase de teste, obtidas através do NEFCLASS e RNAB foi de 83,60% e 90,16%, respectivamente. O melhor resultado de sensibilidade foi obtido com o NEFCLASS (84,90%; o melhor resultado de especificidade foi obtido com a RNAB (95,65%. CONCLUSÃO: O sistema neuro-difuso proposto combinou a capacidade das redes neurais artificiais na classificação de padrões juntamente com a abordagem qualitativa da logica difusa, levando a maior taxa de acertos do sistema.
INTELLIGENT CONTROL SCHEMES FOR SSSC BASED DAMPING CONTROLLERS IN MULTI-MACHINE POWER SYSTEMS
Directory of Open Access Journals (Sweden)
D. MURALI
2010-08-01
Full Text Available The main aim of this paper is to damp out power system oscillations, which has been recognized as one of the major concerns in power system operation. This paper describes the damping of power oscillations by hybrid neuro-fuzzy coordinated control of Flexible AC Transmission System (FACTS based damping controllers. The advantage of this approach is that it can handle the nonlinearities, at the same time it is faster than other conventional controllers. ANFIS (Adaptive Neuro-Fuzzy Inference System is employed for the training of the proposed fuzzy logic controllers (FLC. Simulation studies are carried out in Matlab/Simulink environment to evaluate the effectiveness of the proposed neuro-fuzzy controller on multi-machine power systems installed with Static synchronous series compensator (SSSC. Results show that the proposed neuro-fuzzy intelligent controls improve the damping performance of the SSSC based damping controllers in the event of a major disturbance.
International Nuclear Information System (INIS)
Highlights: → This paper presents a unique approach for long-term natural gas consumption estimation. → It is applied to selected Arab countries to show its superiority and applicability. → It may be used for other real cases for optimum gas consumption estimation. → It is compared with current studies to show its advantages. → It is capable of dealing with complexity, ambiguity, fuzziness, and randomness. -- Abstract: This paper presents an adaptive network-based fuzzy inference system-stochastic frontier analysis (ANFIS-SFA) approach for long-term natural gas (NG) consumption prediction and analysis of the behavior of NG consumption. The proposed models consist of input variables of Gross Domestic Product (GDP) and population (POP). Six distinct models based on different inputs are defined. All of trained ANFIS are then compared with respect to mean absolute percentage error (MAPE). To meet the best performance of the intelligent based approaches, data are pre-processed (scaled) and finally the outputs are post-processed (returned to its original scale). To show the applicability and superiority of the integrated ANFIS-SFA approach, gas consumption in four Middle Eastern countries i.e. Bahrain, Saudi Arabia, Syria, and United Arab Emirates is forecasted and analyzed based on the data of the time period 1980-2007. With the aid of autoregressive model, GDP and population are projected for the period 2008-2015. These projected data are used as the input of ANFIS model to predict the gas consumption in the selected countries for 2008-2015. SFA is then used to examine the behavior of gas consumption in the past and also to make insights for the forthcoming years. The ANFIS-SFA approach is capable of dealing with complexity, uncertainty, and randomness as well as several other unique features discussed in this paper.
Adaptive Controller for 6-DOF Parallel Robot Using T-S Fuzzy Inference
Directory of Open Access Journals (Sweden)
Xue Jian
2013-02-01
Full Text Available 6‐DOF parallel robot always appears in the form of Stewart platform. It has been widely used in industry for the benefits such as strong structural stiffness, high movement accuracy and so on. Space docking technology makes higher requirements of motion accuracy and dynamic performance to the control method on 6‐DOF parallel robot. In this paper, a hydraulic 6‐DOF parallel robot was used to simulate the docking process. Based on this point, this paper gave a thorough study on the design of an adaptive controller to eliminate the asymmetric of controlled plant and uncertain load force interference. Takagi‐Sugeno (T‐S fuzzy inference model was used to build the fuzzy adaptive controller. With T‐S model, the controller directly imposes adaptive control signal on the plant to make sure that the output of plant could track the reference model output. The controller has simple structure and is easy to implement. Experiment results show that the controller can eliminate asymmetric and achieve good dynamic performance, and has good robustness to load interference.
Directory of Open Access Journals (Sweden)
C. Muniraj
2011-01-01
Full Text Available This paper presents the prediction of pollution severity of the polymeric insulators used in power transmission lines using adaptive neurofuzzy inference system (ANFIS model. In this work, laboratory-based pollution performance tests were carried out on 11 kV silicone rubber polymeric insulator under AC voltage at different pollution levels with sodium chloride as a contaminant. Leakage current was measured during the laboratory tests. Time domain and frequency domain characteristics of leakage current, such as mean value, maximum value, standard deviation, and total harmonics distortion (THD, have been extracted, which jointly describe the pollution severity of the polymeric insulator surface. Leakage current characteristics are used as the inputs of ANFIS model. The pollution severity index “equivalent salt deposit density” (ESDD is used as the output of the proposed model. Results of the research can give sufficient prewarning time before pollution flashover and help in the condition based maintenance (CBM chart preparation.
Using adaptive network based fuzzy inference system to forecast regional electricity loads
Energy Technology Data Exchange (ETDEWEB)
Ying, Li-Chih [Department of Marketing Management, Central Taiwan University of Science and Technology, 11, Pu-tzu Lane, Peitun, Taichung City 406 (China); Pan, Mei-Chiu [Graduate Institute of Management Sciences, Nanhua University, 32, Chung Keng Li, Dalin, Chiayi 622 (China)
2008-02-15
Since accurate regional load forecasting is very important for improvement of the management performance of the electric industry, various regional load forecasting methods have been developed. The purpose of this study is to apply the adaptive network based fuzzy inference system (ANFIS) model to forecast the regional electricity loads in Taiwan and demonstrate the forecasting performance of this model. Based on the mean absolute percentage errors and statistical results, we can see that the ANFIS model has better forecasting performance than the regression model, artificial neural network (ANN) model, support vector machines with genetic algorithms (SVMG) model, recurrent support vector machines with genetic algorithms (RSVMG) model and hybrid ellipsoidal fuzzy systems for time series forecasting (HEFST) model. Thus, the ANFIS model is a promising alternative for forecasting regional electricity loads. (author)
Directory of Open Access Journals (Sweden)
Nandkumar Wagh
2014-01-01
Full Text Available Continuity of power supply is of utmost importance to the consumers and is only possible by coordination and reliable operation of power system components. Power transformer is such a prime equipment of the transmission and distribution system and needs to be continuously monitored for its well-being. Since ratio methods cannot provide correct diagnosis due to the borderline problems and the probability of existence of multiple faults, artificial intelligence could be the best approach. Dissolved gas analysis (DGA interpretation may provide an insight into the developing incipient faults and is adopted as the preliminary diagnosis tool. In the proposed work, a comparison of the diagnosis ability of backpropagation (BP, radial basis function (RBF neural network, and adaptive neurofuzzy inference system (ANFIS has been investigated and the diagnosis results in terms of error measure, accuracy, network training time, and number of iterations are presented.
Directory of Open Access Journals (Sweden)
Savić Marija
2014-01-01
Full Text Available This paper presents the results of the tropospheric ozone concentration modeling as the dependence on volatile organic compounds - VOCs (Benzene, Toluene, m,p-Xylene, o-Xylene, Ethylbenzene; nonorganic compounds - NOx (NO, NO2, NOx, CO, H2S, SO2 and PM10 in the ambient air in parallel with the meteorological parameters: temperature, solar radiation, relative humidity, wind speed and direction. Modeling is based on measured results obtained during the year 2009. The measurements were performed at the measuring station located within an agricultural area, in vicinity of city of Zrenjanin (Serbian Banat, Serbia. Statistical analysis of obtained data, based on bivariate correlation analysis indicated that accurate modeling cannot be performed using linear statistics approach. Also, considering that almost all input variables have wide range of relative change (ratio of variance compared to range, nonlinear statistic analysis method based on only one rule describing the behavior of input variable, most certainly wouldn’t present accurate enough results. From that reason, modeling approach was based on Adaptive-Network-Based Fuzzy Inference System (ANFIS. Model obtained using ANFIS methodology resulted with high accuracy, with prediction potential of above 80%, considering that obtained determination coefficient for the final model was R2=0.802.
PHONETIC CLASSIFICATION BY ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM AND SUBTRACTIVE CLUSTERING
Directory of Open Access Journals (Sweden)
Samiya Silarbi
2014-09-01
Full Text Available This paper presents the application of Adaptive Network Based Fuzzy Inference System ANFIS on speech recognition. The primary tasks of fuzzy modeling are structure identification and parameter optimization, the former determines the numbers of membership functions and fuzzy if-then rules while the latter identifies a feasible set of parameters under the given structure. However, the increase of input dimension, rule numbers will have an exponential growth and there will cause problem of “rule disaster”. Thus, determination of an appropriate structure becomes an important issue where subtractive clustering is applied to define an optimal initial structure and obtain small number of rules. The appropriate learning algorithm is performed on TIMIT speech database supervised type, a pre-processing of the acoustic signal and extracting the coefficients MFCCs parameters relevant to the recognition system. Finally, hybrid learning combines the gradient decent and least square estimation LSE of parameters network. The results obtained show the effectiveness of the method in terms of recognition rate and number of fuzzy rules generated.
Racing to Learn: Statistical Inference and Learning in a Single Spiking Neuron with Adaptive Kernels
Directory of Open Access Journals (Sweden)
Saeed eAfshar
2014-11-01
Full Text Available This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN, a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively ‘hiding’ its learnt pattern from its neighbors. This use of time as a parameter is central and means that a SKAN network utilizes a minimal connectivity that scales linearly with the number of neurons. The robustness to noise, low connectivity requirements, high speed and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA.
Directory of Open Access Journals (Sweden)
Yanlei Li
2015-01-01
Full Text Available This paper proposes a new method for predicting spindle deformation based on temperature data. The method introduces the adaptive neurofuzzy inference system (ANFIS, which is a neurofuzzy modeling approach that integrates the kernel and geometrical transformations. By utilizing data transformation, the number of ANFIS rules can be effectively reduced and the predictive model structure can be simplified. To build the predictive model, we first map the original temperature data to a feature space with Gaussian kernels. We then process the mapped data with the geometrical transformation and make the data gather in the square region. Finally, the transformed data are used as input to train the ANFIS. A verification experiment is conducted to evaluate the performance of the proposed method. Six Pt100 thermal resistances are used to monitor the spindle temperature, and a laser displacement sensor is used to detect the spindle deformation. Experimental results show that the proposed method can precisely predict the spindle deformation and greatly improve the thermal performance of the spindle. Compared with back propagation (BP networks, the proposed method is more suitable for complex working conditions in practical applications.
Adaptive network based on fuzzy inference system for equilibrated urea concentration prediction.
Azar, Ahmad Taher
2013-09-01
Post-dialysis urea rebound (PDUR) has been attributed mostly to redistribution of urea from different compartments, which is determined by variations in regional blood flows and transcellular urea mass transfer coefficients. PDUR occurs after 30-90min of short or standard hemodialysis (HD) sessions and after 60min in long 8-h HD sessions, which is inconvenient. This paper presents adaptive network based on fuzzy inference system (ANFIS) for predicting intradialytic (Cint) and post-dialysis urea concentrations (Cpost) in order to predict the equilibrated (Ceq) urea concentrations without any blood sampling from dialysis patients. The accuracy of the developed system was prospectively compared with other traditional methods for predicting equilibrated urea (Ceq), post dialysis urea rebound (PDUR) and equilibrated dialysis dose (eKt/V). This comparison is done based on root mean squares error (RMSE), normalized mean square error (NRMSE), and mean absolute percentage error (MAPE). The ANFIS predictor for Ceq achieved mean RMSE values of 0.3654 and 0.4920 for training and testing, respectively. The statistical analysis demonstrated that there is no statistically significant difference found between the predicted and the measured values. The percentage of MAE and RMSE for testing phase is 0.63% and 0.96%, respectively. PMID:23806679
Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J
2014-01-01
This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research. PMID:25505378
qPR: An adaptive partial-report procedure based on Bayesian inference
Baek, Jongsoo; Lesmes, Luis Andres; Lu, Zhong-Lin
2016-01-01
Iconic memory is best assessed with the partial report procedure in which an array of letters appears briefly on the screen and a poststimulus cue directs the observer to report the identity of the cued letter(s). Typically, 6–8 cue delays or 600–800 trials are tested to measure the iconic memory decay function. Here we develop a quick partial report, or qPR, procedure based on a Bayesian adaptive framework to estimate the iconic memory decay function with much reduced testing time. The iconic memory decay function is characterized by an exponential function and a joint probability distribution of its three parameters. Starting with a prior of the parameters, the method selects the stimulus to maximize the expected information gain in the next test trial. It then updates the posterior probability distribution of the parameters based on the observer's response using Bayesian inference. The procedure is reiterated until either the total number of trials or the precision of the parameter estimates reaches a certain criterion. Simulation studies showed that only 100 trials were necessary to reach an average absolute bias of 0.026 and a precision of 0.070 (both in terms of probability correct). A psychophysical validation experiment showed that estimates of the iconic memory decay function obtained with 100 qPR trials exhibited good precision (the half width of the 68.2% credible interval = 0.055) and excellent agreement with those obtained with 1,600 trials of the conventional method of constant stimuli procedure (RMSE = 0.063). Quick partial-report relieves the data collection burden in characterizing iconic memory and makes it possible to assess iconic memory in clinical populations. PMID:27580045
Accardi, Luigi; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2016-07-01
Recently a novel quantum information formalism — quantum adaptive dynamics — was developed and applied to modelling of information processing by bio-systems including cognitive phenomena: from molecular biology (glucose-lactose metabolism for E.coli bacteria, epigenetic evolution) to cognition, psychology. From the foundational point of view quantum adaptive dynamics describes mutual adapting of the information states of two interacting systems (physical or biological) as well as adapting of co-observations performed by the systems. In this paper we apply this formalism to model unconscious inference: the process of transition from sensation to perception. The paper combines theory and experiment. Statistical data collected in an experimental study on recognition of a particular ambiguous figure, the Schröder stairs, support the viability of the quantum(-like) model of unconscious inference including modelling of biases generated by rotation-contexts. From the probabilistic point of view, we study (for concrete experimental data) the problem of contextuality of probability, its dependence on experimental contexts. Mathematically contextuality leads to non-Komogorovness: probability distributions generated by various rotation contexts cannot be treated in the Kolmogorovian framework. At the same time they can be embedded in a “big Kolmogorov space” as conditional probabilities. However, such a Kolmogorov space has too complex structure and the operational quantum formalism in the form of quantum adaptive dynamics simplifies the modelling essentially.
Directory of Open Access Journals (Sweden)
Özcan Dülger
2014-05-01
Full Text Available Predicting Mathematics 1 course success of students is very important to prepare them before the semester. It is difficult to obtain solution because of the non-linear property of data set. Fuzzy logic is one of the common methods for the problems which involve numeric values. In fuzzy logic, it is important to determine membership functions and their parameter's values correctly. This can be done by an expert or can be learned with a data set. In this study, we aimed to predict the Mathematics 1 course success of 434 students who enrolled to Engineering Faculty of Pamukkale University in 2007-2008 academic year by using their university exam data. For this, the adaptive-network-based fuzzy inference system (ANFIS which combines the important characteristics of artificial neural network and fuzzy logic was used. In training section, nine parameters which are selected from sixteen parameters in data set with different combinations were given to the ANFIS. When an ANFIS structure with nine input parameters has at least three membership functions for each input, it will have at least 3^9 fuzzy rules. Because of this, the training part is too slow and too much memory is needed. Instead of this inefficient structure, a hierarchical method was proposed. In this method, the ANFIS is partitioned to the sub-systems. Each sub-system performs some part of input parameters and sends their result to the final ANFIS structure to obtain the overall system output. After testing with one-third of data set, two best prediction results with ratio 77.77% and 78.47% are obtained. When these results are analyzed, it is seen that 64 successful students from 85 students and 48 unsuccessful students from 59 students in Mathematics 1 course were predicted truly in the result with ratio 77.77%. Similarly, 69 successful students from 85 students, and 44 unsuccessful students from 59 students were predicted truly in the result with ratio 78.47%.
Cheap diagnosis using structural modelling and fuzzy-logic based detection
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, Mogens; Katebi, Serajeddin
2003-01-01
relations for linear or non-linear dynamic behaviour, and combine this with fuzzy output observer design to provide an effective diagnostic approach. An adaptive neuro-fuzzy inference method is used. A fuzzy adaptive threshold is employed to cope with practical uncertainty. The methods are demonstrated...
San, Phyo Phyo; Ling, Sai Ho; Nguyen, Hung T
2012-01-01
Hypoglycemia, or low blood glucose, is the most common complication experienced by Type 1 diabetes mellitus (T1DM) patients. It is dangerous and can result in unconsciousness, seizures and even death. The most common physiological parameter to be effected from hypoglycemic reaction are heart rate (HR) and correct QT interval (QTc) of the electrocardiogram (ECG) signal. Based on physiological parameters, an intelligent diagnostics system, using the hybrid approach of adaptive neural fuzzy inference system (ANFIS), is developed to recognize the presence of hypoglycemia. The proposed ANFIS is characterized by adaptive neural network capabilities and the fuzzy inference system. To optimize the membership functions and adaptive network parameters, a global learning optimization algorithm called hybrid particle swarm optimization with wavelet mutation (HPSOWM) is used. For clinical study, 15 children with Type 1 diabetes volunteered for an overnight study. All the real data sets are collected from the Department of Health, Government of Western Australia. Several experiments were conducted with 5 patients each, for a training set (184 data points), a validation set (192 data points) and a testing set (153 data points), which are randomly selected. The effectiveness of the proposed detection method is found to be satisfactory by giving better sensitivity, 79.09% and acceptable specificity, 51.82%. PMID:23367375
Perspectives of Probabilistic Inferences: Reinforcement Learning and an Adaptive Network Compared
Rieskamp, Jorg
2006-01-01
The assumption that people possess a strategy repertoire for inferences has been raised repeatedly. The strategy selection learning theory specifies how people select strategies from this repertoire. The theory assumes that individuals select strategies proportional to their subjective expectations of how well the strategies solve particular…
Knuth, K. H.
2001-05-01
We consider the application of Bayesian inference to the study of self-organized structures in complex adaptive systems. In particular, we examine the distribution of elements, agents, or processes in systems dominated by hierarchical structure. We demonstrate that results obtained by Caianiello [1] on Hierarchical Modular Systems (HMS) can be found by applying Jaynes' Principle of Group Invariance [2] to a few key assumptions about our knowledge of hierarchical organization. Subsequent application of the Principle of Maximum Entropy allows inferences to be made about specific systems. The utility of the Bayesian method is considered by examining both successes and failures of the hierarchical model. We discuss how Caianiello's original statements suffer from the Mind Projection Fallacy [3] and we restate his assumptions thus widening the applicability of the HMS model. The relationship between inference and statistical physics, described by Jaynes [4], is reiterated with the expectation that this realization will aid the field of complex systems research by moving away from often inappropriate direct application of statistical mechanics to a more encompassing inferential methodology.
Soil disturbance evaluation: application of ANFIS
New techniques to understand the relationship of soil components as impacted by management are needed. In this work, an Adaptive Neuro-Fuzzy Inference System (ANFIS) applied for study the contiguous relations between soil disturbed indicators. Several ANFIS surfaces, which described the contiguous ...
Institute of Scientific and Technical Information of China (English)
曹政才; 邓积杰; 刘民; 王永吉
2012-01-01
Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method.
Adaptive thresholding for reliable topological inference in single subject fMRI analysis
Directory of Open Access Journals (Sweden)
Krzysztof eGorgolewski
2012-08-01
Full Text Available Single subject fMRI has proved to be a useful tool for mapping functional areas in clinical procedures such as tumour resection. Using fMRI data, clinicians assess the risk, plan and execute such procedures based on thresholded statistical maps. However, because current thresholding methods were developed mainly in the context of cognitive neuroscience group studies, most single subject fMRI maps are thresholded manually to satisfy specific criteria related to single subject analyses. Here, we propose a new adaptive thresholding method which combines Gamma-Gaussian mixture modelling with topological thresholding to improve cluster delineation. In a series of simulations we show that by adapting to the signal and noise properties, the new method performs well in terms of the trade-off between false negative and positive cluster error rates as well as in terms of over and underestimation of the true activation border. We also show through simulations and a motor test-retest study on ten volunteer subjects that adaptive thresholding improves reliability, mainly by accounting for the global signal variance. This in turn increases the likelihood that the true activation pattern can be determined.
Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Rongrong; Li, Chunwen [Department of Automation, Tsinghua University, Beijing 100084 (China); Qi, Liang; Xie, Xiaofeng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Ding, Qingqing [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Ma, ChenChi M. [National Tsing Hua University, Hsinchu 300 (China)
2008-12-01
The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system. (author)
Energy Technology Data Exchange (ETDEWEB)
Yeo, S.M.; Kim, C.H. [Sungkyunkwan University (Korea); Chai, Y.M. [Chungju National University (Korea); Choi, J.D. [Daelim College (Korea)
2001-07-01
Accurate detection and classification of faults on transmission lines is vitally important. High impedance faults (HIF) in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if not detected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System(ANFIS). The performance of the proposed algorithm is tested on a typical 154[kV] Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classify faults including (LIFs and HIFs) accurately within half a cycle. (author). 11 refs., 7 figs., 3 tabs.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Guannan [ORNL; Webster, Clayton G [ORNL; Gunzburger, Max D [ORNL
2012-09-01
Although Bayesian analysis has become vital to the quantification of prediction uncertainty in groundwater modeling, its application has been hindered due to the computational cost associated with numerous model executions needed for exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, we utilize a compactly supported higher-order hierar- chical basis to construct the surrogate system, resulting in a significant reduction in the number of computational simulations required. In addition, we use hierarchical surplus as an error indi- cator to determine adaptive sparse grids. This allows local refinement in the uncertain domain and/or anisotropic detection with respect to the random model parameters, which further improves computational efficiency. Finally, we incorporate a global optimization technique and propose an iterative algorithm for building the surrogate system for the PPDF with multiple significant modes. Once the surrogate system is determined, the PPDF can be evaluated by sampling the surrogate system directly with very little computational cost. The developed method is evaluated first using a simple analytical density function with multiple modes and then using two synthetic groundwater reactive transport models. The groundwater models represent different levels of complexity; the first example involves coupled linear reactions and the second example simulates nonlinear ura- nium surface complexation. The results show that the aSG-hSC is an effective and efficient tool for Bayesian inference in groundwater modeling in comparison with conventional
Directory of Open Access Journals (Sweden)
Jan eKneissler
2015-04-01
Full Text Available Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF. PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than ten-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.
Bazin, Eric; Dawson, Kevin J; Beaumont, Mark A
2010-06-01
We address the problem of finding evidence of natural selection from genetic data, accounting for the confounding effects of demographic history. In the absence of natural selection, gene genealogies should all be sampled from the same underlying distribution, often approximated by a coalescent model. Selection at a particular locus will lead to a modified genealogy, and this motivates a number of recent approaches for detecting the effects of natural selection in the genome as "outliers" under some models. The demographic history of a population affects the sampling distribution of genealogies, and therefore the observed genotypes and the classification of outliers. Since we cannot see genealogies directly, we have to infer them from the observed data under some model of mutation and demography. Thus the accuracy of an outlier-based approach depends to a greater or a lesser extent on the uncertainty about the demographic and mutational model. A natural modeling framework for this type of problem is provided by Bayesian hierarchical models, in which parameters, such as mutation rates and selection coefficients, are allowed to vary across loci. It has proved quite difficult computationally to implement fully probabilistic genealogical models with complex demographies, and this has motivated the development of approximations such as approximate Bayesian computation (ABC). In ABC the data are compressed into summary statistics, and computation of the likelihood function is replaced by simulation of data under the model. In a hierarchical setting one may be interested both in hyperparameters and parameters, and there may be very many of the latter--for example, in a genetic model, these may be parameters describing each of many loci or populations. This poses a problem for ABC in that one then requires summary statistics for each locus, which, if used naively, leads to a consequent difficulty in conditional density estimation. We develop a general method for applying
Directory of Open Access Journals (Sweden)
Ying-Yi Hong
2014-04-01
Full Text Available Microgrids are a highly efficient means of embedding distributed generation sources in a power system. However, if a fault occurs inside or outside the microgrid, the microgrid should be immediately disconnected from the main grid using a static switch installed at the secondary side of the main transformer near the point of common coupling (PCC. The static switch should have a reliable module implemented in a chip to detect/locate the fault and activate the breaker to open the circuit immediately. This paper proposes a novel approach to design this module in a static switch using the discrete wavelet transform (DWT and adaptive network-based fuzzy inference system (ANFIS. The wavelet coefficient of the fault voltage and the inference results of ANFIS with the wavelet energy of the fault current at the secondary side of the main transformer determine the control action (open or close of a static switch. The ANFIS identifies the faulty zones inside or outside the microgrid. The proposed method is applied to the first outdoor microgrid test bed in Taiwan, with a generation capacity of 360.5 kW. This microgrid test bed is studied using the real-time simulator eMegaSim developed by Opal-RT Technology Inc. (Montreal, QC, Canada. The proposed method based on DWT and ANFIS is implemented in a field programmable gate array (FPGA by using the Xilinx System Generator. Simulation results reveal that the proposed method is efficient and applicable in the real-time control environment of a power system.
Directory of Open Access Journals (Sweden)
Nicole Klein
, developmental plasticity, and possibly sexual dimorphism. Humeral microanatomy documents the diversification of nothosaur species into different environments to avoid intraclade competition as well as competition with other marine reptiles. Nothosaur microanatomy indicates that knowledge of processes involved in secondary aquatic adaptation and their interaction are more complex than previously believed.
Klein, Nicole; Sander, P Martin; Krahl, Anna; Scheyer, Torsten M; Houssaye, Alexandra
2016-01-01
, and possibly sexual dimorphism. Humeral microanatomy documents the diversification of nothosaur species into different environments to avoid intraclade competition as well as competition with other marine reptiles. Nothosaur microanatomy indicates that knowledge of processes involved in secondary aquatic adaptation and their interaction are more complex than previously believed. PMID:27391607
Klein, Nicole; Sander, P. Martin; Krahl, Anna; Scheyer, Torsten M.; Houssaye, Alexandra
2016-01-01
, and possibly sexual dimorphism. Humeral microanatomy documents the diversification of nothosaur species into different environments to avoid intraclade competition as well as competition with other marine reptiles. Nothosaur microanatomy indicates that knowledge of processes involved in secondary aquatic adaptation and their interaction are more complex than previously believed. PMID:27391607
Fu, Zening; Chan, Shing-Chow; Di, Xin; Biswal, Bharat; Zhang, Zhiguo
2014-04-01
Time-varying covariance is an important metric to measure the statistical dependence between non-stationary biological processes. Time-varying covariance is conventionally estimated from short-time data segments within a window having a certain bandwidth, but it is difficult to choose an appropriate bandwidth to estimate covariance with different degrees of non-stationarity. This paper introduces a local polynomial regression (LPR) method to estimate time-varying covariance and performs an asymptotic analysis of the LPR covariance estimator to show that both the estimation bias and variance are functions of the bandwidth and there exists an optimal bandwidth to minimize the mean square error (MSE) locally. A data-driven variable bandwidth selection method, namely the intersection of confidence intervals (ICI), is adopted in LPR for adaptively determining the local optimal bandwidth that minimizes the MSE. Experimental results on simulated signals show that the LPR-ICI method can achieve robust and reliable performance in estimating time-varying covariance with different degrees of variations and under different noise scenarios, making it a powerful tool to study the dynamic relationship between non-stationary biomedical signals. Further, we apply the LPR-ICI method to estimate time-varying covariance of functional magnetic resonance imaging (fMRI) signals in a visual task for the inference of dynamic functional brain connectivity. The results show that the LPR-ICI method can effectively capture the transient connectivity patterns from fMRI.
Energy Technology Data Exchange (ETDEWEB)
Azadeh, A.; Asadzadeh, S.M.; Ghanbari, A. [Department of Industrial Engineering, Center of Excellence for Intelligent-Based Experimental Mechanics, College of Engineering, University of Tehran (Iran)
2010-03-15
Accurate short-term natural gas (NG) demand estimation and forecasting is vital for policy and decision-making process in energy sector. Moreover, conventional methods may not provide accurate results. This paper presents an adaptive network-based fuzzy inference system (ANFIS) for estimation of NG demand. Standard input variables are used which are day of the week, demand of the same day in previous year, demand of a day before and demand of 2 days before. The proposed ANFIS approach is equipped with pre-processing and post-processing concepts. Moreover, input data are pre-processed (scaled) and finally output data are post-processed (returned to its original scale). The superiority and applicability of the ANFIS approach is shown for Iranian NG consumption from 22/12/2007 to 30/6/2008. Results show that ANFIS provides more accurate results than artificial neural network (ANN) and conventional time series approach. The results of this study provide policy makers with an appropriate tool to make more accurate predictions on future short-term NG demand. This is because the proposed approach is capable of handling non-linearity, complexity as well as uncertainty that may exist in actual data sets due to erratic responses and measurement errors. (author)
Amiri, Mohammad J; Abedi-Koupai, Jahangir; Eslamian, Sayed S; Mousavi, Sayed F; Hasheminejad, Hasti
2013-01-01
To evaluate the performance of Adaptive Neural-Based Fuzzy Inference System (ANFIS) model in estimating the efficiency of Pb (II) ions removal from aqueous solution by ostrich bone ash, a batch experiment was conducted. Five operational parameters including adsorbent dosage (C(s)), initial concentration of Pb (II) ions (C(o)), initial pH, temperature (T) and contact time (t) were taken as the input data and the adsorption efficiency (AE) of bone ash as the output. Based on the 31 different structures, 5 ANFIS models were tested against the measured adsorption efficiency to assess the accuracy of each model. The results showed that ANFIS5, which used all input parameters, was the most accurate (RMSE = 2.65 and R(2) = 0.95) and ANFIS1, which used only the contact time input, was the worst (RMSE = 14.56 and R(2) = 0.46). In ranking the models, ANFIS4, ANFIS3 and ANFIS2 ranked second, third and fourth, respectively. The sensitivity analysis revealed that the estimated AE is more sensitive to the contact time, followed by pH, initial concentration of Pb (II) ions, adsorbent dosage, and temperature. The results showed that all ANFIS models overestimated the AE. In general, this study confirmed the capabilities of ANFIS model as an effective tool for estimation of AE. PMID:23383640
Directory of Open Access Journals (Sweden)
Shahab Karimi
2014-01-01
Full Text Available In this study, the effects of ratios of dolomite, base/acid, silica, SiO2/Al2O3, and Fe2O3/CaO, base and acid oxides, and 11 oxides (SiO2, Al2O3, CaO, MgO, MnO, Na2O, K2O, Fe2O3, TiO2, P2O5, and SO3 on ash fusion temperatures for 1040 US coal samples from 12 states were evaluated using regression and adaptive neurofuzzy inference system (ANFIS methods. Different combinations of independent variables were examined to predict ash fusion temperatures in the multivariable procedure. The combination of the “11 oxides + (Base/Acid + Silica ratio” was the best predictor. Correlation coefficients (R2 of 0.891, 0.917, and 0.94 were achieved using nonlinear equations for the prediction of initial deformation temperature (IDT, softening temperature (ST, and fluid temperature (FT, respectively. The mentioned “best predictor” was used as input to the ANFIS system as well, and the correlation coefficients (R2 of the prediction were enhanced to 0.97, 0.98, and 0.99 for IDT, ST, and FT, respectively. The prediction precision that was achieved in this work exceeded that reported in previously published works.
Energy Technology Data Exchange (ETDEWEB)
Azadeh, A., E-mail: aazadeh@ut.ac.i [Department of Industrial Engineering, Center of Excellence for Intelligent-Based Experimental Mechanics, College of Engineering, University of Tehran (Iran, Islamic Republic of); Asadzadeh, S.M.; Ghanbari, A. [Department of Industrial Engineering, Center of Excellence for Intelligent-Based Experimental Mechanics, College of Engineering, University of Tehran (Iran, Islamic Republic of)
2010-03-15
Accurate short-term natural gas (NG) demand estimation and forecasting is vital for policy and decision-making process in energy sector. Moreover, conventional methods may not provide accurate results. This paper presents an adaptive network-based fuzzy inference system (ANFIS) for estimation of NG demand. Standard input variables are used which are day of the week, demand of the same day in previous year, demand of a day before and demand of 2 days before. The proposed ANFIS approach is equipped with pre-processing and post-processing concepts. Moreover, input data are pre-processed (scaled) and finally output data are post-processed (returned to its original scale). The superiority and applicability of the ANFIS approach is shown for Iranian NG consumption from 22/12/2007 to 30/6/2008. Results show that ANFIS provides more accurate results than artificial neural network (ANN) and conventional time series approach. The results of this study provide policy makers with an appropriate tool to make more accurate predictions on future short-term NG demand. This is because the proposed approach is capable of handling non-linearity, complexity as well as uncertainty that may exist in actual data sets due to erratic responses and measurement errors.
Energy Technology Data Exchange (ETDEWEB)
Yeo, S.M.; Kim, C.H.; Hong, K.S. [Sungkyunkwan Univ., Suwon (Korea). School fo Information and Computer Engineering; Lim, Y.B. [LG Electronics CDMA Handsets Lab., Seoul (Korea); Aggarwal, R.K.; Johns, A.T. [University of Bath (United Kingdom). Dept. of Electronic and Electrical Engineering; Choi, M.S. [Myongji Univ., Yongin (Korea). Division of Electrical and Information Control Engineering
2003-11-01
Accurate detection and classification of faults on transmission lines is vitally important. In this respect, many different types of faults occur, inter alia low impedance faults (LIF) and high impedance faults (HIF). The latter in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if not detected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. Because of the randomness and asymmetric characteristics of HIFs, the modelling of HIF is difficult and many papers relating to various HIF models have been published. In this paper, the model of HIFs in transmission lines is accomplished using the characteristics of a ZnO arrester, which is then implemented within the overall transmission system model based on the electromagnetic transients programme. This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System (ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square values of three-phase currents and zero sequence current. The performance of the proposed algorithm is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classify faults including (LIFs and HIFs) accurately within half a cycle. (author)
Directory of Open Access Journals (Sweden)
Wahyudi
2007-01-01
Full Text Available Secure buildings are currently protected from unauthorized access by a variety of devices. Even though there are many kinds of devices to guarantee the system safety such as PIN pads, keys both conventional and electronic, identity cards, cryptographic and dual control procedures, the people voice can also be used. The ability to verify the identity of a speaker by analyzing speech, or speaker verification, is an attractive and relatively unobtrusive means of providing security for admission into an important or secured place. An individuals voice cannot be stolen, lost, forgotten, guessed, or impersonated with accuracy. Due to these advantages, this paper describes design and prototyping a voice-based door access control system for building security. In the proposed system, the access may be authorized simply by means of an enrolled user speaking into a microphone attached to the system. The proposed system then will decide whether to accept or reject the users identity claim or possibly to report insufficient confidence and request additional input before making the decision. Furthermore, intelligent system approach is used to develop authorized person models based on theirs voice. Particularly Adaptive-Network-based Fuzzy Inference Systems is used in the proposed system to identify the authorized and unauthorized people. Experimental result confirms the effectiveness of the proposed intelligent voice-based door access control system based on the false acceptance rate and false rejection rate.
Mekanik, F.; Imteaz, M. A.; Talei, A.
2016-05-01
Accurate seasonal rainfall forecasting is an important step in the development of reliable runoff forecast models. The large scale climate modes affecting rainfall in Australia have recently been proven useful in rainfall prediction problems. In this study, adaptive network-based fuzzy inference systems (ANFIS) models are developed for the first time for southeast Australia in order to forecast spring rainfall. The models are applied in east, center and west Victoria as case studies. Large scale climate signals comprising El Nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Inter-decadal Pacific Ocean (IPO) are selected as rainfall predictors. Eight models are developed based on single climate modes (ENSO, IOD, and IPO) and combined climate modes (ENSO-IPO and ENSO-IOD). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson correlation coefficient (r) and root mean square error in probability (RMSEP) skill score are used to evaluate the performance of the proposed models. The predictions demonstrate that ANFIS models based on individual IOD index perform superior in terms of RMSE, MAE and r to the models based on individual ENSO indices. It is further discovered that IPO is not an effective predictor for the region and the combined ENSO-IOD and ENSO-IPO predictors did not improve the predictions. In order to evaluate the effectiveness of the proposed models a comparison is conducted between ANFIS models and the conventional Artificial Neural Network (ANN), the Predictive Ocean Atmosphere Model for Australia (POAMA) and climatology forecasts. POAMA is the official dynamic model used by the Australian Bureau of Meteorology. The ANFIS predictions certify a superior performance for most of the region compared to ANN and climatology forecasts. POAMA performs better in regards to RMSE and MAE in east and part of central Victoria, however, compared to ANFIS it shows weaker results in west Victoria in terms of prediction errors and RMSEP skill
USING OF ANFIS AND FIS METHODS TO IMPROVE THE UPQC PERFORMANCE
Directory of Open Access Journals (Sweden)
OTHMANE ABDELKHALEK
2010-12-01
Full Text Available Fuzzy Logic, which has recently drawn a great deal of attention, possesses conceptually the quality of the simplicity. However, its early application relied on trial and error in selecting either the fuzzy membership functions or the fuzzy rules. This made it heavily dependent on expert knowledge, which may not always available. Hence, an adaptive fuzzy logic controller such as Adaptive Neuro-Fuzzy Inference System (ANFIS removes this stringent requirement. This paper introduces the preliminary results of applying Adaptive Neuro-Fuzzy Inference System (ANFIS to improve the performance of the Unified Power Quality Conditioner (UPQC. The theoretical foundations are introduced and details of the adaptive fuzzy system are presented. The results of its application on DC-bus voltage control are included during the compensation of several perturbations.
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Mauro Vitor de
1999-06-15
This work develops two models of signal validation in which the analytical redundancy of the monitored signals from an industrial plant is made by neural networks. In one model the analytical redundancy is made by only one neural network while in the other it is done by several neural networks, each one working in a specific part of the entire operation region of the plant. Four cluster techniques were tested to separate the entire region of operation in several specific regions. An additional information of systems' reliability is supplied by a fuzzy inference system. The models were implemented in C language and tested with signals acquired from Angra I nuclear power plant, from its start to 100% of power. (author)
Robson, Barry
2007-08-01
What is the Best Practice for automated inference in Medical Decision Support for personalized medicine? A known system already exists as Dirac's inference system from quantum mechanics (QM) using bra-kets and bras where A and B are states, events, or measurements representing, say, clinical and biomedical rules. Dirac's system should theoretically be the universal best practice for all inference, though QM is notorious as sometimes leading to bizarre conclusions that appear not to be applicable to the macroscopic world of everyday world human experience and medical practice. It is here argued that this apparent difficulty vanishes if QM is assigned one new multiplication function @, which conserves conditionality appropriately, making QM applicable to classical inference including a quantitative form of the predicate calculus. An alternative interpretation with the same consequences is if every i = radical-1 in Dirac's QM is replaced by h, an entity distinct from 1 and i and arguably a hidden root of 1 such that h2 = 1. With that exception, this paper is thus primarily a review of the application of Dirac's system, by application of linear algebra in the complex domain to help manipulate information about associations and ontology in complicated data. Any combined bra-ket can be shown to be composed only of the sum of QM-like bra and ket weights c(), times an exponential function of Fano's mutual information measure I(A; B) about the association between A and B, that is, an association rule from data mining. With the weights and Fano measure re-expressed as expectations on finite data using Riemann's Incomplete (i.e., Generalized) Zeta Functions, actual counts of observations for real world sparse data can be readily utilized. Finally, the paper compares identical character, distinguishability of states events or measurements, correlation, mutual information, and orthogonal character, important issues in data mining and biomedical analytics, as in QM. PMID
Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain
2016-03-01
Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.
Artificial Intelligence Techniques for Steam Generator Modelling
Wright, Sarah
2008-01-01
This paper investigates the use of different Artificial Intelligence methods to predict the values of several continuous variables from a Steam Generator. The objective was to determine how the different artificial intelligence methods performed in making predictions on the given dataset. The artificial intelligence methods evaluated were Neural Networks, Support Vector Machines, and Adaptive Neuro-Fuzzy Inference Systems. The types of neural networks investigated were Multi-Layer Perceptions, and Radial Basis Function. Bayesian and committee techniques were applied to these neural networks. Each of the AI methods considered was simulated in Matlab. The results of the simulations showed that all the AI methods were capable of predicting the Steam Generator data reasonably accurately. However, the Adaptive Neuro-Fuzzy Inference system out performed the other methods in terms of accuracy and ease of implementation, while still achieving a fast execution time as well as a reasonable training time.
Simulating the Diesel Engine Vibration with Fuzzy Neural Network
Directory of Open Access Journals (Sweden)
Sina Abroumand Azar
2014-07-01
Full Text Available This study is conducted in order to evaluate the models of artificial intelligence in predicting the level of diesel vibrations. In this study, the Artificial Neural Network (ANN and the Adaptive Neuro Fuzzy Inference System (ANFIS are used in order to simulate the vibration of the whole diesel engine. Vibration in the gasoline or diesel engines has been investigated according to numerous aspects so far. Noise and vibration, which occurs in the engine due to the combustion process, can make direct effects on the users. This is particularly true in the engines with large compression ratios and engines in which the combustion pressure increases rapidly. Results indicate that the vibration of Diesel engines can be predicted with reasonable accuracy by applying the smart models. The results of predicting the Artificial Neural Network are partially better than the Adaptive neuro fuzzy inference system.
Hybrid ANFIS-ants system based optimisation of turning parameters
F. Cus; J. Balic; U. Zuperl
2009-01-01
Purpose: The paper presents a new hybrid multi-objective optimization technique, based on ant colony optimization algorithm (ACO), to optimize the machining parameters in turning processes.Design/methodology/approach: Three conflicting objectives, production cost, operation time and cutting quality are simultaneously optimized. An objective function based on maximum profit in operation has been used. The proposed approach uses adaptive neuro-fuzzy inference system (ANFIS) system to represent ...
Fuzzy Control Strategies in Human Operator and Sport Modeling
Ivancevic, Tijana T; Markovic, Sasa
2009-01-01
The motivation behind mathematically modeling the human operator is to help explain the response characteristics of the complex dynamical system including the human manual controller. In this paper, we present two different fuzzy logic strategies for human operator and sport modeling: fixed fuzzy-logic inference control and adaptive fuzzy-logic control, including neuro-fuzzy-fractal control. As an application of the presented fuzzy strategies, we present a fuzzy-control based tennis simulator.
INTELLIGENT DTC FOR PMSM DRIVE USING ANFIS TECHNIQUE
Directory of Open Access Journals (Sweden)
AHMED A. MAHFOUZ
2012-03-01
Full Text Available This paper describes intelligent direct torque control (DTC technique for Permanent Magnet Synchronous Motor (PMSM drive based on Adaptive Neuro Fuzzy Inference Systems (ANFIS. The proposed system has proven successful in controlling the instantaneous torque so as not to depend only on the estimation flux, torque and position, but also the estimation of the lookup table and the generation of driver switching table. Experimental results prove the MATLAB simulation results for torque, speed and flux estimations.
Digital Repository Service at National Institute of Oceanography (India)
Patil, S.G.; Mandal, S.; Hegde, A.V.; Muruganandam, A.
). Apart from ANNs, many authors have used a new approach to solve coastal engineering problems like genetic programming by Gaur and Deo (2008) for real time wave forecasting, Guven et al. (2009) for prediction of circular pile scour. Adaptive neuro...- fuzzy inference system by Sylaios (2009) for wind wave modeling, Model trees by Shahidi and Mahjoobi (2009) for prediction of signifi cant wave height. Support vector machines by Han et al. (2007) for fl ood forecasting, Radhika and Shashi (2009...
Özkan, İlker Ali; Ciniviz, Murat; Candan, Feyyaz
2015-01-01
In this study, the effect of methanol mixtures in different proportions to emission and performance of the motor has been estimated using Adaptive Neuro Fuzzy Inference System (ANFIS) model. Training data and test data have been obtained from the results of experiments on a single cylinder, four-stroke engine with direct-injection under different spraying pressures. An ANFIS model has been developed using these experimental data. The estimated performance of the model has been obtained by com...
Application of ANFIS to Phase Estimation for Multiple Phase Shift Keying
Drake, Jeffrey T.; Prasad, Nadipuram R.
2000-01-01
The paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for estimating phase in Multiple Phase Shift Keying (M-PSK) modulation. A brief overview of communications phase estimation is provided. The modeling of both general open-loop, and closed-loop phase estimation schemes for M-PSK symbols with unknown structure are discussed. Preliminary performance results from simulation of the above schemes are presented.
Reckien, D.
2012-12-01
Emerging and developing economies are currently undergoing one of the profoundest socio-spatial transitions in their history, with strong urbanization and weather extremes bringing about changes in the economy, forms of living and living conditions, but also increasing risks and altered social divides. The impacts of heat waves and strong rain events are therefore differently perceived among urban residents. Addressing the social differences of climate change impacts1 and expanding targeted adaptation options have emerged as urgent policy priorities, particularly for developing and emerging economies2. This paper discusses the perceived impacts of weather-related extreme events on different social groups in New Delhi and Hyderabad, India. Using network statistics and scenario analysis on Fuzzy Cognitive Maps (FCMs) as part of a vulnerability analysis, the investigation provides quantitative and qualitative measures to compare impacts and adaptation strategies for different social groups. Impacts of rain events are stronger than those of heat in both cities and affect the lower income classes particularly. Interestingly, the scenario analysis (comparing altered networks in which the alteration represents a possible adaptation measure) shows that investments in the water infrastructure would be most meaningful and more effective than investments in, e.g., the traffic infrastructure, despite the stronger burden from traffic disruptions and the resulting concentration of planning and policy on traffic ease and investments. The method of Fuzzy Cognitive Mapping offers a link between perception and modeling, and the possibility to aggregate and analyze the views of a large number of stakeholders. Our research has shown that planners and politicians often know about many of the problems, but are often overwhelmed by the problems in their respective cities and look for a prioritization of adaptation options. FCM provides this need and identifies priority adaptation options
5th International Conference on Fuzzy and Neuro Computing
Panigrahi, Bijaya; Das, Swagatam; Suganthan, Ponnuthurai
2015-01-01
This proceedings bring together contributions from researchers from academia and industry to report the latest cutting edge research made in the areas of Fuzzy Computing, Neuro Computing and hybrid Neuro-Fuzzy Computing in the paradigm of Soft Computing. The FANCCO 2015 conference explored new application areas, design novel hybrid algorithms for solving different real world application problems. After a rigorous review of the 68 submissions from all over the world, the referees panel selected 27 papers to be presented at the Conference. The accepted papers have a good, balanced mix of theory and applications. The techniques ranged from fuzzy neural networks, decision trees, spiking neural networks, self organizing feature map, support vector regression, adaptive neuro fuzzy inference system, extreme learning machine, fuzzy multi criteria decision making, machine learning, web usage mining, Takagi-Sugeno Inference system, extended Kalman filter, Goedel type logic, fuzzy formal concept analysis, biclustering e...
Energy Technology Data Exchange (ETDEWEB)
Aminossadati, S.M. [School of Mechanical and Mining Engineering, The University of Queensland, QLD 4072 (Australia); Kargar, A.; Ghasemi, B. [Engineering Faculty, Shahrekord University, Shahrekord, P.O. Box 115 (Iran, Islamic Republic of)
2012-03-15
A numerical study of laminar mixed convection in a two-sided lid-driven cavity filled with a water-Al{sub 2}O{sub 3} nano-fluid is presented. The top and bottom walls of the cavity are kept at different temperatures and can slide in the same or opposite direction. The vertical walls are thermally insulated. An Adaptive Network-based Fuzzy Inference System (ANFIS) approach is developed, trained and validated using the results of a Computational Fluid Dynamics (CFD) analysis. The results show that ANFIS can successfully be used to predict the fluid velocity and temperature as well as the heat transfer rate of the cavity, with reduced computation time and without compromising the accuracy. (authors)
Directory of Open Access Journals (Sweden)
Daniel Pincheira-Donoso
Full Text Available Large-scale patterns of current species geographic range-size variation reflect historical dynamics of dispersal and provide insights into future consequences under changing environments. Evidence suggests that climate warming exerts major damage on high latitude and elevation organisms, where changes are more severe and available space to disperse tracking historical niches is more limited. Species with longer generations (slower adaptive responses, such as vertebrates, and with restricted distributions (lower genetic diversity, higher inbreeding in these environments are expected to be particularly threatened by warming crises. However, a well-known macroecological generalization (Rapoport's rule predicts that species range-sizes increase with increasing latitude-elevation, thus counterbalancing the impact of climate change. Here, I investigate geographic range-size variation across an extreme environmental gradient and as a function of body size, in the prominent Liolaemus lizard adaptive radiation. Conventional and phylogenetic analyses revealed that latitudinal (but not elevational ranges significantly decrease with increasing latitude-elevation, while body size was unrelated to range-size. Evolutionarily, these results are insightful as they suggest a link between spatial environmental gradients and range-size evolution. However, ecologically, these results suggest that Liolaemus might be increasingly threatened if, as predicted by theory, ranges retract and contract continuously under persisting climate warming, potentially increasing extinction risks at high latitudes and elevations.
Embedded prediction in feature extraction: application to single-trial EEG discrimination.
Hsu, Wei-Yen
2013-01-01
In this study, an analysis system embedding neuron-fuzzy prediction in feature extraction is proposed for brain-computer interface (BCI) applications. Wavelet-fractal features combined with neuro-fuzzy predictions are applied for feature extraction in motor imagery (MI) discrimination. The features are extracted from the electroencephalography (EEG) signals recorded from participants performing left and right MI. Time-series predictions are performed by training 2 adaptive neuro-fuzzy inference systems (ANFIS) for respective left and right MI data. Features are then calculated from the difference in multi-resolution fractal feature vector (MFFV) between the predicted and actual signals through a window of EEG signals. Finally, the support vector machine is used for classification. The proposed method estimates its performance in comparison with the linear adaptive autoregressive (AAR) model and the AAR time-series prediction of 6 participants from 2 data sets. The results indicate that the proposed method is promising in MI classification. PMID:23248335
Application of Soft Computing in Coherent Communications Phase Synchronization
Drake, Jeffrey T.; Prasad, Nadipuram R.
2000-01-01
The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.
一种色噪声下的自适应Kalman跟踪滤波器%An Adaptive Kalman Tracking Filter with Colored Noises
Institute of Scientific and Technical Information of China (English)
孙强; 惠晓滨; 黄鹤
2011-01-01
有色噪声干扰情况下非线性系统的状态估计是许多实际工程需要解决的问题.该文章针对传统Kalman滤波器噪声统计特性未知时,受色噪声的影响精度严重降低,甚至出现发散等现象,设计了一种基于神经模糊网络的自适应的Kalman滤波跟踪器.该滤波器通过利用神经模糊网络作为误差估计器,估计出Kalman滤波器的估计误差,从而对Kalman滤波跟踪器的预测结果进行修正,得到更优的预测值.计算机仿真结果表明,该算法可以克服传统算法的局限性,有效地防止滤波器发散,缩小实际的滤波误差,提高滤波精度,实现对跟踪结果的在线改进.%Estimation in nonlinear system with Colored Noises is problem in many projects. The traditional Kalman Filter is still deficient in tracking targets in the nonlinear systems with colored noises.An adaptive Kalman tracking algorithm based on neuro-fuzzy network is proposed in the paper. The estimation error is obtained online to modify the filtered result with neuro-fuzzy network as the estimator.The analysis of simulation results indicates preliminarily that our better tracking algorithm does restrain colored noise and improve that tracking accuracy. At same time it can reduce error of traditional algorithm and improve the tracking accuracy of the system online.
Demand Forecasting In Pharmaceutical Industry Using Neuro-Fuzzy Approach
Taskin, M.Fatih; Candan, Gökçe; Yazgan, Harun Reşit
2014-01-01
Because of human healthcare, the pharmaceutical industry can be considered as one of the most significant industrial sector. For this reason, demand forecasting in pharmaceutical industry has more complex structure than other sectors. Human factors, seasonal and epidemic diseases, market shares of the competitive products and marketing conditions are considered as main external factors for forecasting pharmaceutical product. Additionally, active ingredients rate is also important factor for f...
Application of neuro-fuzzy technology in nuclear security research
International Nuclear Information System (INIS)
Overview on neural network technology and its applications are introduced. Achievements in load tracing, power distribution, virtual measurements, fault diagnosis, transient recognition and nuclear fuel inspection and so on, suggest that it is an promising way to improve the safety and reliability of nuclear power plant, therefore, much effort should be taken to help it popular
FACE RECOGNITION USING FEATURE EXTRACTION AND NEURO-FUZZY TECHNIQUES
Directory of Open Access Journals (Sweden)
Ritesh Vyas
2012-09-01
Full Text Available Face is a primary focus of attention in social intercourse, playing a major role in conveying identity and emotion. The human ability to recognize faces is remarkable. People can recognize thousands of faces learned throughout their lifetime and identify familiar faces at a glance even after years of separation. This skill is quite robust, despite large changes in the visual stimulus due to viewing conditions, expression, aging, and distractions such as glasses, beards or changes in hair style. In this work, a system is designed to recognize human faces depending on their facial features. Also to reveal the outline of the face, eyes and nose, edge detection technique has been used. Facial features are extracted in the form of distance between important feature points. After normalization, these feature vectors are learned by artificial neural network and used to recognize facial image.
Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design
Lin, Cheng-Jian
2008-01-01
A novel reinforcement sequential-search-based genetic algorithm (R-SSGA) is proposed. The better chromosomes will be initially generated while the better mutation points will be determined for performing efficient mutation. We formulate a number of time steps before failure occurs as the fitness function. The proposed R-SSGA method makes the design of TSK-Type fuzzy controllers more practical for real-world applications, since it greatly lessens the quality and quantity requirements of the te...
A neuro-fuzzy controlling algorithm for wind turbine
Energy Technology Data Exchange (ETDEWEB)
Li Lin [Tampere Univ. of Technology (Finland); Eriksson, J.T. [Tampere Univ. of Technology (Finland)
1995-12-31
The wind turbine control system is stochastic and nonlinear, offering a demanding field for different control methods. An improved and efficient controller will have great impact on the cost-effectiveness of the technology. In this article, a design method for a self-organizing fuzzy controller is discussed, which combines two popular computational intelligence techniques, neural networks and fuzzy logic. Based on acquisited dynamic parameters of the wind, it can effectively predict wind changes in speed and direction. Maximum power can always be extracted from the kinetic energy of the wind. Based on the stimulating experiments applying nonlinear dynamics to a `Variable Speed Fixed Angle` wind turbine, it is demonstrated that the proposed control model 3rd learning algorithm provide a predictable, stable and accurate performance. The robustness of the controller to system parameter variations and measurement disturbances is also discussed. (author)
Skin Cancer Recognition by Using a Neuro-Fuzzy System
Bareqa Salah; Mohammad Alshraideh; Rasha Beidas; Ferial Hayajneh
2011-01-01
Skin cancer is the most prevalent cancer in the light-skinned population and it is generally caused by exposure to ultraviolet light. Early detection of skin cancer has the potential to reduce mortality and morbidity. There are many diagnostic technologies and tests to diagnose skin cancer. However many of these tests are extremely complex and subjective and depend heavily on the experience of the clinician. To obviate these problems, image processing techniques, a neural network system (NN) ...
Neuro Fuzzy System Based Condition Monitoring of Power Transformer
Directory of Open Access Journals (Sweden)
Anil Kumar Kori
2012-03-01
Full Text Available A power transformer is a static piece of apparatus with two or more windings. By electromagnetic induction, it transforms a system of alternating voltages and current into another system of alternating voltages and current of different values, of the same frequency, for the purpose of transmitting electrical power. For example, distribution transformers convert high-voltages electricity to lower voltages levels acceptable for use in home and business. A power transformer is one of the most expensive pieces of equipment in an electricity system. Monitoring the performance of a transformer is crucial in minimizing power outages through appropriate maintenance thereby reducing the total cost of operation. This idea provides the use of neural fuzzy technique in order to better predict oil conditions of a transformer. The preliminary phase is the first and most important step of a neural fuzzy modeling process. It aims to collect a set of data, which is expected to be a representative sample of the system to be modeled. In this phase, known as data processing, data are cleaned to make learning easier. This involves incorporation of all relevant domain knowledge at the level of an initial data analysis, including any sort of preliminary filtering of the observed data such as missing data treatment or feature selection. The preprocessing phase returns the data set in a structured input-output form, commonly called a training set. Once this preliminary phase is completed, the learning phase begins. This paper will focus exclusively on this second phase assuming that data have already been preprocessed. The learning phase is essentially a search, in a space of possible model configurations, of the model that best represents the power transformer testing values. As in any other search task, the learning procedure requires a search space, where the solution is to be found, and some assessment criterion to measure the quality of the solution.
Neuro-fuzzy control of weld pool in pulsed MIG welding; MIG yosetsu yoyuchi no neuro-fuzzy seigyo
Energy Technology Data Exchange (ETDEWEB)
Kaneko, Y.; Oshima, K.; Iisaka, T. [Saitama Univ. Saitama (Japan); Yamane, S. [Maizuru College of Technology, Kyoto (Japan)
1994-08-05
Sensing and fuzzy control of weld pool by the use of neural network are investigated as a part of study on an intelligent welding robot. Using neural network, a method is proposed for the estimation of the weld pool depth, which is difficult to be measured directly by sensors, using the data on the welding surface (surface shape of the weld pool, welding current, and groove gap). The dynamic system of the weld depth is expressed by neural network. A fuzzy controller is used to control the welding current so that the depth obtained by neural network may become constant. The performance of the fuzzy controller is dependent on the law of control and fuzzy variables. The law of control is structured with the controller designing knowledge of the modern control theory, and the fuzzy variables are structured by the knowledge and experience of the experts. A welding experiment is performed with variable groove gaps to confirm the effectiveness of the dynamic model of the welding depth which employs neural network. 10 refs., 13 figs.
Comparison of ANFIS Based SSSC, STATCOM and UPFC Controllers for Transient Stability Improvement
Directory of Open Access Journals (Sweden)
Gholamreza Arab Markadeh
2010-12-01
Full Text Available This paper presents the comparative performance of neuro- Fuzzy controlled Voltage Source Converters (VSC based Flexible AC Transmission System (FACTS devices, such as Static Synchronous Series Compensator (SSSC, Static Synchronous Compensator (STATCOM, and Unified Power Flow Controller (UPFC in terms of improvement in transient stability. In neuro-fuzzy control method the simplicity of fuzzy systems and the ability of training in neural networks have been combined. The training data set the parameters of membership functions in fuzzy controller. This Adaptive Network Fuzzy Inference System (ANFIS can track the given input-output data in order to conform to the desired controller. The maximization of energy function of UPFC is used as an objective function to generate the training data. Proposed method is tested on a single machine infinitive bus system to confirm its performance through simulation. The results prove the noticeable influence of ANFIS controlled UPFC on increasing Critical Clearing Time (CCT of system.
A new Multiple ANFIS model for classification of hemiplegic gait.
Yardimci, A; Asilkan, O
2014-01-01
Neuro-fuzzy system is a combination of neural network and fuzzy system in such a way that neural network learning algorithms, is used to determine parameters of the fuzzy system. This paper describes the application of multiple adaptive neuro-fuzzy inference system (MANFIS) model which has hybrid learning algorithm for classification of hemiplegic gait acceleration (HGA) signals. Decision making was performed in two stages: feature extraction using the wavelet transforms (WT) and the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the HGA signals. PMID:25160151
Directory of Open Access Journals (Sweden)
Chien-Lin Huang
2015-01-01
Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-05-01
This work presents a novel neuro-fuzzy controller (NFC) for car-driver's seat-suspension system featuring magnetorheological (MR) dampers. The NFC is built based on the algorithm for building adaptive neuro-fuzzy inference systems (ANFISs) named B-ANFIS, which has been developed in Part 1, and fuzzy logic inference systems (FISs). In order to create the NFC, the following steps are performed. Firstly, a control strategy based on a ride-comfort-oriented tendency (RCOT) is established. Subsequently, optimal FISs are built based on a genetic algorithm (GA) to estimate the desired damping force that satisfies the RCOT corresponding to the road status at each time. The B-ANFIS is then used to build ANFISs for inverse dynamic models of the suspension system (I-ANFIS). Based on the FISs, the desired force values are calculated according to the status of road at each time. The corresponding exciting current value to be applied to the MR damper is then determined by the I-ANFIS. In order to validate the effectiveness of the developed neuro-fuzzy controller, control performances of the seat-suspension systems featuring MR dampers are evaluated under different road conditions. In addition, a comparative work between conventional skyhook controller and the proposed NFC is undertaken in order to demonstrate superior control performances of the proposed methodology.
Energy Technology Data Exchange (ETDEWEB)
Roberto, Baccoli; Ubaldo, Carlini; Stefano, Mariotti; Roberto, Innamorati; Elisa, Solinas; Paolo, Mura [Institute of Technical Physics of the University of Cagliari, via Marengo 1, 09123 Cagliari (Italy)
2010-06-15
This paper deals with the development of methods for non steady state test of solar thermal collectors. Our goal is to infer performances in steady-state conditions in terms of the efficiency curve when measures in transient conditions are the only ones available. We take into consideration the method of identification of a system in dynamic conditions by applying a Graybox Identification Model and a Dynamic Adaptative Linear Neural Network (ALNN) model. The study targets the solar collector with evacuated pipes, such as Dewar pipes. The mathematical description that supervises the functioning of the solar collector in transient conditions is developed using the equation of the energy balance, with the aim of determining the order and architecture of the two models. The input and output vectors of the two models are constructed, considering the measures of 4 days of solar radiation, flow mass, environment and heat-transfer fluid temperature in the inlet and outlet from the thermal solar collector. The efficiency curves derived from the two models are detected in correspondence to the test and validation points. The two synthetic simulated efficiency curves are compared with the actual efficiency curve certified by the Swiss Institute Solartechnik Puffung Forschung which tested the solar collector performance in steady-state conditions according to the UNI-EN 12975 standard. An acquisition set of measurements of only 4 days in the transient condition was enough to trace through a Graybox State Space Model the efficiency curve of the tested solar thermal collector, with a relative error of synthetic values with respect to efficiency certified by SPF, lower than 0.5%, while with the ALNN model the error is lower than 2.2% with respect to certified one. (author)
Directory of Open Access Journals (Sweden)
Sivarao
2009-01-01
Full Text Available Problem statement: The power of Artificial Intelligent (AI becomes more authoritative when the system is programmed to cater the need of complex applications. MATLAB 2007B, integrating artificial intelligent system and Graphical User Interface (GUI has reduced researchers' fear-to-model factor due to unfamiliarity and phobia to produce program codes. Approach: In this study, how GUI was developed on Matlab to model laser machining process using Adaptive Network-based Fuzzy Inference System (ANFIS was presented. Laser cutting machine is widely known for having the most number of controllable parameters among the advanced machine tools, hence become more difficult to engineer the process into desired responses; surface roughness and kerf width. Mastering both laser processing and ANFIS programming are difficult task for most researchers, especially for the difficult to model processes. Therefore, a new approach was ventured, where GUI was developed using MATLAB integrating ANFIS variables to model the laser processing phenomenon, in which the numeric and graphical output can be easily printed to interpret the results. Results: To investigate ANFIS variablesâ' characteristic and effect, error was analyzed via Root Mean Square Error (RMSE and Average Percentage Error (APE. The RMSE values were then compared among various trained variables and settings to finalize best ANFIS predictive model. The results found was very promising and proved that, even a person with shallow knowledge in both artificial intelligence and laser processing can actually train the experimental data sets loaded into GUI, test and optimize ANFIS variables to make comparative analysis. Conclusion: The details of modeled work with prediction accuracy according to variable combinations were premeditated on another paper. The findings were expected to benefit precision machining industries in reducing their down time and cost as compared to the traditional way of trial and error
Flatness-based embedded adaptive fuzzy control of turbocharged diesel engines
Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan
2014-10-01
In this paper nonlinear embedded control for turbocharged Diesel engines is developed with the use of Differential flatness theory and adaptive fuzzy control. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances an adaptive fuzzy control scheme is implemanted making use of the transformed dynamical system of the diesel engine that is obtained through the application of differential flatness theory. Since only the system's output is measurable the complete state vector has to be reconstructed with the use of a state observer. It is shown that a suitable learning law can be defined for neuro-fuzzy approximators, which are part of the controller, so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed observer-based adaptive fuzzy control scheme results in H∞ tracking performance.
Caticha, Ariel
2011-03-01
In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEnt and Bayes' rule, and therefore unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme.
Caticha, Ariel
2010-01-01
In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEnt and Bayes' rule, and therefore unifies the two themes of these workshops -- the Maximum Entropy and the Bayesian methods -- into a single general inference scheme.
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Dastani, M.; Herzig, A.; Hulstijn, J.; Torre, L.W.N. van der
2005-01-01
In this paper we discuss Liau's logic of Belief, Inform and Trust (BIT), which captures the use of trust to infer beliefs from acquired information. However, the logic does not capture the derivation of trust from other notions. We therefore suggest the following two extensions. First, like Liau we
Labarbe, Rudi; Janssens, Guillaume; Sterpin, Edmond
2016-09-01
In proton therapy, quantification of the proton range uncertainty is important to achieve dose distribution compliance. The promising accuracy of prompt gamma imaging (PGI) suggests the development of a mathematical framework using the range measurements to convert population based estimates of uncertainties into patient specific estimates with the purpose of plan adaptation. We present here such framework using Bayesian inference. The sources of uncertainty were modeled by three parameters: setup bias m, random setup precision r and water equivalent path length bias u. The evolution of the expectation values E(m), E(r) and E(u) during the treatment was simulated. The expectation values converged towards the true simulation parameters after 5 and 10 fractions, for E(m) and E(u), respectively. E(r) settle on a constant value slightly lower than the true value after 10 fractions. In conclusion, the simulation showed that there is enough information in the frequency distribution of the range errors measured by PGI to estimate the expectation values and the confidence interval of the model parameters by Bayesian inference. The updated model parameters were used to compute patient specific lateral and local distal margins for adaptive re-planning.
Institute of Scientific and Technical Information of China (English)
张晓琴; 黄玉清; 梁靓
2009-01-01
根据带宽、时延、丢包率3个网络关键性能指标,建立了网络性能评价的自适应神经-模糊推理系统.通过对网络不同业务服务质量进行分析,实现了在给定输入负载下对网络性能的判定.仿真结果表明,建立的自适应神经-模糊推理系统能描述网络性能指标和输出的映射规律,能较准确的拟和数据,评价结果符合规律.因此,该方法合理有效,能够为网络信息传输提供决策支持.%Based on the bandwidth, delay and packet loss rate, an adaptive neural-fuzzy inference system for network performance evaluation is designed. Through the analysis of different service quality, the judgment of network performance with given input load is realized. The simulation results show that the adaptive neural-fuzzy inference system reflect the mapping rules of network performance metrics and output, moreover fit data accurately, the results are conform to the regular pattern. Therefore, the method is feasible and effective and provide decision support for network information transmission strategy.
Rohatgi, Vijay K
2003-01-01
Unified treatment of probability and statistics examines and analyzes the relationship between the two fields, exploring inferential issues. Numerous problems, examples, and diagrams--some with solutions--plus clear-cut, highlighted summaries of results. Advanced undergraduate to graduate level. Contents: 1. Introduction. 2. Probability Model. 3. Probability Distributions. 4. Introduction to Statistical Inference. 5. More on Mathematical Expectation. 6. Some Discrete Models. 7. Some Continuous Models. 8. Functions of Random Variables and Random Vectors. 9. Large-Sample Theory. 10. General Meth
Casella, George
2002-01-01
"Statistical Inference is a delightfully modern text on statistical theory and deserves serious consideration from every teacher of a graduate- or advanced undergraduate-level first course in statistical theory. . . Chapters 1-5 provide plenty of interesting examples illustrating either the basic concepts of probability or the basic techniques of finding distribution. . . The book has unique features [throughout Chapters 6-12] for example, I have never seen in any comparable text such extensive discussion of ancillary statistics [Ch. 6], including Basu's theorem, dealing with the independence of complete sufficient statistics and ancillary statistics. Basu's theorem is such a useful tool that it should be available to every graduate student of statistics. . . The derivation of the analysis of variance (ANOVA)F test in Chapter 11 via the union-intersection principle is very nice. . . Chapter 12 contains, in addition to the standard regression model, errors-in-variables models. This topic will be of considerabl...
Appraisal of soft computing techniques in prediction of total bed material load in tropical rivers
Chang, C. K.; Azamathulla, H. Md; Zakaria, N. A.; Ghani, A. Ab
2012-02-01
This paper evaluates the performance of three soft computing techniques, namely Gene-Expression Programming (GEP) (Zakaria et al 2010), Feed Forward Neural Networks (FFNN) (Ab Ghani et al 2011), and Adaptive Neuro-Fuzzy Inference System (ANFIS) in the prediction of total bed material load for three Malaysian rivers namely Kurau, Langat and Muda. The results of present study are very promising: FFNN ( R 2 = 0.958, RMSE = 0.0698), ANFIS ( R 2 = 0.648, RMSE = 6.654), and GEP ( R 2 = 0.97, RMSE = 0.057), which support the use of these intelligent techniques in the prediction of sediment loads in tropical rivers.
Appraisal of soft computing techniques in prediction of total bed material load in tropical rivers
Indian Academy of Sciences (India)
C K Chang; H Md Azamathulla; N A Zakaria; A Ab Ghani
2012-02-01
This paper evaluates the performance of three soft computing techniques, namely Gene-Expression Programming (GEP) (Zakaria et al 2010), Feed Forward Neural Networks (FFNN) (Ab Ghani et al 2011), and Adaptive Neuro-Fuzzy Inference System (ANFIS) in the prediction of total bed material load for three Malaysian rivers namely Kurau, Langat and Muda. The results of present study are very promising: FFNN (2 = 0.958, RMSE = 0.0698), ANFIS (2 = 0.648, RMSE = 6.654), and GEP (2 = 0.97, RMSE = 0.057), which support the use of these intelligent techniques in the prediction of sediment loads in tropical rivers.
Energy Technology Data Exchange (ETDEWEB)
Dehlaghi, Vahab; Taghipour, Mostafa; Haghparast, Abbas [Department of Biomedical Engineering, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Roshani, Gholam Hossein [School of Energy, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Rezaei, Abbas [Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Shayesteh, Sajjad Pashootan [Department of Biomedical Engineering, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Adineh-Vand, Ayoub [Department of Computer Engineering, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Department of Electrical Engineering, Razi University, Kermanshah (Iran, Islamic Republic of); Karimi, Gholam Reza, E-mail: ghkarimi@razi.ac.ir [Department of Electrical Engineering, Razi University, Kermanshah (Iran, Islamic Republic of)
2015-04-01
In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) are investigated to predict the thickness of the compensator filter in radiation therapy. In the proposed models, the input parameters are field size (S), off-axis distance, and relative dose (D/D{sub 0}), and the output is the thickness of the compensator. The obtained results show that the proposed ANN and ANFIS models are useful, reliable, and cheap tools to predict the thickness of the compensator filter in intensity-modulated radiation therapy.
Prilagodljivi neuro-fazi model za predviđanje tehnoloških parametara
Šimunović, Goran; Šarić, Tomislav; SVALINA, Ilija
2011-01-01
Procijeniti tehnološke parametre na način da se ispune postavljeni konstrukcijski i tehnološki zahtjevi cilj je i želja svakog tehnologa. Procjenu tehnologu mogu olakšati prikupljena znanja i ranije stečena iskustva. Na temelju sustavno prikupljenih podataka iz proizvodnje šavnih cijevi u radu je primjenom hibridnog sustava za modeliranje ANFIS (Adaptive Neuro-Fuzzy Inference System) oblikovan plan ulazno/izlaznih podataka. Taj je plan pretpostavka za generiranje sustava neizrazitog zaključiv...
Space radiation effect on fibre optical gyroscope control circuit and compensation algorithm
Institute of Scientific and Technical Information of China (English)
Zhang Chun-Xi; Tian Hai-Ting; Li Min; Jin Jing; Song Ning-Fang
2008-01-01
The process of a γ-irradiation experiment of fibre optical gyroscope (FOG) control circuit was described,in which it is demonstrated that the FOG control circuit,except for D/A converter,could endure the dose of 10krad with the protection of cabin material.The distortion and drift in D/A converter due to radiation,which affect the performance of FOG seriously,was indicated based on the elemental analysis.Finally,a compensation network based on adaptive neuro-fuzzy inference system is proposed and its function is verified by simulation.
A New Application of an ANFIS for the Shape Optimal Design of Electromagnetic Devices
Directory of Open Access Journals (Sweden)
N. Mohdeb
2014-09-01
Full Text Available This paper presents a new model based on simulated annealing algorithm (ASA and adaptive neuro-fuzzy inference system (ANFIS for shape optimization and its applications to electromagnetic devices. The proposed model uses ANFIS system to evaluate the electromagnetic performance of the device. Both the ANFIS and ASA method are applied to the design/optimization of the electromagnetic actuator. The results of the proposed approach are compared with other techniques such as: method of moving asymptotes, penalty method, augmented lagrangian genetic algorithm and simulated annealing method (SA. Among the algorithms, the proposed ANFIS-ASA approach significantly outperforms the other methods.
FAULT DIAGNOSIS BASED ON INTE- GRATION OF CLUSTER ANALYSIS,ROUGH SET METHOD AND FUZZY NEURAL NETWORK
Institute of Scientific and Technical Information of China (English)
Feng Zhipeng; Song Xigeng; Chu Fulei
2004-01-01
In order to increase the efficiency and decrease the cost of machinery diagnosis, a hybrid system of computational intelligence methods is presented. Firstly, the continuous attributes in diagnosis decision system are discretized with the self-organizing map (SOM) neural network. Then, dynamic reducts are computed based on rough set method, and the key conditions for diagnosis are found according to the maximum cluster ratio. Lastly, according to the optimal reduct, the adaptive neuro-fuzzy inference system (ANFIS) is designed for fault identification. The diagnosis of a diesel verifies the feasibility of engineering applications.
Parameter optimization using GA in SVM to predict damage level of non-reshaped berm breakwater.
Digital Repository Service at National Institute of Oceanography (India)
Harish, N.; Lokesha.; Mandal, S.; Rao, S.; Patil, S.G.
tools, such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Adaptive Neuro Fuzzy Inference System (ANFIS), etc., are successfully used in different fields (Kazperkiewiecz et al 1995, Voga and Belchior 2006, Dong et al 2005). Also... Balas C.E., Koc M.L. and Tur R.(2010) ‘’Artificial neural networks based on principal component analysis, fuzzy systems and fuzzy neural networks for preliminary design of rubble mound breakwaters’’, Applied Ocean Research, 32, 425 – 433. Dong B., Cao C...
ANFIS Modelling of Flexible Plate Structure
Directory of Open Access Journals (Sweden)
A. A. M. Al-Khafaji
2010-06-01
Full Text Available This paper presented an investigation into the performance of system identification using an Adaptive Neuro-Fuzzy Inference System (ANFIS technique for the dynamic modelling of a twodimensional flexible plate structure. It is confirmed experimentally, using National Instrumentation (NI Data Acquisition System (DAQ and flexible plate test rig that ANFIS can be effectively used for modelling the system with highly accurate results. The accuracy of the modelling results is demonstrated through validation tests including training and test validation and correlation tests.
Energy Technology Data Exchange (ETDEWEB)
Erik, N.Y.; Yilmaz, I. [Cumhuriyet University, Sivas (Turkey). Dept. of Geological Engineering
2011-07-01
Gross calorific value (GCV) is an important characteristic of coal and organic shale; the determination of GCV, however, is difficult, time-consuming, and expensive and is also a destructive analysis. In this article, the use of some soft computing techniques such as ANNs (artificial neural networks) and ANFIS (adaptive neuro-fuzzy inference system) for predicting GCV (gross calorific value) of coals is described and compared with the traditional statistical model of MR (multiple regression). This article shows that the constructed ANFIS models exhibit high performance for predicting GCV. The use of soft computing techniques will provide new approaches and methodologies in prediction of some parameters in investigations about the fuel.
Dehlaghi, Vahab; Taghipour, Mostafa; Haghparast, Abbas; Roshani, Gholam Hossein; Rezaei, Abbas; Shayesteh, Sajjad Pashootan; Adineh-Vand, Ayoub; Karimi, Gholam Reza
2015-01-01
In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) are investigated to predict the thickness of the compensator filter in radiation therapy. In the proposed models, the input parameters are field size (S), off-axis distance, and relative dose (D/D0), and the output is the thickness of the compensator. The obtained results show that the proposed ANN and ANFIS models are useful, reliable, and cheap tools to predict the thickness of the compensator filter in intensity-modulated radiation therapy. PMID:25498836
ANALYSIS AND MODELLING OF BIODYNAMIC RESPONSE TO HAND ARM VIBRATION SYSTEM
Directory of Open Access Journals (Sweden)
Mohod Chandrashekhar D
2016-01-01
Full Text Available Hand operated tools are widely used in industrial and commercial sector. These tools generate vibrations which have impact on health of an operator. Hence study of Hand Vibration Syndrome is one of the key areas where major researchers are attracted. This study considers the literature review for hand operated vibration measurement and analysis that are extensively used. Objective of this review was to understand results and effects of hand vibration transmission on health. The review could be used to develop a prediction model with use of Adaptive Neuro Fuzzy Inference System hence another objective is to represent the applicability of ANFIS in development of the model
Ganesan, S; Victoire, T Aruldoss Albert; Vijayalakshmy, G
2014-01-01
In this paper, the work is mainly concentrated on removing non-linear parameters to make the physiological signals more linear and reducing the complexity of the signals. This paper discusses three different types of techniques that can be successfully utilised to remove non-linear parameters in EEG and ECG. (i) Transformation technique using Discrete Walsh-Hadamard Transform (DWHT); (ii) application of fuzzy logic control and (iii) building the Adaptive Neuro-Fuzzy Inference System (ANFIS) model for fuzzy. This work has been inspired by the need to arrive at an efficient, simple, accurate and quicker method for analysis of bio-signal. PMID:24589837
SELF TUNING CONTROLLERS FOR DAMPING LOW FREQUENCY OSCILLATIONS
Directory of Open Access Journals (Sweden)
SANGU RAVINDRA
2012-09-01
Full Text Available This paper presents a new control methods based on adaptive Neuro-Fuzzy damping controller and adaptive Artificial Neural Networks damping controller techniques to control a Unified Power Flow controller (UPFC installed in a single machine infinite bus Power System. The objective of Neuro-Fuzzy and ANN based UPFC controller is to damp power system oscillations.Phillips-Herffron model of a single machine power system equipped with a UPFC is used to model the system. In order to damp power system oscillations, adaptive neuro-fuzzy damping controller and adaptive ANN damping controller for UPFC are designed and simulated. Simulation is performed for various types of loads and for different disturbances. Simulation results demonstrate that the developed adaptive ANN damping controller has an excellent capability in damping electromechanical oscillations which exhibits a superior damping performance in comparison to the neuro-fuzzy damping controller as well as conventional lead-lag controller.
Desired Accuracy Estimation of Noise Function from ECG Signal by Fuzzy Approach
Vahabi, Zahra; Kermani, Saeed
2012-01-01
Unknown noise and artifacts present in medical signals with non-linear fuzzy filter will be estimated and then removed. An adaptive neuro-fuzzy interference system which has a non-linear structure presented for the noise function prediction by before Samples. This paper is about a neuro-fuzzy method to estimate unknown noise of Electrocardiogram signal. Adaptive neural combined with Fuzzy System to construct a fuzzy Predictor. For this system setting parameters such as the number of Membershi...
Institute of Scientific and Technical Information of China (English)
蒋静芝; 孟相如; 李欢; 庄绪春
2011-01-01
A method for building network fault diagnosis models is proposed based on subtractive clustering and Adaptive Networkbased Fuzzy Inference System(ANFIS).The subtractive clustering is used to build initial fuzzy inference system,ANFIS is adopted to build network fault diagnosis original model, hybrid algorithm is used to train the parameter of fuzzy rule, and the final model is established. Simulation experiment results show that the modeling algorithm based on subtractive clustering-ANFIS is effective. Compared with the simulation results,the fault diagnosis ability and convergence speed of the subtracfive clusteringANFIS network are all better than the BP neural network,and much more suitable as network fault diagnosis model.%提出了一种基于减法聚类.自适应模糊神经网络(ANFIS)的网络故障诊断建模方法.减法聚类算法生成初始模糊推理系统,ANFIS建立网络故障诊断原始模型,应用混合算法对模糊规则的参数进行训练并建立最终的模型.仿真实验表明基于减法聚类-ANFIS的建模方法是有效的;通过仿真结果比较,减法聚类-ANFIS的网络故障诊断能力及收敛速度均优于BP神经网络,更适合作为网络故障诊断模型.
Investigations on Hybrid Learning in ANFIS
Directory of Open Access Journals (Sweden)
C.Loganathan
2014-10-01
Full Text Available Neural networks have attractiveness to several researchers due to their great closeness to the structure of the brain, their characteristics not shared by many traditional systems. An Artificial Neural Network (ANN is a network of interconnected artificial processing elements (called neurons that co-operate with one another in order to solve specific issues. ANNs are inspired by the structure and functional aspects of biological nervous systems. Neural networks, which recognize patterns and adopt themselves to cope with changing environments. Fuzzy inference system incorporates human knowledge and performs inferencing and decision making. The integration of these two complementary approaches together with certain derivative free optimization techniques, results in a novel discipline called Neuro Fuzzy. In Neuro fuzzy development a specific approach is called Adaptive Neuro Fuzzy Inference System (ANFIS, which has shown significant results in modeling nonlinear functions. The basic idea behind the paper is to design a system that uses a fuzzy system to represent knowledge in an interpretable manner and have the learning ability derived from a Runge-Kutta learning method (RKLM to adjust its membership functions and parameters in order to enhance the system performance. The problem of finding appropriate membership functions and fuzzy rules is often a tiring process of trial and error. It requires users to understand the data before training, which is usually difficult to achieve when the database is relatively large. To overcome these problems, a hybrid of Back Propagation Neural network (BPN and RKLM can combine the advantages of two systems and avoid their disadvantages.
自适应神经模糊推理系统（ANFIS）及其仿真%Study on the adaptive network-based fuzzy inference system and simulation
Institute of Scientific and Technical Information of China (English)
张小娟
2012-01-01
A nonlinear example was studied,through the study of ANFIS,and corresponding fuzzy model was established.Some simulation experiments were carded on.Direct effect of adaptive network based fuzzy inference systems （ANFIS）about training errors,the number of membership functions and ANFIS output is researched by ANFIS of MATLAB,which achieves good results. The simulation results show that ANFIS is very effective to identify the nonlinear system and its accuracy is very high.%以一个非线性模型为研究对象，通过对自适应神经模糊推理系统（ANFIS）建模机理的研究建立了非线性实例模糊模型，借助MATLAB中ANFIS的功能讨论隶属度函数的数目、ANFIS输出、训练误差等对自适应神经模糊推理系统（ANFIS）的影响，取得了良好的效果。结果表明利用ANFIS进行非线性系统建模和辨识是可行的，其辩识精度很高。
Artificial Intelligence Techniques for the Estimation of Direct Methanol Fuel Cell Performance
Hasiloglu, Abdulsamet; Aras, Ömür; Bayramoglu, Mahmut
2016-04-01
Artificial neural networks and neuro-fuzzy inference systems are well known artificial intelligence techniques used for black-box modelling of complex systems. In this study, Feed-forward artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used for modelling the performance of direct methanol fuel cell (DMFC). Current density (I), fuel cell temperature (T), methanol concentration (C), liquid flow-rate (q) and air flow-rate (Q) are selected as input variables to predict the cell voltage. Polarization curves are obtained for 35 different operating conditions according to a statistically designed experimental plan. In modelling study, various subsets of input variables and various types of membership function are considered. A feed -forward architecture with one hidden layer is used in ANN modelling. The optimum performance is obtained with the input set (I, T, C, q) using twelve hidden neurons and sigmoidal activation function. On the other hand, first order Sugeno inference system is applied in ANFIS modelling and the optimum performance is obtained with the input set (I, T, C, q) using sixteen fuzzy rules and triangular membership function. The test results show that ANN model estimates the polarization curve of DMFC more accurately than ANFIS model.
Directory of Open Access Journals (Sweden)
Asaad A. Abdullah
2014-04-01
Full Text Available In this study, we suggested intelligent approach to predict and optimize the cutting parameters when down milling of 45# steel material with cutting tool PTHK- (Ø10*20C*10D*75L -4F-1.0R under dry condition. The experiments were performed statistically according to four factors with three levels in Taguchi experimental design method. Adaptive Neuro-fuzzy inference system is utilized to establish the relationship between the inputs and output parameter exploiting the Taguchi orthogonal array L27. The Particle Swarm Optimized-Adaptive Neuro-Fuzzy Inference System (PSOANFIS is suggested to select the best cutting parameters providing the lower surface through from the experimental data using ANFIS models to predict objective functions. The PSOANFIS optimization approach that improves the surface quality from 0.212 to 0.202, as well as the cutting time is also reduced from 7.5 to 4.78 sec according to machining parameters before and after optimization process. From these results, it can be readily achieved that the advanced study is trusted and suitable for solving other problems encountered in metal cutting operations and the same surface roughness.
Daily water level forecasting using wavelet decomposition and artificial intelligence techniques
Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.
2015-01-01
Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.
Adaptive Importance Sampling for Control and Inference
Kappen, H. J.; Ruiz, H. C.
2016-03-01
Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman-Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robotics and control. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers are state feedback controllers and the use of these requires an efficient representation. Learning and representing effective state-feedback controllers for non-linear stochastic control problems is a very challenging, and largely unsolved, problem. We show how to learn and represent such controllers using ideas from the cross entropy method. We derive a gradient descent method that allows to learn feed-back controllers using an arbitrary parametrisation. We refer to this method as the path integral cross entropy method or PICE. We illustrate this method for some simple examples. The PI control methods can be used to estimate the posterior distribution in latent state models. In neuroscience these problems arise when estimating connectivity from neural recording data using EM. We demonstrate the PI control method as an accurate alternative to particle filtering.
Directory of Open Access Journals (Sweden)
Ch. Sanjay
2014-12-01
Full Text Available In machining processes, drilling operation is material removal process that has been widely used in manufacturing since industrial revolution. The useful life of cutting tool and its operating conditions largely controls the economics of machining operations. Drilling is most frequently performed material removing process and is used as a preliminary step for many operations, such as reaming, tapping, and boring. Drill wear has a bad effect on the surface finish and dimensional accuracy of the work piece. The surface finish of a machined part is one of the most important quality characteristics in manufacturing industries. The primary objective of this research is the prediction of suitable parameters for surface roughness in drilling. Cutting speed, cutting force, and machining time were given as inputs to the adaptive fuzzy neural network and neuro-fuzzy analysis for estimating the values of surface roughness by using 2, 3, 4, and 5 membership functions. The best structures were selected based on minimum of summation of square with the actual values with the estimated values by artificial neural fuzzy inference system (ANFIS and neuro-fuzzy systems. For artificial neural network (ANN analysis, the number of neurons was selected from 1, 2, 3, … , 20. The learning rate was selected as .5 and .5 smoothing factor was used. The inputs were selected as cutting speed, feed, machining time, and thrust force. The best structures of neural networks were selected based on the criteria as the minimum of summation of square with the actual value of surface roughness. Drilling experiments with 10 mm size were performed at two cutting speeds and feeds. Comparative analysis has been done between the actual values and the estimated values obtained by ANFIS, neuro-fuzzy, and ANN analysis.
Probability biases as Bayesian inference
Directory of Open Access Journals (Sweden)
Andre; C. R. Martins
2006-11-01
Full Text Available In this article, I will show how several observed biases in human probabilistic reasoning can be partially explained as good heuristics for making inferences in an environment where probabilities have uncertainties associated to them. Previous results show that the weight functions and the observed violations of coalescing and stochastic dominance can be understood from a Bayesian point of view. We will review those results and see that Bayesian methods should also be used as part of the explanation behind other known biases. That means that, although the observed errors are still errors under the be understood as adaptations to the solution of real life problems. Heuristics that allow fast evaluations and mimic a Bayesian inference would be an evolutionary advantage, since they would give us an efficient way of making decisions. %XX In that sense, it should be no surprise that humans reason with % probability as it has been observed.
DEFF Research Database (Denmark)
Andersen, Jesper
2009-01-01
Collateral evolution the problem of updating several library-using programs in response to API changes in the used library. In this dissertation we address the issue of understanding collateral evolutions by automatically inferring a high-level specification of the changes evident in a given set ...... specifications inferred by spdiff in Linux are shown. We find that the inferred specifications concisely capture the actual collateral evolution performed in the examples....
Autonomous forward inference via DNA computing
Institute of Scientific and Technical Information of China (English)
Fu Yan; Li Gen; Li Yin; Meng Dazhi
2007-01-01
Recent studies direct the researchers into building DNA computing machines with intelligence, which is measured by three main points: autonomous, programmable and able to learn and adapt. Logical inference plays an important role in programmable information processing or computing. Here we present a new method to perform autonomous molecular forward inference for expert system.A novel repetitive recognition site (RRS) technique is invented to design rule-molecules in knowledge base. The inference engine runs autonomously by digesting the rule-molecule, using a Class ⅡB restriction enzyme PpiⅠ. Concentration model has been built to show the feasibility of the inference process under ideal chemical reaction conditions. Moreover, we extend to implement a triggering communication between molecular automata, as a further application of the RRS technique in our model.
Prakash, S.; Sinha, S. K.
2015-09-01
In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.
Enhanced dynamic Performance of Matrix Converter Cage Drive with Neuro-fuzzy approach
Directory of Open Access Journals (Sweden)
R.R. Joshi
2007-06-01
Full Text Available This paper proposes a new control algorithm for a matrix converter (MC induction motor drive system. First, a new switching strategy, which applies a back-propagation neural network to adjust a pseudo dc bus voltage, is proposed to reduce the current harmonics of the induction motor. Next, a two-degree-of-freedom controller is proposed to improve the system performance. The controller design algorithm can be applied in an adjustable speed control system and a position control system to obtain good transient responses and good load disturbance rejection abilities. The implementation of this kind of controller is only possible by using a high-speed digital signal processor. In this paper, all the control loops, including current-loop, speed-loop, and position-loop, are implemented by TMS320C6711 digital signal processor. Several experimental results are shown to validate the theoretical analysis.
Inverse Kinematics Using Neuro-Fuzzy Intelligent Technique for Robotic Manipulator
Directory of Open Access Journals (Sweden)
Shiv Manjaree
2013-12-01
Full Text Available Inverse Kinematics of robotic manipulators is a complex task. For higher degree of freedom robotic manipulators, the algebra related to traditional approaches become highly complex. This has led to the usage of artificial intelligence techniques. In this paper, the hybrid combination of Neural Networks and Fuzzy Logic Intelligent Technique has been applied for 3 degree of freedom robotic manipulator. The variations of joint angles obtained in the results show the effective implementation of artificial intelligence.
User/Tutor Optimal Learning Path in E-Learning Using Comprehensive Neuro-Fuzzy Approach
Fazlollahtabar, Hamed; Mahdavi, Iraj
2009-01-01
Internet evolution has affected all industrial, commercial, and especially learning activities in the new context of e-learning. Due to cost, time, or flexibility e-learning has been adopted by participators as an alternative training method. By development of computer-based devices and new methods of teaching, e-learning has emerged. The…
NEURO FUZZY MODEL FOR FACE RECOGNITION WITH CURVELET BASED FEATURE IMAGE
SHREEJA R,; KHUSHALI DEULKAR,; SHALINI BHATIA
2011-01-01
A facial recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame from a video source. One of the ways to do this is by comparing selected facial features from the image and a facial database. It is typically used in security systems and can be compared to other biometric techniques such as fingerprint or iris recognition systems. Every face has approximately 80 nodal points like (Distance between the eyes, Width of...
Estimation of Switching Overvoltages on Transmission Lines Using Neuro-Fuzzy Method
Directory of Open Access Journals (Sweden)
Reza Shariatinasab
2012-11-01
Full Text Available Insulation failure caused by switching overvoltages (SOVs is one of the main sources of transmission lines’ outage, specially, on voltage levels of 345 kV and above. Therefore, the estimation of SOVs is vital in order to control and/or to reduce the switching–related outages. Due to the stochastic behavior of some of the parameters affecting on SOVs, the study of this phenomenon should be carried out based on a statistical study of the switching. Also, in the case of surge arrester installation on the transmission lines, depending on the location of arrester, voltage profile on line is changed and all the simulation should be performed for each new location of arresters, separately. One can conclude that this procedure is complex and time consuming. In this paper, a fuzzy based meta-model is presented which is be able to estimate the switching surge flashover rate (SSFOR, the maximum value of SOVs on the network and the location where the maximum overvoltage takes place. In the proposed meta model, the effect of altitude on SSFOR and the magnitude of SOVs is considered. This meta-model can be used, directly, for planning the insulation level of transmission lines in order to meet a certain number of outages and locating arresters on the region/nodes of the network of weak operation against SOVs. It is also possible to utilize the proposed meta model, indirectly, for assigning the optimal location of any specified set of arresters on the network without simulating of real network by a transient software, e.g. EMTP/ATP draw. The presented meta model can also be used in the operating stage to decide on the sequence of energizing and re-energizing of different transmission lines connected to the substations with the aim of reducing of maximum SOVs.
Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems
Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher
1994-01-01
Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.
Digital modelling of landscape and soil in a mountainous region: A neuro-fuzzy approach
Viloria, Jesús A.; Viloria-Botello, Alvaro; Pineda, María Corina; Valera, Angel
2016-01-01
Research on genetic relationships between soil and landforms has largely improved soil mapping. Recent technological advances have created innovative methods for modelling the spatial soil variation from digital elevation models (DEMs) and remote sensors. This generates new opportunities for the application of geomorphology to soil mapping. This study applied a method based on artificial neural networks and fuzzy clustering to recognize digital classes of land surfaces in a mountainous area in north-central Venezuela. The spatial variation of the fuzzy memberships exposed the areas where each class predominates, while the class centres helped to recognize the topographic attributes and vegetation cover of each class. The obtained classes of terrain revealed the structure of the land surface, which showed regional differences in climate, vegetation, and topography and landscape stability. The land-surface classes were subdivided on the basis of the geological substratum to produce landscape classes that additionally considered the influence of soil parent material. These classes were used as a framework for soil sampling. A redundancy analysis confirmed that changes of landscape classes explained the variation in soil properties (p = 0.01), and a Kruskal-Wallis test showed significant differences (p = 0.01) in clay, hydraulic conductivity, soil organic carbon, base saturation, and exchangeable Ca and Mg between classes. Thus, the produced landscape classes correspond to three-dimensional bodies that differ in soil conditions. Some changes of land-surface classes coincide with abrupt boundaries in the landscape, such as ridges and thalwegs. However, as the model is continuous, it disclosed the remaining variation between those boundaries.
A mathematical model of neuro-fuzzy approximation in image classification
Gopalan, Sasi; Pinto, Linu; Sheela, C.; Arun Kumar M., N.
2016-06-01
Image digitization and explosion of World Wide Web has made traditional search for image, an inefficient method for retrieval of required grassland image data from large database. For a given input query image Content-Based Image Retrieval (CBIR) system retrieves the similar images from a large database. Advances in technology has increased the use of grassland image data in diverse areas such has agriculture, art galleries, education, industry etc. In all the above mentioned diverse areas it is necessary to retrieve grassland image data efficiently from a large database to perform an assigned task and to make a suitable decision. A CBIR system based on grassland image properties and it uses the aid of a feed-forward back propagation neural network for an effective image retrieval is proposed in this paper. Fuzzy Memberships plays an important role in the input space of the proposed system which leads to a combined neural fuzzy approximation in image classification. The CBIR system with mathematical model in the proposed work gives more clarity about fuzzy-neuro approximation and the convergence of the image features in a grassland image.
Inverse Kinematics Using Neuro-Fuzzy Intelligent Technique for Robotic Manipulator
Shiv Manjaree; Vijyant Agarwal; Nakra, B. C.
2013-01-01
Inverse Kinematics of robotic manipulators is a complex task. For higher degree of freedom robotic manipulators, the algebra related to traditional approaches become highly complex. This has led to the usage of artificial intelligence techniques. In this paper, the hybrid combination of Neural Networks and Fuzzy Logic Intelligent Technique has been applied for 3 degree of freedom robotic manipulator. The variations of joint angles obtained in the results show the effective implementation of a...
Edificio project: A neuro-fuzzy approach to building energy management systems
Galata, A.; Bakker, L.G.; Morel, N.; Michel, J.B.; Karki, S.; Joergl, H.P.; Franceschini, A.; Martinez, A.
1998-01-01
It is well known that building installations for indoor climate control, consume a substantial part of the total energy consumption and that at present these installations use much more energy than required due to inadequate settings and poor control and management strategies. European building ener
Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model
Georgina Cosma; Giovanni Acampora; David Brown; Rees, Robert C.; Masood Khan; Graham Pockley, A.
2016-01-01
The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA) level, the biopsy most common tumor pattern (Primary Gleason pattern) and the...
A robust neuro-fuzzy classifier for the detection of cardiomegaly in digital chest radiographies
Fabián Torres-Robles; Alberto Jorge Rosales-Silva; Francisco Javier Gallegos-Funes; Ivonne Bazán-Trujillo
2014-01-01
Presentamos un nuevo procedimiento que determina de forma automática y fiable la presencia de cardiomegalia en radiografías torácicas. El CTR muestra la relación entre el tamaño del corazón y el tamaño del tórax. El esquema propuesto utiliza un clasificador robusto difuso para encontrar los valores correctos del tamaño del tórax y los límites del corazón derecho e izquierdo para medir el agrandamiento del corazón para detectar cardiomegalia. El método propuesto utiliza operaciones clásicas de...
A robust neuro-fuzzy classifier for the detection of cardiomegaly in digital chest radiographies
Directory of Open Access Journals (Sweden)
Fabián Torres-Robles
2014-01-01
Full Text Available Presentamos un nuevo procedimiento que determina de forma automática y fiable la presencia de cardiomegalia en radiografías torácicas. El CTR muestra la relación entre el tamaño del corazón y el tamaño del tórax. El esquema propuesto utiliza un clasificador robusto difuso para encontrar los valores correctos del tamaño del tórax y los límites del corazón derecho e izquierdo para medir el agrandamiento del corazón para detectar cardiomegalia. El método propuesto utiliza operaciones clásicas de morfología para segmentar los pulmones proporcionando baja complejidad computacional y el método difuso propuesto es robusto para encontrar las medidas correctas del CTR proporcionando un cálculo rápido porque las reglas difusas usan operaciones aritméticas elementales para desempeñar una buena detección de cardiomegalia. Finalmente, se mejoran los resultados de clasificación del método difuso propuesto utilizando una red neuronal función de base radial (RBF en términos de precisión, sensibilidad y especificidad.
FACTS Devices Using Neuro Fuzzy Controller in Stabilization of Grid Connected Wind Generator.
Directory of Open Access Journals (Sweden)
ROHI KACHROO
2012-05-01
Full Text Available Wind power is one of the renewable energy sources. It has various advantages like, cost competitiveness, environmentally clean and safeness. Large wind farms have stability problems when they are integrated to the power system. A thorough analysis is required to identify the stability problems and to develop measures to improve it. Mostly used wind generator is a fixed speed induction generator, which requires reactive power to maintain air gap flux. Reactive ower equipments are used to enable recovery of large wind farms from severe system disturbances. In this paper shunt and series FACTS evices, Static Synchronous Compensator (STATCOM and Static ynchronous Series Compensator are used for the purpose of stabilizing grid connected wind generator against the grid-side disturbances. The essential feature of the FACTS devices is their ability to absorb or inject the reactive power. Since stability is a non linear process so system performance can be improved by using nonlinear controllers. Neurofuzzy controller (NFC is a non linear controller. NFC has fasterresponse than conventional PI controllers
Boundedly rational learning and heterogeneous trading strategies with hybrid neuro-fuzzy models
S.D. Bekiros
2009-01-01
The present study deals with heterogeneous learning rules in speculative markets where heuristic strategies reflect the rules-of-thumb of boundedly rational investors. The major challenge for "chartists" is the development of new models that would enhance forecasting ability particularly for time se
Obstacle Avoidance of mobile robot using PSO based Neuro Fuzzy Technique
Directory of Open Access Journals (Sweden)
Sourav Dutta
2010-03-01
Full Text Available Navigation and obstacle avoidance are veryimportant issues for the successful use of an autonomous mobilerobot. To allow the robot to move between its current and finalconfigurations without any collision within the surroundingenvironment, motion planning needs much treatment. Thus togenerate collision free path it should have proper motionplanning as well as obstacle avoidance scheme. This work mainlydeals with the obstacle avoidance of a wheeled mobile robot instructured environment by using PSO based neuro-fuzzyapproach. Here three layer neural network with PSO is used aslearning algorithm to determine the optimal collision-free path.
Analysis Of A Neuro-Fuzzy Approach Of Air Pollution: Building A Case Study
Directory of Open Access Journals (Sweden)
Ciprian-Daniel NEAGU
2001-12-01
Full Text Available This work illustrates the necessity of an Artificial Intelligence (AI-based approach of air quality in urban and industrial areas. Some related results of Artificial Neural Networks (ANNs and Fuzzy Logic (FL for environmental data are considered: ANNs are proposed to the problem of short-term predicting of air pollutant concentrations in urban/industrial areas, with a special focus in the south-eastern Romania. The problems of designing a database about air quality in an urban/industrial area are discussed. First results confirm ANNs as an improvement of classical models and show the utility of ANNs in a well built air monitoring center.
GEMAN, O.; COSTIN, H.
2014-01-01
Neurological diseases like Alzheimer, epilepsy, Parkinson's disease, multiple sclerosis and other dementias influence the lives of patients, their families and society. Parkinson's disease (PD) is a neurodegenerative disease that occurs due to loss of dopamine, a neurotransmitter and slow destruction of neurons. Brain area affected by progressive destruction of neurons is responsible for controlling movements, and patients with PD reveal rigid and uncontrollable gestures, pos...
Neuro-fuzzy predictive control of an information-poor system
Thompson, Richard; Dexter, A. L. (Arthur L.); Arthur L. Dexter
2002-01-01
While modern engineering systems have become increasingly integrated and complex over the years, interest in the application of control techniques which specifically attempt to formulate and solve the control problem in its inherently uncertain environment has been moderate, at best. More specifically, although many control schemes targeted at Heating, Ventilating and Air-Conditioning (HVAC) systems have been reported in the literature, most seem to rely on conventional techni...
Modelling Rule- and Experience-Based Expectations Using Neuro-Fuzzy-Systems
Stefan Kooths
1999-01-01
Expectations modelling in macroeconomic theory is often done under restrictive assumptions regarding people's ability to learn and the level of their knowledge. Either it is assumed that people do not learn at all, which justifies the use of simple autoregressive forecasting methods, or the model makers believe that the relevant agents know everything about the (long-term) behaviour of the economic system (rational expectations). Neither of these seems realistically to describe what people re...
Energy Technology Data Exchange (ETDEWEB)
Petrov, S.
1996-10-01
Languages with a solvable implication problem but without complete and consistent systems of inference rules (`poor` languages) are considered. The problem of existence of finite complete and consistent inference rule system for a ``poor`` language is stated independently of the language or rules syntax. Several properties of the problem arc proved. An application of results to the language of join dependencies is given.
Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor
Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.
2011-08-01
Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.
Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor
International Nuclear Information System (INIS)
Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.
Efficient ECG signal analysis using wavelet technique for arrhythmia detection: an ANFIS approach
Khandait, P. D.; Bawane, N. G.; Limaye, S. S.
2010-02-01
This paper deals with improved ECG signal analysis using Wavelet Transform Techniques and employing subsequent modified feature extraction for Arrhythmia detection based on Neuro-Fuzzy technique. This improvement is based on suitable choice of features in evaluating and predicting life threatening Ventricular Arrhythmia . Analyzing electrocardiographic signals (ECG) includes not only inspection of P, QRS and T waves, but also the causal relations they have and the temporal sequences they build within long observation periods. Wavelet-transform is used for effective feature extraction and Adaptive Neuro-Fuzzy Inference System (ANFIS) is considered for the classifier model. In a first step, QRS complexes are detected. Then, each QRS is delineated by detecting and identifying the peaks of the individual waves, as well as the complex onset and end. Finally, the determination of P and T wave peaks, onsets and ends is performed. We evaluated the algorithm on several manually annotated databases, such as MIT-BIH Arrhythmia and CSE databases, developed for validation purposes. Features based on the ECG waveform shape and heart beat intervals are used as inputs to the classifiers. The performance of the ANFIS model is evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the ECG signals. Cross validation is used to measure the classifier performance. A testing classification accuracy of 95.13% is achieved which is a significant improvement.
Prediction models for performance and emissions of a dual fuel CI engine using ANFIS
Indian Academy of Sciences (India)
A Adarsh Rai; P Srinivasa Pai; B R Shrinivasa Rao
2015-04-01
Dual fuel engines are being used these days to overcome shortage of fossil fuels and fulfill stringent exhaust gas emission regulations. They have several advantages over conventional diesel engines. In this context, this paper makes use of experimental results obtained from a dual fuel engine for developing models to predict performance and emission parameters. Conventional modelling efforts to understand the relationships between the input and the output variables, requires thermodynamic analysis which is complex and time consuming. As a result, efforts have been made to use artificial intelligence modelling techniques like fuzzy logic, Artificial Neural Network (ANN), Genetic Algorithm (GA), etc. This paper uses a neuro fuzzy modelling technique, Adaptive Neuro Fuzzy Inference System (ANFIS) for developing prediction models for performance and emission parameter of a dual fuel engine. Percentage load, percentage Liquefied Petroleum Gas (LPG) and Injection Timing (IT) have been used as input parameters, whereas output parameters include Brake Specific Energy Consumption (BSEC), Brake Thermal Efficiency (BTE), Exhaust Gas Temperature (EGT) and smoke. In order to further improve the prediction accuracy of the model, GA has been used to optimize ANFIS. GA optimized ANFIS gives higher prediction accuracy of more than 90% for all parameters except for smoke, where there is a substantial improvement from 46.67% to 73.33%, when compared to conventional ANFIS model.
Zhang, Y. S.; Wang, H.; Chen, G. L.; Zhang, X. Q.
2007-03-01
Advanced high strength steels are being increasingly used in the automotive industry to reduce weight and improve fuel economy. However, due to increased physical properties and chemistry of high strength steels, it is difficult to directly substitute these materials into production processes currently designed for mild steels. New process parameters and process-related issues must be developed and understood for high strength steels. Among all issues, endurance of the electrode cap is the most important. In this paper, electrode wear characteristics of hot-dipped galvanized dual-phase (DP600) steels and the effect on weld quality are firstly analysed. An electrode displacement curve which can monitor electrode wear was measured by a developing experimental system using a servo gun. A neuro-fuzzy inference system based on the electrode displacement curve is developed for minimizing the effect of a worn electrode on weld quality by adaptively adjusting input variables based on the measured electrode displacement curve when electrode wear occurs. A modified current curve is implemented to reduce the effects of electrode wear on weld quality using a developed neuro-fuzzy system.
Weather Forecasting Using ANFIS and ARIMA MODELS
Directory of Open Access Journals (Sweden)
Mehmet Tektaş
2010-04-01
Full Text Available AbstractThis paper presents a comparative study of statistical and neuro-fuzzy network models for forecasting the weather of Göztepe, İstanbul, Turkey. For developing the models, we used nine year’s data (2000-2008 comprising of daily average temperature (dry-wet, air pressure, and wind-speed. We used Adaptive Network Based Fuzzy Inference System ( ANFIS and ARIMA models. To ensure the effectiveness of ARIMA and ANFIS techniques, we also tested the different models using a different training and test data set. The criteria of performance evaluation are calculated in order to evaluate and compare the performances of ARIMA and ANFIS models. Hence, paper briefly explains how neuro-fuzzy models could be formulated using different learning methods and then investigates whether they can provide the required level of performance, which are sufficiently good and robust to provide a reliable model for practical weather forecasting. From the results, the best fit model and network structure are determined according to prediction performance and the approach is effective and reliable. The performance comparisons of ANFIS and ARIMA models due to MAE,RMSE,R2 criteria, the ANFIS gives better results have been observed.
Ansari, Hamid Reza
2014-09-01
In this paper we propose a new method for predicting rock porosity based on a combination of several artificial intelligence systems. The method focuses on one of the Iranian carbonate fields in the Persian Gulf. Because there is strong heterogeneity in carbonate formations, estimation of rock properties experiences more challenge than sandstone. For this purpose, seismic colored inversion (SCI) and a new approach of committee machine are used in order to improve porosity estimation. The study comprises three major steps. First, a series of sample-based attributes is calculated from 3D seismic volume. Acoustic impedance is an important attribute that is obtained by the SCI method in this study. Second, porosity log is predicted from seismic attributes using common intelligent computation systems including: probabilistic neural network (PNN), radial basis function network (RBFN), multi-layer feed forward network (MLFN), ε-support vector regression (ε-SVR) and adaptive neuro-fuzzy inference system (ANFIS). Finally, a power law committee machine (PLCM) is constructed based on imperial competitive algorithm (ICA) to combine the results of all previous predictions in a single solution. This technique is called PLCM-ICA in this paper. The results show that PLCM-ICA model improved the results of neural networks, support vector machine and neuro-fuzzy system.
Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor
Energy Technology Data Exchange (ETDEWEB)
Wali, W A; Hassan, K H; Cullen, J D; Al-Shamma' a, A I; Shaw, A; Wylie, S R, E-mail: w.wali@2009.ljmu.ac.uk [Built Environment and Sustainable Technologies Institute (BEST), School of the Built Environment, Faculty of Technology and Environment Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)
2011-08-17
Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.
Institute of Scientific and Technical Information of China (English)
王伟; 周新志
2016-01-01
在微波加热过程中加热介质在不同温度阶段有不同的内部特性，传统的温度预测方法难于同时对加热介质低温段与高温段温度取得满意的预测结果。为此提出了一种基于ANFIS 的分段温度预测模型，该方法建立基于K均值聚类法的温度划分机制，并采用不同结构的ANFIS预测加热介质不同温度阶段的温度。低温阶段构建常规ANFIS预测温度，高温阶段利用减法聚类能从数据中确定模糊规则的特性构建ANFIS预测温度。仿真结果表明，与采用单一结构的ANFIS和BP（back propagation）神经网络的预测结果相比，ANFIS分段温度预测模型可同时在加热介质低温段与高温段取得较好的预测结果，模型效率可达到97．41％，显著提高了预测准确率，这有助于提高实际微波加热过程的生产效率和安全性。%During the microwave heating process, materials in different temperature regions have different internal characteristics. Using traditional temperature forecasting methods, it is difficult to obtain satisfactory prediction re⁃sults for both low⁃and high⁃temperature sections in a medium. To solve this problem, this study proposes a new tem⁃perature⁃sectioned forecasting model based on the ANFIS ( adaptive neuro⁃fuzzy inference system) . For this meth⁃od, we established a temperature⁃division mechanism based on K⁃means clustering. Additionally, we used an AN⁃FIS with different structures to forecast the temperature of the heated medium at different stages. We also construc⁃ted a conventional ANFIS to predict a material�s low temperature and a subtraction⁃clustering ANFIS that determines the fuzzy rules from data to predict a material�s high temperature. Simulation results demonstrate that the proposed method achieves satisfactory results for both low⁃and high⁃temperature sections when compared to ANFISs and BP ( back propagation) networks with a single
Nagao, Makoto
1990-01-01
Knowledge and Inference discusses an important problem for software systems: How do we treat knowledge and ideas on a computer and how do we use inference to solve problems on a computer? The book talks about the problems of knowledge and inference for the purpose of merging artificial intelligence and library science. The book begins by clarifying the concept of """"knowledge"""" from many points of view, followed by a chapter on the current state of library science and the place of artificial intelligence in library science. Subsequent chapters cover central topics in the artificial intellig
Probability and Statistical Inference
Prosper, Harrison B.
2006-01-01
These lectures introduce key concepts in probability and statistical inference at a level suitable for graduate students in particle physics. Our goal is to paint as vivid a picture as possible of the concepts covered.
Introductory statistical inference
Mukhopadhyay, Nitis
2014-01-01
This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques.Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of dist
An Inference Microprocessor Design
Institute of Scientific and Technical Information of China (English)
沈绪榜; 马光悌; 等
1991-01-01
This paper is concerned with the design of an inference microprocessor for production rule systems.Its implementation is based on both exact and inexact (fuzzy logic) reasoning,so it can be used for building various production rule systems.The methods of translating linguistically expressed rules into numerical representations are described and the hardware implementations are discussed.Finally, a parallel architecture for the inference microprocessor is presented.
Statistical inferences in phylogeography
DEFF Research Database (Denmark)
Nielsen, Rasmus; Beaumont, Mark A
2009-01-01
In conventional phylogeographic studies, historical demographic processes are elucidated from the geographical distribution of individuals represented on an inferred gene tree. However, the interpretation of gene trees in this context can be difficult as the same demographic/geographical process...... can randomly lead to multiple different genealogies. Likewise, the same gene trees can arise under different demographic models. This problem has led to the emergence of many statistical methods for making phylogeographic inferences. A popular phylogeographic approach based on nested clade analysis...
Prediction on carbon dioxide emissions based on fuzzy rules
Pauzi, Herrini; Abdullah, Lazim
2014-06-01
There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.
Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach
Taufik, Afirah; Sakinah Syed Ahmad, Sharifah
2016-06-01
The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.
Interpolation of missing wind data based on ANFIS
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhiling [Energy and Power Engineering School, North China Electric Power University, Beijing 102206 (China); Liu, Yongqian [Renewable Energy School, North China Electric Power University, Beijing 102206 (China); Li, Chengrong [Electrical and Electronic Engineering School, North China Electric Power University, Beijing 102206 (China)
2011-03-15
Measured wind data is one of the key input data for wind farm planning and design. There are always some missing and invalid data in wind measurement, which poses the main challenges for wind energy resources assessment. In this paper, the rules of integrity check and reasonableness check are introduced, then an adaptive neuro-fuzzy inference system (ANFIS) model is proposed, in which fuzzy inference algorithm are used to interpolate the missing and invalid wind data. A further comparison and analysis is given between the calculating result and measured data. Meanwhile Using methods of wind shear coefficient and ANFIS, 12 measured wind data sets from a wind farm in North China are interpolated and analyzed, respectively. The results proved the effectiveness of ANFIS. (author)
Adaptation and complexity in repeated games
DEFF Research Database (Denmark)
Maenner, Eliot Alexander
2008-01-01
The paper presents a learning model for two-player infinitely repeated games. In an inference step players construct minimally complex inferences of strategies based on observed play, and in an adaptation step players choose minimally complex best responses to an inference. When players randomly ...
Making Type Inference Practical
DEFF Research Database (Denmark)
Schwartzbach, Michael Ignatieff; Oxhøj, Nicholas; Palsberg, Jens
1992-01-01
We present the implementation of a type inference algorithm for untyped object-oriented programs with inheritance, assignments, and late binding. The algorithm significantly improves our previous one, presented at OOPSLA'91, since it can handle collection classes, such as List, in a useful way. Abo....... Experiments indicate that the implementation type checks as much as 100 lines pr. second. This results in a mature product, on which a number of tools can be based, for example a safety tool, an image compression tool, a code optimization tool, and an annotation tool. This may make type inference for object...
Nesting Probabilistic Inference
Mantadelis, Theofrastos
2011-01-01
When doing inference in ProbLog, a probabilistic extension of Prolog, we extend SLD resolution with some additional bookkeeping. This additional information is used to compute the probabilistic results for a probabilistic query. In Prolog's SLD, goals are nested very naturally. In ProbLog's SLD, nesting probabilistic queries interferes with the probabilistic bookkeeping. In order to support nested probabilistic inference we propose the notion of a parametrised ProbLog engine. Nesting becomes possible by suspending and resuming instances of ProbLog engines. With our approach we realise several extensions of ProbLog such as meta-calls, negation, and answers of probabilistic goals.
Type Inference with Inequalities
DEFF Research Database (Denmark)
Schwartzbach, Michael Ignatieff
1991-01-01
Type inference can be phrased as constraint-solving over types. We consider an implicitly typed language equipped with recursive types, multiple inheritance, 1st order parametric polymorphism, and assignments. Type correctness is expressed as satisfiability of a possibly infinite collection...... of (monotonic) inequalities on the types of variables and expressions. A general result about systems of inequalities over semilattices yields a solvable form. We distinguish between deciding typability (the existence of solutions) and type inference (the computation of a minimal solution). In our case, both...
A Novel Approach for the Diagnosis of Diabetes and Liver Cancer using ANFIS and Improved KNN
Directory of Open Access Journals (Sweden)
C. Kalaiselvi
2014-07-01
Full Text Available The multi-factorial, chronicle, severe diseases are cancer and diabetes. As a result of abnormal level of glucose in body leads to heart attack, kidney disease, renal failure and cancer. Many studies have been proved that several types of cancer are possible in diabetes patients having a high blood sugar. Many approaches are proposed in the past to diagnose both cancer and diabetes. Even though the existing approaches are efficient one, the classification accuracy is poor. An Enhanced approach is proposed to achieve a higher efficiency and lower complexity. Adaptive neuro fuzzy inference system is used to classify the dataset with the help of adaptive group based KNN. The Pima Indian diabetes dataset are used as input dataset and classified based on the attribute information. The experimental result shows the classification accuracy is better than the existing approaches such FLANN, ANN with FUZZYKNN.
Anfis Approach for Sssc Controller Design for the Improvement of Transient Stability Performance
Khuntia, Swasti R.; Panda, Sidhartha
2011-06-01
In this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) method based on the Artificial Neural Network (ANN) is applied to design a Static Synchronous Series Compensator (SSSC)-based controller for improvement of transient stability. The proposed ANFIS controller combines the advantages of fuzzy controller and quick response and adaptability nature of ANN. The ANFIS structures were trained using the generated database by fuzzy controller of SSSC. It is observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances. The results prove that the proposed SSSC-based ANFIS controller is found to be robust to fault location and change in operating conditions. Further, the results obtained are compared with the conventional lead-lag controllers for SSSC.
Abbaspour, Sara; Fallah, Ali; Lindén, Maria; Gholamhosseini, Hamid
2016-02-01
In recent years, the removal of electrocardiogram (ECG) interferences from electromyogram (EMG) signals has been given large consideration. Where the quality of EMG signal is of interest, it is important to remove ECG interferences from EMG signals. In this paper, an efficient method based on a combination of adaptive neuro-fuzzy inference system (ANFIS) and wavelet transform is proposed to effectively eliminate ECG interferences from surface EMG signals. The proposed approach is compared with other common methods such as high-pass filter, artificial neural network, adaptive noise canceller, wavelet transform, subtraction method and ANFIS. It is found that the performance of the proposed ANFIS-wavelet method is superior to the other methods with the signal to noise ratio and relative error of 14.97dB and 0.02 respectively and a significantly higher correlation coefficient (p<0.05). PMID:26643795
Hydrograph estimation with fuzzy chain model
Güçlü, Yavuz Selim; Şen, Zekai
2016-07-01
Hydrograph peak discharge estimation is gaining more significance with unprecedented urbanization developments. Most of the existing models do not yield reliable peak discharge estimations for small basins although they provide acceptable results for medium and large ones. In this study, fuzzy chain model (FCM) is suggested by considering the necessary adjustments based on some measurements over a small basin, Ayamama basin, within Istanbul City, Turkey. FCM is based on Mamdani and the Adaptive Neuro Fuzzy Inference Systems (ANFIS) methodologies, which yield peak discharge estimation. The suggested model is compared with two well-known approaches, namely, Soil Conservation Service (SCS)-Snyder and SCS-Clark methodologies. In all the methods, the hydrographs are obtained through the use of dimensionless unit hydrograph concept. After the necessary modeling, computation, verification and adaptation stages comparatively better hydrographs are obtained by FCM. The mean square error for the FCM is many folds smaller than the other methodologies, which proves outperformance of the suggested methodology.
Reinforcement learning or active inference?
Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J
2009-01-01
This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain. PMID:19641614
Reinforcement learning or active inference?
Directory of Open Access Journals (Sweden)
Karl J Friston
Full Text Available This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.
Frühwirth-Schnatter, Sylvia
1990-01-01
In the paper at hand we apply it to Bayesian statistics to obtain "Fuzzy Bayesian Inference". In the subsequent sections we will discuss a fuzzy valued likelihood function, Bayes' theorem for both fuzzy data and fuzzy priors, a fuzzy Bayes' estimator, fuzzy predictive densities and distributions, and fuzzy H.P.D .-Regions. (author's abstract)
Institute of Scientific and Technical Information of China (English)
张立权; 邵诚
2008-01-01
Designing a fuzzy inference system (FIS) from data can be divided into two main phases: structure identification and parameter optimization. First, starting from a simple initial topology, the membership functions and system rules are defined as specific structures. Second, to speed up the convergence of the learning algorithm and lighten the oscillation, an improved descent method for FIS generation is developed. Furthermore,the convergence and the oscillation of the algorithm are systematically analyzed. Third, using the information obtained from the previous phase, it can be decided in which region of the input space the density of fuzzy rules should be enhanced and for which variable the number of fuzzy sets that used to partition the domain must be increased. Consequently, this produces a new and more appropriate structure. Finally, the proposed method is applied to the problem of nonlinear function approximation.
Causal inference in econometrics
Kreinovich, Vladik; Sriboonchitta, Songsak
2016-01-01
This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume. To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.
Stochastic processes inference theory
Rao, Malempati M
2014-01-01
This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.
Subjectivity in inductive inference
Gilboa, Itzhak; Samuelson, Larry
2012-01-01
Working Papers - Yale School of Management's Economics Research Network International audience This paper examines circumstances under which subjectivity enhances the effectiveness of inductive reasoning. We consider a game in which Fate chooses a data generating process and agents are characterized by inference rules that may be purely objective (or data-based) or may incorporate subjective considerations. The basic intuition is that agents who invoke no subjective considerations are d...
Automatic Differentiation Variational Inference
Kucukelbir, Alp; Tran, Dustin; Ranganath, Rajesh; Gelman, Andrew; Blei, David M.
2016-01-01
Probabilistic modeling is iterative. A scientist posits a simple model, fits it to her data, refines it according to her analysis, and repeats. However, fitting complex models to large data is a bottleneck in this process. Deriving algorithms for new models can be both mathematically and computationally challenging, which makes it difficult to efficiently cycle through the steps. To this end, we develop automatic differentiation variational inference (ADVI). Using our method, the scientist on...
Kevin H. Knuth; John Skilling
2012-01-01
We present a simple and clear foundation for finite inference that unites and significantly extends the approaches of Kolmogorov and Cox. Our approach is based on quantifying lattices of logical statements in a way that satisfies general lattice symmetries. With other applications such as measure theory in mind, our derivations assume minimal symmetries, relying on neither negation nor continuity nor differentiability. Each relevant symmetry corresponds to an axiom of quantification, and thes...
Active inference and learning.
Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O'Doherty, John; Pezzulo, Giovanni
2016-09-01
This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity. PMID:27375276
Continuous Integrated Invariant Inference Project
National Aeronautics and Space Administration — The proposed project will develop a new technique for invariant inference and embed this and other current invariant inference and checking techniques in an...
New Inference Rules for Max-SAT
Li, C M; Planes, J; 10.1613/jair.2215
2011-01-01
Exact Max-SAT solvers, compared with SAT solvers, apply little inference at each node of the proof tree. Commonly used SAT inference rules like unit propagation produce a simplified formula that preserves satisfiability but, unfortunately, solving the Max-SAT problem for the simplified formula is not equivalent to solving it for the original formula. In this paper, we define a number of original inference rules that, besides being applied efficiently, transform Max-SAT instances into equivalent Max-SAT instances which are easier to solve. The soundness of the rules, that can be seen as refinements of unit resolution adapted to Max-SAT, are proved in a novel and simple way via an integer programming transformation. With the aim of finding out how powerful the inference rules are in practice, we have developed a new Max-SAT solver, called MaxSatz, which incorporates those rules, and performed an experimental investigation. The results provide empirical evidence that MaxSatz is very competitive, at least, on ran...
The importance of learning when making inferences
Directory of Open Access Journals (Sweden)
Jorg Rieskamp
2008-03-01
Full Text Available The assumption that people possess a repertoire of strategies to solve the inference problems they face has been made repeatedly. The experimental findings of two previous studies on strategy selection are reexamined from a learning perspective, which argues that people learn to select strategies for making probabilistic inferences. This learning process is modeled with the strategy selection learning (SSL theory, which assumes that people develop subjective expectancies for the strategies they have. They select strategies proportional to their expectancies, which are updated on the basis of experience. For the study by Newell, Weston, and Shanks (2003 it can be shown that people did not anticipate the success of a strategy from the beginning of the experiment. Instead, the behavior observed at the end of the experiment was the result of a learning process that can be described by the SSL theory. For the second study, by Br"oder and Schiffer (2006, the SSL theory is able to provide an explanation for why participants only slowly adapted to new environments in a dynamic inference situation. The reanalysis of the previous studies illustrates the importance of learning for probabilistic inferences.
Loredo, T J
2004-01-01
I describe a framework for adaptive scientific exploration based on iterating an Observation--Inference--Design cycle that allows adjustment of hypotheses and observing protocols in response to the results of observation on-the-fly, as data are gathered. The framework uses a unified Bayesian methodology for the inference and design stages: Bayesian inference to quantify what we have learned from the available data and predict future data, and Bayesian decision theory to identify which new observations would teach us the most. When the goal of the experiment is simply to make inferences, the framework identifies a computationally efficient iterative ``maximum entropy sampling'' strategy as the optimal strategy in settings where the noise statistics are independent of signal properties. Results of applying the method to two ``toy'' problems with simulated data--measuring the orbit of an extrasolar planet, and locating a hidden one-dimensional object--show the approach can significantly improve observational eff...
Chelgani, S.C.; Hart, B.; Grady, W.C.; Hower, J.C.
2011-01-01
The relationship between maceral content plus mineral matter and gross calorific value (GCV) for a wide range of West Virginia coal samples (from 6518 to 15330 BTU/lb; 15.16 to 35.66MJ/kg) has been investigated by multivariable regression and adaptive neuro-fuzzy inference system (ANFIS). The stepwise least square mathematical method comparison between liptinite, vitrinite, plus mineral matter as input data sets with measured GCV reported a nonlinear correlation coefficient (R2) of 0.83. Using the same data set the correlation between the predicted GCV from the ANFIS model and the actual GCV reported a R2 value of 0.96. It was determined that the GCV-based prediction methods, as used in this article, can provide a reasonable estimation of GCV. Copyright ?? Taylor & Francis Group, LLC.
Performance Analysis of ANFIS in short term Wind Speed Prediction
Directory of Open Access Journals (Sweden)
Vandatilde;andshy;ctor Hugo Garcandatilde;andshy;a Rodrandatilde;andshy;guez
2012-09-01
Full Text Available Results are presented on the performance of Adaptive NeuroFuzzy Inference system (ANFIS for wind velocity forecasts in the Isthmus of Tehuantepec region in the state of Oaxaca, Mexico. The data bank was provided by the meteorological station located at the University of Isthmus, Tehuantepec campus, and this data bank covers the period from 2008 to 2011. Three data models were constructed to carry out 16, 24 and 48 hours forecasts using the following variables: wind velocity, temperature, barometric pressure, and date. The performance measure for the three models is the mean standard error (MSE. In this work, performance analysis in short-term prediction is presented, because it is essential in order to define an adequate wind speed model for eolian parks, where a right planning provide economic benefits.
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware
Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin
2016-01-01
To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO). PMID:27611312
A novel transmission line protection using DOST and SVM
Directory of Open Access Journals (Sweden)
M. Jaya Bharata Reddy
2016-06-01
Full Text Available This paper proposes a smart fault detection, classification and location (SFDCL methodology for transmission systems with multi-generators using discrete orthogonal Stockwell transform (DOST. The methodology is based on synchronized current measurements from remote telemetry units (RTUs installed at both ends of the transmission line. The energy coefficients extracted from the transient current signals due to occurrence of different types of faults using DOST are being utilized for real-time fault detection and classification. Support vector machine (SVM has been deployed for locating the fault distance using the extracted coefficients. A comparative study is performed for establishing the superiority of SVM over other popular computational intelligence methods, such as adaptive neuro-fuzzy inference system (ANFIS and artificial neural network (ANN, for more precise and reliable estimation of fault distance. The results corroborate the effectiveness of the suggested SFDCL algorithm for real-time transmission line fault detection, classification and localization.