WorldWideScience

Sample records for adaptive finite element

  1. Adaptive finite element methods for differential equations

    CERN Document Server

    Bangerth, Wolfgang

    2003-01-01

    These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...

  2. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro

    2012-01-16

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  3. Solution-adaptive finite element method in computational fracture mechanics

    Science.gov (United States)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1993-01-01

    Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.

  4. PHG: A Toolbox for Developing Parallel Adaptive Finite Element Programs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Linbo

    2011-01-01

    @@ Significance of the finite element method The finite element method (Feng, 1965) is mainly used for numerical solution of partial differential equations.It consists of partitioning the computational domain into a mesh composed of disjoint smaller sub-domains called elements which cover the whole domain, and approximating the solution in each element using simple functions (usually polynomials) so that the original problem can be turned into a suitable one to be solved on modern computers.The finite element method has a very wide range of applications as one of the most important methods in scientific and engineering computing.In the finite element method, two key factors which can affect the computational efficiency and precision of the computed solution are quality and distribution of the mesh elements.The adaptive finite element method, first proposed by I.Babuska and W.Rheinboldt in 1978 (Babuska et al., 1978), automatically adjusts and optimizes the distribution of mesh elements according to estimation on the distribution of the error of the computed solution, in order to improve the precision of the computed solution.Recent researches show that for many problems with locally singular solutions, by using mathematically rigorous a posteriori error estimates and suitable adaptive strategy, the adaptive finite element method can produce quasi-optimal meshes and dramatically improve the overall computational efficiency.

  5. Adaptive Finite Element Methods for Continuum Damage Modeling

    Science.gov (United States)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  6. Parallel, adaptive finite element methods for conservation laws

    Science.gov (United States)

    Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.

    1994-01-01

    We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.

  7. Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

    KAUST Repository

    Bonito, Andrea

    2013-01-01

    Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.

  8. On Round-off Error for Adaptive Finite Element Methods

    KAUST Repository

    Alvarez-Aramberri, J.

    2012-06-02

    Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called ‘radical meshes’. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.

  9. An adaptive finite element procedure for crack propagation analysis

    Institute of Scientific and Technical Information of China (English)

    ALSHOAIBI Abdulnaser M.; HADI M.S.A.; ARIFFIN A.K.

    2007-01-01

    This paper presents the adaptive mesh finite element estimation method for analyzing 2D linear elastic fracture problems. The mesh is generated by the advancing front method and the norm stress error is taken as a posteriori error estimator for the h-type adaptive refinement. The stress intensity factors are estimated by a displacement extrapolation technique. The near crack tip displacements used are obtained from specific nodes of natural six-noded quarter-point elements which are generated around the crack tip defined by the user. The crack growth and its direction are determined by the calculated stress intensity factors.The maximum circumference theory is used for the latter. In evaluating the accuracy of the estimated stress intensity factors, four cases are tested consisting of compact tension specimen, three-point bending specimen, central cracked plate and double edge notched plate. These were carried out and compared to the results from other studies. The crack trajectories of these specimen tests are also illustrated.

  10. Essentials of finite element modeling and adaptive refinement

    CERN Document Server

    Dow, John O

    2012-01-01

    Finite Element Analysis is a very popular, computer-based tool that uses a complex system of points called nodes to make a grid called a ""mesh. "" The mesh contains the material and structural properties that define how the structure will react to certain loading conditions, allowing virtual testing and analysis of stresses or changes applied to the material or component design. This groundbreaking text extends the usefulness of finite element analysis by helping both beginners and advanced users alike. It simplifies, improves, and extends both the finite element method while at the same t

  11. Adaptive grid finite element model of the tokamak scrapeoff layer

    Energy Technology Data Exchange (ETDEWEB)

    Kuprat, A.P.; Glasser, A.H. [Los Alamos National Lab., NM (United States)

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  12. Adaptive finite element methods for two-dimensional problems in computational fracture mechanics

    Science.gov (United States)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1994-01-01

    Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.

  13. H-VERSION ADAPTIVE FINITE ELEMENT METHOD FOR THREE-DIMENSIONAL SEEPAGE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Feng Xue-min; Chen Sheng-hong

    2003-01-01

    The h-version adaptive finite element method for 3-D seepage problem is presented in this paper.The adaptive system includes 4 modules: 3-D mesh generation, finite element analysis for 3-D seepage, mesh error estimation and post-process.The effectiveness of this system is verified by the given example.

  14. An Adaptive Finite Element Method Based on Optimal Error Estimates for Linear Elliptic Problems

    Institute of Scientific and Technical Information of China (English)

    汤雁

    2004-01-01

    The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element methods based on optimal error estimates for linear elliptic problems on the concave corner domains. In the preceding two papers (part 1:Adaptive finite element method based on optimal error estimate for linear elliptic problems on concave corner domain; part 2:Adaptive finite element method based on optimal error estimate for linear elliptic problems on nonconvex polygonal domains), we presented adaptive finite element methods based on the energy norm and the maximum norm. In this paper, an important result is presented and analyzed. The algorithm for error control in the energy norm and maximum norm in part 1 and part 2 in this series of papers is based on this result.

  15. ADAPTIVE FINITE ELEMENT METHOD FOR HIGH-SPEED FLOW-STRUCTURE INTERACTION

    Institute of Scientific and Technical Information of China (English)

    Wiroj LIMTRAKARN; Pramote DECHAUMPHAI

    2004-01-01

    An adaptive finite element method for high-speed flow-structure interaction is presented. The cell-centered finite element method is combined with an adaptive meshing technique to solve the Navier-Stokes equations for high-speed compressible flow behavior. The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite element method. The finite element formulation and computational procedure are described. Interactions between the high-speed flow, structural heat transfer, and deformation are studied by two applications of Mach 10 flow over an inclined plate, and Mach 4 flow in a channel.

  16. Comparison of Mesh Adaptivity Schemes in Finite ElementSimulation of Tube Extrusion Process

    Directory of Open Access Journals (Sweden)

    K. K. Pathak

    2008-05-01

    Full Text Available In this study, finite element simulation of tube extrusion process has been carried outconsidering different mesh adaptivity schemes. A comparison of these schemes has been madebased on stress, strain distribution, and load-stroke curves. Based on the finite element results,it is observed that the success of the computer simulation is dependent on the mesh refinementcriteria.

  17. Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method

    Institute of Scientific and Technical Information of China (English)

    Si YUAN; Yan DU; Qin-yan XING; Kang-sheng YE

    2014-01-01

    The element energy projection (EEP) method for computation of super-convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton’s method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re-sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple-mentation strategy, and the computational algorithm. Representative numerical exam-ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.

  18. Higher-order adaptive finite-element methods for Kohn-Sham density functional theory

    CERN Document Server

    Motamarri, Phani; Leiter, Kenneth; Knap, Jaroslaw; Gavini, Vikram

    2012-01-01

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT).To this end, we develop an \\emph{a priori} mesh adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings---of the order of $1000-$fold---can be realized, for both all-electron and pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems stu...

  19. Adaptive strategies using standard and mixed finite elements for wind field adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Winter, G.; Montero, G.; Montenegro, R. [Univ. of Las Palmas de Gran Canaria, FL (United States)

    1995-01-01

    In order to find a map of wind velocities, this study tries to obtain an incompressible wind field that adjusts to an experimental one: also verifying the corresponding boundary conditions of physical interest. This problem has been solved by several authors using finite differences or standard finite element techniques. In this paper, this problem is solved by two different adaptive finite element methods. The first makes use of standard finite element techniques, using linear interpolation of a potential function. In the second, a direct computation of the velocity field is undertaken by means of a mixed finite element method. Several error indicators are proposed for both formulations together with an adaptive strategy. We have applied both methods to several typical test problems, as well as to realistic data corresponding to the Island of Fuerteventura, with satisfactory results from a numerical point of view. 13 refs., 16 figs., 1 tab.

  20. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Motamarri, P. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Nowak, M.R. [Department of Electrical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Leiter, K.; Knap, J. [U.S. Army Research Labs, Aberdeen Proving Ground, Aberdeen, MD 21001 (United States); Gavini, V., E-mail: vikramg@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-11-15

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688

  1. Adaptive nodeless variable finite elements with flux-based formulation for thermal-structural analysis

    Institute of Scientific and Technical Information of China (English)

    Sutthisak Phongthanapanich; Pramote Dechaumphai

    2008-01-01

    A nodeless variable element method with the flux-based formulation is developed to analyze two-dimensional thermal-structural problems. The nodeless variable formula-tion provides accurate temperature distributions to yield more accurate thermal stress solutions. The flux-based formula-tion is used to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method. The solution accuracy is further improved by implementing an adaptive meshing technique to generate finite element meshes that can adapt and move along with the transient solution behavior. A version of a nearly opti- mal element size determination is proposed to provide high convergence rate of the predicted solutions. The combined procedure is evaluated by solving several thermal, structural,and thermal stress problems.

  2. Adaptive Kronrod-Patterson integration of non-linear finite-element matrices

    DEFF Research Database (Denmark)

    Janssen, Hans

    2010-01-01

    . While developed for finite element unsaturated moisture transfer simulation, adaptive integration is similarly applicable for other non-linear problems and other discretization methods, and whereas perhaps outperformed by mesh-adaptive techniques, adaptive integration requires much less implementation...... and capacity variations as result. It is shown that these strong variations conflict with the common preference for low-order numerical integration in finite element simulations of unsaturated moisture flow: inaccurate numerical integration leads to errors that are often far more important than errors from...... inappropriate discretization. In response, this article develops adaptive integration, based on nested Kronrod-Patterson-Gauss integration schemes: basically, the integration order is adapted to the locally observed grade of non-linearity. Adaptive integration is developed based on a standard infiltration...

  3. FEMHD: An adaptive finite element method for MHD and edge modelling

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.R.

    1995-07-01

    This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.

  4. COMBINED DELAUNAY TRIANGULATION AND ADAPTIVE FINITE ELEMENT METHOD FOR CRACK GROWTH ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Pramote DECHAUMPHAI; Sutthisak PHONGTHANAPANICH; Thanawat SRICHAROENCHAI

    2003-01-01

    The paper presents the utilization of the adaptive Delaunay triangulation in the finite element modeling of two dimensional crack propagation problems, including detailed description of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around crack tips and large elements in the other regions. The resulting stress intensity factors and simulated crack propagation behavior are used to evaluate the effectiveness of the procedure. Three sample problems of a center cracked plate, a single edge cracked plate and a compact tension specimen, are simulated and their results assessed.

  5. Algorithms and data structures for massively parallel generic adaptive finite element codes

    KAUST Repository

    Bangerth, Wolfgang

    2011-12-01

    Today\\'s largest supercomputers have 100,000s of processor cores and offer the potential to solve partial differential equations discretized by billions of unknowns. However, the complexity of scaling to such large machines and problem sizes has so far prevented the emergence of generic software libraries that support such computations, although these would lower the threshold of entry and enable many more applications to benefit from large-scale computing. We are concerned with providing this functionality for mesh-adaptive finite element computations. We assume the existence of an "oracle" that implements the generation and modification of an adaptive mesh distributed across many processors, and that responds to queries about its structure. Based on querying the oracle, we develop scalable algorithms and data structures for generic finite element methods. Specifically, we consider the parallel distribution of mesh data, global enumeration of degrees of freedom, constraints, and postprocessing. Our algorithms remove the bottlenecks that typically limit large-scale adaptive finite element analyses. We demonstrate scalability of complete finite element workflows on up to 16,384 processors. An implementation of the proposed algorithms, based on the open source software p4est as mesh oracle, is provided under an open source license through the widely used deal.II finite element software library. © 2011 ACM 0098-3500/2011/12-ART10 $10.00.

  6. An adaptive hybrid stress transition quadrilateral finite element method for linear elasticity

    OpenAIRE

    Huang, Feiteng; Xie, Xiaoping; Zhang, Chen-Song

    2014-01-01

    In this paper, we discuss an adaptive hybrid stress finite element method on quadrilateral meshes for linear elasticity problems. To deal with hanging nodes arising in the adaptive mesh refinement, we propose new transition types of hybrid stress quadrilateral elements with 5 to 7 nodes. In particular, we derive a priori error estimation for the 5-node transition hybrid stress element to show that it is free from Poisson-locking, in the sense that the error bound in the a priori estimate is i...

  7. Directionally adaptive finite element method for multidimensional Euler and Navier-Stokes equations

    Science.gov (United States)

    Tan, Zhiqiang; Varghese, Philip L.

    1993-01-01

    A directionally adaptive finite element method for multidimensional compressible flows is presented. Quadrilateral and hexahedral elements are used because they have several advantages over triangular and tetrahedral elements. Unlike traditional methods that use quadrilateral/hexahedral elements, our method allows an element to be divided in each of the three directions in 3D and two directions in 2D. Some restrictions on mesh structure are found to be necessary, especially in 3D. The refining and coarsening procedures, and the treatment of constraints are given. A new implementation of upwind schemes in the constrained finite element system is presented. Some example problems, including a Mach 10 shock interaction with the walls of a 2D channel, a 2D viscous compression corner flow, and inviscid and viscous 3D flows in square channels, are also shown.

  8. ADAPTIVE FINITE ELEMENT METHOD FOR ANALYSIS OF POLLUTANT DISPERSION IN SHALLOW WATER

    Institute of Scientific and Technical Information of China (English)

    Somboon Otarawanna; Pramote Dechaumphai

    2005-01-01

    A finite element method for analysis of pollutant dispersion in shallow water is presented. The analysis is divided into two parts: ( 1 ) computation of the velocity flow field and water surface elevation, and (2) computation of the pollutant concentration field from the dispersion model. The method was combined with an adaptive meshing technique to increase the solution accuracy ,as well as to reduce the computational time and computer memory. The finite element formulation and the computer programs were validated by several examples that have known solutions. In addition, the capability of the combined method was demonstrated by analyzing pollutant dispersion in Chao Phraya River near the gulf of Thailand.

  9. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  10. An object-oriented decomposition of the adaptive-hp finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, J.C.

    1994-12-13

    Adaptive-hp methods are those which use a refinement control strategy driven by a local error estimate to locally modify the element size, h, and polynomial order, p. The result is an unstructured mesh in which each node may be associated with a different polynomial order and which generally require complex data structures to implement. Object-oriented design strategies and languages which support them, e.g., C++, help control the complexity of these methods. Here an overview of the major classes and class structure of an adaptive-hp finite element code is described. The essential finite element structure is described in terms of four areas of computation each with its own dynamic characteristics. Implications of converting the code for a distributed-memory parallel environment are also discussed.

  11. Smoothed Finite Element and Genetic Algorithm based optimization for Shape Adaptive Composite Marine Propellers

    OpenAIRE

    Herath, Manudha T; Natarajan, Sundararajan; Prusty, B Gangadhara; John, Nigel St

    2013-01-01

    An optimization scheme using the Cell-based Smoothed Finite Element Method (CS-FEM) combined with a Genetic Algorithm (GA) framework is proposed in this paper to design shape adaptive laminated composite marine propellers. The proposed scheme utilise the bend-twist coupling characteristics of the composites to achieve the required performance. An iterative procedure to evaluate the unloaded shape of the propeller blade is proposed, confirming the manufacturing requirements at the initial stag...

  12. Adaptive finite element modeling of direct current resistivity in 2-D generally anisotropic structures

    Science.gov (United States)

    Yan, Bo; Li, Yuguo; Liu, Ying

    2016-07-01

    In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.

  13. An adaptive multiscale finite element method for unsaturated flow problems in heterogeneous porous media

    Science.gov (United States)

    He, Xinguang; Ren, Li

    2009-07-01

    SummaryIn this paper we present an adaptive multiscale finite element method for solving the unsaturated water flow problems in heterogeneous porous media spanning over many scales. The main purpose is to design a numerical method which is capable of adaptively capturing the large-scale behavior of the solution on a coarse-scale mesh without resolving all the small-scale details at each time step. This is accomplished by constructing the multiscale base functions that are adapted to the time change of the unsaturated hydraulic conductivity field. The key idea of our method is to use a criterion based on the temporal variation of the hydraulic conductivity field to determine when and where to update our multiscale base functions. As a consequence, these base functions are able to dynamically account for the spatio-temporal variability in the equation coefficients. We described the principle for constructing such a method in detail and gave an algorithm for implementing it. Numerical experiments were carried out for the unsaturated water flow equation with randomly generated lognormal hydraulic parameters to demonstrate the efficiency and accuracy of the proposed method. The results show that throughout the adaptive simulation, only a very small fraction of the multiscale base functions needs to be recomputed, and the level of accuracy of the adaptive method is higher than that of the multiscale finite element technique in which the base functions are not updated with the time change of the hydraulic conductivity.

  14. Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An adaptive mesh finite element model has been developed to predict the crack propagation direction as well as to calculate the stress intensity factors (SIFs), under linear-elastic assumption for mixed mode loading application. The finite element mesh is generated using the advancing front method. In order to suit the requirements of the fracture analysis, the generation of the background mesh and the construction of singular elements have been added to the developed program. The adaptive remeshing process is carried out based on the posteriori stress error norm scheme to obtain an optimal mesh. Previous works of the authors have proposed techniques for adaptive mesh generation of 2D cracked models. Facilitated by the singular elements, the displacement extrapolation technique is employed to calculate the SIF. The fracture is modeled by the splitting node approach and the trajectory follows the successive linear extensions of each crack increment. The SIFs values for two different case studies were estimated and validated by direct comparisons with other researchers work.

  15. Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption.

    Science.gov (United States)

    Dresel, T; Beyerlein, M; Schwider, J

    1996-12-10

    Computer-generated phase-only holograms can be used for laser beam shaping, i.e., for focusing a given aperture with intensity and phase distributions into a pregiven intensity pattern in their focal planes. A numerical approach based on iterative finite-element mesh adaption permits the design of appropriate phase functions for the task of focusing into two-dimensional reconstruction patterns. Both the hologram aperture and the reconstruction pattern are covered by mesh mappings. An iterative procedure delivers meshes with intensities equally distributed over the constituting elements. This design algorithm adds new elementary focuser functions to what we call object-oriented hologram design. Some design examples are discussed.

  16. A HIGH ORDER ADAPTIVE FINITE ELEMENT METHOD FOR SOLVING NONLINEAR HYPERBOLIC CONSERVATION LAWS

    Institute of Scientific and Technical Information of China (English)

    Zhengfu Xu; Jinchao Xu; Chi-Wang Shu

    2011-01-01

    In this note,we apply the h-adaptive streamline diffusion finite element method with a small mesh-dependent artificial viscosity to solve nonlinear hyperbolic partial differential equations,with the objective of achieving high order accuracy and mesh efficiency.We compute the numerical solution to a steady state Burgers equation and the solution to a converging-diverging nozzle problem.The computational results verify that,by suitably choosing the artificial viscosity coefficient and applying the adaptive strategy based on a posterior error estimate by Johnson et al.,an order of N-3/2 accuracy can be obtained when continuous piecewise linear elements are used,where N is the number of elements.

  17. Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting

    CERN Document Server

    Zanotti, Olindo; Dumbser, Michael; Hidalgo, Arturo

    2015-01-01

    In this paper we present a novel arbitrary high order accurate discontinuous Galerkin (DG) finite element method on space-time adaptive Cartesian meshes (AMR) for hyperbolic conservation laws in multiple space dimensions, using a high order \\aposteriori sub-cell ADER-WENO finite volume \\emph{limiter}. Notoriously, the original DG method produces strong oscillations in the presence of discontinuous solutions and several types of limiters have been introduced over the years to cope with this problem. Following the innovative idea recently proposed in \\cite{Dumbser2014}, the discrete solution within the troubled cells is \\textit{recomputed} by scattering the DG polynomial at the previous time step onto a suitable number of sub-cells along each direction. Relying on the robustness of classical finite volume WENO schemes, the sub-cell averages are recomputed and then gathered back into the DG polynomials over the main grid. In this paper this approach is implemented for the first time within a space-time adaptive ...

  18. Adaptive finite element simulation of flow and transport applications on parallel computers

    Science.gov (United States)

    Kirk, Benjamin Shelton

    The subject of this work is the adaptive finite element simulation of problems arising in flow and transport applications on parallel computers. Of particular interest are new contributions to adaptive mesh refinement (AMR) in this parallel high-performance context, including novel work on data structures, treatment of constraints in a parallel setting, generality and extensibility via object-oriented programming, and the design/implementation of a flexible software framework. This technology and software capability then enables more robust, reliable treatment of multiscale--multiphysics problems and specific studies of fine scale interaction such as those in biological chemotaxis (Chapter 4) and high-speed shock physics for compressible flows (Chapter 5). The work begins by presenting an overview of key concepts and data structures employed in AMR simulations. Of particular interest is how these concepts are applied in the physics-independent software framework which is developed here and is the basis for all the numerical simulations performed in this work. This open-source software framework has been adopted by a number of researchers in the U.S. and abroad for use in a wide range of applications. The dynamic nature of adaptive simulations pose particular issues for efficient implementation on distributed-memory parallel architectures. Communication cost, computational load balance, and memory requirements must all be considered when developing adaptive software for this class of machines. Specific extensions to the adaptive data structures to enable implementation on parallel computers is therefore considered in detail. The libMesh framework for performing adaptive finite element simulations on parallel computers is developed to provide a concrete implementation of the above ideas. This physics-independent framework is applied to two distinct flow and transport applications classes in the subsequent application studies to illustrate the flexibility of the

  19. Streamline upwind finite element method using 6-node triangular element with adaptive remeshing technique for convective-diffusion problems

    Institute of Scientific and Technical Information of China (English)

    Niphon Wansophark; Pramote Dechaumphai

    2008-01-01

    A streamline upwind finite element method using 6-node triangular element is presented.The method is applied to the convection term of the governing transport equation directly along local streamlines.Several convective-diffusion examples are used to evaluate efficiency of the method.Results show that the method is monotonic and does not produce any oscillation.In addition,an adaptive meshing technique is combined with the method to further increase accuracy of the solution,and at the same time,to minimize computational time and computer memory requirement.

  20. Massively parallel-in-space-time, adaptive finite element framework for non-linear parabolic equations

    CERN Document Server

    Dyja, Robert; van der Zee, Kristoffer G

    2016-01-01

    We present an adaptive methodology for the solution of (linear and) non-linear time dependent problems that is especially tailored for massively parallel computations. The basic concept is to solve for large blocks of space-time unknowns instead of marching sequentially in time. The methodology is a combination of a computationally efficient implementation of a parallel-in-space-time finite element solver coupled with a posteriori space-time error estimates and a parallel mesh generator. This methodology enables, in principle, simultaneous adaptivity in both space and time (within the block) domains. We explore this basic concept in the context of a variety of time-steppers including $\\Theta$-schemes and Backward Differentiate Formulas. We specifically illustrate this framework with applications involving time dependent linear, quasi-linear and semi-linear diffusion equations. We focus on investigating how the coupled space-time refinement indicators for this class of problems affect spatial adaptivity. Final...

  1. Advanced finite element technologies

    CERN Document Server

    Wriggers, Peter

    2016-01-01

    The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.

  2. 2.5D induced polarization forward modeling using the adaptive finite-element method

    Institute of Scientific and Technical Information of China (English)

    Ye Yi-Xin; Li Yu-Guo; Deng Ju-Zhi; Li Ze-Lin

    2014-01-01

    The conventional finite-element (FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization (IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4%and 1.2%for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.

  3. Development of an adaptive hp-version finite element method for computational optimal control

    Science.gov (United States)

    Hodges, Dewey H.; Warner, Michael S.

    1994-01-01

    In this research effort, the usefulness of hp-version finite elements and adaptive solution-refinement techniques in generating numerical solutions to optimal control problems has been investigated. Under NAG-939, a general FORTRAN code was developed which approximated solutions to optimal control problems with control constraints and state constraints. Within that methodology, to get high-order accuracy in solutions, the finite element mesh would have to be refined repeatedly through bisection of the entire mesh in a given phase. In the current research effort, the order of the shape functions in each element has been made a variable, giving more flexibility in error reduction and smoothing. Similarly, individual elements can each be subdivided into many pieces, depending on the local error indicator, while other parts of the mesh remain coarsely discretized. The problem remains to reduce and smooth the error while still keeping computational effort reasonable enough to calculate time histories in a short enough time for on-board applications.

  4. SELF-ADAPTIVE STRATEGY FOR ONE-DIMENSIONAL FINITE ELEMENT METHOD BASED ON ELEMENT ENERGY PROJECTION METHOD

    Institute of Scientific and Technical Information of China (English)

    YUAN Si; HE Xue-feng

    2006-01-01

    Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM),the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient.This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea,implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.

  5. An adaptive scaled boundary finite element method by subdividing subdomains for elastodynamic problems

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The scaled boundary finite element method(SBFEM) is a semi-analytical numerical method,which models an analysis domain by a small number of large-sized subdomains and discretises subdomain boundaries only.In a subdomain,all fields of state variables including displacement,stress,velocity and acceleration are semi-analytical,and the kinetic energy,strain energy and energy error are all integrated semi-analytically.These advantages are taken in this study to develop a posteriori h-hierarchical adaptive SBFEM for transient elastodynamic problems using a mesh refinement procedure which subdivides subdomains.Because only a small number of subdomains are subdivided,mesh refinement is very simple and efficient,and mesh mapping to transfer state variables from an old mesh to a new one is also very simple but accurate.Two 2D examples with stress wave propagation were modelled.The results show that the developed method is capable of capturing propagation of steep stress regions and calculating accurate dynamic responses,using only a fraction of degrees of freedom required by adaptive finite element method.

  6. DISCONTINUITY-CAPTURING FINITE ELEMENT COMPUTATION OF UNSTEADY FLOW WITH ADAPTIVE UNSTRUCTURED MESH

    Institute of Scientific and Technical Information of China (English)

    DONG Genjin; LU Xiyun; ZHUANG Lixian

    2004-01-01

    A discontinuity-capturing scheme of finite element method (FEM) is proposed. The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows, which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number.In particular, a new testing variable, i.e., the disturbed kinetic energy E, is suggested and used in the adaptive mesh computation, which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number. Based on several calculated examples, this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows.

  7. ERROR REDUCTION IN ADAPTIVE FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC OBSTACLE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Dietrich Braess; Carsten Carstensen; Ronald H.W. Hoppe

    2009-01-01

    We consider an adaptive finite element method (AFEM) for obstacle problems associated with linear second order elliptic boundary value problems and prove a reduction in the energy norm of the discretization error which leads to R-linear convergence. This result is shown to hold up to a consistency error due to the extension of the discrete multipliers (point functionals) to H-1 and a possible mismatch between the continuous and discrete coincidence and noncoincidence sets. The AFEM is based on a residual-type error estimator consisting of element and edge residuals. The a posteriori error analysis reveals that the significant difference to the unconstrained case lies in the fact that these residuals only have to be taken into account within the discrete noncoincidence set. The proof of the error reduction property uses the reliability and the discrete local efficiency of the estimator as well as a perturbed Galerkin orthogonality. Numerical results are given illustrating the performance of the AFEM.

  8. Development of Efficient Finite Element Software of Crack Propagation Simulation using Adaptive Mesh Strategy

    Directory of Open Access Journals (Sweden)

    Abdulnaser M. Alshoaibi

    2009-01-01

    Full Text Available The purpose of this study is on the determination of 2D crack paths and surfaces as well as on the evaluation of the stress intensity factors as a part of the damage tolerant assessment. Problem statement: The evaluation of SIFs and crack tip singular stresses for arbitrary fracture structure are a challenging problem, involving the calculation of the crack path and the crack propagation rates at each step especially under mixed mode loading. Approach: This study was provided a finite element code which produces results comparable to the current available commercial software. Throughout the simulation of crack propagation an automatic adaptive mesh was carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The finite element mesh was generated using the advancing front method. The adaptive remising process carried out based on the posteriori stress error norm scheme to obtain an optimal mesh. The onset criterion of crack propagation was based on the stress intensity factors which provide as the most important parameter that must be accurately estimated. Facilitated by the singular elements, the displacement extrapolation technique is employed to calculate the stress intensity factor. Crack direction is predicted using the maximum circumferential stress theory. The fracture was modeled by the splitting node approach and the trajectory follows the successive linear extensions of each crack increment. The propagation process is driven by Linear Elastic Fracture Mechanics (LEFM approach with minimum user interaction. Results: In evaluating the accuracy of the estimated stress intensity factors and the crack path predictions, the results were compared with sets of experimental data, benchmark analytical solutions as well as numerical results of other researchers. Conclusion/Recommendations: The assessment indicated that the program was highly reliable to evaluate the stress intensity

  9. Moving finite elements: A continuously adaptive method for computational fluid dynamics

    International Nuclear Information System (INIS)

    Moving Finite Elements (MFE), a recently developed method for computational fluid dynamics, promises major advances in the ability of computers to model the complex behavior of liquids, gases, and plasmas. Applications of computational fluid dynamics occur in a wide range of scientifically and technologically important fields. Examples include meteorology, oceanography, global climate modeling, magnetic and inertial fusion energy research, semiconductor fabrication, biophysics, automobile and aircraft design, industrial fluid processing, chemical engineering, and combustion research. The improvements made possible by the new method could thus have substantial economic impact. Moving Finite Elements is a moving node adaptive grid method which has a tendency to pack the grid finely in regions where it is most needed at each time and to leave it coarse elsewhere. It does so in a manner which is simple and automatic, and does not require a large amount of human ingenuity to apply it to each particular problem. At the same time, it often allows the time step to be large enough to advance a moving shock by many shock thicknesses in a single time step, moving the grid smoothly with the solution and minimizing the number of time steps required for the whole problem. For 2D problems (two spatial variables) the grid is composed of irregularly shaped and irregularly connected triangles which are very flexible in their ability to adapt to the evolving solution. While other adaptive grid methods have been developed which share some of these desirable properties, this is the only method which combines them all. In many cases, the method can save orders of magnitude of computing time, equivalent to several generations of advancing computer hardware

  10. Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems

    KAUST Repository

    Cotter, Simon L.

    2013-01-01

    Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.

  11. Adaptive silicon monochromators for high-power wigglers; design, finite-element analysis and laboratory tests.

    Science.gov (United States)

    Quintana, J P; Hart, M

    1995-05-01

    Multipole wigglers in storage rings already produce X-ray power in the range up to a few kilowatts and planned devices at third-generation facilities promise up to 30 kW. Although the power density at the monochromator position is an order of magnitude lower than that from undulators, the thermal strain field in the beam footprint can still cause severe loss of performance in X-ray optical systems. For an optimized adaptive design, the results of finite-element analysis are compared with double-crystal rocking curves obtained with a laboratory X-ray source and, in a second paper [Quintana, Hart, Bilderback, Henderson, Richter, Setterson, White, Hausermann, Krumrey & Schulte-Schrepping (1995). J. Synchotron Rad. 2, 1-5], successful tests at wiggler sources at CHESS and ESRF and in an undulator source at HASYLAB are reported.

  12. Hybrid Multilevel Sparse Reconstruction for a Whole Domain Bioluminescence Tomography Using Adaptive Finite Element

    Directory of Open Access Journals (Sweden)

    Jingjing Yu

    2013-01-01

    Full Text Available Quantitative reconstruction of bioluminescent sources from boundary measurements is a challenging ill-posed inverse problem owing to the high degree of absorption and scattering of light through tissue. We present a hybrid multilevel reconstruction scheme by combining the ability of sparse regularization with the advantage of adaptive finite element method. In view of the characteristics of different discretization levels, two different inversion algorithms are employed on the initial coarse mesh and the succeeding ones to strike a balance between stability and efficiency. Numerical experiment results with a digital mouse model demonstrate that the proposed scheme can accurately localize and quantify source distribution while maintaining reconstruction stability and computational economy. The effectiveness of this hybrid reconstruction scheme is further confirmed with in vivo experiments.

  13. Adaptive Finite Element Modeling Techniques for the Poisson-Boltzmann Equation

    CERN Document Server

    Holst, Michael; Yu, Zeyun; Zhou, Yongcheng; Zhu, Yunrong

    2010-01-01

    We develop an efficient and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the regularization technique of Chen, Holst, and Xu; this technique made possible the first a priori pointwise estimates and the first complete solution and approximation theory for the Poisson-Boltzmann equation. It also made possible the first provably convergent discretization of the PBE, and allowed for the development of a provably convergent AFEM for the PBE. However, in practice the regularization turns out to be numerically ill-conditioned. In this article, we examine a second regularization, and establish a number of basic results to ensure that the new approach produces the same mathematical advantages of the original regularization, without the ill-conditioning property. We then design an AFEM scheme based on the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This res...

  14. A parallel direct solver for the self-adaptive hp Finite Element Method

    KAUST Repository

    Paszyński, Maciej R.

    2010-03-01

    In this paper we present a new parallel multi-frontal direct solver, dedicated for the hp Finite Element Method (hp-FEM). The self-adaptive hp-FEM generates in a fully automatic mode, a sequence of hp-meshes delivering exponential convergence of the error with respect to the number of degrees of freedom (d.o.f.) as well as the CPU time, by performing a sequence of hp refinements starting from an arbitrary initial mesh. The solver constructs an initial elimination tree for an arbitrary initial mesh, and expands the elimination tree each time the mesh is refined. This allows us to keep track of the order of elimination for the solver. The solver also minimizes the memory usage, by de-allocating partial LU factorizations computed during the elimination stage of the solver, and recomputes them for the backward substitution stage, by utilizing only about 10% of the computational time necessary for the original computations. The solver has been tested on 3D Direct Current (DC) borehole resistivity measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements of various sizes and polynomial orders of approximation varying from p = 1 to p = 9. From the presented experiments it follows that the parallel solver scales well up to the maximum number of utilized processors. The limit for the solver scalability is the maximum sequential part of the algorithm: the computations of the partial LU factorizations over the longest path, coming from the root of the elimination tree down to the deepest leaf. © 2009 Elsevier Inc. All rights reserved.

  15. Wind Forecasting Based on the HARMONIE Model and Adaptive Finite Elements

    Science.gov (United States)

    Oliver, Albert; Rodríguez, Eduardo; Escobar, José María; Montero, Gustavo; Hortal, Mariano; Calvo, Javier; Cascón, José Manuel; Montenegro, Rafael

    2015-01-01

    In this paper, we introduce a new method for wind field forecasting over complex terrain. The main idea is to use the predictions of the HARMONIE meso-scale model as the input data for an adaptive finite element mass-consistent wind model. The HARMONIE results (obtained with a maximum resolution of about 1 km) are refined in a local scale (about a few metres). An interface between both models is implemented in such a way that the initial wind field is obtained by a suitable interpolation of the HARMONIE results. Genetic algorithms are used to calibrate some parameters of the local wind field model in accordance to the HARMONIE data. In addition, measured data are considered to improve the reliability of the simulations. An automatic tetrahedral mesh generator, based on the meccano method, is applied to adapt the discretization to complex terrains. The main characteristic of the framework is a minimal user intervention. The final goal is to validate our model in several realistic applications on Gran Canaria island, Spain, with some experimental data obtained by the AEMET in their meteorological stations. The source code of the mass-consistent wind model is available online at http://www.dca.iusiani.ulpgc.es/Wind3D/.

  16. Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation

    International Nuclear Information System (INIS)

    As a molecular imaging technique, bioluminescence tomography (BLT) with its highly sensitive detection and facile operation can significantly reveal molecular and cellular information in vivo at the whole-body small animal level. However, because of complex photon transportation in biological tissue and boundary detection data with high noise, bioluminescent sources in deeper positions generally cannot be localized. In our previous work, we used achromatic or monochromatic measurements and an a priori permissible source region strategy to develop a multilevel adaptive finite-element algorithm. In this paper, we propose a spectrally solved tomographic algorithm with a posteriori permissible source region selection. Multispectral measurements, and anatomical and optical information first deal with the nonuniqueness of BLT and constrain the possible solution of source reconstruction. The use of adaptive mesh refinement and permissible source region based on a posteriori measures not only avoids the dimension disaster arising from the multispectral measured data but also reduces the ill-posedness of BLT and therefore improves the reconstruction quality. Reconsideration of the optimization method and related modifications further enhance reconstruction robustness and efficiency. We also incorporate into the method some improvements for reducing computational burdens. Finally, using a whole-body virtual mouse phantom, we demonstrate the capability of the proposed BLT algorithm to reconstruct accurately bioluminescent sources in deeper positions. In terms of optical property errors and two sources of discernment in deeper positions, this BLT algorithm represents the unique predominance for BLT reconstruction

  17. Adaptive Finite Element Modeling of Marine Controlled-Source Electromagnetic Fields in Two-Dimensional General Anisotropic Media

    Institute of Scientific and Technical Information of China (English)

    LI Yuguo; LUO Ming; PEI Jianxin

    2013-01-01

    In this paper,we extend the scope of numerical simulations of marine controlled-source electromagnetic (CSEM) fields in a particular case of anisotropy (dipping anisotropy) to the general case of anisotropy by using an adaptive finite element approach.In comparison to a dipping anisotropy case,the first order spatial derivatives of the strike-parallel components arise in the partial differential equations for generally anisotropic media,which cause a non-symmetric linear system of equations for finite element modeling.The adaptive finite element method is employed to obtain numerical solutions on a sequence of refined unstructured triangular meshes,which allows for arbitrary model geometries including bathymetry and dipping layers.Numerical results of a 2D anisotropic model show both anisotropy strike and dipping angles have great influence on the marine CSEM responses.

  18. Direct numerical simulations of particle-laden density currents with adaptive, discontinuous finite elements

    Directory of Open Access Journals (Sweden)

    S. D. Parkinson

    2014-09-01

    Full Text Available High-resolution direct numerical simulations (DNSs are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.

  19. Direct numerical simulations of particle-laden density currents with adaptive, discontinuous finite elements

    Directory of Open Access Journals (Sweden)

    S. D. Parkinson

    2014-05-01

    Full Text Available High resolution direct numerical simulations (DNS are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two, and three-dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring mesh performance in capturing the range of dynamics. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. Use of discontinuous discretisations and adaptive unstructured meshing technologies, which reduce the required element count by approximately two orders of magnitude, results in high resolution DNS models of turbidity currents at a fraction of the cost of traditional FE models. The benefits of this technique will enable simulation of turbidity currents in complex and large domains where DNS modelling was previously unachievable.

  20. Bimetal cup hydroforming of Al/St and Cu/St composites: Adaptive finite element analysis and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Abbas; Gollo, Mohammad Hoseinpour [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Seyedkashi, S. M. [University of Birjand, Birjand (Iran, Islamic Republic of)

    2016-05-15

    An adaptive Finite element analysis (FEA) was proposed in this paper for the industrial design of bimetal conical-cylindrical cup hydroforming. Forming circumstances for the perfect and imperfect parts were concluded through adaptive FEA using the ANSYS parametric design language. Effective parameters, including pressure loading path, layer placement order, and thickness ratio, were investigated for hydroforming of Al/St and Cu/St composite sheets. Experimental tests were implemented to validate adaptive finite element results. Rupture failure upon the pressure path occurred on the contact area between the blank and punch tip radius at low pressures and on the transition area of the conical-cylindrical portion at high pressures. The proposed method is applicable for any cylindrical, conical, or cylindrical/conical shapes with different materials and dimensions. Therefore, this method is beneficial as a practical design tool for engineers and researchers working in the process design of hydroformed shell products.

  1. 3D adaptive finite element method for a phase field model for the moving contact line problems

    KAUST Repository

    Shi, Yi

    2013-08-01

    In this paper, we propose an adaptive finite element method for simulating the moving contact line problems in three dimensions. The model that we used is the coupled Cahn-Hilliard Navier-Stokes equations with the generalized Navier boundary condition(GNBC) proposed in [18]. In our algorithm, to improve the efficiency of the simulation, we use the residual type adaptive finite element algorithm. It is well known that the phase variable decays much faster away from the interface than the velocity variables. There- fore we use an adaptive strategy that will take into account of such difference. Numerical experiments show that our algorithm is both efficient and reliable. © 2013 American Institute of Mathematical Sciences.

  2. Adaptive Multilevel Methods with Local Smoothing for $H^1$- and $H^{\\mathrm{curl}}$-Conforming High Order Finite Element Methods

    KAUST Repository

    Janssen, Bärbel

    2011-01-01

    A multilevel method on adaptive meshes with hanging nodes is presented, and the additional matrices appearing in the implementation are derived. Smoothers of overlapping Schwarz type are discussed; smoothing is restricted to the interior of the subdomains refined to the current level; thus it has optimal computational complexity. When applied to conforming finite element discretizations of elliptic problems and Maxwell equations, the method\\'s convergence rates are very close to those for the nonadaptive version. Furthermore, the smoothers remain efficient for high order finite elements. We discuss the implementation in a general finite element code using the example of the deal.II library. © 2011 Societ y for Industrial and Applied Mathematics.

  3. Nodeless variable finite element method for heat transfer analysis by means of flux-based formulation and mesh adaptation

    Institute of Scientific and Technical Information of China (English)

    Sutthisak Phongthanapanich; Suthee Traivivatana; Parinya Boonmaruth; Pramote Dechaumphai

    2006-01-01

    Based on flux-based formulation,a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems.The nodeless variable element employs quadratic interpolation functions to provide higher solution accuracy without necessity to actually generate additional nodes.The flux-based formulation is applied to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method.The solution accuracy is further improved by implementing an adaptive meshing technique to generate finite element mesh that can adapt and move along corresponding to the solution behavior.The technique generates small elements in the regions of steep solution gradients to provide accurate solution,and mean while it generates larger elements in the other regions where the solution gradients are slight to reduce the computational time and the computer memory.The effectiveness of the combined procedure is demonstrated by heat transfer problems that have exact solutions.These problems are:(a) a steady-state heat conduction analysis in a square plate subjected to a highly localized surface heating,and (b) a transient heat conduction analysis in a long pate subjected to a moving heat source.

  4. ADAPTATION IN ABAQUS OF THE ITERATED-ANALYTICAL MULTILAYER USER FINITE ELEMENT

    OpenAIRE

    Гондлях, Александр Владимирович

    2012-01-01

    There are developed and numerically implemented in ABAQUS environment based on the iterative- analytical theory relations the 8-node multilayered finite user`s element (USER_IAT_3D) for investigate the processes of nonlinear deformation and failure of spatial multi-layer systems.

  5. Modelling cohesive laws in finite element simulations via an adapted contact procedure in ABAQUS

    DEFF Research Database (Denmark)

    Feih, S.

    2004-01-01

    is not straightforward, and most existing publications consider theoretical and therefore simpler softening shapes. Two possible methods of bridging law approximation areexplained and compared in this report. The bridging laws were implemented in a numerical user subroutine in the finite element code ABAQUS. The main...

  6. An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems

    CERN Document Server

    Li, Xianping

    2010-01-01

    Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral ...

  7. Finite element procedures

    CERN Document Server

    Bathe, Klaus-Jürgen

    2015-01-01

    Finite element procedures are now an important and frequently indispensable part of engineering analyses and scientific investigations. This book focuses on finite element procedures that are very useful and are widely employed. Formulations for the linear and nonlinear analyses of solids and structures, fluids, and multiphysics problems are presented, appropriate finite elements are discussed, and solution techniques for the governing finite element equations are given. The book presents general, reliable, and effective procedures that are fundamental and can be expected to be in use for a long time. The given procedures form also the foundations of recent developments in the field.

  8. Object-oriented philosophy in designing adaptive finite-element package for 3D elliptic deferential equations

    Science.gov (United States)

    Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.

    2007-12-01

    Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.

  9. Goal-Oriented Self-Adaptive hp Finite Element Simulation of 3D DC Borehole Resistivity Simulations

    KAUST Repository

    Calo, Victor M.

    2011-05-14

    In this paper we present a goal-oriented self-adaptive hp Finite Element Method (hp-FEM) with shared data structures and a parallel multi-frontal direct solver. The algorithm automatically generates (without any user interaction) a sequence of meshes delivering exponential convergence of a prescribed quantity of interest with respect to the number of degrees of freedom. The sequence of meshes is generated from a given initial mesh, by performing h (breaking elements into smaller elements), p (adjusting polynomial orders of approximation) or hp (both) refinements on the finite elements. The new parallel implementation utilizes a computational mesh shared between multiple processors. All computational algorithms, including automatic hp goal-oriented adaptivity and the solver work fully in parallel. We describe the parallel self-adaptive hp-FEM algorithm with shared computational domain, as well as its efficiency measurements. We apply the methodology described to the three-dimensional simulation of the borehole resistivity measurement of direct current through casing in the presence of invasion.

  10. Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations

    International Nuclear Information System (INIS)

    In finite element simulations dedicated to the modelling of microstructure evolution, the mesh has to be fine enough to: (i) accurately describe the geometry of the constituents; (ii) capture local strain gradients stemming from the heterogeneity in material properties. In this paper, 3D polycrystalline aggregates are discretized into unstructured meshes and a level set framework is used to represent the grain boundaries. The crystal plasticity finite element method is used to simulate the plastic deformation of these aggregates. A mesh sensitivity analysis based on the deformation energy distribution shows that the predictions are, on average, more sensitive near grain boundaries. An anisotropic mesh refinement strategy based on the level set description is introduced and it is shown that it offers a good compromise between accuracy requirements on the one hand and computation time on the other hand. As the aggregates deform, mesh distortion inevitably occurs and ultimately causes the breakdown of the simulations. An automatic remeshing tool is used to periodically reconstruct the mesh and appropriate transfer of state variables is performed. It is shown that the diffusion related to data transfer is not significant. Finally, remeshing is performed repeatedly in a highly resolved 500 grains polycrystal subjected to about 90% thickness reduction in rolling. The predicted texture is compared with the experimental data and with the predictions of a standard Taylor model

  11. Simultaneous Topology, Shape, and Sizing Optimisation of Plane Trusses with Adaptive Ground Finite Elements Using MOEAs

    Directory of Open Access Journals (Sweden)

    Norapat Noilublao

    2013-01-01

    Full Text Available This paper proposes a novel integrated design strategy to accomplish simultaneous topology shape and sizing optimisation of a two-dimensional (2D truss. An optimisation problem is posed to find a structural topology, shape, and element sizes of the truss such that two objective functions, mass and compliance, are minimised. Design constraints include stress, buckling, and compliance. The procedure for an adaptive ground elements approach is proposed and its encoding/decoding process is detailed. Two sets of design variables defining truss layout, shape, and element sizes at the same time are applied. A number of multiobjective evolutionary algorithms (MOEAs are implemented to solve the design problem. Comparative performance based on a hypervolume indicator shows that multiobjective population-based incremental learning (PBIL is the best performer. Optimising three design variable types simultaneously is more efficient and effective.

  12. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  13. Viscous regularization and r-adaptive remeshing for finite element analysis of lipid membrane mechanics

    CERN Document Server

    Ma, Lin

    2007-01-01

    As two-dimensional fluid shells, lipid bilayer membranes resist bending and stretching but are unable to sustain shear stresses. This property gives membranes the ability to adopt dramatic shape changes. In this paper, a finite element model is developed to study static equilibrium mechanics of membranes. In particular, a viscous regularization method is proposed to stabilize tangential mesh deformations and improve the convergence rate of nonlinear solvers. The Augmented Lagrangian method is used to enforce global constraints on area and volume during membrane deformations. As a validation of the method, equilibrium shapes for a shape-phase diagram of lipid bilayer vesicle are calculated. These numerical techniques are also shown to be useful for simulations of three-dimensional large-deformation problems: the formation of tethers (long tube-like exetensions); and Ginzburg-Landau phase separation of a two-lipid-component vesicle. To deal with the large mesh distortions of the two-phase model, modification of...

  14. Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kalchev, D

    2012-04-02

    This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the

  15. Finite element analysis

    CERN Document Server

    2010-01-01

    Finite element analysis is an engineering method for the numerical analysis of complex structures. This book provides a bird's eye view on this very broad matter through 27 original and innovative research studies exhibiting various investigation directions. Through its chapters the reader will have access to works related to Biomedical Engineering, Materials Engineering, Process Analysis and Civil Engineering. The text is addressed not only to researchers, but also to professional engineers, engineering lecturers and students seeking to gain a better understanding of where Finite Element Analysis stands today.

  16. Inside finite elements

    CERN Document Server

    Weiser, Martin

    2016-01-01

    All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.

  17. Progress of adaptive finite element(FE) method in solving nonlinear partial differential equation(PDE)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Scientific computation is widely used in multiple cross-disciplinary areas. Most of the issues coming from this area finally result in solving PDE. In the process of solving PDE, the meshes are firstly generated within the area where PDE is functional; then, the methods of FE,Finite Difference (FD), and Finite Volume (FV) are applied on the meshes to solve the PDE.

  18. Adaptive recovery of near optimal meshes in the finite element method for parameter dependent problems

    DEFF Research Database (Denmark)

    Hugger, Jens

    1992-01-01

    Matematik, numerisk analyse, den endelige element metode, fejlestimering, tæthedsfunktion, netgenerering......Matematik, numerisk analyse, den endelige element metode, fejlestimering, tæthedsfunktion, netgenerering...

  19. A direct solver with reutilization of LU factorizations for h-adaptive finite element grids with point singularities

    KAUST Repository

    Paszyński, Maciej R.

    2013-04-01

    This paper describes a direct solver algorithm for a sequence of finite element meshes that are h-refined towards one or several point singularities. For such a sequence of grids, the solver delivers linear computational cost O(N) in terms of CPU time and memory with respect to the number of unknowns N. The linear computational cost is achieved by utilizing the recursive structure provided by the sequence of h-adaptive grids with a special construction of the elimination tree that allows for reutilization of previously computed partial LU (or Cholesky) factorizations over the entire unrefined part of the computational mesh. The reutilization technique reduces the computational cost of the entire sequence of h-refined grids from O(N2) down to O(N). Theoretical estimates are illustrated with numerical results on two- and three-dimensional model problems exhibiting one or several point singularities. © 2013 Elsevier Ltd. All rights reserved.

  20. Adaptive Lagrange finite element methods for high precision vibrations and piezoelectric acoustic wave compu- tations in SMT structures and plates with nano interfaces

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper discusses the validity of (adaptive) Lagrange generalized plain finite element method(FEM) and plate element method for accurate analysis of acoustic waves in multi-layered piezoelectric structures with tiny interfaces between metal electrodes and surface mounted piezoelectric substrates. We have come to conclusion that the quantitative relationships between the acoustic and electric fields in a piezoelectric structure can be accurately determined through the proposed finite element methods. The higher-order Lagrange FEM proposed for dynamic piezoelectric computation is proved to be very accurate (prescribed relative error 0.02%-0.04%) and a great improvement in convergence accuracy over the higher order Mindlin plate element method for piezoelectric structural analysis due to the assumptions and corrections in the plate theories. The converged Lagrange finite element methods are compared with the plate element methods and the computed results are in good agreement with available exact and experimental data. The adaptive Lagrange finite element methods and a new FEA computer program developed for macro- and micro-scale analyses are reviewed, and recently extended with great potential to high-precision nano-scale analysis in this paper and the similarities between piezoelectric and seismic wave propagations in layered structures and plates are stressed.

  1. Parallel three-dimensional magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study

    Science.gov (United States)

    Grayver, Alexander V.

    2015-07-01

    This paper presents a distributed magnetotelluric inversion scheme based on adaptive finite-element method (FEM). The key novel aspect of the introduced algorithm is the use of automatic mesh refinement techniques for both forward and inverse modelling. These techniques alleviate tedious and subjective procedure of choosing a suitable model parametrization. To avoid overparametrization, meshes for forward and inverse problems were decoupled. For calculation of accurate electromagnetic (EM) responses, automatic mesh refinement algorithm based on a goal-oriented error estimator has been adopted. For further efficiency gain, EM fields for each frequency were calculated using independent meshes in order to account for substantially different spatial behaviour of the fields over a wide range of frequencies. An automatic approach for efficient initial mesh design in inverse problems based on linearized model resolution matrix was developed. To make this algorithm suitable for large-scale problems, it was proposed to use a low-rank approximation of the linearized model resolution matrix. In order to fill a gap between initial and true model complexities and resolve emerging 3-D structures better, an algorithm for adaptive inverse mesh refinement was derived. Within this algorithm, spatial variations of the imaged parameter are calculated and mesh is refined in the neighborhoods of points with the largest variations. A series of numerical tests were performed to demonstrate the utility of the presented algorithms. Adaptive mesh refinement based on the model resolution estimates provides an efficient tool to derive initial meshes which account for arbitrary survey layouts, data types, frequency content and measurement uncertainties. Furthermore, the algorithm is capable to deliver meshes suitable to resolve features on multiple scales while keeping number of unknowns low. However, such meshes exhibit dependency on an initial model guess. Additionally, it is demonstrated

  2. Finite element modelling

    International Nuclear Information System (INIS)

    The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)

  3. Adaptive Lagrange finite element methods for high precision vibrations and piezoelectric acoustic wave computations in SMT structures and plates with nano interfaces

    Institute of Scientific and Technical Information of China (English)

    张武; 洪涛

    2002-01-01

    This paper discusses the validity of (adaptive) Lagrange generalized plain finite element method (FEM) and plate element method for accurate analysis of acoustic waves in multi-layered piezoelectric structures with tiny interfaces between metal electrodes and surface mounted piezoelectric substrates. We have come to conclusion that the quantitative relationships between the acoustic and electric fields in a piezoelectric structure can be accurately determined through the proposed finite element methods. The higher-order Lagrange FEM proposed for dynamic piezoelectric computation is proved to be very accurate (prescribed relative error 0.02% - 0.04% ) and a great improvement in convergence accuracy over the higher order Mindlin plate element method for piezoelectric structural analysis due to the assumptions and corrections in the plate theories.The converged lagrange finite element methods are compared with the plate element methods and the computedresults are in good agreement with available exact and experimental data. The adaptive Lagrange finite elementmethods and a new FEA computer program developed for macro- and micro-scale analyses are reviewed, and recently extended with great potential to high-precision nano-scale analysis in this paper and the similarities between piezoelectric and seismic wave propagations in layered structures and plates are stressed.

  4. Mixed finite element-finite volume methods

    OpenAIRE

    Zine Dine, Khadija; Achtaich, Naceur; Chagdali, Mohamed

    2010-01-01

    This paper is devoted to present a numerical methods for a model of incompressible and miscible flow in porous media. We analyze a numerical scheme combining a mixed finite element method (MFE) and finite volume scheme (FV) for solving a coupled system includes an elliptic equation (pressure and velocity) and a linear convection-diffusion equation (concentration). The (FV) scheme considered is "vertex centered" type semi implicit. We show that this scheme is $L^{\\infty...

  5. Solution of Finite Element Equations

    DEFF Research Database (Denmark)

    Krenk, Steen

    An important step in solving any problem by the finite element method is the solution of the global equations. Numerical solution of linear equations is a subject covered in most courses in numerical analysis. However, the equations encountered in most finite element applications have some special...

  6. Stabilized Finite Elements with Matlab

    OpenAIRE

    Asensio, M. I.; A. Russo

    2002-01-01

    The purpose of this note is to explain the MATLAB code developed to solve an advection diffusion-reaction problem, with different Finite Element Methods: Standard Galerkin [7], Streamline Upwind/ Petrov-Galerkin (SUPG) [6], Unsual Stabilized [8, 9] and Residual-Free Bubbles [3, 4, 5], for both linear (P1) (see [1]) and quadratic (P2) (see [2]) triangular finite elements.

  7. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo

    2010-01-01

    Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  8. Simulation of wireline sonic logging measurements acquired with Borehole-Eccentered tools using a high-order adaptive finite-element method

    KAUST Repository

    Pardo, David

    2011-07-01

    The paper introduces a high-order, adaptive finite-element method for simulation of sonic measurements acquired with borehole-eccentered logging instruments. The resulting frequency-domain based algorithm combines a Fourier series expansion in one spatial dimension with a two-dimensional high-order adaptive finite-element method (FEM), and incorporates a perfectly matched layer (PML) for truncation of the computational domain. The simulation method was verified for various model problems, including a comparison to a semi-analytical solution developed specifically for this purpose. Numerical results indicate that for a wireline sonic tool operating in a fast formation, the main propagation modes are insensitive to the distance from the center of the tool to the center of the borehole (eccentricity distance). However, new flexural modes arise with an increase in eccentricity distance. In soft formations, we identify a new dipole tool mode which arises as a result of tool eccentricity. © 2011 Elsevier Inc.

  9. Parallel finite-element-analysis for the structure-soil-interaction with adaptive time-integration procedures; Parallele Finite-Element-Simulation der Bauwerk-Boden-Interaktion mit adaptiven Zeitintegrationsverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Rapolder, M.

    2000-07-01

    This thesis deals with the derivation of efficient and robust algorithms for the dynamic analysis of coupled structures with a large number of degrees of freedom. The numerical simulations are based on a modified time integration scheme combined with an adaptive time step control. The algorithms are optimized for the numerical treatment of interaction effects and contact simulations. Parallel computing of the semi-analytical Finite Element model accelerates the numerical process. Calculations of unanchored liquid filled storage tanks under earthquake excitation exhibit the efficiency of the derived algorithms. (orig.) [German] In der vorliegenden Arbeit werden Methoden zur effizienten und robusten nichtlinearen dynamischen Berechnung von gekoppelten Systemen mit sehr vielen Freiheitsgraden vorgestellt. Die numerische Simulation erfolgt mit einem modifizierten Zeitintegrationsverfahren sowie einer adaptiven Schrittweitensteuerung. Die Algorithmen werden insbesondere fuer die numerische Behandlung von Interaktionsvorgaengen und fuer die Kontaktsimulation optimiert. Mit Hilfe der Paralellisierung auf Elementebene kann die verwendete semi-analytische Finite-Element-Berechnung beschleunigt werden. Die Leistungsfaehigkeit der entwickelten Verfahren wird mit der Simulation von unverankerten, fluessigkeitsgefuellten Behaeltern unter Erdbebeneinwirkung demonstriert. (orig.)

  10. quadratic spline finite element method

    Directory of Open Access Journals (Sweden)

    A. R. Bahadir

    2002-01-01

    Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.

  11. Second order tensor finite element

    Science.gov (United States)

    Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.

    1990-01-01

    The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.

  12. Finite element methods for engineers

    CERN Document Server

    Fenner, Roger T

    2013-01-01

    This book is intended as a textbook providing a deliberately simple introduction to finite element methods in a way that should be readily understandable to engineers, both students and practising professionals. Only the very simplest elements are considered, mainly two dimensional three-noded “constant strain triangles”, with simple linear variation of the relevant variables. Chapters of the book deal with structural problems (beams), classification of a broad range of engineering into harmonic and biharmonic types, finite element analysis of harmonic problems, and finite element analysis of biharmonic problems (plane stress and plane strain). Full Fortran programs are listed and explained in detail, and a range of practical problems solved in the text. Despite being somewhat unfashionable for general programming purposes, the Fortran language remains very widely used in engineering. The programs listed, which were originally developed for use on mainframe computers, have been thoroughly updated for use ...

  13. Finite element modelling of perturbed stellar systems

    CERN Document Server

    Jalali, Mir Abbas

    2010-01-01

    I formulate a general finite element method (FEM) for self-gravitating stellar systems. I split the configuration space to finite elements, and express the potential and density functions over each element in terms of their nodal values and suitable interpolating functions. General expressions are then introduced for the Hamiltonian and phase space distribution functions of the stars that visit a given element. Using the weighted residual form of Poisson's equation, I derive the Galerkin projection of the perturbed collisionless Boltzmann equation, and assemble the global evolutionary equations of nodal distribution functions. The FEM is highly adaptable to all kinds of potential and density profiles, and it can deal with density clumps and initially non-axisymmetric systems. I use ring elements of non-uniform widths, choose linear and quadratic interpolation functions in the radial direction, and apply the FEM to the stability analysis of the cutout Mestel disc. I also integrate the forced evolutionary equat...

  14. FINITE ELEMENT ANALYSIS OF STRUCTURES

    Directory of Open Access Journals (Sweden)

    PECINGINA OLIMPIA-MIOARA

    2015-05-01

    Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.

  15. Finite elements of nonlinear continua

    CERN Document Server

    Oden, J T

    2000-01-01

    Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s

  16. A Finite Element Framework for Some Mimetic Finite Difference Discretizations

    OpenAIRE

    Rodrigo, Carmen; Gaspar, Francisco; Hu, Xiaozhe; Zikatanov, Ludmil

    2015-01-01

    In this work we derive equivalence relations between mimetic finite difference schemes on simplicial grids and modified N\\'ed\\'elec-Raviart-Thomas finite element methods for model problems in $\\mathbf{H}(\\operatorname{\\mathbf{curl}})$ and $H(\\operatorname{div})$. This provides a simple and transparent way to analyze such mimetic finite difference discretizations using the well-known results from finite element theory. The finite element framework that we develop is also crucial for the design...

  17. Comparison of 3D Adaptive Remeshing Strategies for Finite Element Simulations of Electromagnetic Heating of Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fadhil Mezghani

    2015-01-01

    Full Text Available The optical properties of metallic nanoparticles are well known, but the study of their thermal behavior is in its infancy. However the local heating of surrounding medium, induced by illuminated nanostructures, opens the way to new sensors and devices. Consequently the accurate calculation of the electromagnetically induced heating of nanostructures is of interest. The proposed multiphysics problem cannot be directly solved with the classical refinement method of Comsol Multiphysics and a 3D adaptive remeshing process based on an a posteriori error estimator is used. In this paper the efficiency of three remeshing strategies for solving the multiphysics problem is compared. The first strategy uses independent remeshing for each physical quantity to reach a given accuracy. The second strategy only controls the accuracy on temperature. The third strategy uses a linear combination of the two normalized targets (the electric field intensity and the temperature. The analysis of the performance of each strategy is based on the convergence of the remeshing process in terms of number of elements. The efficiency of each strategy is also characterized by the number of computation iterations, the number of elements, the CPU time, and the RAM required to achieve a given target accuracy.

  18. Self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order

    Institute of Scientific and Technical Information of China (English)

    YUAN Si; XING Qin-yan; WANG Xu; YE Kang-sheng

    2008-01-01

    Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which point wise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.

  19. Automation of finite element methods

    CERN Document Server

    Korelc, Jože

    2016-01-01

    New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.

  20. Selective Smoothed Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The paper examines three selective schemes for the smoothed finite element method (SFEM) which was formulated by incorporating a cell-wise strain smoothing operation into the standard compatible finite element method (FEM). These selective SFEM schemes were formulated based on three selective integration FEM schemes with similar properties found between the number of smoothing cells in the SFEM and the number of Gaussian integration points in the FEM. Both scheme 1 and scheme 2 are free of nearly incompressible locking, but scheme 2 is more general and gives better results than scheme 1. In addition, scheme 2 can be applied to anisotropic and nonlinear situations, while scheme 1 can only be applied to isotropic and linear situations. Scheme 3 is free of shear locking. This scheme can be applied to plate and shell problems. Results of the numerical study show that the selective SFEM schemes give more accurate results than the FEM schemes.

  1. DOLFIN: Automated Finite Element Computing

    CERN Document Server

    Logg, Anders; 10.1145/1731022.1731030

    2011-01-01

    We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which low-level code is automatically generated, compiled and seamlessly integrated with efficient implementations of computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces to the library are provided in the form of a C++ library and a Python module. This paper discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code.

  2. Nonlinear, finite deformation, finite element analysis

    Science.gov (United States)

    Nguyen, Nhung; Waas, Anthony M.

    2016-06-01

    The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated

  3. Flux-conserving finite element methods

    OpenAIRE

    Zhang, Shangyou; Zhang, Zhimin; Zou, Qingsong

    2012-01-01

    We analyze the flux conservation property of the finite element method. It is shown that the finite element solution does approximate the flux locally in the optimal order, i.e., the same order as that of the nodal interpolation operator. We propose two methods, post-processing the finite element solutions locally. The new solutions, remaining as optimal-order solutions, are flux-conserving elementwise. In one of our methods, the processed solution also satisfies the original finite element e...

  4. Peridynamic Multiscale Finite Element Methods

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  5. Quantum Finite Elements for Lattice Field Theory

    CERN Document Server

    Brower, Richard C; Gasbarro, Andrew; Raben, Timothy; Tan, Chung-I; Weinberg, Evan

    2016-01-01

    Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested.

  6. The UNCLE finite element scheme

    International Nuclear Information System (INIS)

    A completely general finite element scheme, implemented in the UKAEA Reactor Group is outlined. UNCLE is not a complete, self-contained program. It is a framework of routines that provide the common services required by all general purpose finite element programs, whether for heat transfer, stress analysis or any other linear (or piece-wise linear) problem. These services are: input of mesh, geometry, loads (etc) and material data: matrix and load vector calculation and assembly (including handling of standard boundary conditions); solution of global matrix (elimination and conjugate gradient methods); output (printed and graphical) of initial geometry, displacements, stresses, final geometry etc; facilities for iteration for non-linear problems and time integration; mass matrix reduction, dynamic analysis of reduced problem and expansion of displacements to full problem. The framework is written to handle 1, 2, 3 or more dimensions equally efficiently. To produce a general purpose program for a particular range of applications it is only necessary to provide a set of element subroutines specialised to the application (heat transfer, framework analysis, continuum stress analysis etc)

  7. Unified Modeling Language description of the object-oriented multi-scale adaptive finite element method for Step-and-Flash Imprint Lithography Simulations

    Science.gov (United States)

    Paszyński, Maciej; Gurgul, Piotr; Sieniek, Marcin; Pardo, David

    2010-06-01

    In the first part of the paper we present the multi-scale simulation of the Step-and-Flash Imprint Lithography (SFIL), a modern patterning process. The simulation utilizes the hp adaptive Finite Element Method (hp-FEM) coupled with Molecular Statics (MS) model. Thus, we consider the multi-scale problem, with molecular statics applied in the areas of the mesh where the highest accuracy is required, and the continuous linear elasticity with thermal expansion coefficient applied in the remaining part of the domain. The degrees of freedom from macro-scale element's nodes located on the macro-scale side of the interface have been identified with particles from nano-scale elements located on the nano-scale side of the interface. In the second part of the paper we present Unified Modeling Language (UML) description of the resulting multi-scale application (hp-FEM coupled with MS). We investigated classical, procedural codes from the point of view of the object-oriented (O-O) programming paradigm. The discovered hierarchical structure of classes and algorithms makes the UML project as independent on the spatial dimension of the problem as possible. The O-O UML project was defined at an abstract level, independent on the programming language used.

  8. BERSAFE: (BERkeley Structural Analysis by Finite Elements)

    International Nuclear Information System (INIS)

    BERSAFE is a well-known finite element system which has been under continuous use and development for over 20 years. The BERSAFE system comprises an inter-compatible set of program modules covering static stress analysis, linear dynamics and thermal analysis. Data generation and results presentation modules are also available, along with special supporting functions including automatic crack growth through a model with adaptive meshing. The functionality of BERSAFE, is nowadays very advanced, both in engineering scope and finite element technology. It has seen many firsts, including the front solution and Virtual Crack Extension methods (VCE). More recent additions which have developed out of the Power Industry's requirements are a finite element computational fluid dynamics code, FEAT, and engineering design assessment procedures. These procedures include R6 and R5 for the assessment of the integrity of structures containing defects below and within the creep regime. To use all this software in a user-friendly manner, a new computational environment has been developed, called 'The Harness' which takes advantage of modern hardware and software philosophies. This provides the tool-kit to undertake complete problems, covering determination of fluid loads, structural analysis and failure assessment. In the following sections we describe briefly various components of the BERSAFE suite. (author)

  9. Adaptive FE methods for elasto-plastic deformations - algorithms and visualisation; Adaptive Finite-Element-Methoden fuer elastoplastische Deformationen - Algorithmen und Visualisierung

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M.

    2001-07-01

    Finding robust, reliable and therefore secure solutions for the given tasks has always been the engineer's goal. In the beginning, engineering concentrated on the pure functionality of the technical construction. Soon it became clear that also economic aspects had to be considered. Constructions have to be efficient regarding the costs for the material, building and maintenance. Therefore it must be able to test construction elements before expensive prototypes are built. Especially in the area of mechanics, predictions of the behavior of an assembly became possible in the design phase. While only elastic material behavior could be simulated at first, the rapid development of both available computer power and new theories in mechanics allowed for better and more exact computations. In particular, the use of adaptive procedures made for a leap in quality, although error measures defined for elasticity were used for elasto-plastic materials as well. So the solutions found were insecure in spite of the error control. This thesis gives an overview of FE-computations for mechanical systems showing elastoplastic behavior with error-controlled adaptivity in space and pseudo-time. Spanning from the mathematical foundations of elasto-plasticity over the selection of a suitable error measure to adapt the chosen discretizations of the space and time domains to the visualization of the results on parallel computers. A special emphasis is put on error estimators and error indicators for elasto-plasticity. (orig.) [German] Im Bereich der technischen Mechanik konnten bereits im Entwurfsstadium Aussagen ueber die Belastbarkeit getroffen werden. Beschraenkte man sich zunaechst auf die Simulation elastischer Materialien, so ermoeglichte die rasante Entwicklung sowohl der zur Verfuegung stehenden Rechenleistung als auch der mechanischen Theorien schnell wesentlich genauere Betrachtungsweisen. Insbesondere die aufkommenden fehlerkontrollierten, adaptiven Techniken trugen zu einem

  10. Elements with Square Roots in Finite Groups

    Institute of Scientific and Technical Information of China (English)

    M.S. Lucido; M.R. Pournaki

    2005-01-01

    In this paper, we study the probability that a randomly chosen element in a finite group has a square root, in particular the simple groups of Lie type of rank 1, the sporadic finite simple groups and the alternating groups.

  11. Conforming finite elements with embedded strong discontinuities

    NARCIS (Netherlands)

    Dias-da-Costa, D.; Alfaiate, J.; Sluys, L.J.; Areias, P.; Fernandes, C.; Julio, E.

    2012-01-01

    The possibility of embedding strong discontinuities into finite elements allowed the simulation of different problems, namely, brickwork masonry fracture, dynamic fracture, failure in finite strain problems and simulation of reinforcement concrete members. However, despite the significant contributi

  12. Domain decomposition methods for mortar finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  13. A first course in finite elements

    CERN Document Server

    Fish, Jacob

    2007-01-01

    Developed from the authors, combined total of 50 years undergraduate and graduate teaching experience, this book presents the finite element method formulated as a general-purpose numerical procedure for solving engineering problems governed by partial differential equations.  Focusing on the formulation and application of the finite element method through the integration of finite element theory, code development, and software application, the book is both introductory and self-contained, as well as being a hands-on experience for any student. This authoritative text on Finite Elements:Adopts

  14. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  15. Finite elements and finite differences for transonic flow calculations

    Science.gov (United States)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  16. Continuous finite element methods for Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.

  17. Finite-Element Composite-Analysis Program

    Science.gov (United States)

    Bowles, David E.

    1990-01-01

    Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.

  18. Finite-Element Software for Conceptual Design

    DEFF Research Database (Denmark)

    Lindemann, J.; Sandberg, G.; Damkilde, Lars

    2010-01-01

    and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...

  19. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  20. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  1. THE SPACE-TIME FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    李宏; 刘儒勋

    2001-01-01

    Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L∞ (L2) norm, that is maximum-norm in time, L2norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.

  2. Electrical machine analysis using finite elements

    CERN Document Server

    Bianchi, Nicola

    2005-01-01

    OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I

  3. Will Finite Elements Replace Structural Mechanics?

    Science.gov (United States)

    Ojalvo, I. U.

    1984-01-01

    This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.

  4. Superconvergence of tricubic block finite elements

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminorm of the discrete derivative Green’s function and the weak estimates, we show that the tricubic block finite element solution uh and the tricubic interpolant of projection type Πh3u have superclose gradient in the pointwise sense of the L∞-norm. Finally, this supercloseness is applied to superconvergence analysis, and the global superconvergence of the finite element approximation is derived.

  5. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  6. Discrete mechanics Based on Finite Element Methods

    OpenAIRE

    Chen, Jing-Bo; Guo, Han-Ying; Wu, Ke

    2002-01-01

    Discrete Mechanics based on finite element methods is presented in this paper. We also explore the relationship between this discrete mechanics and Veselov discrete mechanics. High order discretizations are constructed in terms of high order interpolations.

  7. Finite element modeling of the human pelvis

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, B.

    1995-11-01

    A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.

  8. A NOTE ON FINITE ELEMENT WAVELETS

    Institute of Scientific and Technical Information of China (English)

    谌秋辉; 陈翰麟

    2001-01-01

    The refinability and approximation order of finite element multi-scale vector are discussed in [1]. But the coefficients in the conditions of approximation order of finite element multi-scale vector are incorrect there. The main purpose of this note is to make a correction of the error in the main result of [1]. These coefficients are very important for the properties of wavelets, such as vanishing moments and regularity.

  9. The finite element method in electromagnetics

    CERN Document Server

    Jin, Jianming

    2014-01-01

    A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The

  10. Surgery simulation using fast finite elements

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...

  11. Finite Element Analysis of Deep Excavations

    OpenAIRE

    Bentler, David J.

    1998-01-01

    This dissertation describes enhancements made to the finite element program, SAGE, and research on the performance of deep excavations This dissertation describes enhancements made to the finite element program, SAGE, and research on the performance of deep excavations. SAGE was developed at Virginia Tech for analysis of soil-structure interaction problems (Morrison, 1995). The purpose of the work described in this text with SAGE was to increase the capabilities o...

  12. Quadrature representation of finite element variational forms

    DEFF Research Database (Denmark)

    Ølgaard, Kristian Breum; Wells, Garth N.

    2012-01-01

    This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations. An alter......This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...

  13. The strong formulation finite element method: stability and accuracy

    Directory of Open Access Journals (Sweden)

    Francesco Tornabene

    2014-07-01

    Full Text Available The Strong Formulation Finite Element Method (SFEM is a numerical solution technique for solving arbitrarily shaped structural systems. This method uses a hybrid scheme given by the Differential Quadrature Method (DQM and the Finite Element Method (FEM. The SFEM takes the best from DQM and FEM giving a highly accurate strong formulation based technique with the adaptability of finite elements. The present study investigates the stability and accuracy of SFEM when applied to 1D and 2D structural components, such as rods, beams, membranes and plates using analytical and semi-analytical well-known solutions. The numerical results show that the present approach can be very accurate using a small number of grid points and elements, when it is compared to standard FEM.

  14. Finite Element Computational Dynamics of Rotating Systems

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element analysis of rotor dynamics problems that were published in 1994–1998. It contains 319 citations. Also included, as separate subsections, are finite element analyses of rotor elements – discs, shafts, spindles, and blades. Topics dealing with fracture mechanics, contact and stability problems of rotating machinery are also considered in specific sections. The last part of the bibliography presents papers dealing with specific industrial applications.

  15. Finite-element models of continental extension

    Science.gov (United States)

    Lynch, H. David; Morgan, Paul

    1990-01-01

    Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.

  16. Experimental Finite Element Approach for Stress Analysis

    Directory of Open Access Journals (Sweden)

    Ahmet Erklig

    2014-01-01

    Full Text Available This study aims to determining the strain gauge location points in the problems of stress concentration, and it includes both experimental and numerical results. Strain gauges were proposed to be positioned to corresponding locations on beam and blocks to related node of elements of finite element models. Linear and nonlinear cases were studied. Cantilever beam problem was selected as the linear case to approve the approach and conforming contact problem was selected as the nonlinear case. An identical mesh structure was prepared for the finite element and the experimental models. The finite element analysis was carried out with ANSYS. It was shown that the results of the experimental and the numerical studies were in good agreement.

  17. Finite element analysis of tibial fractures

    DEFF Research Database (Denmark)

    Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner;

    2010-01-01

    of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human......INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...

  18. Coupled finite-difference/finite-element approach for wing-body aeroelasticity

    Science.gov (United States)

    Guruswamy, Guru P.

    1992-01-01

    Computational methods using finite-difference approaches for fluids and finite-element approaches for structures have individually advanced to solve almost full-aircraft configurations. However, coupled approaches to solve fluid/structural interaction problems are still in their early stages of development, particularly for complex geometries using complete equations such as the Euler/Navier-Stokes equations. Earlier work demonstrated the success of coupling finite-difference and finite-element methods for simple wing configurations using the Euler/Navier-Stokes equations. In this paper, the same approach is extended for general wing-body configurations. The structural properties are represented by beam-type finite elements. The flow is modeled using the Euler/Navier-Stokes equations. A general procedure to fully couple structural finite-element boundary conditions with fluid finite-difference boundary conditions is developed for wing-body configurations. Computations are made using moving grids that adapt to wing-body structural deformations. Results are illustrated for a typical wing-body configuration.

  19. Finite element methods for sea ice modeling

    OpenAIRE

    Lietaer, Olivier

    2011-01-01

    In order to study and understand the behavior of sea ice, numerical sea ice models have been developed since the early seventies and have traditionally been based on structured grids and finite difference schemes. This doctoral research is part of the Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM) project whose objective is to bring to oceanography modern numerical techniques. The motivation for this thesis is therefore to investigate the potential of finite element methods and uns...

  20. Finite element radiation transport in one dimension

    International Nuclear Information System (INIS)

    A new physics package solves radiation transport equations in one space dimension, multiple energy groups and directions. A discontinuous finite element method discretizes radiation intensity with respect to space and angle, and a continuous finite element method discretizes electron temperature 'in space. A splitting method solves the resulting linear equations. This is a one-dimensional analog of Kershaw and Harte's two-dimensional package. This package has been installed in a two-dimensional inertial confinement fusion code, and has given excellent results for both thermal waves and highly directional radiation. In contrast, the traditional discrete ordinate and spherical harmonic methods show less accurate results in both cases

  1. Finite elements for analysis and design

    CERN Document Server

    Akin, J E; Davenport, J H

    1994-01-01

    The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee

  2. Orthodontic treatment: Introducing finite element analysis

    NARCIS (Netherlands)

    Driel, W.D. van; Leeuwen, E.J. van

    1998-01-01

    The aim of orthodontic treatment is the displacement of teeth by means ofspecial appliances, like braces and brackets. Through these appliances the orthodontist can apply a set of forces to the teeth which wilt result in its displacement through the jawbone. Finite Element analysis of this process e

  3. Fast finite elements for surgery simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1997-01-01

    This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix......, and selective matrix vector multiplication has been used to minimize the computational cost...

  4. Moving Finite Elements and Dynamic Vehicle Interaction

    OpenAIRE

    Lane, Hakan; Kettil, Per; Wiberg, Nils-Erik

    2009-01-01

    Moving Finite Elements and Dynamic Vehicle Interaction (Lane, Hakan) Department of Applied Mechanics Chalmers University of Technology Gothenburg--> - SWEDEN (Lane, Hakan) Department of Applied Mechanics Chalmers University of Technology Gothenburg--> - SWEDEN (Kettil, Per) Department of Applied Mechanics Chalmers University of Technology Gothenburg--> - SWEDEN (Wiberg, Nils-Erik) SWEDEN Received: 2006-07-24 Acce...

  5. Finite element analysis of photonic crystal fibers

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, H.J.W.M.; Groesen, van E.

    2005-01-01

    A finite-element-based vectorial optical mode solver, furnished with Bayliss-Gunzburger-Turkel-like transparent boundary conditions, is used to rigorously analyze photonic crystal fibers (PCFs). Both the real and imaginary part of the modal indices can be computed in a relatively small computational

  6. Finite Dynamic Elements and Modal Analysis

    Directory of Open Access Journals (Sweden)

    N.J. Fergusson

    1993-01-01

    Full Text Available A general modal analysis scheme is derived for forced response that makes use of high accuracy modes computed by the dynamic element method. The new procedure differs from the usual modal analysis in that the modes are obtained from a power series expansion for the dynamic stiffness matrix that includes an extra dynamic correction term in addition to the static stiffness matrix and the consistent mass matrix based on static displacement. A cantilevered beam example is used to demonstrate the relative accuracies of the dynamic element and the traditional finite element methods.

  7. On Hybrid and mixed finite element methods

    Science.gov (United States)

    Pian, T. H. H.

    1981-01-01

    Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.

  8. Finite element analysis of tibial fractures

    DEFF Research Database (Denmark)

    Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner;

    2010-01-01

    Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human...

  9. SURFACE FINITE ELEMENTS FOR PARABOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    G. Dziuk; C.M. Elliott

    2007-01-01

    In this article we define a surface finite element method (SFEM) for the numerical solution of parabolic partial differential equations on hypersurfaces Γ in (R)n+1. The key idea is based on the approximation of Γ by a polyhedral surface Γh consisting of a union of simplices (triangles for n = 2, intervals for n = 1) with vertices on Γ. A finite element space of functions is then defined by taking the continuous functions on Γh which are linear affine on each simplex of the polygonal surface. We use surface gradients to define weak forms of elliptic operators and naturally generate weak formulations of elliptic and parabolic equations on Γ. Our finite element method is applied to weak forms of the equations. The computation of the mass and element stiffness matrices are simple and straightforward.We give an example of error bounds in the case of semi-discretization in space for a fourth order linear problem. Numerical experiments are described for several linear and nonlinear partial differential equations. In particular the power of the method is demonstrated by employing it to solve highly nonlinear second and fourth order problems such as surface Allen-Cahn and Cahn-Hilliard equations and surface level set equations for geodesic mean curvature flow.

  10. Waste Isolation Safety Assessment Program. A brief description of the three-dimensional finite element ground-water flow model adapted for waste isolation safety assessments

    International Nuclear Information System (INIS)

    Four levels of hydrologic models have been categorized to handle varying complexities and degrees of available input parameters. The first level is for the simplest one-dimensional models having analytical solutions; the second level includes idealized analytic or hybrid analytic models for single aquifer systems with scanty input data; the third level deals with more complex single or quasi-multilayered systems; and the fourth level is for complex multilayered systems. The three-dimensional finite element ground-water model described in this report falls under the fourth level of hydrologic models. This model is capable of simulating single-layered systems having variable thickness or multilayered systems where not only thickness can be varied, but the number of layers can be changed to agree with the vertical geologic section. Supporting programs have been developed to plot grid values, contour maps and three-dimensional graphics of the input data used in simulation as well as the results obtained. At present, the model considers only confined aquifers. The capabilities of the model were demonstrated by using a test case consisting of the multilayered ground-water system beneath Long Island, New York

  11. On the Finite Volume Reformulation of the Mixed Finite Elements Method on Triangles

    OpenAIRE

    Chavent, Guy; Younès, Anis; Mosé, Robert; Ackerer, Philippe

    1999-01-01

    We analyse the finite volume reformulation of the triangular mixed finite element approximation for the porous flow equation, as proposed in [10] [9]. We show that the finite volumes are obtained by aggregation of finite elements (usually one, sometimes two or more), that the matrix of the finite volume equations is regular, but generally not symmetrical, and that the finite volume formulation is algebraically equivalent to the mixed approximation. The finite volume matrix becomes symmetrical...

  12. Finite element simulations with ANSYS workbench 16

    CERN Document Server

    Lee , Huei-Huang

    2015-01-01

    Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...

  13. Finite element analysis of human joints

    International Nuclear Information System (INIS)

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described

  14. Finite Element Simulation of Metal Quenching

    Institute of Scientific and Technical Information of China (English)

    方刚; 曾攀

    2004-01-01

    The evolution of the phase transformation and the resulting internal stresses and strains in metallic parts during quenching were modeled numerically. The numerical simulation of the metal quenching process was based on the metallo-thermo-mechanical theory using the finite element method to couple the temperature, phase transformation, and stress-strain fields. The numerical models are presented for the heat treatment and kinetics of the phase transformation. The finite element models and the phase transition kinetics accurately predict the distribution of the microstructure volume fractions, the temperature, the distortion, and the stress-strain relation during quenching. The two examples used to validate the models are the quenching of a small gear and of a large turbine rotor. The simulation results for the martensite phase volume fraction, the stresses, and the distortion in the gear agree well with the experimental data. The models can be used to optimize the quenching conditions to ensure product quality.

  15. Introduction to nonlinear finite element analysis

    CERN Document Server

    Kim, Nam-Ho

    2015-01-01

    This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: ·         Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems ·         Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory ·    ...

  16. Finite Element Analysis of Honeycomb Impact Attenuator

    Science.gov (United States)

    Yang, Seung-Yong; Choi, Seung-Kyu; Kim, Nohyu

    To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.

  17. The finite element modeling of spiral ropes

    Institute of Scientific and Technical Information of China (English)

    Juan Wu

    2014-01-01

    Accurate understanding the behavior of spiral rope is complicated due to their complex geometry and complex contact conditions between the wires. This study proposed the finite element models of spiral ropes subjected to tensile loads. The parametric equations developed in this paper were implemented for geometric modeling of ropes. The 3D geometric models with different twisting manner, equal diameters of wires were generated in details by using Pro/ENGINEER software. The results of the present finite element analysis were on an acceptable level of accuracy as compared with those of theoretical and experimental data. Further development is ongoing to analysis the equivalent stresses induced by twisting manner of cables. The twisting manner of wires was important to spiral ropes in the three wire layers and the outer twisting manner of wires should be contrary to that of the second layer, no matter what is the first twisting manner of wires.

  18. Finite element analysis of human joints

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.

  19. Finite element modelling of solidification phenomena

    Indian Academy of Sciences (India)

    K N Seetharamu; R Paragasam; Ghulam A Quadir; Z A Zainal; B Sathya Prasad; T Sundararajan

    2001-02-01

    The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation is accounted in the heat transfer simulation. Distortion of the casting is caused due to non-uniform shrinkage associated with the process. Residual stresses are induced in the final castings. Simulation of the shrinkage and the thermal stresses are also carried out using finite element methods. The material behaviour is considered as visco-plastic. The simulations are compared with available experimental data and the comparison is found to be good. Special considerations regarding the simulation of solidification process are also brought out.

  20. Multiphase Transformer Modelling using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Nor Azizah Mohd Yusoff

    2015-03-01

    Full Text Available In the year of 1970 saw the starting invention of the five-phase motor as the milestone in advanced electric motor. Through the years, there are many researchers, which passionately worked towards developing for multiphase drive system. They developed a static transformation system to obtain a multiphase supply from the available three-phase supply. This idea gives an influence for further development in electric machines as an example; an efficient solution for bulk power transfer. This paper highlighted the detail descriptions that lead to five-phase supply with fixed voltage and frequency by using Finite-Element Method (FEM. Identifying of specification on a real transformer had been done before applied into software modeling. Therefore, Finite-Element Method provides clearly understandable in terms of visualize the geometry modeling, connection scheme and output waveform.

  1. Finite Element Simulation for Interfacial Evolutions

    Institute of Scientific and Technical Information of China (English)

    JianmingHUANG; WeiYANG

    1998-01-01

    A three-dimensional finite element scheme based upon a weak statement of the classical theory is explored to simulate migration of interfaces in materials under linear evaporation and condensation kinetics,The present scheme is exemplified by two cases:facet formation of single crystals;and the evolution of a tri-crystal film on a substrate where the effect of multiple kinetics is demonstrated.

  2. Finite element simulation of heat transfer

    CERN Document Server

    Bergheau, Jean-Michel

    2010-01-01

    This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re

  3. Finite element model of needle electrode sensitivity

    Science.gov (United States)

    Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.

    2010-04-01

    We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.

  4. Finite element analysis of centrifugal impellers

    OpenAIRE

    Sham Sunder, K.

    1981-01-01

    A three-dimensional method of stress analysis using finite element techniques is presented for determining the stress distribution in centrifugal impellers. It can treat all of the three types of loading possible in an inpeller, viz centrifugal, thermal and fluid. The method has no known limitations with regards to the geometric factors such as asymnetry of disk, blade curvature, presence of a cover disk or shroud, single or double sided impeller etc. A comparison of r...

  5. Quick finite elements for electromagnetic waves

    CERN Document Server

    Pelosi, Giuseppe; Selleri, Stefano

    2009-01-01

    This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM) Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation.

  6. Finite element methods for incompressible flow problems

    CERN Document Server

    John, Volker

    2016-01-01

    This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.

  7. FINELM: a multigroup finite element diffusion code

    International Nuclear Information System (INIS)

    FINELM is a FORTRAN IV program to solve the Neutron Diffusion Equation in X-Y, R-Z, R-theta, X-Y-Z and R-theta-Z geometries using the method of Finite Elements. Lagrangian elements of linear or higher degree to approximate the spacial flux distribution have been provided. The method of dissections, coarse mesh rebalancing and Chebyshev acceleration techniques are available. Simple user defined input is achieved through extensive input subroutines. The input preparation is described followed by a program structure description. Sample test cases are provided. (Auth.)

  8. Finite Element Method in Machining Processes

    CERN Document Server

    Markopoulos, Angelos P

    2013-01-01

    Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...

  9. HANGING NODES IN THE UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL

    Institute of Scientific and Technical Information of China (English)

    C.Carstensen; Jun Hu

    2009-01-01

    A unified a posteriori error analysis has been developed in [18,21-23] to analyze the finite element error a posteriori under a universal roof.This paper contributes to the finite element meshes with hanging nodes which are required for local mesh-refining.The twodimensional 1-irregular triangulations into triangles and parallelograms and their combinations are considered with conforming and nonconforming finite element methods named after or by Courant,Q1,Crouzeix-Raviart,Han,Rannacher-Turek,and others for the a posteriori error analysis for triangulations with hanging nodes of degree≤1 which are fundamental for local mesh refinement in self-adaptive finite element discretisations.

  10. Finite Element Analysis of the Crack Propagation for Solid Materials

    Directory of Open Access Journals (Sweden)

    Miloud Souiyah

    2009-01-01

    Full Text Available Problem statement: The use of fracture mechanics techniques in the assessment of performance and reliability of structure is on increase and the prediction of crack propagation in structure play important part. The finite element method is widely used for the evaluation of SIF for various types of crack configurations. Source code program of two-dimensional finite element model had been developed, to demonstrate the capability and its limitations, in predicting the crack propagation trajectory and the SIF values under linear elastic fracture analysis. Approach: Two different geometries were used on this finite element model in order, to analyze the reliability of this program on the crack propagation in linear and nonlinear elastic fracture mechanics. These geometries were namely; a rectangular plate with crack emanating from square-hole and Double Edge Notched Plate (DENT. Where, both geometries are in tensile loading and under mode I conditions. In addition, the source code program of this model was written by FORTRAN language. Therefore, a Displacement Extrapolation Technique (DET was employed particularly, to predict the crack propagations directions and to, calculate the Stress Intensity Factors (SIFs. Furthermore, the mesh for the finite elements was the unstructured type; generated using the advancing front method. And, the global h-type adaptive mesh was adopted based on the norm stress error estimator. While, the quarter-point singular elements were uniformly generated around the crack tip in the form of a rosette. Moreover, make a comparison between this current study with other relevant and published research study. Results: The application of the source code program of 2-D finite element model showed a significant result on linear elastic fracture mechanics. Based on the findings of the two different geometries from the current study, the result showed a good agreement. And, it seems like very close compare to the other published

  11. Finite Element Based Design and Optimization for Piezoelectric Accelerometers

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.; Yao, Q.

    1998-01-01

    A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...

  12. Application of finite-element-methods in food processing

    DEFF Research Database (Denmark)

    Risum, Jørgen

    2004-01-01

    Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....

  13. A finite element parametric modeling technique of aircraft wing structures

    Institute of Scientific and Technical Information of China (English)

    Tang Jiapeng; Xi Ping; Zhang Baoyuan; Hu Bifu

    2013-01-01

    A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned during the preliminary design phase of aircraft structures. A knowledge-driven system of fast finite element modeling is built. Based on this method, employing a template parametric technique, knowledge including design methods, rules, and expert experience in the process of modeling is encapsulated and a finite element model is established automatically, which greatly improves the speed, accuracy, and standardization degree of modeling. Skeleton model, geometric mesh model, and finite element model including finite element mesh and property data are established on parametric description and automatic update. The outcomes of research show that the method settles a series of problems of parameter association and model update in the pro-cess of finite element modeling which establishes a key technical basis for finite element parametric analysis and optimization design.

  14. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    International Nuclear Information System (INIS)

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel

  15. Finite element solutions of free surface flows

    Science.gov (United States)

    Zarda, P. R.; Marcus, M. S.

    1977-01-01

    A procedure is presented for using NASTRAN to determine the flow field about arbitrarily shaped bodies in the presence of a free surface. The fundamental unknown of the problem is the velocity potential which must satisfy Laplace's equation in the fluid region. Boundary conditions on the free surface may involve second order derivatives in space and time. In cases involving infinite domains either a tractable radiation condition is applied at a truncated boundary or a series expansion is used and matched to the local finite elements. Solutions are presented for harmonic, transient, and steady state problems and compared to either exact solutions or other numerical solutions.

  16. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  17. Finite element modeling methods for photonics

    CERN Document Server

    Rahman, B M Azizur

    2013-01-01

    The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astron

  18. TITUS: a general finite element system

    International Nuclear Information System (INIS)

    TITUS is a general finite element structural analysis system which performs linear/non-linear, static/dynamic analyses of heat-transfer/thermo-mechanical problems. One of the major features of TITUS is that it was designed by engineers, to address engineers in an industrial environment. This has resulted in an easy to use system, with a high-level free-formatted problem oriented language, a large selection of pre- and post processors and sophisticated graphic capabilities. TITUS has many references in civil, mechanical and nuclear engineering applications. The TITUS system is available on various types of machines, from large mainframes to mini computers

  19. A finite element model of ultrasonic extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, M [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom); Daud, Y, E-mail: m.lucas@mech.gla.ac.u [College of Science and Technology, UTM City Campus, Kuala Lumpur (Malaysia)

    2009-08-01

    Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.

  20. Generalized multiscale finite element methods: Oversampling strategies

    KAUST Repository

    Efendiev, Yalchin R.

    2014-01-01

    In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local

  1. Application of a finite element algorithm for high speed viscous flows using structured and unstructured meshes

    Science.gov (United States)

    Vemaganti, Gururaja R.; Wieting, Allan R.

    1990-01-01

    A higher-order streamline upwinding Petrov-Galerkin finite element method is employed for high speed viscous flow analysis using structured and unstructured meshes. For a Mach 8.03 shock interference problem, successive mesh adaptation was performed using an adaptive remeshing method. Results from the finite element algorithm compare well with both experimental data and results from an upwind cell-centered method. Finite element results for a Mach 14.1 flow over a 24 degree compression corner compare well with experimental data and two other numerical algorithms for both structured and unstructured meshes.

  2. Finite element analysis of multilayer coextrusion.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann

    2011-09-01

    Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

  3. Finite element analysis of bolted flange connections

    Science.gov (United States)

    Hwang, D. Y.; Stallings, J. M.

    1994-06-01

    A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.

  4. A finite element model for ultrasonic cutting.

    Science.gov (United States)

    Lucas, Margaret; MacBeath, Alan; McCulloch, Euan; Cardoni, Andrea

    2006-12-22

    Using a single-blade ultrasonic cutting device, a study of ultrasonic cutting of three very different materials is conducted using specimens of cheese, polyurethane foam and epoxy resin. Initial finite element models are created, based on the assumption that the ultrasonic blade causes a crack to propagate in a controlled mode 1 opening, and these are validated against experimental data from three point bend fracture tests and ultrasonic cutting experiments on the materials. Subsequently, the finite element model is developed to represent ultrasonic cutting of a multi-layered material. Materials are chosen whose properties allow a model to be developed that could represent a multi-layer food product or biological structure, to enable ultrasonic cutting systems to be designed for applications both in the field of food processing and surgical procedures. The model incorporates an estimation of the friction condition between the cutting blade and the material to be cut and allows adjustment of the frequency, cutting amplitude and cutting speed. PMID:16814351

  5. Impeller deflection and modal finite element analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  6. A multigrid solution method for mixed hybrid finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W. [Universitaet Augsburg (Germany)

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  7. Domain decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation

    Science.gov (United States)

    Beilina, Larisa

    2016-08-01

    We present domain decomposition finite element/finite difference method for the solution of hyperbolic equation. The domain decomposition is performed such that finite elements and finite differences are used in different subdomains of the computational domain: finite difference method is used on the structured part of the computational domain and finite elements on the unstructured part of the domain. Explicit discretizations for both methods are constructed such that the finite element and the finite difference schemes coincide on the common structured overlapping layer between computational subdomains. Then the resulting approach can be considered as a pure finite element scheme which avoids instabilities at the interfaces. We derive an energy estimate for the underlying hyperbolic equation with absorbing boundary conditions and illustrate efficiency of the domain decomposition method on the reconstruction of the conductivity function in three dimensions.

  8. Finite element analysis enhancement of cryogenic testing

    Science.gov (United States)

    Thiem, Clare D.; Norton, Douglas A.

    1991-12-01

    Finite element analysis (FEA) of large space optics enhances cryogenic testing by providing an analytical method by which to ensure that a test article survives proposed testing. The analyses presented in this paper were concerned with determining the reliability of a half meter mirror in an environment where the exact environmental profile was unknown. FEA allows the interaction between the test object and the environment to be simulated to detect potential problems prior to actual testing. These analyses examined worse case scenerios related to cooling the mirror, its structural integrity for the proposed test environment, and deformation of the reflective surface. The FEA was conducted in-house on the System's Reliability Division's VAX 11-750 and Decstation 3100 using Engineering Mechanics Research Corporation's numerically integrated elements for systems analysis finite element software. The results of the analyses showed that it would take at least 48 hours to cool the mirror to its desired testing temperature. It was also determined that the proposed mirror mount would not cause critical concentrated thermal stresses that would fracture the mirror. FEA and actual measurements of the front reflective face were compared and good agreement between computer simulation and physical tests were seen. Space deployment of large optics requires lightweight mirrors which can perform under the harsh conditions of space. The physical characteristics of these mirrors must be well understood in order that their deployment and operation are successful. Evaluating design approaches by analytical simulation, like FEA, verifies the reliability and structural integrity of a space optic during design prior to prototyping and testing. Eliminating an optic's poor design early in its life saves money, materials, and human resources while ensuring performance.

  9. Primitive elements in finite fields with arbitrary trace

    OpenAIRE

    Çoban, Mustafa; Coban, Mustafa

    2003-01-01

    Arithmetic of finite fields is not only important for other branches of mathematics but also widely used in applications such as coding and cryptography. A primitive element of a finite field is of particular interest since it enables one to represent all other elements of the field. Therefore an extensive research has been done on primitive elements, especially those satisfying extra conditions. We are interested in the existence of primitive elements in extensions of finite fields with pres...

  10. Finite-Element Modelling of Biotransistors

    Directory of Open Access Journals (Sweden)

    Selvaganapathy PR

    2010-01-01

    Full Text Available Abstract Current research efforts in biosensor design attempt to integrate biochemical assays with semiconductor substrates and microfluidic assemblies to realize fully integrated lab-on-chip devices. The DNA biotransistor (BioFET is an example of such a device. The process of chemical modification of the FET and attachment of linker and probe molecules is a statistical process that can result in variations in the sensed signal between different BioFET cells in an array. In order to quantify these and other variations and assess their importance in the design, complete physical simulation of the device is necessary. Here, we perform a mean-field finite-element modelling of a short channel, two-dimensional BioFET device. We compare the results of this model with one-dimensional calculation results to show important differences, illustrating the importance of the molecular structure, placement and conformation of DNA in determining the output signal.

  11. Finite element program Lamcal. (User's manual)

    International Nuclear Information System (INIS)

    The present user's manual gives the input formats, job control and an input example for the finite element part of the Lamcal program. The input data have been organized in a more or less self explaining way, using keywords and standard input formats and is printed at the beginning of every run. To simplify the use of the whole program and to avoid unecessary data handling, all three parts of the Lamcal program, meshgeneration, plotting and, FE, are combined into one load module. This setup allows to do all calculations in one single run. However, preprocessing, postprocessing and restarts can be made in separate runs as well. The same reserved space for the dynamic core storage is used in all three parts, if the available space is not sufficient the FE program will stop

  12. Computational structural analysis and finite element methods

    CERN Document Server

    Kaveh, A

    2014-01-01

    Graph theory gained initial prominence in science and engineering through its strong links with matrix algebra and computer science. Moreover, the structure of the mathematics is well suited to that of engineering problems in analysis and design. The methods of analysis in this book employ matrix algebra, graph theory and meta-heuristic algorithms, which are ideally suited for modern computational mechanics. Efficient methods are presented that lead to highly sparse and banded structural matrices. The main features of the book include: application of graph theory for efficient analysis; extension of the force method to finite element analysis; application of meta-heuristic algorithms to ordering and decomposition (sparse matrix technology); efficient use of symmetry and regularity in the force method; and simultaneous analysis and design of structures.

  13. Finite Element Analysis of a Contactless Transformer

    Directory of Open Access Journals (Sweden)

    Jianyu Lan

    2013-10-01

    Full Text Available Inductively coupling power transfer is an emerging technique, which enables power transfer to loads through air. The contactless transformer is the key component of it, and the design of a transformer is a time-consuming work with a large number of tests. In this paper, a design method of contactless transformer with finite element analysis is presented. First the contactless transformer model is deduced from Maxwell Equations, and the self inductance and mutual inductance computational equations are given as well. Then the magnetic field distributions of contactless transformer with different air gaps are presented by simulation of MAXWELL ANSOFT. Furthermore, the skin and proximity effects are analyzed as well. At last, the results are compared with the experimental results with the same dimension and material. The analyses show that there has a good agreement with each other. So by this method, the design period of a contactless transformer will be shorter than before

  14. Finite element analyses of CCAT preliminary design

    Science.gov (United States)

    Sarawit, Andrew T.; Kan, Frank W.

    2014-07-01

    This paper describes the development of the CCAT telescope finite element model (FEM) and the analyses performed to support the preliminary design work. CCAT will be a 25 m diameter telescope operating in the 0.2 to 2 mm wavelength range. It will be located at an elevation of 5600 m on Cerro Chajnantor in Northern Chile, near ALMA. The telescope will be equipped with wide-field cameras and spectrometers mounted at the two Nasmyth foci. The telescope will be inside an enclosure to protect it from wind buffeting, direct solar heating, and bad weather. The main structures of the telescope include a steel Mount and a carbon-fiber-reinforced-plastic (CFRP) primary truss. The finite element model developed in this study was used to perform modal, frequency response, seismic response spectrum, stress, and deflection analyses of telescope. Modal analyses of telescope were performed to compute the structure natural frequencies and mode shapes and to obtain reduced order modal output at selected locations in the telescope structure to support the design of the Mount control system. Modal frequency response analyses were also performed to compute transfer functions at these selected locations. Seismic response spectrum analyses of the telescope subject to the Maximum Likely Earthquake were performed to compute peak accelerations and seismic demand stresses. Stress analyses were performed for gravity load to obtain gravity demand stresses. Deflection analyses for gravity load, thermal load, and differential elevation drive torque were performed so that the CCAT Observatory can verify that the structures meet the stringent telescope surface and pointing error requirements.

  15. Finite element analysis in fluids; Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, University of Alabama, Huntsville, Apr. 3-7, 1989

    Science.gov (United States)

    Chung, T. J.; Karr, Gerald R.

    Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.

  16. Finite element simulation of wheel impact test

    Directory of Open Access Journals (Sweden)

    S.H. Yang

    2008-06-01

    Full Text Available Purpose: In order to achieve better performance and quality, the wheel design and manufacturing use a number of wheel tests (rotating bending test, radial fatigue test, and impact test to insure that the wheel meets the safety requirements. The test is very time consuming and expensive. Computer simulation of these tests can significantly reduce the time and cost required to perform a wheel design. In this study, nonlinear dynamic finite element is used to simulate the SAE wheel impact test.Design/methodology/approach: The test fixture used for the impact test consists of a striker with specified weight. The test is intended to simulate actual vehicle impact conditions. The tire-wheel assembly is mounted at 13° angle to the vertical plane with the edge of the weight in line with outer radius of the rim. The striker is dropped from a specified height above the highest point of the tire-wheel assembly and contacts the outboard flange of the wheel.Because of the irregular geometry of the wheel, the finite element model of an aluminium wheel is constructed by tetrahedral element. A mesh convergence study is carried out to ensure the convergence of the mesh model. The striker is assumed to be rigid elements. Initially, the striker contacts the highest area of the wheel, and the initial velocity of the striker is calculated from the impact height. The simulated strains at two locations on the disc are verified by experimental measurements by strain gages. The damage parameter of a wheel during the impact test is a strain energy density from the calculated result.Findings: The prediction of a wheel failure at impact is based on the condition that fracture will occur if the maximum strain energy density of the wheel during the impact test exceeds the total plastic work of the wheel material from tensile test. The simulated results in this work show that the total plastic work can be effectively employed as a fracture criterion to predict a wheel

  17. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    CHEN ShaoChun; XIAO LiuChao

    2008-01-01

    Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.

  18. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.

  19. Finite Element Program Generator and Its Application in Engineering

    Institute of Scientific and Technical Information of China (English)

    WANShui; HUHong; CHENJian-pin

    2004-01-01

    A completely new finite element software, Finite ElementProgram Generator (FEPG), is introduced and its designing thought and organizing structure is presented.FEPG uses the method of components and the technique of artificial intelligence to generate finite element program automatically by a computer according to the general principles of mathematic and internal rules of finite element method,as is similar to the deduction of mathematics.FEPG breaks through the limitation of present finite element software,which only applies to special discipline,while FEPG is suitable for all kinds of differential equations solved by finite element method.Now FEPG has been applied to superconductor research,electromagnetic field study,petroleum exploration,transportation,structure engineering,water conservancy,ship mechanics, solid-liquid coupling problems and liquid dynamics,etc.in China.

  20. Finite element analysis theory and application with ANSYS

    CERN Document Server

    Moaveni, Saeed

    2015-01-01

    For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...

  1. The finite element method its basis and fundamentals

    CERN Document Server

    Zienkiewicz, Olek C; Zhu, JZ

    2013-01-01

    The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob

  2. Analysis of Finite Elements and Finite Differences for Shallow Water Equations: A Review

    OpenAIRE

    Neta, Beny

    1992-01-01

    Mathematics and Computers in Simulation, 34, (1992), 141–161. In this review article we discuss analyses of finite-element and finite-difference approximations of the shallow water equations. An extensive bibliography is given.

  3. An efficient wavelet finite element method in fault prognosis of incipient crack

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The method of constructing any scale wavelet finite element (WFE) based on the one-dimensional or two-dimensional Daubechies scaling functions was presented, and the corresponding WFE adaptive lifting algorithm was given. In order to obtain the nested increasing approximate subspaces of multiscale finite element, the Daubechies scaling functions with the properties of multi-resolution analysis were employed as the finite element interpolating functions. Thus, the WFE could adaptively mesh the singularity domain caused by local cracks, which resulted in better approximate solutions than the traditional finite element methods. The calculations of natural frequencies of cracked beam were used to check the accuracy of given methods. In addition, the results of cracked cantilever beam and engineering application were satisfied. So, the current methods can provide effective tools in the numerical modeling of the fault prognosis of incipient crack.

  4. Finite Element Method (Chapter from "Gratings: Theory and Numeric Applications")

    CERN Document Server

    Demésy, Guillaume; Nicolet, André; Vial, Benjamin

    2013-01-01

    In this chapter, we demonstrate a general formulation of the Finite Element Method allowing to calculate the diffraction efficiencies from the electromagnetic field diffracted by arbitrarily shaped gratings embedded in a multilayered stack lightened by a plane wave of arbitrary incidence and polarization angle. It relies on a rigorous treatment of the plane wave sources problem through an equivalent radiation problem with localized sources. Bloch conditions and a new Adaptative Perfectly Matched Layer have been implemented in order to truncate the computational domain. We derive this formulation for both mono-dimensional gratings in TE/TM polarization cases (2D or scalar case) and for the most general bidimensional or crossed gratings (3D or vector case). The main advantage of this formulation is its complete generality with respect to the studied geometries and the material properties. Its principle remains independent of both the number of diffractive elements by period and number of stack layers. The flexi...

  5. Ablative Thermal Response Analysis Using the Finite Element Method

    Science.gov (United States)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  6. Introduction to finite and spectral element methods using Matlab

    CERN Document Server

    Pozrikidis, Constantine

    2005-01-01

    Why another book on the finite element method? There are currently more than 200 books in print with ""Finite Element Method"" in their titles. Many are devoted to special topics or emphasize error analysis and numerical accuracy. Others stick to the fundamentals and do little to describe the development and implementation of algorithms for solving real-world problems.Introduction to Finite and Spectral Element Methods Using MATLAB provides a means of quickly understanding both the theoretical foundation and practical implementation of the finite element method and its companion spectral eleme

  7. Introduction to finite element analysis using MATLAB and Abaqus

    CERN Document Server

    Khennane, Amar

    2013-01-01

    There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA

  8. Continuous Finite Element Methods of Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Qiong Tang

    2015-01-01

    Full Text Available Molecular dynamics simulations are necessary to perform very long integration times. In this paper, we discuss continuous finite element methods for molecular dynamics simulation problems. Our numerical results about AB diatomic molecular system and A2B triatomic molecules show that linear finite element and quadratic finite element methods can better preserve the motion characteristics of molecular dynamics, that is, properties of energy conservation and long-term stability. So finite element method is also a reliable method to simulate long-time classical trajectory of molecular systems.

  9. An improved optimal elemental method for updating finite element models

    Institute of Scientific and Technical Information of China (English)

    Duan Zhongdong(段忠东); Spencer B.F.; Yan Guirong(闫桂荣); Ou Jinping(欧进萍)

    2004-01-01

    The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results. This situation occurs when the test modal model is incomplete, as is often the case in practice. An improved optimal elemental method is presented that defines a new objective function, and as a byproduct, circumvents the need for mass normalized modal shapes, which are also not readily available in practice. To solve the group of nonlinear equations created by the improved optimal method, the Lagrange multiplier method and Matlab function fmincon are employed. To deal with actual complex structures,the float-encoding genetic algorithm (FGA) is introduced to enhance the capability of the improved method. Two examples, a 7-degree of freedom (DOF) mass-spring system and a 53-DOF planar frame, respectively, are updated using the improved method.Thc example results demonstrate the advantages of the improved method over existing optimal methods, and show that the genetic algorithm is an effective way to update the models used for actual complex structures.

  10. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  11. FINITE ELEMENT ANALYSIS OF WOOD ADHESIVE JOINTS

    Directory of Open Access Journals (Sweden)

    Thomas GEREKE

    2016-03-01

    Full Text Available Engineered wood products such as glulam or cross-laminated timber are widely established in the construction industry. Their structural behaviour and reliability clearly bases on the adhesive bonding. In order to understand and improve the performance of glued wood members a finite element modelling of standard single lap shear samples was carried out. A three-dimensional model of a longitudinal tensile-shear specimen with quasi-centric load application was developed. The main influences of wood and adhesive parameters on structural performance were identified. Therefore, variations of the elasticity, the annual ring angle, fibre angle, and the interface zone and their effect on the occurring stresses in the adhesive bond line were investigated numerically. The adhesive bond line is most significantly sensitive to the Young´s modulus of the adhesive itself. A variation of the fibre angle of the glued members in the standard test is an essential criterion and to be considered when preparing lap shear specimens. A model with representation of early- and latewood gives a more detailed insight into wooden adhesive joints.

  12. Finite Element Simulation for Springback Prediction Compensation

    Directory of Open Access Journals (Sweden)

    Agus Dwi Anggono

    2011-01-01

    Full Text Available An accurate modelling of the sheet metal deformations including the springback prediction is one of the key factors in the efficient utilisation of  Finite Element Method (FEM process simulation in industrial application. Assuming that springback can be predicted accurately, there still remains the problem of how to use such results to appear at a suitable die design to produce a target part shape. It  is  this  second  step  of  springback compensation that is addressed in the current work. This paper presents an  evaluation of a standard benchmark model defined as Benchmark II of Numisheet 2008, S-channel model with various drawbeads and blank holder force (BHF. The tool geometry modified based on springback calculation for a  part to compensate springback. The result shows that the combination of the smooth bead with BHF of 650 kN resulted in the minimum springback and the tool compensation was successfully to accommodate the springback errors.

  13. An iterative algorithm for finite element analysis

    Science.gov (United States)

    Laouafa, F.; Royis, P.

    2004-03-01

    In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.

  14. TACO: a finite element heat transfer code

    International Nuclear Information System (INIS)

    TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code

  15. Nonlinear finite element analysis of concrete structures

    International Nuclear Information System (INIS)

    This report deals with nonlinear finite element analysis of concrete structures loaded in the short-term up until failure. A profound discussion of constitutive modelling on concrete is performed; a model, applicable for general stress states, is described and its predictions are compared with experimental data. This model is implemented in the AXIPLANE-program applicable for axisymmetrick and plane structures. The theoretical basis for this program is given. Using the AXIPLANE-program various concrete structures are analysed up until failure and compared with experimental evidence. These analyses include panels pressure vessel, beams failing in shear and finally a specific pull-out test, the Lok-Test, is considered. In these analyses, the influence of different failure criteria, aggregate interlock, dowel action, secondary cracking, magnitude of compressive strenght, magnitude of tensile strenght and of different post-failure behaviours of the concrete are evaluated. Moreover, it is shown that a suitable analysis of the theoretical data results in a clear insight into the physical behaviour of the considered structures. Finally, it is demonstrated that the AXISPLANE-program for widely different structures exhibiting very delicate structural aspects gives predictions that are in close agreement with experimental evidence. (author)

  16. Application of the Finite-Element Z-Matrix Method to e-H2 Collisions

    Science.gov (United States)

    Huo, Winifred M.; Brown, David; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    The present study adapts the Z-matrix formulation using a mixed basis of finite elements and Gaussians. This is a energy-independent basis which allows flexible boundary conditions and is amenable to efficient algorithms for evaluating the necessary matrix elements with molecular targets.

  17. MORTAR FINITE VOLUME METHOD WITH ADINI ELEMENT FOR BIHARMONIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Chun-jia Bi; Li-kang Li

    2004-01-01

    In this paper, we construct and analyse a mortar finite volume method for the dis-cretization for the biharmonic problem in R2. This method is based on the mortar-type Adini nonconforming finite element spaces. The optimal order H2-seminorm error estimate between the exact solution and the mortar Adini finite volume solution of the biharmonic equation is established.

  18. Finite Element Analysis (FEA) in Design and Production.

    Science.gov (United States)

    Waggoner, Todd C.; And Others

    1995-01-01

    Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)

  19. Finite Element Analysis of Deformed Legs of Offshore Platform Structures

    Institute of Scientific and Technical Information of China (English)

    柳春图; 秦太验; 段梦兰

    2002-01-01

    The element stiffness matrix of the equivalent beam or pipe element of the deformed leg of the platform is derived bythe finite element method. The stresses and displacements of some damaged components are calculated, and the numeri-cal solutions agree well with those obtained by the fine mesh finite element method. Finally, as an application of thismethod, the stresses of some platform structures are calculated and analyzed.

  20. Modern industrial simulation tools: Kernel-level integration of high performance parallel processing, object-oriented numerics, and adaptive finite element analysis. Final report, July 16, 1993--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Deb, M.K.; Kennon, S.R.

    1998-04-01

    A cooperative R&D effort between industry and the US government, this project, under the HPPP (High Performance Parallel Processing) initiative of the Dept. of Energy, started the investigations into parallel object-oriented (OO) numerics. The basic goal was to research and utilize the emerging technologies to create a physics-independent computational kernel for applications using adaptive finite element method. The industrial team included Computational Mechanics Co., Inc. (COMCO) of Austin, TX (as the primary contractor), Scientific Computing Associates, Inc. (SCA) of New Haven, CT, Texaco and CONVEX. Sandia National Laboratory (Albq., NM) was the technology partner from the government side. COMCO had the responsibility of the main kernel design and development, SCA had the lead in parallel solver technology and guidance on OO technologies was Sandia`s main expertise in this venture. CONVEX and Texaco supported the partnership by hardware resource and application knowledge, respectively. As such, a minimum of fifty-percent cost-sharing was provided by the industry partnership during this project. This report describes the R&D activities and provides some details about the prototype kernel and example applications.

  1. Hydrothermal analysis in engineering using control volume finite element method

    CERN Document Server

    Sheikholeslami, Mohsen

    2015-01-01

    Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),

  2. Vibration Analysis of Beams by Spline Finite Element

    Institute of Scientific and Technical Information of China (English)

    YANG Hao; SUN Li

    2011-01-01

    In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the introduction of boundary conditions follow the standard finite element procedure.The results under various boundary conditions are compared with those obtained by the exact method and the finite difference method.It shows that the results are in excellent agreement with the analytical results and much more accurate than the results obtained by the finite difference method,especially for higher order modes.

  3. A simple finite element method for Reissner--Mindlin plate equations using the Crouzeix-Raviart element and the standard linear finite element

    OpenAIRE

    Bishnu P. Lamichhane

    2014-01-01

    We present a simple finite element method for the discretization of Reissner--Mindlin plate equations. The finite element method is based on using the nonconforming Crouzeix-Raviart finite element space for the transverse displacement, and the standard linear finite element space for the rotation of the transverse normal vector. We also present two examples for the discrete Lagrange multiplier space for the proposed formulation.

  4. Finite element analysis for general elastic multi-structures

    Institute of Scientific and Technical Information of China (English)

    HUANG; Jianguo; SHI; Zhongci; XU; Yifeng

    2006-01-01

    A finite element method is introduced to solve the general elastic multi-structure problem, in which the displacements on bodies, the longitudinal displacements on plates and the longitudinal displacements on beams are discretized using conforming linear elements, the rotational angles on beams are discretized using conforming elements of second order, the transverse displacements on plates and beams are discretized by the Morley elements and the Hermite elements of third order, respectively. The generalized Korn's inequality is established on related nonconforming element spaces, which implies the unique solvability of the finite element method. Finally, the optimal error estimate in the energy norm is derived for the method.

  5. Geotechnical Ultimate Limit State Design Using Finite Elements

    NARCIS (Netherlands)

    Brinkgreve, R.B.J.; Post, M.

    2015-01-01

    Displacement-based finite element calculations are primarily used for serviceability limit state (SLS) analysis, but the finite element method also offers possibilities for ultimate limit state (ULS) design in geotechnical engineering. The combined use of SLS and ULS calculations with partial safety

  6. Finite element models applied in active structural acoustic control

    NARCIS (Netherlands)

    Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll

  7. About the Finite Element Method Applied to Thick Plates

    Directory of Open Access Journals (Sweden)

    Mihaela Ibănescu

    2006-01-01

    Full Text Available The present paper approaches of plates subjected to transverse loads, when the shear force and the actual boundary conditions are considered, by using the Finite Element Method. The isoparametric finite elements create real facilities in formulating the problems and great possibilities in creating adequate computer programs.

  8. THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS

    Directory of Open Access Journals (Sweden)

    Natalia Bakhova

    2011-03-01

    Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.

  9. Finite Element Modelling of Seismic Liquefaction in Soils

    NARCIS (Netherlands)

    Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.

    2013-01-01

    Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom

  10. Maple in discretizing equations by the Finite Volume Element method

    OpenAIRE

    Canright, David R.

    1996-01-01

    The Finite Volume Element (FVE) method combines the exact conservation of finite volumes with the continuous representation of finite elements One drawback of this approach is that to evaluate the coe cients in the equations "the stencils" many simple integrals involving unknowns must be evaluated. This problem is compounded when working with systems of di erential equations involving several different operators and or variable coeefficients This talk will examine one such project fo...

  11. ALTERNATING DIRECTION FINITE ELEMENT METHOD FOR SOME REACTION DIFFUSION MODELS

    Institute of Scientific and Technical Information of China (English)

    江成顺; 刘蕴贤; 沈永明

    2004-01-01

    This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for the system of patrical differential equations. Besides, the finite difference method is utilized for the ordinary differential equation in the models. Moreover, by the theory and technique of prior estimates for the differential equations, the convergence analyses and the optimal L2- norm error estimates are demonstrated.

  12. OBJECT-ORIENTED FINITE ELEMENT ANALYSIS AND PROGRAMMING IN VC + +

    Institute of Scientific and Technical Information of China (English)

    马永其; 冯伟

    2002-01-01

    The design of finite element analysis program using object-oriented programming(OOP) techniques is presented. The objects, classes and the subclasses used in theprogramming are explained. The system of classes library of finite element analysis programand Windows-type Graphical User Interfaces by VC + + and its MFC are developed. Thereliability, reusability and extensibility of program are enhanced. It is a reference todevelop the large-scale, versatile and powerful systems of object-oriented finite elementsoftware.

  13. Experiment and finite element analysis of micromilling force

    Institute of Scientific and Technical Information of China (English)

    SUN Ya-zhou; MENG Qing-xin

    2008-01-01

    For predicting the milling force in process of micromilling aluminum alloy,the law for micromilling force changing under different milling parameters was studied.The elastic-plastic finite elelent model of micromilling was found using general commercial software.During modeling,the Johnson-Cook's coupled thermalmechanical model Was used as workpiece material model,the Johnson-Cook's shear failure principle Was adopted as workpiece failure principle,and the coupled thermal-mechanical hexahedron strain hybrid modules and self-adaptive grid technology based on the updated Lagrange formulation were used to mesh the workpiece's elements,while the friction between tool and workpiece obeys the modified Coulomb's law that combines with the sliding friction and the adhesive friction.By means of finite element analysis,the law for micromilling force changing under different milling parameters Was obtained,and the results were analyzed and compared.Finally micromilling experiments were carried out to validate the results of simulation.

  14. Nondestructive Evaluation Correlated with Finite Element Analysis

    Science.gov (United States)

    Abdul-Azid, Ali; Baaklini, George Y.

    1999-01-01

    Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.

  15. Shear beams in finite element modelling: software implementation and validation

    NARCIS (Netherlands)

    Ferreira, D.; Kikstra, W.P.

    2015-01-01

    Fiber models for beam and shell elements allow for relatively rapid finite element analysis of concrete structures and structural elements. This project aims at the development of the formulation of such elements and a pilot implementation. The reduction of calculation time and degrees of freedom

  16. Finite Element Analysis of Fluid-Conveying Timoshenko Pipes

    Directory of Open Access Journals (Sweden)

    Chih-Liang Chu

    1995-01-01

    Full Text Available A general finite element formulation using cubic Hermitian interpolation for dynamic analysis of pipes conveying fluid is presented. Both the effects of shearing deformations and rotary inertia are considered. The development retains the use of the classical four degrees-of-freedom for a two-node element. The effect of moving fluid is treated as external distributed forces on the support pipe and the fluid finite element matrices are derived from the virtual work done due to the fluid inertia forces. Finite element matrices for both the support pipe and moving fluid are derived and given explicitly. A numerical example is given to demonstrate the validity of the model.

  17. Thermal Analysis of Thin Plates Using the Finite Element Method

    Science.gov (United States)

    Er, G. K.; Iu, V. P.; Liu, X. L.

    2010-05-01

    The isotropic thermal plate is analyzed with finite element method. The solution procedure is presented. The elementary stiffness matrix and loading vector are derived rigorously with variation principle and the principle of minimum potential energy. Numerical results are obtained based on the derived equations and tested with available exact solutions. The problems in the finite element analysis are figured out. It is found that the finite element solutions can not converge as the number of elements increases around the corners of the plate. The derived equations presented in this paper are fundamental for our further study on more complicated thermal plate analysis.

  18. Finite element analysis of (SA) mechanoreceptors in tactile sensing application

    Science.gov (United States)

    N, Syamimi; Yahud, S.

    2015-05-01

    This paper addresses the structural design of a fingertip model in order to analyse the sensory function of slow adapting (SA) mechanoreceptors by using the finite element analysis (FEA) method. A biologically inspired tactile sensor was designed to mimic a similar response of the human mechanoreceptors in the human glabrous skin. The simulation work was done by using COMSOL Multiphysics. The artificial skin was modelled as a solid square block of silicone elastomer with a semi cylinder protrusion on top. It was modelled as a nearly incompressible and linear hyperelastic material defined by Neo Hookean constitutive law. The sensing element on the other hand was modelled by using constantan alloy mimicking the SA1 receptor. Boundary loads of 1 N/m² to 4 N/m² with the increment of 1 N/m² were applied to the top surface of the protrusion in z and x-direction for normal and shear stress, respectively. The epidermal model base was constrained to maintain the same boundary conditions throughout all simulations. The changes of length experienced by the sensing element were calculated. The simulations result in terms of strain was identified. The simulated result was plotted in terms of sensing element strain against the boundary load and the graph should produce a linear response.

  19. An Analysis of Finite Volume, Finite Element, and Finite Difference Methods Using Some Concepts from Algebraic Topology

    OpenAIRE

    Mattiussi, Claudio

    1997-01-01

    In this paper we apply the ideas of algebraic topology to the analysis of the finite volume and finite element methods, illuminating the similarity between the discretization strategies adopted by the two methods, in the light of a geometric interpretation proposed for the role played by the weighting functions in finite elements. We discuss the intrinsic discrete nature of some of the factors appearing in the field equations, underlining the exception represented by the constitutive term, th...

  20. High order discontinuous finite-volume/finite-element method for CFD applications

    OpenAIRE

    Ramezani A; Stipcich G.

    2014-01-01

    The proposed method naturally merges the desirable conservative properties and intuitive physical formulation of the widely used finite-volume (FV) technique, with the capability of local arbitrary high-order accuracy and high-resolution which is distinctive in the discontinuous finite-element (FE) framework. This relatively novel scheme, the discontinuous hybrid control-volume/finite-element method (DCVFEM), has been already applied to the solution of advection-diffusion problems and shallow...

  1. Discontinuous high-order finite-volume/finite-element method for inviscid compressible flows

    OpenAIRE

    Ramezani A; Stipcich G.; Remaki L.

    2015-01-01

    The discontinuous, hybrid control-volume/finite-element method merges the desirable conservative properties and intuitive physical formulation of the finite-volume technique, with the capability of local arbitrary high-order accuracy distinctive of the discontinuous finite-element method. This relatively novel scheme has been previously applied to the solution of advection-diffusion problems and the shallow-water equations, and is in the present work extended to the Euler equations. The deriv...

  2. Quadrilateral isoparametric finite elements for plane elastic Cosserat bodies

    Institute of Scientific and Technical Information of China (English)

    Hongwu Zhang; Hui Wang; Guozhen Liu; Keren Wang

    2005-01-01

    4-node, 8-node and 8(4)-node quadrilateral plane isoparametric elements are used for the solution of bound ary value problems in linear isotropic Cosserat elasticity. The patch test is applied to validate the finite elements. Engineering problems of stress concentration around a circular hole in plane strain condition and mechanical behaviors of heterogeneous materials with rigid inclusions and pores are computed to test the accuracy and capability of these three types of finite elements.

  3. Reactor kinetic formulation using the finite element method

    International Nuclear Information System (INIS)

    This research has the objective of solving the spatial Kinetic equations for two energy groups using the finite element method. In the methodology, was applied the direct method, such that matrix equations coefficients from spatial discretization was generated by finite element method. The formulation of the time-dependent problem was obtained by analytical integration of precursor concentration equation and using the Euler implicit scheme in the dynamic diffusion problem. A 2D example of a reactor static diffusion problem was solved using a linear triangular finite element. This solution was compared with the numerical benchmark solution, found in the literature, and the numerical results calculated by the finite difference methods. This comparison shows the capacity of the finite element method to obtain a precise solution. (author)

  4. Determination of an Initial Mesh Density for Finite Element Computations via Data Mining

    Energy Technology Data Exchange (ETDEWEB)

    Kanapady, R; Bathina, S K; Tamma, K K; Kamath, C; Kumar, V

    2001-07-23

    Numerical analysis software packages which employ a coarse first mesh or an inadequate initial mesh need to undergo a cumbersome and time consuming mesh refinement studies to obtain solutions with acceptable accuracy. Hence, it is critical for numerical methods such as finite element analysis to be able to determine a good initial mesh density for the subsequent finite element computations or as an input to a subsequent adaptive mesh generator. This paper explores the use of data mining techniques for obtaining an initial approximate finite element density that avoids significant trial and error to start finite element computations. As an illustration of proof of concept, a square plate which is simply supported at its edges and is subjected to a concentrated load is employed for the test case. Although simplistic, the present study provides insight into addressing the above considerations.

  5. Finite-element formulations for problems of large elastic-plastic deformation

    Science.gov (United States)

    Mcmeeking, R. M.; Rice, J. R.

    1975-01-01

    An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventional finite element program, for 'small strain' elastic-plastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. The paper closes with a unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures. Further, a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain, and the inadequacies of some of these are commented upon.

  6. Finite element formulations for problems of large elastic-plastic deformation

    Science.gov (United States)

    Mcmeeking, R. M.; Rice, J. R.

    1974-01-01

    An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is suited to isotropically hardening Prandtl-Reuss materials. The formulation is given in a manner which allows any conventional finite element program, for "small strain" elasticplastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. A unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures, and a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain.

  7. PRECONDITIONING HIGHER ORDER FINITE ELEMENT SYSTEMS BY ALGEBRAIC MULTIGRID METHOD OF LINEAR ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    Yun-qing Huang; Shi Shu; Xi-jun Yu

    2006-01-01

    We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.

  8. Finite Element Simulation of Blanking Process

    Directory of Open Access Journals (Sweden)

    Afzal Ahmed

    2012-10-01

    daya penembusan sebanyak 42%. Daya tebukan yang diukur melalui  eksperimen dan simulasi kekal pada kira-kira 90kN melepasi penembusan punch sebanyak 62%. Apabila ketebalan keputusan kunci ditambah, ketinggian retak dikurangkan dan ini meningkatkan kualiti pengosongan.KEYWORDS: simulation; finite element simulation; blanking; computer aided manufacturing

  9. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    Science.gov (United States)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation

  10. Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures

    DEFF Research Database (Denmark)

    Flodén, Ola; Persson, Kent; Sjöström, Anders;

    2012-01-01

    lightweight structures without noise and disturbing vibrations between storeys and rooms. The dynamic response of floor and wall structures may be investigated using finite element models with three-dimensional solid elements [1]. In order to analyse the global response of complete buildings, finite element...... of eigenfrequencies, eigenmodes and vibration transmission. The finite element model of a floor [1], created and validated by measurements on a full-scale experimental wooden floor-wall structure, that was used as a reference model in the model reduction studies. The studies were restricted to frequencies below 100....... The objective of the analyses presented in this paper is to evaluate methods for model reduction of detailed finite element models of floor and wall structures and to investigate the influence of reducing the number of degrees of freedom and computational cost on the dynamic response of the models in terms...

  11. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    Science.gov (United States)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  12. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    Science.gov (United States)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  13. Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators

    Science.gov (United States)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-01-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  14. Magnetic materials and 3D finite element modeling

    CERN Document Server

    Bastos, Joao Pedro A

    2014-01-01

    Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes.

  15. Response Surface Stochastic Finite Element Method of Composite Structure

    Directory of Open Access Journals (Sweden)

    Cai Deyong

    2016-01-01

    Full Text Available Response Surface Method (RSM has been applied to structural reliability problems successfully in many areas. Finite Element Method (FEM is one of the most widely used computational methods, which permit the analysis and design of large-scale engineering systems. In order to obtain a reliability analysis method of composite structure with satisfactory accuracy and computational efficiency, RSM and FEM were combined by secondary development of ABAQUS. Response Surface Stochastic Finite Element Method (RSSFEM which can solve the reliability problems of composite structure was developed. The numerical accuracy and the computational efficiency of the developed method were demonstrated by comparison with Monte-Carlo Stochastic Finite Element Method (MCSFEM.

  16. Nonlinear finite element modeling of THUNDER piezoelectric actuators

    Science.gov (United States)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-06-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (Thin Layer Unimorph Ferroelectric Driver) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  17. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...... description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...

  18. Adaptive finite difference for seismic wavefield modelling in acoustic media.

    Science.gov (United States)

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-01-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme. PMID:27491333

  19. Higher-Order Finite Elements for Computing Thermal Radiation

    Science.gov (United States)

    Gould, Dana C.

    2004-01-01

    Two variants of the finite-element method have been developed for use in computational simulations of radiative transfers of heat among diffuse gray surfaces. Both variants involve the use of higher-order finite elements, across which temperatures and radiative quantities are assumed to vary according to certain approximations. In this and other applications, higher-order finite elements are used to increase (relative to classical finite elements, which are assumed to be isothermal) the accuracies of final numerical results without having to refine computational meshes excessively and thereby incur excessive computation times. One of the variants is termed the radiation sub-element (RSE) method, which, itself, is subject to a number of variations. This is the simplest and most straightforward approach to representation of spatially variable surface radiation. Any computer code that, heretofore, could model surface-to-surface radiation can incorporate the RSE method without major modifications. In the basic form of the RSE method, each finite element selected for use in computing radiative heat transfer is considered to be a parent element and is divided into sub-elements for the purpose of solving the surface-to-surface radiation-exchange problem. The sub-elements are then treated as classical finite elements; that is, they are assumed to be isothermal, and their view factors and absorbed heat fluxes are calculated accordingly. The heat fluxes absorbed by the sub-elements are then transferred back to the parent element to obtain a radiative heat flux that varies spatially across the parent element. Variants of the RSE method involve the use of polynomials to interpolate and/or extrapolate to approximate spatial variations of physical quantities. The other variant of the finite-element method is termed the integration method (IM). Unlike in the RSE methods, the parent finite elements are not subdivided into smaller elements, and neither isothermality nor other

  20. Remesh algorithms for the finite element and finite difference calculation of solid and fluid continuum mecahanics problems

    International Nuclear Information System (INIS)

    In the lagrangian calculations of some nuclear reactor problems such as a bubble expansion in the core of a fast breeder reactor, the crash of an airplane on the external containment or the perforation of a concrete slab by a rigid missile, the mesh may become highly distorted. A remesh is then necessary to continue the calculation with precision and economy. Similarly, an eulerian calculation of a fluid volume bounded by lagrangian shells can be facilitated by a remesh scheme with continuously adapts the boundary of the eulerian domain to the lagrangian shell. This paper reviews available remesh algorithms for finite element and finite difference calculations of solid and fluid continuum mechanics problems, and presents an improved Finite Element Remesh Method which is independent of the quantities at the nodal points (NP) and the integration points (IP) and permits a restart with a new mesh. (orig.)

  1. Five-point Element Scheme of Finite Analytic Method for Unsteady Groundwater Flow

    Institute of Scientific and Technical Information of China (English)

    Xiang Bo; Mi Xiao; Ji Changming; Luo Qingsong

    2007-01-01

    In order to improve the finite analytic method's adaptability for irregular unit, by using coordinates rotation technique this paper establishes a five-point element scheme of finite analytic method. It not only solves unsteady groundwater flow equation but also gives the boundary condition. This method can be used to calculate the three typical questions of groundwater. By compared with predecessor's computed result, the result of this method is more satisfactory.

  2. Implementation of a strain energy-based nonlinear finite element in the object-oriented environment

    Science.gov (United States)

    Wegner, Tadeusz; Pęczak, Andrzej

    2010-03-01

    The objective of the paper is to describe a novel finite element computational method based on a strain energy density function and to implement it in the object-oriented environment. The original energy-based finite element was put into the known standard framework of classes and handled in a different manner. The nonlinear properties of material are defined with a modified strain energy density function. The local relaxation procedure proposed as a method used to resolve a nonlinear problem is implemented in C++ language. The hexahedral element with eight nodes as well as the adaptation of the nonlinear finite element is introduced. The chosen numerical model is made of nearly incompressible hyperelastic material. The application of the proposed element is shown on the example of a rectangular parallelepiped with a hollow port.

  3. Mortar Upwind Finite Volume Element Method with Crouzeix-Raviart Element for Parabolic Convection Diffusion Problems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems.It is proved that the semi-discrete mortar upwind finite volume element approximations derived are convergent in the H1- and L2-norms.

  4. Complex finite element sensitivity method for creep analysis

    International Nuclear Information System (INIS)

    The complex finite element method (ZFEM) has been extended to perform sensitivity analysis for mechanical and structural systems undergoing creep deformation. ZFEM uses a complex finite element formulation to provide shape, material, and loading derivatives of the system response, providing an insight into the essential factors which control the behavior of the system as a function of time. A complex variable-based quadrilateral user element (UEL) subroutine implementing the power law creep constitutive formulation was incorporated within the Abaqus commercial finite element software. The results of the complex finite element computations were verified by comparing them to the reference solution for the steady-state creep problem of a thick-walled cylinder in the power law creep range. A practical application of the ZFEM implementation to creep deformation analysis is the calculation of the skeletal point of a notched bar test from a single ZFEM run. In contrast, the standard finite element procedure requires multiple runs. The value of the skeletal point is that it identifies the location where the stress state is accurate, regardless of the certainty of the creep material properties. - Highlights: • A novel finite element sensitivity method (ZFEM) for creep was introduced. • ZFEM has the capability to calculate accurate partial derivatives. • ZFEM can be used for identification of the skeletal point of creep structures. • ZFEM can be easily implemented in a commercial software, e.g. Abaqus. • ZFEM results were shown to be in excellent agreement with analytical solutions

  5. Partitions of nonzero elements of a finite field into pairs

    CERN Document Server

    Karasev, R N

    2010-01-01

    In this paper we prove two theorems. Informally, they claim that the nonzero elements of a finite field with odd characteristic can be partitioned into pairs with prescribed difference (maybe, with some alternatives) in each pair. We also consider some generalizations of these results to packing translates in a finite or infinite field.

  6. Finite-element method for above-core structures

    International Nuclear Information System (INIS)

    Three-dimensional finite-element models for the treatment of the nonlinear, transient response of a fast breeder reactor's above-core structures are described. For purposes of treating arbitrarily large rotations, node orientations are described by unit vectors and the deformable elements are treated by a corotational formulation in which the coordinate system is embedded in the elements. Deformable elements may be connected either to nodes directly or through rigid bodies. The time integration is carried out by the Newmark β method. These features have been incorporated to form the finite-element program SAFE/RAS (Safety Analysis by Finite Elements/Reactor Analysis and Safety Division). Computations are presented for semianalytical comparisons, simple scoping studies, and Stanford Research Institute (SRI) test comparisons

  7. SPECTRAL FINITE ELEMENT METHOD FOR A UNSTEADY TRANSPORT EQUATION

    Institute of Scientific and Technical Information of China (English)

    MeiLiquan

    1999-01-01

    In this paper,a new numerical method,the coupling method of spherical harmonic function spectral and finite elements,for a unsteady transport equation is dlscussed,and the error analysis of this scheme is proved.

  8. Comparison of different precondtioners for nonsymmtric finite volume element methods

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  9. Structural analysis with the finite element method linear statics

    CERN Document Server

    Oñate, Eugenio

    2013-01-01

    STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elas...

  10. Finite Element Models for Electron Beam Freeform Fabrication Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal offers to develop a comprehensive computer simulation methodology based on the finite element method for...

  11. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.

    2013-12-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  12. COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES

    Institute of Scientific and Technical Information of China (English)

    Zuorong Chen; A.P. Bunger; Xi Zhang; Robert G. Jeffrey

    2009-01-01

    Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.

  13. Finite Element Meshes Auto-Generation for the Welted Bifurcation

    Institute of Scientific and Technical Information of China (English)

    YUANMei; LIYa-ping

    2004-01-01

    In this paper, firstly, a mathematical model for a specific kind of welted bifurcation is established, the parametric equation for the intersecting curve is resulted in. Secondly, a method for partitioning finite element meshes of the welted bifurcation is put forward, its main idea is that developing the main pipe surface and the branch pipe surface respectively, dividing meshes on each developing plane and obtaining meshes points, then transforming their plane coordinates into space coordinates. Finally, an applied program for finite element meshes auto-generation is simply introduced, which adopt ObjectARX technique and its running result can be shown in AutoCAD. The meshes generated in AutoCAD can be exported conveniently to most of finite element analysis soft wares, and the finite element computing result can satisfy the engineering precision requirement.

  14. Finite element analyses for RF photoinjector gun cavities

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, F. [Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung mbH (BESSY), Berlin (Germany)

    2006-07-01

    This paper details electromagnetical, thermal and structural 3D Finite Element Analyses (FEA) for normal conducting RF photoinjector gun cavities. The simulation methods are described extensively. Achieved results are presented. (orig.)

  15. Finite Element Crash Simulations and Impact-Induced Injuries

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.

  16. Accurate Parallel Algorithm for Adini Nonconforming Finite Element

    Institute of Scientific and Technical Information of China (English)

    罗平; 周爱辉

    2003-01-01

    Multi-parameter asymptotic expansions are interesting since they justify the use of multi-parameter extrapolation which can be implemented in parallel and are well studied in many papers for the conforming finite element methods. For the nonconforming finite element methods, however, the work of the multi-parameter asymptotic expansions and extrapolation have seldom been found in the literature. This paper considers the solution of the biharmonic equation using Adini nonconforming finite elements and reports new results for the multi-parameter asymptotic expansions and extrapolation. The Adini nonconforming finite element solution of the biharmonic equation is shown to have a multi-parameter asymptotic error expansion and extrapolation. This expansion and a multi-parameter extrapolation technique were used to develop an accurate approximation parallel algorithm for the biharmonic equation. Finally, numerical results have verified the extrapolation theory.

  17. Finite Element Models for Electron Beam Freeform Fabrication Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research proposal offers to develop the most accurate, comprehensive and efficient finite element models to date for simulation of...

  18. Finite element modeling for materials engineers using Matlab

    CERN Document Server

    Oluwole, Oluleke

    2011-01-01

    Discusses the finite element method with a particular focus on the requirements of materials engineers Uses the MATLAB® pdetool to develop a code-free way of modelling Contains exercises to help develop the reader's understanding

  19. Validation of high displacement piezoelectric actuator finite element models

    Science.gov (United States)

    Taleghani, Barmac K.

    2000-08-01

    The paper presents the results obtained by using NASTRAN and ANSYS finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness and important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN and ANSYS used different methods for modeling piezoelectric effects. In NASTRAN, a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  20. Vehicle Interior Noise Prediction Using Energy Finite Element Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and implement a computational technique based on Energy Finite Element Analysis (EFEA) for interior noise prediction of advanced aerospace...

  1. Completely normal elements in finite abelian extensions

    CERN Document Server

    Koo, Ja Kung

    2011-01-01

    We give a completely normal element in the maximal real subfield of a cyclotomic field over the field of rational numbers, which is different from that of Okada. This result is a consequence of the criterion for a normal element developed in [Normal bases of ray class fields over imaginary quadratic fields, Math. Zeit.]. Furthermore, we find a completely normal element in certain extension of modular function fields in terms of a quotient of the modular discriminant function.

  2. Finite element analysis of elasto-plastic plate bending problems using transition rectangular plate elements

    Institute of Scientific and Technical Information of China (English)

    Bahattin Kanber; O.Yavuz Bozkurt

    2006-01-01

    In this work,the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements.The shape functions of the transition plate elements are derived based on a practical rule.The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements.The mesh convergence rates of the models including the transition elements are compared with the regular element models.To verify the developed elements,simple tests are demonstrated and various elasto-plastic problems are solved.Their results are compared with ANSYS results.

  3. A class of hybrid finite element methods for electromagnetics: A review

    Science.gov (United States)

    Volakis, J. L.; Chatterjee, A.; Gong, J.

    1993-01-01

    Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.

  4. On the error bounds of nonconforming finite elements

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We prove that the error estimates of a large class of nonconforming finite elements are dominated by their approximation errors, which means that the well-known Cea’s lemma is still valid for these nonconforming finite element methods. Furthermore, we derive the error estimates in both energy and L2 norms under the regularity assumption u ∈ H1+s(Ω) with any s > 0. The extensions to other related problems are possible.

  5. OCTG Premium Threaded Connection 3D Parametric Finite Element Model

    OpenAIRE

    Ahsan, Nabeel

    2016-01-01

    Full 360 degree 3D finite element models are the most complete representation of Oil Country Tubular Goods (OCTG) premium threaded connections. Full 3D models can represent helical threads and boundary conditions required to simulate make-up and service loading. A methodology is developed to create a 360 degree full 3D parametric finite element model with helical threads as an effective design and analysis tool. The approach is demonstrated with the creation of a metal-to-metal seal integral ...

  6. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    OpenAIRE

    Jungang Wang; Yong Wang; Zhipu Huo

    2013-01-01

    A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear’s residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and in...

  7. Finite element models applied in active structural acoustic control

    OpenAIRE

    Oude Nijhuis, Marco H.H.; de Boer; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controller design. The reduced structural model is combined with an acoustic model which uses the radiation mode concept. For a test case consisting of a rectangular plate with one piezo patch the model re...

  8. Finite element simulation of magnesium alloys laser beam welding

    OpenAIRE

    BELHADJ, Asma; BESSROUR, Jamel; MASSE, Jean-Eric; BOUHAFS, Mahmoud; Barrallier, Laurent

    2010-01-01

    In this paper, a three-dimensional finite element model is developed to simulate thermal history magnesium-based alloys during laser beam welding. Space-time temperature distributions in weldments are predicted from the beginning of welding to the final cooling. The finite element calculations were performed using Cast3M code with which the heat equation is solved considering a non-linear transient behaviour. The applied loading is a moving heat source that depends on process parameters such ...

  9. A weak Galerkin finite element method for Burgers' equation

    OpenAIRE

    Chen, Yanli; Zhang, Tie

    2016-01-01

    We propose a weak Galerkin(WG) finite element method for solving the one-dimensional Burgers' equation. Based on a new weak variational form, both semi-discrete and fully-discrete WG finite element schemes are established and analyzed. We prove the existence of the discrete solution and derive the optimal order error estimates in the discrete $H^1$-norm and $L^2$-norm, respectively. Numerical experiments are presented to illustrate our theoretical analysis.

  10. Determination of a synchronous generator characteristics via Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Kolondzovski Zlatko

    2005-01-01

    Full Text Available In the paper a determination of characteristics of a small salient pole synchronous generator (SG is presented. Machine characteristics are determined via Finite Element Analysis (FEA and for that purpose is used the software package FEMM Version 3.3. After performing their calculation and analysis, one can conclude that most of the characteristics presented in this paper can be obtained only by using the Finite Element Method (FEM.

  11. Integration of geometric modeling and advanced finite element preprocessing

    Science.gov (United States)

    Shephard, Mark S.; Finnigan, Peter M.

    1987-01-01

    The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.

  12. Finite element modeling of the filament winding process using ABAQUS

    OpenAIRE

    Miltenberger, Louis C.

    1992-01-01

    A comprehensive stress model of the filament winding fabrication process, previously implemented in the finite element program, WACSAFE, was implemented using the ABAQUS finite element software package. This new implementation, referred to as the ABWACSAFE procedure, consists of the ABAQUS software and a pre/postprocessing routine that was developed to prepare necessary ABAQUS input files and process ABAQUS displacement results for stress and strain computation. The ABWACSAF...

  13. TWO-SCALE FINITE ELEMENT DISCRETIZATIONS FOR PARTIAL DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Aihui Zhou

    2006-01-01

    Some two-scale finite element discretizations are introduced for a class of linear partial differential equations. Both boundary value and eigenvalue problems are studied. Basedon the two-scale error resolution techniques, several two-scale finite element algorithms are proposed and analyzed. It is shown that this type of two-scale algorithms not only significantly reduces the number of degrees of freedom but also produces very accurate approximations.

  14. Anisotropic rectangular nonconforming finite element analysis for Sobolev equations

    Institute of Scientific and Technical Information of China (English)

    SHI Dong-yang; WANG Hai-hong; GUO Cheng

    2008-01-01

    An anisotropic rectangular nonconforming finite element method for solving the Sobolev equations is discussed under semi-discrete and full discrete schemes.The corresponding optimal convergence error estimates and superclose property are derived,which are the same as the traditional conforming finite elements.Furthermore,the global superconvergence is obtained using a post-processing technique.The numerical results show the validity of the theoretical analysis.

  15. A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION

    Institute of Scientific and Technical Information of China (English)

    ChenHuaran; LiYiqun; HeQiaoyun; ZhangJieqing; MaHongsheng; LiLi

    2003-01-01

    On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the are a of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.

  16. A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION

    Institute of Scientific and Technical Information of China (English)

    Chen Huaran; Li Yiqun; He Qiaoyun; Zhang Jieqing; Ma Hongsheng; Li Li

    2003-01-01

    On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the area of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.

  17. A finite element primer for beginners the basics

    CERN Document Server

    Zohdi, Tarek I

    2014-01-01

    The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:(1) Weighted residual methods and Galerkin approximations,(2) A model problem for one-dimensional?linear elastostatics,(3) Weak formulations in one dimension,(4) Minimum principles in one dimension,(5) Error estimation in one dimension,(5) Construction of Finite Element basis functions in one dimension,(6) Gaussian Quadrature,(7) Iterative solvers and element by element data structures,(8) A model problem for th

  18. Enhanced patch test of finite element methods

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Theoretically, the constant stress patch test is not rigorous. Also, either the patch test of non-zero constant shear for Mindlin plate problem or non-zero strain gradient curvature of the microstructures cannot be performed. To improve the theory of the patch test, in this paper, based on the variational principle with relaxed continuity requirement of nonconforming element for homogeneous differential equations, the author proposed the individual element condition for passing the patch test and the convergence condition of the element: besides passing the patch test, the element function should include the rigid body modes and constant strain modes and satisfy the weak continuity condition, and no extra zero energy modes occur. Moreover, the author further established a variational principle with relaxed continuity requirement of nonconforming element for inhomogeneous differential equations, the enhanced patch test condition and the individual element condition. To assure the convergence of the element that should pass the enhanced patch test, the element function should include the rigid body modes and non-zero strain modes which satisfied the equilibrium equations, and no spurious zero energy modes occur and should satisfy new weak continuity condition. The theory of the enhanced patch test proposed in this paper can be applied to both homogeneous and inhomogeneous differential equations. Based on this theory, the patch test of the non-zero constant shear stress for Mindlin plate and the C0-1 patch test of the non-zero constant curvature for the couple stress/strain gradient theory were established.

  19. Randomized Oversampling for Generalized Multiscale Finite Element Methods

    KAUST Repository

    Calo, Victor M.

    2016-03-23

    In this paper, we develop efficient multiscale methods for flows in heterogeneous media. We use the generalized multiscale finite element (GMsFEM) framework. GMsFEM approximates the solution space locally using a few multiscale basis functions. This approximation selects an appropriate snapshot space and a local spectral decomposition, e.g., the use of oversampled regions, in order to achieve an efficient model reduction. However, the successful construction of snapshot spaces may be costly if too many local problems need to be solved in order to obtain these spaces. We use a moderate quantity of local solutions (or snapshot vectors) with random boundary conditions on oversampled regions with zero forcing to deliver an efficient methodology. Motivated by the randomized algorithm presented in [P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the approximation of Matrices, YALEU/DCS/TR-1361, Yale University, 2006], we consider a snapshot space which consists of harmonic extensions of random boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale spaces are adaptively enriched. Convergence analysis is provided. We present representative numerical results to validate the method proposed.

  20. Finite Element Model Updating Using Response Surface Method

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    This paper proposes the response surface method for finite element model updating. The response surface method is implemented by approximating the finite element model surface response equation by a multi-layer perceptron. The updated parameters of the finite element model were calculated using genetic algorithm by optimizing the surface response equation. The proposed method was compared to the existing methods that use simulated annealing or genetic algorithm together with a full finite element model for finite element model updating. The proposed method was tested on an unsymmetri-cal H-shaped structure. It was observed that the proposed method gave the updated natural frequen-cies and mode shapes that were of the same order of accuracy as those given by simulated annealing and genetic algorithm. Furthermore, it was observed that the response surface method achieved these results at a computational speed that was more than 2.5 times as fast as the genetic algorithm and a full finite element model and 24 ti...

  1. Implementation of a finite-element approximation of the Mumford-Shah functional

    DEFF Research Database (Denmark)

    Bourdin, Blaise; Chambolle, Antonin

    1999-01-01

    We present and detail a method for the numerical solving of the Mumford-Shah problem, based on a finite element method and on adaptive meshes. We start with a formulation introduced by A. Chambolle and G. Dal Maso, detail its numerical implementation and then propose a variant which is proved to ...

  2. Efficient optimization of hollow-core photonic crystal fiber design using the finite-element method

    DEFF Research Database (Denmark)

    Holzlöhner, Ronald; Burger, Sven; Roberts, John;

    2006-01-01

    We employ a finite-element (FE) solver with adaptive grid refinement to model hollow-core photonic crystal fibers (HC-PCFs) whose core is formed from 19 omitted cladding unit cells. We optimize the complete fiber geometry for minimal field intensity at material/air interfaces, which indicates low...

  3. Advances in the study of hybrid finite elements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.

  4. Least-squares finite element methods for compressible Euler equations

    Science.gov (United States)

    Jiang, Bo-Nan; Carey, G. F.

    1990-01-01

    A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.

  5. Finite element method for computational fluid dynamics with any type of elements; Finite Element Methode zur numerischen Stroemungsberechnung mit beliebigen Elementen

    Energy Technology Data Exchange (ETDEWEB)

    Steibler, P.

    2000-07-01

    The unsteady, turbulent flow is to be calculated in a complex geometry. For this purpose a stabilized finite element formulation in which the same functions for velocity and pressure are used is developed. Thus the process remains independent of the type of elements. This simplifies the application. Above all, it is easier to deal with the boundary conditions. The independency from the elements is also achieved by the extended uzawa-algorithm which uses quadratic functions for velocity and an element-constant pressure. This method is also programmed. In order to produce the unstructured grids, an algorithm is implemented which produces meshes consisting of triangular and tetrahedral elements with flow-dependent adaptation. With standard geometries both calculation methods are compared with results. Finally the flow in a draft tube of a Kaplan turbine is calculated and compared with results from model tests. (orig.) [German] Die instationaere, turbulente Stroemung in einer komplexen Geometrie soll berechnet werden. Dazu wird eine Stabilisierte Finite Element Formulierung entwickelt, bei der die gleichen Ansatzfunktionen fuer Geschwindigkeiten und Druck verwendet werden. Das Verfahren wird damit unabhaengig von der Form der Elemente. Dies vereinfacht die Anwendung. Vor allem wird der Umgang mit den Randbedingungen erleichert. Die Elementunabhaengigkeit erreicht man auch mit dem erweiterten Uzawa-Algorithmus, welcher quadratische Ansatzfunktionen fuer die Geschwindigkeiten und elementweisen konstanten Druck verwendet. Dieses Verfahren wird ebenso implementiert. Zur Erstellung der unstrukturierten Gitter wird ein Algorithmus erzeugt, der Netze aus Dreiecks- und Tetraederelementen erstellt, welche stroemungsabhaengige Groessen besitzen koennen. Anhand einiger Standardgeometrien werden die beiden Berechnungsmethoden mit Ergebnissen aus der Literatur verglichen. Als praxisrelevantes Beispiel wird abschliessend die Stroemung in einem Saugrohr einer Kaplanturbine berechnet

  6. Asymptotic Behavior of the Finite Difference and the Finite Element Methods for Parabolic Equations

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; FENG Hui

    2005-01-01

    The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continuous time.

  7. A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2012-01-01

    The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex geo

  8. Finite element analysis of soil-sheet pile interaction

    Science.gov (United States)

    Nyby, D. W.

    A finite element model which accurately and economically models soil-sheet pile structures was developed. The model was used to analyze cantilever and anchored sheet pile walls. The finite element model includes transition and interface elements. The transition element has the capability of conforming to the displaced shape of the sheet pile elements on one side (cubic element) and soil elements on the other sides (bilinear element). The interface element models the frictional resistance between the soil and the sheet pile. It behaves elastically below a threshold force level (Coulomb friction) and perfectly plastic above this value. The soil is modeled using nonlinear constitutive relations. These relations are used for both the transition elements and the bilinear elements. The economy of the finite element model was increased in two ways. Closed-form integration was used to reduce the computational effort and an equation solver was used which takes advantage of the banded, symmetric, and positive-definite characteristics of the global stiffness matrix.

  9. IMPLICIT-EXPLICIT MULTISTEP FINITE ELEMENT-MIXED FINITE ELEMENT METHODS FOR THE TRANSIENT BEHAVIOR OF A SEMICONDUCTOR DEVICE

    Institute of Scientific and Technical Information of China (English)

    陈蔚

    2003-01-01

    The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density.The electric potential equation is discretized by a mixed finite element method.The electron and hole density equations are treated by implicit-explicit multistep finite element methods.The schemes are very efficient.The optimal order error estimates both in time and space are derived.

  10. A new component mode synthesis for dynamic mixed thin plate finite element models

    OpenAIRE

    Garambois, Pierre; Besset, Sébastien; Jézéquel, Louis

    2015-01-01

    International audience This paper presents a methodology for the reduction in dynamic mixed finite element models (DM-FEMs) based on the use of a sub-structuring primal methods adapted to such models. We implement a DM-FEM for Kirchhoff–Love thin plates using the Hellinger–Reissner variational mixed formulation adapted to dynamic, and give a quick insight of its convergence. This model uses both displacement and generalized stress fields within the plate, obtained as a primary result, but ...

  11. Finite element thermal analysis of convectively-cooled aircraft structures

    Science.gov (United States)

    Wieting, A. R.; Thornton, E. A.

    1981-01-01

    The design complexity and size of convectively-cooled engine and airframe structures for hypersonic transports necessitate the use of large general purpose computer programs for both thermal and structural analyses. Generally thermal analyses are based on the lumped-parameter finite difference technique, and structural analyses are based on the finite element technique. Differences in these techniques make it difficult to achieve an efficient interface. It appears, therefore, desirable to conduct an integrated analysis based on a common technique. A summary is provided of efforts by NASA concerned with the development of an integrated thermal structural analysis capability using the finite element method. Particular attention is given to the development of conduction/forced-convection finite element methodology and applications which illustrate the capabilities of the developed concepts.

  12. A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Tian-xiao Zhou; Xiao-ping Xie

    2003-01-01

    In this paper, a combined hybrid method is applied to finite element discretization ofplate bending problems. It is shown that the resultant schemes are stabilized, i.e., theconvergence of the schemes is independent of inf-sup conditions and any other patch test.Based on this, two new series of plate elements are proposed.

  13. Preconditioned CG-solvers and finite element grids

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R.; Selberherr, S. [Technical Univ. of Vienna (Austria)

    1994-12-31

    To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.

  14. A direct implementation for influence lines in finite element software

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Damkilde, Lars

    2014-01-01

    The use of influence lines is a recognized method for determining the critical design load conditions and this paper shows a direct method for applying influence lines in any structural finite element software. The main idea is to equate displacement or angular discontinuities with nodal forces...... to consistent nodal forces, which makes it very suitable for implementation in finite element schemes and applicable for all element types, such as shell, plates, beams etc. This paper derives the consistent nodal forces for angular, lateral and axial displacement discontinuities for a Bernoulli-Euler beam...

  15. Finite element analysis of two disk rotor system

    Science.gov (United States)

    Dixit, Harsh Kumar

    2016-05-01

    A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.

  16. Time domain finite element analysis of multimode microwave applicators

    Energy Technology Data Exchange (ETDEWEB)

    Dibben, D.C.; Metaxas, R. [Cambridge Univ. (United Kingdom)

    1996-05-01

    Analysis of multimode applicators in the frequency domain via the finite element technique produces a set of very ill-conditioned equations. This paper outlines a time domain finite element method (TDFE) for analyzing three dimensional microwave applicators where this ill-conditioning is avoided. Edge elements are used in order to handle sharp metal edges and to avoid spurious solutions. Analysis in the time domain allows field distributions at a range of different frequencies to be obtained with a single calculation. Lumping is investigated as a means of reducing the time taken for the calculation. The reflection coefficient is also obtained.

  17. Finite cell method compared to h-version finite element method for elasto-plastic problems

    Institute of Scientific and Technical Information of China (English)

    A.ABEDIAN; J.PARVIZIAN; A.D USTER; E.RANK

    2014-01-01

    The finite cell method (FCM) combines the high-order finite element method (FEM) with the fictitious domain approach for the purpose of simple meshing. In the present study, the FCM is used to the Prandtl-Reuss flow theory of plasticity, and the results are compared with the h-version finite element method (h-FEM). The numerical results show that the FCM is more efficient compared to the h-FEM for elasto-plastic problems, although the mesh does not conform to the boundary. It is also demonstrated that the FCM performs well for elasto-plastic loading and unloading.

  18. Finite Element Vibration Analysis of Laminated Composite Folded Plate Structures

    Directory of Open Access Journals (Sweden)

    A. Guha Niyogi

    1999-01-01

    Full Text Available A nine-noded Lagrangian plate bending finite element that incorporates first-order transverse shear deformation and rotary inertia is used to predict the free and forced vibration response of laminated composite folded plate structures. A 6 × 6 transformation matrix is derived to transform the system element matrices before assembly. The usual five degrees-of-freedom per node is appended with an additional drilling degree of freedom in order to fit the transformation. The present finite element results show good agreement with the available semi-analytical solutions and finite element results. Parametric studies are conducted for free and forced vibration analysis for laminated folded plates, with reference to crank angle, fibre angle and stacking sequence. The natural frequencies and mode shapes, and forced vibration responses furnished here may serve as a benchmark for future investigations.

  19. Finite Size Scaling for Quantum Criticality Using the Finite Element Method

    CERN Document Server

    Antillon, Edwin; Kais, Sabre

    2011-01-01

    Finite size scaling for the Schrodinger equation, is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach was shown (S. Kais and P. Serra, Adv. Chem. Phys. 125, 1 (2003)) to give very accurate results for critical parameters by using a systematic expansion in a finite basis set. Recently, the finite element method, on the other hand, was shown to be a powerful numerical method for ab initio electronic structure calculations (R. Alizadegan, K.J. Hsia and T. J. Martinez, J. Chem. Phys. 132, 034101 (2010)) with a variable real-space resolution. The implementation produces sparse matrices since it is implemented in terms of local basis functions, making it ideal for parallel implementation. Here, we demonstrate how to obtain quantum critical parameters by combining finite element method (FEM) with finite size scaling (FSS). The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and externa...

  20. Adaptive Algorithms of Nonlinear Approximation with Finite Terms

    Institute of Scientific and Technical Information of China (English)

    Wen Bin WEI; Yue Sheng XU; Pei Xin YE

    2007-01-01

    This paper deals with realizable adaptive algorithms of the nonlinear approximation with finite terms based on wavelets. We present a concrete algorithm by which we may find the required index set Am for the greedy algorithm GPm(·,ψ). This makes the greedy algorithm realize the near best approximation in practice. Moreover, we study the efficiency of the finite-term approximation of another algorithm introduced by Birge and Massart.

  1. Design of Finite Element Tools for Coupled Surface and Volume Meshes

    Institute of Scientific and Technical Information of China (English)

    Daniel K(o)ster; Oliver Kriessl; Kunibert G. Siebert

    2008-01-01

    Many problems with underlying variational structure involve a coupling of volume with surface effects. A straight-forward approach in a finite element discretization is to make use of the surface triangulation that is naturally induced by the volume triangulation. In an adaptive method one wants to facilitate "matching" local mesh modifications, i.e., local refinement and/or coarsening, of volume and surface mesh with standard tools such that the surface grid is always induced by the volume grid. We describe the concepts behind this approach for bisectional refinement and describe new tools incorporated in the finite element toolbox ALBERTA. We also present several important applications of the mesh coupling.

  2. TECHNOLOGIES OF FINITE VOLUME-FINITE ELEMENT METHOD FOR THE SOLUTION OF CONVECTION-DIFFUSION PROBLEMS ON UNSTRUCTURED GRIDS

    OpenAIRE

    Shurina, E.; Solonenko, O.; Voitovich, T.

    2002-01-01

    Finite volume-finite element techniques on unstructured grids with the application to the numerical solution of the incompressible Navier-Stokes equations are considered. The paper addresses two issues that affect the accuracy of the finite volume-finite element approximations: exact integration of interpolation polynomials and development of high-order-accurate upwind schemes.

  3. FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div) ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    Junping Wang; Xiaoshen Wang; Xiu Ye

    2008-01-01

    We derived and analyzed a new numerical scheme for the Navier-Stokes equations by using H(div) conforming finite elements. A great deal of effort was given to an establishment of some Sobolev-type inequalities for piecewise smooth functions. In particular, the newly derived Sobolev inequalities were employed to provide a mathematical theory for the H(div) finite element scheme. For example, it was proved that the new finite element scheme has solutions which admit a certain boundedness in terms of the input data. A solution uniqueness was also possible when the input data satisfies a certain smallness condition. Optimal-order error estimates for the corresponding finite element solutions were established in various Sobolev norms. The finite element solutions from the new scheme feature a full satisfaction of the continuity equation which is highly demanded in scientific computing.

  4. Variational formulation of high performance finite elements: Parametrized variational principles

    Science.gov (United States)

    Felippa, Carlos A.; Militello, Carmello

    1991-01-01

    High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.

  5. Non-conforming finite element methods for transmission eigenvalue problem

    OpenAIRE

    Yang, Yidu; Han, Jiayu; Bi, Hai

    2016-01-01

    The transmission eigenvalue problem is an important and challenging topic arising in the inverse scattering theory. In this paper, for the Helmholtz transmission eigenvalue problem, we give a weak formulation which is a nonselfadjoint linear eigenvalue problem. Based on the weak formulation, we first discuss the non-conforming finite element approximation, and prove the error estimates of the discrete eigenvalues obtained by the Adini element, Morley-Zienkiewicz element, modified-Zienkiewicz ...

  6. Finite element modeling of engineered thin film/coating systems

    International Nuclear Information System (INIS)

    Finite element modeling is becoming an increasingly important tool used in the design methodology and in the analysis of engineered functional thin film/coating systems. In contrast with many analytical modeling methods, modem finite element analysis can readily model non-linear static and transient thermo-mechanical behavior of engineered coating systems. Non-linear finite element analysis can be applied to multi-layered coating systems to predict the stresses and deformations generated during the processing of the coating system and under operating conditions. For example thermo-mechanical finite element analysis can be used to determine the composition and layer geometry of a coating system such that the stresses generated under operating conditions are minimized. In this paper we demonstrate the use of non-linear finite element analysis in the following situations: a) the prediction of contact stresses and film surface crack propagation within the coating system developed during the normal indentation of a hard wear-resistant coating on a soft substrate, and b) the determination of stresses generated in a multi-layered non-wetting, wear-resistant and oxidation resistant glass molding coating system during repeated thermal shot cycling. (author)

  7. Precise magnetostatic field using the finite element method; Calculo de campos magnetostaticos com precisao utilizando o metodo dos elementos finitos

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Francisco Rogerio Teixeira do

    2013-07-01

    The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)

  8. Finite Element Method for Capturing Ultra-relativistic Shocks

    Science.gov (United States)

    Richardson, G. A.; Chung, T. J.

    2003-01-01

    While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.

  9. Prediction of Three-Dimensional Milling Forces Based on Finite Element

    Directory of Open Access Journals (Sweden)

    Lida Zhu

    2014-01-01

    Full Text Available The model of milling force is mainly proposed to predict and analyze the cutting process based on finite element method in this paper. Firstly, milling finite element model is given based on orthogonal cutting principle, and then the influence laws of cutting parameters on chip formation are analyzed by using different simulation parameters. In addition, the three-dimensional milling forces are obtained from finite element models. Finally, the values of milling force by the milling experiment are also compared and analyzed with the simulation values to verify the feasibility and reasonability. It can be shown that milling forces match well between simulation and experiment results, which can provide many good basic data and analysis methods to optimize the machining parameters, reduce tool wear, and improve the workpiece surface roughness and adapt to the programming strategy of high speed machining.

  10. Large-scale all-electron density functional theory calculations using an enriched finite element basis

    CERN Document Server

    Kanungo, Bikash

    2016-01-01

    We present a computationally efficient approach to perform large-scale all-electron density functional theory calculations by enriching the classical finite element basis with compactly supported atom-centered numerical basis functions that are constructed from the solution of the Kohn-Sham (KS) problem for single atoms. We term these numerical basis functions as enrichment functions, and the resultant basis as the enriched finite element basis. The enrichment functions are compactly supported through the use of smooth cutoff functions, which enhances the conditioning and maintains the locality of the basis. The integrals involved in the evaluation of the discrete KS Hamiltonian and overlap matrix in the enriched finite element basis are computed using an adaptive quadrature grid based on the characteristics of enrichment functions. Further, we propose an efficient scheme to invert the overlap matrix by using a block-wise matrix inversion in conjunction with special reduced-order quadrature rules to transform...

  11. COUPLING OF ASSUMED STRESS FINITE ELEMENT AND BOUNDARY ELEMENT METHODS WITH STRESS-TRACTION EQUILIBRIUM

    Institute of Scientific and Technical Information of China (English)

    GUZELBEY Ibrahim H.; KANBER Bahattin; AKPOLAT Abdullah

    2004-01-01

    In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling.

  12. Electrical and Joule heating relationship investigation using Finite Element Method

    Science.gov (United States)

    Thangaraju, S. K.; Munisamy, K. M.

    2015-09-01

    The finite element method is vastly used in material strength analysis. The nature of the finite element solver, which solves the Fourier equation of stress and strain analysis, made it possible to apply for conduction heat transfer Fourier Equation. Similarly the Current and voltage equation is also liner Fourier equation. The nature of the governing equation makes it possible to numerical investigate the electrical joule heating phenomena in electronic component. This paper highlights the Finite Element Method (FEM) application onto semiconductor interconnects to determine the specific contact resistance (SCR). Metal and semiconductor interconnects is used as model. The result confirms the possibility and validity of FEM utilization to investigate the Joule heating due electrical resistance.

  13. Finite element modeling for volume phantom in Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    I. O. Rybina

    2011-10-01

    Full Text Available Using surface phantom, "shadows" of currents, which flow below and under surface tomographic lays, include on this lay, that is cause of adding errors in reconstruction image. For processing modeling in studied object volume isotropic finite elements should be used. Cube is chosen for finite element modeling in this work. Cube is modeled as sum of six rectangular (in the base pyramids, each pyramid consists of four triangular pyramids (with rectangular triangle in the base and hypotenuse, which is equal to cube rib to provide its uniformity and electrical definition. In the case of modeling on frequencies higher than 100 kHz biological tissue resistivities are complex. In this case weight coefficient k will be complex in received cube electrical model (inverse conductivity matrix of the cube finite element.

  14. INTERVAL ARITHMETIC AND STATIC INTERVAL FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    郭书祥; 吕震宙

    2001-01-01

    When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method(FEM). The two parameters,median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. The solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective.

  15. A Finite Element Method for Cracked Components of Structures

    Institute of Scientific and Technical Information of China (English)

    刘立名; 段梦兰; 秦太验; 刘玉标; 柳春图; 余建星

    2003-01-01

    In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.

  16. Engineering computation of structures the finite element method

    CERN Document Server

    Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério

    2015-01-01

    This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...

  17. Finite Element Analysis of Collapse of Metallic Tubes

    Directory of Open Access Journals (Sweden)

    P.K. Gupta

    2008-01-01

    Full Text Available Quasi-static axial and lateral compression tests were conducted on aluminium tubes of circular,rectangular, and square cross sections on a universal testing machine (Instron model 1197.During the compression process, different tubes were collapsed in different modes of collapse.These compression processes were also modelled using FORGE2 finite element code. The codehas the capabilities of automatic mesh generation, modelling of die, creation of material data file,carrying out the finite element computations, and post-processing of results. The deformingtube material was modelled as rigid-visco-plastic. Development of different modes of collapsewas investigated experimentally and computationally. The experimental load-compression curvesand deformed shapes are compared with the computed results and found in good agreement.It is found that the proposed finite element models of the different compression processes arecapable of predicting the modes of collapse.

  18. An Object Oriented, Finite Element Framework for Linear Wave Equations

    Energy Technology Data Exchange (ETDEWEB)

    Koning, Joseph M. [Univ. of California, Berkeley, CA (United States)

    2004-03-01

    This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.

  19. Flow Applications of the Least Squares Finite Element Method

    Science.gov (United States)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  20. Finite element method for eigenvalue problems in electromagnetics

    Science.gov (United States)

    Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, Fred B.

    1994-01-01

    Finite element method (FEM) has been a very powerful tool to solve many complex problems in electromagnetics. The goal of the current research at the Langley Research Center is to develop a combined FEM/method of moments approach to three-dimensional scattering/radiation problem for objects with arbitrary shape and filled with complex materials. As a first step toward that goal, an exercise is taken to establish the power of FEM, through closed boundary problems. This paper demonstrates the developed of FEM tools for two- and three-dimensional eigenvalue problems in electromagnetics. In section 2, both the scalar and vector finite elements have been used for various waveguide problems to demonstrate the flexibility of FEM. In section 3, vector finite element method has been extended to three-dimensional eigenvalue problems.

  1. Finite element simulation and testing of ISW CFRP anchorage

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Goltermann, Per; Hertz, Kristian Dahl

    2013-01-01

    Several Carbon Fibre Reinforced Polymers (CFRP) systems have been used successfully for strengthening of structures during the last decades. However, the fracture often occurs in the concrete adherent or in the adhesive interface when used for steel strengthening. As a consequence the CFRP...... to the remaining structure. However, reaching the full capacity of the CFRP material is difficult since anchoring often courses premature failure modes such as crushing of the Fibre Reinforced Polymers (FRP), slip in the FRP and adjacent adherent, cutting of the fibres, bending of fibres and frontal overload...... is modelled in the 3D finite Element program ABAQUS, just as digital image correlation (DIC) testing was performed to verify the finite element simulation. Also a new optimized design was produced to ensure that the finite element simulation and anchorage behaviour correlated well. It is seen...

  2. An Object Oriented, Finite Element Framework for Linear Wave Equations

    Energy Technology Data Exchange (ETDEWEB)

    Koning, J M

    2004-08-12

    This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.

  3. FINITE ELEMENT EVALUATION AND OPTIMIZATION OF GEOMETRY WITH DOE

    Directory of Open Access Journals (Sweden)

    Janko D. Jovanovic

    2011-03-01

    Full Text Available Since 1960, Taguchi methods have been used for improving the quality of Japanese products with great success. Basic assumption of Taguchi's design for six sigma or robust design is that quality must be designed into a product from the start at both the product and process design stage in order to improve product reliability and manufacturability. This paper deals with case study of product design based on Taguchi's approach that involves parametric optimization of piston rod geometry aiming mass reduction with stress restriction. Finite element analysis software ANSYS Workbench was used to get access to CAD parameters of piston rod within a process of parametric finite element evaluation and optimization.

  4. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    Science.gov (United States)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  5. Preconditioning for Mixed Finite Element Formulations of Elliptic Problems

    KAUST Repository

    Wildey, Tim

    2013-01-01

    In this paper, we discuss a preconditioning technique for mixed finite element discretizations of elliptic equations. The technique is based on a block-diagonal approximation of the mass matrix which maintains the sparsity and positive definiteness of the corresponding Schur complement. This preconditioner arises from the multipoint flux mixed finite element method and is robust with respect to mesh size and is better conditioned for full permeability tensors than a preconditioner based on a diagonal approximation of the mass matrix. © Springer-Verlag Berlin Heidelberg 2013.

  6. Finite element methods for nonlinear elastostatic problems in rubber elasticity

    Science.gov (United States)

    Oden, J. T.; Becker, E. B.; Miller, T. H.; Endo, T.; Pires, E. B.

    1983-01-01

    A number of finite element methods for the analysis of nonlinear problems in rubber elasticity are outlined. Several different finite element schemes are discussed. These include the augmented Lagrangian method, continuation or incremental loading methods, and associated Riks-type methods which have the capability of incorporating limit point behavior and bifurcations. Algorithms for the analysis of limit point behavior and bifurcations are described and the results of several numerical experiments are presented. In addition, a brief survey of some recent work on modelling contact and friction in elasticity problems is given. These results pertain to the use of new nonlocal and nonlinear friction laws.

  7. Splitting extrapolation based on domain decomposition for finite element approximations

    Institute of Scientific and Technical Information of China (English)

    吕涛; 冯勇

    1997-01-01

    Splitting extrapolation based on domain decomposition for finite element approximations is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a large scale multidimensional problem is turned to many discrete problems involving several grid parameters The multi-variate asymptotic expansions of finite element errors on independent grid parameters are proved for linear and nonlin ear second order elliptic equations as well as eigenvalue problems. Therefore after solving smaller problems with similar sizes in parallel, a global fine grid approximation with higher accuracy is computed by the splitting extrapolation method.

  8. Discontinuous Galerkin finite element methods for gradient plasticity.

    Energy Technology Data Exchange (ETDEWEB)

    Garikipati, Krishna. (University of Michigan, Ann Arbor, MI); Ostien, Jakob T.

    2010-10-01

    In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.

  9. Two-dimensional finite-element temperature variance analysis

    Science.gov (United States)

    Heuser, J. S.

    1972-01-01

    The finite element method is extended to thermal analysis by forming a variance analysis of temperature results so that the sensitivity of predicted temperatures to uncertainties in input variables is determined. The temperature fields within a finite number of elements are described in terms of the temperatures of vertices and the variational principle is used to minimize the integral equation describing thermal potential energy. A computer calculation yields the desired solution matrix of predicted temperatures and provides information about initial thermal parameters and their associated errors. Sample calculations show that all predicted temperatures are most effected by temperature values along fixed boundaries; more accurate specifications of these temperatures reduce errors in thermal calculations.

  10. SPLITTING MODULUS FINITE ELEMENT METHOD FOR ORTHOGONAL ANISOTROPIC PLATE BENGING

    Institute of Scientific and Technical Information of China (English)

    党发宁; 荣廷玉; 孙训方

    2001-01-01

    Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.

  11. The Finite Element Method An Introduction with Partial Differential Equations

    CERN Document Server

    Davies, A J

    2011-01-01

    The finite element method is a technique for solving problems in applied science and engineering. The essence of this book is the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. The method is developed for the solution of Poisson's equation, in a weighted-residual context, and then proceeds to time-dependent and nonlinear problems. The relationship with the variational approach is alsoexplained. This book is written at an introductory level, developing all the necessary concepts where required. Co

  12. Local and Parallel Finite Element Algorithms for Eigenvalue Problems

    Institute of Scientific and Technical Information of China (English)

    Jinchao Xu; Aihui Zhou

    2002-01-01

    Some new local and parallel finite element algorithms are proposed and analyzed in this paper for eigenvalue problems. With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a relatively coarse grid together with solutions of some linear algebraic systems on fine grid by using some local and parallel procedure. A theoretical tool for analyzing these algorithms is some local error estimate that is also obtained in this paper for finite element approximations of eigenvectors on general shape-regular grids.

  13. Matlab and C programming for Trefftz finite element methods

    CERN Document Server

    Qin, Qing-Hua

    2008-01-01

    Although the Trefftz finite element method (FEM) has become a powerful computational tool in the analysis of plane elasticity, thin and thick plate bending, Poisson's equation, heat conduction, and piezoelectric materials, there are few books that offer a comprehensive computer programming treatment of the subject. Collecting results scattered in the literature, MATLAB® and C Programming for Trefftz Finite Element Methods provides the detailed MATLAB® and C programming processes in applications of the Trefftz FEM to potential and elastic problems. The book begins with an introduction to th

  14. Diffusive mesh relaxation in ALE finite element numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dube, E.I.

    1996-06-01

    The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.

  15. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    International Nuclear Information System (INIS)

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  16. Compatible finite element spaces for geophysical fluid dynamics

    CERN Document Server

    Natale, Andrea

    2016-01-01

    Compatible finite elements provide a framework for preserving important structures in equations of geophysical fluid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical fluid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties.

  17. Large eddy simulation with unstructured grids and finite elements

    International Nuclear Information System (INIS)

    A large Eddy simulation was conducted with a general purpose Finite Element code (N3S). The flow around a square cylinder, a typical case for Bluff Body Aerodynamics and with well documented experiments (Lyn and Durao), was used as a test case. The simple mixing length model of Smagorinsky was applied together with wall functions and yielded reasonable agreement with experiment for mean, and pseudo periodic velocities. Filtering difficulties associated with LES in finite elements and possible improvements are considered. (authors). 10 refs., 7 figs

  18. Correlation of composite material test results with finite element analysis

    Science.gov (United States)

    Guƫu, M.

    2016-08-01

    In this paper are presented some aspects regarding the method of simulation of composite materials testing with finite element analysis software. There were simulated tensile and shear tests of specimens manufactured from glass fiber reinforced polyester. For specimens manufacturing two types of fabrics were used: unidirectional and bidirectional. Experimentally determined elastic properties of composite material were used as input data. Modeling of composite architecture of the specimens was performed with ANSYS Composite PrepPost software. Finite element analysis stresses and strains on strain gauges bonding area were considered and compared with the real values in a diagram. After results comparison, potential causes of deviations were identified.

  19. Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method

    Directory of Open Access Journals (Sweden)

    Emir Gülümser

    2014-01-01

    Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.

  20. Finite element microscopic stress analysis of cracked composite systems

    Science.gov (United States)

    Ko, W. L.

    1978-01-01

    This paper considers the stress concentration problems of two types of cracked composite systems: (1) a composite system with a broken fiber (a penny-shaped crack problem), and (2) a composite system with a cracked matrix (an annular crack problem). The cracked composite systems are modeled with triangular and trapezoidal ring finite elements. Using NASTRAN (NASA Structural Analysis) finite element computer program, the stress and deformation fields in the cracked composite systems are calculated. The effect of fiber-matrix material combination on the stress concentrations and on the crack opening displacements is studied.

  1. Parallel finite element modeling of earthquake ground response and liquefaction

    Institute of Scientific and Technical Information of China (English)

    Jinchi Lu(陆金池); Jun Peng(彭军); Ahmed Elgamal; Zhaohui Yang(杨朝晖); Kincho H. Law

    2004-01-01

    Parallel computing is a promising approach to alleviate the computational demand in conducting large-scale finite element analyses. This paper presents a numerical modeling approach for earthquake ground response and liquefaction using the parallel nonlinear finite element program, ParCYCLIC, designed for distributed-memory message-passing parallel computer systems. In ParCYCLIC, finite elements are employed within an incremental plasticity, coupled solid-fluid formulation. A constitutive model calibrated by physical tests represents the salient characteristics of sand liquefaction and associated accumulation of shear deformations. Key elements of the computational strategy employed in ParCYCLIC include the development of a parallel sparse direct solver, the deployment of an automatic domain decomposer, and the use of the Multilevel Nested Dissection algorithm for ordering of the finite element nodes. Simulation results of centrifuge test models using ParCYCLIC are presented. Performance results from grid models and geotechnical simulations show that ParCYCLIC is efficiently scalable to a large number of processors.

  2. Behaviour of Lagrangian triangular mixed fluid finite elements

    Indian Academy of Sciences (India)

    S Gopalakrishnan; G Devi

    2000-02-01

    The behaviour of mixed fluid finite elements, formulated based on the Lagrangian frame of reference, is investigated to understand the effects of locking due to incompressibility and irrotational constraints. For this purpose, both linear and quadratic mixed triangular fluid elements are formulated. It is found that there exists a close relationship between the penalty finite element approach that uses reduced/selective numerical integration to alleviate locking, and the mixed finite element approach. That is, performing reduced/selective integration in the penalty approach amounts to reducing the order of pressure interpolation in the mixed finite element approach for obtaining similar results. A number of numerical experiments are performed to determine the optimum degree of interpolation of both the mean pressure and the rotational pressure in order that the twin constraints are satisfied exactly. For this purpose, the benchmark solution of the rigid rectangular tank is used. It is found that, irrespective of the degree of mean and the rotational pressure interpolation, the linear triangle mesh, with or without central bubble function (incompatible mode), locks when both the constraints are enforced simultaneously. However, for quadratic triangle, linear interpolation of the mean pressure and constant rotational pressure ensures exact satisfaction of the constraints and the mesh does not lock. Based on the results obtained from the numerical experiments, a number of important conclusions are arrived at.

  3. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett

    2012-02-03

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.

  4. An Hybrid Finite Volume-Finite Element Method for Variable Density Incompressible Flows

    OpenAIRE

    Calgaro, Caterina; Creusé, Emmanuel; Goudon, Thierry

    2008-01-01

    This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a Finite Volume approach for treating the mass conservation equation and a Finite Element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the met...

  5. Numerical techniques in linear duct acoustics. [finite difference and finite element analyses

    Science.gov (United States)

    Baumeister, K. J.

    1980-01-01

    Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.

  6. Development of Generic Field Classes for Finite Element and Finite Difference Problems

    Directory of Open Access Journals (Sweden)

    Diane A. Verner

    1993-01-01

    Full Text Available This article considers the development of a reusable object-oriented array library, as well as the use of this library in the construction of finite difference and finite element codes. The classes in this array library are also generic enough to be used to construct other classes specific to finite difference and finite element methods. We demonstrate the usefulness of this library by inserting it into two existing object-oriented scientific codes developed at Sandia National Laboratories. One of these codes is based on finite difference methods, whereas the other is based on finite element methods. Previously, these codes were separately maintained across a variety of sequential and parallel computing platforms. The use of object-oriented programming allows both codes to make use of common base classes. This offers a number of advantages related to optimization and portability. Optimization efforts, particularly important in large scientific codes, can be focused on a single library. Furthermore, by encapsulating machine dependencies within this library, the optimization of both codes on different architec-tures will only involve modification to a single library.

  7. Finite Element Analysis of Connecting Rod of IC Engine

    OpenAIRE

    Samal Prasanta Kumar; Murali B; Abhilash; Pasha Tajmul

    2015-01-01

    A connecting rod of IC engine is subjected to complex dynamic loading conditions. Therefore it is a critical machine element which attracts researchers’ attention. This paper aims at development of simple 3D model, finite element analyses and the optimization by intuition of the connecting rod for robust design. In this study the detailed load analysis under in-service loading conditions was performed for a typical connecting rod. The CAD model was prepared taking the detailed dimensions from...

  8. Interlaminar Stress Recovery for Three-Dimensional Finite Elements

    OpenAIRE

    Fagiano, C.; Abdalla, M.M.; Kassapoglou, C.; Gürdal, Z.

    2010-01-01

    Abstract An accurate evaluation of interlaminar stresses in multilayer composite laminates is crucial for the correct prediction of the onset of delamination. In general, three dimensional finite element models are required for acceptable accuracy, especially near free edges and stress concentrations. Interlaminar stresses are continuous both across and along layer interfaces. Nonetheless, the continuity of interlaminar stresses is difficult to enforce in C0 interpolated elements. ...

  9. Valuing Asian options using the finite element method and duality techniques

    Science.gov (United States)

    Foufas, Georgios; Larson, Mats G.

    2008-12-01

    The main objective of this paper is to develop an adaptive finite element method for computation of the values, and different sensitivity measures, of the Asian option with both fixed and floating strike. The pricing is based on Black-Scholes PDE-model and a method developed by Vecer where the resulting PDEs are of parabolic type in one spatial dimension and can be applied to both continuous and discrete Asian options. We propose using an adaptive finite element method which is based on a posteriori estimates of the error in desired quantities, which we derive using duality techniques. The a posteriori error estimates are tested and verified, and are used to calculate optimal meshes for each type of option. The use of adapted meshes gives superior accuracy and performance with less degrees of freedom than using uniform meshes. The suggested adaptive finite element method is stable, gives fast and accurate results, and can be applied to other types of options as well.

  10. Choice of input fields in stochastic finite elements

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob

    1999-01-01

    The problem of the arbitrary choice of variables for random field modelling in structural mechanics or in soil mechanics is treated. For example, it is relevant to ask the question of whether it is best to choose a stiffness field along a beam element or to choose its reciprocal field......, the flexibility field, as the input to the stochastic finite element model. To answer this question the focus should be on the error of the output of the mechanical model rather than on the input field itself when discretizing the held through replacing it by a field defined in terms of a finite number of random...... variables. Several reported discretization methods define these random variables as integrals of the product of the held and some suitable weight functions. In particular, the weight functions can be Dirac delta functions whereby the random variables become the field values at a finite set of given points...

  11. Implicit extrapolation methods for multilevel finite element computations

    Energy Technology Data Exchange (ETDEWEB)

    Jung, M.; Ruede, U. [Technische Universitaet Chemnitz-Zwickau (Germany)

    1994-12-31

    The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.

  12. Finite Element Vibration and Dynamic Response Analysis of Engineering Structures

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    2000-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.

  13. Piezoelectric Accelerometers Modification Based on the Finite Element Method

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...

  14. Finite element estimation of acoustical response functions in HID lamps

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Bernd; Wolff, Marcus [Department of Mechanical Engineering and Production, School of Engineering and Computer Science, Hamburg University of Applied Sciences, Berliner Tor 21, 20099 Hamburg (Germany); Hirsch, John; Antonis, Piet [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Bhosle, Sounil [Universite de Toulouse (United States); Barrientos, Ricardo Valdivia, E-mail: bernd.baumann@haw-hamburg.d [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)

    2009-11-21

    High intensity discharge lamps can experience flickering and even destruction when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp's arc tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.

  15. MULTIGRID FOR THE MORTAR FINITE ELEMENT FOR PARABOLIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Xue-jun Xu; Jin-ru Chen

    2003-01-01

    In this paper, a mortar finite element method for parabolic problem is presented. Multigrid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, I.e, the convergence rate is independent of the mesh size L and the time step parameter т.

  16. The future of the finite element method in geotechnics

    NARCIS (Netherlands)

    Brinkgreve, R.B.J.

    2012-01-01

    In this presentation a vision is given on tlie fiiture of the finite element method (FEM) for geotechnical engineering and design. In the past 20 years the FEM has proven to be a powerful method for estimating deformation, stability and groundwater flow in geoteclmical stmctures. Much has been achie

  17. An Eulerean finite element model for penetration in layered soil

    NARCIS (Netherlands)

    Berg, van den Peter; Borst, de Rene; Huetink, Han

    1996-01-01

    An Eulerean large-strain finite element formulation is presented to simulate static soil penetration. The method is an extension of the Updated Lagrangean description to an Eulerean formulation taking into account convection of deformation-history-dependent properties as well as material properties.

  18. Hands on applied finite element analysis application with ANSYS

    CERN Document Server

    Arslan, Mehmet Ali

    2015-01-01

    Hands on Applied Finite Element Analysis Application with Ansys is truly an extraordinary book that offers practical ways of tackling FEA problems in machine design and analysis. In this book, 35 good selection of example problems have been presented, offering students the opportunity to apply their knowledge to real engineering FEA problem solutions by guiding them with real life hands on experience.

  19. Space-time finite elements numerical solutions of Burgers Problems

    Directory of Open Access Journals (Sweden)

    M. Morandi Cecchi

    1996-05-01

    Full Text Available A finite-element numerical method to solve a weak formulation of quasi-linear parabolic problems on space-time domain governed by Burgers equation is given. Stability and errors estimates theorems for the numerical solution are proved for smooth initial conditions and numerical examples are presented.

  20. Experiences in interfacing NASTRAN with another finite element program

    Science.gov (United States)

    Schwerzler, D. D.; Leverenz, R. K.

    1972-01-01

    The coupling of NASTRAN to another finite element program developed for the static analysis of automotive structures is discussed. The two programs were coupled together to use the substructuring capability of the in-house program and the normal mode analysis capability of NASTRAN. Modifications were made to the NASTRAN program in order to make the coupling feasible.

  1. A Finite Element Solution for Barrel Dynamic Stress

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhi-yin; NING Bian-fang; WANG Zai-sen

    2007-01-01

    With the APDL language of ANSYS finite element analysis software, the solution program for barrel dynamic stress is developed. The paper describes the pivotal problems of dynamic strength design and provides a foundation for realizing the engineering and programming of barrel dynamic strength design.

  2. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.

    1997-01-01

    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The tensi

  3. Closed Loop Finite Element Modeling of Piezoelectric Smart Structures

    Directory of Open Access Journals (Sweden)

    Guang Meng

    2006-01-01

    Full Text Available The objective of this paper is to develop a general design and analysis scheme for actively controlled piezoelectric smart structures. The scheme involves dynamic modeling of a smart structure, designing control laws and closed-loop simulation in a finite element environment. Based on the structure responses determined by finite element method, a modern system identification technique known as Observer/Kalman filter Identification (OKID technique is used to determine the system Markov parameters. The Eigensystem Realization Algorithm (ERA is then employed to develop an explicit state space model of the equivalent linear system for control law design. The Linear Quadratic Gaussian (LQG control law design technique is employed to design a control law. By using ANSYS parametric design language (APDL, the control law is incorporated into the ANSYS finite element model to perform closed loop simulations. Therefore, the control law performance can be evaluated in the context of a finite element environment. Finally, numerical examples have demonstrated the validity and efficiency of the proposed design scheme. Without any further modifications, the design scheme can be readily applied to other complex smart structures.

  4. A FINITE VOLUME ELEMENT METHOD FOR THERMAL CONVECTION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    芮洪兴

    2004-01-01

    Consider the finite volume element method for the thermal convection problem with the infinite Prandtl number. The author uses a conforming piecewise linear function on a fine triangulation for velocity and temperature, and a piecewise constant function on a coarse triangulation for pressure. For general triangulation the optimal order H1 norm error estimates are given.

  5. Hyperelastic Modelling and Finite Element Analysing of Rubber Bushing

    Directory of Open Access Journals (Sweden)

    Merve Yavuz ERKEK

    2015-03-01

    Full Text Available The objective of this paper is to obtain stiffness curves of rubber bushings which are used in automotive industry with hyperelastic finite element model. Hyperelastic material models were obtained with different material tests. Stress and strain values and static stiffness curves were determined. It is shown that, static stiffness curves are nonlinear. The level of stiffness affects the vehicle dynamics behaviour.

  6. Finite Element Method application for modeling of PVD coatings properties

    Directory of Open Access Journals (Sweden)

    W. Sitek

    2008-04-01

    Full Text Available Purpose: The main subject of this paper is the computer simulation with the use of finite element method for determining the internal stresses in coatings Ti+TiN obtained in the magnetron PVD process on the sintered high-speed steel of the ASP 30 in different temperatures of 460, 500 and 540 °C.Design/methodology/approach: Computer simulation of stresses was carried out with the help of finite element method in ANSYS environment, and the experimental values of stresses were determined basing on the X-ray diffraction patterns.Findings: The presented model meets the initial criteria, which gives ground to the assumption about its usability for determining the stresses in coatings, employing the finite element method using the ANSYS program. The computer simulation results correlate with the experimental results.Research limitations/implications: To evaluate with more details the possibility of applying these coatings tools, further computer simulation should be concentrated on the determination of other properties of the coatings for example- microhardness.Originality/value: Presently the computer simulation is very popular and it is based on the finite element method, which allows to better understand the interdependence between parameters of process and choosing optimal solution. The possibility of application faster and faster calculation machines and coming into being many software make possible the creation of more precise models and more adequate ones to reality.

  7. 2-D Finite Element Analysis of Massive RC Structures

    DEFF Research Database (Denmark)

    Saabye Ottosen, Niels

    1982-01-01

    Nonlinear analysis of concrete structures using finite elements is discussed. The applications include a thick-walled top-closure for a pressure vessel as well as the delicate problems of beams failing in shear. The top-closure analysis evaluates the effect of two different failure criteria...

  8. Convergent finite element methods for compressible barotropic Stokes systems

    OpenAIRE

    Kenneth H. Karlsen; Karper, Trygve K.

    2008-01-01

    We propose finite element methods for compressible barotropic Stokes systems. We state convergence results for these methods and outline their proofs. The principal tools of the proofs are higher integrability estimates for the discrete density, equations for the discrete effective viscous flux, and renormalized formulations of the numerical method for the density equation.

  9. Discontinuous Galerkin Immersed Finite Element Methods for Parabolic Interface Problems

    OpenAIRE

    Yang, Qing; Zhang, Xu

    2015-01-01

    In this article, interior penalty discontinuous Galerkin methods using immersed finite element functions are employed to solve parabolic interface problems. Typical semi-discrete and fully discrete schemes are presented and analyzed. Optimal convergence for both semi-discrete and fully discrete schemes are proved. Some numerical experiments are provided to validate our theoretical results.

  10. Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems

    OpenAIRE

    Lin, Tao; Yang, Qing; Zhang, Xu

    2015-01-01

    We present partially penalized immersed finite element methods for solving parabolic interface problems on Cartesian meshes. Typical semi-discrete and fully discrete schemes are discussed. Error estimates in an energy norm are derived. Numerical examples are provided to support theoretical analysis.

  11. Finite Element Analysis of Boron Diffusion in Wooden Poles

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Hoffmeyer, P.; Bechgaard, C.;

    2003-01-01

    The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....

  12. Finite element analysis of boron diffusion in wooden Poles

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl;

    2004-01-01

    The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....

  13. DISCONTINUOUS FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Abdellatif Agouzal

    2000-01-01

    A discontinuous finite element method for convection-diffusion equations is proposed and analyzed. This scheme is designed to produce an approximate solution which is completely discontinuous. Optimal order of convergence is obtained for model problem. This is the same convergence rate known for the classical methods.

  14. Finite Element Analysis of Boron Diffusion in Wooden Poles

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl;

    2004-01-01

    The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....

  15. Finite element modeling of plasmon based single-photon sources

    DEFF Research Database (Denmark)

    Chen, Yuntian; Gregersen, Niels; Nielsen, Torben Roland;

    2011-01-01

    A finite element method (FEM) approach of calculating a single emitter coupled to plasmonic waveguides has been developed. The method consists of a 2D model and a 3D model: (I) In the 2D model, we have calculated the spontaneous emission decay rate of a single emitter into guided plasmonic modes...

  16. Predicting target displacements using ultrasound elastography and finite element modeling

    NARCIS (Netherlands)

    Buijs, J.O. den; Hansen, H.H.G.; Lopata, R.G.P.; Korte, C.L. de; Misra, S.

    2011-01-01

    Soft tissue displacements during minimally invasive surgical procedures may cause target motion and subsequent misplacement of the surgical tool. A technique is presented to predict target displacements using a combination of ultrasound elastography and finite element (FE) modeling. A cubic gelatin/

  17. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1995-01-01

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  18. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  19. Finite Groups with Three Conjugacy Class Sizes of some Elements

    Indian Academy of Sciences (India)

    Qingjun Kong

    2012-08-01

    Let be a finite group. We prove as follows: Let be a -solvable group for a fixed prime . If the conjugacy class sizes of all elements of primary and biprimary orders of are $\\{1,p^a,n\\}$ with and two positive integers and (,)=1, then is -nilpotent or has abelian Sylow -subgroups.

  20. Finite Element Studies Of Tangent Mounted Conical Optics

    Science.gov (United States)

    Stoneking, J.; Casstevens, J.; Stillman, D.

    1982-12-01

    This paper presents experimental and analytical results from a study investigating the effect of centrifugal force and gravity on two candidate mirror fixture designs to be used on a diamond-turning ma-chine. The authors illustrate and discuss the use of the finite element method as an aid in the design and fabrication of high precision metallic optical components.

  1. Finite element simulation of stress intensity factors in elastic-plastic crack growth

    Institute of Scientific and Technical Information of China (English)

    ALSHOAIBI Abdulnaser M.; ARIFFIN Ahmad Kamal

    2006-01-01

    A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions.Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation.

  2. A review of flexibility-based finite element method for beam-column elements

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; ZHAI Changhai; XIE Lili

    2009-01-01

    For material nonlinear problem, elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flexibility-based finite element method is provided to enhance the robustness of structure analysis. The research on beam-column elements is the mainstream in the research on flexibility-based finite element method at present. The original development of flexibility-based finite element method is reviewed, and the further development of this method is then presented in several specific aspects, such as geometrically nonlinear analysis and dynamic analysis. The further research needed to be carried out in the future is finally discussed.

  3. A DOMAIN DECOMPOSITION ALGORITHM WITH FINITE ELEMENT-BOUNDARY ELEMENT COUPLING

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A domain decomposition algorithm coupling the finite element and the boundary element was presented. It essentially involves subdivision of the analyzed domain into sub-regions being independently modeled by two methods, i.e., the finite element method (FEM) and the boundary element method (BEM). The original problem was restored with continuity and equilibrium conditions being satisfied on the interface of the two sub-regions using an iterative algorithm. To speed up the convergence rate of the iterative algorithm, a dynamically changing relaxation parameter during iteration was introduced. An advantage of the proposed algorithm is that the locations of the nodes on the interface of the two sub-domains can be inconsistent. The validity of the algorithm is demonstrated by the consistence of the results of a numerical example obtained by the proposed method and those by the FEM, the BEM and a present finite element-boundary element (FE-BE) coupling method.

  4. Finite element analysis of degraded concrete structures - Workshop proceedings

    International Nuclear Information System (INIS)

    This workshop is related to the finite element analysis of degraded concrete structures. It is composed of three sessions. The first session (which title is: the use of finite element analysis in safety assessments) comprises six papers which titles are: Historical Development of Concrete Finite Element Modeling for Safety Evaluation of Accident-Challenged and Aging Concrete Structures; Experience with Finite Element Methods for Safety Assessments in Switzerland; Stress State Analysis of the Ignalina NPP Confinement System; Prestressed Containment: Behaviour when Concrete Cracking is Modelled; Application of FEA for Design and Support of NPP Containment in Russia; Verification Problems of Nuclear Installations Safety Software of Strength Analysis (NISS SA). The second session (title: concrete containment structures under accident loads) comprises seven papers which titles are: Two Application Examples of Concrete Containment Structures under Accident Load Conditions Using Finite Element Analysis; What Kind of Prediction for Leak rates for Nuclear Power Plant Containments in Accidental Conditions; Influence of Different Hypotheses Used in Numerical Models for Concrete At Elevated Temperatures on the Predicted Behaviour of NPP Core Catchers Under Severe Accident Conditions; Observations on the Constitutive Modeling of Concrete Under Multi-Axial States at Elevated Temperatures; Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage; Program of Containment Concrete Control During Operation for the Temelin Nuclear Power Plant; Static Limit Load of a Deteriorated Hyperbolic Cooling Tower. The third session (concrete structures under extreme environmental load) comprised five papers which titles are: Shear Transfer Mechanism of RC Plates After Cracking; Seismic Back Calculation of an Auxiliary Building of the Nuclear Power Plant Muehleberg, Switzerland; Seismic Behaviour of Slightly Reinforced Shear Wall Structures; FE Analysis of Degraded Concrete

  5. Investigations on Actuator Dynamics through Theoretical and Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Somashekhar S. Hiremath

    2010-01-01

    Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.

  6. Wave Transformation Modeling with Effective Higher-Order Finite Elements

    Directory of Open Access Journals (Sweden)

    Tae-Hwa Jung

    2016-01-01

    Full Text Available This study introduces a finite element method using a higher-order interpolation function for effective simulations of wave transformation. Finite element methods with a higher-order interpolation function usually employ a Lagrangian interpolation function that gives accurate solutions with a lesser number of elements compared to lower order interpolation function. At the same time, it takes a lot of time to get a solution because the size of the local matrix increases resulting in the increase of band width of a global matrix as the order of the interpolation function increases. Mass lumping can reduce computation time by making the local matrix a diagonal form. However, the efficiency is not satisfactory because it requires more elements to get results. In this study, the Legendre cardinal interpolation function, a modified Lagrangian interpolation function, is used for efficient calculation. Diagonal matrix generation by applying direct numerical integration to the Legendre cardinal interpolation function like conducting mass lumping can reduce calculation time with favorable accuracy. Numerical simulations of regular, irregular and solitary waves using the Boussinesq equations through applying the interpolation approaches are carried out to compare the higher-order finite element models on wave transformation and examine the efficiency of calculation.

  7. A stabilized mixed finite element method for darcy flow

    International Nuclear Information System (INIS)

    This paper presents a new stabilized mixed finite element method for Darcy flow. The new method finds its roots in the variational multiscale framework proposed by Hughes. The stabilized form is stable and convergent for arbitrary combinations of pressure and velocity interpolations. A global convergence proof is provided and convergence rates are derived. Based on the formulation, a family of triangular and quadrilateral elements is developed. Several numerical simulations are presented that corroborate the theoretical convergence rates. Simulations of various distorted mesh configurations as well as arbitrary combinations of triangular and quadrilateral elements are presented to show the superior performance of the method for various practical applications. Refs. 1 (author)

  8. PWSCC Assessment by Using Extended Finite Element Method

    Science.gov (United States)

    Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk

    2015-12-01

    The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.

  9. Finite element dynamic analysis on CDC STAR-100 computer

    Science.gov (United States)

    Noor, A. K.; Lambiotte, J. J., Jr.

    1978-01-01

    Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.

  10. A nonlinear truss finite element with varying stiffness

    Directory of Open Access Journals (Sweden)

    Ďuriš R.

    2007-11-01

    Full Text Available This contribution deals with a new truss element with varying stiffness intended to geometric and physically nonlinear analysis of composite structures. We present a two-node straight composite truss finite element derived by new nonincremental full geometric nonlinear approach. Stiffness matrix of this composite truss contains transfer constants, which accurately describe the polynomial longitudinal variation of cross-section area and material properties. These variations could be caused by nonhomogenous temperature field or by varying components volume fractions of the composite or/and functionally graded materials (FGM´s. Numerical examples were solved to verify the established relations. The accuracy of the new proposed finite truss element are compared and discused.

  11. Streamline upwind finite element method for conjugate heat transfer problems

    Institute of Scientific and Technical Information of China (English)

    Niphon Wansophark; Atipong Malatip; Pramote Dechaumphai; Yunming Chen

    2005-01-01

    This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components,the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.

  12. Exploring Critical Collapse in the Semilinear Wave Equation using Space-Time Finite Elements

    CERN Document Server

    Lim, Hyun; Kimn, Jung-Han

    2014-01-01

    A fully implicit numerical approach based on the space-time finite element method is implemented for the semilinear wave equation in 1(space) + 1(time) dimensions to explore critical collapse and search for self-similar solutions. Previous work studied this behavior by exploring the threshold of singularity formation using time marching finite difference techniques while this work introduces an adaptive time parallel numerical method to the problem. The semilinear wave equation with a $p = 7$ term is examined in spherical symmetry. The impact of mesh refinement and the time additive Schwarz preconditioner in conjunction with Krylov Subspace Methods are examined.

  13. NEW ALGORITHM OF COUPLING ELEMENT-FREE GALERKIN WITH FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guang-ming; SONG Shun-cheng

    2005-01-01

    Through the construction of a new ramp function, the element-free Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the interface regions, both satisfying the essential boundary conditions and deploying meshless nodes and finite elements in a convenient and flexible way, which can meet the requirements of computation for complicated field. The comparison between the results of the present study and the corresponding analytical solutions shows this method is feasible and effective.

  14. Residual-driven online generalized multiscale finite element methods

    KAUST Repository

    Chung, Eric T.

    2015-09-08

    The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator which shows that one needs to have an offline space with certain properties to guarantee that additional online multiscale basis function will decrease the error. This error decrease is independent of physical parameters, such as the contrast and multiple scales in the problem. The offline spaces are constructed using Generalized Multiscale Finite Element Methods (GMsFEM). We show that if one chooses a sufficient number of offline basis functions, one can guarantee that additional online multiscale basis functions will reduce the error independent of contrast. We note that the construction of online basis functions is motivated by the fact that the offline space construction does not take into account distant effects. Using the residual information, we can incorporate the distant information provided the offline approximation satisfies certain properties. In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.

  15. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    Science.gov (United States)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  16. An extended finite element formulation for modeling the response of polycrystalline materials to shock loading

    Science.gov (United States)

    Robbins, Joshua; Voth, Thomas

    2007-06-01

    The eXtended Finite Element Method (X-FEM) is a finite element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static mesoscale material failure to dendrite growth. Here we adapt the recent advances of Benson et al. [2] and Belytchko et al. [3] to model shock loading of polycrystalline material. Through several demonstration problems we evaluate the method for modeling the shock response of polycrystalline materials at the mesoscale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries. ([1] N. Moes, J. Dolbow, J and T. Belytschko, 1999,``A finite element method for crack growth without remeshing,'' International Journal for Numerical Methods in Engineering, 46, 131-150. [2] E. Vitali, and D. J. Benson, 2006, ``An extended finite element formulation for contact in multi-material arbitrary Lagrangian-Eulerian calculations,'' International Journal for Numerical Methods in Engineering, 67, 1420-1444. [3] J-H Song, P. M. A. Areias and T. Belytschko, 2006, ``A method for dynamic crack and shear band propagation with phantom nodes,'' International Journal for Numerical Methods in Engineering, 67, 868-893.)

  17. Stabilized tetrahedral elements for crystal plasticity finite element analysis overcoming volumetric locking

    Science.gov (United States)

    Cheng, Jiahao; Shahba, Ahmad; Ghosh, Somnath

    2016-05-01

    Image-based CPFE modeling involves computer generation of virtual polycrystalline microstructures from experimental data, followed by discretization into finite element meshes. Discretization is commonly accomplished using three-dimensional four-node tetrahedral or TET4 elements, which conform to the complex geometries. It has been commonly observed that TET4 elements suffer from severe volumetric locking when simulating deformation of incompressible or nearly incompressible materials. This paper develops and examines three locking-free stabilized finite element formulations in the context of crystal plasticity finite element analysis. They include a node-based uniform strain (NUS) element, a locally integrated B-bar (LIB) based element and a F-bar patch (FP) based element. All three formulations are based on the partitioning of TET4 element meshes and integrating over patches to obtain favorable incompressibility constraint ratios without adding large degrees of freedom. The results show that NUS formulation introduces unstable spurious energy modes, while the LIB and FP elements stabilize the solutions and are preferred for reliable CPFE analysis. The FP element is found to be computationally efficient over the LIB element.

  18. Eigenvalue approximation from below using non-conforming finite elements

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This is a survey article about using non-conforming finite elements in solving eigenvalue problems of elliptic operators,with emphasis on obtaining lower bounds. In addition,this article also contains some new materials for eigenvalue approximations of the Laplace operator,which include:1) the proof of the fact that the non-conforming Crouzeix-Raviart element approximates eigenvalues associated with smooth eigenfunctions from below;2) the proof of the fact that the non-conforming EQ rot1 element approximates eigenvalues from below on polygonal domains that can be decomposed into rectangular elements;3) the explanation of the phenomena that numerical eigenvalues λ 1,h and λ 3,h of the non-conforming Q rot1 element approximate the true eigenvalues from below for the L-shaped domain. Finally,we list several unsolved problems.

  19. Finite element analysis of ultrasonic wave propagation and scattering

    International Nuclear Information System (INIS)

    In an effort to improve the reliability of ultrasonic nondestructive testing methods, a finite element method was employed to calculate the scattered fields of ultrasound. The accurate analysis of ultrasonic propagation and scattering plays an important role in predicting the response of measurement system, and help the operators optimize test procedures when combined with other components of the testing system. A good system model also makes it possible to perform parametric studies, and in this way the probability of detection and reliability can be improved. In this study, a finite element modeling was developed for the analysis of scattered fields due to cracks, and then the accuracy of results was checked by solving several representative problems. The size of element and the integral time step, which are the critical components for the convergence of numerical results, were determined in ANSYS commercial finite element code. Several propagation and scattering problems in 2-D isotropic and anisotropic materials were solved and their results were compared with analytical results.

  20. Finite element analysis of ultrasonic wave propagation and scattering

    International Nuclear Information System (INIS)

    In an effort to improve the reliability of ultrasonic nondestructive testing methods, a finite element method was employed to calculate the scattered fields of ultrasound. The accurate analysis of ultrasonic propagation and scattering plays an important role in predicting the response of measurement system, and help tile operators optimize test procedures when combined with other components of the testing system. A good system model also makes it possible to perform parametric studies, and in this way the probability of detection and reliability can be improved. In this study, a finite element modeling was developed for the analysis of scattered fields due to cracks, and then the accuracy of results was checked by solving several representative problems. The size of element and the integral time step, which are the critical components for the convergence of numerical results, were determined in ANSYS commercial finite element code. Several propagation and scattering problems in 2-D isotropic and anisotropic materials were solved and their results were compared with analytical results.

  1. A tool for finite element deflection analysis of wings

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, Ingemar

    2005-03-01

    A first version (ver 0.1) of a new tool for finite element deflection analysis of wind turbine blades is presented. The software is called SOLDE (SOLid blaDE), and was developed as a Matlab shell around the free finite element codes CGX (GraphiX - pre-processor), and CCX (CrunchiX - solver). In the present report a brief description of SOLDE is given, followed by a basic users guide. The main features of SOLDE are: - Deflection analysis of wind turbine blades, including 3D effects and warping. - Accurate prediction of eigenmodes and eigenfrequencies. - Derivation of 2-node slender elements for use in various aeroelastic analyses. The main differences between SOLDE and other similar tools can be summarised as: - SOLDE was developed without a graphical user interface or a traditional text file input deck. Instead the input is organised as Matlab data structures that have to be formed by a user provided pre-processor. - SOLDE uses a solid representation of the geometry instead of a thin shell approximation. The benefit is that the bending-torsion couplings will automatically be correctly captured. However, a drawback with the current version is that the equivalent orthotropic shell idealisation violates the local bending characteristics, which makes the model useless for buckling analyses. - SOLDE includes the free finite element solver CCX, and thus no expensive commercial software (e.g. Ansys, or Nastran) is required to produce results.

  2. Finite element analysis of structures through unified formulation

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco; Zappino, Enrico

    2014-01-01

    The finite element method (FEM) is a computational tool widely used to design and analyse  complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same ''fundamental nucleus'' that comes from geometrical relations and Hooke''s law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D...

  3. FECAP - FINITE ELEMENT COMPOSITE ANALYSIS PROGRAM FOR A MICROCOMPUTER

    Science.gov (United States)

    Bowles, D. E.

    1994-01-01

    Advanced composite materials have gained use in the aerospace industry over the last 20 years because of their high specific strength and stiffness, and low coefficient of thermal expansion. Design of composite structures requires the analysis of composite material behavior. The Finite Element Composite Analysis Program, FECAP, is a special purpose finite element analysis program for analyzing composite material behavior with a microcomputer. Composite materials, in regard to this program, are defined as the combination of at least two distinct materials to form one nonhomogeneous anisotropic material. FECAP assumes a state of generalized plane strain exists in a material consisting of two or more orthotropic phases, subjected to mechanical and/or thermal loading. The finite element formulation used in FECAP is displacement based and requires the minimization of the total potential energy for each element with respect to the unknown variables. This procedure leads to a set of linear simultaneous equations relating the unknown nodal displacements to the applied loads. The equations for each element are assembled into a global system, the boundary conditions are applied, and the system is solved for the nodal displacements. The analysis may be performed using either 4-mode linear or 8-mode quadratic isoparametric elements. Output includes the nodal displacements, and the element stresses and strains. FECAP was written for a Hewlett Packard HP9000 Series 200 Microcomputer with the HP Basic operating system. It was written in HP BASIC 3.0 and requires approximately 0.5 Mbytes of RAM in addition to what is required for the operating system. A math coprocessor card is highly recommended. FECAP was developed in 1988.

  4. L2-stability independent of diffusion for a finite element -- finite volume discretization of a linear convection-diffusion equation

    OpenAIRE

    Deuring, Paul; Eymard,, Robert; Mildner, Marcus

    2014-01-01

    We consider a time-dependent and a steady linear convection-diffusion equation. These equations are approximately solved by a combined finite element -- finite volume method: the diffusion term is discretized by Crouzeix-Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the unsteady case, the implicit Euler method is used as time discretization. This scheme is shown to be unconditionally L2-stable, uniformly with re...

  5. A finite element model for protein transport in vivo

    Directory of Open Access Journals (Sweden)

    Montas Hubert J

    2007-06-01

    Full Text Available Abstract Background Biological mass transport processes determine the behavior and function of cells, regulate interactions between synthetic agents and recipient targets, and are key elements in the design and use of biosensors. Accurately predicting the outcomes of such processes is crucial to both enhancing our understanding of how these systems function, enabling the design of effective strategies to control their function, and verifying that engineered solutions perform according to plan. Methods A Galerkin-based finite element model was developed and implemented to solve a system of two coupled partial differential equations governing biomolecule transport and reaction in live cells. The simulator was coupled, in the framework of an inverse modeling strategy, with an optimization algorithm and an experimental time series, obtained by the Fluorescence Recovery after Photobleaching (FRAP technique, to estimate biomolecule mass transport and reaction rate parameters. In the inverse algorithm, an adaptive method was implemented to calculate sensitivity matrix. A multi-criteria termination rule was developed to stop the inverse code at the solution. The applicability of the model was illustrated by simulating the mobility and binding of GFP-tagged glucocorticoid receptor in the nucleoplasm of mouse adenocarcinoma. Results The numerical simulator shows excellent agreement with the analytic solutions and experimental FRAP data. Detailed residual analysis indicates that residuals have zero mean and constant variance and are normally distributed and uncorrelated. Therefore, the necessary and sufficient criteria for least square parameter optimization, which was used in this study, were met. Conclusion The developed strategy is an efficient approach to extract as much physiochemical information from the FRAP protocol as possible. Well-posedness analysis of the inverse problem, however, indicates that the FRAP protocol provides insufficient

  6. An Extended Finite Element Method Formulation for Modeling the Response of Polycrystalline Materials to Dynamic Loading

    Science.gov (United States)

    Robbins, Joshua; Voth, Thomas E.

    2007-12-01

    The eXtended Finite Element Method (X-FEM) is a finite-element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static meso-scale material failure to dendrite growth. Here we adapt the recent advances of Vitali and Benson [2] and Song et al. [3] to model dynamic loading of a polycrystalline material. We use demonstration problems to examine the method's efficacy for modeling the dynamic response of polycrystalline materials at the meso-scale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries.

  7. Nonlinear Finite Element Analysis of FRP Strengthened Reinforced Concrete Beams

    Science.gov (United States)

    Sasmal, S.; Kalidoss, S.; Srinivas, V.

    2012-12-01

    This paper focuses on nonlinear analysis of parent and fiber reinforced polymer (FRP) strengthened reinforced concrete (RC) beam using general purpose finite element software, ANSYS. Further, it is aimed to investigate the suitability of different elements available in ANSYS library to represent FRP, epoxy and interface. 3-D structural RC solid element has been used to model concrete and truss element is employed for modeling the reinforcements. FRP has been modelled using 3-D membrane element and layered element with number of layers, epoxy is modelled using eight node brick element, and eight node layered solid shell is used to mathematically represent the concrete-FRP interface behavior. Initially, the validation of the numerical model for the efficacy of different elements (SOLID65 for concrete and LINK8 for reinforcement) and material models is carried out on the experimental beam reported in literature. The validated model, elements and material properties is used to evaluate the load-displacement and load-strain response behavior and crack patterns of the FRP strengthened RC beams. The numerical results indicated that significant improvement in the displacement in the strengthened RC beams with the advancement of cracks. The study shows that FRP with shell elements is recommended when single layer of FRP is used. When multi layered FRP is used, solid layered element can be a reasonably good choice whereas the epoxy matrix with linear solid element does not need further complicated model. Interfacial element makes the analysis minimally improved at the cost of complicated modeling issues and considerable computation time. Hence, for nonlinear analysis of usual strengthened structures, unless it is specifically required for, interface element may not be required and a full contact can be assumed at interface.

  8. Finite element modelling of the 1969 Portuguese tsunami

    Science.gov (United States)

    Guesmia, M.; Heinrich, Ph.; Mariotti, C.

    1996-03-01

    On the 28 th February 1969, the coasts of Portugal, Spain and Morocco were affected by water waves generated by a submarine earthquake (Ms=7.3) with epicenter located off Portugal. The propagation of this tsunami has been simulated by a finite element numerical model solving the Boussinesq equations. These equations have been discretized using the finite element Galerkin method and a Crank-Nicholson scheme in time. The 2-D simulation of the 1969 tsunami is carried out using the hydraulic source calculated from the geophysical model of Okada and seismic parameters of Fukao. The modeled waves are compared with the recorded waves with respect to the travel times, the maximum amplitudes, the periods of the signal. Good agreement is found for most of the studied gauges. The comparison between Boussinesq and shallow-water models shows that the effects of frequency dispersion are minor using Fukao's seismic parameters.

  9. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan

    2010-10-05

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  10. Choice of input fields in stochastic finite elements

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob

    1996-01-01

    the differential equation of the column displacement and the relevant boundarv conditions, it can be expected that the discretization of the flexibility field is preferable over the discretization of the stiffness field. Direct mechanical considerations support this expectation.Keywords: Random stiffness......The problem of the arbitrary choice of variables for random field modelling in structural mechanics or in soil mechanics is treated. For example, it is relevant to ask the question of whether it is best to choose a stiffness field along a beam element or to choose its reciprocal field......, the flexibility field, as the input to the stochastic finite element model. To answer this question the focus should be on the error of the output of the mechanical model rather than on the input field itself when discretizing the field through replacing it by a field defined in terms of a finite number of random...

  11. A 3D Finite Element evaluation of the exophthalmia reduction

    CERN Document Server

    Luboz, V; Boutault, F; Swider, P; Payan, Y; Luboz, Vincent; Pedrono, Annaig; Boutault, Franck; Swider, Pascal; Payan, Yohan

    2003-01-01

    This paper presents a first evaluation of the feasibility of Finite Element modelling of the orbital decompression, in the context of exophthalmia. First simulations are carried out with data extracted from a patient TDM exam. Results seem to qualitatively validate the feasibility of the simulations, with a Finite Element analysis that converges and provides a backward movement of the ocular globe associated with displacements of the fat tissues through the sinuses. This FE model can help a surgeon for the planning of the exophthalmia reduction, and especially for the position and the size of the decompression hole. To get an estimation of the fat tissues volume affected by the surgery, an analytical model seems to provide quicker results for an equivalent efficiency.

  12. Finite-element analysis of flawed and unflawed pipe tests

    Energy Technology Data Exchange (ETDEWEB)

    James, R.J.; Nickell, R.E.; Sullaway, M.F. (ANATECH Research Corp., La Jolla, CA (USA))

    1989-12-01

    Contemporary versions of the general purpose, nonlinear finite element program ABAQUS have been used in structural response verification exercises on flawed and unflawed austenitic stainless steel and ferritic steel piping. Among the topics examined, through comparison between ABAQUS calculations and test results, were: (1) the effect of using variations in the stress-strain relationship from the test article material on the calculated response; (2) the convergence properties of various finite element representations of the pipe geometry, using shell, beam and continuum models; (3) the effect of test system compliance; and (4) the validity of ABAQUS J-integral routines for flawed pipe evaluations. The study was culminated by the development and demonstration of a macroelement'' representation for the flawed pipe section. The macroelement can be inserted into an existing piping system model, in order to accurately treat the crack-opening and crack-closing static and dynamic response. 11 refs., 20 figs., 1 tab.

  13. A weak Hamiltonian finite element method for optimal control problems

    Science.gov (United States)

    Hodges, Dewey H.; Bless, Robert R.

    1990-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  14. Weak Hamiltonian finite element method for optimal control problems

    Science.gov (United States)

    Hodges, Dewey H.; Bless, Robert R.

    1991-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  15. Finite element model of magnetoconvection of a ferrofluid

    Science.gov (United States)

    Snyder, Suzanne M.; Cader, Tahir; Finlayson, Bruce A.

    2003-06-01

    Combined natural and magnetic convective heat transfer through a ferrofluid in a cubic enclosure is simulated numerically. The momentum equation includes a magnetic term that arises when a magnetic fluid is in the presence of a magnetic field gradient and a temperature gradient. In order to validate the theory, the wall temperature isotherms and Nusselt numbers are compared to experimental work of Sawada et al. (Int. J. Appl. Electromagn. Mater. 4 (1994) 329). Results are obtained using standard computational fluid dynamics codes, with modifications to account for the Langevin factor when needed. The CFD code FIDAP uses the finite element method, sometimes with a user-defined subroutine. The CFD code FEMLAB uses the finite element method with a user-supplied body force.

  16. The finite element method and applications in engineering using ANSYS

    CERN Document Server

    Madenci, Erdogan

    2015-01-01

    This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniq...

  17. Finite element model of reinforcement corrosion in concrete

    Directory of Open Access Journals (Sweden)

    Jin-xia XU

    2009-06-01

    Full Text Available A nonlinear finite element model (FEM of the corrosion of steel reinforcement in concrete has been successfully developed on the basis of mathematical analysis of the electrochemical process of steel corrosion in concrete. The influences of the area ratio and the Tafel constants of the anode and cathode on the potential and corrosion current density have been examined with the model. It has been found that the finite element calculation is more suitable for assessing the corrosion condition of steel reinforcement than ordinary electrochemical techniques due to the fact that FEM can obtain the distributions of potential and corrosion current density on the steel surface. In addition, the local corrosion of steel reinforcement in concrete is strengthened with the decrease of both the area ratio and the Tafel constants. These results provide valuable information to the researchers who investigate steel corrosion.

  18. Finite Element Analysis of 4-Cylinder Diesel Crankshaft

    Directory of Open Access Journals (Sweden)

    Jian Meng

    2011-08-01

    Full Text Available The stress analysis and modal analysis of a 4-cylinder crankshaft are discussed using finite element method in this paper. Three-dimension models of 480 diesel engine crankshaft and crankthrow were created using Pro/ENGINEER software The finite element analysis (FEM software ANSYS was used to analyse the vibration modal and the distortion and stress status of the crankthrow.The maximum deformation, maximum stress point and dangerous areas are found by the stress analysis of crankthrow. The relationship between the frequency and the vibration modal is explained by the modal analysis of crankshaft. The results would provide a valuable theoretical foundation for the optimization and improvement of engine design.

  19. Finite element simulation of temperature dependent free surface flows

    Science.gov (United States)

    Engelman, M. S.; Sani, R. L.

    1985-01-01

    The method of Engelman and Sani (1984) for a finite-element simulation of incompressible surface flows with a free and/or moving fluid interface, such as encountered in crystal growth and coating and polymer technology, is extended to temperature-dependent flows, including the effect of temperature-dependent surface tension. The basic algorithm of Saito and Scriven (1981) and Ruschak (1980) has been generalized and implemented in a robust and versatile finite-element code that can be employed with relative ease for the simulation of free-surface problems in complex geometries. As a result, the costly dependence on the Newton-Raphson algorithm has been eliminated by replacing it with a quasi-Newton iterative method, which nearly retains the superior convergence properties of the Newton-Raphson method.

  20. Finite element exterior calculus: from Hodge theory to numerical stability

    CERN Document Server

    Arnold, Douglas N; Winther, Ragnar

    2009-01-01

    This article reports on the confluence of two streams of research, one emanating from the fields of numerical analysis and scientific computation, the other from topology and geometry. In it we consider the numerical discretization of partial differential equations that are related to differential complexes so that de Rham cohomology and Hodge theory are key tools for the continuous problem. After a brief introduction to finite element methods, the discretization methods we consider, we develop an abstract Hilbert space framework for analyzing stability and convergence. In this framework, the differential complex is represented by a complex of Hilbert spaces and stability is obtained by transferring Hodge theoretic structures from the continuous level to the discrete. We show stable discretization discretization is achieved if the finite element spaces satisfy two hypotheses: they form a subcomplex and there exists a bounded cochain projection from the full complex to the subcomplex. Next, we consider the mos...

  1. Finite element calculation of residual stress in dental restorative material

    Science.gov (United States)

    Grassia, Luigi; D'Amore, Alberto

    2012-07-01

    A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.

  2. Nonlinear finite element analysis of steel-concrete composite beams

    Institute of Scientific and Technical Information of China (English)

    QIU Wen-liang; JIANG Meng

    2005-01-01

    Proposes a simplified finite element model for steel-concrete composite beams. The effects of slip can be taken into account by creating a special matrix of shear connector stiffness and using the iteration method.Meanwhile, the effect of material non-linearity of steel and concrete on rigidity and strength of composite beams is considered. With the age-adjusted effective modulus method, the analysis for the whole process of shrinkage and creep under long-term load can be performed. The ultimate load, deflection, stress and slip of continuous composite beams under short-term and long-term load are computed using the proposed finite element model.The numerical results are compared with the experimental results and existing values based on other numerical methods, and are found to be in good agreement.

  3. Finite element thermo-viscoplastic analysis of aerospace structures

    Science.gov (United States)

    Pandey, Ajay K.; Dechaumphai, Pramote; Thornton, Earl A.

    1990-01-01

    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

  4. Finite-element thermo-viscoplastic analysis of aerospace structures

    Science.gov (United States)

    Pandey, Ajay; Dechaumphai, Pramote; Thornton, Earl A.

    1990-01-01

    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

  5. A finite element model for residual stress in repair welds

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z. [Edison Welding Inst., Columbus, OH (United States); Wang, X.L.; Spooner, S.; Goodwin, G.M.; Maziasz, P.J.; Hubbard, C.R.; Zacharia, T. [Oak Ridge National Lab., TN (United States)

    1996-03-28

    This paper describes a three-dimensional finite element model for calculation of the residual stress distribution caused by repair welding. Special user subroutines were developed to simulate the continuous deposition of filler metal during welding. The model was then tested by simulating the residual stress/strain field of a FeAl weld overlay clad on a 2{1/4}Cr-1 Mo steel plate, for which neutron diffraction measurement data of the residual strain field were available. It is shown that the calculated residual stress distribution was consistent with that determined with neutron diffraction. High tensile residual stresses in both the longitudinal and transverse directions were observed around the weld toe at the end of the weld. The strong spatial dependency of the residual stresses in the region around the weld demonstrates that the common two-dimensional cross-section finite element models should not be used for repair welding analysis.

  6. Assembly of finite element methods on graphics processors

    KAUST Repository

    Cecka, Cris

    2010-08-23

    Recently, graphics processing units (GPUs) have had great success in accelerating many numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are created and analyzed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor using single-precision arithmetic achieves speedups of 30 or more in comparison to a well optimized double-precision single core implementation. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite element discretization. © 2010 John Wiley & Sons, Ltd.

  7. Radiative transfer with finite elements. Pt. 1. Basic method and tests

    Energy Technology Data Exchange (ETDEWEB)

    Richling, S. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik; Meinkoehn, E. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik; Kryzhevoi, N. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR); Kanschat, G. [Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR)

    2001-10-01

    A finite element method for solving the monochromatic radiation transfer equation including scattering in three dimensions is presented. The algorithm employs unstructured grids which are adaptively refined. Adaptivity as well as ordinate parallelization reduce memory requirements and execution time and make it possible to calculate the radiation field across several length scales for objects with strong opacity gradients. An a posteriori error estimate for one particular quantity is obtained by solving the dual problem. The application to a sample of test problems reveals the properties of the implementation. (orig.)

  8. Development and validation of a weight-bearing finite element model for total knee replacement.

    Science.gov (United States)

    Woiczinski, M; Steinbrück, A; Weber, P; Müller, P E; Jansson, V; Schröder, Ch

    2016-08-01

    Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young's modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson's correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young's modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella. PMID:26618541

  9. A hybrid particle-finite element method for impact dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhichun, E-mail: zzchun323@yahoo.com.cn [Xi' an Hi-Tech Institute, Xi' an 710025 (China); Qiang Hongfu [Xi' an Hi-Tech Institute, Xi' an 710025 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer An attachment algorithm for the coupling of SPH and FEM is proposed to use the best properties of both methods. Black-Right-Pointing-Pointer The continuity is guaranteed in the coupling interface between SPH particles and finite elements. Black-Right-Pointing-Pointer A projectile impacting a target plate is simulated to demonstrate the performance of the attachment algorithm. - Abstract: An attachment algorithm for the coupling of smoothed particle hydrodynamics (SPH) and finite element method (FEM) is proposed to take advantage of the best properties of both methods. In the SPH-FEM attachment algorithm, SPH particles are attached to finite element nodes in the coupling interface. Any FE node that is in the support domain of SPH particle is added to the SPH neighbor list in the mode of background particle, and the continuity of coupling interface is guaranteed. The attachment algorithm allows for the use of accurate and efficient finite elements in mildly distorted regions and SPH particles in highly distorted regions within a Lagrangian framework. The perforation of a cylindrical Arne tool steel projectile impacting a Weldox 460 E steel target plate is simulated in 3D to demonstrate the performance of the SPH-FEM attachment algorithm. A corrected Johnson-Cook model containing damage variable is adopted for the target plate, with a Gruneisen EOS for the volumetric response. A birth and death particle algorithm is adopted to remove the damage particle from the model. Good agreement between numerical simulations and experimental observations is obtained.

  10. Multiphysics Finite Element Methods for a Poroelasticity Model

    OpenAIRE

    Feng, Xiaobing; Ge, Zhihao; Li, Yukun

    2014-01-01

    This paper concerns with finite element approximations of a quasi-static poroelasticity model in displacement-pressure formulation which describes the dynamics of poro-elastic materials under an applied mechanical force on the boundary. To better describe the multiphysics process of deformation and diffusion for poro-elastic materials, we first present a reformulation of the original model by introducing two pseudo-pressures, one of them is shown to satisfy a diffusion equation, we then propo...

  11. Biomechanical simulation of thorax deformation using finite element approach

    OpenAIRE

    Zhang, Guangzhi; Chen, Xian; Ohgi, Junji; Miura, Toshiro; Nakamoto, Akira; Matsumura, Chikanori; Sugiura, Seiryo; Hisada, Toshiaki

    2016-01-01

    Background The biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing. Methods We constructed a finite element model of t...

  12. Finite Element Models for Thin-Walled Steel Member Connections

    OpenAIRE

    Sandesh R. Acharya; Sivakumaran, K. S.

    2012-01-01

    The behavior of connections associated with the thin-walled steel members is distinctly different from that of hot-rolled steel connections, primarily because of the flexibility of the plates. A typical cold-formed steel structural construction may entail such numerous connections. The incorporation of large number of such connections in an analysis and design, using sophisticated finite element models, is very tedious and time consuming and may present computational difficulties. The objecti...

  13. Finite element analysis of microelectrotension of cell membranes

    OpenAIRE

    Bae, Chilman; Butler, Peter J.

    2007-01-01

    Electric fields can be focused by micropipette-based electrodes to induce stresses on cell membranes leading to tension and poration. To date, however, these membrane stress distributions have not been quantified. In this study, we determine membrane tension, stress, and strain distributions in the vicinity of a microelectrode using finite element analysis of a multiscale electro-mechanical model of pipette, media, membrane, actin cortex, and cytoplasm. Electric field forces are coupled to me...

  14. Prediction of Water Movement in Soil by Finite Element Method

    OpenAIRE

    Morii, Toshihiro; 森井,俊広

    1999-01-01

    A computer program SUSFEM for simulating water movement in two-dimensional or axisymmetric unsaturated, partially saturated, or saturated soil is developed. Richards' potential equation supplemented by appropriate boundary and initial conditions is described and formulated on the basis of Galerkin-type finite element method in conj unction with a fully implicit iterative scheme. SUSFEM calculates sequential and spatial variations of pressure head in soil, h. The saturated water movement is pr...

  15. Convergence of a residual based artificial viscosity finite element method

    KAUST Repository

    Nazarov, Murtazo

    2013-02-01

    We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.

  16. The Research of Welding Residual Stress Based Finite Element Method

    OpenAIRE

    Qinghua Bai

    2013-01-01

    Welding residual stress was caused by local heating during the welding process, tensile residual stress reduce fatigue strength and corrosion resistance, Compressive residual stress decreases stability limit. So it will produce brittle fracture, reduce working life and strength of workpiece; Based on the simulation of welding process with finite element method, calculate the welding temperature field and residual stress, and then measure residual stress in experiments, So as to get the best w...

  17. Characterization of Multiple Delaminated Composite by Finite Element

    OpenAIRE

    SUDIP DEY; AMIT KARMAKAR

    2011-01-01

    In this paper, a finite element method is employed to investigate the natural frequencies of twisted rotating composite turbine blades subject to multiple delamination. The turbine blade is idealized as a shallow conical shell model with low aspect ratio. The formulation is based on Mindlin’s theory, QR iteration and multi-point constraint algorithm for moderate rotational speeds neglecting Coriolis effect. Computer codes are developed and the numerical results obtained for multiple delaminat...

  18. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    OpenAIRE

    Changyong Cao; Qing-Hua Qin

    2015-01-01

    An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM) and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field) are employed. The formulations for...

  19. Finite Element Composite Analysis Program (FECAP) for a microcomputer

    Science.gov (United States)

    Bowles, David E.

    1988-01-01

    A special purpose finite element composite analysis program for analyzing composite material behavior with a microcomputer is described. The formulation assumes a state of generalized plane strain in a material consisting of two or more orthotropic phases. Loading can be mechanical and/or thermal. The theoretical background, computer implementation, and program users guide are described in detail. A sample program is solved showing the required user input and computer generated output.

  20. The management of intelligence-assisted finite element analysis technology

    OpenAIRE

    Sharif, AM

    1997-01-01

    Artificial Intelligence (AI) approaches to Finite Element Analysis (FEA), have had tentative degrees of success over the last few years and some authors have argued that effective FEA can help in the manufacture reliability and safety aspects of engineered artefacts. The author of this paper reviews how such AI techniques have been applied and in this light, the author then uses a Fuzzy Cognitive Mapping (FCM), to develop a framework for the management of intelligence-assisted FEA.

  1. Finite element stress and strain analysis of a solid tyre

    Directory of Open Access Journals (Sweden)

    U. Suripa

    2008-12-01

    Full Text Available Purpose: In this work, a finite element model of a solid tyre was constructed to simulate the loading condition.The solid tyre being modeled constitutes of three rubber layers with different properties and steel wires. Onlyhyperelastic property is considerd for the rubbers. The validation of FE prediction against experimental resultswas undertaken. An example of how arrangement of rubber layers in solid tyre can affect the distribution ofstrain energy density and deflection under loading was also carried out using FE analysisDesign/methodology/approach: A finite element model of a solid tyre was constructed to simulate the staticcompressive loading condition. The solid tyre being modeled constitutes of three types of rubber of componentsand steel wiresFindings: The 3D FE model for static loading analysis of solid tyre constructed in this study can give reasonablygood prediction of load-deflection behaviour of a real solid tyre. It can also be deduced that the distributions ofanalysis parameters such as strain energy density and Von Mises stress given by the FE analysis are acceptableand can be used to improve the design of solid tyres. The tyre made entirely with the rubber of the samehyperelastic property as the tread layer can give more flexible deformation and thus more comfortable ride withlesser risk to damage due to heat generation.Practical implications: Finite element analysis, as has been demonstrated, can be used to predict theperformance of the solid tyre when such variations are made. The results from finite element anaysis can be usedto determine the optimum thickness of each layer for green tyre (unvulcatised tyre buildingOriginality/value: In the solid tyre manufacturing point of view, improving the load bearing performance bychanging thickness of each solid tyre layer or make a variation in layers arrangement is the least problematicand can be done effectively without changing the mould or rubber compounds.

  2. Finite element stress and strain analysis of a solid tyre

    OpenAIRE

    U. Suripa; A. Chaikittiratana

    2008-01-01

    Purpose: In this work, a finite element model of a solid tyre was constructed to simulate the loading condition.The solid tyre being modeled constitutes of three rubber layers with different properties and steel wires. Onlyhyperelastic property is considerd for the rubbers. The validation of FE prediction against experimental resultswas undertaken. An example of how arrangement of rubber layers in solid tyre can affect the distribution ofstrain energy density and deflection under loading was ...

  3. The Development of Piezoelectric Accelerometers Using Finite Element Analysis

    DEFF Research Database (Denmark)

    Liu, Bin

    1999-01-01

    This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeli...... can be effectively used to predict the specifications of the accelerometer, especially when modification of the accelerometer is required. The FE developing technology forms the bases of fast responsiveness and flexible customized design of piezoelectric accelerometers....

  4. A Dual Orthogonality Procedure for Nonlinear Finite Element Equations

    DEFF Research Database (Denmark)

    Krenk, S.; Hededal, O.

    In the orthogonal residual procedure for solution of nonlinear finite element equations the load is adjusted in each equilibrium iteration to satisfy an orthogonality condition to the current displacement increment. It is here shown that the quasi-newton formulation of the orthogonal residual met...... the algorithm can be implemented to combine a single update of the stiffness matrix for each load increment in normal circumstances with full updates locally if increasing stiffness is encountered. The algorithm is illustrated by examples....

  5. A minimal stabilisation procedure for mixed finite element methods.

    OpenAIRE

    Brezzi, Franco; Fortin, Michel

    2000-01-01

    Stabilisation methods are often used to circumvent the difficulties associated with the stability of mixed finite element methods. Stabilisation however also means an excessive amount of dissipation or the loss of nice conservation properties. It would thus be desirable to reduce these disadvantages to a minimum. We present a general framework, not restricted to mixed methods, that permits to introduce a minimal stabilising term and hence a minimal perturbation with respect...

  6. A code for obtaining temperature distribution by finite element method

    International Nuclear Information System (INIS)

    The ELEFIB Fortran language computer code using finite element method for calculating temperature distribution of linear and two dimensional problems, in permanent region or in the transient phase of heat transfer, is presented. The formulation of equations uses the Galerkin method. Some examples are shown and the results are compared with other papers. The comparative evaluation shows that the elaborated code gives good values. (M.C.K.)

  7. Finite element modeling for temperature stabilization of gated Hall sensors

    OpenAIRE

    Jouault, B.; Bouguen, L.; Contreras, S; Kerlain, A.; Mosser, Vincent

    2008-01-01

    International audience Using finite element analysis, we have calculated the Hall voltage of gated Hall sensors in the temperature range (−55 °C, 125 °C). We investigated how both the sensor shape and the external connections influence the Hall voltage and its thermal drift. The numerical results are in excellent agreement with the experimental measurements. By contrast, we checked that simplified analytical methods lead to a large numerical error, which is not acceptable in these sensors ...

  8. Dual Formulations of Mixed Finite Element Methods with Applications

    OpenAIRE

    Gillette, Andrew; Bajaj, Chandrajit

    2011-01-01

    Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions a...

  9. Finite element modeling of sediment dynamics in the Scheldt

    OpenAIRE

    Gourgue, Olivier

    2011-01-01

    A densely populated watershed and numerous industrial activities, are responsible for the Scheldt Estuary and River to be highly polluted. Water and sediment circulation are major processes contributing to the global dynamics of the various pollutions. The objective of this thesis is to develop a numerical tool in order to make possible simulations of those environmental issues. The finite element technique enables the use of unstructured meshes, so that the spatial resolution can vary wid...

  10. Application of Finite Element Method to Analyze Inflatable Waveguide Structures

    Science.gov (United States)

    Deshpande, M. D.

    1998-01-01

    A Finite Element Method (FEM) is presented to determine propagation characteristics of deformed inflatable rectangular waveguide. Various deformations that might be present in an inflatable waveguide are analyzed using the FEM. The FEM procedure and the code developed here are so general that they can be used for any other deformations that are not considered in this report. The code is validated by applying the present code to rectangular waveguide without any deformations and comparing the numerical results with earlier published results.

  11. Finite Element Method for Stochastic Extended KdV Equations

    CERN Document Server

    Karczewska, Anna; Rozmej, Piotr; Boguniewicz, Bartosz

    2016-01-01

    The finite element method is applied to obtain numerical solutions to the recently derived nonlinear equation for shallow water wave problem for several cases of bottom shapes. Results for time evolution of KdV solitons and cnoidal waves under stochastic forces are presented. Though small effects originating from second order dynamics may be obscured by stochastic forces, the main waves, both cnoidal and solitary ones, remain very robust against any distortions.

  12. Discontinuous Galerkin Finite Element Method for Parabolic Problems

    Science.gov (United States)

    Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.

    2004-01-01

    In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of parallel ut(t) parallel Lz(omega) = parallel ut parallel2, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also included.

  13. Nonlinear Finite Element Analysis of Pull-Out Test

    DEFF Research Database (Denmark)

    Saabye Ottesen, N

    1981-01-01

    A specific pull-out test used to determine in-situ concrete compressive strength is analyzed. This test consists of a steel disc that is extracted from the structure. The finite element analysis considers cracking as well as strain hardening and softening in the pre- and post-failure region, resp...... constitutes the load-carrying mechanism. The failure is caused by the crushing of the concrete in this region, and not by cracking....

  14. Benchmark Finite Element Simulations of Postbuckling Composite Stiffened Panels

    OpenAIRE

    Orifici, Adrian; Thomson, R.; Gunnion, A.J.; Degenhardt, Richard; Abramovich, H.; Bayandor, J.

    2005-01-01

    This paper outlines the CRC-ACS contribution to a software code benchmarking exercise as part of the European Commission Project COCOMAT investigating composite postbuckling stiffened panels. Analysis was carried out using MSC.Nastran (Nastran) solution sequences SOL 106 and SOL 600, Abaqus/Standard (Abaqus) and LS-Dyna, and compared to experimental data generated previously at the Technion, Israel and DLR, Germany. The finite element (FE) analyses generally gave very good comparison u...

  15. Finite element analysis of a modified short hip endoprosthesis

    OpenAIRE

    Augustin Semenescu; Florentina Ioniță Radu; Ileana M. Mateș; Petre Bădică; Nicolae D. Batalu

    2016-01-01

    A finite element simulation of the mechanical static features for a modified short hip endoprosthesis was performed. The corkscrew-like femoral stem was modified introducing more turns of the thread. By such an approach it is expected that for some cases the mechanical fixation of the prosthesis to the bone will be improved or the use of the cement for bonding is not necessary. Our scenario was estimated for titanium and stainless steel, and both materials show good safety fact...

  16. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  17. OOFEM – An Object Oriented Framework for Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    B. Patzák

    2004-01-01

    Full Text Available This paper presents the design principles and structure of the object-oriented finite element software OOFEM, which has been under active development for several years. The main advantages of the presented framework include modular design, extensibility, and robustness. The code itself is freely available and is distributed under GNU public license. It provides tools for linear and nonlinear analysis of mechanical and transport problems on sequential and parallel computers. 

  18. Neural network method for solving elastoplastic finite element problems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A basic optimization principle of Artificial Neural Network-the Lagrange Programming Neural Network (LPNN) model for solving elastoplastic finite element problems is presented. The nonlinear problems of mechanics are represented as a neural network based optimization problem by adopting the nonlinear function as nerve cell transfer function. Finally, two simple elastoplastic problems are numerically simulated. LPNN optimization results for elastoplastic problem are found to be comparable to traditional Hopfield neural network optimization model.

  19. A finite element method for SSI time history calculation

    International Nuclear Information System (INIS)

    The method which is proposed is based on a finite element modelization for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method is presented, then applications are given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior are described

  20. Finite element based model of parchment coffee drying

    OpenAIRE

    Preeda Prakotmak

    2015-01-01

    Heat and mass transfer in the parchment coffee during convective drying represents a complicated phenomena since it is important to consider not only the transport phenomena during drying but also the various changes of the drying materials. In order to describe drying of biomaterials adequately, a suitable mathematical model is needed. The aim of the present study was to develop a 3-D finite element model to simulate the transport of heat and mass within parchment coffee during the thin laye...

  1. Evaluation of a musculoskeletal finite element model of the foot

    OpenAIRE

    Perrier, Antoine; Luboz, Vincent; Bucki, Marek; Cannard, Francis; Vuillerme, Nicolas; Payan, Yohan

    2014-01-01

    International audience This work aims at developing a patient-specific Finite Element (FE) model of the foot in the context of pressure ulcer prevention. Starting from our previous model {1} we propose here to improve the realism of the anatomy by introducing all the detailed bony structures, ligaments and muscles segmented from the CT and MRI exams of the same patient. The model has been developed using the 3D biomechanical simulation platform Artisynth (artisynth.org). It includes 30 bon...

  2. Finite elements for partial differential equations: An introductory survey

    International Nuclear Information System (INIS)

    After presentation of the basic ideas behind the theory of the Finite Element Method, the application of the method to three equations of particular interest in Physics and Engineering is discussed in some detail, namely, a one-dimensional Sturm-Liouville problem, a two-dimensional linear Fokker-Planck equation and a two-dimensional nonlinear Navier-Stokes equation. 6 refs, 8 figs

  3. Navier-Stokes equations by the finite element method

    International Nuclear Information System (INIS)

    A computer program to solve the Navier-Stokes equations by using the Finite Element Method is implemented. The solutions variables investigated are stream-function/vorticity in the steady case and velocity/pressure in the steady state and transient cases. For steady state flow the equations are solved simultaneously by the Newton-Raphson method. For the time dependent formulation, a fractional step method is employed to discretize in time and artificial viscosity is used to preclude spurious oscilations in the solution. The element used is the three node triangle. Some numerical examples are presented and comparisons are made with applications already existent. (Author)

  4. Periodic Boundary Conditions in the ALEGRA Finite Element Code

    Energy Technology Data Exchange (ETDEWEB)

    AIDUN,JOHN B.; ROBINSON,ALLEN C.; WEATHERBY,JOE R.

    1999-11-01

    This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given.

  5. Finite element analysis of the contact forces between viscoelastic particles

    Science.gov (United States)

    Zheng, Q. J.; Zhu, H. P.; Yu, A. B.

    2013-06-01

    The normal and tangential force-displacement (NFD and TFD) relations as well as the rolling friction between viscoelastic particles are investigated by means of finite element method (FEM). A new set of semi-theoretical models are proposed for the NFD, TFD and rolling friction based on the contact mechanics and the FEM results. Compared with previous empirical models (e.g. Linear-Spring-Dashpot model), the new models have an advantage that all parameters can be directly determined from the material properties. Therefore they can eliminate the uncertainty in parameter selection and should be more effective in discrete element method (DEM) simulations of viscoelastic granular materials.

  6. Automated Finite Element Modeling of Wing Structures for Shape Optimization

    Science.gov (United States)

    Harvey, Michael Stephen

    1993-01-01

    The displacement formulation of the finite element method is the most general and most widely used technique for structural analysis of airplane configurations. Modem structural synthesis techniques based on the finite element method have reached a certain maturity in recent years, and large airplane structures can now be optimized with respect to sizing type design variables for many load cases subject to a rich variety of constraints including stress, buckling, frequency, stiffness and aeroelastic constraints (Refs. 1-3). These structural synthesis capabilities use gradient based nonlinear programming techniques to search for improved designs. For these techniques to be practical a major improvement was required in computational cost of finite element analyses (needed repeatedly in the optimization process). Thus, associated with the progress in structural optimization, a new perspective of structural analysis has emerged, namely, structural analysis specialized for design optimization application, or.what is known as "design oriented structural analysis" (Ref. 4). This discipline includes approximation concepts and methods for obtaining behavior sensitivity information (Ref. 1), all needed to make the optimization of large structural systems (modeled by thousands of degrees of freedom and thousands of design variables) practical and cost effective.

  7. Thermal buckling comparative analysis using Different FE (Finite Element) tools

    Energy Technology Data Exchange (ETDEWEB)

    Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)

    2009-12-19

    High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)

  8. Documentation of SPECTROM-55: A finite element thermohydrogeological analysis program

    International Nuclear Information System (INIS)

    SPECTROM-55 is a finite element computer program for analyses of coupled heat and fluid transfer through fully saturated porous media. The code is part of the SPECTROM (Special Purpose Engineering Codes for Thermal/ROck Mechanics) series of special purpose finite element programs, that address the many unique rock mechanics problems resulting from storage of radioactive waste in geologic formations. This document presents the theoretical basis for the mathematical model, the finite element formulation of the problem, and a description of the input data for the program along with details about program support and continuing documentation. The program is especially suited for analyses of the regional hydrogeology in the vicinity of a heat-generating nuclear waste repository. These applications typically involved forced and free convection in a ground-water flow system. The program provides transient or steady-state temperatures, pressures, and fluid velocities resulting from the application of a variety of initial and boundary conditions to bodies with complicated shapes. The boundary conditions include constant heat and fluid fluxes, convective heat transfer, constant temperature, and constant pressure. Initial temperatures and pressures can be specified. Composite systems of anisotropic materials, such as geologic strata, can be defined in either planar or axisymmetric configurations. Constant or varying volumetric heat generation, such as decaying heat generation from radioactive waste, can be specified

  9. Coupling nonlinear Stokes and Darcy flow using mortar finite elements

    KAUST Repository

    Ervin, Vincent J.

    2011-11-01

    We study a system composed of a nonlinear Stokes flow in one subdomain coupled with a nonlinear porous medium flow in another subdomain. Special attention is paid to the mathematical consequence of the shear-dependent fluid viscosity for the Stokes flow and the velocity-dependent effective viscosity for the Darcy flow. Motivated by the physical setting, we consider the case where only flow rates are specified on the inflow and outflow boundaries in both subdomains. We recast the coupled Stokes-Darcy system as a reduced matching problem on the interface using a mortar space approach. We prove a number of properties of the nonlinear interface operator associated with the reduced problem, which directly yield the existence, uniqueness and regularity of a variational solution to the system. We further propose and analyze a numerical algorithm based on mortar finite elements for the interface problem and conforming finite elements for the subdomain problems. Optimal a priori error estimates are established for the interface and subdomain problems, and a number of compatibility conditions for the finite element spaces used are discussed. Numerical simulations are presented to illustrate the algorithm and to compare two treatments of the defective boundary conditions. © 2010 Published by Elsevier B.V. on behalf of IMACS.

  10. Finite Element Analysis of a Natural Fiber (Maize Composite Beam

    Directory of Open Access Journals (Sweden)

    D. Saravana Bavan

    2013-01-01

    Full Text Available Natural fiber composites are termed as biocomposites or green composites. These fibers are green, biodegradable, and recyclable and have good properties such as low density and low cost when compared to synthetic fibers. The present work is investigated on the finite element analysis of the natural fiber (maize composite beam, processed by means of hand lay-up method. Composite beam material is composed of stalk-based fiber of maize and unsaturated polyester resin polymer as matrix with methyl ethyl ketone peroxide (MEKP as a catalyst and Cobalt Octoate as a promoter. The material was modeled and resembled as a structural beam using suitable assumption and analyzed by means of finite element method using ANSYS software for determining the deflection and stress properties. Morphological analysis and X-ray diffraction (XRD analysis for the fiber were examined by means of scanning electron microscope (SEM and X-ray diffractometer. From the results, it has been found that the finite element values are acceptable with proper assumptions, and the prepared natural fiber composite beam material can be used for structural engineering applications.

  11. Finite Element Modeling, Simulation, Tools, and Capabilities at Superform

    Science.gov (United States)

    Raman, Hari; Barnes, A. J.

    2010-06-01

    Over the past thirty years Superform has been a pioneer in the SPF arena, having developed a keen understanding of the process and a range of unique forming techniques to meet varying market needs. Superform’s high-profile list of customers includes Boeing, Airbus, Aston Martin, Ford, and Rolls Royce. One of the more recent additions to Superform’s technical know-how is finite element modeling and simulation. Finite element modeling is a powerful numerical technique which when applied to SPF provides a host of benefits including accurate prediction of strain levels in a part, presence of wrinkles and predicting pressure cycles optimized for time and part thickness. This paper outlines a brief history of finite element modeling applied to SPF and then reviews some of the modeling tools and techniques that Superform have applied and continue to do so to successfully superplastically form complex-shaped parts. The advantages of employing modeling at the design stage are discussed and illustrated with real-world examples.

  12. Finite element analysis of impact loads on the femur

    Institute of Scientific and Technical Information of China (English)

    YU Xue-zhong; GUO Yi-mu; LI Jun; ZHANG Yun-qiu; HE Rong-xin

    2007-01-01

    Objective:To investigate the stress distribution and fracture mechanism of proximal femur under impact loads. Methods:The image data of one male's femur were collected by the Lightspeed multi-lay spiral computed tomography.A 3D finite element model of the femur was established by employing the finite element software ANSYS,which mainly concentrated on the effects of the directions of the impact loads arising from intense movements and the parenchyma on the hip joint as well as those of the femur material properties on the distribution of the Mises equivalent stress in the femur after impact. Results:The numerical results about the effects of the angle δ of the impact loads to the anterior direction and the angle γ of the impact loads to the femur shaft on the bone fracture were given.The angle δ had larger effect on the stress distribution than the angle γ,which mainly represented the fracture of the upper femur including the femoral neck fracture when the posterolateral femur was impacted.This result was consistent with the clinical one.The parenchyma on the hip joint has relatively large relaxation effect on the impact loads. Conclusions:A 3D finite element analysis model of the femoral hip joint under dynamic loads is successfully established by using the impact dynamic theory.

  13. Nonlinear explicit transient finite element analysis on the Intel Delta

    Energy Technology Data Exchange (ETDEWEB)

    Plaskacz, E.J. [Argonne National Lab., IL (United States); Ramirez, M.R.; Gupta, S. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1993-03-01

    Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.

  14. Nonlinear explicit transient finite element analysis on the Intel Delta

    Energy Technology Data Exchange (ETDEWEB)

    Plaskacz, E.J. (Argonne National Lab., IL (United States)); Ramirez, M.R.; Gupta, S. (Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering)

    1993-01-01

    Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.

  15. Finite element modeling of consolidation of composite laminates

    Institute of Scientific and Technical Information of China (English)

    Xiangqiao Yan

    2006-01-01

    Advanced fiber reinforced polymer composites have been increasingly applied to various structural corn-ponents.One of the important processes to fabricate high performance laminated composites is an autoclave assisted prepreg lay-up.Since the quality of laminated composites is largely affected by the cure cycle,selection of an appropriate cure cycle for each application is important and must be opti-mized.Thus.some fundamental model of the consolidation and cure processes is necessary for selecting suitable param-eters for a specific application.This article is concerned with the "flow-compaction" model during the autoclave process-ing of composite materials.By using a weighted residual method,two-dimensional finite element formulation for the consolidation process of thick thermosetting composites is presented and the corresponding finite element code is developed.Numerical examples.including comparison of the present numerical results with one-dimensional and two-dimensional analytical solutions,are given to illustrate the accuracy and effectiveness of the proposed finite element formulation.In addition,a consolidation simulation of As4/3501-6 graphite/epoxy laminate is carried out and compared with the experimental results available in the literature.

  16. A phenomenological finite element model of stereolithography processing

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, R.S.; Guess, T.R.; Hinnerichs, T.D.

    1996-03-01

    In the stereolithography process, three dimensional parts are built layer by layer using a laser to selectively cure slices of a photocurable resin, one on top of another. As the laser spot passes over the surface of the resin, the ensuing chemical reaction causes the resin to shrink and stiffen during solidification. When laser paths cross or when new layers are cured on top of existing layers, residual stresses are generated as the cure shrinkage of the freshly gelled resin is constrained by the adjoining previously-cured material. These internal stresses can cause curling in the compliant material. A capability for performing finite element analyses of the stereolithography process has been developed. Although no attempt has been made to incorporate all the physics of the process, a numerical platform suitable for such development has been established. A methodology and code architecture have been structured to allow finite elements to be birthed (activated) according to a prescribed order mimicking the procedure by which a laser is used to cure and build-up surface layers of resin to construct a three dimensional geometry. In its present form, the finite element code incorporates a simple phenomenological viscoelastic material model of solidification that is based on the shrinkage and relaxation observed following isolated, uncoupled laser exposures. The phenomenological material model has been used to analyze the curl in a simple cantilever beam and to make qualitative distinctions between two contrived build styles.

  17. Finite element analysis of FRP-strengthened RC beams

    Directory of Open Access Journals (Sweden)

    Teeraphot Supaviriyakit

    2004-05-01

    Full Text Available This paper presents a non-linear finite element analysis of reinforced concrete beam strengthened with externally bonded FRP plates. The finite element modeling of FRP-strengthened beams is demonstrated. Concrete and reinforcing bars are modeled together as 8-node isoparametric 2D RC element. The FRP plate is modeled as 8-node isoparametric 2D elastic element. The glue is modeled as perfect compatibility by directly connecting the nodes of FRP with those of concrete since there is no failure at the glue layer. The key to the analysis is the correct material models of concrete, steel and FRP. Cracks and steel bars are modeled as smeared over the entire element. Stress-strain properties of cracked concrete consist of tensile stress model normal to crack, compressive stress model parallel to crack and shear stress model tangential to crack. Stressstrain property of reinforcement is assumed to be elastic-hardening to account for the bond between concrete and steel bars. FRP is modeled as elastic-brittle material. From the analysis, it is found that FEM can predict the load-displacement relation, ultimate load and failure mode of the beam correctly. It can also capture the cracking process for both shear-flexural peeling and end peeling modes similar to the experiment.

  18. Application of finite element numerical technique to nuclear reactor geometries

    International Nuclear Information System (INIS)

    Determination of the temperature distribution in nuclear elements is of utmost importance to ensure that the temperature stays within safe limits during reactor operation. This paper discusses the use of Finite element numerical technique (FE) for the solution of the two dimensional heat conduction equation in geometries related to nuclear reactor cores. The FE solution stats with variational calculus which considers transforming the heat conduction equation into an integral equation I(O) and seeks a function that minimizes this integral and hence gives the solution to the heat conduction equation. In this paper FE theory as applied to heat conduction is briefly outlined and a 2-D program is used to apply the theory to simple shapes and to two gas cooled reactor fuel elements. Good results are obtained for both cases with reasonable number of elements. 7 figs

  19. Analysis of random structure-acoustic interaction problems using coupled boundary element and finite element methods

    Science.gov (United States)

    Mei, Chuh; Pates, Carl S., III

    1994-01-01

    A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.

  20. Comparison of boundary element and finite element methods in spur gear root stress analysis

    Science.gov (United States)

    Sun, H.; Mavriplis, D.; Huston, R. L.; Oswald, F. B.

    1989-01-01

    The boundary element method (BEM) is used to compute fillet stress concentration in spur gear teeth. The results are shown to compare favorably with analogous results obtained using the finite element method (FEM). A partially supported thin rim gear is studied. The loading is applied at the pitch point. A three-dimensional analysis is conducted using both the BEM and FEM (NASTRAN). The results are also compared with those of a two-dimensional finite element model. An advantage of the BEM over the FEM is that fewer elements are needed with the BEM. Indeed, in the current study the BEM used 92 elements and 270 nodes whereas the FEM used 320 elements and 2037 nodes. Moreover, since the BEM is especially useful in problems with high stress gradients it is potentially a very useful tool for fillet stress analyses.