Error-controlled adaptive finite elements in solid mechanics
National Research Council Canada - National Science Library
Stein, Erwin; Ramm, E
2003-01-01
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error-controlled Adaptive Finite-element-methods . . . . . . . . . . . . Missing Features and Properties of Today's General Purpose FE Programs for Structural...
Adaptive Smoothed Finite Elements (ASFEM) for history dependent material models
International Nuclear Information System (INIS)
Quak, W.; Boogaard, A. H. van den
2011-01-01
A successful simulation of a bulk forming process with finite elements can be difficult due to distortion of the finite elements. Nodal smoothed Finite Elements (NSFEM) are an interesting option for such a process since they show good distortion insensitivity and moreover have locking-free behavior and good computational efficiency. In this paper a method is proposed which takes advantage of the nodally smoothed field. This method, named adaptive smoothed finite elements (ASFEM), revises the mesh for every step of a simulation without mapping the history dependent material parameters. In this paper an updated-Lagrangian implementation is presented. Several examples are given to illustrate the method and to show its properties.
A multilevel correction adaptive finite element method for Kohn-Sham equation
Hu, Guanghui; Xie, Hehu; Xu, Fei
2018-02-01
In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.
Algorithms and data structures for massively parallel generic adaptive finite element codes
Bangerth, Wolfgang
2011-12-01
Today\\'s largest supercomputers have 100,000s of processor cores and offer the potential to solve partial differential equations discretized by billions of unknowns. However, the complexity of scaling to such large machines and problem sizes has so far prevented the emergence of generic software libraries that support such computations, although these would lower the threshold of entry and enable many more applications to benefit from large-scale computing. We are concerned with providing this functionality for mesh-adaptive finite element computations. We assume the existence of an "oracle" that implements the generation and modification of an adaptive mesh distributed across many processors, and that responds to queries about its structure. Based on querying the oracle, we develop scalable algorithms and data structures for generic finite element methods. Specifically, we consider the parallel distribution of mesh data, global enumeration of degrees of freedom, constraints, and postprocessing. Our algorithms remove the bottlenecks that typically limit large-scale adaptive finite element analyses. We demonstrate scalability of complete finite element workflows on up to 16,384 processors. An implementation of the proposed algorithms, based on the open source software p4est as mesh oracle, is provided under an open source license through the widely used deal.II finite element software library. © 2011 ACM 0098-3500/2011/12-ART10 $10.00.
Adaptive finite-element ballooning analysis of bipolar ionized fields
International Nuclear Information System (INIS)
Al-Hamouz, Z.M.
1995-01-01
This paper presents an adaptive finite-element iterative method for the analysis of the ionized field around high-voltage bipolar direct-current (HVDC) transmission line conductors without resort to Deutsch's assumption. A new iterative finite-element ballooning technique is proposed to solve Poisson's equation wherein the commonly used artificial boundary around the transmission line conductors is simulated at infinity. Unlike all attempts reported in the literature for the solution of ionized field, the constancy of the conductors' surface field at the corona onset value is directly implemented in the finite-element formulation. In order to investigate the effectiveness of the proposed method, a laboratory model was built. It has been found that the calculated V-I characteristics and the ground-plane current density agreed well with those measured experimentally. The simplicity in computer programming in addition to the low number of iterations required to achieve convergence characterize this method of analysis
An object-oriented decomposition of the adaptive-hp finite element method
Energy Technology Data Exchange (ETDEWEB)
Wiley, J.C.
1994-12-13
Adaptive-hp methods are those which use a refinement control strategy driven by a local error estimate to locally modify the element size, h, and polynomial order, p. The result is an unstructured mesh in which each node may be associated with a different polynomial order and which generally require complex data structures to implement. Object-oriented design strategies and languages which support them, e.g., C++, help control the complexity of these methods. Here an overview of the major classes and class structure of an adaptive-hp finite element code is described. The essential finite element structure is described in terms of four areas of computation each with its own dynamic characteristics. Implications of converting the code for a distributed-memory parallel environment are also discussed.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin; Salama, Amgad; Sun, Shuyu
2016-01-01
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin
2016-09-21
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
An h-adaptive finite element method for turbulent heat transfer
Energy Technology Data Exchange (ETDEWEB)
Carriington, David B [Los Alamos National Laboratory
2009-01-01
A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.
Overview of adaptive finite element analysis in computational geodynamics
May, D. A.; Schellart, W. P.; Moresi, L.
2013-10-01
The use of numerical models to develop insight and intuition into the dynamics of the Earth over geological time scales is a firmly established practice in the geodynamics community. As our depth of understanding grows, and hand-in-hand with improvements in analytical techniques and higher resolution remote sensing of the physical structure and state of the Earth, there is a continual need to develop more efficient, accurate and reliable numerical techniques. This is necessary to ensure that we can meet the challenge of generating robust conclusions, interpretations and predictions from improved observations. In adaptive numerical methods, the desire is generally to maximise the quality of the numerical solution for a given amount of computational effort. Neither of these terms has a unique, universal definition, but typically there is a trade off between the number of unknowns we can calculate to obtain a more accurate representation of the Earth, and the resources (time and computational memory) required to compute them. In the engineering community, this topic has been extensively examined using the adaptive finite element (AFE) method. Recently, the applicability of this technique to geodynamic processes has started to be explored. In this review we report on the current status and usage of spatially adaptive finite element analysis in the field of geodynamics. The objective of this review is to provide a brief introduction to the area of spatially adaptive finite analysis, including a summary of different techniques to define spatial adaptation and of different approaches to guide the adaptive process in order to control the discretisation error inherent within the numerical solution. An overview of the current state of the art in adaptive modelling in geodynamics is provided, together with a discussion pertaining to the issues related to using adaptive analysis techniques and perspectives for future research in this area. Additionally, we also provide a
Adaptive finite element method for shape optimization
Morin, Pedro; Nochetto, Ricardo H.; Pauletti, Miguel S.; Verani, Marco
2012-01-01
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
An h-adaptive finite element solver for the calculations of the electronic structures
International Nuclear Information System (INIS)
Bao Gang; Hu Guanghui; Liu Di
2012-01-01
In this paper, a framework of using h-adaptive finite element method for the Kohn–Sham equation on the tetrahedron mesh is presented. The Kohn–Sham equation is discretized by the finite element method, and the h-adaptive technique is adopted to optimize the accuracy and the efficiency of the algorithm. The locally optimal block preconditioned conjugate gradient method is employed for solving the generalized eigenvalue problem, and an algebraic multigrid preconditioner is used to accelerate the solver. A variety of numerical experiments demonstrate the effectiveness of our algorithm for both the all-electron and the pseudo-potential calculations.
An adaptive finite element method for steady and transient problems
International Nuclear Information System (INIS)
Benner, R.E. Jr.; Davis, H.T.; Scriven, L.E.
1987-01-01
Distributing integral error uniformly over variable subdomains, or finite elements, is an attractive criterion by which to subdivide a domain for the Galerkin/finite element method when localized steep gradients and high curvatures are to be resolved. Examples are fluid interfaces, shock fronts and other internal layers, as well as fluid mechanical and other boundary layers, e.g. thin-film states at solid walls. The uniform distribution criterion is developed into an adaptive technique for one-dimensional problems. Nodal positions can be updated simultaneously with nodal values during Newton iteration, but it is usually better to adopt nearly optimal nodal positions during Newton iteration upon nodal values. Three illustrative problems are solved: steady convection with diffusion, gradient theory of fluid wetting on a solid surface and Buckley-Leverett theory of two phase Darcy flow in porous media
Goal-Oriented Self-Adaptive hp Finite Element Simulation of 3D DC Borehole Resistivity Simulations
Calo, Victor M.
2011-05-14
In this paper we present a goal-oriented self-adaptive hp Finite Element Method (hp-FEM) with shared data structures and a parallel multi-frontal direct solver. The algorithm automatically generates (without any user interaction) a sequence of meshes delivering exponential convergence of a prescribed quantity of interest with respect to the number of degrees of freedom. The sequence of meshes is generated from a given initial mesh, by performing h (breaking elements into smaller elements), p (adjusting polynomial orders of approximation) or hp (both) refinements on the finite elements. The new parallel implementation utilizes a computational mesh shared between multiple processors. All computational algorithms, including automatic hp goal-oriented adaptivity and the solver work fully in parallel. We describe the parallel self-adaptive hp-FEM algorithm with shared computational domain, as well as its efficiency measurements. We apply the methodology described to the three-dimensional simulation of the borehole resistivity measurement of direct current through casing in the presence of invasion.
A parallel direct solver for the self-adaptive hp Finite Element Method
Paszyński, Maciej R.; Pardo, David; Torres-Verdí n, Carlos; Demkowicz, Leszek F.; Calo, Victor M.
2010-01-01
measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements
Harutyunyan, D.; Izsak, F.; van der Vegt, Jacobus J.W.; Bochev, Mikhail A.
For the adaptive solution of the Maxwell equations on three-dimensional domains with N´ed´elec edge finite element methods, we consider an implicit a posteriori error estimation technique. On each element of the tessellation an equation for the error is formulated and solved with a properly chosen
Precise magnetostatic field using the finite element method
International Nuclear Information System (INIS)
Nascimento, Francisco Rogerio Teixeira do
2013-01-01
The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)
Sheng, Lizeng
The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms
3D adaptive finite element method for a phase field model for the moving contact line problems
Shi, Yi
2013-08-01
In this paper, we propose an adaptive finite element method for simulating the moving contact line problems in three dimensions. The model that we used is the coupled Cahn-Hilliard Navier-Stokes equations with the generalized Navier boundary condition(GNBC) proposed in [18]. In our algorithm, to improve the efficiency of the simulation, we use the residual type adaptive finite element algorithm. It is well known that the phase variable decays much faster away from the interface than the velocity variables. There- fore we use an adaptive strategy that will take into account of such difference. Numerical experiments show that our algorithm is both efficient and reliable. © 2013 American Institute of Mathematical Sciences.
r-Adaptive mesh generation for shell finite element analysis
International Nuclear Information System (INIS)
Cho, Maenghyo; Jun, Seongki
2004-01-01
An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and to prevent surface geometric errors, we use the Naghdi's shell theory and express the shell surface by a B-spline patch. In addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a reliable mesh adaptation method after a parameter value in the weight function is properly chosen
Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh
International Nuclear Information System (INIS)
Zhang Dier; Shen Lihua; Zhou Aihui; Gong Xingao
2008-01-01
A finite element (FE) method with self-adaptive mesh-refinement technique is developed for solving the density functional Kohn-Sham equations. The FE method adopts local piecewise polynomials basis functions, which produces sparsely structured matrices of Hamiltonian. The method is well suitable for parallel implementation without using Fourier transform. In addition, the self-adaptive mesh-refinement technique can control the computational accuracy and efficiency with optimal mesh density in different regions
Kou, Jisheng; Sun, Shuyu
2014-01-01
The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton's method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.
Kou, Jisheng
2014-01-01
The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.
Moving finite elements: A continuously adaptive method for computational fluid dynamics
International Nuclear Information System (INIS)
Glasser, A.H.; Miller, K.; Carlson, N.
1991-01-01
Moving Finite Elements (MFE), a recently developed method for computational fluid dynamics, promises major advances in the ability of computers to model the complex behavior of liquids, gases, and plasmas. Applications of computational fluid dynamics occur in a wide range of scientifically and technologically important fields. Examples include meteorology, oceanography, global climate modeling, magnetic and inertial fusion energy research, semiconductor fabrication, biophysics, automobile and aircraft design, industrial fluid processing, chemical engineering, and combustion research. The improvements made possible by the new method could thus have substantial economic impact. Moving Finite Elements is a moving node adaptive grid method which has a tendency to pack the grid finely in regions where it is most needed at each time and to leave it coarse elsewhere. It does so in a manner which is simple and automatic, and does not require a large amount of human ingenuity to apply it to each particular problem. At the same time, it often allows the time step to be large enough to advance a moving shock by many shock thicknesses in a single time step, moving the grid smoothly with the solution and minimizing the number of time steps required for the whole problem. For 2D problems (two spatial variables) the grid is composed of irregularly shaped and irregularly connected triangles which are very flexible in their ability to adapt to the evolving solution. While other adaptive grid methods have been developed which share some of these desirable properties, this is the only method which combines them all. In many cases, the method can save orders of magnitude of computing time, equivalent to several generations of advancing computer hardware
Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Bonito, Andrea; DeVore, Ronald A.; Nochetto, Ricardo H.
2013-01-01
Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.
A geometric toolbox for tetrahedral finite element partitions
Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.
2011-01-01
In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis.
Kumar, Neelesh
2014-10-01
Finite element analysis has been universally employed for the stress and strain analysis in lower extremity prosthetics. The socket adapter was the principal subject of interest due to its importance in deciding the knee motion range. This article focused on the static and dynamic stress analysis of the designed hybrid adapter developed by the authors. A standard mechanical design validation approach using von Mises was followed. Four materials were considered for the analysis, namely, carbon fiber, oil-filled nylon, Al-6061, and mild steel. The paper analyses the static and dynamic stress on designed hybrid adapter which incorporates features of conventional male and female socket adapters. The finite element analysis was carried out for possible different angles of knee flexion simulating static and dynamic gait situation. Research was carried out on available design of socket adapter. Mechanical design of hybrid adapter was conceptualized and a CAD model was generated using Inventor modelling software. Static and dynamic stress analysis was carried out on different materials for optimization. The finite element analysis was carried out on the software Autodesk Inventor Professional Ver. 2011. The peak value of von Mises stress occurred in the neck region of the adapter and in the lower face region at rod eye-adapter junction in static and dynamic analyses, respectively. Oil-filled nylon was found to be the best material among the four with respect to strength, weight, and cost. Research investigations on newer materials for development of improved prosthesis will immensely benefit the amputees. The study analyze the static and dynamic stress on the knee joint adapter to provide better material used for hybrid design of adapter. © The International Society for Prosthetics and Orthotics 2013.
Energy Technology Data Exchange (ETDEWEB)
Hashemi, Abbas; Gollo, Mohammad Hoseinpour [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Seyedkashi, S. M. [University of Birjand, Birjand (Iran, Islamic Republic of)
2016-05-15
An adaptive Finite element analysis (FEA) was proposed in this paper for the industrial design of bimetal conical-cylindrical cup hydroforming. Forming circumstances for the perfect and imperfect parts were concluded through adaptive FEA using the ANSYS parametric design language. Effective parameters, including pressure loading path, layer placement order, and thickness ratio, were investigated for hydroforming of Al/St and Cu/St composite sheets. Experimental tests were implemented to validate adaptive finite element results. Rupture failure upon the pressure path occurred on the contact area between the blank and punch tip radius at low pressures and on the transition area of the conical-cylindrical portion at high pressures. The proposed method is applicable for any cylindrical, conical, or cylindrical/conical shapes with different materials and dimensions. Therefore, this method is beneficial as a practical design tool for engineers and researchers working in the process design of hydroformed shell products.
International Nuclear Information System (INIS)
Mirza, Anwar M.; Iqbal, Shaukat; Rahman, Faizur
2007-01-01
A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K + variational principle for slab geometry. The program has a core K + module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10 2 has been achieved using the new approach in some cases
Energy Technology Data Exchange (ETDEWEB)
Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)
2007-07-15
A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.
Janssen, Bä rbel; Kanschat, Guido
2011-01-01
A multilevel method on adaptive meshes with hanging nodes is presented, and the additional matrices appearing in the implementation are derived. Smoothers of overlapping Schwarz type are discussed; smoothing is restricted to the interior of the subdomains refined to the current level; thus it has optimal computational complexity. When applied to conforming finite element discretizations of elliptic problems and Maxwell equations, the method's convergence rates are very close to those for the nonadaptive version. Furthermore, the smoothers remain efficient for high order finite elements. We discuss the implementation in a general finite element code using the example of the deal.II library. © 2011 Societ y for Industrial and Applied Mathematics.
Janssen, Bärbel
2011-01-01
A multilevel method on adaptive meshes with hanging nodes is presented, and the additional matrices appearing in the implementation are derived. Smoothers of overlapping Schwarz type are discussed; smoothing is restricted to the interior of the subdomains refined to the current level; thus it has optimal computational complexity. When applied to conforming finite element discretizations of elliptic problems and Maxwell equations, the method\\'s convergence rates are very close to those for the nonadaptive version. Furthermore, the smoothers remain efficient for high order finite elements. We discuss the implementation in a general finite element code using the example of the deal.II library. © 2011 Societ y for Industrial and Applied Mathematics.
A review of some a posteriori error estimates for adaptive finite element methods
Czech Academy of Sciences Publication Activity Database
Segeth, Karel
2010-01-01
Roč. 80, č. 8 (2010), s. 1589-1600 ISSN 0378-4754. [European Seminar on Coupled Problems. Jetřichovice, 08.06.2008-13.06.2008] R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : hp-adaptive finite element method * a posteriori error estimators * computational error estimates Subject RIV: BA - General Mathematics Impact factor: 0.812, year: 2010 http://www.sciencedirect.com/science/article/pii/S0378475408004230
Macho, Gabriele A; Shimizu, Daisuke; Jiang, Yong; Spears, Iain R
2005-04-01
Australopithecus anamensis is the stem species of all later hominins and exhibits the suite of characters traditionally associated with hominins, i.e., bipedal locomotion when on the ground, canine reduction, and thick-enameled teeth. The functional consequences of its thick enamel are, however, unclear. Without appropriate structural reinforcement, these thick-enameled teeth may be prone to failure. This article investigates the mechanical behavior of A. anamensis enamel and represents the first in a series that will attempt to determine the functional adaptations of hominin teeth. First, the microstructural arrangement of enamel prisms in A. anamensis teeth was reconstructed using recently developed software and was compared with that of extant hominoids. Second, a finite-element model of a block of enamel containing one cycle of prism deviation was reconstructed for Homo, Pan, Gorilla, and A. anamensis and the behavior of these tissues under compressive stress was determined. Despite similarities in enamel microstructure between A. anamensis and the African great apes, the structural arrangement of prismatic enamel in A. anamensis appears to be more effective in load dissipation under these compressive loads. The findings may imply that this hominin species was well adapted to puncture crushing and are in some respects contrary to expectations based on macromorphology of teeth. Taking together, information obtained from both finite-element analyses and dental macroanatomy leads us to suggest that A. anamensis was probably adapted for habitually consuming a hard-tough diet. However, additional tests are needed to understand the functional adaptations of A. anamensis teeth fully.
On Round-off Error for Adaptive Finite Element Methods
Alvarez-Aramberri, J.
2012-06-02
Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called ‘radical meshes’. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.
On Round-off Error for Adaptive Finite Element Methods
Alvarez-Aramberri, J.; Pardo, David; Paszynski, Maciej; Collier, Nathan; Dalcin, Lisandro; Calo, Victor M.
2012-01-01
Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called ‘radical meshes’. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.
Laadhari , Aymen; Saramito , Pierre; Misbah , Chaouqi
2014-01-01
International audience; The numerical simulation of the deformation of vesicle membranes under simple shear external fluid flow is considered in this paper. A new saddle-point approach is proposed for the imposition of the fluid incompressibility and the membrane inextensibility constraints, through Lagrange multipliers defined in the fluid and on the membrane respectively. Using a level set formulation, the problem is approximated by mixed finite elements combined with an automatic adaptive ...
Modeling of heterogeneous elastic materials by the multiscale hp-adaptive finite element method
Klimczak, Marek; Cecot, Witold
2018-01-01
We present an enhancement of the multiscale finite element method (MsFEM) by combining it with the hp-adaptive FEM. Such a discretization-based homogenization technique is a versatile tool for modeling heterogeneous materials with fast oscillating elasticity coefficients. No assumption on periodicity of the domain is required. In order to avoid direct, so-called overkill mesh computations, a coarse mesh with effective stiffness matrices is used and special shape functions are constructed to account for the local heterogeneities at the micro resolution. The automatic adaptivity (hp-type at the macro resolution and h-type at the micro resolution) increases efficiency of computation. In this paper details of the modified MsFEM are presented and a numerical test performed on a Fichera corner domain is presented in order to validate the proposed approach.
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Zhdanov, Michael S.
2017-12-01
The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Padé series with adaptive selection of the center frequency of the series for early and late time. This approach can significantly increase the accuracy of FETD modeling.
A parallel direct solver for the self-adaptive hp Finite Element Method
Paszyński, Maciej R.
2010-03-01
In this paper we present a new parallel multi-frontal direct solver, dedicated for the hp Finite Element Method (hp-FEM). The self-adaptive hp-FEM generates in a fully automatic mode, a sequence of hp-meshes delivering exponential convergence of the error with respect to the number of degrees of freedom (d.o.f.) as well as the CPU time, by performing a sequence of hp refinements starting from an arbitrary initial mesh. The solver constructs an initial elimination tree for an arbitrary initial mesh, and expands the elimination tree each time the mesh is refined. This allows us to keep track of the order of elimination for the solver. The solver also minimizes the memory usage, by de-allocating partial LU factorizations computed during the elimination stage of the solver, and recomputes them for the backward substitution stage, by utilizing only about 10% of the computational time necessary for the original computations. The solver has been tested on 3D Direct Current (DC) borehole resistivity measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements of various sizes and polynomial orders of approximation varying from p = 1 to p = 9. From the presented experiments it follows that the parallel solver scales well up to the maximum number of utilized processors. The limit for the solver scalability is the maximum sequential part of the algorithm: the computations of the partial LU factorizations over the longest path, coming from the root of the elimination tree down to the deepest leaf. © 2009 Elsevier Inc. All rights reserved.
Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems
Cotter, Simon L.; Vejchodský , Tomá š; Erban, Radek
2013-01-01
Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.
International Nuclear Information System (INIS)
Lee, Byeong Hae
1992-02-01
This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.
Pardo, David
2011-07-01
The paper introduces a high-order, adaptive finite-element method for simulation of sonic measurements acquired with borehole-eccentered logging instruments. The resulting frequency-domain based algorithm combines a Fourier series expansion in one spatial dimension with a two-dimensional high-order adaptive finite-element method (FEM), and incorporates a perfectly matched layer (PML) for truncation of the computational domain. The simulation method was verified for various model problems, including a comparison to a semi-analytical solution developed specifically for this purpose. Numerical results indicate that for a wireline sonic tool operating in a fast formation, the main propagation modes are insensitive to the distance from the center of the tool to the center of the borehole (eccentricity distance). However, new flexural modes arise with an increase in eccentricity distance. In soft formations, we identify a new dipole tool mode which arises as a result of tool eccentricity. © 2011 Elsevier Inc.
Pardo, David; Matuszyk, Paweł Jerzy; Muga, Ignacio; Torres-Verdí n, Carlos; Mora Cordova, Angel; Calo, Victor M.
2011-01-01
The paper introduces a high-order, adaptive finite-element method for simulation of sonic measurements acquired with borehole-eccentered logging instruments. The resulting frequency-domain based algorithm combines a Fourier series expansion in one spatial dimension with a two-dimensional high-order adaptive finite-element method (FEM), and incorporates a perfectly matched layer (PML) for truncation of the computational domain. The simulation method was verified for various model problems, including a comparison to a semi-analytical solution developed specifically for this purpose. Numerical results indicate that for a wireline sonic tool operating in a fast formation, the main propagation modes are insensitive to the distance from the center of the tool to the center of the borehole (eccentricity distance). However, new flexural modes arise with an increase in eccentricity distance. In soft formations, we identify a new dipole tool mode which arises as a result of tool eccentricity. © 2011 Elsevier Inc.
Node-based finite element method for large-scale adaptive fluid analysis in parallel environments
International Nuclear Information System (INIS)
Toshimitsu, Fujisawa; Genki, Yagawa
2003-01-01
In this paper, a FEM-based (finite element method) mesh free method with a probabilistic node generation technique is presented. In the proposed method, all computational procedures, from the mesh generation to the solution of a system of equations, can be performed fluently in parallel in terms of nodes. Local finite element mesh is generated robustly around each node, even for harsh boundary shapes such as cracks. The algorithm and the data structure of finite element calculation are based on nodes, and parallel computing is realized by dividing a system of equations by the row of the global coefficient matrix. In addition, the node-based finite element method is accompanied by a probabilistic node generation technique, which generates good-natured points for nodes of finite element mesh. Furthermore, the probabilistic node generation technique can be performed in parallel environments. As a numerical example of the proposed method, we perform a compressible flow simulation containing strong shocks. Numerical simulations with frequent mesh refinement, which are required for such kind of analysis, can effectively be performed on parallel processors by using the proposed method. (authors)
Node-based finite element method for large-scale adaptive fluid analysis in parallel environments
Energy Technology Data Exchange (ETDEWEB)
Toshimitsu, Fujisawa [Tokyo Univ., Collaborative Research Center of Frontier Simulation Software for Industrial Science, Institute of Industrial Science (Japan); Genki, Yagawa [Tokyo Univ., Department of Quantum Engineering and Systems Science (Japan)
2003-07-01
In this paper, a FEM-based (finite element method) mesh free method with a probabilistic node generation technique is presented. In the proposed method, all computational procedures, from the mesh generation to the solution of a system of equations, can be performed fluently in parallel in terms of nodes. Local finite element mesh is generated robustly around each node, even for harsh boundary shapes such as cracks. The algorithm and the data structure of finite element calculation are based on nodes, and parallel computing is realized by dividing a system of equations by the row of the global coefficient matrix. In addition, the node-based finite element method is accompanied by a probabilistic node generation technique, which generates good-natured points for nodes of finite element mesh. Furthermore, the probabilistic node generation technique can be performed in parallel environments. As a numerical example of the proposed method, we perform a compressible flow simulation containing strong shocks. Numerical simulations with frequent mesh refinement, which are required for such kind of analysis, can effectively be performed on parallel processors by using the proposed method. (authors)
3D CSEM inversion based on goal-oriented adaptive finite element method
Zhang, Y.; Key, K.
2016-12-01
We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with
Exponentially-convergent Monte Carlo via finite-element trial spaces
International Nuclear Information System (INIS)
Morel, Jim E.; Tooley, Jared P.; Blamer, Brandon J.
2011-01-01
Exponentially-Convergent Monte Carlo (ECMC) methods, also known as adaptive Monte Carlo and residual Monte Carlo methods, were the subject of intense research over a decade ago, but they never became practical for solving the realistic problems. We believe that the failure of previous efforts may be related to the choice of trial spaces that were global and thus highly oscillatory. As an alternative, we consider finite-element trial spaces, which have the ability to treat fully realistic problems. As a first step towards more general methods, we apply piecewise-linear trial spaces to the spatially-continuous two-stream transport equation. Using this approach, we achieve exponential convergence and computationally demonstrate several fundamental properties of finite-element based ECMC methods. Finally, our results indicate that the finite-element approach clearly deserves further investigation. (author)
International Nuclear Information System (INIS)
Wachspress, E.
2009-01-01
Triangles and rectangles are the ubiquitous elements in finite element studies. Only these elements admit polynomial basis functions. Rational functions provide a basis for elements having any number of straight and curved sides. Numerical complexities initially associated with rational bases precluded extensive use. Recent analysis has reduced these difficulties and programs have been written to illustrate effectiveness. Although incorporation in major finite element software requires considerable effort, there are advantages in some applications which warrant implementation. An outline of the basic theory and of recent innovations is presented here. (authors)
International Nuclear Information System (INIS)
Cambon, S.; Lacoste, P.
2011-01-01
We propose a finite element method to solve the axisymmetric scattering problem posed on a regular bounded domain. Here we shall show how to reduce the initial 3D problem into a truncated sum of 2D independent problems posed into a meridian plane of the object. Each of these problem results in the coupling of a partial differential equation into the interior domain and an integral equation on the surface simulating the free space. Then variational volume and boundary integral formulations of Maxwell's equation on regular surfaces are derived. We introduce some general finite element adapted to cylindrical coordinates and constructed from nodal and mixed finite element both for the interior (volume) and for the integral equation (surface). (authors)
Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations
Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran
2018-06-01
This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.
Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.
2007-12-01
Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.
AbouEisha, Hassan M.
2016-06-02
In this paper we present a multi-criteria optimization of element partition trees and resulting orderings for multi-frontal solver algorithms executed for two dimensional h adaptive finite element method. In particular, the problem of optimal ordering of elimination of rows in the sparse matrices resulting from adaptive finite element method computations is reduced to the problem of finding of optimal element partition trees. Given a two dimensional h refined mesh, we find all optimal element partition trees by using the dynamic programming approach. An element partition tree defines a prescribed order of elimination of degrees of freedom over the mesh. We utilize three different metrics to estimate the quality of the element partition tree. As the first criterion we consider the number of floating point operations(FLOPs) performed by the multi-frontal solver. As the second criterion we consider the number of memory transfers (MEMOPS) performed by the multi-frontal solver algorithm. As the third criterion we consider memory usage (NONZEROS) of the multi-frontal direct solver. We show the optimization results for FLOPs vs MEMOPS as well as for the execution time estimated as FLOPs+100MEMOPS vs NONZEROS. We obtain Pareto fronts with multiple optimal trees, for each mesh, and for each refinement level. We generate a library of optimal elimination trees for small grids with local singularities. We also propose an algorithm that for a given large mesh with identified local sub-grids, each one with local singularity. We compute Schur complements over the sub-grids using the optimal trees from the library, and we submit the sequence of Schur complements into the iterative solver ILUPCG.
Directory of Open Access Journals (Sweden)
Pavel A. Akimov
2017-12-01
Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.
Massively Parallel Finite Element Programming
Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang
2010-01-01
Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Massively Parallel Finite Element Programming
Heister, Timo
2010-01-01
Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Finite element computational fluid mechanics
International Nuclear Information System (INIS)
Baker, A.J.
1983-01-01
This book analyzes finite element theory as applied to computational fluid mechanics. It includes a chapter on using the heat conduction equation to expose the essence of finite element theory, including higher-order accuracy and convergence in a common knowledge framework. Another chapter generalizes the algorithm to extend application to the nonlinearity of the Navier-Stokes equations. Other chapters are concerned with the analysis of a specific fluids mechanics problem class, including theory and applications. Some of the topics covered include finite element theory for linear mechanics; potential flow; weighted residuals/galerkin finite element theory; inviscid and convection dominated flows; boundary layers; parabolic three-dimensional flows; and viscous and rotational flows
International Nuclear Information System (INIS)
Ragusa, J. C.
2004-01-01
In this paper, a method for performing spatially adaptive computations in the framework of multigroup diffusion on 2-D and 3-D Cartesian grids is investigated. The numerical error, intrinsic to any computer simulation of physical phenomena, is monitored through an a posteriori error estimator. In a posteriori analysis, the computed solution itself is used to assess the accuracy. By efficiently estimating the spatial error, the entire computational process is controlled through successively adapted grids. Our analysis is based on a finite element solution of the diffusion equation. Bilinear test functions are used. The derived a posteriori error estimator is therefore based on the Hessian of the numerical solution. (authors)
Extended finite element method and its application in heterogeneous materials with inclusions
International Nuclear Information System (INIS)
Du Chengbin; Jiang Shouyan; Ying Zongquan
2010-01-01
To simplify the technology of finite element mesh generation for particle reinforced material, enrichment techniques is used to account for the material interfaces in the framework of extended finite element method (XFEM). The geometry of material distribution is described by level set function, which allows one to model the internal boundaries of the microstructure without the adaptation of the mesh. The enrichment function is used to improve the shape function of classical finite element method (FEM) for the nodes supporting the elements cut by the interface. The key issue of XFEM including constructing displacement pattern, establishment of the governing equation and scheme of numerical integration is also presented. It is not necessarily matching the internal features of the inclusions using XFEM, so the generation of finite element mesh can be performed easily. Finally, a plate with multi-circular inclusions under uniaxial tension is simulated by XFEM and FEM, respectively. The results show that XFEM is highly effective and efficient.
International Nuclear Information System (INIS)
Yashiki, Taturou; Yagawa, Genki; Okuda, Hiroshi
1995-01-01
The adaptive finite element method based on an 'a posteriori error estimation' is known to be a powerful technique for analyzing the engineering practical problems, since it excludes the instinctive aspect of the mesh subdivision and gives high accuracy with relatively low computational cost. In the adaptive procedure, both the error estimation and the mesh generation according to the error estimator are essential. In this paper, the adaptive procedure is realized by the automatic mesh generation based on the control of node density distribution, which is decided according to the error estimator. The global percentage error, CPU time, the degrees of freedom and the accuracy of the solution of the adaptive procedure are compared with those of the conventional method using regular meshes. Such numerical examples as the driven cavity flows of various Reynolds numbers and the flows around a cylinder have shown the very high performance of the proposed adaptive procedure. (author)
Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie
2010-09-13
In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Finite Element Analysis of Folded Airbag in Frontal Impact of Adapted Vehicles for Disabled Drivers
Masiá, J.; Eixerés, B.; Dols, J. F.; Esquerdo, T. V.
2009-11-01
The car control adaptations are used in vehicles in order to facilitate the driving to persons with physical handicaps. This does not have to suppose a decrease of the passive safety that is required to the vehicles. In order to analyze this relation there will be characterized the different control adaptations that are in use together with the different devices of passive safety that can be mounted in the vehicles in diverse cases of impact in order to generate models of simulation. The methodology used to generate this simulation consists of the first phase in which there develops the three-dimensional model of the driving place. For it, there has been used a commercial software of three-dimensional design. Once realized this one divides, the model is imported to the finite elements software in which meshing is generated. Finally, dynamic simulation software is used to assign the most important characteristics like material properties, contact interfaces, gas expansion models, airbag fold types, etc.
A first course in finite elements
Fish, Jacob
2007-01-01
Developed from the authors, combined total of 50 years undergraduate and graduate teaching experience, this book presents the finite element method formulated as a general-purpose numerical procedure for solving engineering problems governed by partial differential equations. Focusing on the formulation and application of the finite element method through the integration of finite element theory, code development, and software application, the book is both introductory and self-contained, as well as being a hands-on experience for any student. This authoritative text on Finite Elements:Adopts
Finite elements volumes methods: applications to the Navier-Stokes equations and convergence results
International Nuclear Information System (INIS)
Emonot, P.
1992-01-01
In the first chapter are described the equations modeling incompressible fluid flow and a quick presentation of finite volumes method. The second chapter is an introduction to the finite elements volumes method. The box model is described and a method adapted to Navier-Stokes problems is proposed. The third chapter shows a fault analysis of the finite elements volumes method for the Laplacian problem and some examples in one, two, three dimensional calculations. The fourth chapter is an extension of the error analysis of the method for the Navier-Stokes problem
Niemi, Antti; Babuška, Ivo M.; Pitkä ranta, Juhani; Demkowicz, Leszek F.
2011-01-01
elasticity theory and (2) by using a dimensionally reduced shell-ring model. In the first approach the problem is solved with a fully automatic hp-adaptive finite element solver whereas the classical h-version of the finite element method is used
Modelling optimization involving different types of elements in finite element analysis
International Nuclear Information System (INIS)
Wai, C M; Rivai, Ahmad; Bapokutty, Omar
2013-01-01
Finite elements are used to express the mechanical behaviour of a structure in finite element analysis. Therefore, the selection of the elements determines the quality of the analysis. The aim of this paper is to compare and contrast 1D element, 2D element, and 3D element used in finite element analysis. A simple case study was carried out on a standard W460x74 I-beam. The I-beam was modelled and analyzed statically with 1D elements, 2D elements and 3D elements. The results for the three separate finite element models were compared in terms of stresses, deformation and displacement of the I-beam. All three finite element models yield satisfactory results with acceptable errors. The advantages and limitations of these elements are discussed. 1D elements offer simplicity although lacking in their ability to model complicated geometry. 2D elements and 3D elements provide more detail yet sophisticated results which require more time and computer memory in the modelling process. It is also found that the choice of element in finite element analysis is influence by a few factors such as the geometry of the structure, desired analysis results, and the capability of the computer
Adaptive contact elements for three-dimensional fluid-structure interfaces
International Nuclear Information System (INIS)
Kulak, R.F.
1985-01-01
A finite element method is developed for treating the mechanics of contact between two deformable bodies which occurs, for example, at fluid-structure interfaces. The method uses a family of adaptive contact elements, which are based upon the penalty method, to handle all of the possible contact configurations that can occur between the discretized contacting bodies. The contact element's nodal connectivity is allowed to change during the computations in order to accommodate finite sliding. The infusion of these elements in the interface results in satisfying the force equilibrium condition during contact. The methodology has been implemented into the NEPTUNE code. Results are presented for an illustrative problem
Adaptive contact elements for three-dimensional fluid-structure interfaces
Energy Technology Data Exchange (ETDEWEB)
Kulak, R.F.
1985-01-01
A finite element method is developed for treating the mechanics of contact between two deformable bodies which occurs, for example, at fluid-structure interfaces. The method uses a family of adaptive contact elements, which are based upon the penalty method, to handle all of the possible contact configurations that can occur between the discretized contacting bodies. The contact element's nodal connectivity is allowed to change during the computations in order to accommodate finite sliding. The infusion of these elements in the interface results in satisfying the force equilibrium condition during contact. The methodology has been implemented into the NEPTUNE code. Results are presented for an illustrative problem.
Energy Technology Data Exchange (ETDEWEB)
Nascimento, Francisco Rogerio Teixeira do
2013-07-01
The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)
International Nuclear Information System (INIS)
Park, H.; De Oliveira, C. R. E.
2007-01-01
This paper describes the verification of the recently developed space-angle self-adaptive algorithm for the finite element-spherical harmonics method via the Method of Manufactured Solutions. This method provides a simple, yet robust way for verifying the theoretical properties of the adaptive algorithm and interfaces very well with the underlying second-order, even-parity transport formulation. Simple analytic solutions in both spatial and angular variables are manufactured to assess the theoretical performance of the a posteriori error estimates. The numerical results confirm reliability of the developed space-angle error indicators. (authors)
Energy Technology Data Exchange (ETDEWEB)
Steibler, P.
2000-07-01
The unsteady, turbulent flow is to be calculated in a complex geometry. For this purpose a stabilized finite element formulation in which the same functions for velocity and pressure are used is developed. Thus the process remains independent of the type of elements. This simplifies the application. Above all, it is easier to deal with the boundary conditions. The independency from the elements is also achieved by the extended uzawa-algorithm which uses quadratic functions for velocity and an element-constant pressure. This method is also programmed. In order to produce the unstructured grids, an algorithm is implemented which produces meshes consisting of triangular and tetrahedral elements with flow-dependent adaptation. With standard geometries both calculation methods are compared with results. Finally the flow in a draft tube of a Kaplan turbine is calculated and compared with results from model tests. (orig.) [German] Die instationaere, turbulente Stroemung in einer komplexen Geometrie soll berechnet werden. Dazu wird eine Stabilisierte Finite Element Formulierung entwickelt, bei der die gleichen Ansatzfunktionen fuer Geschwindigkeiten und Druck verwendet werden. Das Verfahren wird damit unabhaengig von der Form der Elemente. Dies vereinfacht die Anwendung. Vor allem wird der Umgang mit den Randbedingungen erleichert. Die Elementunabhaengigkeit erreicht man auch mit dem erweiterten Uzawa-Algorithmus, welcher quadratische Ansatzfunktionen fuer die Geschwindigkeiten und elementweisen konstanten Druck verwendet. Dieses Verfahren wird ebenso implementiert. Zur Erstellung der unstrukturierten Gitter wird ein Algorithmus erzeugt, der Netze aus Dreiecks- und Tetraederelementen erstellt, welche stroemungsabhaengige Groessen besitzen koennen. Anhand einiger Standardgeometrien werden die beiden Berechnungsmethoden mit Ergebnissen aus der Literatur verglichen. Als praxisrelevantes Beispiel wird abschliessend die Stroemung in einem Saugrohr einer Kaplanturbine berechnet
International Nuclear Information System (INIS)
Ragusa, Jean C.
2015-01-01
In this paper, we propose a piece-wise linear discontinuous (PWLD) finite element discretization of the diffusion equation for arbitrary polygonal meshes. It is based on the standard diffusion form and uses the symmetric interior penalty technique, which yields a symmetric positive definite linear system matrix. A preconditioned conjugate gradient algorithm is employed to solve the linear system. Piece-wise linear approximations also allow a straightforward implementation of local mesh adaptation by allowing unrefined cells to be interpreted as polygons with an increased number of vertices. Several test cases, taken from the literature on the discretization of the radiation diffusion equation, are presented: random, sinusoidal, Shestakov, and Z meshes are used. The last numerical example demonstrates the application of the PWLD discretization to adaptive mesh refinement
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
Structural modeling techniques by finite element method
International Nuclear Information System (INIS)
Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong
1991-01-01
This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
Electrical machine analysis using finite elements
Bianchi, Nicola
2005-01-01
OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I
Stresses in faulted tunnel models by photoelasticity and adaptive finite element
International Nuclear Information System (INIS)
Ladkany, S.G.; Huang, Y.
1995-01-01
Research efforts in this area continue to investigate the development of a proper technique to analyze the stresses in the Ghost Dance fault and the effect of the fault on the stability of drifts in the proposed repository. Results from two parallel techniques are being compared to each other - Photoelastic models and Finite Element (FE) models. The Photoelastic plexiglass model (88.89 mm thick ampersand 256.1 mm long and wide) has two adjacent spare openings (57.95 mm long and wide) and a central round opening (57.95 mm diameter) placed at a clear distance approximately equal to its diameter from the square openings. The vertical loading on top of the model is 2269 N (500 lb.). Saw cuts (0.5388 mm wide), representing a fault, are being propagated from the tunnels outward with stress measurements taken at predefined locations, as the saw cuts increase in length. The FE model duplicates exactly the Photoelastic models. The adaptive mesh generation method is used to refine the FE grid at every step of the analysis. This nonlinear interactive computational techniques uses various uses various percent tolerance errors in the convergence of stress values as a measure in ending the iterative process
Development of polygon elements based on the scaled boundary finite element method
International Nuclear Information System (INIS)
Chiong, Irene; Song Chongmin
2010-01-01
We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.
Dong, Chen; Sun, Shuyu; Taylor, Glenn A.
2011-01-01
A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive
Directory of Open Access Journals (Sweden)
S. D. Parkinson
2014-09-01
Full Text Available High-resolution direct numerical simulations (DNSs are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.
Five-point Element Scheme of Finite Analytic Method for Unsteady Groundwater Flow
Institute of Scientific and Technical Information of China (English)
Xiang Bo; Mi Xiao; Ji Changming; Luo Qingsong
2007-01-01
In order to improve the finite analytic method's adaptability for irregular unit, by using coordinates rotation technique this paper establishes a five-point element scheme of finite analytic method. It not only solves unsteady groundwater flow equation but also gives the boundary condition. This method can be used to calculate the three typical questions of groundwater. By compared with predecessor's computed result, the result of this method is more satisfactory.
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...
African Journals Online (AJOL)
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN ... the transverse residual stress in the x-direction (σx) had a maximum value of 375MPa ... the finite element method are in fair agreement with the experimental results.
Finite element methods a practical guide
Whiteley, Jonathan
2017-01-01
This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.
Finite-Element 2D and 3D PIC Modeling of RF Devices with Applications to Multipacting
De Ford, John F; Petillo, John
2005-01-01
Multipacting currently limits the performance of many high power radio-frequency (RF) devices, particularly couplers and windows. Models have helped researchers understand and mitigate this problem in 2D structures, but useful multipacting models for complicated 3D structures are still a challenge. A combination of three recent technologies that have been developed in the Analyst and MICHELLE codes begin to address this challenge: high-order adaptive finite-element RF field calculations, advanced particle tracking on unstructured grids, and comprehensive secondary emission models. Analyst employs high-order adaptive finite-element methods to accurately compute driven RF fields and eigenmodes in complex geometries, particularly near edges, corners, and curved surfaces. To perform a multipacting analysis, we use the mesh and fields from Analyst in a modified version of the self-consistent, finite-element gun code MICHELLE. MICHELLE has both a fast, accurate, and reliable particle tracker for unstructured grids ...
Finite element analysis of piezoelectric materials
International Nuclear Information System (INIS)
Lowrie, F.; Stewart, M.; Cain, M.; Gee, M.
1999-01-01
This guide is intended to help people wanting to do finite element analysis of piezoelectric materials by answering some of the questions that are peculiar to piezoelectric materials. The document is not intended as a complete beginners guide for finite element analysis in general as this is better dealt with by the individual software producers. The guide is based around the commercial package ANSYS as this is a popular package amongst piezoelectric material users, however much of the information will still be useful to users of other finite element codes. (author)
Finite rotation shells basic equations and finite elements for Reissner kinematics
Wisniewski, K
2010-01-01
This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.
A collocation--Galerkin finite element model of cardiac action potential propagation.
Rogers, J M; McCulloch, A D
1994-08-01
A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.
A multigrid solution method for mixed hybrid finite elements
Energy Technology Data Exchange (ETDEWEB)
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Domain decomposition methods for mortar finite elements
Energy Technology Data Exchange (ETDEWEB)
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
Aranha: a 2D mesh generator for triangular finite elements
International Nuclear Information System (INIS)
Fancello, E.A.; Salgado, A.C.; Feijoo, R.A.
1990-01-01
A method for generating unstructured meshes for linear and quadratic triangular finite elements is described in this paper. Some topics on the C language data structure used in the development of the program Aranha are also presented. The applicability for adaptive remeshing is shown and finally several examples are included to illustrate the performance of the method in irregular connected planar domains. (author)
Why do probabilistic finite element analysis ?
Thacker, Ben H
2008-01-01
The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.
An efficient finite element solution for gear dynamics
International Nuclear Information System (INIS)
Cooley, C G; Parker, R G; Vijayakar, S M
2010-01-01
A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.
Finite element analysis theory and application with ANSYS
Moaveni, Saeed
2015-01-01
For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...
Finite element application to global reactor analysis
International Nuclear Information System (INIS)
Schmidt, F.A.R.
1981-01-01
The Finite Element Method is described as a Coarse Mesh Method with general basis and trial functions. Various consequences concerning programming and application of Finite Element Methods in reactor physics are drawn. One of the conclusions is that the Finite Element Method is a valuable tool in solving global reactor analysis problems. However, problems which can be described by rectangular boxes still can be solved with special coarse mesh programs more efficiently. (orig.) [de
Finite-Element Software for Conceptual Design
DEFF Research Database (Denmark)
Lindemann, J.; Sandberg, G.; Damkilde, Lars
2010-01-01
and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...
Books and monographs on finite element technology
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
International Nuclear Information System (INIS)
Witteveen, Jeroen A.S.; Bijl, Hester
2009-01-01
The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.
Probabilistic finite elements for fracture mechanics
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
Li, Rui; Zhou, Li; Yang, Jann N.
2010-04-01
An objective of the structural health monitoring system is to identify the state of the structure and to detect the damage when it occurs. Analysis techniques for the damage identification of structures, based on vibration data measured from sensors, have received considerable attention. Recently, a new damage tracking technique, referred to as the adaptive quadratic sum-square error (AQSSE) technique, has been proposed, and simulation studies demonstrated that the AQSSE technique is quite effective in identifying structural damages. In this paper, the adaptive quadratic sumsquare error (AQSSE) along with the reduced-order finite-element method is proposed to identify the damages of complex structures. Experimental tests were conducted to verify the capability of the proposed damage detection approach. A series of experimental tests were performed using a scaled cantilever beam subject to the white noise and sinusoidal excitations. The capability of the proposed reduced-order finite-element based adaptive quadratic sum-square error (AQSSE) method in detecting the structural damage is demonstrated by the experimental results.
Introduction to finite and spectral element methods using Matlab
Pozrikidis, Constantine
2014-01-01
The Finite Element Method in One Dimension. Further Applications in One Dimension. High-Order and Spectral Elements in One Dimension. The Finite Element Method in Two Dimensions. Quadratic and Spectral Elements in Two Dimensions. Applications in Mechanics. Viscous Flow. Finite and Spectral Element Methods in Three Dimensions. Appendices. References. Index.
Energy Technology Data Exchange (ETDEWEB)
Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Seaid, Mohammed; Trevelyan, Jon [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Laghrouche, Omar [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)
2013-10-15
We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach can be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.
Finite Element Methods and Their Applications
Chen, Zhangxin
2005-01-01
This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
Mixed Element Formulation for the Finite Element-Boundary Integral Method
National Research Council Canada - National Science Library
Meese, J; Kempel, L. C; Schneider, S. W
2006-01-01
A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...
FINITE ELEMENT ANALYSIS OF STRUCTURES
Directory of Open Access Journals (Sweden)
PECINGINA OLIMPIA-MIOARA
2015-05-01
Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.
Surgery simulation using fast finite elements
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1996-01-01
This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...
Directory of Open Access Journals (Sweden)
M.H.R. Ghoreishy
2008-02-01
Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.
Zampini, Stefano
2016-06-02
Balancing Domain Decomposition by Constraints (BDDC) methods have proven to be powerful preconditioners for large and sparse linear systems arising from the finite element discretization of elliptic PDEs. Condition number bounds can be theoretically established that are independent of the number of subdomains of the decomposition. The core of the methods resides in the design of a larger and partially discontinuous finite element space that allows for fast application of the preconditioner, where Cholesky factorizations of the subdomain finite element problems are additively combined with a coarse, global solver. Multilevel and highly-scalable algorithms can be obtained by replacing the coarse Cholesky solver with a coarse BDDC preconditioner. BDDC methods have the remarkable ability to control the condition number, since the coarse space of the preconditioner can be adaptively enriched at the cost of solving local eigenproblems. The proper identification of these eigenproblems extends the robustness of the methods to any heterogeneity in the distribution of the coefficients of the PDEs, not only when the coefficients jumps align with the subdomain boundaries or when the high contrast regions are confined to lie in the interior of the subdomains. The specific adaptive technique considered in this paper does not depend upon any interaction of discretization and partition; it relies purely on algebraic operations. Coarse space adaptation in BDDC methods has attractive algorithmic properties, since the technique enhances the concurrency and the arithmetic intensity of the preconditioning step of the sparse implicit solver with the aim of controlling the number of iterations of the Krylov method in a black-box fashion, thus reducing the number of global synchronization steps and matrix vector multiplications needed by the iterative solver; data movement and memory bound kernels in the solve phase can be thus limited at the expense of extra local ops during the setup of
ANSYS mechanical APDL for finite element analysis
Thompson, Mary Kathryn
2017-01-01
ANSYS Mechanical APDL for Finite Element Analysis provides a hands-on introduction to engineering analysis using one of the most powerful commercial general purposes finite element programs on the market. Students will find a practical and integrated approach that combines finite element theory with best practices for developing, verifying, validating and interpreting the results of finite element models, while engineering professionals will appreciate the deep insight presented on the program's structure and behavior. Additional topics covered include an introduction to commands, input files, batch processing, and other advanced features in ANSYS. The book is written in a lecture/lab style, and each topic is supported by examples, exercises and suggestions for additional readings in the program documentation. Exercises gradually increase in difficulty and complexity, helping readers quickly gain confidence to independently use the program. This provides a solid foundation on which to build, preparing readers...
Finite elements of nonlinear continua
Oden, John Tinsley
1972-01-01
Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s
Radiative transfer with finite elements. Pt. 1. Basic method and tests
Energy Technology Data Exchange (ETDEWEB)
Richling, S. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik; Meinkoehn, E. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik; Kryzhevoi, N. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR); Kanschat, G. [Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR)
2001-10-01
A finite element method for solving the monochromatic radiation transfer equation including scattering in three dimensions is presented. The algorithm employs unstructured grids which are adaptively refined. Adaptivity as well as ordinate parallelization reduce memory requirements and execution time and make it possible to calculate the radiation field across several length scales for objects with strong opacity gradients. An a posteriori error estimate for one particular quantity is obtained by solving the dual problem. The application to a sample of test problems reveals the properties of the implementation. (orig.)
Directory of Open Access Journals (Sweden)
Flávio Luiz de Silva Bussamra
Full Text Available Abstract Hybrid quasi-Trefftz finite elements have been applied with success to the analysis of laminated plates. Two independent fields are approximated by linearly independent, hierarchical polynomials: the stress basis in the domain, adapted from Papkovitch-Neuber solution of Navier equations, and the displacement basis, defined on element surface. The stress field that satisfies the Trefftz constraint a priori for isotropic material is adapted for orthotropic materials, which leads to the term "quasi". In this work, the hexahedral hybrid quasi-Trefftz stress element is applied to the modeling of nonsymmetric laminates and laminated composite plates with geometric discontinuities. The hierarchical p-refinement is exploited.
DEFF Research Database (Denmark)
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin
2017-01-01
method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...... method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary...... condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies....
Space and Time Adaptive Two-Mesh hp-Finite Element Method for Transient Microwave Heating Problems
Czech Academy of Sciences Publication Activity Database
Dubcová, Lenka; Šolín, Pavel; Červený, Jakub; Kůs, Pavel
1-2, č. 30 (2010), s. 23-40 ISSN 0272-6343 R&D Projects: GA ČR(CZ) GA102/07/0496; GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z20570509 Keywords : hp-finite element method * microwave heating * edge elements Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.844, year: 2010
Directory of Open Access Journals (Sweden)
Usama Umer
2016-05-01
Full Text Available This study aims to perform comparative analyses in modeling serrated chip morphologies using traditional finite element and smoothed particles hydrodynamics methods. Although finite element models are being employed in predicting machining performance variables for the last two decades, many drawbacks and limitations exist with the current finite element models. The problems like excessive mesh distortions, high numerical cost of adaptive meshing techniques, and need of geometric chip separation criteria hinder its practical implementation in metal cutting industries. In this study, a mesh free method, namely, smoothed particles hydrodynamics, is implemented for modeling serrated chip morphology while machining AISI H13 hardened tool steel. The smoothed particles hydrodynamics models are compared with the traditional finite element models, and it has been found that the smoothed particles hydrodynamics models have good capabilities in handling large distortions and do not need any geometric or mesh-based chip separation criterion.
The finite element method in engineering, 2nd edition
International Nuclear Information System (INIS)
Rao, S.S.
1986-01-01
This work provides a systematic introduction to the various aspects of the finite element method as applied to engineering problems. Contents include: introduction to finite element method; solution of finite element equations; solid and structural mechanics; static analysis; dynamic analysis; heat transfer; fluid mechanics and additional applications
Niemi, Antti
2011-06-03
We perform finite element analysis of the so called Girkmann problem in structural mechanics. The problem involves an axially symmetric spherical shell stiffened with a foot ring and is approached (1) by using the axisymmetric formulation of linear elasticity theory and (2) by using a dimensionally reduced shell-ring model. In the first approach the problem is solved with a fully automatic hp-adaptive finite element solver whereas the classical h-version of the finite element method is used in the second approach. We study the convergence behaviour of the different numerical models and show that accurate stress resultants can be obtained with both models by using effective post-processing formulas. © Springer-Verlag London Limited 2011.
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Jin; Seo, Jeong Moon
2000-08-01
The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel.
International Nuclear Information System (INIS)
Lee, Sang Jin; Seo, Jeong Moon
2000-08-01
The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel
Samimi, M.; Dommelen, van J.A.W.; Geers, M.G.D.
2011-01-01
Oscillations observed in the load–displacement response of brittle interfaces modeled by cohesive zone elements in a quasi-static finite element framework are artifacts of the discretization. The typical limit points in this oscillatory path can be traced by application of path-following techniques,
An adaptative finite element method for turbulent flow simulations
International Nuclear Information System (INIS)
Arnoux-Guisse, F.; Bonnin, O.; Leal de Sousa, L.; Nicolas, G.
1995-05-01
After outlining the space and time discretization methods used in the N3S thermal hydraulic code developed at EDF/NHL, we describe the possibilities of the peripheral version, the Adaptative Mesh, which comprises two separate parts: the error indicator computation and the development of a module subdividing elements usable by the solid dynamics code ASTER and the electromagnetism code TRIFOU also developed by R and DD. The error indicators implemented in N3S are described. They consist of a projection indicator quantifying the space error in laminar or turbulent flow calculations and a Navier-Stokes residue indicator calculated on each element. The method for subdivision of triangles into four sub-triangles and tetrahedra into eight sub-tetrahedra is then presented with its advantages and drawbacks. It is illustrated by examples showing the efficiency of the module. The last concerns the 2 D case of flow behind a backward-facing step. (authors). 9 refs., 5 figs., 1 tab
Finite Element Analysis of Pipe T-Joint
P.M.Gedkar; Dr. D.V. Bhope
2012-01-01
This paper reports stress analysis of two pressurized cylindrical intersection using finite element method. The different combinations of dimensions of run pipe and the branch pipe are used to investigate thestresses in pipe at the intersection. In this study the stress analysis is accomplished by finite element package ANSYS.
Modelling cohesive laws in finite element simulations via an adapted contact procedure in ABAQUS
DEFF Research Database (Denmark)
Feih, S.
2004-01-01
is not straightforward, and most existing publications consider theoretical and therefore simpler softening shapes. Two possible methods of bridging law approximation areexplained and compared in this report. The bridging laws were implemented in a numerical user subroutine in the finite element code ABAQUS. The main...
Introduction to finite element analysis using MATLAB and Abaqus
Khennane, Amar
2013-01-01
There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA
Goal-Oriented Self-Adaptive hp Finite Element Simulation of 3D DC Borehole Resistivity Simulations
Calo, Victor M.; Pardo, David; Paszyński, Maciej R.
2011-01-01
(adjusting polynomial orders of approximation) or hp (both) refinements on the finite elements. The new parallel implementation utilizes a computational mesh shared between multiple processors. All computational algorithms, including automatic hp goal
Nonlinear finite element modeling of corrugated board
A. C. Gilchrist; J. C. Suhling; T. J. Urbanik
1999-01-01
In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...
Peridynamic Multiscale Finite Element Methods
Energy Technology Data Exchange (ETDEWEB)
Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
Bibliography for finite elements. [2200 references
Energy Technology Data Exchange (ETDEWEB)
Whiteman, J R [comp.
1975-01-01
This bibliography cites almost all of the significant papers on advances in the mathematical theory of finite elements. Reported are applications in aeronautical, civil, mechanical, nautical and nuclear engineering. Such topics as classical analysis, functional analysis, approximation theory, fluids, and diffusion are covered. Over 2200 references to publications up to the end of 1974 are included. Publications are listed alphabetically by author and also by keywords. In addition, finite element packages are listed.
Complex finite element sensitivity method for creep analysis
International Nuclear Information System (INIS)
Gomez-Farias, Armando; Montoya, Arturo; Millwater, Harry
2015-01-01
The complex finite element method (ZFEM) has been extended to perform sensitivity analysis for mechanical and structural systems undergoing creep deformation. ZFEM uses a complex finite element formulation to provide shape, material, and loading derivatives of the system response, providing an insight into the essential factors which control the behavior of the system as a function of time. A complex variable-based quadrilateral user element (UEL) subroutine implementing the power law creep constitutive formulation was incorporated within the Abaqus commercial finite element software. The results of the complex finite element computations were verified by comparing them to the reference solution for the steady-state creep problem of a thick-walled cylinder in the power law creep range. A practical application of the ZFEM implementation to creep deformation analysis is the calculation of the skeletal point of a notched bar test from a single ZFEM run. In contrast, the standard finite element procedure requires multiple runs. The value of the skeletal point is that it identifies the location where the stress state is accurate, regardless of the certainty of the creep material properties. - Highlights: • A novel finite element sensitivity method (ZFEM) for creep was introduced. • ZFEM has the capability to calculate accurate partial derivatives. • ZFEM can be used for identification of the skeletal point of creep structures. • ZFEM can be easily implemented in a commercial software, e.g. Abaqus. • ZFEM results were shown to be in excellent agreement with analytical solutions
Directory of Open Access Journals (Sweden)
Yongliang Wang
2018-01-01
Full Text Available Hydrofracturing technology of perforated horizontal well has been widely used to stimulate the tight hydrocarbon reservoirs for gas production. To predict the hydraulic fracture propagation, the microseismicity can be used to infer hydraulic fractures state; by the effective numerical methods, microseismic events can be addressed from changes of the computed stresses. In numerical models, due to the challenges in accurately representing the complex structure of naturally fractured reservoir, the interaction between hydraulic and pre-existing fractures has not yet been considered and handled satisfactorily. To overcome these challenges, the adaptive finite element-discrete element method is used to refine mesh, effectively identify the fractures propagation, and investigate microseismic modelling. Numerical models are composed of hydraulic fractures, pre-existing fractures, and microscale pores, and the seepage analysis based on the Darcy’s law is used to determine fluid flow; then moment tensors in microseismicity are computed based on the computed stresses. Unfractured and naturally fractured models are compared to assess the influences of pre-existing fractures on hydrofracturing. The damaged and contact slip events were detected by the magnitudes, B-values, Hudson source type plots, and focal spheres.
International Nuclear Information System (INIS)
Lu Yujie; Zhu Banghe; Rasmussen, John C; Sevick-Muraca, Eva M; Shen Haiou; Wang Ge
2010-01-01
Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP N ) approximations. To fully evaluate the performance of the SP N approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP N can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.
A suitable low-order, eight-node tetrahedral finite element for solids
Energy Technology Data Exchange (ETDEWEB)
Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.
1998-03-01
To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping, and the element`s performance in applications are presented. In particular they examine the eight-node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties.
Application of Mass Lumped Higher Order Finite Elements
International Nuclear Information System (INIS)
J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau
2005-01-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied
The finite element method its basis and fundamentals
Zienkiewicz, Olek C; Zhu, JZ
2013-01-01
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob
A suitable low-order, eight-node tetrahedral finite element for solids
International Nuclear Information System (INIS)
Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.
1998-03-01
To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element's gradient operator, studies in obtaining a suitable mass lumping, and the element's performance in applications are presented. In particular they examine the eight-node tetrahedral finite element's behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties
Finite element formulation for a digital image correlation method
International Nuclear Information System (INIS)
Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei
2005-01-01
A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust
Application of finite-element-methods in food processing
DEFF Research Database (Denmark)
Risum, Jørgen
2004-01-01
Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....
Seakeeping with the semi-Lagrangian particle finite element method
Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio
2017-07-01
The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.
Advances in 3D electromagnetic finite element modeling
International Nuclear Information System (INIS)
Nelson, E.M.
1997-01-01
Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed
On symmetric pyramidal finite elements
Czech Academy of Sciences Publication Activity Database
Liu, L.; Davies, K. B.; Yuan, K.; Křížek, Michal
2004-01-01
Roč. 11, 1-2 (2004), s. 213-227 ISSN 1492-8760 R&D Projects: GA AV ČR IAA1019201 Institutional research plan: CEZ:AV0Z1019905 Keywords : mesh generation * finite element method * composite elements Subject RIV: BA - General Mathematics Impact factor: 0.108, year: 2004
Finite-element analysis of dynamic fracture
Aberson, J. A.; Anderson, J. M.; King, W. W.
1976-01-01
Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.
The finite element method in electromagnetics
Jin, Jianming
2014-01-01
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The
Finite elements for analysis and design
Akin, J E; Davenport, J H
1994-01-01
The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee
The finite element response matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-02-01
A new technique is developed with an alternative formulation of the response matrix method implemented with the finite element scheme. Two types of response matrices are generated from the Galerkin solution to the weak form of the diffusion equation subject to an arbitrary current and source. The piecewise polynomials are defined in two levels, the first for the local (assembly) calculations and the second for the global (core) response matrix calculations. This finite element response matrix technique was tested in two 2-dimensional test problems, 2D-IAEA benchmark problem and Biblis benchmark problem, with satisfatory results. The computational time, whereas the current code is not extensively optimized, is of the same order of the well estabilished coarse mesh codes. Furthermore, the application of the finite element technique in an alternative formulation of response matrix method permits the method to easily incorporate additional capabilities such as treatment of spatially dependent cross-sections, arbitrary geometrical configurations, and high heterogeneous assemblies. (Author) [pt
Finite Element Method in Machining Processes
Markopoulos, Angelos P
2013-01-01
Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...
Weiser, Martin
2016-01-01
All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.
Paszyński, Maciej R.
2013-04-01
This paper describes a direct solver algorithm for a sequence of finite element meshes that are h-refined towards one or several point singularities. For such a sequence of grids, the solver delivers linear computational cost O(N) in terms of CPU time and memory with respect to the number of unknowns N. The linear computational cost is achieved by utilizing the recursive structure provided by the sequence of h-adaptive grids with a special construction of the elimination tree that allows for reutilization of previously computed partial LU (or Cholesky) factorizations over the entire unrefined part of the computational mesh. The reutilization technique reduces the computational cost of the entire sequence of h-refined grids from O(N2) down to O(N). Theoretical estimates are illustrated with numerical results on two- and three-dimensional model problems exhibiting one or several point singularities. © 2013 Elsevier Ltd. All rights reserved.
Paszyński, Maciej R.; Calo, Victor M.; Pardo, David
2013-01-01
This paper describes a direct solver algorithm for a sequence of finite element meshes that are h-refined towards one or several point singularities. For such a sequence of grids, the solver delivers linear computational cost O(N) in terms of CPU time and memory with respect to the number of unknowns N. The linear computational cost is achieved by utilizing the recursive structure provided by the sequence of h-adaptive grids with a special construction of the elimination tree that allows for reutilization of previously computed partial LU (or Cholesky) factorizations over the entire unrefined part of the computational mesh. The reutilization technique reduces the computational cost of the entire sequence of h-refined grids from O(N2) down to O(N). Theoretical estimates are illustrated with numerical results on two- and three-dimensional model problems exhibiting one or several point singularities. © 2013 Elsevier Ltd. All rights reserved.
Finite Element Modelling of Seismic Liquefaction in Soils
Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.
2013-01-01
Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom
Finite element modeling of ultrasonic inspection of weldments
International Nuclear Information System (INIS)
Dewey, B.R.; Adler, L.; Oliver, B.F.; Pickard, C.A.
1983-01-01
High performance weldments for critical service applications require 100% inspection. Balanced against the adaptability of the ultrasonic method for automated inspection are the difficulties encountered with nonhomogeneous and anisotropic materials. This research utilizes crystals and bicrystals of nickel to model austenitic weld metal, where the anisotropy produces scattering and mode conversion, making detection and measurement of actual defects difficult. Well characterized samples of Ni are produced in a levitation zone melting facility. Crystals in excess of 25 mm diameter and length are large enough to permit ultrasonic measurements of attenuation, wave speed, and spectral content. At the same time, the experiments are duplicated as finite element models for comparison purposes
A Finite Element Method for Simulation of Compressible Cavitating Flows
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad
2016-11-01
This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.
International Nuclear Information System (INIS)
Franke, H.P.
1976-05-01
The finite element method is applied to the solution of the stationary 3D group diffusion equations. For this, a programme system with the name of FEM3D is established which also includes a module for semi-automatic mesh generation. Tetrahedral finite elements are used. The neutron fluxes are described by complete first- or second-order Lagrangian polynomials. General homogeneous boundary conditions are allowed. The studies show that realistic three-dimensional problems can be solved at less expense by iterative methods, in particular so when especially adapted matrix handling and storage schemes are used efficiently. (orig./RW) [de
Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods
International Nuclear Information System (INIS)
Baker, A.R.
1982-07-01
A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)
Mixed finite element simulations in two-dimensional groundwater flow problems
International Nuclear Information System (INIS)
Kimura, Hideo
1989-01-01
A computer code of groundwater flow in two-dimensional porous media based on the mixed finite element method was developed for accurate approximations of Darcy velocities in safety evaluation of radioactive waste disposal. The mixed finite element procedure solves for both the Darcy velocities and pressure heads simultaneously in the Darcy equation and continuity equation. Numerical results of a single well pumping at a constant rate in a uniform flow field showed that the mixed finite element method gives more accurate Darcy velocities nearly 50 % on average error than standard finite element method. (author)
Finite element analysis of rotating beams physics based interpolation
Ganguli, Ranjan
2017-01-01
This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.
Impact of new computing systems on finite element computations
International Nuclear Information System (INIS)
Noor, A.K.; Fulton, R.E.; Storaasi, O.O.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified
Finite size effects of a pion matrix element
International Nuclear Information System (INIS)
Guagnelli, M.; Jansen, K.; Palombi, F.; Petronzio, R.; Shindler, A.; Wetzorke, I.
2004-01-01
We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation
Variational approach to probabilistic finite elements
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-08-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Verification of Orthogrid Finite Element Modeling Techniques
Steeve, B. E.
1996-01-01
The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.
Review of Tomographic Imaging using Finite Element Method
Directory of Open Access Journals (Sweden)
Mohd Fua’ad RAHMAT
2011-12-01
Full Text Available Many types of techniques for process tomography were proposed and developed during the past 20 years. This paper review the techniques and the current state of knowledge and experience on the subject, aimed at highlighting the problems associated with the non finite element methods, such as the ill posed, ill conditioned which relates to the accuracy and sensitivity of measurements. In this paper, considerations for choice of sensors and its applications were outlined and descriptions of non finite element tomography systems were presented. The finite element method tomography system as obtained from recent works, suitable for process control and measurement were also presented.
Magnetic materials and 3D finite element modeling
Bastos, Joao Pedro A
2014-01-01
Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes.
New mixed finite-element methods
International Nuclear Information System (INIS)
Franca, L.P.
1987-01-01
New finite-element methods are proposed for mixed variational formulations. The methods are constructed by adding to the classical Galerkin method various least-squares like terms. The additional terms involve integrals over element interiors, and include mesh-parameter dependent coefficients. The methods are designed to enhance stability. Consistency is achieved in the sense that exact solutions identically satisfy the variational equations.Applied to several problems, simple finite-element interpolations are rendered convergent, including convenient equal-order interpolations generally unstable within the Galerkin approach. The methods are subdivided into two classes according to the manner in which stability is attained: (1) circumventing Babuska-Brezzi condition methods; (2) satisfying Babuska-Brezzi condition methods. Convergence is established for each class of methods. Applications of the first class of methods to Stokes flow and compressible linear elasticity are presented. The second class of methods is applied to the Poisson, Timoshenko beam and incompressible elasticity problems. Numerical results demonstrate the good stability and accuracy of the methods, and confirm the error estimates
On higher order pyramidal finite elements
Czech Academy of Sciences Publication Activity Database
Liu, L.; Davies, K.B.; Křížek, Michal; Guan, L.
2011-01-01
Roč. 3, č. 2 (2011), s. 131-140 ISSN 2070-0733 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : pyramidal polynomial basis functions * finite element method * composite elements * three-dimensional mortar elements Subject RIV: BA - General Mathematics Impact factor: 0.750, year: 2011
Validation of High Displacement Piezoelectric Actuator Finite Element Models
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion
International Nuclear Information System (INIS)
Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.
2006-01-01
Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)
A set of pathological tests to validate new finite elements
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
The finite element method entails several approximations. Hence it ... researchers have designed several pathological tests to validate any new finite element. The .... Three dimensional thick shell elements using a hybrid/mixed formu- lation.
Crack Propagation by Finite Element Method
Directory of Open Access Journals (Sweden)
Luiz Carlos H. Ricardo
2018-01-01
Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed
Finite element analysis of plastic recycling machine designed for ...
African Journals Online (AJOL)
... design was evaluated using finite element analysis (FEA) tool in Solid Works Computer ... Also, a minimum factor of safety value of 5.3 was obtained for shredder shaft ... Machine; Design; Recycling; Sustainability; Finite Element; Simulation ...
An introduction to the UNCLE finite element scheme
International Nuclear Information System (INIS)
Enderby, J.A.
1983-01-01
UNCLE is a completely general finite element scheme which provides common input, output, equation-solving and other facilities for a family of finite element codes for linear and non-linear stress analysis, heat transfer etc. This report describes the concepts on which UNCLE is based and gives a general account of the facilities provided. (author)
An introduction to the UNCLE finite element scheme
Energy Technology Data Exchange (ETDEWEB)
Enderby, J A [UK Atomic Energy Authority, Northern Division, Risley Nuclear Power Development Establishment, Risley, Warrington (United Kingdom)
1983-05-01
UNCLE is a completely general finite element scheme which provides common input, output, equation-solving and other facilities for a family of finite element codes for linear and non-linear stress analysis, heat transfer etc. This report describes the concepts on which UNCLE is based and gives a general account of the facilities provided. (author)
A particle finite element method for machining simulations
Sabel, Matthias; Sator, Christian; Müller, Ralf
2014-07-01
The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.
A finite element primer for beginners the basics
Zohdi, Tarek I
2014-01-01
The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:(1) Weighted residual methods and Galerkin approximations,(2) A model problem for one-dimensional?linear elastostatics,(3) Weak formulations in one dimension,(4) Minimum principles in one dimension,(5) Error estimation in one dimension,(5) Construction of Finite Element basis functions in one dimension,(6) Gaussian Quadrature,(7) Iterative solvers and element by element data structures,(8) A model problem for th
On the reliability of finite element solutions
International Nuclear Information System (INIS)
Prasad, K.S.R.K.
1975-01-01
The extent of reliability of the finite element method for analysis of nuclear reactor structures, and that of reactor vessels in particular and the need for the engineer to guard against the pitfalls that may arise out of both physical and mathematical models have been high-lighted. A systematic way of checking the model to obtain reasonably accurate solutions is presented. Quite often sophisticated elements are suggested for specific design and stress concentration problems. The desirability or otherwise of these elements, their scope and utility vis-a-vis the use of large stack of conventional elements are discussed from the view point of stress analysts. The methods of obtaining a check on the reliability of the finite element solutions either through modelling changes or an extrapolation technique are discussed. (author)
Automation of finite element methods
Korelc, Jože
2016-01-01
New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.
Finite Element Based Design and Optimization for Piezoelectric Accelerometers
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.; Yao, Q.
1998-01-01
A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...
THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2011-03-01
Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.
High accuracy 3D electromagnetic finite element analysis
International Nuclear Information System (INIS)
Nelson, Eric M.
1997-01-01
A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed
High accuracy 3D electromagnetic finite element analysis
International Nuclear Information System (INIS)
Nelson, E.M.
1996-01-01
A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed
Finite element simulation and testing of ISW CFRP anchorage
DEFF Research Database (Denmark)
Schmidt, Jacob Wittrup; Goltermann, Per; Hertz, Kristian Dahl
2013-01-01
is modelled in the 3D finite Element program ABAQUS, just as digital image correlation (DIC) testing was performed to verify the finite element simulation. Also a new optimized design was produced to ensure that the finite element simulation and anchorage behaviour correlated well. It is seen....... This paper presents a novel mechanical integrated sleeve wedge anchorage which seem very promising when perusing the scope of ultimate utilization of CFRP 8mm rods (with a tension capacity of approximately 140kN). Compression transverse to the CFRP is evaluated to prevent premature failure. The anchorage...
Hydrothermal analysis in engineering using control volume finite element method
Sheikholeslami, Mohsen
2015-01-01
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),
A multiscale mortar multipoint flux mixed finite element method
Wheeler, Mary Fanett; Xue, Guangri; Yotov, Ivan
2012-01-01
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite
International Nuclear Information System (INIS)
Fujimura, Toichiro
1996-01-01
A three-dimensional neutron transport code DFEM has been developed by the double finite element method to analyze reactor cores with complex geometry as large fast reactors. Solution algorithm is based on the double finite element method in which the space and angle finite elements are employed. A reactor core system can be divided into some triangular and/or quadrangular prism elements, and the spatial distribution of neutron flux in each element is approximated with linear basis functions. As for the angular variables, various basis functions are applied, and their characteristics were clarified by comparison. In order to enhance the accuracy, a general method is derived to remedy the truncation errors at reflective boundaries, which are inherent in the conventional FEM. An adaptive acceleration method and the source extrapolation method were applied to accelerate the convergence of the iterations. The code structure is outlined and explanations are given on how to prepare input data. A sample input list is shown for reference. The eigenvalue and flux distribution for real scale fast reactors and the NEA benchmark problems were presented and discussed in comparison with the results of other transport codes. (author)
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients
Energy Technology Data Exchange (ETDEWEB)
Kalchev, D
2012-04-02
This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the
Development and validation of a weight-bearing finite element model for total knee replacement.
Woiczinski, M; Steinbrück, A; Weber, P; Müller, P E; Jansson, V; Schröder, Ch
2016-01-01
Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young's modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson's correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young's modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella.
Global-Local Finite Element Analysis of Bonded Single-Lap Joints
Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.
2004-01-01
Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.
Finite element simulation of laser transmission welding of dissimilar ...
African Journals Online (AJOL)
user
materials between polyvinylidene fluoride and titanium ... finite element (FE) thermal model is developed to simulate the laser ... Keywords: Laser transmission welding, Temperature field, Weld dimension, Finite element analysis, Thermal modeling. 1. .... 4) The heating phenomena due to the phase changes are neglected.
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...
Generalized multiscale finite element method. Symmetric interior penalty coupling
Efendiev, Yalchin R.; Galvis, Juan; Lazarov, Raytcho D.; Moon, M.; Sarkis, Marcus V.
2013-01-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.
Generalized multiscale finite element method. Symmetric interior penalty coupling
Efendiev, Yalchin R.
2013-12-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.
Finite element reduction strategy for composite sandwich plates with viscoelastic layers
Directory of Open Access Journals (Sweden)
Adriana Amaro Diacenco
2013-04-01
Full Text Available Composite materials have been regarded as a convenient strategy in various types of engineering systems such as aeronautical and space structures, as well as architecture and light industry products due to their advantages over the traditional engineering materials, such as their high strength/stiffness relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element modeling of composite laminated structures incorporating viscoelastic materials to the problem of vibration attenuation. However, the typically high dimension of large finite element models of composite structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. Within this context, emphasis is placed on a general condensation strategy specially adapted for the case of viscoelastically damped structures, in which a constant (frequency- and temperature-independent reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic forces is used. After presenting the theoretical foundations, the numerical applications of composite plates treated by viscoelastic materials are addressed, and the main features of the methodology are discussed.
Finite element reduction strategy for composite sandwich plates with viscoelastic layers
Directory of Open Access Journals (Sweden)
Adriana Amaro Diacenco
2012-01-01
Full Text Available Composite materials have been regarded as a convenient strategy in various types of engineering systems such as aeronautical and space structures, as well as architecture and light industry products due to their advantages over the traditional engineering materials, such as their high strength/stiffness relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element modeling of composite laminated structures incorporating viscoelastic materials to the problem of vibration attenuation. However, the typically high dimension of large finite element models of composite structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. Within this context, emphasis is placed on a general condensation strategy specially adapted for the case of viscoelastically damped structures, in which a constant (frequency- and temperature-independent reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic forces is used. After presenting the theoretical foundations, the numerical applications of composite plates treated by viscoelastic materials are addressed, and the main features of the methodology are discussed.
Lundström, T; Jonas, T; Volkwein, A
2008-01-01
Thirteen Norway spruce [Picea abies (L.) Karst.] trees of different size, age, and social status, and grown under varying conditions, were investigated to see how they react to complex natural static loading under summer and winter conditions, and how they have adapted their growth to such combinations of load and tree state. For this purpose a non-linear finite-element model and an extensive experimental data set were used, as well as a new formulation describing the degree to which the exploitation of the bending stress capacity is uniform. The three main findings were: material and geometric non-linearities play important roles when analysing tree deflections and critical loads; the strengths of the stem and the anchorage mutually adapt to the local wind acting on the tree crown in the forest canopy; and the radial stem growth follows a mechanically high-performance path because it adapts to prevailing as well as acute seasonal combinations of the tree state (e.g. frozen or unfrozen stem and anchorage) and load (e.g. wind and vertical and lateral snow pressure). Young trees appeared to adapt to such combinations in a more differentiated way than older trees. In conclusion, the mechanical performance of the Norway spruce studied was mostly very high, indicating that their overall growth had been clearly influenced by the external site- and tree-specific mechanical stress.
Energy Technology Data Exchange (ETDEWEB)
Stone, C.M.
1997-07-01
SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.
Finite Element Analysis of Circular Plate using SolidWorks
International Nuclear Information System (INIS)
Kang, Yeo Jin; Jhung, Myung Jo
2011-01-01
Circular plates are used extensively in mechanical engineering for nuclear reactor internal components. The examples in the reactor vessel internals are upper guide structure support plate, fuel alignment plate, lower support plate etc. To verify the structural integrity of these plates, the finite element analyses are performed, which require the development of the finite element model. Sometimes it is very costly and time consuming to make the model especially for the beginners who start their engineering job for the structural analysis, necessitating a simple method to develop the finite element model for the pursuing structural analysis. Therefore in this study, the input decks are generated for the finite element analysis of a circular plate as shown in Fig. 1, which can be used for the structural analysis such as modal analysis, response spectrum analysis, stress analysis, etc using the commercial program Solid Works. The example problems are solved and the results are included for analysts to perform easily the finite element analysis of the mechanical plate components due to various loadings. The various results presented in this study would be helpful not only for the benchmark calculations and results comparisons but also as a part of the knowledge management for the future generation of young designers, scientists and computer analysts
A multiscale mortar multipoint flux mixed finite element method
Wheeler, Mary Fanett
2012-02-03
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.
High accuracy 3D electromagnetic finite element analysis
International Nuclear Information System (INIS)
Nelson, E.M.
1997-01-01
A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed. copyright 1997 American Institute of Physics
A Posteriori Error Estimation for Finite Element Methods and Iterative Linear Solvers
Energy Technology Data Exchange (ETDEWEB)
Melboe, Hallgeir
2001-10-01
This thesis addresses a posteriori error estimation for finite element methods and iterative linear solvers. Adaptive finite element methods have gained a lot of popularity over the last decades due to their ability to produce accurate results with limited computer power. In these methods a posteriori error estimates play an essential role. Not only do they give information about how large the total error is, they also indicate which parts of the computational domain should be given a more sophisticated treatment in order to reduce the error. A posteriori error estimates are traditionally aimed at estimating the global error, but more recently so called goal oriented error estimators have been shown a lot of interest. The name reflects the fact that they estimate the error in user-defined local quantities. In this thesis the main focus is on global error estimators for highly stretched grids and goal oriented error estimators for flow problems on regular grids. Numerical methods for partial differential equations, such as finite element methods and other similar techniques, typically result in a linear system of equations that needs to be solved. Usually such systems are solved using some iterative procedure which due to a finite number of iterations introduces an additional error. Most such algorithms apply the residual in the stopping criterion, whereas the control of the actual error may be rather poor. A secondary focus in this thesis is on estimating the errors that are introduced during this last part of the solution procedure. The thesis contains new theoretical results regarding the behaviour of some well known, and a few new, a posteriori error estimators for finite element methods on anisotropic grids. Further, a goal oriented strategy for the computation of forces in flow problems is devised and investigated. Finally, an approach for estimating the actual errors associated with the iterative solution of linear systems of equations is suggested. (author)
finite element model for predicting residual stresses in shielded
African Journals Online (AJOL)
eobe
This paper investigates the prediction of residual stresses developed ... steel plates through Finite Element Model simulation and experiments. ... The experimental values as measured by the X-Ray diffractometer were of ... Based on this, it can be concluded that Finite Element .... Comparison of Residual Stresses from X.
Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners
DEFF Research Database (Denmark)
Ellegaard, Peter
2006-01-01
The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... elements) and contact between timber beams, if any (bilinear contact elements). The timber beams have linear-elastic properties. The section forces needed for design of the joints are given directly by the finite-element model, since special elements are used to model the nail groups and the nail plate...... the behavior of the joints very well at lower load levels. At higher load levels the stiffness is overestimated due to development of cracks in the timber and the linear-elastic timber properties in the finite-element model....
Finite element analysis of inelastic structural behavior
International Nuclear Information System (INIS)
Argyris, J.H.; Szimmat, J.; Willam, K.J.
1977-01-01
The paper describes recent achievements in the finite element analysis of inelastic material behavior. The main purpose is to examine the interaction of three disciplines; (i) the finite element formulation of large deformation problems in the light of a systematic linearization, (ii) the constitutive modelling of inelastic processes in the rate-dependent and rate-independent response regime and (iii) the numerical solution of nonlinear rate problems via incremental iteration techniques. In the first part, alternative finite element models are developed for the idealization of large deformation problems. A systematic approach is presented to linearize the field equations locally by an incremental procedure. The finite element formulation is then examined for the description of inelastic material processes. In the second part, nonlinear and inelastic material phenomena are classified and illustrated with representative examples of concrete and metal components. In particular, rate-dependent and rate-independent material behavior is examined and representative constitutive models are assessed for their mathematical characterization. Hypoelastic, elastoplastic and endochronic models are compared for the description rate-independent material phenomena. In the third part, the numerial solution of inelastic structural behavior is discussed. In this context, several incremental techniques are developed and compared for tracing the evolution of the inelastic process. The numerical procedures are examined with regard to stability and accuracy to assess the overall efficiency. The 'optimal' incremental technique is then contrasted with the computer storage requirements to retain the data for the 'memory-characteristics' of the constitutive model
Numerical experiment on finite element method for matching data
International Nuclear Information System (INIS)
Tokuda, Shinji; Kumakura, Toshimasa; Yoshimura, Koichi.
1993-03-01
Numerical experiments are presented on the finite element method by Pletzer-Dewar for matching data of an ordinary differential equation with regular singular points by using model equation. Matching data play an important role in nonideal MHD stability analysis of a magnetically confined plasma. In the Pletzer-Dewar method, the Frobenius series for the 'big solution', the fundamental solution which is not square-integrable at the regular singular point, is prescribed. The experiments include studies of the convergence rate of the matching data obtained by the finite element method and of the effect on the results of computation by truncating the Frobenius series at finite terms. It is shown from the present study that the finite element method is an effective method for obtaining the matching data with high accuracy. (author)
Analytical and finite element modeling of grounding systems
Energy Technology Data Exchange (ETDEWEB)
Luz, Mauricio Valencia Ferreira da [University of Santa Catarina (UFSC), Florianopolis, SC (Brazil)], E-mail: mauricio@grucad.ufsc.br; Dular, Patrick [University of Liege (Belgium). Institut Montefiore], E-mail: Patrick.Dular@ulg.ac.be
2007-07-01
Grounding is the art of making an electrical connection to the earth. This paper deals with the analytical and finite element modeling of grounding systems. An electrokinetic formulation using a scalar potential can benefit from floating potentials to define global quantities such as electric voltages and currents. The application concerns a single vertical grounding with one, two and three-layer soil, where the superior extremity stays in the surface of the soil. This problem has been modeled using a 2D axi-symmetric electrokinetic formulation. The grounding resistance obtained by finite element method is compared with the analytical one for one-layer soil. With the results of this paper it is possible to show that finite element method is a powerful tool in the analysis of the grounding systems in low frequencies. (author)
International Nuclear Information System (INIS)
Al-Akhrass, Dina
2014-01-01
Simulations in solid mechanics exhibit several difficulties, as dealing with incompressibility, with nonlinearities due to finite strains, contact laws, or constitutive laws. The basic motivation of our work is to propose efficient finite element methods capable of dealing with incompressibility in finite strain context, and using elements of low order. During the three last decades, many approaches have been proposed in the literature to overcome the incompressibility problem. Among them, mixed formulations offer an interesting theoretical framework. In this work, a three-field mixed formulation (displacement, pressure, volumetric strain) is investigated. In some cases, this formulation can be condensed in a two-field (displacement - pressure) mixed formulation. However, it is well-known that the discrete problem given by the Galerkin finite element technique, does not inherit the 'inf-sup' stability condition from the continuous problem. Hence, the interpolation orders in displacement and pressure have to be chosen in a way to satisfy the Brezzi-Babuska stability conditions when using Galerkin approaches. Interpolation orders must be chosen so as to satisfy this condition. Two possibilities are considered: to use stable finite element satisfying this requirement, or to use finite element that does not satisfy this condition, and to add terms stabilizing the FE Galerkin formulation. The latter approach allows the use of equal order interpolation. In this work, stable finite element P2/P1 and P2/P1/P1 are used as reference, and compared to P1/P1 and P1/P1/P1 formulations stabilized with a bubble function or with a VMS method (Variational Multi-Scale) based on a sub-grid-space orthogonal to the FE space. A finite strain model based on logarithmic strain is selected. This approach is extended to three and two field mixed formulations with stable or stabilized elements. These approaches are validated on academic cases and used on industrial cases. (author)
Non-Linear Three Dimensional Finite Elements for Composite Concrete Structures
Directory of Open Access Journals (Sweden)
O. Kohnehpooshi
Full Text Available Abstract The current investigation focused on the development of effective and suitable modelling of reinforced concrete component with and without strengthening. The modelling includes physical and constitutive models. New interface elements have been developed, while modified constitutive law have been applied and new computational algorithm is utilised. The new elements are the Truss-link element to model the interaction between concrete and reinforcement bars, the interface element between two plate bending elements and the interface element to represent the interfacial behaviour between FRP, steel plates and concrete. Nonlinear finite-element (FE codes were developed with pre-processing. The programme was written using FORTRAN language. The accuracy and efficiency of the finite element programme were achieved by analyzing several examples from the literature. The application of the 3D FE code was further enhanced by carrying out the numerical analysis of the three dimensional finite element analysis of FRP strengthened RC beams, as well as the 3D non-linear finite element analysis of girder bridge. Acceptable distributions of slip, deflection, stresses in the concrete and FRP plate have also been found. These results show that the new elements are effective and appropriate to be used for structural component modelling.
ZONE: a finite element mesh generator
International Nuclear Information System (INIS)
Burger, M.J.
1976-05-01
The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures
Finite elements methods in mechanics
Eslami, M Reza
2014-01-01
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...
A finite element conjugate gradient FFT method for scattering
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics
Energy Technology Data Exchange (ETDEWEB)
Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.
1999-03-01
This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples of the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.
International Nuclear Information System (INIS)
Ishiguro, Misako; Higuchi, Kenji
1983-01-01
The finite element method is applied in Galerkin-type approximation to three-dimensional neutron diffusion equations of fast reactors. A hexagonal element scheme is adopted for treating the hexagonal lattice which is typical for fast reactors. The validity of the scheme is verified by applying the scheme as well as alternative schemes to the neutron diffusion calculation of a gas-cooled fast reactor of actual scale. The computed results are compared with corresponding values obtained using the currently applied triangular-element and also with conventional finite difference schemes. The hexagonal finite element scheme is found to yield a reasonable solution to the problem taken up here, with some merit in terms of saving in computing time, but the resulting multiplication factor differs by 1% and the flux by 9% compared with the triangular mesh finite difference scheme. The finite element method, even in triangular element scheme, would appear to incur error in inadmissible amount and which could not be easily eliminated by refining the nodes. (author)
Finite element approximation to the even-parity transport equation
International Nuclear Information System (INIS)
Lewis, E.E.
1981-01-01
This paper studies the finite element method, a procedure for reducing partial differential equations to sets of algebraic equations suitable for solution on a digital computer. The differential equation is cast into the form of a variational principle, the resulting domain then subdivided into finite elements. The dependent variable is then approximated by a simple polynomial, and these are linked across inter-element boundaries by continuity conditions. The finite element method is tailored to a variety of transport problems. Angular approximations are formulated, and the extent of ray effect mitigation is examined. Complex trial functions are introduced to enable the inclusion of buckling approximations. The ubiquitous curved interfaces of cell calculations, and coarse mesh methods are also treated. A concluding section discusses limitations of the work to date and suggests possible future directions
Linear finite element method for one-dimensional diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica
2011-07-01
We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)
Finite-element method modeling of hyper-frequency structures
International Nuclear Information System (INIS)
Zhang, Min
1990-01-01
The modelization of microwave propagation problems, including Eigen-value problem and scattering problem, is accomplished by the finite element method with vector functional and scalar functional. For Eigen-value problem, propagation modes in waveguides and resonant modes in cavities can be calculated in a arbitrarily-shaped structure with inhomogeneous material. Several microwave structures are resolved in order to verify the program. One drawback associated with the vector functional is the appearance of spurious or non-physical solutions. A penalty function method has been introduced to reduce spurious' solutions. The adaptive charge method is originally proposed in this thesis to resolve waveguide scattering problem. This method, similar to VSWR measuring technique, is more efficient to obtain the reflection coefficient than the matrix method. Two waveguide discontinuity structures are calculated by the two methods and their results are compared. The adaptive charge method is also applied to a microwave plasma excitor. It allows us to understand the role of different physical parameters of excitor in the coupling of microwave energy to plasma mode and the mode without plasma. (author) [fr
Quadrature representation of finite element variational forms
DEFF Research Database (Denmark)
Ølgaard, Kristian Breum; Wells, Garth N.
2012-01-01
This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2012-07-01
Full Text Available -linear deformations are accounted for. As will be demonstrated, the finite volume approach exhibits similar disad- vantages to the linear Q4 finite element formulation when undergoing bending. An enhanced finite volume approach is discussed and compared with finite...
The finite element analysis program MSC Marc/Mentat a first introduction
Öchsner, Andreas
2016-01-01
Based on simple examples, this book offers a short introduction to the general-purpose finite element program MSC Marc, a specialized program for non-linear problems (implicit solver) distributed by the MSC Software Corporation, which is commonly used in academia and industry. Today the documentation of all finite element programs includes a variety of step-by-step examples of differing complexity, and in addition, all software companies offer professional workshops on different topics. As such, rather than competing with these, the book focuses on providing simple examples, often single-element problems, which can easily be related to the theory that is discussed in finite element lectures. This makes it an ideal companion book to classical introductory courses on the finite element method.
A finite element thermohydrodynamic analyis of profile bore bearing
International Nuclear Information System (INIS)
Shah Nor bin Basri
1994-01-01
A finite element-based method is presented for analysing the thermohydrodynamic (THD) behaviour of profile bore bearing. A variational statement for the governing equation is derived and used to formulate a non-linear quadrilateral finite element of serendipity family. The predicted behaviour is compared with experimental evidence where possible and favorable correlation is obtained
Hualien forced vibration calculation with a finite element model
International Nuclear Information System (INIS)
Wang, F.; Gantenbein, F.; Nedelec, M.; Duretz, Ch.
1995-01-01
The forced vibration tests of the Hualien mock-up were useful to validate finite element models developed for soil-structure interaction. In this paper the two sets of tests with and without backfill were analysed. the methods used are based on finite element modeling for the soil. Two approaches were considered: calculation of soil impedance followed by the calculation of the transfer functions with a model taking into account the superstructure and the impedance; direct calculation of the soil-structure transfer functions, with the soil and the structure being represented in the same model by finite elements. Blind predictions and post-test calculations are presented and compared with the test results. (author). 4 refs., 8 figs., 2 tabs
The Finite Element Numerical Modelling of 3D Magnetotelluric
Directory of Open Access Journals (Sweden)
Ligang Cao
2014-01-01
Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.
Bubble-Enriched Least-Squares Finite Element Method for Transient Advective Transport
Directory of Open Access Journals (Sweden)
Rajeev Kumar
2008-01-01
Full Text Available The least-squares finite element method (LSFEM has received increasing attention in recent years due to advantages over the Galerkin finite element method (GFEM. The method leads to a minimization problem in the L2-norm and thus results in a symmetric and positive definite matrix, even for first-order differential equations. In addition, the method contains an implicit streamline upwinding mechanism that prevents the appearance of oscillations that are characteristic of the Galerkin method. Thus, the least-squares approach does not require explicit stabilization and the associated stabilization parameters required by the Galerkin method. A new approach, the bubble enriched least-squares finite element method (BELSFEM, is presented and compared with the classical LSFEM. The BELSFEM requires a space-time element formulation and employs bubble functions in space and time to increase the accuracy of the finite element solution without degrading computational performance. We apply the BELSFEM and classical least-squares finite element methods to benchmark problems for 1D and 2D linear transport. The accuracy and performance are compared.
Finite element model updating of concrete structures based on imprecise probability
Biswal, S.; Ramaswamy, A.
2017-09-01
Imprecise probability based methods are developed in this study for the parameter estimation, in finite element model updating for concrete structures, when the measurements are imprecisely defined. Bayesian analysis using Metropolis Hastings algorithm for parameter estimation is generalized to incorporate the imprecision present in the prior distribution, in the likelihood function, and in the measured responses. Three different cases are considered (i) imprecision is present in the prior distribution and in the measurements only, (ii) imprecision is present in the parameters of the finite element model and in the measurement only, and (iii) imprecision is present in the prior distribution, in the parameters of the finite element model, and in the measurements. Procedures are also developed for integrating the imprecision in the parameters of the finite element model, in the finite element software Abaqus. The proposed methods are then verified against reinforced concrete beams and prestressed concrete beams tested in our laboratory as part of this study.
A three-dimensional cell-based smoothed finite element method for elasto-plasticity
International Nuclear Information System (INIS)
Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo
2015-01-01
This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.
A three-dimensional cell-based smoothed finite element method for elasto-plasticity
Energy Technology Data Exchange (ETDEWEB)
Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)
2015-02-15
This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.
On Using Particle Finite Element for Hydrodynamics Problems Solving
Directory of Open Access Journals (Sweden)
E. V. Davidova
2015-01-01
Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \
Mesh-morphing algorithms for specimen-specific finite element modeling.
Sigal, Ian A; Hardisty, Michael R; Whyne, Cari M
2008-01-01
Despite recent advances in software for meshing specimen-specific geometries, considerable effort is still often required to produce and analyze specimen-specific models suitable for biomechanical analysis through finite element modeling. We hypothesize that it is possible to obtain accurate models by adapting a pre-existing geometry to represent a target specimen using morphing techniques. Here we present two algorithms for morphing, automated wrapping (AW) and manual landmarks (ML), and demonstrate their use to prepare specimen-specific models of caudal rat vertebrae. We evaluate the algorithms by measuring the distance between target and morphed geometries and by comparing response to axial loading simulated with finite element (FE) methods. First a traditional reconstruction process based on microCT was used to obtain two natural specimen-specific FE models. Next, the two morphing algorithms were used to compute mappings from the surface of one model, the source, to the other, the target, and to use this mapping to morph the source mesh to produce a target mesh. The microCT images were then used to assign element-specific material properties. In AW the mappings were obtained by wrapping the source and target surfaces with an auxiliary triangulated surface. In ML, landmarks were manually placed on corresponding locations on the surfaces of both source and target. Both morphing algorithms were successful in reproducing the shape of the target vertebra with a median distance between natural and morphed models of 18.8 and 32.2 microm, respectively, for AW and ML. Whereas AW-morphing produced a surface more closely resembling that of the target, ML guaranteed correspondence of the landmark locations between source and target. Morphing preserved the quality of the mesh producing models suitable for FE simulation. Moreover, there were only minor differences between natural and morphed models in predictions of deformation, strain and stress. We therefore conclude that
FINITE ELEMENT ANALYSIS OF ELEMENT ANALYSIS OF A FREE ...
African Journals Online (AJOL)
eobe
the stairs and to compare the finite element ana ... tual three dimensional behavior of the stair slab system. ..... due to its close relation of output with the propo .... flights. It is best not to consider any open well when .... thermodynamics of solids.
Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint
Energy Technology Data Exchange (ETDEWEB)
Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.
2014-01-01
This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.
Zhan, Yijian; Meschke, Günther
2017-07-08
The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.
Finite element simulations of two rock mechanics tests
International Nuclear Information System (INIS)
Dahlke, H.J.; Lott, S.A.
1986-04-01
Rock mechanics tests are performed to determine in situ stress conditions and material properties of an underground rock mass. To design stable underground facilities for the permanent storage of high-level nuclear waste, determination of these properties and conditions is a necessary first step. However, before a test and its associated equipment can be designed, the engineer needs to know the range of expected values to be measured by the instruments. Sensitivity studies by means of finite element simulations are employed in this preliminary design phase to evaluate the pertinent parameters and their effects on the proposed measurements. The simulations, of two typical rock mechanics tests, the plate bearing test and the flat-jack test, by means of the finite element analysis, are described. The plate bearing test is used to determine the rock mass deformation modulus. The flat-jack test is used to determine the in situ stress conditions of the host rock. For the plate bearing test, two finite element models are used to simulate the classic problem of a load on an elastic half space and the actual problem of a plate bearing test in an underground tunnel of circular cross section. For the flat-jack simulation, a single finite element model is used to simulate both horizontal and vertical slots. Results will be compared to closed-form solutions available in the literature
A simple finite element method for linear hyperbolic problems
International Nuclear Information System (INIS)
Mu, Lin; Ye, Xiu
2017-01-01
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Finite element computation of plasma equilibria
International Nuclear Information System (INIS)
Rivier, M.
1977-01-01
The applicability of the finite element method is investigated for the numerical solution of the nonlinear Grad-Shafranov equation with free boundary for the flux function of a plasma at equilibrium. This method is based on the case of variational principles and finite dimensional subspaces whose elements are piecewise polynomial functions obtained by a Lagrange type interpolation procedure over a triangulation of the domain. Two cases of plasma pressure (exponential and quadratic including a vacuum region) were examined. In both cases the nonuniqueness of the solutions was shown in exhibiting a deeper solution in the case of exponential pressure function, and a non-constant solution for a quadratic pressure function. In order to get this ''other'' solution, two linearization methods were tested with two different constraints. Different cross sections are investigated
Flow Applications of the Least Squares Finite Element Method
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Investigation of Shear Stud Performance in Flat Plate Using Finite Element Analysis
Directory of Open Access Journals (Sweden)
T.S. Viswanathan
2014-09-01
Full Text Available Three types of shear stud arrangement, respectively featuring an orthogonal, a radial and a critical perimeter pattern, were evaluated numerically. A numerical investigation was conducted using the finite element software ABAQUS to evaluate their ability to resist punching shear in a flat plate. The finite element analysis here is an application of the nonlinear analysis of reinforced concrete structures using three-dimensional solid finite elements. The nonlinear characteristics of concrete were achieved by employing the concrete damaged plasticity model in the finite element program. Transverse shear stress was evaluated using finite element analysis in terms of shear stress distribution for flat plate with and without shear stud reinforcement. The model predicted that shear studs placed along the critical perimeter are more effective compared to orthogonal and radial patterns.
Aspects of Finite Element Simulation of Axi-Symmetric Hydromechanical Deep Drawing
DEFF Research Database (Denmark)
Jensen, Morten Rikard; Olovsson, Lars; Danckert, Joachim
1999-01-01
A new approach for the Finite Element modelling of the hydromechanical deep drawing process is evaluated. In the model a Finite Difference approximation of Reynold’s equation is solved for the fluid flow between the blank and the draw die in the flange region. The approach is implemented...... as a contact algorithm in an explicit Finite Element code, Exhale2D. The developed model is verified against experiments and good agreement is obtained. It is concluded that the developed model is a promising approach for simulating the hydromechanical deep drawing process using the Finite Element Method....
Parallel direct solver for finite element modeling of manufacturing processes
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, P.A.F.
2017-01-01
The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...
Energy Technology Data Exchange (ETDEWEB)
Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-09-20
The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered
A General Finite Element Scheme for Limit State Analysis and Optimization
DEFF Research Database (Denmark)
Damkilde, Lars
1999-01-01
Limit State analysis which is based on a perfect material behaviour is used in many different applications primarily within Structural Engineering and Geotechnics. The calculation methods have not reached the same level of automation such as Finite Element Analysis for elastic structures....... The computer based systems are more ad hoc based and are typically not well-integrated with pre- and postprocessors well-known from commercial Finite Element codes.A finite element based formulation of limit state analysis is presented which allows an easy integration with standard Finite Element codes...... for elastic analysis. In this way the user is able to perform a limit state analysis on the same model used for elastic analysis only adding data for the yield surface.The method is based on the lower-bound theorem and uses stress-based elements with a linearized yield surface. The mathematical problem...
Finite element modeling of piezoelectric elements with complex electrode configuration
International Nuclear Information System (INIS)
Paradies, R; Schläpfer, B
2009-01-01
It is well known that the material properties of piezoelectric materials strongly depend on the state of polarization of the individual element. While an unpolarized material exhibits mechanically isotropic material properties in the absence of global piezoelectric capabilities, the piezoelectric material properties become transversally isotropic with respect to the polarization direction after polarization. Therefore, for evaluating piezoelectric elements the material properties, including the coupling between the mechanical and the electromechanical behavior, should be addressed correctly. This is of special importance for the micromechanical description of piezoelectric elements with interdigitated electrodes (IDEs). The best known representatives of this group are active fiber composites (AFCs), macro fiber composites (MFCs) and the radial field diaphragm (RFD), respectively. While the material properties are available for a piezoelectric wafer with a homogeneous polarization perpendicular to its plane as postulated in the so-called uniform field model (UFM), the same information is missing for piezoelectric elements with more complex electrode configurations like the above-mentioned ones with IDEs. This is due to the inhomogeneous field distribution which does not automatically allow for the correct assignment of the material, i.e. orientation and property. A variation of the material orientation as well as the material properties can be accomplished by including the polarization process of the piezoelectric transducer in the finite element (FE) simulation prior to the actual load case to be investigated. A corresponding procedure is presented which automatically assigns the piezoelectric material properties, e.g. elasticity matrix, permittivity, and charge vector, for finite element models (FEMs) describing piezoelectric transducers according to the electric field distribution (field orientation and strength) in the structure. A corresponding code has been
Engineering computation of structures the finite element method
Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério
2015-01-01
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...
Finite-Time Adaptive Synchronization of a New Hyperchaotic System with Uncertain Parameters
Directory of Open Access Journals (Sweden)
Ma Yongguang
2014-01-01
Full Text Available This paper presents a finite-time adaptive synchronization strategy for a class of new hyperchaotic systems with unknown slave system’s parameters. Based on the finite-time stability theory, an adaptive control law is derived to make the states of the new hyperchaotic systems synchronized in finite-time. Numerical simulations are presented to show the effectiveness of the proposed finite time synchronization scheme.
Modelling drawbeads with finite elements and verification
Carleer, B.D.; Carleer, B.D.; Vreede, P.T.; Vreede, P.T.; Louwes, M.F.M.; Louwes, M.F.M.; Huetink, Han
1994-01-01
Drawbeads are commonly used in deep drawing processes to control the flow of the blank during the forming operation. In finite element simulations of deep drawing the drawbead geometries are seldom included because of the small radii; because of these small radii a very large number of elements is
Essentials of the finite element method for mechanical and structural engineers
Pavlou, Dimitrios G
2015-01-01
Fundamental coverage, analytic mathematics, and up-to-date software applications are hard to find in a single text on the finite element method (FEM). Dimitrios Pavlou's Essentials of the Finite Element Method: For Structural and Mechanical Engineers makes the search easier by providing a comprehensive but concise text for those new to FEM, or just in need of a refresher on the essentials. Essentials of the Finite Element Method explains the basics of FEM, then relates these basics to a number of practical engineering applications. Specific topics covered include linear spring elements, bar elements, trusses, beams and frames, heat transfer, and structural dynamics. Throughout the text, readers are shown step-by-step detailed analyses for finite element equations development. The text also demonstrates how FEM is programmed, with examples in MATLAB, CALFEM, and ANSYS allowing readers to learn how to develop their own computer code. Suitable for everyone from first-time BSc/MSc students to practicing mechanic...
A finite element solution method for quadrics parallel computer
International Nuclear Information System (INIS)
Zucchini, A.
1996-08-01
A distributed preconditioned conjugate gradient method for finite element analysis has been developed and implemented on a parallel SIMD Quadrics computer. The main characteristic of the method is that it does not require any actual assembling of all element equations in a global system. The physical domain of the problem is partitioned in cells of n p finite elements and each cell element is assigned to a different node of an n p -processors machine. Element stiffness matrices are stored in the data memory of the assigned processing node and the solution process is completely executed in parallel at element level. Inter-element and therefore inter-processor communications are required once per iteration to perform local sums of vector quantities between neighbouring elements. A prototype implementation has been tested on an 8-nodes Quadrics machine in a simple 2D benchmark problem
Evaluation of Concrete Cylinder Tests Using Finite Elements
DEFF Research Database (Denmark)
Saabye Ottosen, Niels
1984-01-01
Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete is emplo......Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete...... uniaxial strength the use of geometrically matched loading plates seems to be advantageous. Finally, it is observed that for variations of the element size within limits otherwise required to obtain a realistic analysis, the results are insensitive to the element size....
Finite element analysis of structures through unified formulation
Carrera, Erasmo; Petrolo, Marco; Zappino, Enrico
2014-01-01
The finite element method (FEM) is a computational tool widely used to design and analyse complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same ''fundamental nucleus'' that comes from geometrical relations and Hooke''s law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D...
Finite element simulation of ironing process under warm conditions
Directory of Open Access Journals (Sweden)
Swadesh Kumar Singh
2014-01-01
Full Text Available Metal forming is one of the most important steps in manufacturing of a large variety of products. Ironing in deep drawing is done by adjusting the clearance between the punch and the die and allow the material flow over the punch. In the present investigation effect of extent of ironing behavior on the characteristics of the product like thickness distribution with respect to temperature was studied. With the help of finite element simulation using explicit finite element code LS-DYNA the stress in the drawn cup were predicted in the drawn cup. To increase the accuracy in the simulation process, numbers of integration points were increased in the thickness direction and it was found that there is very close prediction of finite element results to that of experimental ones.
International Nuclear Information System (INIS)
Paszynski, Maciej; Gurgul, Piotr; Sieniek, Marcin; Pardo, David
2010-01-01
In the first part of the paper we present the multi-scale simulation of the Step-and-Flash Imprint Lithography (SFIL), a modern patterning process. The simulation utilizes the hp adaptive Finite Element Method (hp-FEM) coupled with Molecular Statics (MS) model. Thus, we consider the multi-scale problem, with molecular statics applied in the areas of the mesh where the highest accuracy is required, and the continuous linear elasticity with thermal expansion coefficient applied in the remaining part of the domain. The degrees of freedom from macro-scale element's nodes located on the macro-scale side of the interface have been identified with particles from nano-scale elements located on the nano-scale side of the interface. In the second part of the paper we present Unified Modeling Language (UML) description of the resulting multi-scale application (hp-FEM coupled with MS). We investigated classical, procedural codes from the point of view of the object-oriented (O-O) programming paradigm. The discovered hierarchical structure of classes and algorithms makes the UML project as independent on the spatial dimension of the problem as possible. The O-O UML project was defined at an abstract level, independent on the programming language used.
Analysis of Tube Drawing Process – A Finite Element Approach ...
African Journals Online (AJOL)
In this paper the effect of die semi angle on drawing load in cold tube drawing has been investigated numerically using the finite element method. The equation governing the stress distribution was derived and solved using Galerkin finite element method. An isoparametric formulation for the governing equation was utilized ...
Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.
2014-01-01
Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.
A finite element for plates and shells
International Nuclear Information System (INIS)
Muller, A.; Feijoo, R.A.; Bevilacqua, L.
1981-08-01
A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt
COMPUTER EXPERIMENTS WITH FINITE ELEMENTS OF HIGHER ORDER
Directory of Open Access Journals (Sweden)
Khomchenko A.
2017-12-01
Full Text Available The paper deals with the problem of constructing the basic functions of a quadrilateral finite element of the fifth order by the means of the computer algebra system Maple. The Lagrangian approximation of such a finite element contains 36 nodes: 20 nodes perimeter and 16 internal nodes. Alternative models with reduced number of internal nodes are considered. Graphs of basic functions and cognitive portraits of lines of zero level are presented. The work is aimed at studying the possibilities of using modern information technologies in the teaching of individual mathematical disciplines.
Fourier analysis of finite element preconditioned collocation schemes
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
Stochastic Finite Elements in Reliability-Based Structural Optimization
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Engelund, S.
Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...
Modelling bucket excavation by finite element
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the
Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics
Wu, Shen R
2012-01-01
A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master
International Nuclear Information System (INIS)
Sung, Jin Il; Yoo, Jeong Hoon
2002-01-01
In this paper, we investigate the effect and the importance of the accuracy of finite element analysis in the shape optimization based on the finite element method and improve the existing finite element which has inaccuracy in some cases. And then, the shape optimization is performed by using the improved finite element. One of the main stream to improve finite element is the prevention of locking phenomenon. In case of bending dominant problems, finite element solutions cannot be reliable because of shear locking phenomenon. In the process of shape optimization, the mesh distortion is large due to the change of the structure outline. So, we have to raise the accuracy of finite element analysis for the large mesh distortion. We cannot guarantee the accurate result unless the finite element itself is accurate or the finite elements are remeshed. So, we approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two and three dimensional simple beam. Results show that the modified finite element has improved the optimization results
Finite element analysis of car hood for impact test by using ...
African Journals Online (AJOL)
Finite element analysis of car hood for impact test by using solidworks software ... high safety and at the same time can be built according to market demands. ... Keywords: finite element analysis; impact test; Solidworks; automation, car hood.
Coupling of smooth particle hydrodynamics with the finite element method
International Nuclear Information System (INIS)
Attaway, S.W.; Heinstein, M.W.; Swegle, J.W.
1994-01-01
A gridless technique called smooth particle hydrodynamics (SPH) has been coupled with the transient dynamics finite element code ppercase[pronto]. In this paper, a new weighted residual derivation for the SPH method will be presented, and the methods used to embed SPH within ppercase[pronto] will be outlined. Example SPH ppercase[pronto] calculations will also be presented. One major difficulty associated with the Lagrangian finite element method is modeling materials with no shear strength; for example, gases, fluids and explosive biproducts. Typically, these materials can be modeled for only a short time with a Lagrangian finite element code. Large distortions cause tangling of the mesh, which will eventually lead to numerical difficulties, such as negative element area or ''bow tie'' elements. Remeshing will allow the problem to continue for a short while, but the large distortions can prevent a complete analysis. SPH is a gridless Lagrangian technique. Requiring no mesh, SPH has the potential to model material fracture, large shear flows and penetration. SPH computes the strain rate and the stress divergence based on the nearest neighbors of a particle, which are determined using an efficient particle-sorting technique. Embedding the SPH method within ppercase[pronto] allows part of the problem to be modeled with quadrilateral finite elements, while other parts are modeled with the gridless SPH method. SPH elements are coupled to the quadrilateral elements through a contact-like algorithm. ((orig.))
Finite element formulation for dynamics of planar flexible multi-beam system
International Nuclear Information System (INIS)
Liu Zhuyong; Hong Jiazhen; Liu Jinyang
2009-01-01
In some previous geometric nonlinear finite element formulations, due to the use of axial displacement, the contribution of all the elements lying between the reference node of zero axial displacement and the element to the foreshortening effect should be taken into account. In this paper, a finite element formulation is proposed based on geometric nonlinear elastic theory and finite element technique. The coupling deformation terms of an arbitrary point only relate to the nodal coordinates of the element at which the point is located. Based on Hamilton principle, dynamic equations of elastic beams undergoing large overall motions are derived. To investigate the effect of coupling deformation terms on system dynamic characters and reduce the dynamic equations, a complete dynamic model and three reduced models of hub-beam are prospected. When the Cartesian deformation coordinates are adopted, the results indicate that the terms related to the coupling deformation in the inertia forces of dynamic equations have small effect on system dynamic behavior and may be neglected, whereas the terms related to coupling deformation in the elastic forces are important for system dynamic behavior and should be considered in dynamic equation. Numerical examples of the rotating beam and flexible beam system are carried out to demonstrate the accuracy and validity of this dynamic model. Furthermore, it is shown that a small number of finite elements are needed to obtain a stable solution using the present coupling finite element formulation
Finite element analysis of the neutron transport equation in spherical geometry
International Nuclear Information System (INIS)
Kim, Yong Ill; Kim, Jong Kyung; Suk, Soo Dong
1992-01-01
The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation. (Author)
Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan
2013-01-01
Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…
Isogeometric finite element analysis of poroelasticity
Irzal, F.; Remmers, J.J.C.; Verhoosel, C.V.; Borst, de R.
2013-01-01
We present an alternative numerical approach for predicting the behaviour of a deformable fluid-saturated porous medium. The conventional finite element technology is replaced by isogeometric analysis that uses non-uniform rational B-splines. The ability of these functions to provide higher-order
Fast finite elements for surgery simulation
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1997-01-01
This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix...
Simplicial Finite Elements in Higher Dimensions
Czech Academy of Sciences Publication Activity Database
Brandts, J.; Korotov, S.; Křížek, Michal
2007-01-01
Roč. 52, č. 3 (2007), s. 251-265 ISSN 0862-7940 R&D Projects: GA ČR GA201/04/1503 Institutional research plan: CEZ:AV0Z10190503 Keywords : n-simplex * finite element method * superconvergence Subject RIV: BA - General Mathematics
International Nuclear Information System (INIS)
Amor, H.; Bourgeois, M.
2012-01-01
Document available in extended abstract form only. The disposal of high level, long lived waste in deep underground clay formations is investigated by several countries including France. In the safety assessment of such geological repositories, a thoughtful consideration must be given to the mechanisms and possible pathways of migration of radionuclides released from waste packages. However, when modelling the transfer of radionuclides throughout the disposal facilities and geological formations, the numerical simulations must take into consideration, in addition to long durations of concern, the variety in the properties as well as in geometrical scales of the different components of the overall disposal, including the host formation. This task presents significant computational challenges. Numerical methods used in the MELODIE software The MELODIE software is developed by IRSN, and constantly upgraded, with the aim to assess the long-term containment capabilities of underground and surface radioactive waste repositories. The MELODIE software models water flow and the phenomena involved in the transport of radionuclides in saturated and unsaturated porous media in 2 and 3 dimensions; chemical processes are represented by a retardation factor and a solubility limit, for sorption and solubility respectively, integrated in the computational equations. These equations are discretized using a so-called Finite Volume Finite Element method (FVFE), which is based on a Galerkin method to discretize time and variables, together with a Finite Volume method using the Godunov scheme for the convection term. The FVFE method is used to convert partial differential equations into a finite number of algebraic equations that match the number of nodes in the mesh used to model the considered domain. It is also used to stabilise the numerical scheme. In order to manage the variety in properties and geometrical scales of underground disposal components, an a posteriori error estimator
Finite element analysis of human joints
Energy Technology Data Exchange (ETDEWEB)
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
Finite element analysis of human joints
International Nuclear Information System (INIS)
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described
Finite element simulation of piezoelectric transformers.
Tsuchiya, T; Kagawa, Y; Wakatsuki, N; Okamura, H
2001-07-01
Piezoelectric transformers are nothing but ultrasonic resonators with two pairs of electrodes provided on the surface of a piezoelectric substrate in which electrical energy is carried in the mechanical form. The input and output electrodes are arranged to provide the impedance transformation, which results in the voltage transformation. As they are operated at a resonance, the electrical equivalent circuit approach has traditionally been developed in a rather empirical way and has been used for analysis and design. The present paper deals with the analysis of the piezoelectric transformers based on the three-dimensional finite element modelling. The PIEZO3D code that we have developed is modified to include the external loading conditions. The finite element approach is now available for a wide variety of the electrical boundary conditions. The equivalent circuit of lumped parameters can also be derived from the finite element method (FEM) solution if required. The simulation of the present transformers is made for the low intensity operation and compared with the experimental results. Demonstration is made for basic Rosen-type transformers in which the longitudinal mode of a plate plays an important role; in which the equivalent circuit of lumped constants has been used. However, there are many modes of vibration associated with the plate, the effect of which cannot always be ignored. In the experiment, the double resonances are sometimes observed in the vicinity of the operating frequency. The simulation demonstrates that this is due to the coupling of the longitudinal mode with the flexural mode. Thus, the simulation provides an invaluable guideline to the transformer design.
A Note on Symplectic, Multisymplectic Scheme in Finite Element Method
Institute of Scientific and Technical Information of China (English)
GUO Han-Ying; JI Xiao-Mei; LI Yu-Qi; WU Ke
2001-01-01
We find that with uniform mesh, the numerical schemes derived from finite element method can keep a preserved symplectic structure in one-dimensional case and a preserved multisymplectic structure in two-dimensional case respectively. These results are in fact the intrinsic reason why the numerical experiments show that such finite element algorithms are accurate in practice.``
A Novel Polygonal Finite Element Method: Virtual Node Method
Tang, X. H.; Zheng, C.; Zhang, J. H.
2010-05-01
Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.
Comparison of 3-D finite elements for incompressible fluid flow
International Nuclear Information System (INIS)
Robichaud, M.; Tanguy, P.A.
1985-01-01
In recent years, the finite element method applied to the solution of incompressible fluid flow has been in constant evolution. In the present state-of-the-art, 2-D problems are solved routinely and reliable results are obtained at a reasonable cost. In 3-D the finite element method is still undergoing active research and many methods have been proposed to solve the Navier-Stokes equations at 'low cost'. These methods have in common the choice of the element which has a trilinear velocity and a discontinuous constant pressure (Q1-PO). The prohibitive cost of 3-D finite element method in fluid flow is the reason for this choice: the Q1-PO is the simplest and the cheapest 3-D element. However, as mentioned in (5) and (6), it generates 'spurious' pressure modes phenomenon called checkerboarding. On regular mesh these spurious modes can be filtered but on distorted mesh the pressure solution is meaningless. (author)
Finite element analysis of an inflatable torus considering air mass structural element
Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.
2014-01-01
Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.
QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2014-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.
Stress analysis of heated concrete using finite elements
International Nuclear Information System (INIS)
Majumdar, P.; Gupta, A.; Marchertas, A.
1994-01-01
Described is a finite element analysis of concrete, which is subjected to rapid heating. Using thermal mass transport calculation, the moisture content, temperature and pore pressure distribution over space and time is obtained first. From these effects, stress at various points of the concrete are computed using the finite element method. Contribution to the stress formulation comes from three components, namely the thermal expansion, pore pressure, and the shrinkage of concrete due to moisture loss (from dehydration). The material properties of concrete are assumed to be homogeneous, elastic, and cracking is not taken into consideration. (orig.)
Finite element simulation of internal flows with heat transfer using a ...
Indian Academy of Sciences (India)
Unknown
Velocity correction method; finite element simulation; turbulent .... CFD, developments in turbulence modeling have been only evolutionary and ...... variables are made dimensionless using appropriate combinations of Uav, H, ...... Srinivas M 1994 Finite element analysis of internal flows with heat transfer Ph D thesis, Indian.
Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code
Bartels, Robert E.
2005-01-01
A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.
Integral finite element analysis of turntable bearing with flexible rings
Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng
2018-03-01
This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.
Finite Element Simulation of Fracture Toughness Test
International Nuclear Information System (INIS)
Chu, Seok Jae; Liu, Cong Hao
2013-01-01
Finite element simulations of tensile tests were performed to determine the equivalent stress - equivalent plastic strain curves, critical equivalent stresses, and critical equivalent plastic strains. Then, the curves were used as inputs to finite element simulations of fracture toughness tests to determine the plane strain fracture toughness. The critical COD was taken as the COD when the equivalent plastic strain at the crack tip reached a critical value, and it was used as a crack growth criterion. The relationship between the critical COD and the critical equivalent plastic strain or the reduction of area was found. The relationship between the plane strain fracture toughness and the product of the critical equivalent stress and the critical equivalent plastic strain was also found
International Nuclear Information System (INIS)
Lee, Tae Hee; Yoo, Jung Hun; Choi, Hyeong Cheol
2002-01-01
A finite element package is often used as a daily design tool for engineering designers in order to analyze and improve the design. The finite element analysis can provide the responses of a system for given design variables. Although finite element analysis can quite well provide the structural behaviors for given design variables, it cannot provide enough information to improve the design such as design sensitivity coefficients. Design sensitivity analysis is an essential step to predict the change in responses due to a change in design variables and to optimize a system with the aid of the gradient-based optimization techniques. To develop a numerical method of design sensitivity analysis, analytical derivatives that are based on analytical differentiation of the continuous or discrete finite element equations are effective but analytical derivatives are difficult because of the lack of internal information of the commercial finite element package such as shape functions. Therefore, design sensitivity analysis outside of the finite element package is necessary for practical application in an industrial setting. In this paper, the semi-analytic method for design sensitivity analysis is used for the development of the design sensitivity module outside of a commercial finite element package of ANSYS. The direct differentiation method is employed to compute the design derivatives of the response and the pseudo-load for design sensitivity analysis is effectively evaluated by using the design variation of the related internal nodal forces. Especially, we suggest an effective method for stress and nonlinear design sensitivity analyses that is independent of the commercial finite element package is also discussed. Numerical examples are illustrated to show the accuracy and efficiency of the developed method and to provide insights for implementation of the suggested method into other commercial finite element packages
Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method
International Nuclear Information System (INIS)
Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr
2008-01-01
Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code
Implementation of advanced finite element technology in structural analysis computer codes
International Nuclear Information System (INIS)
Kohli, T.D.; Wiley, J.W.; Koss, P.W.
1975-01-01
Advances in finite element technology over the last several years have been rapid and have largely outstripped the ability of general purpose programs in the public domain to assimilate them. As a result, it has become the burden of the structural analyst to incorporate these advances himself. This paper discusses the implementation and extension of specific technological advances in Bechtel structural analysis programs. In general these advances belong in two categories: (1) the finite elements themselves and (2) equation solution algorithms. Improvements in the finite elements involve increased accuracy of the elements and extension of their applicability to various specialized modelling situations. Improvements in solution algorithms have been almost exclusively aimed at expanding problem solving capacity. (Auth.)
Probabilistic finite elements for transient analysis in nonlinear continua
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
Straightened cervical lordosis causes stress concentration: a finite element model study
Energy Technology Data Exchange (ETDEWEB)
Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue [Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, (China); Liao, Shenhui [School of Information Science and Engineering, Central South University, Changsha, Hunan (China)
2013-03-15
In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.
Straightened cervical lordosis causes stress concentration: a finite element model study
International Nuclear Information System (INIS)
Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue; Liao, Shenhui
2013-01-01
In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.
A new variational formulation of kinetic plasma theory and the application of moving finite elements
International Nuclear Information System (INIS)
Glasser, A.H.
1991-01-01
A new variational formulation has been developed for the system of equations governing kinetic plasmas and electromagnetic fields. It is used to apply the method of Moving Finite Elements to the electromagnetic fields. The fields are expanded in a basis of linear finite elements on a movable, unstructured grid of triangles in 2D or tetrahedra in 3D, while the plasma distribution function is expanded in a basis of super particles. Minimization of the variational with respect to the time derivatives of the field quantities yields a coupled system of equations for simultaneously advancing the amplitudes and node positions, resulting in adaptive grid motion. The adaptivity of the grid may save a large factor in the size of the grid and the number of particles required in many problems. Minimization of the variational with respect to the time derivatives of the particle positions and velocities gives the equations of motion, providing consistent prescriptions for assigning particles to the grid and fields to the particles. Orthogonality conditions on the particles are derived as conditions for keeping their equations of motion independent. Collisions can be included in a natural way. The relationship between PIC methods and alternative methods of discretizing phase space is clarified
Finite element model for heat conduction in jointed rock masses
International Nuclear Information System (INIS)
Gartling, D.K.; Thomas, R.K.
1981-01-01
A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
hpGEM -- A software framework for discontinuous Galerkin finite element methods
Pesch, L.; Bell, A.; Sollie, W.E.H.; Ambati, V.R.; Bokhove, Onno; van der Vegt, Jacobus J.W.
2006-01-01
hpGEM, a novel framework for the implementation of discontinuous Galerkin finite element methods, is described. We present structures and methods that are common for many (discontinuous) finite element methods and show how we have implemented the components as an object-oriented framework. This
Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.
Wang, Leimin; Shen, Yi; Zhang, Guodong
Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.
Orthodontic treatment: Introducing finite element analysis
Driel, W.D. van; Leeuwen, E.J. van
1998-01-01
The aim of orthodontic treatment is the displacement of teeth by means ofspecial appliances, like braces and brackets. Through these appliances the orthodontist can apply a set of forces to the teeth which wilt result in its displacement through the jawbone. Finite Element analysis of this process
A finite element modeling method for predicting long term corrosion rates
International Nuclear Information System (INIS)
Fu, J.W.; Chan, S.
1984-01-01
For the analyses of galvanic corrosion, pitting and crevice corrosion, which have been identified as possible corrosion processes for nuclear waste isolation, a finite element method has been developed for the prediction of corrosion rates. The method uses a finite element mesh to model the corrosive environment and the polarization curves of metals are assigned as the boundary conditions to calculate the corrosion cell current distribution. A subroutine is used to calculate the chemical change with time in the crevice or the pit environments. In this paper, the finite element method is described along with experimental confirmation
Domain decomposition based iterative methods for nonlinear elliptic finite element problems
Energy Technology Data Exchange (ETDEWEB)
Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)
1994-12-31
The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.
Introduction to nonlinear finite element analysis
Kim, Nam-Ho
2015-01-01
This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: · Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems · Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory · ...
Finite element analysis of multilayer coextrusion.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Finite element analysis of ARPS structures
International Nuclear Information System (INIS)
Ruhkamp, J.D.; McDougal, J.R.; Kramer, D.P.
1998-01-01
Algor finite element software was used to determine the stresses and deflections in the metallic walls of Advanced Radioisotope Power Systems (ARPS) designs. The preliminary design review of these systems often neglects the structural integrity of the design which can effect fabrication and the end use of the design. Before finite element analysis (FEA) was run on the canister walls of the thermophotovoltaic (TPV) generator, hand calculations were used to approximate the stresses and deflections in a flat plate. These results compared favorably to the FEA results of a similar size flat plate. The AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells were analyzed by FEA and the results compared to two cells that were mechanically tested. The mechanically tested cells buckled in the thin sections, one at the top and one in the lower section. The FEA predicted similar stress and shape results but the critical buckling load was found to be very shape dependent
Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method
International Nuclear Information System (INIS)
Vidal-Ferrandiz, A.; Fayez, R.; Ginestar, D.; Verdú, G.
2014-01-01
Highlights: • An hp finite element method is proposed for the Lambda modes problem of a nuclear reactor. • Different strategies can be implemented for increasing the accuracy of the solutions. • 2D and 3D benchmarks have been studied obtaining accurate results. - Abstract: Lambda modes of a nuclear power reactor have interest in reactor physics since they have been used to develop modal methods and to study BWR reactor instabilities. An h–p-Adaptation finite element method has been implemented to compute the dominant modes the fundamental mode and the next subcritical modes of a nuclear reactor. The performance of this method has been studied in three benchmark problems, a homogeneous 2D reactor, the 2D BIBLIS reactor and the 3D IAEA reactor
A short summary on finite element modelling of fatigue crack closure
Energy Technology Data Exchange (ETDEWEB)
Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol(United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)
2011-12-15
This paper presents a short summary pertaining to the finite element modelling of fatigue crack closure. Several key issues related to finite element modelling of fatigue crack closure are highlighted: element type, mesh refinement, stabilization of crack closure, crack-tip node release scheme, constitutive model, specimen geometry, stress-states (i.e., plane stress, plane strain), crack closure monitoring. Reviews are presented for both straight and deflected cracks.
Energy Technology Data Exchange (ETDEWEB)
Cai, X C; Marcinkowski, L; Vassilevski, P S
2005-02-10
This paper extends previous results on nonlinear Schwarz preconditioning ([4]) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The non-local finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed in [8]. Then, the algebraic construction from [9] of the corresponding non-linear finite element subproblems is applied to generate the subspace based nonlinear preconditioner. The overall nonlinearly preconditioned problem is solved by an inexact Newton method. Numerical illustration is also provided.
Shih, D.; Yeh, G.
2009-12-01
This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.
Efendiev, Yalchin R.
2015-06-05
In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.
Generalized multiscale finite element methods: Oversampling strategies
Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael
2014-01-01
In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local
International Nuclear Information System (INIS)
Aoki, Hiroomi; Shimomura, Masanori; Kawakami, Hiroto; Suzuki, Shunichi
2011-01-01
In safety assessments of radioactive waste disposal facilities, ground water flow analysis are used for calculating the radionuclide transport pathway and the infiltration flow rate of groundwater into the disposal facilities. For this type of calculations, the mixed hybrid finite element method has been used and discussed about the accuracy of ones in Europe. This paper puts great emphasis on the infiltration flow rate of groundwater into the disposal facilities, and describes the accuracy of results obtained from mixed hybrid finite element method by comparing of local water mass conservation and the reliability of the element breakdown numbers among the mixed hybrid finite element method, finite volume method and nondegenerated finite element method. (author)
Finite element elastic-plastic analysis of LMFBR components
International Nuclear Information System (INIS)
Levy, A.; Pifko, A.; Armen, H. Jr.
1978-01-01
The present effort involves the development of computationally efficient finite element methods for accurately predicting the isothermal elastic-plastic three-dimensional response of thick and thin shell structures subjected to mechanical and thermal loads. This work will be used as the basis for further development of analytical tools to be used to verify the structural integrity of liquid metal fast breeder reactor (LMFBR) components. The methods presented here have been implemented into the three-dimensional solid element module (HEX) of the Grumman PLANS finite element program. These methods include the use of optimal stress points as well as a variable number of stress points within an element. This allows monitoring the stress history at many points within an element and hence provides an accurate representation of the elastic-plastic boundary using a minimum number of degrees of freedom. Also included is an improved thermal stress analysis capability in which the temperature variation and corresponding thermal strain variation are represented by the same functional form as the displacement variation. Various problems are used to demonstrate these improved capabilities. (Auth.)
Finite Element Residual Stress Analysis of Planetary Gear Tooth
Directory of Open Access Journals (Sweden)
Jungang Wang
2013-01-01
Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.
Alfat, Sayahdin; Kimura, Masato; Firihu, Muhammad Zamrun; Rahmat
2018-05-01
In engineering area, investigation of shape effect in elastic materials was very important. It can lead changing elasticity and surface energy, and also increase of crack propagation in the material. A two-dimensional mathematical model was developed to investigation of elasticity and surface energy in elastic material by Adaptive Finite Element Method. Besides that, behavior of crack propagation has observed for every those materials. The government equations were based on a phase field approach in crack propagation model that developed by Takaishi-Kimura. This research has varied four shape domains where physical properties of materials were same (Young's modulus E = 70 GPa and Poisson's ratio ν = 0.334). Investigation assumptions were; (1) homogeneous and isotropic material, (2) there was not initial cracking at t = 0, (3) initial displacement was zero [u1, u2] = 0) at initial condition (t = 0), and (4) length of time simulation t = 5 with interval Δt = 0.005. Mode I/II or mixed mode crack propagation has been used for the numerical investigation. Results of this studies were very good and accurate to show changing energy and behavior of crack propagation. In the future time, this research can be developed to complex phenomena and domain. Furthermore, shape optimization can be investigation by the model.
Finite element modeling of the filament winding process using ABAQUS
Miltenberger, Louis C.
1992-01-01
A comprehensive stress model of the filament winding fabrication process, previously implemented in the finite element program, WACSAFE, was implemented using the ABAQUS finite element software package. This new implementation, referred to as the ABWACSAFE procedure, consists of the ABAQUS software and a pre/postprocessing routine that was developed to prepare necessary ABAQUS input files and process ABAQUS displacement results for stress and strain computation. The ABWACSAF...
Finite element reliability analysis of fatigue life
International Nuclear Information System (INIS)
Harkness, H.H.; Belytschko, T.; Liu, W.K.
1992-01-01
Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)
Stochastic Finite Elements in Reliability-Based Structural Optimization
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Engelund, S.
1995-01-01
Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...... to optimization variables can be performed. A computer implementation is described and an illustrative example is given....
Finite element electromagnetic field computation on the Sequent Symmetry 81 parallel computer
International Nuclear Information System (INIS)
Ratnajeevan, S.; Hoole, H.
1990-01-01
Finite element field analysis algorithms lend themselves to parallelization and this fact is exploited in this paper to implement a finite element analysis program for electromagnetic field computation on the Sequent Symmetry 81 parallel computer with three processors. In terms of waiting time, the maximum gains are to be made in matrix solution and therefore this paper concentrates on the gains in parallelizing the solution part of finite element analysis. An outline of how parallelization could be exploited in most finite element operations is given in this paper although the actual implemention of parallelism on the Sequent Symmetry 81 parallel computer was in sparsity computation, matrix assembly and the matrix solution areas. In all cases, the algorithms were modified suit the parallel programming application rather than allowing the compiler to parallelize on existing algorithms
Finite element model updating of natural fibre reinforced composite structure in structural dynamics
Directory of Open Access Journals (Sweden)
Sani M.S.M.
2016-01-01
Full Text Available Model updating is a process of making adjustment of certain parameters of finite element model in order to reduce discrepancy between analytical predictions of finite element (FE and experimental results. Finite element model updating is considered as an important field of study as practical application of finite element method often shows discrepancy to the test result. The aim of this research is to perform model updating procedure on a composite structure as well as trying improving the presumed geometrical and material properties of tested composite structure in finite element prediction. The composite structure concerned in this study is a plate of reinforced kenaf fiber with epoxy. Modal properties (natural frequency, mode shapes, and damping ratio of the kenaf fiber structure will be determined using both experimental modal analysis (EMA and finite element analysis (FEA. In EMA, modal testing will be carried out using impact hammer test while normal mode analysis using FEA will be carried out using MSC. Nastran/Patran software. Correlation of the data will be carried out before optimizing the data from FEA. Several parameters will be considered and selected for the model updating procedure.
Synthesis of hydrocode and finite element technology for large deformation Lagrangian computation
International Nuclear Information System (INIS)
Goudreau, G.L.; Hallquist, J.O.
1979-08-01
Large deformation engineering analysis at Lawrence Livermore Laboratory has benefited from a synthesis of computational technology from the finite difference hydrocodes of the scientific weapons community and the structural finite element methodology of engineering. Two- and three-dimensional explicit and implicit Lagrangian continuum codes have been developed exploiting the strengths of each. The explicit methodology primarily exploits the primitive constant stress (or one point integration) brick element. Similarity and differences with the integral finite difference method are discussed. Choice of stress and finite strain measures, and selection of hour glass viscosity are also considered. The implicit codes also employ a Cauchy formulation, with Newton iteration and a symmetric tangent matrix. A library of finite strain material routines includes hypoelastic/plastic, hyperelastic, viscoelastic, as well as hydrodynamic behavior. Arbitrary finite element topology and a general slide-line treatment significantly extends Lagrangian hydrocode application. Computational experience spans weapons and non-weapons applications
Advanced finite element method in structural engineering
Long, Yu-Qiu; Long, Zhi-Fei
2009-01-01
This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.
Optical Finite Element Processor
Casasent, David; Taylor, Bradley K.
1986-01-01
A new high-accuracy optical linear algebra processor (OLAP) with many advantageous features is described. It achieves floating point accuracy, handles bipolar data by sign-magnitude representation, performs LU decomposition using only one channel, easily partitions and considers data flow. A new application (finite element (FE) structural analysis) for OLAPs is introduced and the results of a case study presented. Error sources in encoded OLAPs are addressed for the first time. Their modeling and simulation are discussed and quantitative data are presented. Dominant error sources and the effects of composite error sources are analyzed.
Investigation of the Behavior of Steel Shear Walls Using Finite Elements Analysis
Directory of Open Access Journals (Sweden)
K. Abubakri
2016-10-01
Full Text Available Currently, steel shear walls are considered by engineers as an economic method against lateral loads imposed by wind and earthquake in tall structures. Accordingly, there is a growing need to develop accurate methods alongside approximation methods to estimate the behavior of these structural elements. The finite element technique is one of the strongest numerical methods in analysis of solid mechanics problems. Finite element analysis however requires high technical knowledge of the behavioral models of materials. Therefore, it is less used by designers for certain structural elements such as steel shear walls. This study examines the failure mechanism of steel shear walls using finite elements analysis and validates this modeling by comparing the results with experimental studies.
Matlab and C programming for Trefftz finite element methods
Qin, Qing-Hua
2008-01-01
Although the Trefftz finite element method (FEM) has become a powerful computational tool in the analysis of plane elasticity, thin and thick plate bending, Poisson's equation, heat conduction, and piezoelectric materials, there are few books that offer a comprehensive computer programming treatment of the subject. Collecting results scattered in the literature, MATLAB® and C Programming for Trefftz Finite Element Methods provides the detailed MATLAB® and C programming processes in applications of the Trefftz FEM to potential and elastic problems. The book begins with an introduction to th
Preconditioning for Mixed Finite Element Formulations of Elliptic Problems
Wildey, Tim; Xue, Guangri
2013-01-01
In this paper, we discuss a preconditioning technique for mixed finite element discretizations of elliptic equations. The technique is based on a block-diagonal approximation of the mass matrix which maintains the sparsity and positive definiteness of the corresponding Schur complement. This preconditioner arises from the multipoint flux mixed finite element method and is robust with respect to mesh size and is better conditioned for full permeability tensors than a preconditioner based on a diagonal approximation of the mass matrix. © Springer-Verlag Berlin Heidelberg 2013.
A Kohn–Sham equation solver based on hexahedral finite elements
International Nuclear Information System (INIS)
Fang Jun; Gao Xingyu; Zhou Aihui
2012-01-01
We design a Kohn–Sham equation solver based on hexahedral finite element discretizations. The solver integrates three schemes proposed in this paper. The first scheme arranges one a priori locally-refined hexahedral mesh with appropriate multiresolution. The second one is a modified mass-lumping procedure which accelerates the diagonalization in the self-consistent field iteration. The third one is a finite element recovery method which enhances the eigenpair approximations with small extra work. We carry out numerical tests on each scheme to investigate the validity and efficiency, and then apply them to calculate the ground state total energies of nanosystems C 60 , C 120 , and C 275 H 172 . It is shown that our solver appears to be computationally attractive for finite element applications in electronic structure study.
Randomized Oversampling for Generalized Multiscale Finite Element Methods
Calo, Victor M.
2016-03-23
In this paper, we develop efficient multiscale methods for flows in heterogeneous media. We use the generalized multiscale finite element (GMsFEM) framework. GMsFEM approximates the solution space locally using a few multiscale basis functions. This approximation selects an appropriate snapshot space and a local spectral decomposition, e.g., the use of oversampled regions, in order to achieve an efficient model reduction. However, the successful construction of snapshot spaces may be costly if too many local problems need to be solved in order to obtain these spaces. We use a moderate quantity of local solutions (or snapshot vectors) with random boundary conditions on oversampled regions with zero forcing to deliver an efficient methodology. Motivated by the randomized algorithm presented in [P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the approximation of Matrices, YALEU/DCS/TR-1361, Yale University, 2006], we consider a snapshot space which consists of harmonic extensions of random boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale spaces are adaptively enriched. Convergence analysis is provided. We present representative numerical results to validate the method proposed.
Investigation of faulted tunnel models by combined photoelasticity and finite element analysis
International Nuclear Information System (INIS)
Ladkany, S.G.; Huang, Yuping
1994-01-01
Models of square and circular tunnels with short faults cutting through their surfaces are investigated by photoelasticity. These models, when duplicated by finite element analysis can predict the stress states of square or circular faulted tunnels adequately. Finite element analysis, using gap elements, may be used to investigate full size faulted tunnel system
Simple one-dimensional finite element algorithm with multi-dimensional capabilities
International Nuclear Information System (INIS)
Pepper, D.W.; Baker, A.J.
1978-01-01
The application of the finite element procedure for the solution of partial differential equations is gaining widespread acceptance. The ability of the finite element procedure to solve problems which are arbitrarily shaped as well as the alleviation of boundary condition problems is well known. By using local interpolation functionals over each subdomain, or element, a set of linearized algebraic equations are obtained which can be solved using any direct, iterative, or inverse numerical technique. Subsequent use of an explicit or implicit integration procedure permits closure of the solution over the global domain
Review on Finite Element Method * ERHUNMWUN, ID ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: In this work, we have discussed what Finite Element Method (FEM) is, its historical development, advantages and ... residual procedures, are examples of the direct approach ... The paper centred on the "stiffness and deflection of ...
Finite element evaluation of erosion/corrosion affected reducing elbow
International Nuclear Information System (INIS)
Basavaraju, C.
1996-01-01
Erosion/corrosion is a primary source for wall thinning or degradation of carbon steel piping systems in service. A number of piping failures in the power industry have been attributed to erosion/corrosion. Piping elbow is one of such susceptible components for erosion/corrosion because of increased flow turbulence due to its geometry. In this paper, the acceptability of a 12 in. x 8 in. reducing elbow in RHR service water pump discharge piping, which experienced significant degradation due to wall thinning in localized areas, was evaluated using finite element analysis methodology. Since the simplified methods showed very small margin and recommended replacement of the elbow, a detailed 3-D finite element model was built using shell elements and analyzed for internal pressure and moment loadings. The finite element analysis incorporated the U.T. measured wall thickness data at various spots that experienced wall thinning. The results showed that the elbow is acceptable as-is until the next fuel cycle. FEA, though cumbersome, and time consuming is a valuable analytical tool in making critical decisions with regard to component replacement of border line situation cases, eliminating some conservatism while not compromising the safety
Behaviour of Lagrangian triangular mixed fluid finite elements
Indian Academy of Sciences (India)
The behaviour of mixed fluid finite elements, formulated based on the Lagrangian frame of reference, is investigated to understand the effects of locking due to incompressibility and irrotational constraints. For this purpose, both linear and quadratic mixed triangular fluid elements are formulated. It is found that there exists a ...
Directory of Open Access Journals (Sweden)
Shunde Yin
2018-03-01
Simulation of thermal fracturing during cold CO2 injection involves the coupled processes of heat transfer, mass transport, rock deforming as well as fracture propagation. To model such a complex coupled system, a fully coupled finite element framework for thermal fracturing simulation is presented. This framework is based on the theory of non-isothermal multiphase flow in fracturing porous media. It takes advantage of recent advances in stabilized finite element and extended finite element methods. The stabilized finite element method overcomes the numerical instability encountered when the traditional finite element method is used to solve the convection dominated heat transfer equation, while the extended finite element method overcomes the limitation with traditional finite element method that a model has to be remeshed when a fracture is initiated or propagating and fracturing paths have to be aligned with element boundaries.
Finite element modelling of solidification phenomena
Indian Academy of Sciences (India)
Unknown
Abstract. The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation ...
Energy flow in plate assembles by hierarchical version of finite element method
DEFF Research Database (Denmark)
Wachulec, Marcin; Kirkegaard, Poul Henning
method has been proposed. In this paper a modified hierarchical version of finite element method is used for modelling of energy flow in plate assembles. The formulation includes description of in-plane forces so that planes lying in different planes can be modelled. Two examples considered are: L......The dynamic analysis of structures in medium and high frequencies are usually focused on frequency and spatial averages of energy of components, and not the displacement/velocity fields. This is especially true for structure-borne noise modelling. For the analysis of complicated structures...... the finite element method has been used to study the energy flow. The finite element method proved its usefulness despite the computational expense. Therefore studies have been conducted in order to simplify and reduce the computations required. Among others, the use of hierarchical version of finite element...
Finite element bending behaviour of discretely delaminated ...
African Journals Online (AJOL)
user
due to their light weight, high specific strength and stiffness properties. ... cylindrical shell roofs respectively using finite element method with centrally located .... where { }ε and { }γ are the direct and shear strains in midplane and { }κ denotes ...
Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case
Institute of Scientific and Technical Information of China (English)
BAI Yong-Qiang; LIU Zhen; PEI Ming; ZHENG Zhu-Jun
2003-01-01
In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems inhigh-dimensional space. With uniform mesh, we find that, the numerical scheme derived from finite element method cankeep a preserved multisymplectic structure.
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
Neuert, Mark A C; Dunning, Cynthia E
2013-09-01
Strain energy-based adaptive material models are used to predict bone resorption resulting from stress shielding induced by prosthetic joint implants. Generally, such models are governed by two key parameters: a homeostatic strain-energy state (K) and a threshold deviation from this state required to initiate bone reformation (s). A refinement procedure has been performed to estimate these parameters in the femur and glenoid; this study investigates the specific influences of these parameters on resulting density distributions in the distal ulna. A finite element model of a human ulna was created using micro-computed tomography (µCT) data, initialized to a homogeneous density distribution, and subjected to approximate in vivo loading. Values for K and s were tested, and the resulting steady-state density distribution compared with values derived from µCT images. The sensitivity of these parameters to initial conditions was examined by altering the initial homogeneous density value. The refined model parameters selected were then applied to six additional human ulnae to determine their performance across individuals. Model accuracy using the refined parameters was found to be comparable with that found in previous studies of the glenoid and femur, and gross bone structures, such as the cortical shell and medullary canal, were reproduced. The model was found to be insensitive to initial conditions; however, a fair degree of variation was observed between the six specimens. This work represents an important contribution to the study of changes in load transfer in the distal ulna following the implementation of commercial orthopedic implants.
Recent uses of the finite element method in design/analysis of CANDU fuel
International Nuclear Information System (INIS)
Tayal, M.; Lim, D.
1985-06-01
Finite element codes FEAST and ELESTRES have been used to show: that initial pellet density can have a significant effect on the probability of fuel defect near end cap welds; that sheath stresses/strains are highly multiaxial near circumferential ridges; and that the multiaxiality affects sheath integrity significantly. The finite element thermal code FEAT was used to redesign bearing pads to obtain lower temperture; this eliminated crevice corrosion. FEAT was also used to assess the influences of braze voids and of end flux peaking. These analyses involved complex geometries. By using finite elements, we could obtain accurate assessments economically and rapidly. Finite element codes are also being developed for bowing, diffusion, flow patterns, and stress corrosion cracking
Numerical solution of recirculating flow by a simple finite element recursion relation
Energy Technology Data Exchange (ETDEWEB)
Pepper, D W; Cooper, R E
1980-01-01
A time-split finite element recursion relation, based on linear basis functions, is used to solve the two-dimensional equations of motion. Recirculating flow in a rectangular cavity and free convective flow in an enclosed container are analyzed. The relation has the advantage of finite element accuracy and finite difference speed and simplicity. Incorporating dissipation parameters in the functionals decreases numerical dispersion and improves phase lag.
Fluid-structure finite-element vibrational analysis
Feng, G. C.; Kiefling, L.
1974-01-01
A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.
Finite element analysis of degraded concrete structures - Workshop proceedings
International Nuclear Information System (INIS)
1999-09-01
This workshop is related to the finite element analysis of degraded concrete structures. It is composed of three sessions. The first session (which title is: the use of finite element analysis in safety assessments) comprises six papers which titles are: Historical Development of Concrete Finite Element Modeling for Safety Evaluation of Accident-Challenged and Aging Concrete Structures; Experience with Finite Element Methods for Safety Assessments in Switzerland; Stress State Analysis of the Ignalina NPP Confinement System; Prestressed Containment: Behaviour when Concrete Cracking is Modelled; Application of FEA for Design and Support of NPP Containment in Russia; Verification Problems of Nuclear Installations Safety Software of Strength Analysis (NISS SA). The second session (title: concrete containment structures under accident loads) comprises seven papers which titles are: Two Application Examples of Concrete Containment Structures under Accident Load Conditions Using Finite Element Analysis; What Kind of Prediction for Leak rates for Nuclear Power Plant Containments in Accidental Conditions; Influence of Different Hypotheses Used in Numerical Models for Concrete At Elevated Temperatures on the Predicted Behaviour of NPP Core Catchers Under Severe Accident Conditions; Observations on the Constitutive Modeling of Concrete Under Multi-Axial States at Elevated Temperatures; Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage; Program of Containment Concrete Control During Operation for the Temelin Nuclear Power Plant; Static Limit Load of a Deteriorated Hyperbolic Cooling Tower. The third session (concrete structures under extreme environmental load) comprised five papers which titles are: Shear Transfer Mechanism of RC Plates After Cracking; Seismic Back Calculation of an Auxiliary Building of the Nuclear Power Plant Muehleberg, Switzerland; Seismic Behaviour of Slightly Reinforced Shear Wall Structures; FE Analysis of Degraded Concrete
Finite element analysis of adanced composite structures containing mechanically fastened joints
International Nuclear Information System (INIS)
Baumann, E.
1982-01-01
Although the usual engineering practice is to ignore joint effects in finite element models of overall structures, there are times when the inclusion of fastener effects in a model is necessary for accurate analysis. This paper describes some simple but accurate methods for accommodating this modeling requirement. The approach involves correlation of test results from a few composite mechanically fastened joints with finite element analyses of joints. It is assumed that if the fastener actions in the test articles can be properly predicted by simple finite element techniques, then these same techniques can be applied to large overall structure models. During the course of this test-analysis effort it was determined that it is possible to obtain correct results for overall structure-joint analyses by using simple modeling concepts provided special care is employed. Also, some emphasis is given in this paper to the importance of properly reducing test data in order to obtain meaningful correlations with finite element analysis. Finally, for those interested, the appendix contains brief descriptions of the test results and failure modes explored in the test program. (orig.)
Multisymplectic Structure－Preserving in Simple Finite Element Method in High Dimensional Case
Institute of Scientific and Technical Information of China (English)
BAIYong-Qiang; LIUZhen; PEIMing; ZHENGZhu-Jun
2003-01-01
In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems in high-dhnensjonal space. With uniform mesh, we find that, the numerical scheme derived from finite element method can keep a preserved multisymplectic structure.
A Finite Element Analysis of Optimal Variable Thickness Sheets
DEFF Research Database (Denmark)
Petersson, Joakim S
1996-01-01
A quasimixed Finite Element (FE) method for maximum stiffness of variablethickness sheets is analysed. The displacement is approximated with ninenode Lagrange quadrilateral elements and the thickness is approximated aselementwise constant. One is guaranteed that the FE displacement solutionswill ...
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2013-01-01
With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements
Thermal stresses in rectangular plates: variational and finite element solutions
International Nuclear Information System (INIS)
Laura, P.A.A.; Gutierrez, R.H.; Sanchez Sarmiento, G.; Basombrio, F.G.
1978-01-01
This paper deals with the development of an approximate method for the analysis of thermal stresses in rectangular plates (plane stress problem) and an evaluation of the relative accuracy of the finite element method. The stress function is expanded in terms of polynomial coordinate functions which identically satisfy the boundary conditions, and a variational approach is used to determine the expansion coefficients. The results are in good agreement with a finite element approach. (Auth.)
Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P
2011-04-01
Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.
Finite element analysis of three dimensional crack growth by the use of a boundary element sub model
DEFF Research Database (Denmark)
Lucht, Tore
2009-01-01
A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...
Finite element modeling of TFTR poloidal field coils
International Nuclear Information System (INIS)
Baumgartner, J.A.; O'Toole, J.A.
1986-01-01
The Tokamak Fusion Test Reactor (TFTR) Poloidal Field (PF) coils were originally analyzed to TFTR design conditions. The coils have been reanalyzed by PPPL and Grumman to determine operating limits under as-built conditions. Critical stress levels, based upon data obtained from the reanalysis of each PF coil, are needed for input to the TFTR simulation code algorithms. The primary objective regarding structural integrity has been to ascertain the magnitude and location of critical internal stresses in each PF coil due to various combinations of electromagnetic and thermally induced loads. For each PF coil, a global finite element model (FEM) of a coil sector is being analyzed to obtain the basic coil internal loads and displacements. Subsequent fine mesh local models of the coil lead stem and lead spur regions produce the magnitudes and locations of peak stresses. Each copper turn and its surrounding insulation are modeled using solid finite elements. The corresponding electromagnetic and thermal analyses are similarly modeled. A series of test beams were developed to determine the best combination of MSC/NASTRAN-type finite elements for use in PF coil analysis. The results of this analysis compare favorably with those obtained by the earlier analysis which was limited in scope
Stress analysis of disconnected structures in contact through finite element gaps
International Nuclear Information System (INIS)
Stadter, J.T.; Weiss, R.O.
1976-07-01
A numerical procedure is presented for analyzing thermal stress problems of disconnected structures in contact across separations or gaps. The new procedure is called SAASGAPS, an adaptation of the basic SAAS III computer program. The SAAS program uses the finite element method and allows analyses of plane and axisymmetric bodies with temperature dependent material properties, subject to thermal and mechanical loads. A secant modulus approach with a bilinear stress-strain curve is used for elastic-plastic problems. The SAASGAPS version contains all of the features of the original SAAS program. A special gap element is used together with a stress invariance principle to model the contact process. The iterative procedure implemented in SAASGAPS is described. Results are discussed for five problems involving frictionless contact. Two of these problems are associated with the thermal stress analysis of the heat shield for the Multi-Hundred Watt Radioisotope Thermoelectric Generator. Input instructions for the program are described in an appendix
A non conforming finite element method for computing eigenmodes of resonant cavities
International Nuclear Information System (INIS)
Touze, F.; Le Meur, G.
1990-06-01
We present here a non conforming finite element in R 3 . This finite element, built on tetrahedrons, is particularly suited for computing eigenmodes. The main advantage of this element is that it preserves some structural properties of the space in which the solutions of the Maxwell's equations are to be found. Numerical results are presented for both two-dimensional and three-dimensional cases
European column buckling curves and finite element modelling including high strength steels
DEFF Research Database (Denmark)
Jönsson, Jeppe; Stan, Tudor-Cristian
2017-01-01
Eurocode allows for finite element modelling of plated steel structures, however the information in the code on how to perform the analysis or what assumptions to make is quite sparse. The present paper investigates the deterministic modelling of flexural column buckling using plane shell elements...... imperfections may be very conservative if considered by finite element analysis as described in the current Eurocode code. A suggestion is given for a slightly modified imperfection formula within the Ayrton-Perry formulation leading to adequate inclusion of modern high grade steels within the original four...... bucking curves. It is also suggested that finite element or frame analysis may be performed with equivalent column bow imperfections extracted directly from the Ayrton-Perry formulation....
Finite element method - theory and applications
International Nuclear Information System (INIS)
Baset, S.
1992-01-01
This paper summarizes the mathematical basis of the finite element method. Attention is drawn to the natural development of the method from an engineering analysis tool into a general numerical analysis tool. A particular application to the stress analysis of rubber materials is presented. Special advantages and issues associated with the method are mentioned. (author). 4 refs., 3 figs
Finite groups with three conjugacy class sizes of some elements
Indian Academy of Sciences (India)
Conjugacy class sizes; p-nilpotent groups; finite groups. 1. Introduction. All groups ... group G has exactly two conjugacy class sizes of elements of prime power order. .... [5] Huppert B, Character Theory of Finite Groups, de Gruyter Exp. Math.
International Nuclear Information System (INIS)
Ackroyd, R.T.
1987-01-01
A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)
Zampini, Stefano; Keyes, David E.
2016-01-01
Balancing Domain Decomposition by Constraints (BDDC) methods have proven to be powerful preconditioners for large and sparse linear systems arising from the finite element discretization of elliptic PDEs. Condition number bounds can be theoretically
Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities
Romero, Ignacio; Segurado, Javier; LLorca, Javier
2008-04-01
The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.
Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities
International Nuclear Information System (INIS)
Romero, Ignacio; Segurado, Javier; LLorca, Javier
2008-01-01
The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix
Material model for non-linear finite element analyses of large concrete structures
Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.
2016-01-01
A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including
Mathematical aspects of finite element methods for incompressible viscous flows
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
Sumihara, K.
Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.
Finite element modelling of aluminum alloy 2024-T3 under transverse impact loading
Abdullah, Ahmad Sufian; Kuntjoro, Wahyu; Yamin, A. F. M.
2017-12-01
Fiber metal laminate named GLARE is a new aerospace material which has great potential to be widely used in future lightweight aircraft. It consists of aluminum alloy 2024-T3 and glass-fiber reinforced laminate. In order to produce reliable finite element model of impact response or crashworthiness of structure made of GLARE, one can initially model and validate the finite element model of the impact response of its constituents separately. The objective of this study was to develop a reliable finite element model of aluminum alloy 2024-T3 under low velocity transverse impact loading using commercial software ABAQUS. Johnson-Cook plasticity and damage models were used to predict the alloy's material properties and impact behavior. The results of the finite element analysis were compared to the experiment that has similar material and impact conditions. Results showed good correlations in terms of impact forces, deformation and failure progressions which concluded that the finite element model of 2024-T3 aluminum alloy under low velocity transverse impact condition using Johnson-Cook plastic and damage models was reliable.
An Eulerian-Lagrangian finite-element method for modeling crack growth in creeping materials
International Nuclear Information System (INIS)
Lee Hae Sung.
1991-01-01
This study is concerned with the development of finite-element-solution methods for analysis of quasi-static, ductile crack growth in history-dependent materials. The mixed Eulerian-Langrangian description (ELD) kinematic model is shown to have several desirable properties for modeling inelastic crack growth. Accordingly, a variational statement based on the ELD for history-dependent materials is developed, and a new moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method is applied to the analysis of transient, quasi-static, mode-III crack growth in creeping materials. A generalized Petrov-Galerkin method (GPG) is developed that simultaneously stabilizes the statement to admit L 2 basis functions for the nonlinear strain field. Quasi-static, model-III crack growth in creeping materials under small-scale-yielding (SSY) conditions is considered. The GPG/ELD moving-grid finite-element formulation is used to model a transient crack-growth problem. The GPG/ELD results compare favorably with previously-published numerical results and the asymptotic solutions
A finite element method for neutron transport
International Nuclear Information System (INIS)
Ackroyd, R.T.
1983-01-01
A completely boundary-free maximum principle for the first-order Boltzmann equation is derived from the completely boundary-free maximum principle for the mixed-parity Boltzmann equation. When continuity is imposed on the trial function for directions crossing interfaces the completely boundary-free principle for the first-order Boltzmann equation reduces to a maximum principle previously established directly from first principles and indirectly by the Euler-Lagrange method. Present finite element methods for the first-order Boltzmann equation are based on a weighted-residual method which permits the use of discontinuous trial functions. The new principle for the first-order equation can be used as a basis for finite-element methods with the same freedom from boundary conditions as those based on the weighted-residual method. The extremum principle as the parent of the variationally-derived weighted-residual equations ensures their good behaviour. (author)
Isogeometric finite element data structures based on Bézier extraction of T-splines
Scott, M.A.; Borden, M.J.; Verhoosel, C.V.; Sederberg, T.W.; Hughes, T.J.R.
2011-01-01
We develop finite element data structures for T-splines based on Bézier extraction generalizing our previous work for NURBS. As in traditional finite element analysis, the extracted Bézier elements are defined in terms of a fixed set of polynomial basis functions, the so-called Bernstein basis. The
Rational bases and generalized barycentrics applications to finite elements and graphics
Wachspress, Eugene
2016-01-01
This three-part volume explores theory for construction of rational interpolation functions for continuous patchwork approximation. Authored by the namesake of the Wachspress Coordinates, the book develops construction of basis functions for a broad class of elements which have widespread graphics and finite element application. Part one is the 1975 book A Rational Finite Element Basis (with minor updates and corrections) written by Dr. Wachspress. Part two describes theoretical advances since 1975 and includes analysis of elements not considered previously. Part three consists of annotated MATLAB programs implementing theory presented in parts one and two.
Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory
DEFF Research Database (Denmark)
Frier, Christian; Sørensen, John Dalsgaard
2003-01-01
A Finite Element Reliability Method (FERM) is introduced to perform reliability analyses on two-dimensional structures in plane stress, modeled by non-linear plasticity theory. FERM is a coupling between the First Order Reliability Method (FORM) and the Finite Element Method (FEM). FERM can be us...
Directory of Open Access Journals (Sweden)
V. A. Zverev
2016-01-01
Full Text Available The article objective is to justify the rationale for selecting the multilayer finite element model parameters of the bearing structure of a general-purpose launch complex unit.A typical design element of the launch complex unit, i.e. a mount of the hydraulic or pneumatic cylinder, block, etc. is under consideration. The mount represents a set of the cantilevered axis and external structural cage. The most loaded element of the cage is disk to which a moment is transferred from the cantilevered axis due to actuator effort acting on it.To calculate the stress-strain state of disk was used a finite element method. Five models of disk mount were created. The only difference in models was the number of layers of the finite elements through the thickness of disk. There were models, which had one, three, five, eight, and fourteen layers of finite elements through the thickness of disk. For each model, we calculated the equivalent stresses arising from the action of the test load. Disk models were formed and calculated using the MSC Nastran complex software.The article presents results in the table to show data of equivalent stresses in each of the multi-layered models and graphically to illustrate the changing equivalent stresses through the thickness of disk.Based on these results we have given advice on selecting the proper number of layers in the model allowing a desirable accuracy of results with the lowest run time. In addition, it is concluded that there is a need to use the multi-layer models in assessing the performance of structural elements in case the stress exceeds the allowable one in their surface layers.
OpenSeesPy: Python library for the OpenSees finite element framework
Zhu, Minjie; McKenna, Frank; Scott, Michael H.
2018-01-01
OpenSees, an open source finite element software framework, has been used broadly in the earthquake engineering community for simulating the seismic response of structural and geotechnical systems. The framework allows users to perform finite element analysis with a scripting language and for developers to create both serial and parallel finite element computer applications as interpreters. For the last 15 years, Tcl has been the primary scripting language to which the model building and analysis modules of OpenSees are linked. To provide users with different scripting language options, particularly Python, the OpenSees interpreter interface was refactored to provide multi-interpreter capabilities. This refactoring, resulting in the creation of OpenSeesPy as a Python module, is accomplished through an abstract interface for interpreter calls with concrete implementations for different scripting languages. Through this approach, users are able to develop applications that utilize the unique features of several scripting languages while taking advantage of advanced finite element analysis models and algorithms.
Transport and dispersion of pollutants in surface impoundments: a finite element model
International Nuclear Information System (INIS)
Yeh, G.T.
1980-07-01
A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied
Kaltenbacher, Manfred
2015-01-01
Like the previous editions also the third edition of this book combines the detailed physical modeling of mechatronic systems and their precise numerical simulation using the Finite Element (FE) method. Thereby, the basic chapter concerning the Finite Element (FE) method is enhanced, provides now also a description of higher order finite elements (both for nodal and edge finite elements) and a detailed discussion of non-conforming mesh techniques. The author enhances and improves many discussions on principles and methods. In particular, more emphasis is put on the description of single fields by adding the flow field. Corresponding to these field, the book is augmented with the new chapter about coupled flow-structural mechanical systems. Thereby, the discussion of computational aeroacoustics is extended towards perturbation approaches, which allows a decomposition of flow and acoustic quantities within the flow region. Last but not least, applications are updated and restructured so that the book meets mode...
Transport and dispersion of pollutants in surface impoundments: a finite element model
Energy Technology Data Exchange (ETDEWEB)
Yeh, G.T.
1980-07-01
A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied.
Energy Technology Data Exchange (ETDEWEB)
Hosseini, Seyed Abolfaz [Dept. of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2017-02-15
The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.
Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang
2016-12-01
Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.
Finite element analyses for RF photoinjector gun cavities
International Nuclear Information System (INIS)
Marhauser, F.
2006-01-01
This paper details electromagnetical, thermal and structural 3D Finite Element Analyses (FEA) for normal conducting RF photoinjector gun cavities. The simulation methods are described extensively. Achieved results are presented. (orig.)
Finite element analyses for RF photoinjector gun cavities
Energy Technology Data Exchange (ETDEWEB)
Marhauser, F. [Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung mbH (BESSY), Berlin (Germany)
2006-07-01
This paper details electromagnetical, thermal and structural 3D Finite Element Analyses (FEA) for normal conducting RF photoinjector gun cavities. The simulation methods are described extensively. Achieved results are presented. (orig.)
Validation Assessment of a Glass-to-Metal Seal Finite-Element Model
Energy Technology Data Exchange (ETDEWEB)
Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-10-01
Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.
A cohesive finite element formulation for modelling fracture and ...
Indian Academy of Sciences (India)
cohesive elements experience material softening and lose their stress carrying capacity. A few simple ..... In the present work, a Lagrangian finite element procedure is employed. In this formu clation ...... o, is related to 'c o by,. 't o='c o ¼ 1 ہ. 1.
Some aspects of the quality assurance of personnel carrying out finite element analysis
International Nuclear Information System (INIS)
Dickenson, P.W.
1990-01-01
In this paper, the need to assess the competence of personnel carrying out finite element analysis is emphasised. In carrying out its regulatory role on behalf of the Health and Safety Executive, the Nuclear Installations Inspectorate (NII) must be satisfied that appropriate standards are developed and maintained by the licensee. Since finite element methods have an important bearing on the acceptance of a safety case, it follows that relevant codes should be adequately validated and the personnel applying the code should be competent. Attention is drawn to the work of the Quality Assurance Working Group of the National Agency for Finite Element Methods and Standards (NAFEMS) who are active in this area. The paper also considers the methods that are available to assess the competence of personnel engaged in finite element methods. (author)
International Nuclear Information System (INIS)
Fujimura, T.; Nakahara, Y.; Matsumura, M.
1983-01-01
A double finite element method (DFEM), in which both the space-and-angle finite elements are employed, has been formulated and computer codes have been developed to solve the static multigroup neutron transport problems in the three-dimensional geometry. Two methods, Galerkin's weighted residual and variational are used to apply the DFEM to the transport equation. The variational principle requires complicated formulation than the Galerkin method, but the boundary conditions can be automatically incorporated and each plane equation becomes symmetric. The system equations are solved over the planar layers which we call plane iteration. The coarse mesh rebalancing technique is used for the inner iteration and the outer iteration is accelerated by extra-polation. Numerical studies of these two DFEM algorithms have been done in comparison between them and also with THe CITATION and TWOTRAN-II results. It has been confirmed that in the case of variational formulation an adaptive acceleration method of the SSOR iteration works effectively and the ray effects are mitigated in both DFEM algorithms. (author)
Numerical solution of critical state in superconductivity by finite element software
Energy Technology Data Exchange (ETDEWEB)
Hong, Z; Campbell, A M; Coombs, T A [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)
2006-12-15
A numerical method is proposed to analyse the electromagnetic behaviour of systems including high-temperature superconductors (HTSCs) in time-varying external fields and superconducting cables carrying AC transport current. The E-J constitutive law together with an H-formulation is used to calculate the current distribution and electromagnetic fields in HTSCs, and the magnetization of HTSCs; then the forces in the interaction between the electromagnet and the superconductor and the AC loss of the superconducting cable can be obtained. This numerical method is based on solving the partial differential equations time dependently and is adapted to the commercial finite element software Comsol Multiphysics 3.2. The advantage of this method is to make the modelling of the superconductivity simple, flexible and extendable.
Advances in dynamic relaxation techniques for nonlinear finite element analysis
International Nuclear Information System (INIS)
Sauve, R.G.; Metzger, D.R.
1995-01-01
Traditionally, the finite element technique has been applied to static and steady-state problems using implicit methods. When nonlinearities exist, equilibrium iterations must be performed using Newton-Raphson or quasi-Newton techniques at each load level. In the presence of complex geometry, nonlinear material behavior, and large relative sliding of material interfaces, solutions using implicit methods often become intractable. A dynamic relaxation algorithm is developed for inclusion in finite element codes. The explicit nature of the method avoids large computer memory requirements and makes possible the solution of large-scale problems. The method described approaches the steady-state solution with no overshoot, a problem which has plagued researchers in the past. The method is included in a general nonlinear finite element code. A description of the method along with a number of new applications involving geometric and material nonlinearities are presented. They include: (1) nonlinear geometric cantilever plate; (2) moment-loaded nonlinear beam; and (3) creep of nuclear fuel channel assemblies
Modelling of Conveyor Belt Passage by Driving Drum Using Finite Element Methods
Directory of Open Access Journals (Sweden)
Nikoleta Mikušová
2017-12-01
Full Text Available The finite element methods are used in many disciplines by the development of products, typically in mechanical engineering (for example in automotive industry, biomechanics, etc.. Some modern programs of the finite element's methods have specific tools (electromagnetic, fluid and structural simulations. The finite elements methods allow detailed presentation of structures by bending or torsion, complete design, testing and optimization before the prototype production. The aims of this paper were to the model of conveyor belt passage by driving drum. The model was created by the program Abaqus CAE. The created model presented data about forces, pressures, and deformation of the belt conveyor.
Finite-element pre-analysis for pressurized thermoshock tests
International Nuclear Information System (INIS)
Keinaenen, H.; Talja, H.; Lehtonen, M.; Rintamaa, R.; Bljumin, A.; Timofeev, B.
1992-05-01
The behaviour of a model pressure vessel is studied in a pressurized thermal shock loading. The tests were performed at the Prometey Institute in St. Petersburg. The calculations were performed at the Technical Research Centre of Finland. The report describes the preliminary finite-element analyses for the fourth, fifth and sixth thermoshock tests with the first model pressure vessel. Seven pressurized thermoshock tests were made with the same model using five different flaw geometries. In the first three tests the flaw was actually a blunt notch. In the two following tests (tests 4 and 5) a sharp pre-crack was produced before the test. In the last two test (tests 6 and 7) the old crack was used. According to the measurements and post-test ultrasonic examination of the crack front, the sixth test led to significant crack extension. Both temperatures and stresses were calculated using the finite-element method. The calculations were made using the idealized initial flaw geometry and preliminary material data. Both two-and three-dimensional models were used in the calculations. J-integral values were calculated from the elastic-plastic finite-element results. The stress intensity factor values were evaluated on the basis of the calculated J-integrals and compared with the preliminary material fracture toughness data obtained from the Prometey Institute
Finite element analysis of FRP-strengthened RC beams
Directory of Open Access Journals (Sweden)
Teeraphot Supaviriyakit
2004-05-01
Full Text Available This paper presents a non-linear finite element analysis of reinforced concrete beam strengthened with externally bonded FRP plates. The finite element modeling of FRP-strengthened beams is demonstrated. Concrete and reinforcing bars are modeled together as 8-node isoparametric 2D RC element. The FRP plate is modeled as 8-node isoparametric 2D elastic element. The glue is modeled as perfect compatibility by directly connecting the nodes of FRP with those of concrete since there is no failure at the glue layer. The key to the analysis is the correct material models of concrete, steel and FRP. Cracks and steel bars are modeled as smeared over the entire element. Stress-strain properties of cracked concrete consist of tensile stress model normal to crack, compressive stress model parallel to crack and shear stress model tangential to crack. Stressstrain property of reinforcement is assumed to be elastic-hardening to account for the bond between concrete and steel bars. FRP is modeled as elastic-brittle material. From the analysis, it is found that FEM can predict the load-displacement relation, ultimate load and failure mode of the beam correctly. It can also capture the cracking process for both shear-flexural peeling and end peeling modes similar to the experiment.
Finite Element Method Based Modeling of Resistance Spot-Welded Mild Steel
Directory of Open Access Journals (Sweden)
Miloud Zaoui
Full Text Available Abstract This paper deals with Finite Element refined and simplified models of a mild steel spot-welded specimen, developed and validated based on quasi-static cross-tensile experimental tests. The first model was constructed with a fine discretization of the metal sheet and the spot weld was defined as a special geometric zone of the specimen. This model provided, in combination with experimental tests, the input data for the development of the second model, which was constructed with respect to the mesh size used in the complete car finite element model. This simplified model was developed with coarse shell elements and a spring-type beam element was used to model the spot weld behavior. The global accuracy of the two models was checked by comparing simulated and experimental load-displacement curves and by studying the specimen deformed shapes and the plastic deformation growth in the metal sheets. The obtained results show that both fine and coarse finite element models permit a good prediction of the experimental tests.
Image segmentation with a finite element method
DEFF Research Database (Denmark)
Bourdin, Blaise
1999-01-01
regularization results, make possible to imagine a finite element resolution method.In a first time, the Mumford-Shah functional is introduced and some existing results are quoted. Then, a discrete formulation for the Mumford-Shah problem is proposed and its $\\Gamma$-convergence is proved. Finally, some...
Investigations on Actuator Dynamics through Theoretical and Finite Element Approach
Directory of Open Access Journals (Sweden)
Somashekhar S. Hiremath
2010-01-01
Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.
Finite element modeling of trolling-mode AFM.
Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza
2018-06-01
Trolling mode atomic force microscopy (TR-AFM) has overcome many imaging problems in liquid environments by considerably reducing the liquid-resonator interaction forces. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software. The effect of installation angle of the microbeam relative to the horizon and the effect of fluid on the system behavior are investigated. Using the finite element model, frequency response curve of the system is obtained and validated around the frequency of the operating mode by the available experimental results, in air and liquid. The changes in the natural frequencies in the presence of liquid are studied. The effects of tip-sample interaction on the excitation of higher order modes of the system are also investigated in air and liquid environments. Copyright © 2018 Elsevier B.V. All rights reserved.
Finite element simulations with ANSYS workbench 16
Lee , Huei-Huang
2015-01-01
Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...
Rigid body formulation in a finite element context with contact interaction
Refachinho de Campos, Paulo R.; Gay Neto, Alfredo
2018-03-01
The present work proposes a formulation to employ rigid bodies together with flexible bodies in the context of a nonlinear finite element solver, with contact interactions. Inertial contributions due to distribution of mass of a rigid body are fully developed, considering a general pole position associated with a single node, representing a rigid body element. Additionally, a mechanical constraint is proposed to connect a rigid region composed by several nodes, which is useful for linking rigid/flexible bodies in a finite element environment. Rodrigues rotation parameters are used to describe finite rotations, by an updated Lagrangian description. In addition, the contact formulation entitled master-surface to master-surface is employed in conjunction with the rigid body element and flexible bodies, aiming to consider their interaction in a rigid-flexible multibody environment. New surface parameterizations are presented to establish contact pairs, permitting pointwise interaction in a frictional scenario. Numerical examples are provided to show robustness and applicability of the methods.
The Spectral/hp-Finite Element Method for Partial Differential Equations
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter
2009-01-01
dimensions. In the course the chosen programming environment is Matlab, however, this is by no means a necessary requirement. The mathematical level needed to grasp the details of this set of notes requires an elementary background in mathematical analysis and linear algebra. Each chapter is supplemented......This set of lecture notes provides an elementary introduction to both the classical Finite Element Method (FEM) and the extended Spectral/$hp$-Finite Element Method for solving Partial Differential Equations (PDEs). Many problems in science and engineering can be formulated mathematically...
Application of the finite element method to the neutron transport equation
International Nuclear Information System (INIS)
Martin, W.R.
1976-01-01
This paper examines the theoretical and practical application of the finite element method to the neutron transport equation. It is shown that in principle the system of equations obtained by application of the finite element method can be solved with certain physical restrictions concerning the criticality of the medium. The convergence of this approximate solution to the exact solution with mesh refinement is examined, and a non-optical estimate of the convergence rate is obtained analytically. It is noted that the numerical results indicate a faster convergence rate and several approaches to obtain this result analytically are outlined. The practical application of the finite element method involved the development of a computer code capable of solving the neutron transport equation in 1-D plane geometry. Vacuum, reflecting, or specified incoming boundary conditions may be analyzed, and all are treated as natural boundary conditions. The time-dependent transport equation is also examined and it is shown that the application of the finite element method in conjunction with the Crank-Nicholson time discretization method results in a system of algebraic equations which is readily solved. Numerical results are given for several critical slab eigenvalue problems, including anisotropic scattering, and the results compare extremely well with benchmark results. It is seen that the finite element code is more efficient than a standard discrete ordinates code for certain problems. A problem with severe heterogeneities is considered and it is shown that the use of discontinuous spatial and angular elements results in a marked improvement in the results. Finally, time-dependent problems are examined and it is seen that the phenomenon of angular mode separation makes the numerical treatment of the transport equation in slab geometry a considerable challenge, with the result that the angular mesh has a dominant effect on obtaining acceptable solutions
Stability Analysis of Anchored Soil Slope Based on Finite Element Limit Equilibrium Method
Directory of Open Access Journals (Sweden)
Rui Zhang
2016-01-01
Full Text Available Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM, and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.
FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION
Directory of Open Access Journals (Sweden)
K. S. Kurachka
2014-01-01
Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.
Domain Decomposition Solvers for Frequency-Domain Finite Element Equations
Copeland, Dylan
2010-10-05
The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.
Domain Decomposition Solvers for Frequency-Domain Finite Element Equations
Copeland, Dylan; Kolmbauer, Michael; Langer, Ulrich
2010-01-01
The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.
A finite element model of ferroelectric/ferroelastic polycrystals
Energy Technology Data Exchange (ETDEWEB)
HWANG,STEPHEN C.; MCMEEKING,ROBERT M.
2000-02-17
A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.
Finite Element Method for Analysis of Material Properties
DEFF Research Database (Denmark)
Rauhe, Jens Christian
and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using......The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...
A Finite Element Model for convection-dominatel transport problems
International Nuclear Information System (INIS)
Carmo, E.G.D. do; Galeao, A.C.N.R.
1987-08-01
A new Protev-Galerkin Finite Element Model which automatically incorporates the search for the appropriate upwind direction is presented. It is also shown that modifying the Petrov-Galerkin weightin functions associated with elements adjascent to downwing boudaries effectively eliminates numerical oscillations normally obtained near boundary layers. (Author) [pt
Modelling Convergence of Finite Element Analysis of Cantilever Beam
African Journals Online (AJOL)
Convergence studies are carried out by investigating the convergence of numerical results as the number of elements is increased. If convergence is not obtained, the engineer using the finite element method has absolutely no indication whether the results are indicative of a meaningful approximation to the correct solution ...
Finite element modeling of nanotube structures linear and non-linear models
Awang, Mokhtar; Muhammad, Ibrahim Dauda
2016-01-01
This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.
Investigation of the Behavior of Steel Shear Walls Using Finite Elements Analysis
Abubakri, K.; Veladi, H.
2016-01-01
Currently, steel shear walls are considered by engineers as an economic method against lateral loads imposed by wind and earthquake in tall structures. Accordingly, there is a growing need to develop accurate methods alongside approximation methods to estimate the behavior of these structural elements. The finite element technique is one of the strongest numerical methods in analysis of solid mechanics problems. Finite element analysis however requires high technical knowledge of the behavior...
International Nuclear Information System (INIS)
Tonks, M.R.; Williamson, R.; Masson, R.
2015-01-01
The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)
Steam generator tube rupture simulation using extended finite element method
Energy Technology Data Exchange (ETDEWEB)
Mohanty, Subhasish, E-mail: smohanty@anl.gov; Majumdar, Saurin; Natesan, Ken
2016-08-15
Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.
Steam generator tube rupture simulation using extended finite element method
International Nuclear Information System (INIS)
Mohanty, Subhasish; Majumdar, Saurin; Natesan, Ken
2016-01-01
Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.
Adaptive Kronrod-Patterson integration of non-linear finite-element matrices
DEFF Research Database (Denmark)
Janssen, Hans
2010-01-01
inappropriate discretization. In response, this article develops adaptive integration, based on nested Kronrod-Patterson-Gauss integration schemes: basically, the integration order is adapted to the locally observed grade of non-linearity. Adaptive integration is developed based on a standard infiltration...
Finite element solution of two dimensional time dependent heat equation
International Nuclear Information System (INIS)
Maaz
1999-01-01
A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)
Finite element stress analysis of brick-mortar masonry under ...
African Journals Online (AJOL)
Stress analysis of a brick-mortar couplet as a substitute for brick wall structure has been performed by finite element method, and algorithm for determining the element stiffness matrix for a plane stress problem using the displacement approach was developed. The nodal displacements were derived for the stress in each ...
Generalization of mixed multiscale finite element methods with applications
Energy Technology Data Exchange (ETDEWEB)
Lee, C S [Texas A & M Univ., College Station, TX (United States)
2016-08-01
Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii
Soft tissue deformation using a Hierarchical Finite Element Model.
Faraci, Alessandro; Bello, Fernando; Darzi, Ara
2004-01-01
Simulating soft tissue deformation in real-time has become increasingly important in order to provide a realistic virtual environment for training surgical skills. Several methods have been proposed with the aim of rendering in real-time the mechanical and physiological behaviour of human organs, one of the most popular being Finite Element Method (FEM). In this paper we present a new approach to the solution of the FEM problem introducing the concept of parent and child mesh within the development of a hierarchical FEM. The online selection of the child mesh is presented with the purpose to adapt the mesh hierarchy in real-time. This permits further refinement of the child mesh increasing the detail of the deformation without slowing down the simulation and giving the possibility of integrating force feedback. The results presented demonstrate the application of our proposed framework using a desktop virtual reality (VR) system that incorporates stereo vision with integrated haptics co-location via a desktop Phantom force feedback device.
A review on application of finite element modelling in bone biomechanics
Directory of Open Access Journals (Sweden)
Sandeep Kumar Parashar
2016-09-01
Full Text Available In the past few decades the finite element modelling has been developed as an effective tool for modelling and simulation of the biomedical engineering system. Finite element modelling (FEM is a computational technique which can be used to solve the biomedical engineering problems based on the theories of continuum mechanics. This paper presents the state of art review on finite element modelling application in the four areas of bone biomechanics, i.e., analysis of stress and strain, determination of mechanical properties, fracture fixation design (implants, and fracture load prediction. The aim of this review is to provide a comprehensive detail about the development in the area of application of FEM in bone biomechanics during the last decades. It will help the researchers and the clinicians alike for the better treatment of patients and future development of new fixation designs.
Heat transfer model and finite element formulation for simulation of selective laser melting
Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.
2017-10-01
A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.
Biquartic Finite Volume Element Metho d Based on Lobatto-Guass Structure
Institute of Scientific and Technical Information of China (English)
Gao Yan-ni; Chen Yan-li
2015-01-01
In this paper, a biquartic finite volume element method based on Lobatto-Guass structure is presented for variable coeﬃcient elliptic equation on rectangular partition. Not only the optimal H1 and L2 error estimates but also some super-convergent properties are available and could be proved for this method. The numer-ical results obtained by this finite volume element scheme confirm the validity of the theoretical analysis and the effectiveness of this method.
Finite element concept to derive isostatic residual maps ...
Indian Academy of Sciences (India)
A new space-domain operator based on the shape function concept of finite element analysis has been developed to derive the ... not require explicit assumptions on isostatic models. Besides .... This information is implicit in the Bouguer ...
Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A
1997-09-01
Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.
Finite Element Crash Simulations and Impact-Induced Injuries
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.
Finite element simulation of thermal, elastic and plastic phenomena in fuel elements
International Nuclear Information System (INIS)
Soba, Alejandro; Denis, Alicia C.
1999-01-01
Taking as starting point an irradiation experiment of the first Argentine MOX fuel prototype, performed at the HFR reactor of Petten, Holland, the deformation suffered by the fuel element materials during burning has been numerically studied. Analysis of the pellet-cladding interaction is made by the finite element method. The code determines the temperature distribution and analyzes elastic and creep deformations, taking into account the dependency of the physical parameters of the problem on temperature. (author)
Hybrid Discrete Element - Finite Element Simulation for Railway Bridge-Track Interaction
Kaewunruen, S.; Mirza, O.
2017-10-01
At the transition zone or sometimes called ‘bridge end’ or ‘bridge approach’, the stiffness difference between plain track and track over bridge often causes aggravated impact loading due to uneven train movement onto the area. The differential track settlement over the transition has been a classical problem in railway networks, especially for the aging rail infrastructures around the world. This problem is also additionally worsened by the fact that the construction practice over the area is difficult, resulting in a poor compaction of formation and subgrade. This paper presents an advanced hybrid simulation using coupled discrete elements and finite elements to investigate dynamic interaction at the transition zone. The goal is to evaluate the dynamic stresses and to better understand the impact dynamics redistribution at the bridge end. An existing bridge ‘Salt Pan Creek Railway Bridge’, located between Revesby and Kingsgrove, has been chosen for detailed investigation. The Salt Pan Bridge currently demonstrates crushing of the ballast causing significant deformation and damage. Thus, it’s imperative to assess the behaviours of the ballast under dynamic loads. This can be achieved by modelling the nonlinear interactions between the steel rail and sleeper, and sleeper to ballast. The continuum solid elements of track components have been modelled using finite element approach, while the granular media (i.e. ballast) have been simulated by discrete element method. The hybrid DE/FE model demonstrates that ballast experiences significant stresses at the contacts between the sleeper and concrete section. These overburden stress exists in the regions below the outer rails, identify fouling and permanent deformation of the ballast.
Application of finite-element method to three-dimensional nuclear reactor analysis
International Nuclear Information System (INIS)
Cheung, K.Y.
1985-01-01
The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired
Dong, Chen
2011-01-01
A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocity fields for both the fractures and matrix, which are crucial to the convection part of the transport equation. The finite-volume method and the standard MFE method are used to approximate the convection and dispersion terms, respectively. The temporary evolution for the pressure distributions, streamline fields, and concentration profiles are obtained for six different arrangements of fractures. The results clearly show the distorted concentration effects caused by the ordered and disordered (random) patterns of the fractures and illustrate the robustness and efficiency of the proposed numerical model. © 2011 by Begell House Inc.
Linear and Nonlinear Finite Elements.
1983-12-01
Metzler. Con/ ugte rapdent solution of a finite element elastic problem with high Poson rato without scaling and once with the global stiffness matrix K...nonzero c, that makes u(0) = 1. According to the linear, small deflection theory of the membrane the central displacement given to the membrane is not... theory is possible based on the approximations (l-y 2 )t = +y’ 2 +y , (1-y)’ 1-y’ 2 - y" (6) that change eq. (5) to V) = , [yŖ(1 + y") - Qy
Assembly of finite element methods on graphics processors
Cecka, Cris
2010-08-23
Recently, graphics processing units (GPUs) have had great success in accelerating many numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are created and analyzed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor using single-precision arithmetic achieves speedups of 30 or more in comparison to a well optimized double-precision single core implementation. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite element discretization. © 2010 John Wiley & Sons, Ltd.
Lee, Won Hee; Kim, Tae-Seong
2012-01-01
This study proposes an advanced finite element (FE) head modeling technique through which high-resolution FE meshes adaptive to the degree of tissue anisotropy can be generated. Our adaptive meshing scheme (called wMesh) uses MRI structural information and fractional anisotropy maps derived from diffusion tensors in the FE mesh generation process, optimally reflecting electrical properties of the human brain. We examined the characteristics of the wMeshes through various qualitative and quantitative comparisons to the conventional FE regular-sized meshes that are non-adaptive to the degree of white matter anisotropy. We investigated numerical differences in the FE forward solutions that include the electrical potential and current density generated by current sources in the brain. The quantitative difference was calculated by two statistical measures of relative difference measure (RDM) and magnification factor (MAG). The results show that the wMeshes are adaptive to the anisotropic density of the WM anisotropy, and they better reflect the density and directionality of tissue conductivity anisotropy. Our comparison results between various anisotropic regular mesh and wMesh models show that there are substantial differences in the EEG forward solutions in the brain (up to RDM=0.48 and MAG=0.63 in the electrical potential, and RDM=0.65 and MAG=0.52 in the current density). Our analysis results indicate that the wMeshes produce different forward solutions that are different from the conventional regular meshes. We present some results that the wMesh head modeling approach enhances the sensitivity and accuracy of the FE solutions at the interfaces or in the regions where the anisotropic conductivities change sharply or their directional changes are complex. The fully automatic wMesh generation technique should be useful for modeling an individual-specific and high-resolution anisotropic FE head model incorporating realistic anisotropic conductivity distributions
Directory of Open Access Journals (Sweden)
Pawlicki Jakub
2016-09-01
Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.
FINELM: a multigroup finite element diffusion code
International Nuclear Information System (INIS)
Higgs, C.E.; Davierwalla, D.M.
1981-06-01
FINELM is a FORTRAN IV program to solve the Neutron Diffusion Equation in X-Y, R-Z, R-theta, X-Y-Z and R-theta-Z geometries using the method of Finite Elements. Lagrangian elements of linear or higher degree to approximate the spacial flux distribution have been provided. The method of dissections, coarse mesh rebalancing and Chebyshev acceleration techniques are available. Simple user defined input is achieved through extensive input subroutines. The input preparation is described followed by a program structure description. Sample test cases are provided. (Auth.)
Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry
DEFF Research Database (Denmark)
Volakis, John L.; Sertel, Kubilay; Jørgensen, Erik
2004-01-01
n this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accu...... of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving several million degrees of freedom. Three orders of magnitude CPU reduction is demonstrated for such applications....
An efficient structural finite element for inextensible flexible risers
Papathanasiou, T. K.; Markolefas, S.; Khazaeinejad, P.; Bahai, H.
2017-12-01
A core part of all numerical models used for flexible riser analysis is the structural component representing the main body of the riser as a slender beam. Loads acting on this structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and others. A structural finite element for an inextensible riser with a point-wise enforcement of the inextensibility constrain is presented. In particular, the inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach is the flexibility in the application of boundary conditions and the easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are analysed and computation times for the solution of some simplified examples are discussed. Future developments aim at the appropriate implementation of material and geometric parameters for the beam model, i.e. flexural and torsional rigidity.
Finite-element analysis of elastic sound-proof coupling thermal state
Tsyss, V. G.; Strokov, I. M.; Sergaeva, M. Yu
2018-01-01
The aim is in calculated determining of the elastic rubber-metal element thermal state of soundproof coupling ship shafting under variable influence during loads in time. Thermal coupling calculation is performed with finite element method using NX Simens software with Nastran solver. As a result of studies, the following results were obtained: - a volumetric picture of the temperature distribution over the array of the deformed coupling body is obtained; - time to reach steady-state thermal coupling mode has been determined; - dependences of maximum temperature and time to reach state on the established operation mode on rotation frequency and ambient temperature are determined. The findings prove the conclusion that usage of finite element analysis modern software can significantly speed up problem solving.
Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification
Directory of Open Access Journals (Sweden)
Xiaofeng Xue
2016-01-01
Full Text Available A new Hermitian Mindlin plate wavelet element is proposed. The two-dimensional Hermitian cubic spline interpolation wavelet is substituted into finite element functions to construct frequency response function (FRF. It uses a system’s FRF and response spectrums to calculate load spectrums and then derives loads in the time domain via the inverse fast Fourier transform. By simulating different excitation cases, Hermitian cubic spline wavelets on the interval (HCSWI finite elements are used to reverse load identification in the Mindlin plate. The singular value decomposition (SVD method is adopted to solve the ill-posed inverse problem. Compared with ANSYS results, HCSWI Mindlin plate element can accurately identify the applied load. Numerical results show that the algorithm of HCSWI Mindlin plate element is effective. The accuracy of HCSWI can be verified by comparing the FRF of HCSWI and ANSYS elements with the experiment data. The experiment proves that the load identification of HCSWI Mindlin plate is effective and precise by using the FRF and response spectrums to calculate the loads.
Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures
Wittbrodt, Edmund; Maczyński, Andrzej; Wojciech, Stanisław
2013-01-01
This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of...
Efficient Finite Element Models for Calculation of the No-load losses of the Transformer
Directory of Open Access Journals (Sweden)
Kamran Dawood
2017-10-01
Full Text Available Different transformer models are examined for the calculation of the no-load losses using finite element analysis. Two-dimensional and three-dimensional finite element analyses are used for the simulation of the transformer. Results of the finite element method are also compared with the experimental results. The Result shows that 3-dimensional provide high accuracy as compared to the 2 dimensional full and half model. However, the 2-dimensional half model is the less time-consuming method as compared to the 3 and 2-dimensional full model. Simulation time duration taken by the different models of the transformer is also compared. The difference between the 3-dimensional finite element method and experimental results are less than 3%. These numerical methods can help transformer designers to minimize the development of the prototype transformers.
The finite element response Matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-01-01
A new method for global reactor core calculations is described. This method is based on a unique formulation of the response matrix method, implemented with a higher order finite element method. The unique aspects of this approach are twofold. First, there are two levels to the overall calculational scheme: the local or assembly level and the global or core level. Second, the response matrix scheme, which is formulated at both levels, consists of two separate response matrices rather than one response matrix as is generally the case. These separate response matrices are seen to be quite beneficial for the criticality eigenvalue calculation, because they are independent of k /SUB eff/. The response matrices are generated from a Galerkin finite element solution to the weak form of the diffusion equation, subject to an arbitrary incoming current and an arbitrary distributed source. Calculational results are reported for two test problems, the two-dimensional International Atomic Energy Agency benchmark problem and a two-dimensional pressurized water reactor test problem (Biblis reactor), and they compare well with standard coarse mesh methods with respect to accuracy and efficiency. Moreover, the accuracy (and capability) is comparable to fine mesh for a fraction of the computational cost. Extension of the method to treat heterogeneous assemblies and spatial depletion effects is discussed
Optimization of forging processes using finite element simulations
Bonte, M.H.A.; Fourment, Lionel; Do, Tien-tho; van den Boogaard, Antonius H.; Huetink, Han
2010-01-01
During the last decades, simulation software based on the Finite Element Method (FEM) has significantly contributed to the design of feasible forming processes. Coupling FEM to mathematical optimization algorithms offers a promising opportunity to design optimal metal forming processes rather than
Finite element method for radiation heat transfer in multi-dimensional graded index medium
International Nuclear Information System (INIS)
Liu, L.H.; Zhang, L.; Tan, H.P.
2006-01-01
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium
An isoparametric shell of revolution finite element for harmonic loadings of any order
International Nuclear Information System (INIS)
Johnson, J.J.; Charman, C.M.
1981-01-01
A general isoparametric shell of revolution finite element subjected to any order harmonic loading is presented. Derivation of the element properties, its implementation in a general purpose finite element program, and its application to a sample problem are discussed. The element is isoparametric, that is, the variation of the displacements along the meridian of the shell and the shape of the meridian itself are approximated in an identical manner. The element has been implemented in the computer program MODSAP. A sample problem of a cooling tower subjected to wind loading is presented. (orig./HP)
Shock capturing techniques for hphp-adaptive finite elements
Czech Academy of Sciences Publication Activity Database
Hierro, A.; Kůs, Pavel; Badia, S.
2016-01-01
Roč. 309, 1 September (2016), s. 532-553 ISSN 0045-7825 Institutional support: RVO:67985840 Keywords : hphp-adaptivity * discontinuous Galerkin * shock capturing Subject RIV: BA - General Mathematics Impact factor: 3.949, year: 2016 http://www.sciencedirect.com/science/article/pii/S0045782516305862
Finite-element stress and deflection analysis of CDF yike and end plug
International Nuclear Information System (INIS)
Wands, R.; Grimson, J.; Kephart, R.; Theriot, D.
1982-01-01
A large detector is being designed to study anti pp collisions at center-of-mass energies of up to 2000 GeV as part of the Fermilab Collider Detector Facility (CDF). The central detector of this facility consists of a solenoid, calorimeter yoke, and a variety of particle measurement devices. The yoke will be a large steel structure that will provide the magnetic flux return path as well as support structure for calorimetry and other instrumentation. It must resist both electromagnetic and gravitational loads while exhibiting only small elastic deformations. The instrumented endplugs of the yoke are subjected to large electromagnetic loads. Moreover, due to the presence of wire chambers within these plugs, they must also be particularly stiff. The purpose of this paper is to present the results of a finite element stress and deflection analysis of these structures under various anticipated load conditions. The PATRAN-G finite element modeling program, installed on a CDF-VAX 11/780 and operating from a Ramtek 6212 colorgraphics terminal, was used to generate the analysis models. The actual finite element analysis was performed by the ANSYS general purpose finite element program, installed on the Fermilab Cyber 175's
Expanded Mixed Multiscale Finite Element Methods and Their Applications for Flows in Porous Media
Jiang, L.; Copeland, D.; Moulton, J. D.
2012-01-01
We develop a family of expanded mixed multiscale finite element methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed multiscale finite element formulation in the sense that four
Finite element analysis of beam-to-column joints in steel frames under cyclic loading
Directory of Open Access Journals (Sweden)
Elsayed Mashaly
2011-03-01
Full Text Available The aim of this paper is to present a simple and accurate three-dimensional (3D finite element model (FE capable of predicting the actual behavior of beam-to-column joints in steel frames subjected to lateral loads. The software package ANSYS is used to model the joint. The bolted extended-end-plate connection was chosen as an important type of beam–column joints. The extended-end-plate connection is chosen for its complexity in the analysis and behavior due to the number of connection components and their inheritable non-linear behavior. Two experimental tests in the literature were chosen to verify the finite element model. The results of both the experimental and the proposed finite element were compared. One of these tests was monotonically loaded, whereas the second was cyclically loaded. The finite element model is improved to enhance the defects of the finite element model used. These defects are; the long time need for the analysis and the inability of the contact element type to follow the behavior of moment–rotation curve under cyclic loading. As a contact element, the surface-to-surface element is used instead of node-to-node element to enhance the model. The FE results show good correlation with the experimental one. An attempt to improve a new technique for modeling bolts is conducted. The results show that this technique is supposed to avoid the defects above, give much less elements number and less solution time than the other modeling techniques.
Finite element modelling of creep process - steady state stresses and strains
Directory of Open Access Journals (Sweden)
Sedmak Aleksandar S.
2014-01-01
Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.
Appendix F : finite element analysis of end region.
2013-03-01
FE (finite element) modeling was conducted to 1) provide a better understanding of the : elastic behavior of the end region prior to cracking and 2) to evaluate the effects of bearing pad : stiffness and width on end region elastic stresses. The FEA ...
Thermo-mechanical finite element analyses of bolted cask lid structures
International Nuclear Information System (INIS)
Wieser, G.; Qiao Linan; Eberle, A.; Voelzke, H.
2004-01-01
The analysis of complex bolted cask lid structures under mechanical or thermal accident conditions is important for the evaluation of cask integrity and leak-tightness in package design assessment according to the Transport Regulations or in aircraft crash scenarios. In this context BAM is developing methods based on Finite Elements to calculate the effects of mechanical impacts onto the bolted lid structures as well as effects caused by severe fire scenarios. I n case of fire it might be not enough to perform only a thermal heat transfer analysis. The complex cask design in connection with a severe hypothetical time-temperature-curve representing an accident fire scenario will create a strong transient heating up of the cask body and its lid system. This causes relative displacements between the seals and its counterparts that can be analyzed by a so-called thermo-mechanical calculation. Although it is currently not possible to correlate leakage rates with results from deformation analyses directly an appropriate Finite Element model of the considered type of metallic lid seal has been developed. For the present it is possible to estimate the behaviour of the seal based on the calculated relative displacements at its seating and the behaviour of the lid bolts under the impact load or the temperature field respectively. Except of the lid bolts the geometry of the cask and the mechanical loading is axial-symmetric which simplifies the analysis considerably and a two-dimensional Finite Element model with substitute lid bolts may be used. The substitute bolts are modelled as one-dimensional truss or beam elements. An advanced two-dimensional bolt submodel represents the bolts with plane stress continuum elements. This paper discusses the influence of different bolt modelling on the relative displacements at the seating of the seals. Besides this, the influence of bolt modelling, thermal properties and detail in geometry of the two-dimensional Finite Element models on
High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P
Energy Technology Data Exchange (ETDEWEB)
Candel, A; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Schussman, G.; Ko, K.; /SLAC
2009-06-19
SLAC's Advanced Computations Department (ACD) has developed the first parallel Finite Element 3D Particle-In-Cell (PIC) code, Pic3P, for simulations of RF guns and other space-charge dominated beam-cavity interactions. Pic3P solves the complete set of Maxwell-Lorentz equations and thus includes space charge, retardation and wakefield effects from first principles. Pic3P uses higher-order Finite Elementmethods on unstructured conformal meshes. A novel scheme for causal adaptive refinement and dynamic load balancing enable unprecedented simulation accuracy, aiding the design and operation of the next generation of accelerator facilities. Application to the Linac Coherent Light Source (LCLS) RF gun is presented.
Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems
International Nuclear Information System (INIS)
Donea, J.; Fasoli-Stella, P.; Giuliani, S.
1977-01-01
The basic finite element equations for transient compressible fluid flow are presented in a form that allows the elements to be moved with the fluid in normal Lagrangian fashion, to be held fixed in a Eulerian manner, or to be moved in some arbitrarily specified way. The co-existence of Lagrangian and Eulerian regions within the finite element mesh will permit to handle greater distortions in the fluid motion than would be allowed by a purely Lagrangian method, with more resolution than is afforded by a purely Eulerian method. To achieve a mixed formulation, the conservation statements of mass, momentum and energy are expressed in integral form over a reference volume whose surface may be moving with an arbitrarily prescribed velocity. Direct use can be made of the integral forms of the mass and energy equations to adjust the element density and specific internal energy. The Galerkin process is employed to formulate a variational statement associated with the momentum equation. The difficulties associated with the presence of convective terms in the conservation equations are handled by expressing transports of mass, momentum and energy terms of intermediate velocities derived at each cycle from the previous cycle velocities and accelerations. The hydrodynamic elements presented are triangles, quadrilaterals with constant pressure and density. The finite element equations associated with these elements are described in the necessary detail. Numerical results are presented based on purely Lagrangian, purely Eulerian and mixed formulations. Simple problems with analytic solution are solved first to show the validity and accuracy of the proposed mixed finite element formulation. Then, practical problems are illustrated in the field of fast reactor safety analysis
Finite Element Analysis of Bulge Forming of Laser Welding Dimple Jacket
Directory of Open Access Journals (Sweden)
Peisi ZHONG
2015-11-01
Full Text Available The stress-strain states of the model of laser welded dimple jacket is analyzed using ANSYS/LS-DYNA in order to determine the relation between bulging height and pressure and to achieve the controllability of pressure distension of the jacket. It is shown that in the same conditions, the bulging height increases with the increasing of the bulging pressure and the space of honeycomb. And it will decrease when the thickness of jacket plate changing larger. A table showing the relation between bulging height and pressure is obtained. An experiment using a test panel is conducted to certify the reliability of finite element analysis. It turns out that the data of finite element analysis is coincident with experimental data, which support finite element method based ANSYS/LS-DYNA can be an efficient way to research the laser welded dimple jacket. The relation table is useful as guidance for the fabrication process.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9704
Rigid finite element method in analysis of dynamics of offshore structures
Energy Technology Data Exchange (ETDEWEB)
Wittbrodt, Edmund [Gdansk Univ. of Technology (Poland); Szczotka, Marek; Maczynski, Andrzej; Wojciech, Stanislaw [Bielsko-Biala Univ. (Poland)
2013-07-01
This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of pipe-laying operations taking active reel drive into account are shown.
Bone Adaptation Around Orthopaedic Implants of Varying Materials
DEFF Research Database (Denmark)
Bagge, Mette
1998-01-01
The bone adaptation around orthopaedic implants is simulated using a three-dimensional finite element model. The remodeling scheme has its origin in optimization methods, and includes anisotropy and time-dependent loading......The bone adaptation around orthopaedic implants is simulated using a three-dimensional finite element model. The remodeling scheme has its origin in optimization methods, and includes anisotropy and time-dependent loading...
Eigenvalue solutions in finite element thermal transient problems
International Nuclear Information System (INIS)
Stoker, J.R.
1975-01-01
The eigenvalue economiser concept can be useful in solving large finite element transient heat flow problems in which the boundary heat transfer coefficients are constant. The usual economiser theory is equivalent to applying a unit thermal 'force' to each of a small sub-set of nodes on the finite element mesh, and then calculating sets of resulting steady state temperatures. Subsequently it is assumed that the required transient temperature distributions can be approximated by a linear combination of this comparatively small set of master temperatures. The accuracy of a reduced eigenvalue calculation depends upon a good choice of master nodes, which presupposes at least a little knowledge about what sort of shape is expected in the unknown temperature distributions. There are some instances, however, where a reasonably good idea exists of the required shapes, permitting a modification to the economiser process which leads to greater economy in the number of master temperatures. The suggested new approach is to use manually prescribed temperature distributions as the master distributions, rather than using temperatures resulting from unit thermal forces. Thus, with a little pre-knowledge one may write down a set of master distributions which, as a linear combination, can represent the required solution over the range of interest to a reasonable engineering accuracy, and using the minimum number of variables. The proposed modified eigenvalue economiser technique then uses the master distributions in an automatic way to arrive at the required solution. The technique is illustrated by some simple finite element examples
Energy Technology Data Exchange (ETDEWEB)
A. T. Till; M. Hanuš; J. Lou; J. E. Morel; M. L. Adams
2016-05-01
The standard multigroup (MG) method for energy discretization of the transport equation can be sensitive to approximations in the weighting spectrum chosen for cross-section averaging. As a result, MG often inaccurately treats important phenomena such as self-shielding variations across a material. From a finite-element viewpoint, MG uses a single fixed basis function (the pre-selected spectrum) within each group, with no mechanism to adapt to local solution behavior. In this work, we introduce the Finite-Element-with-Discontiguous-Support (FEDS) method, whose only approximation with respect to energy is that the angular flux is a linear combination of unknowns multiplied by basis functions. A basis function is non-zero only in the discontiguous set of energy intervals associated with its energy element. Discontiguous energy elements are generalizations of bands and are determined by minimizing a norm of the difference between snapshot spectra and their averages over the energy elements. We begin by presenting the theory of the FEDS method. We then compare to continuous-energy Monte Carlo for one-dimensional slab and two-dimensional pin-cell problem. We find FEDS to be accurate and efficient at producing quantities of interest such as reaction rates and eigenvalues. Results show that FEDS converges at a rate that is approximately first-order in the number of energy elements and that FEDS is less sensitive to weighting spectrum than standard MG.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Nonlinear nonstationary analysis with the finite element method
International Nuclear Information System (INIS)
Vaz, L.E.
1981-01-01
In this paper, after some introductory remarks on numerical methods for the integration of initial value problems, the applicability of the finite element method for transient diffusion analysis as well as dynamic and inelastic analysis is discussed, and some examples are presented. (RW) [de
Compatible-strain mixed finite element methods for incompressible nonlinear elasticity
Faghih Shojaei, Mostafa; Yavari, Arash
2018-05-01
We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.
Three dimensional finite element linear analysis of reinforced concrete structures
International Nuclear Information System (INIS)
Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.
1979-01-01
A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lee, Hong Pyo, E-mail: hplee@kepri.re.k [Nuclear Power Laboratory, Korea Electric Power Research Institute, 103-16 Munji-Dong, Yuseong-Gu, Daejeon 305-380 (Korea, Republic of)
2011-02-15
Research highlights: Finite element program with 9-node degenerated shell element was developed. The developed program was mainly forced to analyze nuclear containment building. Concrete material model is adapted Niwa and Yamada failure criteria. The performance of program developed is verified through various numerical examples. The numerical analysis results similar to the experimental data. - Abstract: This paper describes a 9-node degenerated shell finite element (FE), an analysis program developed for ultimate pressure capacity evaluation and nonlinear analysis of a nuclear containment building. The shell FE developed adopts the Reissner-Mindlin (RM) assumptions to consider the degenerated shell solidification technique and the degree of transverse shear strain occurring in the structure. The material model of the concrete determines the level of the concrete stress and strain by using the equivalent stress-equivalent strain relationship. When a crack occurs in the concrete, the material behavior is expressed through the tension stiffening model that takes adhesive stress into account and through the shear transfer mechanism and compressive strength reduction model of the crack plane. In addition, the failure envelope proposed by Niwa is adopted as the crack occurrence criteria for the compression-tension region, and the failure envelope proposed by Yamada is used for the tension-tension region. The performance of the program developed is verified through various numerical examples. The analysis based on the application of the shell FE developed from the results of verified examples produced results similar to the experiment or other analysis results.
Crack Propagation by Finite Element Method
H. Ricardo, Luiz Carlos
2017-01-01
Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...
A weak Galerkin least-squares finite element method for div-curl systems
Li, Jichun; Ye, Xiu; Zhang, Shangyou
2018-06-01
In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.
SAFE-3D, Stress Analysis of 3-D Composite Structure by Finite Elements Method
International Nuclear Information System (INIS)
Cornell, D.C.; Jadhav, K.; Crowell, J.S.
1969-01-01
1 - Description of problem or function: SAFE-3D is a finite-element program for the three-dimensional elastic analysis of heterogeneous composite structures. The program uses the following types of finite elements - (1) tetrahedral elements to represent the continuum, (2) triangular plane stress membrane elements to represent inner liner or outer case, and (3) uniaxial tension-compression elements to represent internal reinforcement. The structure can be of arbitrary geometry and have any distribution of material properties, temperatures, surface loadings, and boundary conditions. 2 - Method of solution: The finite-element variational method is used. Equilibrium equations are solved by the alternating component iterative method. 3 - Restrictions on the complexity of the problem - Maxima of: 5000 nodes; 16000 elements. The program cannot be applied to incompressible solids and is not recommended for Poisson's ratio in the range of nu between 0.495 and 0.5
High order curvilinear finite elements for elastic–plastic Lagrangian dynamics
International Nuclear Information System (INIS)
Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.
2014-01-01
This paper presents a high-order finite element method for calculating elastic–plastic flow on moving curvilinear meshes and is an extension of our general high-order curvilinear finite element approach for solving the Euler equations of gas dynamics in a Lagrangian frame [1,2]. In order to handle transition to plastic flow, we formulate the stress–strain relation in rate (or incremental) form and augment our semi-discrete equations for Lagrangian hydrodynamics with an additional evolution equation for the deviatoric stress which is valid for arbitrary order spatial discretizations of the kinematic and thermodynamic variables. The semi-discrete equation for the deviatoric stress rate is developed for 2D planar, 2D axisymmetric and full 3D geometries. For each case, the strain rate is approximated via a collocation method at zone quadrature points while the deviatoric stress is approximated using an L 2 projection onto the thermodynamic basis. We apply high order, energy conserving, explicit time stepping methods to the semi-discrete equations to develop the fully discrete method. We conclude with numerical results from an extensive series of verification tests that demonstrate several practical advantages of using high-order finite elements for elastic–plastic flow
Discontinuous finite element treatment of duct problems in transport calculations
International Nuclear Information System (INIS)
Mirza, A. M.; Qamar, S.
1998-01-01
A discontinuous finite element approach is presented to solve the even-parity Boltzmann transport equation for duct problems. Presence of ducts in a system results in the streaming of particles and hence requires the employment of higher order angular approximations to model the angular flux. Conventional schemes based on the use of continuous trial functions require the same order of angular approximations to be used everywhere in the system, resulting in wastage of computational resources. Numerical investigations for the test problems presented in this paper indicate that the discontinuous finite elements eliminate the above problems and leads to computationally efficient and economical methods. They are also found to be more suitable for treating the sharp changes in the angular flux at duct-observer interfaces. The new approach provides a single-pass alternate to extrapolation and interactive schemes which need multiple passes of the solution strategy to acquire convergence. The method has been tested with the help of two case studies, namely straight and dog-leg duct problems. All results have been verified against those obtained from Monte Carlo simulations and K/sup +/ continuous finite element method. (author)
Plane stress analysis of wood members using isoparametric finite elements, a computer program
Gary D. Gerhardt
1983-01-01
A finite element program is presented which computes displacements, strains, and stresses in wood members of arbitrary shape which are subjected to plane strain/stressloading conditions. This report extends a program developed by R. L. Taylor in 1977, by adding both the cubic isoparametric finite element and the capability to analyze nonisotropic materials. The...
Finite element analysis of cutting tools prior to fracture in hard turning operations
International Nuclear Information System (INIS)
Cakir, M. Cemal; I Sik, Yahya
2005-01-01
In this work cutting FEA of cutting tools prior to fracture is investigated. Fracture is the catastrophic end of the cutting edge that should be avoided for the cutting tool in order to have a longer tool life. This paper presents finite element modelling of a cutting tool just before its fracture. The data used in FEA are gathered from a tool breakage system that detects the fracture according to the variations of the cutting forces measured by a three-dimensional force dynamometer. The workpiece material used in the experiments is cold work tool steel, AISI O1 (60 HRC) and the cutting tool material is uncoated tungsten carbide (DNMG 150608). In order to investigate the cutting tool conditions in longitudinal external turning operations prior to fracture, static and dynamic finite element analyses are conducted. After the static finite element analysis, the modal and harmonic response analyses are carried on and the dynamic behaviours of the cutting tool structure are investigated. All FE analyses were performed using a commercial finite element package ANSYS
Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
Wu, J Z; Herzog, W; Epstein, M
1998-02-01
The biphasic cartilage model proposed by Mow et al. (1980) has proven successful to capture the essential mechanical features of articular cartilage. In order to analyse the joint contact mechanics in real, anatomical joints, the cartilage model needs to be implemented into a suitable finite element code to approximate the irregular surface geometries of such joints. However, systematic and extensive evaluation of the capacity of commercial software for modelling the contact mechanics with biphasic cartilage layers has not been made. This research was aimed at evaluating the commercial finite element software ABAQUS for analysing biphasic soft tissues. The solutions obtained using ABAQUS were compared with those obtained using other finite element models and analytical solutions for three numerical tests: an unconfined indentation test, a test with the contact of a spherical cartilage surface with a rigid plate, and an axi-symmetric joint contact test. It was concluded that the biphasic cartilage model can be implemented into the commercial finite element software ABAQUS to analyse practical joint contact problems with biphasic articular cartilage layers.
Finite element analysis of thermal stress distribution in different ...
African Journals Online (AJOL)
Nigerian Journal of Clinical Practice. Journal Home ... Von Mises and thermal stress distributions were evaluated. Results: In all ... distribution. Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ...
Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids
Directory of Open Access Journals (Sweden)
Sudi Mungkasi
2016-01-01
Full Text Available This paper presents a numerical entropy production (NEP scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.
Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method
DEFF Research Database (Denmark)
Goo, Seongyeol; Wang, Semyung; Kook, Junghwan
2017-01-01
This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...
A novel hybrid stress-function finite element method immune to severe mesh distortion
International Nuclear Information System (INIS)
Cen Song; Zhou Mingjue; Fu Xiangrong
2010-01-01
This paper introduces a hybrid stress-function finite element method proposed recently for developing 2D finite element models immune to element shapes. Deferent from the first version of the hybrid-stress element constructed by Pian, the stress function φ of 2D elastic or fracture problem is regarded as the functional variable of the complementary energy functional. Then, the basic analytical solutions of φ are taken as the trial functions for finite element models, and meanwhile, the corresponding unknown stress-function constants are introduced. By using the principle of minimum complementary energy, these unknown stress-function constants can be expressed in terms of the displacements along element edges. Finally, the complementary energy functional can be rewritten in terms of element nodal displacement vector, and thus, the element stiffness matrix of such hybrid-function element can be obtained. As examples, two (8- and 12-node) quadrilateral plane elements and an arbitrary polygonal crack element are constructed by employing different basic analytical solutions of different stress functions. Numerical results show that, the 8- and 12-node plane models can produce the exact solutions for pure bending and linear bending problems, respectively, even the element shape degenerates into triangle and concave quadrangle; and the crack element can also predict accurate results with very low computational cost in analysis of stress-singularity problems.
On using moving windows in finite element time domain simulation for long accelerator structures
International Nuclear Information System (INIS)
Lee, L.-Q.; Candel, Arno; Ng, Cho; Ko, Kwok
2010-01-01
A finite element moving window technique is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the keys to implementing a moving window in a finite element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal finite element time domain (FETD) method and the advantages of using the moving window technique are discussed.
International Nuclear Information System (INIS)
Pereira, Luis Carlos Martins
1998-06-01
New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)
Finite element modelling of fibre-reinforced brittle materials
Kullaa, J.
1997-01-01
The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The
Two-dimensional isostatic meshes in the finite element method
Martínez Marín, Rubén; Samartín, Avelino
2002-01-01
In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's...
International Nuclear Information System (INIS)
Sanborn, Graham G.; Shabana, Ahmed A.
2009-01-01
For almost a decade, the finite element absolute nodal coordinate formulation (ANCF) has been used for both geometry and finite element representations. Because of the ANCF isoparametric property in the cases of beams, plates and shells, ANCF finite elements lend themselves easily to the geometric description of curves and surfaces, as demonstrated in the literature. The ANCF finite elements, therefore, are ideal for what is called isogeometric analysis that aims at the integration ofcomputer aided designandanalysis (ICADA), which involves the integration of what is now split into the separate fields of computer aided design (CAD) and computer aided analysis (CAA). The purpose of this investigation is to establish the relationship between the B-spline and NURBS, which are widely used in the geometric modeling, and the ANCF finite elements. It is shown in this study that by using the ANCF finite elements, one can in a straightforward manner obtain the control point representation required for the Bezier, B-spline and NURBS geometry. To this end, a coordinate transformation is used to write the ANCF gradient vectors in terms of control points. Unifying the CAD and CAA will require the use of such coordinate transformations and their inverses in order to transform control points to position vector gradients which are required for the formulation of the element transformations in the case of discontinuities as well as the formulation of the strain measures and the stress forces based on general continuum mechanics theory. In particular, fully parameterized ANCF finite elements can be very powerful in describing curve, surface, and volume geometry, and they can be effectively used to describe discontinuities while maintaining the many ANCF desirable features that include a constant mass matrix, zero Coriolis and centrifugal forces, no restriction on the amount of rotation or deformation within the finite element, ability for straightforward implementation of general
International Nuclear Information System (INIS)
Garnadi, A.D.
1997-01-01
In the distributed parameter systems with exponential feedback, non-global existence of solution is not always exist. For some positive initial values, there exist finite time T such that the solution goes to infinity, i.e. finite time extinction or blow-up. Here is present a numerical solution using Moving Mesh Finite Element to solve the distributed parameter systems with exponential feedback close to blow-up time. The numerical behavior of the mesh close to the time of extinction is the prime interest in this study
Finite element modeling of micromachined MEMS photon devices
Evans, Boyd M., III; Schonberger, D. W.; Datskos, Panos G.
1999-09-01
The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.
Finite Element Modeling of Micromachined MEMS Photon Devices
International Nuclear Information System (INIS)
Datskos, P.G.; Evans, B.M.; Schonberger, D.
1999-01-01
The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness
Finite element model to study calcium distribution in oocytes ...
African Journals Online (AJOL)
Parvaiz Ahmad Naik
2015-03-20
Mar 20, 2015 ... Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal 462051 ... finite element method has been employed to obtain the solution. ..... Nelson MT, Cheng H, Rubart M. Relaxation of arterial smooth.
A finite element code for electric motor design
Campbell, C. Warren
1994-01-01
FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.
A finite element field solver for dipole modes
International Nuclear Information System (INIS)
Nelson, E.M.
1992-01-01
A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL. (author). 7 refs., 4 figs
Topology Optimization Using Multiscale Finite Element Method for High-Contrast Media
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov
2014-01-01
The focus of this paper is on the applicability of multiscale finite element coarse spaces for reducing the computational burden in topology optimization. The coarse spaces are obtained by solving a set of local eigenvalue problems on overlapping patches covering the computational domain. The app......The focus of this paper is on the applicability of multiscale finite element coarse spaces for reducing the computational burden in topology optimization. The coarse spaces are obtained by solving a set of local eigenvalue problems on overlapping patches covering the computational domain...
International Nuclear Information System (INIS)
Wagner, R.A.
1980-12-01
This comparison study involves a preliminary verification of finite element calculations. The methodology of the comparison study consists of solving four example problems with both the SPECTROM finite element program and the MARC-CDC general purpose finite element program. The results show close agreement for all example problems
Use of the finite element displacement method to solve solid-fluid interaction vibration problems
International Nuclear Information System (INIS)
Brown, S.J.; Hsu, K.H.
1978-01-01
It is shown through comparison to experimental, theoretical, and other finite element formulations that the finite element displacement method can solve accurately and economically a certain class of solid-fluid eigenvalue problems. The problems considered are small displacements in the absence of viscous damping and are 2-D and 3-D in nature. In this study the advantages of the finite element method (in particular the displacement formulation) is apparent in that a large structure consisting of the cylinders, support flanges, fluid, and other experimental boundaries could be modeled to yield good correlation to experimental data. The ability to handle large problems with standard structural programs is the key advantage of the displacement fluid method. The greatest obstacle is the inability of the analyst to inhibit those rotational degrees of freedom that are unnecessary to his fluid-structure vibration problem. With judicious use of element formulation, boundary conditions and modeling, the displacement finite element method can be successfully used to predict solid-fluid response to vibration and seismic loading
Saad, Bilal Mohammed; Saad, Mazen Naufal B M
2014-01-01
We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.
Saad, Bilal Mohammed
2014-06-28
We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
Development library of finite elements for computer-aided design system of reed sensors
Kozlov, A. S.; Shmakov, N. A.; Tkalich, V. L.; Labkovskaia, R. I.; Kalinkina, M. E.; Pirozhnikova, O. I.
2018-05-01
The article is devoted to the development of a modern highly reliable element base of devices for security and fire alarm systems, in particular, to the improvement of the quality of contact cores (reed and membrane) of reed sensors. Modeling of elastic sensitive elements uses quadrangular elements of plates and shells, considered in the system of curvilinear orthogonal coordinates. The developed mathematical models and the formed finite element library are designed for systems of automated design of reed switch detectors to create competitive devices alarms. The finite element library is used for the automated system production of reed switch detectors both in series production and in the implementation of individual orders.
Directory of Open Access Journals (Sweden)
Norapat Noilublao
2013-01-01
Full Text Available This paper proposes a novel integrated design strategy to accomplish simultaneous topology shape and sizing optimisation of a two-dimensional (2D truss. An optimisation problem is posed to find a structural topology, shape, and element sizes of the truss such that two objective functions, mass and compliance, are minimised. Design constraints include stress, buckling, and compliance. The procedure for an adaptive ground elements approach is proposed and its encoding/decoding process is detailed. Two sets of design variables defining truss layout, shape, and element sizes at the same time are applied. A number of multiobjective evolutionary algorithms (MOEAs are implemented to solve the design problem. Comparative performance based on a hypervolume indicator shows that multiobjective population-based incremental learning (PBIL is the best performer. Optimising three design variable types simultaneously is more efficient and effective.
Nonlinear Finite Element Analysis of Pull-Out Test
DEFF Research Database (Denmark)
Saabye Ottesen, N
1981-01-01
A specific pull-out test used to determine in-situ concrete compressive strength is analyzed. This test consists of a steel disc that is extracted from the structure. The finite element analysis considers cracking as well as strain hardening and softening in the pre- and post-failure region...
Finite element investigation of the prestressed jointed concrete ...
African Journals Online (AJOL)
Precast prestressed concrete pavement (PCP) technology is of recent origin, and the information on PCP performance is not available in literature. This research presents a finite-element analysis of the potential benefits of prestressing on the jointed concrete pavements (JCP). With using a 3-dimensional (3D) ...
Directory of Open Access Journals (Sweden)
Yichao Gao
2011-01-01
Full Text Available The dam-reservoir system is divided into the near field modeled by the finite element method, and the far field modeled by the excellent high-order doubly asymptotic open boundary (DAOB. Direct and partitioned coupled methods are developed for the analysis of dam-reservoir system. In the direct coupled method, a symmetric monolithic governing equation is formulated by incorporating the DAOB with the finite element equation and solved using the standard time-integration methods. In contrast, the near-field finite element equation and the far-field DAOB condition are separately solved in the partitioned coupled methodm, and coupling is achieved by applying the interaction force on the truncated boundary. To improve its numerical stability and accuracy, an iteration strategy is employed to obtain the solution of each step. Both coupled methods are implemented on the open-source finite element code OpenSees. Numerical examples are employed to demonstrate the performance of these two proposed methods.
Three dimensional mathematical model of tooth for finite element analysis
Directory of Open Access Journals (Sweden)
Puškar Tatjana
2010-01-01
Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Finite element analysis of nonlinear creeping flows
International Nuclear Information System (INIS)
Loula, A.F.D.; Guerreiro, J.N.C.
1988-12-01
Steady-state creep problems with monotone constitutive laws are studied. Finite element approximations are constructed based on mixed Petrov-Galerkin formulations for constrained problems. Stability, convergence and a priori error estimates are proved for equal-order discontinuous stress and continuous velocity interpolations. Numerical results are presented confirming the rates of convergence predicted in the analysis and the good performance of this formulation. (author) [pt
Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids
Directory of Open Access Journals (Sweden)
A.D. Matveev
2016-12-01
Full Text Available In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE. The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.
Stress distributions in finite element analysis of concrete gravity dam ...
African Journals Online (AJOL)
Gravity dams are solid structures built of mass concrete material; they maintain their stability against the design loads from the geometric shape, the mass, and the strength of the concrete. The model was meshed with an 8-node biquadratic plane strain quadrilateral (CPE8R) elements, using ABAQUS, a finite element ...
A parallel adaptive finite difference algorithm for petroleum reservoir simulation
Energy Technology Data Exchange (ETDEWEB)
Hoang, Hai Minh
2005-07-01
Adaptive finite differential for problems arising in simulation of flow in porous medium applications are considered. Such methods have been proven useful for overcoming limitations of computational resources and improving the resolution of the numerical solutions to a wide range of problems. By local refinement of the computational mesh where it is needed to improve the accuracy of solutions, yields better solution resolution representing more efficient use of computational resources than is possible with traditional fixed-grid approaches. In this thesis, we propose a parallel adaptive cell-centered finite difference (PAFD) method for black-oil reservoir simulation models. This is an extension of the adaptive mesh refinement (AMR) methodology first developed by Berger and Oliger (1984) for the hyperbolic problem. Our algorithm is fully adaptive in time and space through the use of subcycling, in which finer grids are advanced at smaller time steps than the coarser ones. When coarse and fine grids reach the same advanced time level, they are synchronized to ensure that the global solution is conservative and satisfy the divergence constraint across all levels of refinement. The material in this thesis is subdivided in to three overall parts. First we explain the methodology and intricacies of AFD scheme. Then we extend a finite differential cell-centered approximation discretization to a multilevel hierarchy of refined grids, and finally we are employing the algorithm on parallel computer. The results in this work show that the approach presented is robust, and stable, thus demonstrating the increased solution accuracy due to local refinement and reduced computing resource consumption. (Author)
A preliminary investigation of finite-element modeling for composite rotor blades
Lake, Renee C.; Nixon, Mark W.
1988-01-01
The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness.
A finite element method for neutron transport
International Nuclear Information System (INIS)
Ackroyd, R.T.
1978-01-01
A variational treatment of the finite element method for neutron transport is given based on a version of the even-parity Boltzmann equation which does not assume that the differential scattering cross-section has a spherical harmonic expansion. The theory of minimum and maximum principles is based on the Cauchy-Schwartz equality and the properties of a leakage operator G and a removal operator C. For systems with extraneous sources, two maximum and one minimum principles are given in boundary free form, to ease finite element computations. The global error of an approximate variational solution is given, the relationship of one the maximum principles to the method of least squares is shown, and the way in which approximate solutions converge locally to the exact solution is established. A method for constructing local error bounds is given, based on the connection between the variational method and the method of the hypercircle. The source iteration technique and a maximum principle for a system with extraneous sources suggests a functional for a variational principle for a self-sustaining system. The principle gives, as a consequence of the properties of G and C, an upper bound to the lowest eigenvalue. A related functional can be used to determine both upper and lower bounds for the lowest eigenvalue from an inspection of any approximate solution for the lowest eigenfunction. The basis for the finite element is presented in a general form so that two modes of exploitation can be undertaken readily. The model can be in phase space, with positional and directional co-ordinates defining points of the model, or it can be restricted to the positional co-ordinates and an expansion in orthogonal functions used for the directional co-ordinates. Suitable sets of functions are spherical harmonics and Walsh functions. The latter set is appropriate if a discrete direction representation of the angular flux is required. (author)
Finite element analysis of thermal stress distribution in different ...
African Journals Online (AJOL)
Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.
A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra
Wheeler, Mary; Xue, Guangri; Yotov, Ivan
2011-01-01
In this paper, we develop a new mixed finite element method for elliptic problems on general quadrilateral and hexahedral grids that reduces to a cell-centered finite difference scheme. A special non-symmetric quadrature rule is employed that yields
Finite element concept to derive isostatic residual maps
Indian Academy of Sciences (India)
A new space-domain operator based on the shape function concept of finite element analysis has been developed to derive the residual maps of the Gorda Plate of western United States. The technique does not require explicit assumptions on isostatic models. Besides delineating the Gorda Plate boundary, the residual ...
Nonlinear magnetohydrodynamics simulation using high-order finite elements
International Nuclear Information System (INIS)
Plimpton, Steven James; Schnack, D.D.; Tarditi, A.; Chu, M.S.; Gianakon, T.A.; Kruger, S.E.; Nebel, R.A.; Barnes, D.C.; Sovinec, C.R.; Glasser, A.H.
2005-01-01
A conforming representation composed of 2D finite elements and finite Fourier series is applied to 3D nonlinear non-ideal magnetohydrodynamics using a semi-implicit time-advance. The self-adjoint semi-implicit operator and variational approach to spatial discretization are synergistic and enable simulation in the extremely stiff conditions found in high temperature plasmas without sacrificing the geometric flexibility needed for modeling laboratory experiments. Growth rates for resistive tearing modes with experimentally relevant Lundquist number are computed accurately with time-steps that are large with respect to the global Alfven time and moderate spatial resolution when the finite elements have basis functions of polynomial degree (p) two or larger. An error diffusion method controls the generation of magnetic divergence error. Convergence studies show that this approach is effective for continuous basis functions with p (ge) 2, where the number of test functions for the divergence control terms is less than the number of degrees of freedom in the expansion for vector fields. Anisotropic thermal conduction at realistic ratios of parallel to perpendicular conductivity (x(parallel)/x(perpendicular)) is computed accurately with p (ge) 3 without mesh alignment. A simulation of tearing-mode evolution for a shaped toroidal tokamak equilibrium demonstrates the effectiveness of the algorithm in nonlinear conditions, and its results are used to verify the accuracy of the numerical anisotropic thermal conduction in 3D magnetic topologies.
Finite element type of stress analysis for parts based on S235 JR steel welding
Directory of Open Access Journals (Sweden)
C. Babis
2014-04-01
Full Text Available The determination of static and/or variable stress, in case of complex shaped welded structures is hard to achieve. One solution, though, is the use of finite element method, implemented by means of various specialized software. Nowadays, this method has become very popular due to its high precision of data obtained through both research and finite element analysis. Hence, the present paper deals with the modelling of the pull-out behaviour of concave and convex welded joints through finite element method.
International Nuclear Information System (INIS)
Koteras, J.R.
1996-01-01
The prediction of stresses and displacements around tunnels buried deep within the earth is an important class of geomechanics problems. The material behavior immediately surrounding the tunnel is typically nonlinear. The surrounding mass, even if it is nonlinear, can usually be characterized by a simple linear elastic model. The finite element method is best suited for modeling nonlinear materials of limited volume, while the boundary element method is well suited for modeling large volumes of linear elastic material. A computational scheme that couples the finite element and boundary element methods would seem particularly useful for geomechanics problems. A variety of coupling schemes have been proposed, but they rely on direct solution methods. Direct solution techniques have large storage requirements that become cumbersome for large-scale three-dimensional problems. An alternative to direct solution methods is iterative solution techniques. A scheme has been developed for coupling the finite element and boundary element methods that uses an iterative solution method. This report shows that this coupling scheme is valid for problems where nonlinear material behavior occurs in the finite element region