Error computation for adaptive finite element analysis
Khan, A A; Memon, I R; Ming, X Y
2002-01-01
The paper gives a simple numerical procedure for computations of errors generated by the discretisation process of finite element method. The procedure given is based on the ZZ error estimator which is believed to be reasonable accurate and thus can be readily implemented in any existing finite element codes. The devised procedure not only estimates the global energy norm error but also evaluates the local errors in individual elements. In the example, the given procedure is combined with an adaptive refinement procedure, which provides guidance for optimal mesh designing and allows the user to obtain a desired accuracy with a limited number of interaction. (author)
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems
Zuliang Lu
2011-01-01
We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of the mixed finite element solutions for optimal control problems. Such a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed finite element ...
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Convergence of adaptive finite element methods for eigenvalue problems
Garau, Eduardo M.; Morin, Pedro; Zuppa, Carlos
2008-01-01
In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
PHG: A Toolbox for Developing Parallel Adaptive Finite Element Programs
Institute of Scientific and Technical Information of China (English)
ZHANG Linbo
2011-01-01
@@ Significance of the finite element method The finite element method (Feng, 1965) is mainly used for numerical solution of partial differential equations.It consists of partitioning the computational domain into a mesh composed of disjoint smaller sub-domains called elements which cover the whole domain, and approximating the solution in each element using simple functions (usually polynomials) so that the original problem can be turned into a suitable one to be solved on modern computers.The finite element method has a very wide range of applications as one of the most important methods in scientific and engineering computing.In the finite element method, two key factors which can affect the computational efficiency and precision of the computed solution are quality and distribution of the mesh elements.The adaptive finite element method, first proposed by I.Babuska and W.Rheinboldt in 1978 (Babuska et al., 1978), automatically adjusts and optimizes the distribution of mesh elements according to estimation on the distribution of the error of the computed solution, in order to improve the precision of the computed solution.Recent researches show that for many problems with locally singular solutions, by using mathematically rigorous a posteriori error estimates and suitable adaptive strategy, the adaptive finite element method can produce quasi-optimal meshes and dramatically improve the overall computational efficiency.
Adaptive finite element-element-free Galerkin coupling method for bulk metal forming processes
Institute of Scientific and Technical Information of China (English)
Lei-chao LIU; Xiang-huai DONG; Cong-xin LI
2009-01-01
An adaptive finite element-element-free Galerkin (FE-EFG) coupling method is proposed and developed for the numerical simulation of bulk metal forming processes. This approach is able to adaptively convert distorted FE elements to EFG domain in analysis. A new scheme to implement adaptive conversion and coupling is presented. The coupling method takes both advantages of finite element method (FEM) and meshless methods. It is capable of handling large deformations with no need of remeshing procedures, while it is computationally more efficient than those full meshless methods. The effectiveness of the proposed method is demonstrated with the numerical simulations of the bulk metal forming processes including forging and extrusion.
Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Bonito, Andrea
2013-01-01
Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.
On Round-off Error for Adaptive Finite Element Methods
Alvarez-Aramberri, J.
2012-06-02
Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called ‘radical meshes’. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.
Essentials of finite element modeling and adaptive refinement
Dow, John O
2012-01-01
Finite Element Analysis is a very popular, computer-based tool that uses a complex system of points called nodes to make a grid called a ""mesh. "" The mesh contains the material and structural properties that define how the structure will react to certain loading conditions, allowing virtual testing and analysis of stresses or changes applied to the material or component design. This groundbreaking text extends the usefulness of finite element analysis by helping both beginners and advanced users alike. It simplifies, improves, and extends both the finite element method while at the same t
Adaptive grid finite element model of the tokamak scrapeoff layer
Energy Technology Data Exchange (ETDEWEB)
Kuprat, A.P.; Glasser, A.H. [Los Alamos National Lab., NM (United States)
1995-07-01
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
H-VERSION ADAPTIVE FINITE ELEMENT METHOD FOR THREE-DIMENSIONAL SEEPAGE PROBLEM
Institute of Scientific and Technical Information of China (English)
Feng Xue-min; Chen Sheng-hong
2003-01-01
The h-version adaptive finite element method for 3-D seepage problem is presented in this paper.The adaptive system includes 4 modules: 3-D mesh generation, finite element analysis for 3-D seepage, mesh error estimation and post-process.The effectiveness of this system is verified by the given example.
An Adaptive Finite Element Method Based on Optimal Error Estimates for Linear Elliptic Problems
Institute of Scientific and Technical Information of China (English)
汤雁
2004-01-01
The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element methods based on optimal error estimates for linear elliptic problems on the concave corner domains. In the preceding two papers (part 1:Adaptive finite element method based on optimal error estimate for linear elliptic problems on concave corner domain; part 2:Adaptive finite element method based on optimal error estimate for linear elliptic problems on nonconvex polygonal domains), we presented adaptive finite element methods based on the energy norm and the maximum norm. In this paper, an important result is presented and analyzed. The algorithm for error control in the energy norm and maximum norm in part 1 and part 2 in this series of papers is based on this result.
ADAPTIVE FINITE ELEMENT METHOD FOR HIGH-SPEED FLOW-STRUCTURE INTERACTION
Institute of Scientific and Technical Information of China (English)
Wiroj LIMTRAKARN; Pramote DECHAUMPHAI
2004-01-01
An adaptive finite element method for high-speed flow-structure interaction is presented. The cell-centered finite element method is combined with an adaptive meshing technique to solve the Navier-Stokes equations for high-speed compressible flow behavior. The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite element method. The finite element formulation and computational procedure are described. Interactions between the high-speed flow, structural heat transfer, and deformation are studied by two applications of Mach 10 flow over an inclined plate, and Mach 4 flow in a channel.
Higher-order adaptive finite-element methods for Kohn-Sham density functional theory
Motamarri, Phani; Leiter, Kenneth; Knap, Jaroslaw; Gavini, Vikram
2012-01-01
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT).To this end, we develop an \\emph{a priori} mesh adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings---of the order of $1000-$fold---can be realized, for both all-electron and pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems stu...
Adaptive strategies using standard and mixed finite elements for wind field adjustment
Energy Technology Data Exchange (ETDEWEB)
Winter, G.; Montero, G.; Montenegro, R. [Univ. of Las Palmas de Gran Canaria, FL (United States)
1995-01-01
In order to find a map of wind velocities, this study tries to obtain an incompressible wind field that adjusts to an experimental one: also verifying the corresponding boundary conditions of physical interest. This problem has been solved by several authors using finite differences or standard finite element techniques. In this paper, this problem is solved by two different adaptive finite element methods. The first makes use of standard finite element techniques, using linear interpolation of a potential function. In the second, a direct computation of the velocity field is undertaken by means of a mixed finite element method. Several error indicators are proposed for both formulations together with an adaptive strategy. We have applied both methods to several typical test problems, as well as to realistic data corresponding to the Island of Fuerteventura, with satisfactory results from a numerical point of view. 13 refs., 16 figs., 1 tab.
Higher-order adaptive finite-element methods for Kohn–Sham density functional theory
Energy Technology Data Exchange (ETDEWEB)
Motamarri, P. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Nowak, M.R. [Department of Electrical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Leiter, K.; Knap, J. [U.S. Army Research Labs, Aberdeen Proving Ground, Aberdeen, MD 21001 (United States); Gavini, V., E-mail: vikramg@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)
2013-11-15
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688
Institute of Scientific and Technical Information of China (English)
Sutthisak Phongthanapanich; Pramote Dechaumphai
2008-01-01
A nodeless variable element method with the flux-based formulation is developed to analyze two-dimensional thermal-structural problems. The nodeless variable formula-tion provides accurate temperature distributions to yield more accurate thermal stress solutions. The flux-based formula-tion is used to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method. The solution accuracy is further improved by implementing an adaptive meshing technique to generate finite element meshes that can adapt and move along with the transient solution behavior. A version of a nearly opti- mal element size determination is proposed to provide high convergence rate of the predicted solutions. The combined procedure is evaluated by solving several thermal, structural,and thermal stress problems.
FEMHD: An adaptive finite element method for MHD and edge modelling
Energy Technology Data Exchange (ETDEWEB)
Strauss, H.R.
1995-07-01
This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.
Adaptive implicit-explicit finite element algorithms for fluid mechanics problems
Tezduyar, T. E.; Liou, J.
1988-01-01
The adaptive implicit-explicit (AIE) approach is presented for the finite-element solution of various problems in computational fluid mechanics. In the AIE approach, the elements are dynamically (adaptively) arranged into differently treated groups. The differences in treatment could be based on considerations such as the cost efficiency, the type of spatial or temporal discretization employed, the choice of field equations, etc. Several numerical tests are performed to demonstrate that this approach can achieve substantial savings in CPU time and memory.
COMBINED DELAUNAY TRIANGULATION AND ADAPTIVE FINITE ELEMENT METHOD FOR CRACK GROWTH ANALYSIS
Institute of Scientific and Technical Information of China (English)
Pramote DECHAUMPHAI; Sutthisak PHONGTHANAPANICH; Thanawat SRICHAROENCHAI
2003-01-01
The paper presents the utilization of the adaptive Delaunay triangulation in the finite element modeling of two dimensional crack propagation problems, including detailed description of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around crack tips and large elements in the other regions. The resulting stress intensity factors and simulated crack propagation behavior are used to evaluate the effectiveness of the procedure. Three sample problems of a center cracked plate, a single edge cracked plate and a compact tension specimen, are simulated and their results assessed.
Algorithms and data structures for massively parallel generic adaptive finite element codes
Bangerth, Wolfgang
2011-12-01
Today\\'s largest supercomputers have 100,000s of processor cores and offer the potential to solve partial differential equations discretized by billions of unknowns. However, the complexity of scaling to such large machines and problem sizes has so far prevented the emergence of generic software libraries that support such computations, although these would lower the threshold of entry and enable many more applications to benefit from large-scale computing. We are concerned with providing this functionality for mesh-adaptive finite element computations. We assume the existence of an "oracle" that implements the generation and modification of an adaptive mesh distributed across many processors, and that responds to queries about its structure. Based on querying the oracle, we develop scalable algorithms and data structures for generic finite element methods. Specifically, we consider the parallel distribution of mesh data, global enumeration of degrees of freedom, constraints, and postprocessing. Our algorithms remove the bottlenecks that typically limit large-scale adaptive finite element analyses. We demonstrate scalability of complete finite element workflows on up to 16,384 processors. An implementation of the proposed algorithms, based on the open source software p4est as mesh oracle, is provided under an open source license through the widely used deal.II finite element software library. © 2011 ACM 0098-3500/2011/12-ART10 $10.00.
Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites
Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine
2005-01-01
Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin
2016-09-21
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Generating Initial Data in General Relativity using Adaptive Finite Element Methods
Aksoylu, Burak; Bond, Stephen; Holst, Michael
2008-01-01
The conformal formulation of the Einstein constraint equations is first reviewed, and we then consider the design, analysis, and implementation of adaptive multilevel finite element-type numerical methods for the resulting coupled nonlinear elliptic system. We derive weak formulations of the coupled constraints, and review some new developments in the solution theory for the constraints in the cases of constant mean extrinsic curvature (CMC) data, near-CMC data, and arbitrarily prescribed mean extrinsic curvature data. We then outline some recent results on a priori and a posteriori error estimates for a broad class of Galerkin-type approximation methods for this system which includes techniques such as finite element, wavelet, and spectral methods. We then use these estimates to construct an adaptive finite element method (AFEM) for solving this system numerically, and outline some new convergence and optimality results. We then describe in some detail an implementation of the methods using the FETK software...
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin; Salama, Amgad; Sun, Shuyu
2016-10-01
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
POD-Galerkin reduced-order modeling with adaptive finite element snapshots
Ullmann, Sebastian; Rotkvic, Marko; Lang, Jens
2016-11-01
We consider model order reduction by proper orthogonal decomposition (POD) for parametrized partial differential equations, where the underlying snapshots are computed with adaptive finite elements. We address computational and theoretical issues arising from the fact that the snapshots are members of different finite element spaces. We propose a method to create a POD-Galerkin model without interpolating the snapshots onto their common finite element mesh. The error of the reduced-order solution is not necessarily Galerkin orthogonal to the reduced space created from space-adapted snapshot. We analyze how this influences the error assessment for POD-Galerkin models of linear elliptic boundary value problems. As a numerical example we consider a two-dimensional convection-diffusion equation with a parametrized convective direction. To illustrate the applicability of our techniques to non-linear time-dependent problems, we present a test case of a two-dimensional viscous Burgers equation with parametrized initial data.
Adaptive meshing technique applied to an orthopaedic finite element contact problem.
Roarty, Colleen M; Grosland, Nicole M
2004-01-01
Finite element methods have been applied extensively and with much success in the analysis of orthopaedic implants. Recently a growing interest has developed, in the orthopaedic biomechanics community, in how numerical models can be constructed for the optimal solution of problems in contact mechanics. New developments in this area are of paramount importance in the design of improved implants for orthopaedic surgery. Finite element and other computational techniques are widely applied in the analysis and design of hip and knee implants, with additional joints (ankle, shoulder, wrist) attracting increased attention. The objective of this investigation was to develop a simplified adaptive meshing scheme to facilitate the finite element analysis of a dual-curvature total wrist implant. Using currently available software, the analyst has great flexibility in mesh generation, but must prescribe element sizes and refinement schemes throughout the domain of interest. Unfortunately, it is often difficult to predict in advance a mesh spacing that will give acceptable results. Adaptive finite-element mesh capabilities operate to continuously refine the mesh to improve accuracy where it is required, with minimal intervention by the analyst. Such mesh adaptation generally means that in certain areas of the analysis domain, the size of the elements is decreased (or increased) and/or the order of the elements may be increased (or decreased). In concept, mesh adaptation is very appealing. Although there have been several previous applications of adaptive meshing for in-house FE codes, we have coupled an adaptive mesh formulation with the pre-existing commercial programs PATRAN (MacNeal-Schwendler Corp., USA) and ABAQUS (Hibbit Karlson and Sorensen, Pawtucket, RI). In doing so, we have retained several attributes of the commercial software, which are very attractive for orthopaedic implant applications.
Efficient and Adaptive Orthogonal Finite Element Representation of the Geopotential
Junkins, John L.; Younes, Ahmad Bani; Woollands, Robyn M.; Bai, Xiaoli
2017-06-01
We unify and extend classical results from function approximation theory and consider their utility in astrodynamics. Least square approximation, using the classical Chebyshev polynomials as basis functions, is reviewed for discrete samples of the to-be-approximated function. We extend the orthogonal approximation ideas to n-dimensions in a novel way, through the use of array algebra and Kronecker operations. Approximation of test functions illustrates the resulting algorithms and provides insight into the errors of approximation, as well as the associated errors arising when the approximations are differentiated or integrated. Two sets of applications are considered that are challenges in astrodynamics. The first application addresses local approximation of high degree and order geopotential models, replacing the global spherical harmonic series by a family of locally precise orthogonal polynomial approximations for efficient computation. A method is introduced which adapts the approximation degree radially, compatible with the truth that the highest degree approximations (to ensure maximum acceleration error < 10-9 m s-2, globally) are required near the Earth's surface, whereas lower degree approximations are required as radius increases. We show that a four order of magnitude speedup is feasible, with efficiency optimized using radial adaptation.
Finite element analysis of keyhole plasma arc welding based on an adaptive heat source mode
Institute of Scientific and Technical Information of China (English)
Hu Qingxian; Wu Chuansong; Zhang Yuming
2007-01-01
An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature field in keyhole plasma arc welding is conducted and the weld geometry is obtained. The predicted results are in agreement with the measured ones.
ADAPTIVE FINITE ELEMENT METHOD FOR ANALYSIS OF POLLUTANT DISPERSION IN SHALLOW WATER
Institute of Scientific and Technical Information of China (English)
Somboon Otarawanna; Pramote Dechaumphai
2005-01-01
A finite element method for analysis of pollutant dispersion in shallow water is presented. The analysis is divided into two parts: ( 1 ) computation of the velocity flow field and water surface elevation, and (2) computation of the pollutant concentration field from the dispersion model. The method was combined with an adaptive meshing technique to increase the solution accuracy ,as well as to reduce the computational time and computer memory. The finite element formulation and the computer programs were validated by several examples that have known solutions. In addition, the capability of the combined method was demonstrated by analyzing pollutant dispersion in Chao Phraya River near the gulf of Thailand.
Kou, Jisheng
2014-01-01
The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.
Error Estimation and h-Adaptivity for Optimal Finite Element Analysis
Cwik, Tom; Lou, John
1997-01-01
The objective of adaptive meshing and automatic error control in finite element analysis is to eliminate the need for the application engineer from re-meshing and re-running design simulations to verify numerical accuracy. The user should only need to enter the component geometry and a coarse finite element mesh. The software will then autonomously and adaptively refine this mesh where needed, reducing the error in the fields to a user prescribed value. The ideal end result of the simulation is a measurable quantity (e.g. scattered field, input impedance), calculated to a prescribed error, in less time and less machine memory than if the user applied typical uniform mesh refinement by hand. It would also allow for the simulation of larger objects since an optimal mesh is created.
Yan, Bo; Li, Yuguo; Liu, Ying
2016-07-01
In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.
Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
An adaptive mesh finite element model has been developed to predict the crack propagation direction as well as to calculate the stress intensity factors (SIFs), under linear-elastic assumption for mixed mode loading application. The finite element mesh is generated using the advancing front method. In order to suit the requirements of the fracture analysis, the generation of the background mesh and the construction of singular elements have been added to the developed program. The adaptive remeshing process is carried out based on the posteriori stress error norm scheme to obtain an optimal mesh. Previous works of the authors have proposed techniques for adaptive mesh generation of 2D cracked models. Facilitated by the singular elements, the displacement extrapolation technique is employed to calculate the SIF. The fracture is modeled by the splitting node approach and the trajectory follows the successive linear extensions of each crack increment. The SIFs values for two different case studies were estimated and validated by direct comparisons with other researchers work.
Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption.
Dresel, T; Beyerlein, M; Schwider, J
1996-12-10
Computer-generated phase-only holograms can be used for laser beam shaping, i.e., for focusing a given aperture with intensity and phase distributions into a pregiven intensity pattern in their focal planes. A numerical approach based on iterative finite-element mesh adaption permits the design of appropriate phase functions for the task of focusing into two-dimensional reconstruction patterns. Both the hologram aperture and the reconstruction pattern are covered by mesh mappings. An iterative procedure delivers meshes with intensities equally distributed over the constituting elements. This design algorithm adds new elementary focuser functions to what we call object-oriented hologram design. Some design examples are discussed.
He, Xinguang; Ren, Li
2009-07-01
SummaryIn this paper we present an adaptive multiscale finite element method for solving the unsaturated water flow problems in heterogeneous porous media spanning over many scales. The main purpose is to design a numerical method which is capable of adaptively capturing the large-scale behavior of the solution on a coarse-scale mesh without resolving all the small-scale details at each time step. This is accomplished by constructing the multiscale base functions that are adapted to the time change of the unsaturated hydraulic conductivity field. The key idea of our method is to use a criterion based on the temporal variation of the hydraulic conductivity field to determine when and where to update our multiscale base functions. As a consequence, these base functions are able to dynamically account for the spatio-temporal variability in the equation coefficients. We described the principle for constructing such a method in detail and gave an algorithm for implementing it. Numerical experiments were carried out for the unsaturated water flow equation with randomly generated lognormal hydraulic parameters to demonstrate the efficiency and accuracy of the proposed method. The results show that throughout the adaptive simulation, only a very small fraction of the multiscale base functions needs to be recomputed, and the level of accuracy of the adaptive method is higher than that of the multiscale finite element technique in which the base functions are not updated with the time change of the hydraulic conductivity.
A HIGH ORDER ADAPTIVE FINITE ELEMENT METHOD FOR SOLVING NONLINEAR HYPERBOLIC CONSERVATION LAWS
Institute of Scientific and Technical Information of China (English)
Zhengfu Xu; Jinchao Xu; Chi-Wang Shu
2011-01-01
In this note,we apply the h-adaptive streamline diffusion finite element method with a small mesh-dependent artificial viscosity to solve nonlinear hyperbolic partial differential equations,with the objective of achieving high order accuracy and mesh efficiency.We compute the numerical solution to a steady state Burgers equation and the solution to a converging-diverging nozzle problem.The computational results verify that,by suitably choosing the artificial viscosity coefficient and applying the adaptive strategy based on a posterior error estimate by Johnson et al.,an order of N-3/2 accuracy can be obtained when continuous piecewise linear elements are used,where N is the number of elements.
Finite element mesh generation
Lo, Daniel SH
2014-01-01
Highlights the Progression of Meshing Technologies and Their ApplicationsFinite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques
Advanced finite element technologies
Wriggers, Peter
2016-01-01
The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.
Zanotti, Olindo; Dumbser, Michael; Hidalgo, Arturo
2015-01-01
In this paper we present a novel arbitrary high order accurate discontinuous Galerkin (DG) finite element method on space-time adaptive Cartesian meshes (AMR) for hyperbolic conservation laws in multiple space dimensions, using a high order \\aposteriori sub-cell ADER-WENO finite volume \\emph{limiter}. Notoriously, the original DG method produces strong oscillations in the presence of discontinuous solutions and several types of limiters have been introduced over the years to cope with this problem. Following the innovative idea recently proposed in \\cite{Dumbser2014}, the discrete solution within the troubled cells is \\textit{recomputed} by scattering the DG polynomial at the previous time step onto a suitable number of sub-cells along each direction. Relying on the robustness of classical finite volume WENO schemes, the sub-cell averages are recomputed and then gathered back into the DG polynomials over the main grid. In this paper this approach is implemented for the first time within a space-time adaptive ...
Adaptive finite element simulation of flow and transport applications on parallel computers
Kirk, Benjamin Shelton
The subject of this work is the adaptive finite element simulation of problems arising in flow and transport applications on parallel computers. Of particular interest are new contributions to adaptive mesh refinement (AMR) in this parallel high-performance context, including novel work on data structures, treatment of constraints in a parallel setting, generality and extensibility via object-oriented programming, and the design/implementation of a flexible software framework. This technology and software capability then enables more robust, reliable treatment of multiscale--multiphysics problems and specific studies of fine scale interaction such as those in biological chemotaxis (Chapter 4) and high-speed shock physics for compressible flows (Chapter 5). The work begins by presenting an overview of key concepts and data structures employed in AMR simulations. Of particular interest is how these concepts are applied in the physics-independent software framework which is developed here and is the basis for all the numerical simulations performed in this work. This open-source software framework has been adopted by a number of researchers in the U.S. and abroad for use in a wide range of applications. The dynamic nature of adaptive simulations pose particular issues for efficient implementation on distributed-memory parallel architectures. Communication cost, computational load balance, and memory requirements must all be considered when developing adaptive software for this class of machines. Specific extensions to the adaptive data structures to enable implementation on parallel computers is therefore considered in detail. The libMesh framework for performing adaptive finite element simulations on parallel computers is developed to provide a concrete implementation of the above ideas. This physics-independent framework is applied to two distinct flow and transport applications classes in the subsequent application studies to illustrate the flexibility of the
Institute of Scientific and Technical Information of China (English)
Niphon Wansophark; Pramote Dechaumphai
2008-01-01
A streamline upwind finite element method using 6-node triangular element is presented.The method is applied to the convection term of the governing transport equation directly along local streamlines.Several convective-diffusion examples are used to evaluate efficiency of the method.Results show that the method is monotonic and does not produce any oscillation.In addition,an adaptive meshing technique is combined with the method to further increase accuracy of the solution,and at the same time,to minimize computational time and computer memory requirement.
MGGHAT: Elliptic PDE software with adaptive refinement, multigrid and high order finite elements
Mitchell, William F.
1993-01-01
MGGHAT (MultiGrid Galerkin Hierarchical Adaptive Triangles) is a program for the solution of linear second order elliptic partial differential equations in two dimensional polygonal domains. This program is now available for public use. It is a finite element method with linear, quadratic or cubic elements over triangles. The adaptive refinement via newest vertex bisection and the multigrid iteration are both based on a hierarchical basis formulation. Visualization is available at run time through an X Window display, and a posteriori through output files that can be used as GNUPLOT input. In this paper, we describe the methods used by MGGHAT, define the problem domain for which it is appropriate, illustrate use of the program, show numerical and graphical examples, and explain how to obtain the software.
Dyja, Robert; van der Zee, Kristoffer G
2016-01-01
We present an adaptive methodology for the solution of (linear and) non-linear time dependent problems that is especially tailored for massively parallel computations. The basic concept is to solve for large blocks of space-time unknowns instead of marching sequentially in time. The methodology is a combination of a computationally efficient implementation of a parallel-in-space-time finite element solver coupled with a posteriori space-time error estimates and a parallel mesh generator. This methodology enables, in principle, simultaneous adaptivity in both space and time (within the block) domains. We explore this basic concept in the context of a variety of time-steppers including $\\Theta$-schemes and Backward Differentiate Formulas. We specifically illustrate this framework with applications involving time dependent linear, quasi-linear and semi-linear diffusion equations. We focus on investigating how the coupled space-time refinement indicators for this class of problems affect spatial adaptivity. Final...
An h-adaptive finite element method for turbulent heat transfer
Energy Technology Data Exchange (ETDEWEB)
Carriington, David B [Los Alamos National Laboratory
2009-01-01
A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.
Institute of Scientific and Technical Information of China (English)
YUAN Si; HE Xue-feng
2006-01-01
Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM),the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient.This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea,implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The scaled boundary finite element method(SBFEM) is a semi-analytical numerical method,which models an analysis domain by a small number of large-sized subdomains and discretises subdomain boundaries only.In a subdomain,all fields of state variables including displacement,stress,velocity and acceleration are semi-analytical,and the kinetic energy,strain energy and energy error are all integrated semi-analytically.These advantages are taken in this study to develop a posteriori h-hierarchical adaptive SBFEM for transient elastodynamic problems using a mesh refinement procedure which subdivides subdomains.Because only a small number of subdomains are subdivided,mesh refinement is very simple and efficient,and mesh mapping to transfer state variables from an old mesh to a new one is also very simple but accurate.Two 2D examples with stress wave propagation were modelled.The results show that the developed method is capable of capturing propagation of steep stress regions and calculating accurate dynamic responses,using only a fraction of degrees of freedom required by adaptive finite element method.
Multiphase flow through porous media: an adaptive control volume finite element formulation
Mostaghimi, P.; Tollit, B.; Gorman, G.; Neethling, S.; Pain, C.
2012-12-01
Accurate modeling of multiphase flow in porous media is of great importance in a wide range of applications in science and engineering. We have developed a numerical scheme which employs an implicit pressure explicit saturation (IMPES) algorithm for the temporal discretization of the governing equations. The saturation equation is spatially discretized using a node centered control volume method on an unstructured finite element mesh. The face values are determined through an upwind scheme. The pressure equation is spatially discretized using a continuous control volume finite element method (CV-FEM) to achieve consistency with the discrete saturation equation. The numerical simulation is implemented in Fluidity, an open source and general purpose fluid simulator capable of solving a number of different governing equations for fluid flow and accompanying field equations on arbitrary unstructured meshes. The model is verified against the Buckley-Leverett problem where a quasi-analytical solution is available. We discuss the accuracy and the order of convergence of the scheme. We demonstrate the scheme for modeling multiphase flow in a synthetic heterogeneous porous medium along with the use of anisotropic mesh adaptivity to control local solution errors and increase computational efficiency. The adaptive method is also used to simulate two-phase flow in heap leaching, an industrial mining process, where the flow of the leaching solution is gravitationally dominated. Finally we describe the extension of the developed numerical scheme for simulation of flow in multiscale fractured porous media and its capability to model the multiscale characterization of flow in full scale.
DISCONTINUITY-CAPTURING FINITE ELEMENT COMPUTATION OF UNSTEADY FLOW WITH ADAPTIVE UNSTRUCTURED MESH
Institute of Scientific and Technical Information of China (English)
DONG Genjin; LU Xiyun; ZHUANG Lixian
2004-01-01
A discontinuity-capturing scheme of finite element method (FEM) is proposed. The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows, which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number.In particular, a new testing variable, i.e., the disturbed kinetic energy E, is suggested and used in the adaptive mesh computation, which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number. Based on several calculated examples, this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows.
Macho, Gabriele A; Shimizu, Daisuke; Jiang, Yong; Spears, Iain R
2005-04-01
Australopithecus anamensis is the stem species of all later hominins and exhibits the suite of characters traditionally associated with hominins, i.e., bipedal locomotion when on the ground, canine reduction, and thick-enameled teeth. The functional consequences of its thick enamel are, however, unclear. Without appropriate structural reinforcement, these thick-enameled teeth may be prone to failure. This article investigates the mechanical behavior of A. anamensis enamel and represents the first in a series that will attempt to determine the functional adaptations of hominin teeth. First, the microstructural arrangement of enamel prisms in A. anamensis teeth was reconstructed using recently developed software and was compared with that of extant hominoids. Second, a finite-element model of a block of enamel containing one cycle of prism deviation was reconstructed for Homo, Pan, Gorilla, and A. anamensis and the behavior of these tissues under compressive stress was determined. Despite similarities in enamel microstructure between A. anamensis and the African great apes, the structural arrangement of prismatic enamel in A. anamensis appears to be more effective in load dissipation under these compressive loads. The findings may imply that this hominin species was well adapted to puncture crushing and are in some respects contrary to expectations based on macromorphology of teeth. Taking together, information obtained from both finite-element analyses and dental macroanatomy leads us to suggest that A. anamensis was probably adapted for habitually consuming a hard-tough diet. However, additional tests are needed to understand the functional adaptations of A. anamensis teeth fully.
ERROR REDUCTION IN ADAPTIVE FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC OBSTACLE PROBLEMS
Institute of Scientific and Technical Information of China (English)
Dietrich Braess; Carsten Carstensen; Ronald H.W. Hoppe
2009-01-01
We consider an adaptive finite element method (AFEM) for obstacle problems associated with linear second order elliptic boundary value problems and prove a reduction in the energy norm of the discretization error which leads to R-linear convergence. This result is shown to hold up to a consistency error due to the extension of the discrete multipliers (point functionals) to H-1 and a possible mismatch between the continuous and discrete coincidence and noncoincidence sets. The AFEM is based on a residual-type error estimator consisting of element and edge residuals. The a posteriori error analysis reveals that the significant difference to the unconstrained case lies in the fact that these residuals only have to be taken into account within the discrete noncoincidence set. The proof of the error reduction property uses the reliability and the discrete local efficiency of the estimator as well as a perturbed Galerkin orthogonality. Numerical results are given illustrating the performance of the AFEM.
Directory of Open Access Journals (Sweden)
Abdulnaser M. Alshoaibi
2009-01-01
Full Text Available The purpose of this study is on the determination of 2D crack paths and surfaces as well as on the evaluation of the stress intensity factors as a part of the damage tolerant assessment. Problem statement: The evaluation of SIFs and crack tip singular stresses for arbitrary fracture structure are a challenging problem, involving the calculation of the crack path and the crack propagation rates at each step especially under mixed mode loading. Approach: This study was provided a finite element code which produces results comparable to the current available commercial software. Throughout the simulation of crack propagation an automatic adaptive mesh was carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The finite element mesh was generated using the advancing front method. The adaptive remising process carried out based on the posteriori stress error norm scheme to obtain an optimal mesh. The onset criterion of crack propagation was based on the stress intensity factors which provide as the most important parameter that must be accurately estimated. Facilitated by the singular elements, the displacement extrapolation technique is employed to calculate the stress intensity factor. Crack direction is predicted using the maximum circumferential stress theory. The fracture was modeled by the splitting node approach and the trajectory follows the successive linear extensions of each crack increment. The propagation process is driven by Linear Elastic Fracture Mechanics (LEFM approach with minimum user interaction. Results: In evaluating the accuracy of the estimated stress intensity factors and the crack path predictions, the results were compared with sets of experimental data, benchmark analytical solutions as well as numerical results of other researchers. Conclusion/Recommendations: The assessment indicated that the program was highly reliable to evaluate the stress intensity
Danaila, Ionut; Hecht, Frédéric
2009-01-01
to appear in J. Computational Physics; Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorith...
Danaila, Ionut; Hecht, Frédéric
2010-01-01
Numerical computations of stationary states of fast-rotating Bose-Einstein condensates re- quire high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric con- trol, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorithms to compute stationary vortex sta...
Danaila, Ionut; Hecht, Frédéric
2010-01-01
to appear in J. Computational Physics; Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorith...
Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie
2010-09-13
In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.
Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems
Cotter, Simon L.
2013-01-01
Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.
Directory of Open Access Journals (Sweden)
Jingjing Yu
2013-01-01
Full Text Available Quantitative reconstruction of bioluminescent sources from boundary measurements is a challenging ill-posed inverse problem owing to the high degree of absorption and scattering of light through tissue. We present a hybrid multilevel reconstruction scheme by combining the ability of sparse regularization with the advantage of adaptive finite element method. In view of the characteristics of different discretization levels, two different inversion algorithms are employed on the initial coarse mesh and the succeeding ones to strike a balance between stability and efficiency. Numerical experiment results with a digital mouse model demonstrate that the proposed scheme can accurately localize and quantify source distribution while maintaining reconstruction stability and computational economy. The effectiveness of this hybrid reconstruction scheme is further confirmed with in vivo experiments.
Quintana, J P; Hart, M
1995-05-01
Multipole wigglers in storage rings already produce X-ray power in the range up to a few kilowatts and planned devices at third-generation facilities promise up to 30 kW. Although the power density at the monochromator position is an order of magnitude lower than that from undulators, the thermal strain field in the beam footprint can still cause severe loss of performance in X-ray optical systems. For an optimized adaptive design, the results of finite-element analysis are compared with double-crystal rocking curves obtained with a laboratory X-ray source and, in a second paper [Quintana, Hart, Bilderback, Henderson, Richter, Setterson, White, Hausermann, Krumrey & Schulte-Schrepping (1995). J. Synchotron Rad. 2, 1-5], successful tests at wiggler sources at CHESS and ESRF and in an undulator source at HASYLAB are reported.
Adaptive Finite Element Modeling Techniques for the Poisson-Boltzmann Equation
Holst, Michael; Yu, Zeyun; Zhou, Yongcheng; Zhu, Yunrong
2010-01-01
We develop an efficient and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the regularization technique of Chen, Holst, and Xu; this technique made possible the first a priori pointwise estimates and the first complete solution and approximation theory for the Poisson-Boltzmann equation. It also made possible the first provably convergent discretization of the PBE, and allowed for the development of a provably convergent AFEM for the PBE. However, in practice the regularization turns out to be numerically ill-conditioned. In this article, we examine a second regularization, and establish a number of basic results to ensure that the new approach produces the same mathematical advantages of the original regularization, without the ill-conditioning property. We then design an AFEM scheme based on the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This res...
A parallel direct solver for the self-adaptive hp Finite Element Method
Paszyński, Maciej R.
2010-03-01
In this paper we present a new parallel multi-frontal direct solver, dedicated for the hp Finite Element Method (hp-FEM). The self-adaptive hp-FEM generates in a fully automatic mode, a sequence of hp-meshes delivering exponential convergence of the error with respect to the number of degrees of freedom (d.o.f.) as well as the CPU time, by performing a sequence of hp refinements starting from an arbitrary initial mesh. The solver constructs an initial elimination tree for an arbitrary initial mesh, and expands the elimination tree each time the mesh is refined. This allows us to keep track of the order of elimination for the solver. The solver also minimizes the memory usage, by de-allocating partial LU factorizations computed during the elimination stage of the solver, and recomputes them for the backward substitution stage, by utilizing only about 10% of the computational time necessary for the original computations. The solver has been tested on 3D Direct Current (DC) borehole resistivity measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements of various sizes and polynomial orders of approximation varying from p = 1 to p = 9. From the presented experiments it follows that the parallel solver scales well up to the maximum number of utilized processors. The limit for the solver scalability is the maximum sequential part of the algorithm: the computations of the partial LU factorizations over the longest path, coming from the root of the elimination tree down to the deepest leaf. © 2009 Elsevier Inc. All rights reserved.
ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION
HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG
2011-01-01
We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme
Adaptive Meshing Technique Applied to an Orthopaedic Finite Element Contact Problem
Roarty, Colleen M; Grosland, Nicole M.
2004-01-01
Finite element methods have been applied extensively and with much success in the analysis of orthopaedic implants.6,7,12,13,15 Recently a growing interest has developed, in the orthopaedic biomechanics community, in how numerical models can be constructed for the optimal solution of problems in contact mechanics. New developments in this area are of paramount importance in the design of improved implants for orthopaedic surgery. Finite element and other computational techniques are widely ap...
Energy Technology Data Exchange (ETDEWEB)
Lv Yujie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, PO Box 2728, Beijing 100080 (China); Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, PO Box 2728, Beijing 100080 (China); Cong Wenxiang [Division of Biomedical Imaging, VT-WFU School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Wang Ge [Division of Biomedical Imaging, VT-WFU School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Yang Wei [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, PO Box 2728, Beijing 100080 (China); Qin Chenghu [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, PO Box 2728, Beijing 100080 (China); Xu Min [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, PO Box 2728, Beijing 100080 (China)
2007-08-07
As a molecular imaging technique, bioluminescence tomography (BLT) with its highly sensitive detection and facile operation can significantly reveal molecular and cellular information in vivo at the whole-body small animal level. However, because of complex photon transportation in biological tissue and boundary detection data with high noise, bioluminescent sources in deeper positions generally cannot be localized. In our previous work, we used achromatic or monochromatic measurements and an a priori permissible source region strategy to develop a multilevel adaptive finite-element algorithm. In this paper, we propose a spectrally solved tomographic algorithm with a posteriori permissible source region selection. Multispectral measurements, and anatomical and optical information first deal with the nonuniqueness of BLT and constrain the possible solution of source reconstruction. The use of adaptive mesh refinement and permissible source region based on a posteriori measures not only avoids the dimension disaster arising from the multispectral measured data but also reduces the ill-posedness of BLT and therefore improves the reconstruction quality. Reconsideration of the optimization method and related modifications further enhance reconstruction robustness and efficiency. We also incorporate into the method some improvements for reducing computational burdens. Finally, using a whole-body virtual mouse phantom, we demonstrate the capability of the proposed BLT algorithm to reconstruct accurately bioluminescent sources in deeper positions. In terms of optical property errors and two sources of discernment in deeper positions, this BLT algorithm represents the unique predominance for BLT reconstruction.
Institute of Scientific and Technical Information of China (English)
LI Yuguo; LUO Ming; PEI Jianxin
2013-01-01
In this paper,we extend the scope of numerical simulations of marine controlled-source electromagnetic (CSEM) fields in a particular case of anisotropy (dipping anisotropy) to the general case of anisotropy by using an adaptive finite element approach.In comparison to a dipping anisotropy case,the first order spatial derivatives of the strike-parallel components arise in the partial differential equations for generally anisotropic media,which cause a non-symmetric linear system of equations for finite element modeling.The adaptive finite element method is employed to obtain numerical solutions on a sequence of refined unstructured triangular meshes,which allows for arbitrary model geometries including bathymetry and dipping layers.Numerical results of a 2D anisotropic model show both anisotropy strike and dipping angles have great influence on the marine CSEM responses.
Directory of Open Access Journals (Sweden)
S. D. Parkinson
2014-09-01
Full Text Available High-resolution direct numerical simulations (DNSs are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.
Parkinson, S. D.; Hill, J.; Piggott, M. D.; Allison, P. A.
2014-09-01
High-resolution direct numerical simulations (DNSs) are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier-Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE) DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.
Bathe, Klaus-Jürgen
2015-01-01
Finite element procedures are now an important and frequently indispensable part of engineering analyses and scientific investigations. This book focuses on finite element procedures that are very useful and are widely employed. Formulations for the linear and nonlinear analyses of solids and structures, fluids, and multiphysics problems are presented, appropriate finite elements are discussed, and solution techniques for the governing finite element equations are given. The book presents general, reliable, and effective procedures that are fundamental and can be expected to be in use for a long time. The given procedures form also the foundations of recent developments in the field.
Directory of Open Access Journals (Sweden)
S. D. Parkinson
2014-05-01
Full Text Available High resolution direct numerical simulations (DNS are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two, and three-dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring mesh performance in capturing the range of dynamics. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. Use of discontinuous discretisations and adaptive unstructured meshing technologies, which reduce the required element count by approximately two orders of magnitude, results in high resolution DNS models of turbidity currents at a fraction of the cost of traditional FE models. The benefits of this technique will enable simulation of turbidity currents in complex and large domains where DNS modelling was previously unachievable.
Janssen, Bärbel
2011-01-01
A multilevel method on adaptive meshes with hanging nodes is presented, and the additional matrices appearing in the implementation are derived. Smoothers of overlapping Schwarz type are discussed; smoothing is restricted to the interior of the subdomains refined to the current level; thus it has optimal computational complexity. When applied to conforming finite element discretizations of elliptic problems and Maxwell equations, the method\\'s convergence rates are very close to those for the nonadaptive version. Furthermore, the smoothers remain efficient for high order finite elements. We discuss the implementation in a general finite element code using the example of the deal.II library. © 2011 Societ y for Industrial and Applied Mathematics.
Energy Technology Data Exchange (ETDEWEB)
Hashemi, Abbas; Gollo, Mohammad Hoseinpour [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Seyedkashi, S. M. [University of Birjand, Birjand (Iran, Islamic Republic of)
2016-05-15
An adaptive Finite element analysis (FEA) was proposed in this paper for the industrial design of bimetal conical-cylindrical cup hydroforming. Forming circumstances for the perfect and imperfect parts were concluded through adaptive FEA using the ANSYS parametric design language. Effective parameters, including pressure loading path, layer placement order, and thickness ratio, were investigated for hydroforming of Al/St and Cu/St composite sheets. Experimental tests were implemented to validate adaptive finite element results. Rupture failure upon the pressure path occurred on the contact area between the blank and punch tip radius at low pressures and on the transition area of the conical-cylindrical portion at high pressures. The proposed method is applicable for any cylindrical, conical, or cylindrical/conical shapes with different materials and dimensions. Therefore, this method is beneficial as a practical design tool for engineers and researchers working in the process design of hydroformed shell products.
3D adaptive finite element method for a phase field model for the moving contact line problems
Shi, Yi
2013-08-01
In this paper, we propose an adaptive finite element method for simulating the moving contact line problems in three dimensions. The model that we used is the coupled Cahn-Hilliard Navier-Stokes equations with the generalized Navier boundary condition(GNBC) proposed in [18]. In our algorithm, to improve the efficiency of the simulation, we use the residual type adaptive finite element algorithm. It is well known that the phase variable decays much faster away from the interface than the velocity variables. There- fore we use an adaptive strategy that will take into account of such difference. Numerical experiments show that our algorithm is both efficient and reliable. © 2013 American Institute of Mathematical Sciences.
Energy Technology Data Exchange (ETDEWEB)
Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)
2007-07-15
A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.
Institute of Scientific and Technical Information of China (English)
Sutthisak Phongthanapanich; Suthee Traivivatana; Parinya Boonmaruth; Pramote Dechaumphai
2006-01-01
Based on flux-based formulation,a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems.The nodeless variable element employs quadratic interpolation functions to provide higher solution accuracy without necessity to actually generate additional nodes.The flux-based formulation is applied to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method.The solution accuracy is further improved by implementing an adaptive meshing technique to generate finite element mesh that can adapt and move along corresponding to the solution behavior.The technique generates small elements in the regions of steep solution gradients to provide accurate solution,and mean while it generates larger elements in the other regions where the solution gradients are slight to reduce the computational time and the computer memory.The effectiveness of the combined procedure is demonstrated by heat transfer problems that have exact solutions.These problems are:(a) a steady-state heat conduction analysis in a square plate subjected to a highly localized surface heating,and (b) a transient heat conduction analysis in a long pate subjected to a moving heat source.
Broeke, ten R.H.M.; Tarala, M.; Arts, J.J.; Janssen, D.W.; Verdonschot, N.J.J.; Geesink, R.G.T.
2014-01-01
This study assessed whether the Symax™ implant, a modification of the Omnifit® stem (in terms of shape, proximal coating and distal surface treatment), would yield improved bone remodelling in a clinical DEXA study, and if these results could be predicted in a finite element (FE) simulation study.
Broeke, R.H. Ten; Tarala, M.; Arts, J.J.C.; Janssen, D.W.; Verdonschot, N.J.J.; Geesink, R.G.T.
2014-01-01
This study assessed whether the Symax implant, a modification of the Omnifit((R)) stem (in terms of shape, proximal coating and distal surface treatment), would yield improved bone remodelling in a clinical DEXA study, and if these results could be predicted in a finite element (FE) simulation study
Li, Xianping
2010-01-01
Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral ...
THE ADAPTIVE FINITE ELEMENT REMESHING IN LARGE DEFORMATION OF METAL FORMING
Institute of Scientific and Technical Information of China (English)
X.X. Guo; J.S. Liu
2004-01-01
The adaptive remeshing technique for quadrilateral elements consists of modules the trigger of remeshing, the new mesh generation, adaptive refinement and interpolation of field variables. The new adaptive mesh generation is the key problem. First, a coarse mesh is created by using "loop algorithm". Subsequent local mesh adaptive refinement is performed based on effective strain. Finally, a typical example of upsetting is given to test efficient of techniques, from which it is verified that the remeshing algorithm developed here exhibits good performance and has high accuracy.
1983-05-01
Ship Research and Program emen Development Center Task Area ZR0140201 Bethesda, Maryland 20084 Work Unit 1844-140 II . CONTROLLING OFFICE NAME AND ADDRESS...solution has singular behavior, then only the norm II .112 can be used. This approach has the following several advantages and disadvantages: 1) Advantages...34 Bollettino Unione Matematica Italiana, Bologna, Vol. 10, pp. 133-140 (1974). 14. Ciarlet, P. and P. aviart, "A Mixed Finite Element Method for the Biharmonic
Goal-Oriented Self-Adaptive hp Finite Element Simulation of 3D DC Borehole Resistivity Simulations
Calo, Victor M.
2011-05-14
In this paper we present a goal-oriented self-adaptive hp Finite Element Method (hp-FEM) with shared data structures and a parallel multi-frontal direct solver. The algorithm automatically generates (without any user interaction) a sequence of meshes delivering exponential convergence of a prescribed quantity of interest with respect to the number of degrees of freedom. The sequence of meshes is generated from a given initial mesh, by performing h (breaking elements into smaller elements), p (adjusting polynomial orders of approximation) or hp (both) refinements on the finite elements. The new parallel implementation utilizes a computational mesh shared between multiple processors. All computational algorithms, including automatic hp goal-oriented adaptivity and the solver work fully in parallel. We describe the parallel self-adaptive hp-FEM algorithm with shared computational domain, as well as its efficiency measurements. We apply the methodology described to the three-dimensional simulation of the borehole resistivity measurement of direct current through casing in the presence of invasion.
Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.
2007-12-01
Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.
Mostaghimi, P.; Percival, J. R.; Pavlidis, D.; Gorman, G.; Jackson, M.; Neethling, S.; Pain, C. C.
2013-12-01
Numerical simulation of multiphase flow in porous media is of importance in a wide range of applications in science and engineering. We present a novel control volume finite element method (CVFEM) to solve for multi-scale flow in heterogeneous geological formations. It employs a node centred control volume approach to discretize the saturation equation, while a control volume finite element method is applied for the pressure equation. We embed the discrete continuity equation into the pressure equation and assure that the continuity is exactly enforced. Anisotropic mesh adaptivity is used to accurately model the fine grained features of multiphase flow. The adaptive algorithm uses a metric tensor field based on solution error estimates to locally control the size and shape of elements in the metric. Moreover, it uses metric advection between adaptive meshes in order to predict the future required density of mesh thereby reducing numerical dispersion at the saturation front. The scheme is capable of capturing multi-scale heterogeneity such as those in fractured porous media through the use of several constraints on the element size in different regions of porous media. We show the application of our method for simulation of flow in some challenging benchmark problems. For flow in fractured reservoirs, the scheme adapts the mesh as the flow penetrates through the fracture and the matrix. The constraints for the element size within the fracture are smaller by several orders of magnitude than the generated mesh within the matrix. We show that the scheme captures the key multi-scale features of flow while preserving the geometry. We demonstrate that mesh adaptation can be used to accurately simulate flow in heterogeneous porous media at low computational cost.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
An approximate waves-bordering algorithm for adaptive finite elements analysis
Morandi Cecchi, M.; Marcuzzi, F.
1999-09-01
In this paper an Approximate Waves-Bordering algorithm (AWB) is presented. It computes the finite elements linear system solution-update after a refinement/unrefinement step. This is done taking into consideration only the equations that correspond to the nodes whose solution is modified above a certain tolerance and it appears to be very efficient. The algorithm considers an increasing set of equations that updates recursively and stops when the norm of the residual has gone under a user-defined threshold.
Hintermüller, M.; Hinze, M.; Kahle, C.
2013-02-01
An adaptive a posteriori error estimator based finite element method for the numerical solution of a coupled Cahn-Hilliard/Navier-Stokes system with a double-obstacle homogenous free (interfacial) energy density is proposed. A semi-implicit Euler scheme for the time-integration is applied which results in a system coupling a quasi-Stokes or Oseen-type problem for the fluid flow to a variational inequality for the concentration and the chemical potential according to the Cahn-Hilliard model [16]. A Moreau-Yosida regularization is employed which relaxes the constraints contained in the variational inequality and, thus, enables semi-smooth Newton solvers with locally superlinear convergence in function space. Moreover, upon discretization this yields a mesh independent method for a fixed relaxation parameter. For the finite dimensional approximation of the concentration and the chemical potential piecewise linear and globally continuous finite elements are used, and for the numerical approximation of the fluid velocity Taylor-Hood finite elements are employed. The paper ends by a report on numerical examples showing the efficiency of the new method.
Directory of Open Access Journals (Sweden)
Norapat Noilublao
2013-01-01
Full Text Available This paper proposes a novel integrated design strategy to accomplish simultaneous topology shape and sizing optimisation of a two-dimensional (2D truss. An optimisation problem is posed to find a structural topology, shape, and element sizes of the truss such that two objective functions, mass and compliance, are minimised. Design constraints include stress, buckling, and compliance. The procedure for an adaptive ground elements approach is proposed and its encoding/decoding process is detailed. Two sets of design variables defining truss layout, shape, and element sizes at the same time are applied. A number of multiobjective evolutionary algorithms (MOEAs are implemented to solve the design problem. Comparative performance based on a hypervolume indicator shows that multiobjective population-based incremental learning (PBIL is the best performer. Optimising three design variable types simultaneously is more efficient and effective.
Demkowicz, L.; Oden, J. T.; Rachowicz, W.
1990-01-01
A new finite element method solving compressible Navier-Stokes equations is proposed. The method is based on a version of Strang's operator splitting and an h-p adaptive finite element approximation in space. This paper contains the formulation of the method with a detailed discussion of boundary conditions, a sample adaptive strategy and numerical examples involving compressible viscous flow over a flat plate with Reynolds number Re = 1000 and Re = 10,000.
Modelling cohesive laws in finite element simulations via an adapted contact procedure in ABAQUS
DEFF Research Database (Denmark)
Feih, S.
2004-01-01
is not straightforward, and most existing publications consider theoretical and therefore simpler softening shapes. Two possible methods of bridging law approximation areexplained and compared in this report. The bridging laws were implemented in a numerical user subroutine in the finite element code ABAQUS. The main......The influence of different fibre sizings on the strength and fracture toughness of composites was studied by investigating the characteristics of fibre cross-over bridging in DCB specimens loaded with pure bending moments. These tests result in bridginglaws, which are obtained by simultaneous...... measurements of the crack growth resistance and the end opening of the notch. The advantage of this method is that these bridging laws represent material laws independent of the specimen geometry. However, theadaption of the experimentally determined shape to a numerically valid model shape...
2010-01-01
Finite element analysis is an engineering method for the numerical analysis of complex structures. This book provides a bird's eye view on this very broad matter through 27 original and innovative research studies exhibiting various investigation directions. Through its chapters the reader will have access to works related to Biomedical Engineering, Materials Engineering, Process Analysis and Civil Engineering. The text is addressed not only to researchers, but also to professional engineers, engineering lecturers and students seeking to gain a better understanding of where Finite Element Analysis stands today.
Weiser, Martin
2016-01-01
All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.
Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients
Energy Technology Data Exchange (ETDEWEB)
Kalchev, D
2012-04-02
This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the
Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients
Energy Technology Data Exchange (ETDEWEB)
Kalchev, D
2012-04-02
This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the
Hill, Jon; Piggott, M. D.; Ham, David A.; Popova, E. E.; Srokosz, M. A.
2012-10-01
Research into the use of unstructured mesh methods for ocean modelling has been growing steadily in the last few years. One advantage of using unstructured meshes is that one can concentrate resolution where it is needed. In addition, dynamic adaptive mesh optimisation (DAMO) strategies allow resolution to be concentrated when this is required. Despite the advantage that DAMO gives in terms of improving the spatial resolution where and when required, small-scale turbulence in the oceans still requires parameterisation. A two-equation, generic length scale (GLS) turbulence model (one equation for turbulent kinetic energy and another for a generic turbulence length-scale quantity) adds this parameterisation and can be used in conjunction with adaptive mesh techniques. In this paper, an implementation of the GLS turbulence parameterisation is detailed in a non-hydrostatic, finite-element, unstructured mesh ocean model, Fluidity-ICOM. The implementation is validated by comparing to both a laboratory-scale experiment and real-world observations, on both fixed and adaptive meshes. The model performs well, matching laboratory and observed data, with resolution being adjusted as necessary by DAMO. Flexibility in the prognostic fields used to construct the error metric used in DAMO is required to ensure best performance. Moreover, the adaptive mesh models perform as well as fixed mesh models in terms of root mean square error to observation or theoretical mixed layer depths, but uses fewer elements and hence has a reduced computational cost.
An adaptive finite element approach to modelling sediment laden density currents
Parkinson, S.; Hill, J.; Allison, P. A.; Piggott, M. D.
2012-04-01
Modelling sediment-laden density currents at real-world scales is a challenging task. Here we present Fluidity, which uses dynamic adaptive re-meshing to reduce computational costs whilst maintaining sufficient resolution where and when it is required. This allows small-scale processes to be captured in large scale simulations. Density currents, also known as gravity or buoyancy currents, occur wherever two fluids with different densities meet. They can occur at scales of up to hundred kilometres in the ocean when continental shelves collapse. This process releases large quantities of sediment into the ocean which increase the bulk density of the fluid to form a density current. These currents can carry sediment hundreds of kilometres, at speeds of up to a hundred kilometres per hour, over the sea bed. They can be tsunamigenic and they have the potential to cause significant damage to submarine infrastructure, such as submarine telecommunications cables or oil and gas infrastructure. They are also a key process for movement of organic material into the depths of the ocean. Due to this, they play an important role in the global carbon cycle on the Earth, forming a significant component of the stratigraphic record, and their deposits can form useful sources of important hydrocarbons. Modelling large scale sediment laden density currents is a very challenging problem. Particles within the current are suspended by turbulence that occurs at length scales that are several orders of magnitude smaller than the size of the current. Models that resolve the vertical structure of the flow require a very large, highly resolved mesh, and substantial computing power to solve. Here, we verify our adaptive model by comparison with a set of laboratory experiments by Gladstone et al. [1998] on the propagation and sediment deposition of bidisperse gravity currents. Comparisons are also made with fixed mesh solutions, and it is shown that accuracy can be maintained with fewer elements
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
@@ Scientific computation is widely used in multiple cross-disciplinary areas. Most of the issues coming from this area finally result in solving PDE. In the process of solving PDE, the meshes are firstly generated within the area where PDE is functional; then, the methods of FE,Finite Difference (FD), and Finite Volume (FV) are applied on the meshes to solve the PDE.
Paszyński, Maciej R.
2013-04-01
This paper describes a direct solver algorithm for a sequence of finite element meshes that are h-refined towards one or several point singularities. For such a sequence of grids, the solver delivers linear computational cost O(N) in terms of CPU time and memory with respect to the number of unknowns N. The linear computational cost is achieved by utilizing the recursive structure provided by the sequence of h-adaptive grids with a special construction of the elimination tree that allows for reutilization of previously computed partial LU (or Cholesky) factorizations over the entire unrefined part of the computational mesh. The reutilization technique reduces the computational cost of the entire sequence of h-refined grids from O(N2) down to O(N). Theoretical estimates are illustrated with numerical results on two- and three-dimensional model problems exhibiting one or several point singularities. © 2013 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Lipnikov, Konstantin [Los Alamos National Laboratory; Agouzal, Abdellatif [UNIV DE LYON; Vassilevski, Yuri [Los Alamos National Laboratory
2009-01-01
We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper discusses the validity of (adaptive) Lagrange generalized plain finite element method(FEM) and plate element method for accurate analysis of acoustic waves in multi-layered piezoelectric structures with tiny interfaces between metal electrodes and surface mounted piezoelectric substrates. We have come to conclusion that the quantitative relationships between the acoustic and electric fields in a piezoelectric structure can be accurately determined through the proposed finite element methods. The higher-order Lagrange FEM proposed for dynamic piezoelectric computation is proved to be very accurate (prescribed relative error 0.02%-0.04%) and a great improvement in convergence accuracy over the higher order Mindlin plate element method for piezoelectric structural analysis due to the assumptions and corrections in the plate theories. The converged Lagrange finite element methods are compared with the plate element methods and the computed results are in good agreement with available exact and experimental data. The adaptive Lagrange finite element methods and a new FEA computer program developed for macro- and micro-scale analyses are reviewed, and recently extended with great potential to high-precision nano-scale analysis in this paper and the similarities between piezoelectric and seismic wave propagations in layered structures and plates are stressed.
Grayver, Alexander V.
2015-07-01
This paper presents a distributed magnetotelluric inversion scheme based on adaptive finite-element method (FEM). The key novel aspect of the introduced algorithm is the use of automatic mesh refinement techniques for both forward and inverse modelling. These techniques alleviate tedious and subjective procedure of choosing a suitable model parametrization. To avoid overparametrization, meshes for forward and inverse problems were decoupled. For calculation of accurate electromagnetic (EM) responses, automatic mesh refinement algorithm based on a goal-oriented error estimator has been adopted. For further efficiency gain, EM fields for each frequency were calculated using independent meshes in order to account for substantially different spatial behaviour of the fields over a wide range of frequencies. An automatic approach for efficient initial mesh design in inverse problems based on linearized model resolution matrix was developed. To make this algorithm suitable for large-scale problems, it was proposed to use a low-rank approximation of the linearized model resolution matrix. In order to fill a gap between initial and true model complexities and resolve emerging 3-D structures better, an algorithm for adaptive inverse mesh refinement was derived. Within this algorithm, spatial variations of the imaged parameter are calculated and mesh is refined in the neighborhoods of points with the largest variations. A series of numerical tests were performed to demonstrate the utility of the presented algorithms. Adaptive mesh refinement based on the model resolution estimates provides an efficient tool to derive initial meshes which account for arbitrary survey layouts, data types, frequency content and measurement uncertainties. Furthermore, the algorithm is capable to deliver meshes suitable to resolve features on multiple scales while keeping number of unknowns low. However, such meshes exhibit dependency on an initial model guess. Additionally, it is demonstrated
Institute of Scientific and Technical Information of China (English)
张武; 洪涛
2002-01-01
This paper discusses the validity of (adaptive) Lagrange generalized plain finite element method (FEM) and plate element method for accurate analysis of acoustic waves in multi-layered piezoelectric structures with tiny interfaces between metal electrodes and surface mounted piezoelectric substrates. We have come to conclusion that the quantitative relationships between the acoustic and electric fields in a piezoelectric structure can be accurately determined through the proposed finite element methods. The higher-order Lagrange FEM proposed for dynamic piezoelectric computation is proved to be very accurate (prescribed relative error 0.02% - 0.04% ) and a great improvement in convergence accuracy over the higher order Mindlin plate element method for piezoelectric structural analysis due to the assumptions and corrections in the plate theories.The converged lagrange finite element methods are compared with the plate element methods and the computedresults are in good agreement with available exact and experimental data. The adaptive Lagrange finite elementmethods and a new FEA computer program developed for macro- and micro-scale analyses are reviewed, and recently extended with great potential to high-precision nano-scale analysis in this paper and the similarities between piezoelectric and seismic wave propagations in layered structures and plates are stressed.
Solution of Finite Element Equations
DEFF Research Database (Denmark)
Krenk, Steen
An important step in solving any problem by the finite element method is the solution of the global equations. Numerical solution of linear equations is a subject covered in most courses in numerical analysis. However, the equations encountered in most finite element applications have some special...
Massively Parallel Finite Element Programming
Heister, Timo
2010-01-01
Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian
2013-07-01
Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.
quadratic spline finite element method
Directory of Open Access Journals (Sweden)
A. R. Bahadir
2002-01-01
Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.
Finite element computational fluid mechanics
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
Pardo, David
2011-07-01
The paper introduces a high-order, adaptive finite-element method for simulation of sonic measurements acquired with borehole-eccentered logging instruments. The resulting frequency-domain based algorithm combines a Fourier series expansion in one spatial dimension with a two-dimensional high-order adaptive finite-element method (FEM), and incorporates a perfectly matched layer (PML) for truncation of the computational domain. The simulation method was verified for various model problems, including a comparison to a semi-analytical solution developed specifically for this purpose. Numerical results indicate that for a wireline sonic tool operating in a fast formation, the main propagation modes are insensitive to the distance from the center of the tool to the center of the borehole (eccentricity distance). However, new flexural modes arise with an increase in eccentricity distance. In soft formations, we identify a new dipole tool mode which arises as a result of tool eccentricity. © 2011 Elsevier Inc.
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
Second order tensor finite element
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Finite element methods for engineers
Fenner, Roger T
2013-01-01
This book is intended as a textbook providing a deliberately simple introduction to finite element methods in a way that should be readily understandable to engineers, both students and practising professionals. Only the very simplest elements are considered, mainly two dimensional three-noded “constant strain triangles”, with simple linear variation of the relevant variables. Chapters of the book deal with structural problems (beams), classification of a broad range of engineering into harmonic and biharmonic types, finite element analysis of harmonic problems, and finite element analysis of biharmonic problems (plane stress and plane strain). Full Fortran programs are listed and explained in detail, and a range of practical problems solved in the text. Despite being somewhat unfashionable for general programming purposes, the Fortran language remains very widely used in engineering. The programs listed, which were originally developed for use on mainframe computers, have been thoroughly updated for use ...
Finite elements of nonlinear continua
Oden, J T
2000-01-01
Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s
FINITE ELEMENT ANALYSIS OF STRUCTURES
Directory of Open Access Journals (Sweden)
PECINGINA OLIMPIA-MIOARA
2015-05-01
Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.
Sarkis, C.; Silva, L.; Gandin, Ch-A.; Plapp, M.
2016-03-01
Dendritic growth is computed with automatic adaptation of an anisotropic and unstructured finite element mesh. The energy conservation equation is formulated for solid and liquid phases considering an interface balance that includes the Gibbs-Thomson effect. An equation for a diffuse interface is also developed by considering a phase field function with constant negative value in the liquid and constant positive value in the solid. Unknowns are the phase field function and a dimensionless temperature, as proposed by [1]. Linear finite element interpolation is used for both variables, and discretization stabilization techniques ensure convergence towards a correct non-oscillating solution. In order to perform quantitative computations of dendritic growth on a large domain, two additional numerical ingredients are necessary: automatic anisotropic unstructured adaptive meshing [2,[3] and parallel implementations [4], both made available with the numerical platform used (CimLib) based on C++ developments. Mesh adaptation is found to greatly reduce the number of degrees of freedom. Results of phase field simulations for dendritic solidification of a pure material in two and three dimensions are shown and compared with reference work [1]. Discussion on algorithm details and the CPU time will be outlined.
The Relation of Finite Element and Finite Difference Methods
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
DOLFIN: Automated Finite Element Computing
Logg, Anders; 10.1145/1731022.1731030
2011-01-01
We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which low-level code is automatically generated, compiled and seamlessly integrated with efficient implementations of computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces to the library are provided in the form of a C++ library and a Python module. This paper discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code.
Finite elements methods in mechanics
Eslami, M Reza
2014-01-01
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...
Automation of finite element methods
Korelc, Jože
2016-01-01
New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.
Selective Smoothed Finite Element Method
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The paper examines three selective schemes for the smoothed finite element method (SFEM) which was formulated by incorporating a cell-wise strain smoothing operation into the standard compatible finite element method (FEM). These selective SFEM schemes were formulated based on three selective integration FEM schemes with similar properties found between the number of smoothing cells in the SFEM and the number of Gaussian integration points in the FEM. Both scheme 1 and scheme 2 are free of nearly incompressible locking, but scheme 2 is more general and gives better results than scheme 1. In addition, scheme 2 can be applied to anisotropic and nonlinear situations, while scheme 1 can only be applied to isotropic and linear situations. Scheme 3 is free of shear locking. This scheme can be applied to plate and shell problems. Results of the numerical study show that the selective SFEM schemes give more accurate results than the FEM schemes.
Directory of Open Access Journals (Sweden)
Fadhil Mezghani
2015-01-01
Full Text Available The optical properties of metallic nanoparticles are well known, but the study of their thermal behavior is in its infancy. However the local heating of surrounding medium, induced by illuminated nanostructures, opens the way to new sensors and devices. Consequently the accurate calculation of the electromagnetically induced heating of nanostructures is of interest. The proposed multiphysics problem cannot be directly solved with the classical refinement method of Comsol Multiphysics and a 3D adaptive remeshing process based on an a posteriori error estimator is used. In this paper the efficiency of three remeshing strategies for solving the multiphysics problem is compared. The first strategy uses independent remeshing for each physical quantity to reach a given accuracy. The second strategy only controls the accuracy on temperature. The third strategy uses a linear combination of the two normalized targets (the electric field intensity and the temperature. The analysis of the performance of each strategy is based on the convergence of the remeshing process in terms of number of elements. The efficiency of each strategy is also characterized by the number of computation iterations, the number of elements, the CPU time, and the RAM required to achieve a given target accuracy.
A geometric toolbox for tetrahedral finite element partitions
Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.
2011-01-01
In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis. Spec
Infinite Possibilities for the Finite Element.
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
Institute of Scientific and Technical Information of China (English)
YUAN Si; XING Qin-yan; WANG Xu; YE Kang-sheng
2008-01-01
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which point wise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
Peridynamic Multiscale Finite Element Methods
Energy Technology Data Exchange (ETDEWEB)
Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
Zampini, Stefano
2016-06-02
Balancing Domain Decomposition by Constraints (BDDC) methods have proven to be powerful preconditioners for large and sparse linear systems arising from the finite element discretization of elliptic PDEs. Condition number bounds can be theoretically established that are independent of the number of subdomains of the decomposition. The core of the methods resides in the design of a larger and partially discontinuous finite element space that allows for fast application of the preconditioner, where Cholesky factorizations of the subdomain finite element problems are additively combined with a coarse, global solver. Multilevel and highly-scalable algorithms can be obtained by replacing the coarse Cholesky solver with a coarse BDDC preconditioner. BDDC methods have the remarkable ability to control the condition number, since the coarse space of the preconditioner can be adaptively enriched at the cost of solving local eigenproblems. The proper identification of these eigenproblems extends the robustness of the methods to any heterogeneity in the distribution of the coefficients of the PDEs, not only when the coefficients jumps align with the subdomain boundaries or when the high contrast regions are confined to lie in the interior of the subdomains. The specific adaptive technique considered in this paper does not depend upon any interaction of discretization and partition; it relies purely on algebraic operations. Coarse space adaptation in BDDC methods has attractive algorithmic properties, since the technique enhances the concurrency and the arithmetic intensity of the preconditioning step of the sparse implicit solver with the aim of controlling the number of iterations of the Krylov method in a black-box fashion, thus reducing the number of global synchronization steps and matrix vector multiplications needed by the iterative solver; data movement and memory bound kernels in the solve phase can be thus limited at the expense of extra local ops during the setup of
Quantum Finite Elements for Lattice Field Theory
Brower, Richard C; Gasbarro, Andrew; Raben, Timothy; Tan, Chung-I; Weinberg, Evan
2016-01-01
Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested.
2008-06-01
Whitney, James Lu, Luis Cueto, Yolanda Vidal-Segui, David Walfisch, Doug Quattrochi, David Willis, Tan Bui, Theresa Robinson, Leia Stirling , Doug Allaire... regenerating a new mesh at every adaptation iteration, r-adaptation moves node locations without changing the mesh topology to improve the solution accuracy
Finite element differential forms on cubical meshes
Arnold, Douglas N
2012-01-01
We develop a family of finite element spaces of differential forms defined on cubical meshes in any number of dimensions. The family contains elements of all polynomial degrees and all form degrees. In two dimensions, these include the serendipity finite elements and the rectangular BDM elements. In three dimensions they include a recent generalization of the serendipity spaces, and new H(curl) and H(div) finite element spaces. Spaces in the family can be combined to give finite element subcomplexes of the de Rham complex which satisfy the basic hypotheses of the finite element exterior calculus, and hence can be used for stable discretization of a variety of problems. The construction and properties of the spaces are established in a uniform manner using finite element exterior calculus.
Paszyński, Maciej; Gurgul, Piotr; Sieniek, Marcin; Pardo, David
2010-06-01
In the first part of the paper we present the multi-scale simulation of the Step-and-Flash Imprint Lithography (SFIL), a modern patterning process. The simulation utilizes the hp adaptive Finite Element Method (hp-FEM) coupled with Molecular Statics (MS) model. Thus, we consider the multi-scale problem, with molecular statics applied in the areas of the mesh where the highest accuracy is required, and the continuous linear elasticity with thermal expansion coefficient applied in the remaining part of the domain. The degrees of freedom from macro-scale element's nodes located on the macro-scale side of the interface have been identified with particles from nano-scale elements located on the nano-scale side of the interface. In the second part of the paper we present Unified Modeling Language (UML) description of the resulting multi-scale application (hp-FEM coupled with MS). We investigated classical, procedural codes from the point of view of the object-oriented (O-O) programming paradigm. The discovered hierarchical structure of classes and algorithms makes the UML project as independent on the spatial dimension of the problem as possible. The O-O UML project was defined at an abstract level, independent on the programming language used.
Elements with Square Roots in Finite Groups
Institute of Scientific and Technical Information of China (English)
M.S. Lucido; M.R. Pournaki
2005-01-01
In this paper, we study the probability that a randomly chosen element in a finite group has a square root, in particular the simple groups of Lie type of rank 1, the sporadic finite simple groups and the alternating groups.
Conforming finite elements with embedded strong discontinuities
Dias-da-Costa, D.; Alfaiate, J.; Sluys, L.J.; Areias, P.; Fernandes, C.; Julio, E.
2012-01-01
The possibility of embedding strong discontinuities into finite elements allowed the simulation of different problems, namely, brickwork masonry fracture, dynamic fracture, failure in finite strain problems and simulation of reinforcement concrete members. However, despite the significant contributi
Domain decomposition methods for mortar finite elements
Energy Technology Data Exchange (ETDEWEB)
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
Unified Framework for Finite Element Assembly
Alnæs, Martin Sandve; Mardal, Kent-Andre; Skavhaug, Ola; Langtangen, Hans Petter; 10.1504/IJCSE.2009.029160
2012-01-01
At the heart of any finite element simulation is the assembly of matrices and vectors from discrete variational forms. We propose a general interface between problem-specific and general-purpose components of finite element programs. This interface is called Unified Form-assembly Code (UFC). A wide range of finite element problems is covered, including mixed finite elements and discontinuous Galerkin methods. We discuss how the UFC interface enables implementations of variational form evaluation to be independent of mesh and linear algebra components. UFC does not depend on any external libraries, and is released into the public domain.
Superconvergence for rectangular serendipity finite elements
Institute of Scientific and Technical Information of China (English)
CHEN; Chuanmiao(陈传淼)
2003-01-01
Based on an orthogonal expansion and orthogonality correction in an element, superconvergenceat symmetric points for any degree rectangular serendipity finite element approximation to second order ellipticproblem is proved, and its behaviour up to the boundary is also discussed.
Finite elements and finite differences for transonic flow calculations
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Continuous finite element methods for Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Why do probabilistic finite element analysis ?
Thacker, B H
2008-01-01
The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.
Finite-Element Software for Conceptual Design
DEFF Research Database (Denmark)
Lindemann, J.; Sandberg, G.; Damkilde, Lars
2010-01-01
and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide).
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
THE SPACE-TIME FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS
Institute of Scientific and Technical Information of China (English)
李宏; 刘儒勋
2001-01-01
Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L∞ (L2) norm, that is maximum-norm in time, L2norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.
Finite element analysis of optical waveguides
Mabaya, N.; Lagasse, P. E.; Vandenbulcke, P.
1981-06-01
Several finite element programs for the computation of the guided modes of optical waveguides are presented. The advantages and limitations of a very general program for the analysis of anisotropic guides are presented. A possible solution to the problem of the spurious numerical modes, encountered when calculating higher order modes, is proposed. For isotropic waveguides, it is shown that both EH- and HE-type modes can be very accurately approximated by two different scalar finite element programs. Finally, a boundary perturbation method is outlined that makes it possible to calculate the attenuation coefficient of leaky modes in single material guides, starting from a finite element calculation.
Electrical machine analysis using finite elements
Bianchi, Nicola
2005-01-01
OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I
Will Finite Elements Replace Structural Mechanics?
Ojalvo, I. U.
1984-01-01
This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.
Superconvergence of tricubic block finite elements
Institute of Scientific and Technical Information of China (English)
2009-01-01
In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminorm of the discrete derivative Green’s function and the weak estimates, we show that the tricubic block finite element solution uh and the tricubic interpolant of projection type Πh3u have superclose gradient in the pointwise sense of the L∞-norm. Finally, this supercloseness is applied to superconvergence analysis, and the global superconvergence of the finite element approximation is derived.
Finite element methods a practical guide
Whiteley, Jonathan
2017-01-01
This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.
Moving Finite Elements in 2-D.
1984-08-06
34 . - ; .-’- . - . -- .- -. . - -.. -- ; -. - - - - - ." . ,- . -••. - - ; . IOSR : TR. SAI-84/1299 (0 N MOVING FINITE ELEMENTS IN 2-I Final Report AFOSR Contract: F4962U-81-C-UO73 Program Manager
Advanced finite element method in structural engineering
Long, Yu-Qiu; Long, Zhi-Fei
2009-01-01
This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.
Finite element modeling of corneal strip extensometry
CSIR Research Space (South Africa)
Botha, N
2012-12-01
Full Text Available numerically modelled in several studies, this study focusses on accurately modelling the strip extensiometry test. Two methods were considered to simulate the experimental conditions namely, a single phase and a two phase method. A finite element model...
A survey of mixed finite element methods
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Infinite to finite: An overview of finite element analysis
Directory of Open Access Journals (Sweden)
Srirekha A
2010-01-01
Full Text Available The method of finite elements was developed at perfectly right times; growing computer capacities, growing human skills and industry demands for ever faster and cost effective product development providing unlimited possibilities for the researching community. This paper reviews the basic concept, current status, advances, advantages, limitations and applications of finite element method (FEM in restorative dentistry and endodontics. Finite element method is able to reveal the otherwise inaccessible stress distribution within the tooth-restoration complex and it has proven to be a useful tool in the thinking process for the understanding of tooth biomechanics and the biomimetic approach in restorative dentistry. Further improvement of the non-linear FEM solutions should be encouraged to widen the range of applications in dental and oral health science.
Finite element modeling of the human pelvis
Energy Technology Data Exchange (ETDEWEB)
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Surgery simulation using fast finite elements
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1996-01-01
This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...
The finite element method in electromagnetics
Jin, Jianming
2014-01-01
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The
A NOTE ON FINITE ELEMENT WAVELETS
Institute of Scientific and Technical Information of China (English)
谌秋辉; 陈翰麟
2001-01-01
The refinability and approximation order of finite element multi-scale vector are discussed in [1]. But the coefficients in the conditions of approximation order of finite element multi-scale vector are incorrect there. The main purpose of this note is to make a correction of the error in the main result of [1]. These coefficients are very important for the properties of wavelets, such as vanishing moments and regularity.
Xue, Cheng; Tang, Fuk-Hay
2014-03-01
A patient specific registration model based on finite element method was investigated in this study. Image registration of Positron Emission Tomography (PET) and Magnetic Resonance imaging (MRI) has been studied a lot. Surface-based registration is extensively applied in medical imaging. We develop and evaluate a registration method combine surface-based registration with biomechanical modeling. .Four sample cases of patients with PET and MRI breast scans performed within 30 days were collected from hospital. K-means clustering algorithm was used to segment images into two parts, which is fat tissue and neoplasm [2]. Instead of placing extrinsic landmarks on patients' body which may be invasive, we proposed a new boundary condition to simulate breast deformation during two screening. Then a three dimensional model with meshes was built. Material properties were assigned to this model according to previous studies. The whole registration was based on a biomechanical finite element model, which could simulate deformation of breast under pressure.
Finite element analysis of flexible, rotating blades
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
Quadrature representation of finite element variational forms
DEFF Research Database (Denmark)
Ølgaard, Kristian Breum; Wells, Garth N.
2012-01-01
This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...
Finite Element Computational Dynamics of Rotating Systems
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element analysis of rotor dynamics problems that were published in 1994–1998. It contains 319 citations. Also included, as separate subsections, are finite element analyses of rotor elements – discs, shafts, spindles, and blades. Topics dealing with fracture mechanics, contact and stability problems of rotating machinery are also considered in specific sections. The last part of the bibliography presents papers dealing with specific industrial applications.
Experimental Finite Element Approach for Stress Analysis
Directory of Open Access Journals (Sweden)
Ahmet Erklig
2014-01-01
Full Text Available This study aims to determining the strain gauge location points in the problems of stress concentration, and it includes both experimental and numerical results. Strain gauges were proposed to be positioned to corresponding locations on beam and blocks to related node of elements of finite element models. Linear and nonlinear cases were studied. Cantilever beam problem was selected as the linear case to approve the approach and conforming contact problem was selected as the nonlinear case. An identical mesh structure was prepared for the finite element and the experimental models. The finite element analysis was carried out with ANSYS. It was shown that the results of the experimental and the numerical studies were in good agreement.
Exact finite elements for conduction and convection
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Latest Trends in Finite Element Analysis
Directory of Open Access Journals (Sweden)
L. S. Madhav
1996-01-01
Full Text Available This paper highlights the advances in computer graphics and the computational power of the processors which have promoted a method of analysis, applicable to almost all the fields of engineering. The advantages of the computers have been judiciously used in the design of algorithms, based on the principles of finite difference, finite element, boundary element, etc., intended for the analysis of engineering components. The concept of finite element method which has been generalised with the availability of commercial software, is also reviewed with a special emphasis on the future trends. The modelling and visualisation techniques have also been discussed with an inner perspective on future of visual display of multidimensional complex information. The application of these techniques in some fields is also indicated.
Finite Element Methods and Their Applications
Chen, Zhangxin
2005-01-01
This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.
Finite elements for analysis and design
Akin, J E; Davenport, J H
1994-01-01
The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee
Numerical computation of transonic flows by finite-element and finite-difference methods
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Orthodontic treatment: Introducing finite element analysis
Driel, W.D. van; Leeuwen, E.J. van
1998-01-01
The aim of orthodontic treatment is the displacement of teeth by means ofspecial appliances, like braces and brackets. Through these appliances the orthodontist can apply a set of forces to the teeth which wilt result in its displacement through the jawbone. Finite Element analysis of this process e
Interval Finite Element Analysis of Wing Flutter
Institute of Scientific and Technical Information of China (English)
Wang Xiaojun; Qiu Zhiping
2008-01-01
The influences of uncertainties in structural parameters on the flutter speed of wing are studied. On the basis of the deterministic flutter analysis model of wing, the uncertainties in structural parameters are considered and described by interval numbers. By virtue of first-order Taylor series expansion, the lower and upper bound curves of the transient decay rate coefficient versus wind velocity are given. So the interval estimation of the flutter critical wind speed of wing can be obtained, which is more reasonable than the point esti- mation obtained by the deterministic flutter analysis and provides the basis for the further non-probabilistic interval reliability analysis of wing flutter. The flow chart for interval finite element model of flutter analysis of wing is given. The proposed interval finite element model and the stochastic finite element model for wing flutter analysis are compared by the examples of a three degrees of freedorn airfoil and fuselage and a 15° swepthack wing, and the results have shown the effectiveness and feasibility of the presented model. The prominent advantage of the proposed interval finite element model is that only the bounds of uncertain parameters axe required, and the probabilistic distribution densities or other statistical characteristics are not needed.
Fast finite elements for surgery simulation
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1997-01-01
This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix, an...
On Hybrid and mixed finite element methods
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Finite Dynamic Elements and Modal Analysis
Directory of Open Access Journals (Sweden)
N.J. Fergusson
1993-01-01
Full Text Available A general modal analysis scheme is derived for forced response that makes use of high accuracy modes computed by the dynamic element method. The new procedure differs from the usual modal analysis in that the modes are obtained from a power series expansion for the dynamic stiffness matrix that includes an extra dynamic correction term in addition to the static stiffness matrix and the consistent mass matrix based on static displacement. A cantilevered beam example is used to demonstrate the relative accuracies of the dynamic element and the traditional finite element methods.
Revolution in Orthodontics: Finite element analysis
Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush
2016-01-01
Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...
Model refinements of transformers via a subproblem finite element method
Dular, Patrick; Kuo-Peng, Patrick; Ferreira Da Luz, Mauricio,; Krähenbühl, Laurent
2015-01-01
International audience; A progressive modeling of transformers is performed via a subproblem finite element method. A complete problem is split into subproblems with different adapted overlapping meshes. Model refinements are performed from ideal to real flux tubes, 1-D to 2-D to 3-D models, linear to nonlinear materials, perfect to real materials, single wire to volume conductor windings, and homogenized to fine models of cores and coils, with any coupling of these changes. The proposed unif...
SURFACE FINITE ELEMENTS FOR PARABOLIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
G. Dziuk; C.M. Elliott
2007-01-01
In this article we define a surface finite element method (SFEM) for the numerical solution of parabolic partial differential equations on hypersurfaces Γ in (R)n+1. The key idea is based on the approximation of Γ by a polyhedral surface Γh consisting of a union of simplices (triangles for n = 2, intervals for n = 1) with vertices on Γ. A finite element space of functions is then defined by taking the continuous functions on Γh which are linear affine on each simplex of the polygonal surface. We use surface gradients to define weak forms of elliptic operators and naturally generate weak formulations of elliptic and parabolic equations on Γ. Our finite element method is applied to weak forms of the equations. The computation of the mass and element stiffness matrices are simple and straightforward.We give an example of error bounds in the case of semi-discretization in space for a fourth order linear problem. Numerical experiments are described for several linear and nonlinear partial differential equations. In particular the power of the method is demonstrated by employing it to solve highly nonlinear second and fourth order problems such as surface Allen-Cahn and Cahn-Hilliard equations and surface level set equations for geodesic mean curvature flow.
Finite element modeling of permanent magnet devices
Brauer, J. R.; Larkin, L. A.; Overbye, V. D.
1984-03-01
New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.
Finite element modelling of solidification phenomena
Indian Academy of Sciences (India)
K N Seetharamu; R Paragasam; Ghulam A Quadir; Z A Zainal; B Sathya Prasad; T Sundararajan
2001-02-01
The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation is accounted in the heat transfer simulation. Distortion of the casting is caused due to non-uniform shrinkage associated with the process. Residual stresses are induced in the final castings. Simulation of the shrinkage and the thermal stresses are also carried out using finite element methods. The material behaviour is considered as visco-plastic. The simulations are compared with available experimental data and the comparison is found to be good. Special considerations regarding the simulation of solidification process are also brought out.
Finite element simulations with ANSYS workbench 16
Lee , Huei-Huang
2015-01-01
Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...
Finite element modelling of SAW correlator
Tikka, Ajay C.; Al-Sarawi, Said F.; Abbott, Derek
2007-12-01
Numerical simulations of SAW correlators so far are limited to delta function and equivalent circuit models. These models are not accurate as they do not replicate the actual behaviour of the device. Manufacturing a correlator to specifically realise a different configuration is both expensive and time consuming. With the continuous improvement in computing capacity, switching to finite element modelling would be more appropriate. In this paper a novel way of modelling a SAW correlator using finite element analysis is presented. This modelling approach allows the consideration of different code implementation and device structures. This is demonstrated through simulation results for a 5×2-bit Barker sequence encoded SAW correlator. These results show the effect of both bulk and leaky modes on the device performance at various operating frequencies. Moreover, the ways in which the gain of the correlator can be optimised though variation of design parameters will also be outlined.
FINITE ELEMENT ANALYSIS FOR PERIFLEX COUPLINGS
Directory of Open Access Journals (Sweden)
URDEA Mihaela
2015-06-01
Full Text Available The Periflex shaft couplings with rubber sleeve have a hig elasticity and link two shafts in diesel-engine and electric drives. They are simple from the point of view of construction, easily mounted and dismounted. The main goal of this paper is to present a finite element analysis for the Periflex coupling using the Generative Structural Analysis from CATIA software package. This paper presents important information about how to prepare an assembly for creating a static analysis case and also the important steps for developing a finite element analysis. It is very important that the analysis model should have the same behavior as the real, also the loading model. The results are images corresponding to Von Mises Stresses and Translational Displacement magnitude.
Finite Element Simulation of Metal Quenching
Institute of Scientific and Technical Information of China (English)
方刚; 曾攀
2004-01-01
The evolution of the phase transformation and the resulting internal stresses and strains in metallic parts during quenching were modeled numerically. The numerical simulation of the metal quenching process was based on the metallo-thermo-mechanical theory using the finite element method to couple the temperature, phase transformation, and stress-strain fields. The numerical models are presented for the heat treatment and kinetics of the phase transformation. The finite element models and the phase transition kinetics accurately predict the distribution of the microstructure volume fractions, the temperature, the distortion, and the stress-strain relation during quenching. The two examples used to validate the models are the quenching of a small gear and of a large turbine rotor. The simulation results for the martensite phase volume fraction, the stresses, and the distortion in the gear agree well with the experimental data. The models can be used to optimize the quenching conditions to ensure product quality.
FINITE ELEMENT METHODS FOR SOBOLEV EQUATIONS
Institute of Scientific and Technical Information of China (English)
Tang Liu; Yan-ping Lin; Ming Rao; J. R. Cannon
2002-01-01
A new high-order time-stepping finite element method based upon the high-order numerical integration formula is formulated for Sobolev equations, whose computations consist of an iteration procedure coupled with a system of two elliptic equations. The optimal and superconvergence error estimates for this new method axe derived both in space and in time. Also, a class of new error estimates of convergence and superconvergence for the time-continuous finite element method is demonstrated in which there are no time derivatives of the exact solution involved, such that these estimates can be bounded by the norms of the known data. Moreover, some useful a-posteriori error estimators are given on the basis of the superconvergence estimates.
Finite element analysis of human joints
Energy Technology Data Exchange (ETDEWEB)
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human...
Multiphase Transformer Modelling using Finite Element Method
Directory of Open Access Journals (Sweden)
Nor Azizah Mohd Yusoff
2015-03-01
Full Text Available In the year of 1970 saw the starting invention of the five-phase motor as the milestone in advanced electric motor. Through the years, there are many researchers, which passionately worked towards developing for multiphase drive system. They developed a static transformation system to obtain a multiphase supply from the available three-phase supply. This idea gives an influence for further development in electric machines as an example; an efficient solution for bulk power transfer. This paper highlighted the detail descriptions that lead to five-phase supply with fixed voltage and frequency by using Finite-Element Method (FEM. Identifying of specification on a real transformer had been done before applied into software modeling. Therefore, Finite-Element Method provides clearly understandable in terms of visualize the geometry modeling, connection scheme and output waveform.
Introduction to nonlinear finite element analysis
Kim, Nam-Ho
2015-01-01
This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: · Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems · Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory · ...
The finite element modeling of spiral ropes
Institute of Scientific and Technical Information of China (English)
Juan Wu
2014-01-01
Accurate understanding the behavior of spiral rope is complicated due to their complex geometry and complex contact conditions between the wires. This study proposed the finite element models of spiral ropes subjected to tensile loads. The parametric equations developed in this paper were implemented for geometric modeling of ropes. The 3D geometric models with different twisting manner, equal diameters of wires were generated in details by using Pro/ENGINEER software. The results of the present finite element analysis were on an acceptable level of accuracy as compared with those of theoretical and experimental data. Further development is ongoing to analysis the equivalent stresses induced by twisting manner of cables. The twisting manner of wires was important to spiral ropes in the three wire layers and the outer twisting manner of wires should be contrary to that of the second layer, no matter what is the first twisting manner of wires.
Finite element contact analysis of fractal surfaces
Energy Technology Data Exchange (ETDEWEB)
Sahoo, Prasanta; Ghosh, Niloy [Department of Mechanical Engineering, Jadavpur University, Kolkata 700032 (India)
2007-07-21
The present study considers finite element analysis of non-adhesive, frictionless elastic/elastic-plastic contact between a rigid flat plane and a self-affine fractal rough surface using the commercial finite element package ANSYS. Three-dimensional rough surfaces are generated using a modified two-variable Weierstrass-Mandelbrot function with given fractal parameters. Parametric studies are done to consider the general relations between contact properties and key material and surface parameters. The present analysis is validated with available experimental results in the literature. Non-dimensional contact area and displacement are obtained as functions of non-dimensional load for varying fractal surface parameters in the case of elastic contact and for varying rates of strain hardening in the case of elastic-plastic contact of fractal surfaces.
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
Finite Element Simulation for Interfacial Evolutions
Institute of Scientific and Technical Information of China (English)
JianmingHUANG; WeiYANG
1998-01-01
A three-dimensional finite element scheme based upon a weak statement of the classical theory is explored to simulate migration of interfaces in materials under linear evaporation and condensation kinetics,The present scheme is exemplified by two cases:facet formation of single crystals;and the evolution of a tri-crystal film on a substrate where the effect of multiple kinetics is demonstrated.
FINITE-ELEMENT MODELING OF SALT TECTONICS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2012-09-01
Full Text Available The two-dimensional thermal model of graben structure in the presence of salt tectonics on the basis of a finite elements method is constructed. The analysis of the thermal field is based on the solution of stationary equation of heat conductivity with variable boundary conditions. The high precision of temperatures distribution and heat flows is received. The decision accuracy is no more than 0,6 %.
Finite element model of needle electrode sensitivity
Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.
2010-04-01
We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.
Quick finite elements for electromagnetic waves
Pelosi, Giuseppe; Selleri, Stefano
2009-01-01
This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM) Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation.
EXODUS II: A finite element data model
Energy Technology Data Exchange (ETDEWEB)
Schoof, L.A.; Yarberry, V.R.
1994-09-01
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).
Finite element methods for incompressible flow problems
John, Volker
2016-01-01
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Finite Element Analysis of Reverberation Chambers
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
Nonlinear Finite Element Analysis of Ocean Cables
Institute of Scientific and Technical Information of China (English)
Nam-Il KIM; Sang-Soo JEON; Moon-Young KIM
2004-01-01
This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.
Finite Element Method in Machining Processes
Markopoulos, Angelos P
2013-01-01
Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...
A multi-mesh finite element method for Lagrange elements of arbitrary degree
Witkowski, Thomas
2010-01-01
We consider within a finite element approach the usage of different adaptively refined meshes for different variables in systems of nonlinear, time-depended PDEs. To resolve different solution behaviours of these variables, the meshes can be independently adapted. The resulting linear systems are usually much smaller, when compared to the usage of a single mesh, and the overall computational runtime can be more than halved in such cases. Our multi-mesh method works for Lagrange finite elements of arbitrary degree and is independent of the spatial dimension. The approach is well defined, and can be implemented in existing adaptive finite element codes with minimal effort. We show computational examples in 2D and 3D ranging from dendritic growth to solid-solid phase-transitions. A further application comes from fluid dynamics where we demonstrate the applicability of the approach for solving the incompressible Navier-Stokes equations with Lagrange finite elements of the same order for velocity and pressure. The...
HANGING NODES IN THE UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL
Institute of Scientific and Technical Information of China (English)
C.Carstensen; Jun Hu
2009-01-01
A unified a posteriori error analysis has been developed in [18,21-23] to analyze the finite element error a posteriori under a universal roof.This paper contributes to the finite element meshes with hanging nodes which are required for local mesh-refining.The twodimensional 1-irregular triangulations into triangles and parallelograms and their combinations are considered with conforming and nonconforming finite element methods named after or by Courant,Q1,Crouzeix-Raviart,Han,Rannacher-Turek,and others for the a posteriori error analysis for triangulations with hanging nodes of degree≤1 which are fundamental for local mesh refinement in self-adaptive finite element discretisations.
Finite Element Analysis of the Crack Propagation for Solid Materials
Directory of Open Access Journals (Sweden)
Miloud Souiyah
2009-01-01
Full Text Available Problem statement: The use of fracture mechanics techniques in the assessment of performance and reliability of structure is on increase and the prediction of crack propagation in structure play important part. The finite element method is widely used for the evaluation of SIF for various types of crack configurations. Source code program of two-dimensional finite element model had been developed, to demonstrate the capability and its limitations, in predicting the crack propagation trajectory and the SIF values under linear elastic fracture analysis. Approach: Two different geometries were used on this finite element model in order, to analyze the reliability of this program on the crack propagation in linear and nonlinear elastic fracture mechanics. These geometries were namely; a rectangular plate with crack emanating from square-hole and Double Edge Notched Plate (DENT. Where, both geometries are in tensile loading and under mode I conditions. In addition, the source code program of this model was written by FORTRAN language. Therefore, a Displacement Extrapolation Technique (DET was employed particularly, to predict the crack propagations directions and to, calculate the Stress Intensity Factors (SIFs. Furthermore, the mesh for the finite elements was the unstructured type; generated using the advancing front method. And, the global h-type adaptive mesh was adopted based on the norm stress error estimator. While, the quarter-point singular elements were uniformly generated around the crack tip in the form of a rosette. Moreover, make a comparison between this current study with other relevant and published research study. Results: The application of the source code program of 2-D finite element model showed a significant result on linear elastic fracture mechanics. Based on the findings of the two different geometries from the current study, the result showed a good agreement. And, it seems like very close compare to the other published
A finite element parametric modeling technique of aircraft wing structures
Institute of Scientific and Technical Information of China (English)
Tang Jiapeng; Xi Ping; Zhang Baoyuan; Hu Bifu
2013-01-01
A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned during the preliminary design phase of aircraft structures. A knowledge-driven system of fast finite element modeling is built. Based on this method, employing a template parametric technique, knowledge including design methods, rules, and expert experience in the process of modeling is encapsulated and a finite element model is established automatically, which greatly improves the speed, accuracy, and standardization degree of modeling. Skeleton model, geometric mesh model, and finite element model including finite element mesh and property data are established on parametric description and automatic update. The outcomes of research show that the method settles a series of problems of parameter association and model update in the pro-cess of finite element modeling which establishes a key technical basis for finite element parametric analysis and optimization design.
Finite Element Based Design and Optimization for Piezoelectric Accelerometers
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.; Yao, Q.
1998-01-01
A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...
Application of finite-element-methods in food processing
DEFF Research Database (Denmark)
Risum, Jørgen
2004-01-01
Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....
Finite element modeling for materials engineers using Matlab
Oluwole, Oluleke
2014-01-01
Finite Element Modeling for Materials Engineers Using MATLAB® combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes.
Stochastic finite elements: Where is the physics?
Directory of Open Access Journals (Sweden)
Ostoja-Starzewski Martin
2011-01-01
Full Text Available The micromechanics based on the Hill-Mandel condition indicates that the majority of stochastic finite element methods hinge on random field (RF models of material properties (such as Hooke’s law having no physical content, or even at odds with physics. At the same time, that condition allows one to set up the RFs of stiffness and compliance tensors in function of the mesoscale and actual random microstructure of the given material. The mesoscale is defined through a Statistical Volume Element (SVE, i.e. a material domain below the Representative Volume Element (RVE level. The paper outlines a procedure for stochastic scale-dependent homogenization leading to a determination of mesoscale one-point and two-point statistics and, thus, a construction of analytical RF models.
Finite rotation shells basic equations and finite elements for Reissner kinematics
Wisniewski, K
2010-01-01
This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.
Finite element modeling methods for photonics
Rahman, B M Azizur
2013-01-01
The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astron
Finite element simulation of asphalt fatigue testing
DEFF Research Database (Denmark)
Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders
1997-01-01
damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...
The serendipity family of finite elements
Arnold, Douglas N
2011-01-01
We give a new, simple, dimension-independent definition of the serendipity finite element family. The shape functions are the span of all monomials which are linear in at least s-r of the variables where s is the degree of the monomial or, equivalently, whose superlinear degree (total degree with respect to variables entering at least quadratically) is at most r. The degrees of freedom are given by moments of degree at most r-2d on each face of dimension d. We establish unisolvence and a geometric decomposition of the space.
Generalized multiscale finite element methods: Oversampling strategies
Efendiev, Yalchin R.
2014-01-01
In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local
Finite element modelingof spherical induction actuator
Galary, Grzegorz
2005-01-01
The thesis deals with finite element method simulations of the two-degree of freedom spherical induction actuator performed using the 2D and 3D models. In some cases non-linear magnetization curves, rotor movement and existence of higher harmonics are taken into account. The evolution of the model leading to its simplification is presented. Several rotor structures are tested, namely the one-layer, two-layers and two-layers-with-teeth rotor. The study of some rotor parameters, i.e. t...
A finite element model of ultrasonic extrusion
Energy Technology Data Exchange (ETDEWEB)
Lucas, M [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom); Daud, Y, E-mail: m.lucas@mech.gla.ac.u [College of Science and Technology, UTM City Campus, Kuala Lumpur (Malaysia)
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
A finite element model of ultrasonic extrusion
Lucas, M.; Daud, Y.
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
Iterative methods for mixed finite element equations
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
Mixed finite elements for global tide models
Cotter, Colin J
2014-01-01
We study mixed finite element methods for the linearized rotating shallow water equations with linear drag and forcing terms. By means of a strong energy estimate for an equivalent second-order formulation for the linearized momentum, we prove long-time stability of the system without energy accumulation -- the geotryptic state. A priori error estimates for the linearized momentum and free surface elevation are given in $L^2$ as well as for the time derivative and divergence of the linearized momentum. Numerical results confirm the theoretical results regarding both energy damping and convergence rates.
Finite element analysis of multilayer coextrusion.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Finite element analysis of bolted flange connections
Hwang, D. Y.; Stallings, J. M.
1994-06-01
A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.
Impeller deflection and modal finite element analysis.
Energy Technology Data Exchange (ETDEWEB)
Spencer, Nathan A.
2013-10-01
Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.
A multigrid solution method for mixed hybrid finite elements
Energy Technology Data Exchange (ETDEWEB)
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Accurate finite element modeling of acoustic waves
Idesman, A.; Pham, D.
2014-07-01
In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.
hp-finite-elements for simulating electromagnetic fields in optical devices with rough textures
Burger, S; Hammerschmidt, M; Herrmann, S; Pomplun, J; Schmidt, F; Wohlfeil, B; Zschiedrich, L
2015-01-01
The finite-element method is a preferred numerical method when electromagnetic fields at high accuracy are to be computed in nano-optics design. Here, we demonstrate a finite-element method using hp-adaptivity on tetrahedral meshes for computation of electromagnetic fields in a device with rough textures. The method allows for efficient computations on meshes with strong variations in element sizes. This enables to use precise geometry resolution of the rough textures. Convergence to highly accurate results is observed.
Adaptive boundaryless finite-difference method.
Lopez-Mago, Dorilian; Gutiérrez-Vega, Julio C
2013-02-01
The boundaryless beam propagation method uses a mapping function to transform the infinite real space into a finite-size computational domain [Opt. Lett.21, 4 (1996)]. This leads to a bounded field that avoids the artificial reflections produced by the computational window. However, the method suffers from frequency aliasing problems, limiting the physical region to be sampled. We propose an adaptive boundaryless method that concentrates the higher density of sampling points in the region of interest. The method is implemented in Cartesian and cylindrical coordinate systems. It keeps the same advantages of the original method but increases accuracy and is not affected by frequency aliasing.
Ying, Jinyong; Xie, Dexuan
2015-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.
Institute of Scientific and Technical Information of China (English)
黄茂松; 钱建固; 吴世明
2001-01-01
为合理描述土坝由于地震荷载引起的应变局部化与渐进破坏现象，本文采用了一种基于类似位移梯度的误差指示的自适应网格有限元技术，同时还将快速的、无条件稳定的分步时域解法与自适应技术结合起来。文中对美国著名的Lower San Fernando土坝的分析，显示了本文提出的有限元新技术的有效性。%An adaptive finite element method for localized deformation and progressive failure of fluid-infiltrated soils under earthquake loading is presented. The present paper is a direct extension of the research reported by Zienkiewicz and the first author［12］. The adaptive technique has been extended to the problems incorporating dynamic loading and effects of the fluid phases. An efficient computation involving adaptive remeshing has been achieved through the introduction of an unconditionally stable staggered time-stepping algorithm. A re-analysis of the Lower San Fernando dam slide under earthquake has demonstrated the ability of the proposed approach to dealing with more complicated strain localization problems.
Test Simulation using Finite Element Method
Energy Technology Data Exchange (ETDEWEB)
Ali, M B; Abdullah, S; Nuawi, M Z; Ariffin, A K, E-mail: abgbas@yahoo.com [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)
2011-02-15
The dynamic responses of the standard Charpy impact machine are experimentally studied using the relevant data acquisition system, for the purpose of obtaining the impact response. For this reason, the numerical analysis by means of the finite element method has been used for experiment findings. Modelling of the charpy test was performed in order to obtain strain in the striker during the test. Two types of standard charpy specimens fabricated from different materials, i.e. aluminium 6061 and low carbon steel 1050, were used for the impact simulation testing. The related parameters on between different materials, energy absorbed, strain signal, power spectrum density (PSD) and the relationship between those parameters was finally correlated and discussed.
Finite-Element Modelling of Biotransistors
Directory of Open Access Journals (Sweden)
Selvaganapathy PR
2010-01-01
Full Text Available Abstract Current research efforts in biosensor design attempt to integrate biochemical assays with semiconductor substrates and microfluidic assemblies to realize fully integrated lab-on-chip devices. The DNA biotransistor (BioFET is an example of such a device. The process of chemical modification of the FET and attachment of linker and probe molecules is a statistical process that can result in variations in the sensed signal between different BioFET cells in an array. In order to quantify these and other variations and assess their importance in the design, complete physical simulation of the device is necessary. Here, we perform a mean-field finite-element modelling of a short channel, two-dimensional BioFET device. We compare the results of this model with one-dimensional calculation results to show important differences, illustrating the importance of the molecular structure, placement and conformation of DNA in determining the output signal.
Friction welding; Magnesium; Finite element; Shear test.
Directory of Open Access Journals (Sweden)
Leonardo Contri Campanelli
2013-06-01
Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.
Finite element methods in resistivity logging
Lovell, J. R.
1993-09-01
Resistivity measurements are used in geophysical logging to help determine hydrocarbon reserves. The derivation of formation parameters from resistivity measurements is a complicated nonlinear procedure often requiring additional geological information. This requires an excellent understanding of tool physics, both to design new tools and interpret the measurements of existing tools. The Laterolog measurements in particular are difficult to interpret because the response is very nonlinear as a function of electrical conductivity, unlike Induction measurements. Forward modeling of the Laterolog is almost invariably done with finite element codes which require the inversion of large sparse matrices. Modern techniques can be used to accelerate this inversion. Moreover, an understanding of the tool physics can help refine these numerical techniques.
Optimizing the Evaluation of Finite Element Matrices
Kirby, Robert C; Logg, Anders; Scott, L Ridgway; 10.1137/040607824
2012-01-01
Assembling stiffness matrices represents a significant cost in many finite element computations. We address the question of optimizing the evaluation of these matrices. By finding redundant computations, we are able to significantly reduce the cost of building local stiffness matrices for the Laplace operator and for the trilinear form for Navier-Stokes. For the Laplace operator in two space dimensions, we have developed a heuristic graph algorithm that searches for such redundancies and generates code for computing the local stiffness matrices. Up to cubics, we are able to build the stiffness matrix on any triangle in less than one multiply-add pair per entry. Up to sixth degree, we can do it in less than about two. Preliminary low-degree results for Poisson and Navier-Stokes operators in three dimensions are also promising.
Nonlinear Finite Element Analysis of Sloshing
Directory of Open Access Journals (Sweden)
Siva Srinivas Kolukula
2013-01-01
Full Text Available The disturbance on the free surface of the liquid when the liquid-filled tanks are excited is called sloshing. This paper examines the nonlinear sloshing response of the liquid free surface in partially filled two-dimensional rectangular tanks using finite element method. The liquid is assumed to be inviscid, irrotational, and incompressible; fully nonlinear potential wave theory is considered and mixed Eulerian-Lagrangian scheme is adopted. The velocities are obtained from potential using least square method for accurate evaluation. The fourth-order Runge-Kutta method is employed to advance the solution in time. A regridding technique based on cubic spline is employed to avoid numerical instabilities. Regular harmonic excitations and random excitations are used as the external disturbance to the container. The results obtained are compared with published results to validate the numerical method developed.
Finite element simulation of wheel impact test
Directory of Open Access Journals (Sweden)
S.H. Yang
2008-06-01
Full Text Available Purpose: In order to achieve better performance and quality, the wheel design and manufacturing use a number of wheel tests (rotating bending test, radial fatigue test, and impact test to insure that the wheel meets the safety requirements. The test is very time consuming and expensive. Computer simulation of these tests can significantly reduce the time and cost required to perform a wheel design. In this study, nonlinear dynamic finite element is used to simulate the SAE wheel impact test.Design/methodology/approach: The test fixture used for the impact test consists of a striker with specified weight. The test is intended to simulate actual vehicle impact conditions. The tire-wheel assembly is mounted at 13° angle to the vertical plane with the edge of the weight in line with outer radius of the rim. The striker is dropped from a specified height above the highest point of the tire-wheel assembly and contacts the outboard flange of the wheel.Because of the irregular geometry of the wheel, the finite element model of an aluminium wheel is constructed by tetrahedral element. A mesh convergence study is carried out to ensure the convergence of the mesh model. The striker is assumed to be rigid elements. Initially, the striker contacts the highest area of the wheel, and the initial velocity of the striker is calculated from the impact height. The simulated strains at two locations on the disc are verified by experimental measurements by strain gages. The damage parameter of a wheel during the impact test is a strain energy density from the calculated result.Findings: The prediction of a wheel failure at impact is based on the condition that fracture will occur if the maximum strain energy density of the wheel during the impact test exceeds the total plastic work of the wheel material from tensile test. The simulated results in this work show that the total plastic work can be effectively employed as a fracture criterion to predict a wheel
Interpolation theory of anisotropic finite elements and applications
Institute of Scientific and Technical Information of China (English)
CHEN ShaoChun; XIAO LiuChao
2008-01-01
Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.
Interpolation theory of anisotropic finite elements and applications
Institute of Scientific and Technical Information of China (English)
2008-01-01
Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.
Finite Element Program Generator and Its Application in Engineering
Institute of Scientific and Technical Information of China (English)
WANShui; HUHong; CHENJian-pin
2004-01-01
A completely new finite element software, Finite ElementProgram Generator (FEPG), is introduced and its designing thought and organizing structure is presented.FEPG uses the method of components and the technique of artificial intelligence to generate finite element program automatically by a computer according to the general principles of mathematic and internal rules of finite element method,as is similar to the deduction of mathematics.FEPG breaks through the limitation of present finite element software,which only applies to special discipline,while FEPG is suitable for all kinds of differential equations solved by finite element method.Now FEPG has been applied to superconductor research,electromagnetic field study,petroleum exploration,transportation,structure engineering,water conservancy,ship mechanics, solid-liquid coupling problems and liquid dynamics,etc.in China.
Finite element analysis theory and application with ANSYS
Moaveni, Saeed
2015-01-01
For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...
The finite element method its basis and fundamentals
Zienkiewicz, Olek C; Zhu, JZ
2013-01-01
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob
Impact of new computing systems on finite element computations
Noor, A. K.; Storassili, O. O.; Fulton, R. E.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified.
Radial flow of slightly compressible fluids: A finite element-finite ...
African Journals Online (AJOL)
Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Radial flow of slightly compressible fluids: A finite element-finite differences approach. JA Akpobi, ED Akpobi ...
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
Finite-state machines as elements in control systems.
Burgin, G. H.; Walsh, M. J.
1971-01-01
Demonstration that approximate solutions to certain classes of differential and difference equations can be expressed in form of finite state machines. Based on this result, a finite-state machine model of an adaptive gain changer in an aircraft stability augmentation system is developed. Results of simulated flights using the finite-state machine gain changer are presented.
An efficient wavelet finite element method in fault prognosis of incipient crack
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The method of constructing any scale wavelet finite element (WFE) based on the one-dimensional or two-dimensional Daubechies scaling functions was presented, and the corresponding WFE adaptive lifting algorithm was given. In order to obtain the nested increasing approximate subspaces of multiscale finite element, the Daubechies scaling functions with the properties of multi-resolution analysis were employed as the finite element interpolating functions. Thus, the WFE could adaptively mesh the singularity domain caused by local cracks, which resulted in better approximate solutions than the traditional finite element methods. The calculations of natural frequencies of cracked beam were used to check the accuracy of given methods. In addition, the results of cracked cantilever beam and engineering application were satisfied. So, the current methods can provide effective tools in the numerical modeling of the fault prognosis of incipient crack.
Introduction to finite element analysis using MATLAB and Abaqus
Khennane, Amar
2013-01-01
There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA
Ablative Thermal Response Analysis Using the Finite Element Method
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
ADAPTIVE ELLIPSOIDAL ACOUSTIC INFINITE ELEMENT
Institute of Scientific and Technical Information of China (English)
Yang Ruiliang; Wang Hongzhen
2004-01-01
It is shown that the basis of the ellipsoidal acoustic infinite element Burnett method,the multipole expansion,cannot represent real ellipsoidal acoustic field exactly.To solve the problem,a weight of angular direction is added to the multipole expansion.The comparison of the modified method and the prime method shows that the modified method can describe and solve the ellipsoidal acoustic field more accurately than ever.A dilating sphere is used to test the new method further.Unlike other infinite element methods,varied ratio of the ellipsoidal artificial boundary instead of sphere is used.The pressure value of the artificial boundary is utilized as the initial value of the new method.Then the radiating phenomena of the ellipsoidal acoustic field can be researched using the new method.These examples show the feasibility of the adaptive method.
An improved optimal elemental method for updating finite element models
Institute of Scientific and Technical Information of China (English)
Duan Zhongdong(段忠东); Spencer B.F.; Yan Guirong(闫桂荣); Ou Jinping(欧进萍)
2004-01-01
The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results. This situation occurs when the test modal model is incomplete, as is often the case in practice. An improved optimal elemental method is presented that defines a new objective function, and as a byproduct, circumvents the need for mass normalized modal shapes, which are also not readily available in practice. To solve the group of nonlinear equations created by the improved optimal method, the Lagrange multiplier method and Matlab function fmincon are employed. To deal with actual complex structures,the float-encoding genetic algorithm (FGA) is introduced to enhance the capability of the improved method. Two examples, a 7-degree of freedom (DOF) mass-spring system and a 53-DOF planar frame, respectively, are updated using the improved method.Thc example results demonstrate the advantages of the improved method over existing optimal methods, and show that the genetic algorithm is an effective way to update the models used for actual complex structures.
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Quadratic Serendipity Finite Elements on Polygons Using Generalized Barycentric Coordinates
Rand, Alexander; Bajaj, Chandrajit
2011-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon satisfying simple geometric criteria, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n+1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called `serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.
QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2014-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.
MORTAR FINITE VOLUME METHOD WITH ADINI ELEMENT FOR BIHARMONIC PROBLEM
Institute of Scientific and Technical Information of China (English)
Chun-jia Bi; Li-kang Li
2004-01-01
In this paper, we construct and analyse a mortar finite volume method for the dis-cretization for the biharmonic problem in R2. This method is based on the mortar-type Adini nonconforming finite element spaces. The optimal order H2-seminorm error estimate between the exact solution and the mortar Adini finite volume solution of the biharmonic equation is established.
Finite Element Analysis (FEA) in Design and Production.
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
A Finite Element Analysis of Optimal Variable Thickness Sheets
DEFF Research Database (Denmark)
Petersson, Joakim S
1996-01-01
A quasimixed Finite Element (FE) method for maximum stiffness of variablethickness sheets is analysed. The displacement is approximated with ninenode Lagrange quadrilateral elements and the thickness is approximated aselementwise constant. One is guaranteed that the FE displacement solutionswill...
Finite element simulation of asphalt fatigue testing
DEFF Research Database (Denmark)
Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders
1997-01-01
The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value. To accomod......The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value....... To accomodate non-constant stress or strain, a mode factor may be introduced or the dissipated energy may be used instead of stress or strain.Cracking of asphalt (or other materials) may be described as a process consisting of three phases. In phase one diffuse microcracking is formed in the material...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...
An iterative algorithm for finite element analysis
Laouafa, F.; Royis, P.
2004-03-01
In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.
Finite Element Simulation for Springback Prediction Compensation
Directory of Open Access Journals (Sweden)
Agus Dwi Anggono
2011-01-01
Full Text Available An accurate modelling of the sheet metal deformations including the springback prediction is one of the key factors in the efficient utilisation of Finite Element Method (FEM process simulation in industrial application. Assuming that springback can be predicted accurately, there still remains the problem of how to use such results to appear at a suitable die design to produce a target part shape. It is this second step of springback compensation that is addressed in the current work. This paper presents an evaluation of a standard benchmark model defined as Benchmark II of Numisheet 2008, S-channel model with various drawbeads and blank holder force (BHF. The tool geometry modified based on springback calculation for a part to compensate springback. The result shows that the combination of the smooth bead with BHF of 650 kN resulted in the minimum springback and the tool compensation was successfully to accommodate the springback errors.
Studying a dental pathology by finite elements
Directory of Open Access Journals (Sweden)
Fernando Mejía Umaña
2010-04-01
Full Text Available Abfractives lesions or abfractions are non-cavity lesions of dental structures in which a biomechanical factor has been identified as being the most probable cause for it occurring. Even throught such lesion can be presented in any tooth, it occurs more frequently in people aged over 35. This article presents some results obtained by the Universidad Nacional de Colombia's multidisciplinary research group for studying "dental material's structure and propierties". The introduction describes such lesion's characteristics and possible causes. The results of various modelling exercises using finite elements (in two and three dimensions are presented regarding a first premolar tooth subjected to normal mastication load and also to abnormal loads produced by occlusion problems. The most important findings (accompanied by clinical observations were that: areas of high concentration of forces were identified where lesions were frequently presented, associated with loads whose line of action did not pass through the central part of the section of tooth at cervical level; a direct relationship between facets of wear being orientated with the direction of forces produced by a high concentration of force; and the presence of high compression forces in the cervical region.
Finite element modeling of retinal prosthesis mechanics
Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.
2009-10-01
Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.
Intra Plate Stresses Using Finite Element Modelling
Directory of Open Access Journals (Sweden)
Jayalakshmi S.
2016-10-01
Full Text Available One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo-Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma.
Progress in mixed Eulerian-Lagrangian finite element simulation of forming processes
Huetink, Han; Vreede, P.T.; van der Lugt, J.
1990-01-01
A review is given of a mixed Eulerian-Lagrangian finite element method for simulation of forming processes. This method permits incremental adaptation of nodal point locations independently from the actual material displacements. Hence numerical difficulties due to large element distortions, as may
Finite Element Analysis of Deformed Legs of Offshore Platform Structures
Institute of Scientific and Technical Information of China (English)
柳春图; 秦太验; 段梦兰
2002-01-01
The element stiffness matrix of the equivalent beam or pipe element of the deformed leg of the platform is derived bythe finite element method. The stresses and displacements of some damaged components are calculated, and the numeri-cal solutions agree well with those obtained by the fine mesh finite element method. Finally, as an application of thismethod, the stresses of some platform structures are calculated and analyzed.
Hydrothermal analysis in engineering using control volume finite element method
Sheikholeslami, Mohsen
2015-01-01
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),
Vibration Analysis of Beams by Spline Finite Element
Institute of Scientific and Technical Information of China (English)
YANG Hao; SUN Li
2011-01-01
In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the introduction of boundary conditions follow the standard finite element procedure.The results under various boundary conditions are compared with those obtained by the exact method and the finite difference method.It shows that the results are in excellent agreement with the analytical results and much more accurate than the results obtained by the finite difference method,especially for higher order modes.
Finite Element Model of Cardiac Electrical Conduction.
Yin, John Zhihao
1994-01-01
In this thesis, we develop mathematical models to study electrical conduction of the heart. One important pattern of wave propagation of electrical excitation in the heart is reentry which is believed to be the underlying mechanism of some dangerous cardiac arhythmias such as ventricular tachycardia and ventricular fibrillation. We present in this thesis a new ionic channel model of the ventricular cardiac cell membrane to study the microscopic electrical properties of myocardium. We base our model on recent single channel experiment data and a simple physical diffusion model of the calcium channel. Our ionic channel model of myocardium has simpler differential equations and fewer parameters than previous models. Further more, our ionic channel model achieves better results in simulating the strength-interval curve when we connect the membrane patch model to form a one dimensional cardiac muscle strand. We go on to study a finite element model which uses multiple states and non-nearest neighbor interactions to include curvature and dispersion effects. We create a generalized lattice randomization to overcome the artifacts generated by the interaction between the local dynamics and the regularities of the square lattice. We show that the homogeneous model does not display spontaneous wavefront breakup in a reentrant wave propagation once the lattice artifacts have been smoothed out by lattice randomization with a randomization scale larger than the characteristic length of the interaction. We further develop a finite 3-D 3-state heart model which employs a probability interaction rule. This model is applied to the simulation of Body Surface Laplacian Mapping (BSLM) using a cylindrical volume conductor as the torso model. We show that BSLM has a higher spatial resolution than conventional mapping methods in revealing the underlying electrical activities of the heart. The results of these studies demonstrate that mathematical modeling and computer simulation are very
Finite element analysis for general elastic multi-structures
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A finite element method is introduced to solve the general elastic multi-structure problem, in which the displacements on bodies, the longitudinal displacements on plates and the longitudinal displacements on beams are discretized using conforming linear elements, the rotational angles on beams are discretized using conforming elements of second order, the transverse displacements on plates and beams are discretized by the Morley elements and the Hermite elements of third order, respectively. The generalized Korn's inequality is established on related nonconforming element spaces, which implies the unique solvability of the finite element method. Finally, the optimal error estimate in the energy norm is derived for the method.
THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2011-03-01
Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.
Finite Element Modelling of Seismic Liquefaction in Soils
Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.
2013-01-01
Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom
Parallel direct solver for finite element modeling of manufacturing processes
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, P.A.F.
2017-01-01
The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...
Finite element models applied in active structural acoustic control
Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.
2002-01-01
This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll
Viscoelastic finite-element analysis of human skull - dura mater ...
African Journals Online (AJOL)
SERVER
2008-03-18
Mar 18, 2008 ... In the work, the dynamic characteristics of the human skull-dura mater ... Ansys' finite element processor, a simplified three-dimensional finite element ... brain, cerebrospinal fluid (CSF), and the brain's blood ... ICP is often not preventable. .... The creep of linear viscoelastic solid can be simulated by the.
ALTERNATING DIRECTION FINITE ELEMENT METHOD FOR SOME REACTION DIFFUSION MODELS
Institute of Scientific and Technical Information of China (English)
江成顺; 刘蕴贤; 沈永明
2004-01-01
This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for the system of patrical differential equations. Besides, the finite difference method is utilized for the ordinary differential equation in the models. Moreover, by the theory and technique of prior estimates for the differential equations, the convergence analyses and the optimal L2- norm error estimates are demonstrated.
OBJECT-ORIENTED FINITE ELEMENT ANALYSIS AND PROGRAMMING IN VC + +
Institute of Scientific and Technical Information of China (English)
马永其; 冯伟
2002-01-01
The design of finite element analysis program using object-oriented programming(OOP) techniques is presented. The objects, classes and the subclasses used in theprogramming are explained. The system of classes library of finite element analysis programand Windows-type Graphical User Interfaces by VC + + and its MFC are developed. Thereliability, reusability and extensibility of program are enhanced. It is a reference todevelop the large-scale, versatile and powerful systems of object-oriented finite elementsoftware.
Finite Element Method for Analysis of Material Properties
DEFF Research Database (Denmark)
Rauhe, Jens Christian
description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using...
Finite element simulation of thick sheet thermoforming
Mercier, Daniel
This PhD was organized as collaboration between Lehigh University and the Ecole des Mines d'Albi on the subject: "Numerical simulation of thick sheet thermoforming". The research applications cover a wide range of products from thermoforming, e.g., packaging, automobile parts, appliance parts, large-scale panels and covers. Due to the special nature of this PhD, and the requirements of each hosting institutes, the research was split accordingly into two parts: At Lehigh University, under the supervision of Prof. Herman F. Nied, a full three-dimensional finite element program was developed in order to simulate the mechanical deformation during the process of thermoforming. The material behavior is considered hyperelastic with the property of incompressibility. The deformed structure may exhibit symmetries and may use a large choice of boundary conditions. A contact procedure for molds and/or displacements caused by a plug was implemented to complete the similarity with the thermoforming process. The research focused on simulating the observed nonlinear behaviors and their instabilities. The author emphasized the impact of large deformation on the numerical results and demonstrated the need for a remeshing capability. At the Ecole des Mines d'Albi, under the supervision of Prof. Fabrice Schmidt, an equi-biaxial rheometer was developed and built in order to determine the material properties during the process of thermoforming. Thermoplastic materials consist of long macromolecular chains that when stretched, during the process of sheet extrusion, exhibit a transversal isotropic behavior. The rheometer technique is the inflation of a circular membrane made of extruded thermoplastics. The resulting strain is identified by video analysis during the membrane inflation. This dissertation focused on technical issues related to heating with the goal of overcoming the difficulty of producing a homogeneous temperature distribution.
Finite element analysis of posterior cervical fixation.
Duan, Y; Wang, H H; Jin, A M; Zhang, L; Min, S X; Liu, C L; Qiu, S J; Shu, X Q
2015-02-01
Despite largely, used in the past, biomechanical test, to investigate the fixation techniques of subaxial cervical spine, information is lacking about the internal structural response to external loading. It is not yet clear which technique represents the best choice and whether stabilization devices can be efficient and beneficial for three-column injuries (TCI). The different posterior cervical fixation techniques (pedicle screw PS, lateral mass screw LS, and transarticular screw TS) have respective indications. A detailed, geometrically accurate, nonlinear C3-C7 finite element model (FEM) had been successfully developed and validated. Then three FEMs were reconstructed from different fixation techniques after C4-C6 TCI. A compressive preload of 74N combined with a pure moment of 1.8 Nm in flexion, extension, left-right lateral bending, and left-right axial rotation was applied to the FEMs. The ROM results showed that there were obvious significant differences when comparing the different fixation techniques. PS and TS techniques can provide better immediate stabilization, compared to LS technique. The stress results showed that the variability of von Mises stress in the TS fixation device was minimum and LS fixation device was maximum. Furthermore, the screws inserted by TS technique had high stress concentration at the middle part of the screws. Screw inserted by PS and LS techniques had higher stress concentration at the actual cap-rod-screw interface. The research considers that spinal surgeon should first consider using the TS technique to treat cervical TCI. If PS technique is used, we should eventually prolong the need for external bracing in order to reduce the higher risk of fracture on fixation devices. If LS technique is used, we should add anterior cervical operation for acquire a better immediate stabilization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
A Finite Element Method for Simulation of Compressible Cavitating Flows
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad
2016-11-01
This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.
Thermal Analysis of Thin Plates Using the Finite Element Method
Er, G. K.; Iu, V. P.; Liu, X. L.
2010-05-01
The isotropic thermal plate is analyzed with finite element method. The solution procedure is presented. The elementary stiffness matrix and loading vector are derived rigorously with variation principle and the principle of minimum potential energy. Numerical results are obtained based on the derived equations and tested with available exact solutions. The problems in the finite element analysis are figured out. It is found that the finite element solutions can not converge as the number of elements increases around the corners of the plate. The derived equations presented in this paper are fundamental for our further study on more complicated thermal plate analysis.
Finite Element Analysis of Fluid-Conveying Timoshenko Pipes
Directory of Open Access Journals (Sweden)
Chih-Liang Chu
1995-01-01
Full Text Available A general finite element formulation using cubic Hermitian interpolation for dynamic analysis of pipes conveying fluid is presented. Both the effects of shearing deformations and rotary inertia are considered. The development retains the use of the classical four degrees-of-freedom for a two-node element. The effect of moving fluid is treated as external distributed forces on the support pipe and the fluid finite element matrices are derived from the virtual work done due to the fluid inertia forces. Finite element matrices for both the support pipe and moving fluid are derived and given explicitly. A numerical example is given to demonstrate the validity of the model.
Finite element analysis of (SA) mechanoreceptors in tactile sensing application
N, Syamimi; Yahud, S.
2015-05-01
This paper addresses the structural design of a fingertip model in order to analyse the sensory function of slow adapting (SA) mechanoreceptors by using the finite element analysis (FEA) method. A biologically inspired tactile sensor was designed to mimic a similar response of the human mechanoreceptors in the human glabrous skin. The simulation work was done by using COMSOL Multiphysics. The artificial skin was modelled as a solid square block of silicone elastomer with a semi cylinder protrusion on top. It was modelled as a nearly incompressible and linear hyperelastic material defined by Neo Hookean constitutive law. The sensing element on the other hand was modelled by using constantan alloy mimicking the SA1 receptor. Boundary loads of 1 N/m² to 4 N/m² with the increment of 1 N/m² were applied to the top surface of the protrusion in z and x-direction for normal and shear stress, respectively. The epidermal model base was constrained to maintain the same boundary conditions throughout all simulations. The changes of length experienced by the sensing element were calculated. The simulations result in terms of strain was identified. The simulated result was plotted in terms of sensing element strain against the boundary load and the graph should produce a linear response.
Energy Technology Data Exchange (ETDEWEB)
Deb, M.K.; Kennon, S.R.
1998-04-01
A cooperative R&D effort between industry and the US government, this project, under the HPPP (High Performance Parallel Processing) initiative of the Dept. of Energy, started the investigations into parallel object-oriented (OO) numerics. The basic goal was to research and utilize the emerging technologies to create a physics-independent computational kernel for applications using adaptive finite element method. The industrial team included Computational Mechanics Co., Inc. (COMCO) of Austin, TX (as the primary contractor), Scientific Computing Associates, Inc. (SCA) of New Haven, CT, Texaco and CONVEX. Sandia National Laboratory (Albq., NM) was the technology partner from the government side. COMCO had the responsibility of the main kernel design and development, SCA had the lead in parallel solver technology and guidance on OO technologies was Sandia`s main expertise in this venture. CONVEX and Texaco supported the partnership by hardware resource and application knowledge, respectively. As such, a minimum of fifty-percent cost-sharing was provided by the industry partnership during this project. This report describes the R&D activities and provides some details about the prototype kernel and example applications.
Finite element method for thermal analysis of concentrating solar receivers
Shtrakov, Stanko; Stoilov, Anton
2006-01-01
Application of finite element method and heat conductivity transfer model for calculation of temperature distribution in receiver for dish-Stirling concentrating solar system is described. The method yields discretized equations that are entirely local to the elements and provides complete geometric flexibility. A computer program solving the finite element method problem is created and great number of numerical experiments is carried out. Illustrative numerical results are given for an array...
PRECONDITIONING HIGHER ORDER FINITE ELEMENT SYSTEMS BY ALGEBRAIC MULTIGRID METHOD OF LINEAR ELEMENTS
Institute of Scientific and Technical Information of China (English)
Yun-qing Huang; Shi Shu; Xi-jun Yu
2006-01-01
We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.
Finite-element formulations for problems of large elastic-plastic deformation
Mcmeeking, R. M.; Rice, J. R.
1975-01-01
An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventional finite element program, for 'small strain' elastic-plastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. The paper closes with a unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures. Further, a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain, and the inadequacies of some of these are commented upon.
Finite element formulations for problems of large elastic-plastic deformation
Mcmeeking, R. M.; Rice, J. R.
1974-01-01
An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is suited to isotropically hardening Prandtl-Reuss materials. The formulation is given in a manner which allows any conventional finite element program, for "small strain" elasticplastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. A unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures, and a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain.
Determination of an Initial Mesh Density for Finite Element Computations via Data Mining
Energy Technology Data Exchange (ETDEWEB)
Kanapady, R; Bathina, S K; Tamma, K K; Kamath, C; Kumar, V
2001-07-23
Numerical analysis software packages which employ a coarse first mesh or an inadequate initial mesh need to undergo a cumbersome and time consuming mesh refinement studies to obtain solutions with acceptable accuracy. Hence, it is critical for numerical methods such as finite element analysis to be able to determine a good initial mesh density for the subsequent finite element computations or as an input to a subsequent adaptive mesh generator. This paper explores the use of data mining techniques for obtaining an initial approximate finite element density that avoids significant trial and error to start finite element computations. As an illustration of proof of concept, a square plate which is simply supported at its edges and is subjected to a concentrated load is employed for the test case. Although simplistic, the present study provides insight into addressing the above considerations.
Finite Element Simulation of Blanking Process
Directory of Open Access Journals (Sweden)
Afzal Ahmed
2012-10-01
daya penembusan sebanyak 42%. Daya tebukan yang diukur melalui eksperimen dan simulasi kekal pada kira-kira 90kN melepasi penembusan punch sebanyak 62%. Apabila ketebalan keputusan kunci ditambah, ketinggian retak dikurangkan dan ini meningkatkan kualiti pengosongan.KEYWORDS: simulation; finite element simulation; blanking; computer aided manufacturing
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
Effective Stiffness: Generalizing Effective Resistance Sampling to Finite Element Matrices
Avron, Haim
2011-01-01
We define the notion of effective stiffness and show that it can used to build sparsifiers, algorithms that sparsify linear systems arising from finite-element discretizations of PDEs. In particular, we show that sampling $O(n\\log n)$ elements according to probabilities derived from effective stiffnesses yields an high quality preconditioner that can be used to solve the linear system in a small number of iterations. Effective stiffness generalizes the notion of effective resistance, a key ingredient of recent progress in developing nearly linear symmetric diagonally dominant (SDD) linear solvers. Solving finite elements problems is of considerably more interest than the solution of SDD linear systems, since the finite element method is frequently used to numerically solve PDEs arising in scientific and engineering applications. Unlike SDD systems, which are relatively easy to precondition, there has been limited success in designing fast solvers for finite element systems, and previous algorithms usually tar...
A mixed finite element for the analysis of laminated plates
Putcha, N. S.; Reddy, J. N.
1983-01-01
A new mixed shear-flexible finite element based on the Hellinger-Reissner's variational principle is developed. The element is constructed using a mixed formulation of the shear deformation theory of laminated composite plates, and consists of three displacements, two shear rotations, and three moments as the independent degrees of freedom. The numerical convergence and accuracy characteristics of the element are investigated for bending of laminated anisotropic composite plates. The element is relatively simple to construct and has better accuracy and convergence features when compared to other conventional finite elements.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems.It is proved that the semi-discrete mortar upwind finite volume element approximations derived are convergent in the H1- and L2-norms.
Five-point Element Scheme of Finite Analytic Method for Unsteady Groundwater Flow
Institute of Scientific and Technical Information of China (English)
Xiang Bo; Mi Xiao; Ji Changming; Luo Qingsong
2007-01-01
In order to improve the finite analytic method's adaptability for irregular unit, by using coordinates rotation technique this paper establishes a five-point element scheme of finite analytic method. It not only solves unsteady groundwater flow equation but also gives the boundary condition. This method can be used to calculate the three typical questions of groundwater. By compared with predecessor's computed result, the result of this method is more satisfactory.
Implementation of a strain energy-based nonlinear finite element in the object-oriented environment
Wegner, Tadeusz; Pęczak, Andrzej
2010-03-01
The objective of the paper is to describe a novel finite element computational method based on a strain energy density function and to implement it in the object-oriented environment. The original energy-based finite element was put into the known standard framework of classes and handled in a different manner. The nonlinear properties of material are defined with a modified strain energy density function. The local relaxation procedure proposed as a method used to resolve a nonlinear problem is implemented in C++ language. The hexahedral element with eight nodes as well as the adaptation of the nonlinear finite element is introduced. The chosen numerical model is made of nearly incompressible hyperelastic material. The application of the proposed element is shown on the example of a rectangular parallelepiped with a hollow port.
Partitions of nonzero elements of a finite field into pairs
Karasev, R N
2010-01-01
In this paper we prove two theorems. Informally, they claim that the nonzero elements of a finite field with odd characteristic can be partitioned into pairs with prescribed difference (maybe, with some alternatives) in each pair. We also consider some generalizations of these results to packing translates in a finite or infinite field.
Finite Element Method for Analysis of Material Properties
DEFF Research Database (Denmark)
Rauhe, Jens Christian
The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...
Institute of Scientific and Technical Information of China (English)
Bahattin Kanber; O.Yavuz Bozkurt
2006-01-01
In this work,the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements.The shape functions of the transition plate elements are derived based on a practical rule.The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements.The mesh convergence rates of the models including the transition elements are compared with the regular element models.To verify the developed elements,simple tests are demonstrated and various elasto-plastic problems are solved.Their results are compared with ANSYS results.
Stochastic finite element analysis of steel structures
Waarts, P.H.; Vrouwenvelder, A.C.W.M.
1999-01-01
The paper describes two well known but adapted methods for calculating the probability of failure of structures. First the First Order Reliability Method (FORM) is described using an adapted response surface. Secondly the Directional Sampling (DS) procedure is described using truncated stochastic di
Finite Element Crash Simulations and Impact-Induced Injuries
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.
Generalized multiscale finite element method. Symmetric interior penalty coupling
Efendiev, Yalchin R.
2013-12-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.
Finite Element Models for Electron Beam Freeform Fabrication Process Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal offers to develop a comprehensive computer simulation methodology based on the finite element method for...
Finite Element Models for Electron Beam Freeform Fabrication Process Project
National Aeronautics and Space Administration — This Small Business Innovation Research proposal offers to develop the most accurate, comprehensive and efficient finite element models to date for simulation of the...
Vehicle Interior Noise Prediction Using Energy Finite Element Analysis Project
National Aeronautics and Space Administration — It is proposed to develop and implement a computational technique based on Energy Finite Element Analysis (EFEA) for interior noise prediction of advanced aerospace...
Structural analysis with the finite element method linear statics
Oñate, Eugenio
2013-01-01
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elas...
Finite Element Crash Simulations and Impact-Induced Injuries
Mackerle, Jaroslav
1999-01-01
This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.
Finite element analysis of rotating beams physics based interpolation
Ganguli, Ranjan
2017-01-01
This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.
Finite element model updating using bayesian framework and modal properties
CSIR Research Space (South Africa)
Marwala, T
2005-01-01
Full Text Available Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace structures. These models often give results that differ from measured results and therefore need to be updated to match measured results. Some...
Accurate Parallel Algorithm for Adini Nonconforming Finite Element
Institute of Scientific and Technical Information of China (English)
罗平; 周爱辉
2003-01-01
Multi-parameter asymptotic expansions are interesting since they justify the use of multi-parameter extrapolation which can be implemented in parallel and are well studied in many papers for the conforming finite element methods. For the nonconforming finite element methods, however, the work of the multi-parameter asymptotic expansions and extrapolation have seldom been found in the literature. This paper considers the solution of the biharmonic equation using Adini nonconforming finite elements and reports new results for the multi-parameter asymptotic expansions and extrapolation. The Adini nonconforming finite element solution of the biharmonic equation is shown to have a multi-parameter asymptotic error expansion and extrapolation. This expansion and a multi-parameter extrapolation technique were used to develop an accurate approximation parallel algorithm for the biharmonic equation. Finally, numerical results have verified the extrapolation theory.
COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES
Institute of Scientific and Technical Information of China (English)
Zuorong Chen; A.P. Bunger; Xi Zhang; Robert G. Jeffrey
2009-01-01
Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.
SPECTRAL FINITE ELEMENT METHOD FOR A UNSTEADY TRANSPORT EQUATION
Institute of Scientific and Technical Information of China (English)
MeiLiquan
1999-01-01
In this paper,a new numerical method,the coupling method of spherical harmonic function spectral and finite elements,for a unsteady transport equation is dlscussed,and the error analysis of this scheme is proved.
On mixed finite element techniques for elliptic problems
Directory of Open Access Journals (Sweden)
M. Aslam Noor
1983-01-01
mildly nonlinear elliptic problems by means of finite element methods of mixed type. The technique is based on an extended variational principle, in which the constraint of interelement continuity has been removed at the expense of introducing a Lagrange multiplier.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Energy Technology Data Exchange (ETDEWEB)
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Finite Element Meshes Auto-Generation for the Welted Bifurcation
Institute of Scientific and Technical Information of China (English)
YUANMei; LIYa-ping
2004-01-01
In this paper, firstly, a mathematical model for a specific kind of welted bifurcation is established, the parametric equation for the intersecting curve is resulted in. Secondly, a method for partitioning finite element meshes of the welted bifurcation is put forward, its main idea is that developing the main pipe surface and the branch pipe surface respectively, dividing meshes on each developing plane and obtaining meshes points, then transforming their plane coordinates into space coordinates. Finally, an applied program for finite element meshes auto-generation is simply introduced, which adopt ObjectARX technique and its running result can be shown in AutoCAD. The meshes generated in AutoCAD can be exported conveniently to most of finite element analysis soft wares, and the finite element computing result can satisfy the engineering precision requirement.
Engineering and Design: Geotechnical Analysis by the Finite Element Method
2007-11-02
used it to determine stresses and movements in embank- ments, and Reyes and Deer described its application to analysis of underground openings in rock...3-D steady-state seepage analysis of permeability of the cutoff walls was varied from 10 to Cerrillos Dam near Ponce , Puerto Rico, for the U.S.-6 10...36 Hughes, T. J. R. (1987). The Finite Element Reyes , S. F., and Deene, D. K. (1966). “Elastic Method, Linear Static and Dynamic Finite Element
On the error bounds of nonconforming finite elements
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We prove that the error estimates of a large class of nonconforming finite elements are dominated by their approximation errors, which means that the well-known Cea’s lemma is still valid for these nonconforming finite element methods. Furthermore, we derive the error estimates in both energy and L2 norms under the regularity assumption u ∈ H1+s(Ω) with any s > 0. The extensions to other related problems are possible.
Anisotropic rectangular nonconforming finite element analysis for Sobolev equations
Institute of Scientific and Technical Information of China (English)
SHI Dong-yang; WANG Hai-hong; GUO Cheng
2008-01-01
An anisotropic rectangular nonconforming finite element method for solving the Sobolev equations is discussed under semi-discrete and full discrete schemes.The corresponding optimal convergence error estimates and superclose property are derived,which are the same as the traditional conforming finite elements.Furthermore,the global superconvergence is obtained using a post-processing technique.The numerical results show the validity of the theoretical analysis.
A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION
Institute of Scientific and Technical Information of China (English)
Chen Huaran; Li Yiqun; He Qiaoyun; Zhang Jieqing; Ma Hongsheng; Li Li
2003-01-01
On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the area of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.
A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION
Institute of Scientific and Technical Information of China (English)
ChenHuaran; LiYiqun; HeQiaoyun; ZhangJieqing; MaHongsheng; LiLi
2003-01-01
On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the are a of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.
THE DERIVATIVE PATCH INTERPOLATING RECOVERY TECHNIQUE FOR FINITE ELEMENT APPROXIMATIONS
Institute of Scientific and Technical Information of China (English)
TieZhang; Yan-pingLin; R.J.Tait
2004-01-01
A derivative patch interpolating recovery technique is analyzed for the finite element approximation to the second order elliptic boundary value problems in two dimensional case.It is shown that the convergence rate of the recovered gradient admits superc onvergence on the recovered subdomain, and is two order higher than the optimal global convergence rate (ultracovergence) at an internal node point when even order finite element spaces and local uniform meshes are used.
Integration of geometric modeling and advanced finite element preprocessing
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
Symmetric Matrix Fields in the Finite Element Method
Directory of Open Access Journals (Sweden)
Gerard Awanou
2010-07-01
Full Text Available The theory of elasticity is used to predict the response of a material body subject to applied forces. In the linear theory, where the displacement is small, the stress tensor which measures the internal forces is the variable of primal importance. However the symmetry of the stress tensor which expresses the conservation of angular momentum had been a challenge for finite element computations. We review in this paper approaches based on mixed finite element methods.
Finite element analysis to model complex mitral valve repair.
Labrosse, Michel; Mesana, Thierry; Baxter, Ian; Chan, Vincent
2016-01-01
Although finite element analysis has been used to model simple mitral repair, it has not been used to model complex repair. A virtual mitral valve model was successful in simulating normal and abnormal valve function. Models were then developed to simulate an edge-to-edge repair and repair employing quadrangular resection. Stress contour plots demonstrated increased stresses along the mitral annulus, corresponding to the annuloplasty. The role of finite element analysis in guiding clinical practice remains undetermined.
Determination of a synchronous generator characteristics via Finite Element Analysis
Directory of Open Access Journals (Sweden)
Kolondzovski Zlatko
2005-01-01
Full Text Available In the paper a determination of characteristics of a small salient pole synchronous generator (SG is presented. Machine characteristics are determined via Finite Element Analysis (FEA and for that purpose is used the software package FEMM Version 3.3. After performing their calculation and analysis, one can conclude that most of the characteristics presented in this paper can be obtained only by using the Finite Element Method (FEM.
A class of hybrid finite element methods for electromagnetics: A review
Volakis, J. L.; Chatterjee, A.; Gong, J.
1993-01-01
Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.
A finite element primer for beginners the basics
Zohdi, Tarek I
2014-01-01
The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:(1) Weighted residual methods and Galerkin approximations,(2) A model problem for one-dimensional?linear elastostatics,(3) Weak formulations in one dimension,(4) Minimum principles in one dimension,(5) Error estimation in one dimension,(5) Construction of Finite Element basis functions in one dimension,(6) Gaussian Quadrature,(7) Iterative solvers and element by element data structures,(8) A model problem for th
Finite Element Model Updating Using Response Surface Method
Marwala, Tshilidzi
2007-01-01
This paper proposes the response surface method for finite element model updating. The response surface method is implemented by approximating the finite element model surface response equation by a multi-layer perceptron. The updated parameters of the finite element model were calculated using genetic algorithm by optimizing the surface response equation. The proposed method was compared to the existing methods that use simulated annealing or genetic algorithm together with a full finite element model for finite element model updating. The proposed method was tested on an unsymmetri-cal H-shaped structure. It was observed that the proposed method gave the updated natural frequen-cies and mode shapes that were of the same order of accuracy as those given by simulated annealing and genetic algorithm. Furthermore, it was observed that the response surface method achieved these results at a computational speed that was more than 2.5 times as fast as the genetic algorithm and a full finite element model and 24 ti...
Enhanced patch test of finite element methods
Institute of Scientific and Technical Information of China (English)
CHEN; Wanji
2006-01-01
Theoretically, the constant stress patch test is not rigorous. Also, either the patch test of non-zero constant shear for Mindlin plate problem or non-zero strain gradient curvature of the microstructures cannot be performed. To improve the theory of the patch test, in this paper, based on the variational principle with relaxed continuity requirement of nonconforming element for homogeneous differential equations, the author proposed the individual element condition for passing the patch test and the convergence condition of the element: besides passing the patch test, the element function should include the rigid body modes and constant strain modes and satisfy the weak continuity condition, and no extra zero energy modes occur. Moreover, the author further established a variational principle with relaxed continuity requirement of nonconforming element for inhomogeneous differential equations, the enhanced patch test condition and the individual element condition. To assure the convergence of the element that should pass the enhanced patch test, the element function should include the rigid body modes and non-zero strain modes which satisfied the equilibrium equations, and no spurious zero energy modes occur and should satisfy new weak continuity condition. The theory of the enhanced patch test proposed in this paper can be applied to both homogeneous and inhomogeneous differential equations. Based on this theory, the patch test of the non-zero constant shear stress for Mindlin plate and the C0-1 patch test of the non-zero constant curvature for the couple stress/strain gradient theory were established.
CSIR Research Space (South Africa)
Loveday, PW
2007-03-01
Full Text Available conventional finite element methods available in commercial software, these models tend to be very large. An alternative method is to use specially formulated waveguide finite elements (sometimes called Semi-Analytical Finite Elements). Models using...
Advances in the study of hybrid finite elements
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.
Randomized Oversampling for Generalized Multiscale Finite Element Methods
Calo, Victor M.
2016-03-23
In this paper, we develop efficient multiscale methods for flows in heterogeneous media. We use the generalized multiscale finite element (GMsFEM) framework. GMsFEM approximates the solution space locally using a few multiscale basis functions. This approximation selects an appropriate snapshot space and a local spectral decomposition, e.g., the use of oversampled regions, in order to achieve an efficient model reduction. However, the successful construction of snapshot spaces may be costly if too many local problems need to be solved in order to obtain these spaces. We use a moderate quantity of local solutions (or snapshot vectors) with random boundary conditions on oversampled regions with zero forcing to deliver an efficient methodology. Motivated by the randomized algorithm presented in [P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the approximation of Matrices, YALEU/DCS/TR-1361, Yale University, 2006], we consider a snapshot space which consists of harmonic extensions of random boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale spaces are adaptively enriched. Convergence analysis is provided. We present representative numerical results to validate the method proposed.
Implementation of a finite-element approximation of the Mumford-Shah functional
DEFF Research Database (Denmark)
Bourdin, Blaise; Chambolle, Antonin
1999-01-01
We present and detail a method for the numerical solving of the Mumford-Shah problem, based on a finite element method and on adaptive meshes. We start with a formulation introduced by A. Chambolle and G. Dal Maso, detail its numerical implementation and then propose a variant which is proved to ...
Energy Technology Data Exchange (ETDEWEB)
Steibler, P.
2000-07-01
The unsteady, turbulent flow is to be calculated in a complex geometry. For this purpose a stabilized finite element formulation in which the same functions for velocity and pressure are used is developed. Thus the process remains independent of the type of elements. This simplifies the application. Above all, it is easier to deal with the boundary conditions. The independency from the elements is also achieved by the extended uzawa-algorithm which uses quadratic functions for velocity and an element-constant pressure. This method is also programmed. In order to produce the unstructured grids, an algorithm is implemented which produces meshes consisting of triangular and tetrahedral elements with flow-dependent adaptation. With standard geometries both calculation methods are compared with results. Finally the flow in a draft tube of a Kaplan turbine is calculated and compared with results from model tests. (orig.) [German] Die instationaere, turbulente Stroemung in einer komplexen Geometrie soll berechnet werden. Dazu wird eine Stabilisierte Finite Element Formulierung entwickelt, bei der die gleichen Ansatzfunktionen fuer Geschwindigkeiten und Druck verwendet werden. Das Verfahren wird damit unabhaengig von der Form der Elemente. Dies vereinfacht die Anwendung. Vor allem wird der Umgang mit den Randbedingungen erleichert. Die Elementunabhaengigkeit erreicht man auch mit dem erweiterten Uzawa-Algorithmus, welcher quadratische Ansatzfunktionen fuer die Geschwindigkeiten und elementweisen konstanten Druck verwendet. Dieses Verfahren wird ebenso implementiert. Zur Erstellung der unstrukturierten Gitter wird ein Algorithmus erzeugt, der Netze aus Dreiecks- und Tetraederelementen erstellt, welche stroemungsabhaengige Groessen besitzen koennen. Anhand einiger Standardgeometrien werden die beiden Berechnungsmethoden mit Ergebnissen aus der Literatur verglichen. Als praxisrelevantes Beispiel wird abschliessend die Stroemung in einem Saugrohr einer Kaplanturbine berechnet
A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2012-01-01
The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex geo
Asymptotic Behavior of the Finite Difference and the Finite Element Methods for Parabolic Equations
Institute of Scientific and Technical Information of China (English)
LIU Yang; FENG Hui
2005-01-01
The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continuous time.
A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2012-01-01
The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex
A shell finite element model of the pelvic floor muscles.
d'Aulignac, D; Martins, J A C; Pires, E B; Mascarenhas, T; Jorge, R M Natal
2005-10-01
The pelvic floor gives support to the organs in the abdominal cavity. Using the dataset made public in (Janda et al. J. Biomech. (2003) 36(6), pp. 749-757), we have reconstructed the geometry of one of the most important parts of the pelvic floor, the levator ani, using NURB surfaces. Once the surface is triangulated, the corresponding mesh is used in a finite element analysis with shell elements. Based on the 3D behavior of the muscle we have constructed a shell that takes into account the direction of the muscle fibers and the incompressibility of the tissue. The constitutive model for the isotropic strain energy and the passive strain energy stored in the fibers is adapted from Humphrey's model for cardiac muscles. To this the active behavior of the skeletal muscle is added. We present preliminary results of a simulation of the levator ani muscle under pressure and with active contraction. This research aims at helping simulate the damages to the pelvic floor that can occur after childbirth.
Institute of Scientific and Technical Information of China (English)
陈蔚
2003-01-01
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density.The electric potential equation is discretized by a mixed finite element method.The electron and hole density equations are treated by implicit-explicit multistep finite element methods.The schemes are very efficient.The optimal order error estimates both in time and space are derived.
B Free Finite Element Approach for Saturated Porous Media: Consolidation
Directory of Open Access Journals (Sweden)
M. M. Stickle
2016-01-01
Full Text Available The B free finite element approach is applied to the governing equations describing the consolidation process in saturated poroelastic medium with intrinsically incompressible solid and fluid phases. Under this approach, where Voigt notation is avoided, the finite element equilibrium equations and the linearization of the coupled governing equations are fully derived using tensor algebra. In order to assess the B free approach for the consolidation equations, direct comparison with analytical solution of the response of a homogeneous and isotropic water-saturated poroelastic finite column under harmonic load is presented. The results illustrate the capability of this finite element approach of reproducing accurately the response of quasistatic phenomena in a saturated porous medium.
Kriging-Based Finite Element Method: Element-By-Element Kriging Interpolation
Directory of Open Access Journals (Sweden)
W. Kanok-Nukulchai
2009-01-01
Full Text Available An enhancement of the finite element method with Kriging shape functions (K-FEM was recently proposed. In this method, the field variables of a boundary value problem are approximated using ‘element-by-element’ piecewise Kriging interpolation (el-KI. For each element, the interpolation function is constructed from a set of nodes within a prescribed domain of influence comprising the element and its several layers of neighbouring elements. This paper presents a numerical study on the accuracy and convergence of the el-KI in function fitting problems. Several examples of functions in two-dimensional space are employed in this study. The results show that very accurate function fittings and excellent convergence can be attained by the el-KI.
Adaptive finite difference for seismic wavefield modelling in acoustic media.
Yao, Gang; Wu, Di; Debens, Henry Alexander
2016-08-05
Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme.
An implicit discontinuous Galerkin finite element model for water waves
van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno
2005-01-01
We discuss a new higher order accurate discontinuous Galerkin finite element method for non-linear free surface gravity waves. The algorithm is based on an arbitrary Lagrangian Eulerian description of the flow field using deforming elements and a moving mesh, which makes it possible to represent
Finite Element Vibration Analysis of Beams, Plates and Shells
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element vibration analysis of beams, plates and shells that were published in 1994–1998. It contains 361 citations. Also included, as separated subsections, are vibration analysis of composite materials and vibration analysis of structural elements with cracks/contacts.
A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS
Institute of Scientific and Technical Information of China (English)
Tian-xiao Zhou; Xiao-ping Xie
2003-01-01
In this paper, a combined hybrid method is applied to finite element discretization ofplate bending problems. It is shown that the resultant schemes are stabilized, i.e., theconvergence of the schemes is independent of inf-sup conditions and any other patch test.Based on this, two new series of plate elements are proposed.
Efficient Finite Element Methods for Transient Analysis of Shells.
1985-04-01
Triangular Shell Element with Improved Membrane Interpolation," Communications in Applied Numerical Methods , in press 1985. Results of this work were...in Applied Numerical Methods , to appear. G.R. Cowper, G.M. Lindberg and M.D. Olson (1970), "A Shallow Shell Finite Element of Triangular Shape," Int. J
Research of Stamp Forming Simulation Based on Finite Element Method
Institute of Scientific and Technical Information of China (English)
SU Xaio-ping; XU Lian
2008-01-01
We point out that the finite element method offers a greta functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamping forming, the element model of sheet forming is built based on software HyperMesh,and the simulation of the product's sheet forming process is analyzed based on software Dynaform. A series of simulation results are obtained. It is clear that the simulation results from the theoretical basis for the product's die design and are useful for selecting process parameters.
Finite element analysis of two disk rotor system
Dixit, Harsh Kumar
2016-05-01
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
Preconditioned CG-solvers and finite element grids
Energy Technology Data Exchange (ETDEWEB)
Bauer, R.; Selberherr, S. [Technical Univ. of Vienna (Austria)
1994-12-31
To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.
Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures
DEFF Research Database (Denmark)
Flodén, Ola; Persson, Kent; Sjöström, Anders
2012-01-01
The application of wood as a construction material when building multi-storey buildings has many advantages, e.g., light weight, sustainability and low energy consumption during the construction and lifecycle of the building. However, compared to heavy structures, it is a greater challenge to build...... lightweight structures without noise and disturbing vibrations between storeys and rooms. The dynamic response of floor and wall structures may be investigated using finite element models with three-dimensional solid elements [1]. In order to analyse the global response of complete buildings, finite element...
Footbridge between finite volumes and finite elements with applications to CFD
Pascal, Frédéric; Ghidaglia, Jean-Michel
2001-12-01
The aim of this paper is to introduce a new algorithm for the discretization of second-order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier-Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright
ELASTO-PLASTIC FINITE ELEMENT ANALYSIS OF HOOK'S JOINT
Directory of Open Access Journals (Sweden)
Adnan ATICI
1996-03-01
Full Text Available In this study, stress analysis has been done in Hooke's joint by the finite element method. In finite element meshing, isoparametric quadrilateral elements with four nodes has been chosen and Lagrange polynomial has been used as the interpolation function. The special computer program has been written for the automatic mesh generation. In addition the other program has been developed to solve the finite element problems. Elastoplastic stress analysis is done to calculate the residual stresses in hooke's joint. Elasto-plastic stress values are calculated under loading from 400 daN to 1000 daN with increment of 100 daN. In this analysis "The initial stress method" is used.
Finite element analysis of piezoelectric underwater transducers for acoustic characteristics
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Hwan [Inha University, Incheon (Korea, Republic of); Kim, Heung Soo [Catholic University, Daegu (Korea, Republic of)
2009-02-15
This paper presents a simulation technique for analyzing acoustic characteristics of piezoelectric underwater transducers. A finite element method is adopted for modeling piezoelectric coupled problems including material damping and fluid-structure interaction problems by taking system matrices in complex form. For the finite element modeling of unbounded acoustic fluid, infinite wave envelope element (IWEE) is adopted to take into account the infinite domain. An in-house finite element program is developed and technical issues for implementing the program are explained. Using the simulation program, acoustic characteristics of tonpilz transducer are analyzed in terms of modal analysis, radiated pressure distribution, pressure spectrum, transmitting-voltage response and impedance analysis along with experimental comparison. The developed simulation technique can be used for designing ultrasonic transducers in the areas of nondestructive evaluation, underwater acoustics and bioengineering
Finite element analysis for acoustic characteristics of a magnetostrictive transducer
Kim, Jaehwan; Jung, Eunmi
2005-12-01
This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.
Effective Finite Elements for Shell Analysis.
1984-02-20
conjunction with a shallow shell theory . It 2 should be noteJ that contrary to the results of earlier investigators [12,19], use of a shallow shell theory in...the inadequacy of the shallow shell theory for the relatively deep element emerging from such a coarse mesh. A considerable improvement is obtained
FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div) ELEMENTS
Institute of Scientific and Technical Information of China (English)
Junping Wang; Xiaoshen Wang; Xiu Ye
2008-01-01
We derived and analyzed a new numerical scheme for the Navier-Stokes equations by using H(div) conforming finite elements. A great deal of effort was given to an establishment of some Sobolev-type inequalities for piecewise smooth functions. In particular, the newly derived Sobolev inequalities were employed to provide a mathematical theory for the H(div) finite element scheme. For example, it was proved that the new finite element scheme has solutions which admit a certain boundedness in terms of the input data. A solution uniqueness was also possible when the input data satisfies a certain smallness condition. Optimal-order error estimates for the corresponding finite element solutions were established in various Sobolev norms. The finite element solutions from the new scheme feature a full satisfaction of the continuity equation which is highly demanded in scientific computing.
Design of Finite Element Tools for Coupled Surface and Volume Meshes
Institute of Scientific and Technical Information of China (English)
Daniel K(o)ster; Oliver Kriessl; Kunibert G. Siebert
2008-01-01
Many problems with underlying variational structure involve a coupling of volume with surface effects. A straight-forward approach in a finite element discretization is to make use of the surface triangulation that is naturally induced by the volume triangulation. In an adaptive method one wants to facilitate "matching" local mesh modifications, i.e., local refinement and/or coarsening, of volume and surface mesh with standard tools such that the surface grid is always induced by the volume grid. We describe the concepts behind this approach for bisectional refinement and describe new tools incorporated in the finite element toolbox ALBERTA. We also present several important applications of the mesh coupling.
Variational formulation of high performance finite elements: Parametrized variational principles
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
New triangular and quadrilateral plate-bending finite elements
Narayanaswami, R.
1974-01-01
A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.
On Using Particle Finite Element for Hydrodynamics Problems Solving
Directory of Open Access Journals (Sweden)
E. V. Davidova
2015-01-01
Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \
Finite Element Analysis of Circular Plate using SolidWorks
Energy Technology Data Exchange (ETDEWEB)
Kang, Yeo Jin; Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2011-10-15
Circular plates are used extensively in mechanical engineering for nuclear reactor internal components. The examples in the reactor vessel internals are upper guide structure support plate, fuel alignment plate, lower support plate etc. To verify the structural integrity of these plates, the finite element analyses are performed, which require the development of the finite element model. Sometimes it is very costly and time consuming to make the model especially for the beginners who start their engineering job for the structural analysis, necessitating a simple method to develop the finite element model for the pursuing structural analysis. Therefore in this study, the input decks are generated for the finite element analysis of a circular plate as shown in Fig. 1, which can be used for the structural analysis such as modal analysis, response spectrum analysis, stress analysis, etc using the commercial program Solid Works. The example problems are solved and the results are included for analysts to perform easily the finite element analysis of the mechanical plate components due to various loadings. The various results presented in this study would be helpful not only for the benchmark calculations and results comparisons but also as a part of the knowledge management for the future generation of young designers, scientists and computer analysts
Energy Technology Data Exchange (ETDEWEB)
Nascimento, Francisco Rogerio Teixeira do
2013-07-01
The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)
Institute of Scientific and Technical Information of China (English)
GUZELBEY Ibrahim H.; KANBER Bahattin; AKPOLAT Abdullah
2004-01-01
In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling.
A Finite Element Method for Cracked Components of Structures
Institute of Scientific and Technical Information of China (English)
刘立名; 段梦兰; 秦太验; 刘玉标; 柳春图; 余建星
2003-01-01
In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.
An Object Oriented, Finite Element Framework for Linear Wave Equations
Energy Technology Data Exchange (ETDEWEB)
Koning, J M
2004-08-12
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
Engineering computation of structures the finite element method
Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério
2015-01-01
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...
An Object Oriented, Finite Element Framework for Linear Wave Equations
Energy Technology Data Exchange (ETDEWEB)
Koning, Joseph M. [Univ. of California, Berkeley, CA (United States)
2004-03-01
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
Finite element modeling for volume phantom in Electrical Impedance Tomography
Directory of Open Access Journals (Sweden)
I. O. Rybina
2011-10-01
Full Text Available Using surface phantom, "shadows" of currents, which flow below and under surface tomographic lays, include on this lay, that is cause of adding errors in reconstruction image. For processing modeling in studied object volume isotropic finite elements should be used. Cube is chosen for finite element modeling in this work. Cube is modeled as sum of six rectangular (in the base pyramids, each pyramid consists of four triangular pyramids (with rectangular triangle in the base and hypotenuse, which is equal to cube rib to provide its uniformity and electrical definition. In the case of modeling on frequencies higher than 100 kHz biological tissue resistivities are complex. In this case weight coefficient k will be complex in received cube electrical model (inverse conductivity matrix of the cube finite element.
The Finite Element Numerical Modelling of 3D Magnetotelluric
Directory of Open Access Journals (Sweden)
Ligang Cao
2014-01-01
Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.
Probabilistic finite elements for transient analysis in nonlinear continua
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
EXPLICIT ERROR ESTIMATES FOR MIXED AND NONCONFORMING FINITE ELEMENTS
Institute of Scientific and Technical Information of China (English)
Shipeng Mao; Zhong-Ci Shi
2009-01-01
In this paper, we study the explicit expressions of the constants in the error estimates of the lowest order mixed and nonconforming finite element methods. We start with an ex-plicit relation between the error constant of the lowest order Raviart-Thomas interpolation error and the geometric characters of the triangle. This gives an explicit error constant of the lowest order mixed finite element method. Furthermore, similar results can be ex-tended to the nonconforming P1 scheme based on its close connection with the lowest order Raviart-Thomas method. Meanwhile, such explicit a priori error estimates can be used as computable error bounds, which are also consistent with the maximal angle condition for the optimal error estimates of mixed and nonconforming finite element methods.Mathematics subject classification: 65N12, 65N15, 65N30, 65N50.
Finite Element Residual Stress Analysis of Planetary Gear Tooth
Directory of Open Access Journals (Sweden)
Jungang Wang
2013-01-01
Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.
Finite element analysis of magnetization reversal in granular thin films
Spargo, A W
2002-01-01
This thesis develops a Galerkin finite element model of magnetisation dynamics in granular thin films. The governing equations of motion are the Gilbert equations with an effective magnetic field taking contributions from exchange interactions, magnetocrystalline anisotropy, applied magnetic field as well as the magnetostatic field given by Maxwells equations. The magnetostatic field is formulated as a scalar potential described by Poissons equation which is solved using a second order finite element method. The Gilbert equations are discretized in time using an implicit midpoint method which naturally conserves the magnitude of the magnetisation vector. An infinite thin film is approximated using periodic boundary conditions with material microstructure represented using the Voronoi tessellation. The effects of thermal fluctuations are modelled by the stochastic Langevin-Gilbert equations, again solved by a Galerkin finite element method. The implicit midpoint time-stepping scheme ensures that solutions conv...
Finite element simulation of barge impact into a rigid wall
Directory of Open Access Journals (Sweden)
H.W. Leheta
2014-03-01
Many approaches have been developed in order to obtain these impact loads. In general, collision mechanics for floating units is classified into, external mechanics and internal mechanics. In external mechanics, analytical approaches are used to determine the absorbed energy acting on the vessel from the collision, while in internal mechanics analytical approaches are used to determine the ability of the ship’s structure to withstand the absorbed energy. Due to the difficulty and the highly expected cost to perform model testing and impact data for validation, finite element simulation provides an alternative tool for physical validation. In this study, a simulation of barge impact to a rigid wall is presented using the explicit nonlinear finite element code LS-DYNA3D. A conventional fine mesh finite element barge model is created. Impact results are obtained at two different speeds in order to show the consequence of barge and wall damage.
INTERVAL ARITHMETIC AND STATIC INTERVAL FINITE ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
郭书祥; 吕震宙
2001-01-01
When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method(FEM). The two parameters,median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. The solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective.
Kanungo, Bikash
2016-01-01
We present a computationally efficient approach to perform large-scale all-electron density functional theory calculations by enriching the classical finite element basis with compactly supported atom-centered numerical basis functions that are constructed from the solution of the Kohn-Sham (KS) problem for single atoms. We term these numerical basis functions as enrichment functions, and the resultant basis as the enriched finite element basis. The enrichment functions are compactly supported through the use of smooth cutoff functions, which enhances the conditioning and maintains the locality of the basis. The integrals involved in the evaluation of the discrete KS Hamiltonian and overlap matrix in the enriched finite element basis are computed using an adaptive quadrature grid based on the characteristics of enrichment functions. Further, we propose an efficient scheme to invert the overlap matrix by using a block-wise matrix inversion in conjunction with special reduced-order quadrature rules to transform...
Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method
Directory of Open Access Journals (Sweden)
Emir Gülümser
2014-01-01
Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.
Splitting extrapolation based on domain decomposition for finite element approximations
Institute of Scientific and Technical Information of China (English)
吕涛; 冯勇
1997-01-01
Splitting extrapolation based on domain decomposition for finite element approximations is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a large scale multidimensional problem is turned to many discrete problems involving several grid parameters The multi-variate asymptotic expansions of finite element errors on independent grid parameters are proved for linear and nonlin ear second order elliptic equations as well as eigenvalue problems. Therefore after solving smaller problems with similar sizes in parallel, a global fine grid approximation with higher accuracy is computed by the splitting extrapolation method.
Compatible finite element spaces for geophysical fluid dynamics
Natale, Andrea
2016-01-01
Compatible finite elements provide a framework for preserving important structures in equations of geophysical fluid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical fluid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties.
Least-squares finite-element lattice Boltzmann method.
Li, Yusong; LeBoeuf, Eugene J; Basu, P K
2004-06-01
A new numerical model of the lattice Boltzmann method utilizing least-squares finite element in space and Crank-Nicolson method in time is presented. The new method is able to solve problem domains that contain complex or irregular geometric boundaries by using finite-element method's geometric flexibility and numerical stability, while employing efficient and accurate least-squares optimization. For the pure advection equation on a uniform mesh, the proposed method provides for fourth-order accuracy in space and second-order accuracy in time, with unconditional stability in the time domain. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow and Couette flow.
NURBS-enhanced finite element method for Euler equations
Sevilla Cárdenas, Rubén; Fernandez Mendez, Sonia; Huerta, Antonio , coaut.
2008-01-01
This is the pre-peer reviewed version of the following article: Sevilla, R.; Fernandez, S.; Huerta, A. NURBS-enhanced finite element method for Euler equations. "International journal for numerical methods in fluids", Juliol 2008, vol. 57, núm. 9, p. 1051-1069., which has been published in final form at http://www3.interscience.wiley.com/journal/117905455/abstract In this work, the NURBS-enhanced finite element method (NEFEM) is combined with a discontinuous Galerkin (DG) formulation for t...
Substructure System Identification for Finite Element Model Updating
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
FINITE ELEMENT IMPLEMENTATION OF DELAMINATION IN COMPOSITE PLATES
Directory of Open Access Journals (Sweden)
Milan Žmindák
2012-12-01
Full Text Available Modelling of composite structures by finite element (FE codes to effectively model certain critical failure modes such as delamination is limited. Previous efforts to model delamination and debonding failure modes using FE codes have typically relied on ad hoc failure criteria and quasi-static fracture data. Improvements to these modelling procedures can be made by using an approach based on fracture mechanics. A study of modelling delamination using the finite element code ANSYS was conducted. This investigation demonstrates the modelling of composites through improved delamination modelling. Further developments to this approach may be improved.
THE NONCONFORMING FINITE ELEMENT METHOD FOR SIGNORINI PROBLEM
Institute of Scientific and Technical Information of China (English)
Dongying Hua; Lieheng Wang
2007-01-01
We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the convergence rate can be improved from (O)(h3/4) to quasi-optimal (O)(h|log h|1/4) with respect to the energy norm as that of the continuous linear finite element approximation. If stronger but reasonable regularity is available,the convergence rate can be improved to the optimal (O)(h) as expected by the linear approximation.
Matlab and C programming for Trefftz finite element methods
Qin, Qing-Hua
2008-01-01
Although the Trefftz finite element method (FEM) has become a powerful computational tool in the analysis of plane elasticity, thin and thick plate bending, Poisson's equation, heat conduction, and piezoelectric materials, there are few books that offer a comprehensive computer programming treatment of the subject. Collecting results scattered in the literature, MATLAB® and C Programming for Trefftz Finite Element Methods provides the detailed MATLAB® and C programming processes in applications of the Trefftz FEM to potential and elastic problems. The book begins with an introduction to th
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
Energy Technology Data Exchange (ETDEWEB)
Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)
2014-07-28
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Two-dimensional finite-element temperature variance analysis
Heuser, J. S.
1972-01-01
The finite element method is extended to thermal analysis by forming a variance analysis of temperature results so that the sensitivity of predicted temperatures to uncertainties in input variables is determined. The temperature fields within a finite number of elements are described in terms of the temperatures of vertices and the variational principle is used to minimize the integral equation describing thermal potential energy. A computer calculation yields the desired solution matrix of predicted temperatures and provides information about initial thermal parameters and their associated errors. Sample calculations show that all predicted temperatures are most effected by temperature values along fixed boundaries; more accurate specifications of these temperatures reduce errors in thermal calculations.
SPLITTING MODULUS FINITE ELEMENT METHOD FOR ORTHOGONAL ANISOTROPIC PLATE BENGING
Institute of Scientific and Technical Information of China (English)
党发宁; 荣廷玉; 孙训方
2001-01-01
Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.
Stochastic Finite Elements in Reliability-Based Structural Optimization
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Engelund, S.
1995-01-01
Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...
Stochastic Finite Elements in Reliability-Based Structural Optimization
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Engelund, S.
Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...
Preconditioning for Mixed Finite Element Formulations of Elliptic Problems
Wildey, Tim
2013-01-01
In this paper, we discuss a preconditioning technique for mixed finite element discretizations of elliptic equations. The technique is based on a block-diagonal approximation of the mass matrix which maintains the sparsity and positive definiteness of the corresponding Schur complement. This preconditioner arises from the multipoint flux mixed finite element method and is robust with respect to mesh size and is better conditioned for full permeability tensors than a preconditioner based on a diagonal approximation of the mass matrix. © Springer-Verlag Berlin Heidelberg 2013.
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION
Directory of Open Access Journals (Sweden)
K. S. Kurachka
2014-01-01
Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.
The Finite Element Method An Introduction with Partial Differential Equations
Davies, A J
2011-01-01
The finite element method is a technique for solving problems in applied science and engineering. The essence of this book is the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. The method is developed for the solution of Poisson's equation, in a weighted-residual context, and then proceeds to time-dependent and nonlinear problems. The relationship with the variational approach is alsoexplained. This book is written at an introductory level, developing all the necessary concepts where required. Co
Local and Parallel Finite Element Algorithms for Eigenvalue Problems
Institute of Scientific and Technical Information of China (English)
Jinchao Xu; Aihui Zhou
2002-01-01
Some new local and parallel finite element algorithms are proposed and analyzed in this paper for eigenvalue problems. With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a relatively coarse grid together with solutions of some linear algebraic systems on fine grid by using some local and parallel procedure. A theoretical tool for analyzing these algorithms is some local error estimate that is also obtained in this paper for finite element approximations of eigenvectors on general shape-regular grids.
Diffusive mesh relaxation in ALE finite element numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Discontinuous Galerkin finite element methods for gradient plasticity.
Energy Technology Data Exchange (ETDEWEB)
Garikipati, Krishna. (University of Michigan, Ann Arbor, MI); Ostien, Jakob T.
2010-10-01
In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.
SUPERCONVERGENCE ANALYSIS FOR CUBIC TRIANGULAR ELEMENT OF THE FINITE ELEMENT
Institute of Scientific and Technical Information of China (English)
Qi-ding Zhu
2000-01-01
In this paper, we construct a projection interpolation for cubic triangular ele- ment by using othogonal expansion triangular method. We show two fundamental formulas of estimation on a special partion and obtain a superconvergence result of 1 -e order higher for the placement function and its tangential derivative on the third order Lobatto points and Gauss points on each edge of triangular element.
Behaviour of Lagrangian triangular mixed fluid finite elements
Indian Academy of Sciences (India)
S Gopalakrishnan; G Devi
2000-02-01
The behaviour of mixed fluid finite elements, formulated based on the Lagrangian frame of reference, is investigated to understand the effects of locking due to incompressibility and irrotational constraints. For this purpose, both linear and quadratic mixed triangular fluid elements are formulated. It is found that there exists a close relationship between the penalty finite element approach that uses reduced/selective numerical integration to alleviate locking, and the mixed finite element approach. That is, performing reduced/selective integration in the penalty approach amounts to reducing the order of pressure interpolation in the mixed finite element approach for obtaining similar results. A number of numerical experiments are performed to determine the optimum degree of interpolation of both the mean pressure and the rotational pressure in order that the twin constraints are satisfied exactly. For this purpose, the benchmark solution of the rigid rectangular tank is used. It is found that, irrespective of the degree of mean and the rotational pressure interpolation, the linear triangle mesh, with or without central bubble function (incompatible mode), locks when both the constraints are enforced simultaneously. However, for quadratic triangle, linear interpolation of the mean pressure and constant rotational pressure ensures exact satisfaction of the constraints and the mesh does not lock. Based on the results obtained from the numerical experiments, a number of important conclusions are arrived at.
Parallel finite element modeling of earthquake ground response and liquefaction
Institute of Scientific and Technical Information of China (English)
Jinchi Lu(陆金池); Jun Peng(彭军); Ahmed Elgamal; Zhaohui Yang(杨朝晖); Kincho H. Law
2004-01-01
Parallel computing is a promising approach to alleviate the computational demand in conducting large-scale finite element analyses. This paper presents a numerical modeling approach for earthquake ground response and liquefaction using the parallel nonlinear finite element program, ParCYCLIC, designed for distributed-memory message-passing parallel computer systems. In ParCYCLIC, finite elements are employed within an incremental plasticity, coupled solid-fluid formulation. A constitutive model calibrated by physical tests represents the salient characteristics of sand liquefaction and associated accumulation of shear deformations. Key elements of the computational strategy employed in ParCYCLIC include the development of a parallel sparse direct solver, the deployment of an automatic domain decomposer, and the use of the Multilevel Nested Dissection algorithm for ordering of the finite element nodes. Simulation results of centrifuge test models using ParCYCLIC are presented. Performance results from grid models and geotechnical simulations show that ParCYCLIC is efficiently scalable to a large number of processors.
A multiscale mortar multipoint flux mixed finite element method
Wheeler, Mary Fanett
2012-02-03
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.
Finite element approach for transient analysis of multibody systems
Wu, Shih-Chin; Chang, Che-Wei; Housner, Jerrold M.
1992-01-01
A three-dimensional, finite element based formulation for the transient dynamics of constrained multibody systems with trusslike configurations is presented. A convected coordinate system is used to define the rigid-body motion of individual elements in the system. Deformation of each element is defined relative to its convected coordinate system. The formulation is oriented toward joint-dominated structures. Through a series of sequential transformations, the joint degree of freedom is built into the equations of motion of the element to reduce geometric constraints. Based on the derivation, a general-purpose code has been developed. Two examples are presented to illustrate the application of the code.
A new formulation of hybrid/mixed finite element
Pian, T. H. H.; Kang, D.; Chen, D.-P.
1983-01-01
A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.
Adaptive Algorithms of Nonlinear Approximation with Finite Terms
Institute of Scientific and Technical Information of China (English)
Wen Bin WEI; Yue Sheng XU; Pei Xin YE
2007-01-01
This paper deals with realizable adaptive algorithms of the nonlinear approximation with finite terms based on wavelets. We present a concrete algorithm by which we may find the required index set Am for the greedy algorithm GPm(·,ψ). This makes the greedy algorithm realize the near best approximation in practice. Moreover, we study the efficiency of the finite-term approximation of another algorithm introduced by Birge and Massart.
Development of Generic Field Classes for Finite Element and Finite Difference Problems
Directory of Open Access Journals (Sweden)
Diane A. Verner
1993-01-01
Full Text Available This article considers the development of a reusable object-oriented array library, as well as the use of this library in the construction of finite difference and finite element codes. The classes in this array library are also generic enough to be used to construct other classes specific to finite difference and finite element methods. We demonstrate the usefulness of this library by inserting it into two existing object-oriented scientific codes developed at Sandia National Laboratories. One of these codes is based on finite difference methods, whereas the other is based on finite element methods. Previously, these codes were separately maintained across a variety of sequential and parallel computing platforms. The use of object-oriented programming allows both codes to make use of common base classes. This offers a number of advantages related to optimization and portability. Optimization efforts, particularly important in large scientific codes, can be focused on a single library. Furthermore, by encapsulating machine dependencies within this library, the optimization of both codes on different architec-tures will only involve modification to a single library.
Calibration of a finite element composite delamination model by experiments
DEFF Research Database (Denmark)
Gaiotti, M.; Rizzo, C.M.; Branner, Kim;
2013-01-01
distinct sub-laminates. The work focuses on experimental validation of a finite element model built using the 9-noded MITC9 shell elements, which prevent locking effects and aiming to capture the highly non linear buckling features involved in the problem. The geometry has been numerically defined...... modes related to the production methods is presented in this paper. A microscopic analysis of the fracture surfaces was carried out in order to better understand the failure mechanisms. © 2013 Taylor & Francis Group....
Finite Element Modeling of the Buckling Response of Sandwich Panels
Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.
2002-01-01
A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.
Adaptive finite difference methods in fluid dynamics
Berger, Marsha J.
1987-01-01
An adaptive method to solve partial differential equations in fluid mechanics is presented. The approach requires internal boundary conditions that must be conservative, data structures for keeping track of several layers of fine grid patches, error estimation, and heuristics for automatic grid generation. In practical calculations gains in computer efficiency up to 10 over nonadaptive methods are observed. The whole procedure takes 3000 lines of FORTRAN code.
ON FINITE ELEMENT METHODS FOR INHOMOGENEOUS DIELECTRIC WAVEGUIDES
Institute of Scientific and Technical Information of China (English)
Zhiming Chen; Jian-hua Yuan
2004-01-01
We investigate the problem of computing electromagnetic guided waves in a closed,inhomogeneous, pillared three-dimensional waveguide at a given frequency. The problem is formulated as a generalized eigenvalue problem. By modifying the sesquilinear form associated with the eigenvalue problem, we provide a new convergence analysis for the finite element approximations. Numerical results are reported to illustrate the performance of the method.
A Finite Element Solution for Barrel Dynamic Stress
Institute of Scientific and Technical Information of China (English)
ZENG Zhi-yin; NING Bian-fang; WANG Zai-sen
2007-01-01
With the APDL language of ANSYS finite element analysis software, the solution program for barrel dynamic stress is developed. The paper describes the pivotal problems of dynamic strength design and provides a foundation for realizing the engineering and programming of barrel dynamic strength design.
Finite Element Vibration and Dynamic Response Analysis of Engineering Structures
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
2000-01-01
Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.
Surface processing methods for point sets using finite elements
Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru
2004-01-01
We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our framework efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based surfaces. At the core of our method is a finite element discretization of PDEs
Hyperelastic Modelling and Finite Element Analysing of Rubber Bushing
Directory of Open Access Journals (Sweden)
Merve Yavuz ERKEK
2015-03-01
Full Text Available The objective of this paper is to obtain stiffness curves of rubber bushings which are used in automotive industry with hyperelastic finite element model. Hyperelastic material models were obtained with different material tests. Stress and strain values and static stiffness curves were determined. It is shown that, static stiffness curves are nonlinear. The level of stiffness affects the vehicle dynamics behaviour.
Implicit extrapolation methods for multilevel finite element computations
Energy Technology Data Exchange (ETDEWEB)
Jung, M.; Ruede, U. [Technische Universitaet Chemnitz-Zwickau (Germany)
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
Piezoelectric Accelerometers Modification Based on the Finite Element Method
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.
2000-01-01
The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...
Finite-Element Analysis of Forced Convection and Conduction
Wieting, A. R.
1982-01-01
TAP2 thermal-analysis program was developed as part of research on finite element methodology for thermal analysis of convectively cooled structures, such as scramjet engines and hypersonic aircraft. Program simplifies computations when both structural and thermal analyses are required and is suited for thermal analysis of nuclear reactors and solar-panel heating systems.
A FINITE VOLUME ELEMENT METHOD FOR THERMAL CONVECTION PROBLEMS
Institute of Scientific and Technical Information of China (English)
芮洪兴
2004-01-01
Consider the finite volume element method for the thermal convection problem with the infinite Prandtl number. The author uses a conforming piecewise linear function on a fine triangulation for velocity and temperature, and a piecewise constant function on a coarse triangulation for pressure. For general triangulation the optimal order H1 norm error estimates are given.
DISCONTINUOUS FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
Institute of Scientific and Technical Information of China (English)
Abdellatif Agouzal
2000-01-01
A discontinuous finite element method for convection-diffusion equations is proposed and analyzed. This scheme is designed to produce an approximate solution which is completely discontinuous. Optimal order of convergence is obtained for model problem. This is the same convergence rate known for the classical methods.
MULTIGRID FOR THE MORTAR FINITE ELEMENT FOR PARABOLIC PROBLEM
Institute of Scientific and Technical Information of China (English)
Xue-jun Xu; Jin-ru Chen
2003-01-01
In this paper, a mortar finite element method for parabolic problem is presented. Multigrid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, I.e, the convergence rate is independent of the mesh size L and the time step parameter т.
Boundary control of parabolic systems - Finite-element approximation
Lasiecka, I.
1980-01-01
The finite element approximation of a Dirichlet type boundary control problem for parabolic systems is considered. An approach based on the direct approximation of an input-output semigroup formula is applied. Error estimates are derived for optimal state and optimal control, and it is noted that these estimates are actually optimal with respect to the approximation theoretic properties.
An Eulerean finite element model for penetration in layered soil
Berg, van den Peter; Borst, de Rene; Huetink, Han
1996-01-01
An Eulerean large-strain finite element formulation is presented to simulate static soil penetration. The method is an extension of the Updated Lagrangean description to an Eulerean formulation taking into account convection of deformation-history-dependent properties as well as material properties.
Closed Loop Finite Element Modeling of Piezoelectric Smart Structures
Directory of Open Access Journals (Sweden)
Guang Meng
2006-01-01
Full Text Available The objective of this paper is to develop a general design and analysis scheme for actively controlled piezoelectric smart structures. The scheme involves dynamic modeling of a smart structure, designing control laws and closed-loop simulation in a finite element environment. Based on the structure responses determined by finite element method, a modern system identification technique known as Observer/Kalman filter Identification (OKID technique is used to determine the system Markov parameters. The Eigensystem Realization Algorithm (ERA is then employed to develop an explicit state space model of the equivalent linear system for control law design. The Linear Quadratic Gaussian (LQG control law design technique is employed to design a control law. By using ANSYS parametric design language (APDL, the control law is incorporated into the ANSYS finite element model to perform closed loop simulations. Therefore, the control law performance can be evaluated in the context of a finite element environment. Finally, numerical examples have demonstrated the validity and efficiency of the proposed design scheme. Without any further modifications, the design scheme can be readily applied to other complex smart structures.
On the Approaching Domain Obtained by Finite Element Method
Institute of Scientific and Technical Information of China (English)
邹青松; 李永海
2002-01-01
The use of finite element method leads to replacing the initial domain by an approaching domain,Under some appropriate assumptions,we prove that there exists a W1,+∞-diffeomorphism from the original domain to the approaching domain.
Finite element modelling of fibre-reinforced brittle materials
Kullaa, J.
1997-01-01
The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The tensi
Finite element analysis of bone loss around failing implants
Wolff, J.; Narra, N.; Antalainen, A.K.; Valášek, J.; Kaiser, J.; Sandór, G.K.; Marcián, P.
2014-01-01
Dental implants induce diverse forces on their surrounding bone. However, when excessive unphysiological forces are applied, resorption of the neighbouring bone may occur. The aim of this study was to assess possible causes of bone loss around failing dental implants using finite element analysis. A
An Orthogonal Residual Procedure for Nonlinear Finite Element Equations
DEFF Research Database (Denmark)
Krenk, S.
A general and robust solution procedure for nonlinear finite element equations with limit points is developed. At each equilibrium iteration the magnitude of the load is adjusted such that the residual force is orthogonal to the current displacement increment from the last equilibrium state...
A Finite Element Approach to Modeling Abrasive Wear Modes
Woldman, M.; Heide, van der E.; Tinga, T.; Masen, M.A.
2016-01-01
Machine components operating in sandy environments will wear because of the abrasive interaction with sand particles. In this work, a method is derived to predict the amount of wear caused by such abrasive action, in order to improve the maintenance concept of the components. A finite element model
Finite element estimation of acoustical response functions in HID lamps
Energy Technology Data Exchange (ETDEWEB)
Baumann, Bernd; Wolff, Marcus [Department of Mechanical Engineering and Production, School of Engineering and Computer Science, Hamburg University of Applied Sciences, Berliner Tor 21, 20099 Hamburg (Germany); Hirsch, John; Antonis, Piet [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Bhosle, Sounil [Universite de Toulouse (United States); Barrientos, Ricardo Valdivia, E-mail: bernd.baumann@haw-hamburg.d [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)
2009-11-21
High intensity discharge lamps can experience flickering and even destruction when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp's arc tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.
Space-time discontinuous Galerkin finite element methods
Vegt, van der J.J.W.; Deconinck, H.; Ricchiuto, M.
2006-01-01
In these notes an introduction is given to space-time discontinuous Galerkin (DG) finite element methods for hyperbolic and parabolic conservation laws on time dependent domains. the space-time DG discretization is explained in detail, including the definition of the numerical fluxes and stabilizati
THE SUPERCONVERGENCE ANALYSIS OF AN ANISOTROPIC FINITE ELEMENT
Institute of Scientific and Technical Information of China (English)
SHI Dongyang; ZHU Huiqing
2005-01-01
This paper deals with the high accuracy analysis of bilinear finite element on the class of anisotropic rectangular meshes. The inverse inequalities on anisotropic meshes are established. The superclose and the superconvergence are obtained for the second order elliptic problem. A numerical test is given, which coincides with our theoretical analysis.
Finite element analysis of boron diffusion in wooden Poles
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl;
2004-01-01
The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....
Hands on applied finite element analysis application with ANSYS
Arslan, Mehmet Ali
2015-01-01
Hands on Applied Finite Element Analysis Application with Ansys is truly an extraordinary book that offers practical ways of tackling FEA problems in machine design and analysis. In this book, 35 good selection of example problems have been presented, offering students the opportunity to apply their knowledge to real engineering FEA problem solutions by guiding them with real life hands on experience.
The Development of Piezoelectric Accelerometers Using Finite Element Analysis
DEFF Research Database (Denmark)
Liu, Bin
1999-01-01
This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeling...
Finite Element Analysis of Boron Diffusion in Wooden Poles
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl;
2004-01-01
The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....
A Dual Orthogonality Procedure for Nonlinear Finite Element Equations
DEFF Research Database (Denmark)
Krenk, S.; Hededal, O.
In the orthogonal residual procedure for solution of nonlinear finite element equations the load is adjusted in each equilibrium iteration to satisfy an orthogonality condition to the current displacement increment. It is here shown that the quasi-newton formulation of the orthogonal residual...
Finite Element Analysis of Boron Diffusion in Wooden Poles
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Hoffmeyer, P.; Bechgaard, C.;
2003-01-01
The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....
(AJST) FINITE ELEMENT ANALYSIS OF A FLUID-STRUCTURE ...
African Journals Online (AJOL)
3 Unité de Mécanique des fluides appliquée et Modélisation B.P W 3038 Sfax, Tunisie ... Key words : Fluid-structure interaction, flexible pipe, rubber, finite element method. INTRODUCTION ...... membrane and thin fluid layer, 1999. Journal of ...
Finite Groups with Three Conjugacy Class Sizes of some Elements
Indian Academy of Sciences (India)
Qingjun Kong
2012-08-01
Let be a finite group. We prove as follows: Let be a -solvable group for a fixed prime . If the conjugacy class sizes of all elements of primary and biprimary orders of are $\\{1,p^a,n\\}$ with and two positive integers and (,)=1, then is -nilpotent or has abelian Sylow -subgroups.
Finite Element Studies Of Tangent Mounted Conical Optics
Stoneking, J.; Casstevens, J.; Stillman, D.
1982-12-01
This paper presents experimental and analytical results from a study investigating the effect of centrifugal force and gravity on two candidate mirror fixture designs to be used on a diamond-turning ma-chine. The authors illustrate and discuss the use of the finite element method as an aid in the design and fabrication of high precision metallic optical components.
A review of flexibility-based finite element method for beam-column elements
Institute of Scientific and Technical Information of China (English)
LI Shuang; ZHAI Changhai; XIE Lili
2009-01-01
For material nonlinear problem, elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flexibility-based finite element method is provided to enhance the robustness of structure analysis. The research on beam-column elements is the mainstream in the research on flexibility-based finite element method at present. The original development of flexibility-based finite element method is reviewed, and the further development of this method is then presented in several specific aspects, such as geometrically nonlinear analysis and dynamic analysis. The further research needed to be carried out in the future is finally discussed.
Finite element simulation of stress intensity factors in elastic-plastic crack growth
Institute of Scientific and Technical Information of China (English)
ALSHOAIBI Abdulnaser M.; ARIFFIN Ahmad Kamal
2006-01-01
A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions.Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation.
Topological Optimization of the Evaluation of Finite Element Matrices
Kirby, Robert C; Scott, L Ridgway; Terrel, Andy R; 10.1137/050635547
2012-01-01
We present a topological framework for finding low-flop algorithms for evaluating element stiffness matrices associated with multilinear forms for finite element methods posed over straight-sided affine domains. This framework relies on phrasing the computation on each element as the contraction of each collection of reference element tensors with an element-specific geometric tensor. We then present a new concept of complexity-reducing relations that serve as distance relations between these reference element tensors. This notion sets up a graph-theoretic context in which we may find an optimized algorithm by computing a minimum spanning tree. We present experimental results for some common multilinear forms showing significant reductions in operation count and also discuss some efficient algorithms for building the graph we use for the optimization.
NEW ALGORITHM OF COUPLING ELEMENT-FREE GALERKIN WITH FINITE ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
ZHAO Guang-ming; SONG Shun-cheng
2005-01-01
Through the construction of a new ramp function, the element-free Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the interface regions, both satisfying the essential boundary conditions and deploying meshless nodes and finite elements in a convenient and flexible way, which can meet the requirements of computation for complicated field. The comparison between the results of the present study and the corresponding analytical solutions shows this method is feasible and effective.
Wave Transformation Modeling with Effective Higher-Order Finite Elements
Directory of Open Access Journals (Sweden)
Tae-Hwa Jung
2016-01-01
Full Text Available This study introduces a finite element method using a higher-order interpolation function for effective simulations of wave transformation. Finite element methods with a higher-order interpolation function usually employ a Lagrangian interpolation function that gives accurate solutions with a lesser number of elements compared to lower order interpolation function. At the same time, it takes a lot of time to get a solution because the size of the local matrix increases resulting in the increase of band width of a global matrix as the order of the interpolation function increases. Mass lumping can reduce computation time by making the local matrix a diagonal form. However, the efficiency is not satisfactory because it requires more elements to get results. In this study, the Legendre cardinal interpolation function, a modified Lagrangian interpolation function, is used for efficient calculation. Diagonal matrix generation by applying direct numerical integration to the Legendre cardinal interpolation function like conducting mass lumping can reduce calculation time with favorable accuracy. Numerical simulations of regular, irregular and solitary waves using the Boussinesq equations through applying the interpolation approaches are carried out to compare the higher-order finite element models on wave transformation and examine the efficiency of calculation.
Discontinuous dual-primal mixed finite elements for elliptic problems
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
Investigations on Actuator Dynamics through Theoretical and Finite Element Approach
Directory of Open Access Journals (Sweden)
Somashekhar S. Hiremath
2010-01-01
Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.
Vibration Behaviour of Single Walled Carbon Nanotube using Finite Element
Directory of Open Access Journals (Sweden)
Ashirbad Swain
2013-12-01
Full Text Available The flexural vibration of single walled carbon nanotube has analyzed by finite element method. Timoshenko beam element formulation has been used for this purpose. Axial deformation has also been taken into account apart from shear deformation for formulation of the element. Results from multi-scale modeling for free vibration analysis have been found to be in good agreement with the literatures available. Effects of chirality and aspect ratio on vibration characteristics are presented. More over effect of initial axial strain or stress on natural frequency have been analysed and found to have significant effect on the natural frequency of the nanotube.
Visualization of transient finite element analyses on large unstructured grids
Energy Technology Data Exchange (ETDEWEB)
Dovey, D.
1995-03-22
Three-dimensional transient finite element analysis is performed on unstructured grids. A trend toward running larger analysis problems, combined with a desire for interactive animation of analysis results, demands efficient visualization techniques. This paper discusses a set of data structures and algorithms for visualizing transient analysis results on unstructured grids and introduces some modifications in order to better support large grids. In particular, an element grouping approach is used to reduce the amount of memory needed for external surface determination and to speed up ``point in element`` tests. The techniques described lend themselves to visualization of analyses carried out in parallel on a massively parallel computer (MPC).
Finite element and discontinuous Galerkin methods for transient wave equations
Cohen, Gary
2017-01-01
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...
A nonlinear truss finite element with varying stiffness
Directory of Open Access Journals (Sweden)
Ďuriš R.
2007-11-01
Full Text Available This contribution deals with a new truss element with varying stiffness intended to geometric and physically nonlinear analysis of composite structures. We present a two-node straight composite truss finite element derived by new nonincremental full geometric nonlinear approach. Stiffness matrix of this composite truss contains transfer constants, which accurately describe the polynomial longitudinal variation of cross-section area and material properties. These variations could be caused by nonhomogenous temperature field or by varying components volume fractions of the composite or/and functionally graded materials (FGM´s. Numerical examples were solved to verify the established relations. The accuracy of the new proposed finite truss element are compared and discused.
A direct implementation for influence lines in finite element software
DEFF Research Database (Denmark)
Jepsen, Michael S.; Damkilde, Lars
2014-01-01
The use of influence lines is a recognized method for determining the critical design load conditions and this paper shows a direct method for applying influence lines in any structural finite element software. The main idea is to equate displacement or angular discontinuities with nodal forces...... to consistent nodal forces, which makes it very suitable for implementation in finite element schemes and applicable for all element types, such as shell, plates, beams etc. This paper derives the consistent nodal forces for angular, lateral and axial displacement discontinuities for a Bernoulli-Euler beam......, and subsequently obtain the influence function only applying a single load case without changing the geometry or boundary conditions of the model. The new approach for determining Influence lines is based on the Müller-Breslau principle, but the discontinuous displacement fields are in the new approach equated...
Streamline upwind finite element method for conjugate heat transfer problems
Institute of Scientific and Technical Information of China (English)
Niphon Wansophark; Atipong Malatip; Pramote Dechaumphai; Yunming Chen
2005-01-01
This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components,the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.
Finite element dynamic analysis on CDC STAR-100 computer
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
Robbins, Joshua; Voth, Thomas
2007-06-01
The eXtended Finite Element Method (X-FEM) is a finite element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static mesoscale material failure to dendrite growth. Here we adapt the recent advances of Benson et al. [2] and Belytchko et al. [3] to model shock loading of polycrystalline material. Through several demonstration problems we evaluate the method for modeling the shock response of polycrystalline materials at the mesoscale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries. ([1] N. Moes, J. Dolbow, J and T. Belytschko, 1999,``A finite element method for crack growth without remeshing,'' International Journal for Numerical Methods in Engineering, 46, 131-150. [2] E. Vitali, and D. J. Benson, 2006, ``An extended finite element formulation for contact in multi-material arbitrary Lagrangian-Eulerian calculations,'' International Journal for Numerical Methods in Engineering, 67, 1420-1444. [3] J-H Song, P. M. A. Areias and T. Belytschko, 2006, ``A method for dynamic crack and shear band propagation with phantom nodes,'' International Journal for Numerical Methods in Engineering, 67, 868-893.)
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
Finite element analysis of inviscid subsonic boattail flow
Chima, R. V.; Gerhart, P. M.
1981-01-01
A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.
Residual-driven online generalized multiscale finite element methods
Chung, Eric T.
2015-09-08
The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator which shows that one needs to have an offline space with certain properties to guarantee that additional online multiscale basis function will decrease the error. This error decrease is independent of physical parameters, such as the contrast and multiple scales in the problem. The offline spaces are constructed using Generalized Multiscale Finite Element Methods (GMsFEM). We show that if one chooses a sufficient number of offline basis functions, one can guarantee that additional online multiscale basis functions will reduce the error independent of contrast. We note that the construction of online basis functions is motivated by the fact that the offline space construction does not take into account distant effects. Using the residual information, we can incorporate the distant information provided the offline approximation satisfies certain properties. In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.
hp-finite element method for simulating light scattering from complex 3D structures
Burger, S; Pomplun, J; Herrmann, S; Schmidt, F
2015-01-01
Methods for solving Maxwell's equations are integral part of optical metrology and computational lithography setups. Applications require accurate geometrical resolution, high numerical accuracy and/or low computation times. We present a finite-element based electromagnetic field solver relying on unstructured 3D meshes and adaptive hp-refinement. We apply the method for simulating light scattering off arrays of high aspect-ratio nano-posts and FinFETs.
Efficient optimization of hollow-core photonic crystal fiber design using the finite-element method
DEFF Research Database (Denmark)
Holzlöhner, Ronald; Burger, Sven; Roberts, John;
2006-01-01
We employ a finite-element (FE) solver with adaptive grid refinement to model hollow-core photonic crystal fibers (HC-PCFs) whose core is formed from 19 omitted cladding unit cells. We optimize the complete fiber geometry for minimal field intensity at material/air interfaces, which indicates low...... loss and high damage threshold, using multidimensional optimization. The optimal design shows a 99.8 % power fraction within the air and an overlap with a Gaussian mode of 96.9 %....
Integration of Finite Element Method with Runge – Kuta Solution Algorithm
Directory of Open Access Journals (Sweden)
Olawale Simon
2017-05-01
Full Text Available Runge – Kuta (RK method is reasonably simple and robust for numerical solution of differential equations but it requires an intelligent adaptive step-size routine; to achieve this, there is need to develop a good logical computer code. This study develops a finite element code in Java using Runge-Kuta method as a solution algorithm to predict dynamic time response of structural beam under impulse load. The solution obtained using direct integration and the present work is comparable.
Eigenvalue approximation from below using non-conforming finite elements
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
This is a survey article about using non-conforming finite elements in solving eigenvalue problems of elliptic operators,with emphasis on obtaining lower bounds. In addition,this article also contains some new materials for eigenvalue approximations of the Laplace operator,which include:1) the proof of the fact that the non-conforming Crouzeix-Raviart element approximates eigenvalues associated with smooth eigenfunctions from below;2) the proof of the fact that the non-conforming EQ rot1 element approximates eigenvalues from below on polygonal domains that can be decomposed into rectangular elements;3) the explanation of the phenomena that numerical eigenvalues λ 1,h and λ 3,h of the non-conforming Q rot1 element approximate the true eigenvalues from below for the L-shaped domain. Finally,we list several unsolved problems.
Hughes, T. J. R.; Winget, J.; Levit, I.; Tezduyar, T. E.
1983-01-01
Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in computational mechanics. A variety of techniques are compared on problems of structural mechanics, heat conduction and fluid mechanics. The results obtained suggest considerable potential for the methods described.
Finite element analysis of structures through unified formulation
Carrera, Erasmo; Petrolo, Marco; Zappino, Enrico
2014-01-01
The finite element method (FEM) is a computational tool widely used to design and analyse complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same ''fundamental nucleus'' that comes from geometrical relations and Hooke''s law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D...
A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation
Vergez, Guillaume; Danaila, Ionut; Auliac, Sylvain; Hecht, Frédéric
2016-12-01
We present a new numerical system using classical finite elements with mesh adaptivity for computing stationary solutions of the Gross-Pitaevskii equation. The programs are written as a toolbox for FreeFem++ (www.freefem.org), a free finite-element software available for all existing operating systems. This offers the advantage to hide all technical issues related to the implementation of the finite element method, allowing to easily code various numerical algorithms. Two robust and optimized numerical methods were implemented to minimize the Gross-Pitaevskii energy: a steepest descent method based on Sobolev gradients and a minimization algorithm based on the state-of-the-art optimization library Ipopt. For both methods, mesh adaptivity strategies are used to reduce the computational time and increase the local spatial accuracy when vortices are present. Different run cases are made available for 2D and 3D configurations of Bose-Einstein condensates in rotation. An optional graphical user interface is also provided, allowing to easily run predefined cases or with user-defined parameter files. We also provide several post-processing tools (like the identification of quantized vortices) that could help in extracting physical features from the simulations. The toolbox is extremely versatile and can be easily adapted to deal with different physical models.
Diagonal multi-soliton matrix elements in finite volume
Pálmai, T
2012-01-01
We consider diagonal matrix elements of local operators between multi-soliton states in finite volume in the sine-Gordon model, and formulate a conjecture regarding their finite size dependence which is valid up to corrections exponential in the volume. This conjecture extends the results of Pozsgay and Tak\\'acs which were only valid for diagonal scattering. In order to test the conjecture we implement a numerical renormalization group improved truncated conformal space approach. The numerical comparisons confirm the conjecture, which is expected to be valid for general integrable field theories. The conjectured formula can be used to evaluate finite temperature one-point and two-point functions using recently developed methods.
Choice of input fields in stochastic finite elements
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob
1999-01-01
, the flexibility field, as the input to the stochastic finite element model. To answer this question the focus should be on the error of the output of the mechanical model rather than on the input field itself when discretizing the held through replacing it by a field defined in terms of a finite number of random...... variables. Several reported discretization methods define these random variables as integrals of the product of the held and some suitable weight functions. In particular, the weight functions can be Dirac delta functions whereby the random variables become the field values at a finite set of given points....... The replacement field is often defined as the linear regression of the original field on the considered vector of the weighted integrals of the field. For example, this holds for discretizations obtained by truncation of the Karhunen-Loeve expansion of the field, but only approximately so for truncations...
Choice of input fields in stochastic finite elements
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob
1996-01-01
, the flexibility field, as the input to the stochastic finite element model. To answer this question the focus should be on the error of the output of the mechanical model rather than on the input field itself when discretizing the field through replacing it by a field defined in terms of a finite number of random...... variables. Several reported discretization methods define these random variables as integrals of the product of the field and some suitable weight functions. In particular, the weight functions can be Dirac delta functions whereby the random variables become the field values at a finite set of given points....... The replacement field is often defined as the linear regression of the original field on the considered vector of the weighted integrals of the field. For example, this holds for discretizations obtained by truncation of the Karhunen-Loeve expansion of the field, but only approximately so for truncations...
Robbins, Joshua; Voth, Thomas E.
2007-12-01
The eXtended Finite Element Method (X-FEM) is a finite-element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static meso-scale material failure to dendrite growth. Here we adapt the recent advances of Vitali and Benson [2] and Song et al. [3] to model dynamic loading of a polycrystalline material. We use demonstration problems to examine the method's efficacy for modeling the dynamic response of polycrystalline materials at the meso-scale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries.
Hooper, Russell; Toose, E.M.; Macosko, Christopher W.; Derby, Jeffrey J.
2001-01-01
A modified boundary element method (BEM) and the DEVSS-G finite element method (FEM) are applied to model the deformation of a polymeric drop suspended in another fluid subjected to start-up uniaxial extensional flow. The effects of viscoelasticity, via the Oldroyd-B differential model, are
A finite element model for protein transport in vivo
Directory of Open Access Journals (Sweden)
Montas Hubert J
2007-06-01
Full Text Available Abstract Background Biological mass transport processes determine the behavior and function of cells, regulate interactions between synthetic agents and recipient targets, and are key elements in the design and use of biosensors. Accurately predicting the outcomes of such processes is crucial to both enhancing our understanding of how these systems function, enabling the design of effective strategies to control their function, and verifying that engineered solutions perform according to plan. Methods A Galerkin-based finite element model was developed and implemented to solve a system of two coupled partial differential equations governing biomolecule transport and reaction in live cells. The simulator was coupled, in the framework of an inverse modeling strategy, with an optimization algorithm and an experimental time series, obtained by the Fluorescence Recovery after Photobleaching (FRAP technique, to estimate biomolecule mass transport and reaction rate parameters. In the inverse algorithm, an adaptive method was implemented to calculate sensitivity matrix. A multi-criteria termination rule was developed to stop the inverse code at the solution. The applicability of the model was illustrated by simulating the mobility and binding of GFP-tagged glucocorticoid receptor in the nucleoplasm of mouse adenocarcinoma. Results The numerical simulator shows excellent agreement with the analytic solutions and experimental FRAP data. Detailed residual analysis indicates that residuals have zero mean and constant variance and are normally distributed and uncorrelated. Therefore, the necessary and sufficient criteria for least square parameter optimization, which was used in this study, were met. Conclusion The developed strategy is an efficient approach to extract as much physiochemical information from the FRAP protocol as possible. Well-posedness analysis of the inverse problem, however, indicates that the FRAP protocol provides insufficient
Finite Element Simulation of the Optical Modes of Semiconductor Lasers
Pomplun, J; Schmidt, F; Schliwa, A; Bimberg, D; Pietrzak, A; Wenzel, H; Erbert, G; 10.1002/pssb.200945451
2010-01-01
In the present article we investigate optical near fields in semiconductor lasers. We perform finite element simulations for two different laser types, namely a super large optical waveguide (SLOW) laser, which is an edge emitter, and a vertical cavity surface emitting laser (VCSEL). We give the mathematical formulation of the different eigenvalue problems that arise for our examples and explain their numerical solution with the finite element method. Thereby, we also comment on the usage of transparent boundary conditions, which have to be applied to respect the exterior environment, e.g., the very large substrate and surrounding air. For the SLOW laser we compare the computed near fields to experimental data for different design parameters of the device. For the VCSEL example a comparison to simplified 1D mode calculations is carried out.
Finite element analyses of two antirotational designs of implant fixtures.
Akour, Salih N; Fayyad, Mohammed A; Nayfeh, Jamal F
2005-03-01
The purpose of this study was to compare the effect of cyclic compressive forces on loosening of the abutment retaining screw of dental implant fixtures with two different antirotational designs using the finite element analysis. A three-dimensional model of externally hexed and trichannel dental implant fixtures with their corresponding abutments and retaining screws was developed. Comparison between the two designs was carried out using finite element analysis. The results revealed that the externally hexed design has significantly higher overall stress, contact stress, and deflection compared with the trichannel design. The trichannel antirotational design has the least potential for fracture of the implant/abutment assembly in addition to its capability for preventing rotation of the prosthesis and loosening of the screw.
A weak Hamiltonian finite element method for optimal control problems
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Weak Hamiltonian finite element method for optimal control problems
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Finite-element analysis of flawed and unflawed pipe tests
Energy Technology Data Exchange (ETDEWEB)
James, R.J.; Nickell, R.E.; Sullaway, M.F. (ANATECH Research Corp., La Jolla, CA (USA))
1989-12-01
Contemporary versions of the general purpose, nonlinear finite element program ABAQUS have been used in structural response verification exercises on flawed and unflawed austenitic stainless steel and ferritic steel piping. Among the topics examined, through comparison between ABAQUS calculations and test results, were: (1) the effect of using variations in the stress-strain relationship from the test article material on the calculated response; (2) the convergence properties of various finite element representations of the pipe geometry, using shell, beam and continuum models; (3) the effect of test system compliance; and (4) the validity of ABAQUS J-integral routines for flawed pipe evaluations. The study was culminated by the development and demonstration of a macroelement'' representation for the flawed pipe section. The macroelement can be inserted into an existing piping system model, in order to accurately treat the crack-opening and crack-closing static and dynamic response. 11 refs., 20 figs., 1 tab.
A finite element model for residual stress in repair welds
Energy Technology Data Exchange (ETDEWEB)
Feng, Z. [Edison Welding Inst., Columbus, OH (United States); Wang, X.L.; Spooner, S.; Goodwin, G.M.; Maziasz, P.J.; Hubbard, C.R.; Zacharia, T. [Oak Ridge National Lab., TN (United States)
1996-03-28
This paper describes a three-dimensional finite element model for calculation of the residual stress distribution caused by repair welding. Special user subroutines were developed to simulate the continuous deposition of filler metal during welding. The model was then tested by simulating the residual stress/strain field of a FeAl weld overlay clad on a 2{1/4}Cr-1 Mo steel plate, for which neutron diffraction measurement data of the residual strain field were available. It is shown that the calculated residual stress distribution was consistent with that determined with neutron diffraction. High tensile residual stresses in both the longitudinal and transverse directions were observed around the weld toe at the end of the weld. The strong spatial dependency of the residual stresses in the region around the weld demonstrates that the common two-dimensional cross-section finite element models should not be used for repair welding analysis.
Finite elements modeling of delaminations in composite laminates
DEFF Research Database (Denmark)
Gaiotti, m.; Rizzo, C.M.; Branner, Kim;
2011-01-01
The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i.e., d...... by finite elements using different techniques. Results obtained with different finite element models are compared and discussed.......The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i...... of the buckling strength of composite laminates containing delaminations. Namely, non-linear buckling and post-buckling analyses are carried out to predict the critical buckling load of elementary composite laminates affected by rectangular delaminations of different sizes and locations, which are modelled...
Assembly of finite element methods on graphics processors
Cecka, Cris
2010-08-23
Recently, graphics processing units (GPUs) have had great success in accelerating many numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are created and analyzed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor using single-precision arithmetic achieves speedups of 30 or more in comparison to a well optimized double-precision single core implementation. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite element discretization. © 2010 John Wiley & Sons, Ltd.
Total quality management of forged products through finite element simulation
Chandra, U.; Rachakonda, S.; Chandrasekharan, S.
The paper reviews the entire thermo-mechanical history experienced by a complex shaped, high strength forged part during all stages of its manufacturing process, i.e. forging, heat treatment, and machining. It examines the current practice of selecting the process parameters using finite element simulation of forging and quenching operations on an individual basis. Some recent work related to the simulation of aging and machining operations is summarized. The capabilities of several well-known finite element codes for these individual simulations are compared. Then, an integrated simulation approach is presented which will permit the optimization of process parameters for all operations, as opposed to a single operation. This approach will ensure a total quality management of forged products by avoiding costly problems which, under the current practice, are detected only at the end of the manufacturing cycle, i.e. after final machining.
A finite element model of ferroelectric/ferroelastic polycrystals
Energy Technology Data Exchange (ETDEWEB)
HWANG,STEPHEN C.; MCMEEKING,ROBERT M.
2000-02-17
A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.
Stochastic Finite Element Simulation of Uncertain Structures Subjected to Earthquake
Directory of Open Access Journals (Sweden)
Subrata Chakraborty
2000-01-01
Full Text Available In present study, the stochastic finite element simulation based on the efficient Neumann expansion technique is extended for the analysis of uncertain structures under seismically induced random ground motion. The basic objective is to investigate the possibility of applying the Neumann expansion technique coupled with the Monte Carlo simulation for dynamic stochastic systems upto that extent of parameter variation after which the method is no longer gives accurate results compared to that of the direct Monte carlo simulation. The stochastic structural parameters are discretized by the local averaging method and then simulated by Cholesky decomposition of the respective covariance matrix. The earthquake induced ground motion is treated as stationary random process defined by respective power spectral density function. Finally, the finite element solution has been obtained in frequency domain utilizing the advantage of Neumann expansion technique.
Finite element modelling of the 1969 Portuguese tsunami
Guesmia, M.; Heinrich, Ph.; Mariotti, C.
1996-03-01
On the 28 th February 1969, the coasts of Portugal, Spain and Morocco were affected by water waves generated by a submarine earthquake (Ms=7.3) with epicenter located off Portugal. The propagation of this tsunami has been simulated by a finite element numerical model solving the Boussinesq equations. These equations have been discretized using the finite element Galerkin method and a Crank-Nicholson scheme in time. The 2-D simulation of the 1969 tsunami is carried out using the hydraulic source calculated from the geophysical model of Okada and seismic parameters of Fukao. The modeled waves are compared with the recorded waves with respect to the travel times, the maximum amplitudes, the periods of the signal. Good agreement is found for most of the studied gauges. The comparison between Boussinesq and shallow-water models shows that the effects of frequency dispersion are minor using Fukao's seismic parameters.
The finite element method and applications in engineering using ANSYS
Madenci, Erdogan
2015-01-01
This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniq...
Finite element exterior calculus: from Hodge theory to numerical stability
Arnold, Douglas N; Winther, Ragnar
2009-01-01
This article reports on the confluence of two streams of research, one emanating from the fields of numerical analysis and scientific computation, the other from topology and geometry. In it we consider the numerical discretization of partial differential equations that are related to differential complexes so that de Rham cohomology and Hodge theory are key tools for the continuous problem. After a brief introduction to finite element methods, the discretization methods we consider, we develop an abstract Hilbert space framework for analyzing stability and convergence. In this framework, the differential complex is represented by a complex of Hilbert spaces and stability is obtained by transferring Hodge theoretic structures from the continuous level to the discrete. We show stable discretization discretization is achieved if the finite element spaces satisfy two hypotheses: they form a subcomplex and there exists a bounded cochain projection from the full complex to the subcomplex. Next, we consider the mos...
Finite element analysis applied to dentoalveolar trauma: methodology description.
da Silva, B R; Moreira Neto, J J S; da Silva, F I; de Aguiar, A S W
2011-01-01
Dentoalveolar traumatic injuries are among the clinical conditions most frequently treated in dental practice. However, few studies so far have addressed the biomechanical aspects of these events, probably as a result of difficulties in carrying out satisfactory experimental and clinical studies as well as the unavailability of truly scientific methodologies. The aim of this paper was to describe the use of finite element analysis applied to the biomechanical evaluation of dentoalveolar trauma. For didactic purposes, the methodological process was divided into steps that go from the creation of a geometric model to the evaluation of final results, always with a focus on methodological characteristics, advantages, and disadvantages, so as to allow the reader to customize the methodology according to specific needs. Our description shows that the finite element method can faithfully reproduce dentoalveolar trauma, provided the methodology is closely followed and thoroughly evaluated.
Finite Element Analysis of 4-Cylinder Diesel Crankshaft
Directory of Open Access Journals (Sweden)
Jian Meng
2011-08-01
Full Text Available The stress analysis and modal analysis of a 4-cylinder crankshaft are discussed using finite element method in this paper. Three-dimension models of 480 diesel engine crankshaft and crankthrow were created using Pro/ENGINEER software The finite element analysis (FEM software ANSYS was used to analyse the vibration modal and the distortion and stress status of the crankthrow.The maximum deformation, maximum stress point and dangerous areas are found by the stress analysis of crankthrow. The relationship between the frequency and the vibration modal is explained by the modal analysis of crankshaft. The results would provide a valuable theoretical foundation for the optimization and improvement of engine design.
Finite element model of magnetoconvection of a ferrofluid
Snyder, Suzanne M.; Cader, Tahir; Finlayson, Bruce A.
2003-06-01
Combined natural and magnetic convective heat transfer through a ferrofluid in a cubic enclosure is simulated numerically. The momentum equation includes a magnetic term that arises when a magnetic fluid is in the presence of a magnetic field gradient and a temperature gradient. In order to validate the theory, the wall temperature isotherms and Nusselt numbers are compared to experimental work of Sawada et al. (Int. J. Appl. Electromagn. Mater. 4 (1994) 329). Results are obtained using standard computational fluid dynamics codes, with modifications to account for the Langevin factor when needed. The CFD code FIDAP uses the finite element method, sometimes with a user-defined subroutine. The CFD code FEMLAB uses the finite element method with a user-supplied body force.
Finite element calculation of residual stress in dental restorative material
Grassia, Luigi; D'Amore, Alberto
2012-07-01
A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.
Arc-length technique for nonlinear finite element analysis
Institute of Scientific and Technical Information of China (English)
MEMON Bashir-Ahmed; SU Xiao-zu(苏小卒)
2004-01-01
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, Received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
A finite element method for growth in biological development.
Murea, Cornel M; Hentschel, H G E
2007-04-01
We describe finite element simulations of limb growth based on Stokes flow models with a nonzero divergence representing growth due to nutrients in the early stages of limb bud development. We introduce a "tissue pressure" whose spatial derivatives yield the growth velocity in the limb and our explicit time advancing algorithm for such tissue flows is described in de tail. The limb boundary is approached by spline functions to compute the curvature and the unit outward normal vector. At each time step, a mixed hybrid finite element problem is solved, where the condition that the velocity is strictly normal to the limb boundary is treated by a Lagrange multiplier technique. Numerical results are presented.
Finite element model of reinforcement corrosion in concrete
Institute of Scientific and Technical Information of China (English)
Jin-xia XU; Lin-hua JIANG; Qi WANG
2009-01-01
A nonlinear finite element model (FEM) of the corrosion of steel reinforcement in concrete has been successfully developed on the basis of mathematical analysis of the electrochemical process of steel corrosion in concrete. The influences of the area ratio and the Tafel constants of the anode and cathode on the potential and corrosion current density have been examined with the model. It has been found that the finite element calculation is more suitable for assessing the corrosion condition of steel reinforcement than ordinary electrochemical techniques due to the fact that FEM can obtain the distributions of potential and corrosion current density on the steel surface. In addition, the local corrosion of steel reinforcement in concrete is strengthened with the decrease of both the area ratio and the Tafel constants. These results provide valuable information to the researchers who investigate steel corrosion.
A 3D Finite Element evaluation of the exophthalmia reduction
Luboz, V; Boutault, F; Swider, P; Payan, Y; Luboz, Vincent; Pedrono, Annaig; Boutault, Franck; Swider, Pascal; Payan, Yohan
2003-01-01
This paper presents a first evaluation of the feasibility of Finite Element modelling of the orbital decompression, in the context of exophthalmia. First simulations are carried out with data extracted from a patient TDM exam. Results seem to qualitatively validate the feasibility of the simulations, with a Finite Element analysis that converges and provides a backward movement of the ocular globe associated with displacements of the fat tissues through the sinuses. This FE model can help a surgeon for the planning of the exophthalmia reduction, and especially for the position and the size of the decompression hole. To get an estimation of the fat tissues volume affected by the surgery, an analytical model seems to provide quicker results for an equivalent efficiency.
Domain Decomposition Solvers for Frequency-Domain Finite Element Equations
Copeland, Dylan
2010-10-05
The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.
A comparison of the finite difference and finite element methods for heat transfer calculations
Emery, A. F.; Mortazavi, H. R.
1982-01-01
The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined.
An hybrid finite volume finite element method for variable density incompressible flows
Calgaro, Caterina; Creusé, Emmanuel; Goudon, Thierry
2008-04-01
This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh-Taylor instability evolution is carefully investigated.
Development and validation of a weight-bearing finite element model for total knee replacement.
Woiczinski, M; Steinbrück, A; Weber, P; Müller, P E; Jansson, V; Schröder, Ch
2016-01-01
Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young's modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson's correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young's modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella.
Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations
2012-10-16
comparison of stresses and strains by finite element analysis (FEA) and peridynamic solutions is performed for a ductile material. A multiscale...problems. One common benchmark problem characterized by the mixed mode fracture is the test of a double-edge-notched concrete specimen conducted by Nooru...Mohamed et al. [19]. The test of Nooru-Mohamed was adopted by De Borst [20] in the discussion of computational modeling of concrete fracture. For
Finite element model calibration using frequency responses with damping equalization
Abrahamsson, T. J. S.; Kammer, D. C.
2015-10-01
Model calibration is a cornerstone of the finite element verification and validation procedure, in which the credibility of the model is substantiated by positive comparison with test data. The calibration problem, in which the minimum deviation between finite element model data and experimental data is searched for, is normally characterized as being a large scale optimization problem with many model parameters to solve for and with deviation metrics that are nonlinear in these parameters. The calibrated parameters need to be found by iterative procedures, starting from initial estimates. Sometimes these procedures get trapped in local deviation function minima and do not converge to the globally optimal calibration solution that is searched for. The reason for such traps is often the multi-modality of the problem which causes eigenmode crossover problems in the iterative variation of parameter settings. This work presents a calibration formulation which gives a smooth deviation metric with a large radius of convergence to the global minimum. A damping equalization method is suggested to avoid the mode correlation and mode pairing problems that need to be solved in many other model updating procedures. By this method, the modal damping of a test data model and the finite element model is set to be the same fraction of critical modal damping. Mode pairing for mapping of experimentally found damping to the finite element model is thus not needed. The method is combined with model reduction for efficiency and employs the Levenberg-Marquardt minimizer with randomized starts to achieve the calibration solution. The performance of the calibration procedure, including a study of parameter bias and variance under noisy data conditions, is demonstrated by two numerical examples.
Finite element modeling of plasmon based single-photon sources
DEFF Research Database (Denmark)
Chen, Yuntian; Gregersen, Niels; Nielsen, Torben Roland;
2011-01-01
A finite element method (FEM) approach of calculating a single emitter coupled to plasmonic waveguides has been developed. The method consists of a 2D model and a 3D model: (I) In the 2D model, we have calculated the spontaneous emission decay rate of a single emitter into guided plasmonic modes...... waveguides with different geometries, as long as only one guided plasmonic mode is predominantly excited....
Finite element based model of parchment coffee drying
Preeda Prakotmak
2015-01-01
Heat and mass transfer in the parchment coffee during convective drying represents a complicated phenomena since it is important to consider not only the transport phenomena during drying but also the various changes of the drying materials. In order to describe drying of biomaterials adequately, a suitable mathematical model is needed. The aim of the present study was to develop a 3-D finite element model to simulate the transport of heat and mass within parchment coffee during the thin laye...
OOFEM – An Object Oriented Framework for Finite Element Analysis
Directory of Open Access Journals (Sweden)
B. Patzák
2004-01-01
Full Text Available This paper presents the design principles and structure of the object-oriented finite element software OOFEM, which has been under active development for several years. The main advantages of the presented framework include modular design, extensibility, and robustness. The code itself is freely available and is distributed under GNU public license. It provides tools for linear and nonlinear analysis of mechanical and transport problems on sequential and parallel computers.
Piezoelectric Analysis of Saw Sensor Using Finite Element Method
Vladimír KUTIŠ; Gabriel GÁLIK; Ivan RÝGER; Murín, Justín; Juraj HRABOVSKÝ; Juraj PAULECH; Tibor LALINSKÝ
2013-01-01
In this contribution modeling and simulation of surface acoustic waves (SAW) sensor using finite element method will be presented. SAW sensor is made from piezoelectric GaN layer and SiC substrate. Two different analysis types are investigated - modal and transient. Both analyses are only 2D. The goal of modal analysis, is to determine the eigenfrequency of SAW, which is used in following transient analysis. In transient analysis, wave propagation in SAW sensor is investigated. Both analyses ...
Finite Element Modeling of Metasurfaces with Generalized Sheet Transition Conditions
Sandeep, Srikumar; Caloz, Christophe
2016-01-01
A modeling of metasurfaces in the finite element method (FEM) based on generalized sheet transition conditions (GSTCs) is presented. The discontinuities in electromagnetic fields across a metasurface as represented by the GSTC are modeled by assigning nodes to both sides of the metasurface. The FEM-GSTC formulation in both 1D and 2D domains is derived and implemented. The method is extended to handle more general bianistroptic metasurfaces. The formulations are validated by several illustrative examples.