Robust adaptive synchronization of general dynamical networks ...
Indian Academy of Sciences (India)
Robust adaptive synchronization; dynamical network; multiple delays; multiple uncertainties. ... Networks such as neural networks, communication transmission networks, social rela- tionship networks etc. ..... a very good effect. Pramana – J.
Dynamical Adaptation in Terrorist Cells/Networks
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar; Ahmed, Zaki
2010-01-01
Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...
Adaptive-network models of collective dynamics
Zschaler, G.
2012-09-01
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge
Opinion dynamics on an adaptive random network
Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.
2009-04-01
We revisit the classical model for voter dynamics in a two-party system with two basic modifications. In contrast to the original voter model studied in regular lattices, we implement the opinion formation process in a random network of agents in which interactions are no longer restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion, or rather with opponents. In this way, the network is built in an adaptive manner, in the sense that its structure is correlated and evolves with the dynamics of the agents. The simplicity of the model allows us to examine several issues analytically. We establish criteria to determine whether consensus or polarization will be the outcome of the dynamics and on what time scales these states will be reached. In finite systems consensus is typical, while in infinite systems a disordered metastable state can emerge and persist for infinitely long time before consensus is reached.
Recruitment dynamics in adaptive social networks
International Nuclear Information System (INIS)
Shkarayev, Maxim S; Shaw, Leah B; Schwartz, Ira B
2013-01-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime). (paper)
Recruitment dynamics in adaptive social networks
Shkarayev, Maxim S.; Schwartz, Ira B.; Shaw, Leah B.
2013-06-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).
Robust adaptive synchronization of general dynamical networks ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Robust ... A robust adaptive synchronization scheme for these general complex networks with multiple delays and uncertainties is established and raised by employing the robust adaptive control principle and the Lyapunov stability theory. We choose ...
Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism
DEFF Research Database (Denmark)
Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu
2012-01-01
Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical...
Complexity and network dynamics in physiological adaptation: An integrated view
Baffy, Gyorgy; Loscalzo, Joseph
2014-01-01
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of t...
Complexity and network dynamics in physiological adaptation: an integrated view.
Baffy, György; Loscalzo, Joseph
2014-05-28
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.
Dynamics of epidemic diseases on a growing adaptive network.
Demirel, Güven; Barter, Edmund; Gross, Thilo
2017-02-10
The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.
Spontaneous formation of dynamical groups in an adaptive networked system
International Nuclear Information System (INIS)
Li Menghui; Guan Shuguang; Lai, C-H
2010-01-01
In this work, we investigate a model of an adaptive networked dynamical system, where the coupling strengths among phase oscillators coevolve with the phase states. It is shown that in this model the oscillators can spontaneously differentiate into two dynamical groups after a long time evolution. Within each group, the oscillators have similar phases, while oscillators in different groups have approximately opposite phases. The network gradually converts from the initial random structure with a uniform distribution of connection strengths into a modular structure that is characterized by strong intra-connections and weak inter-connections. Furthermore, the connection strengths follow a power-law distribution, which is a natural consequence of the coevolution of the network and the dynamics. Interestingly, it is found that if the inter-connections are weaker than a certain threshold, the two dynamical groups will almost decouple and evolve independently. These results are helpful in further understanding the empirical observations in many social and biological networks.
Dynamic Virtual LANs for Adaptive Network Security
National Research Council Canada - National Science Library
Merani, Diego; Berni, Alessandro; Leonard, Michel
2004-01-01
The development of Network-Enabled capabilities in support of undersea research requires architectures for the interconnection and data sharing that are flexible, scalable, and built on open standards...
Extracting neuronal functional network dynamics via adaptive Granger causality analysis.
Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash
2018-04-24
Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.
Adaptive dynamic capacity borrowing in road-covering mobile networks
Ule, A.; Boucherie, Richardus J.; Li, W.; Pan, Y.
2006-01-01
This paper introduces adaptive dynamic capacity borrowing strategies for wireless networks covering a road. In a F/TDMA-based model, road traffic prediction models are used to characterise the movement of hot spots, such as traffic jams, and subsequently to predict the teletraffic load offered to
Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture
Energy Technology Data Exchange (ETDEWEB)
Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)
2015-01-01
Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.
Neural network based adaptive control for nonlinear dynamic regimes
Shin, Yoonghyun
Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Strategic tradeoffs in competitor dynamics on adaptive networks.
Hébert-Dufresne, Laurent; Allard, Antoine; Noël, Pierre-André; Young, Jean-Gabriel; Libby, Eric
2017-08-08
Recent empirical work highlights the heterogeneity of social competitions such as political campaigns: proponents of some ideologies seek debate and conversation, others create echo chambers. While symmetric and static network structure is typically used as a substrate to study such competitor dynamics, network structure can instead be interpreted as a signature of the competitor strategies, yielding competition dynamics on adaptive networks. Here we demonstrate that tradeoffs between aggressiveness and defensiveness (i.e., targeting adversaries vs. targeting like-minded individuals) creates paradoxical behaviour such as non-transitive dynamics. And while there is an optimal strategy in a two competitor system, three competitor systems have no such solution; the introduction of extreme strategies can easily affect the outcome of a competition, even if the extreme strategies have no chance of winning. Not only are these results reminiscent of classic paradoxical results from evolutionary game theory, but the structure of social networks created by our model can be mapped to particular forms of payoff matrices. Consequently, social structure can act as a measurable metric for social games which in turn allows us to provide a game theoretical perspective on online political debates.
DEFF Research Database (Denmark)
Hundebøll, Martin; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani
2014-01-01
This work studies the potential and impact of the FRANC network coding protocol for delivering high quality Dynamic Adaptive Streaming over HTTP (DASH) in wireless networks. Although DASH aims to tailor the video quality rate based on the available throughput to the destination, it relies...
Adaptive contact networks change effective disease infectiousness and dynamics.
Van Segbroeck, Sven; Santos, Francisco C; Pacheco, Jorge M
2010-08-19
Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here--SI, SIS and SIR--the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible).
Adaptive spectrum decision framework for heterogeneous dynamic spectrum access networks
CSIR Research Space (South Africa)
Masonta, M
2015-09-01
Full Text Available Spectrum decision is the ability of a cognitive radio (CR) system to select the best available spectrum band to satisfy dynamic spectrum access network (DSAN) users¿ quality of service (QoS) requirements without causing harmful interference...
International Nuclear Information System (INIS)
Li, Lixiang; Li, Weiwei; Kurths, Jürgen; Luo, Qun; Yang, Yixian; Li, Shudong
2015-01-01
For the reason that the uncertain complex dynamic network with multi-link is quite close to various practical networks, there is superiority in the fields of research and application. In this paper, we focus upon pinning adaptive synchronization for uncertain complex dynamic networks with multi-link against network deterioration. The pinning approach can be applied to adapt uncertain coupling factors of deteriorated networks which can compensate effects of uncertainty. Several new synchronization criterions for networks with multi-link are derived, which ensure the synchronized states to be local or global stable with uncertainty and deterioration. Results of simulation are shown to demonstrate the feasibility and usefulness of our method
Gao, Zilin; Wang, Yinhe; Zhang, Lili
2018-02-01
In the existing research results of the complex dynamical networks controlled, the controllers are mainly used to guarantee the synchronization or stabilization of the nodes’ state, and the terms coupled with connection relationships may affect the behaviors of nodes, this obviously ignores the dynamic common behavior of the connection relationships between the nodes. In fact, from the point of view of large-scale system, a complex dynamical network can be regarded to be composed of two time-varying dynamic subsystems, which can be called the nodes subsystem and the connection relationships subsystem, respectively. Similar to the synchronization or stabilization of the nodes subsystem, some characteristic phenomena can be also emerged in the connection relationships subsystem. For example, the structural balance in the social networks and the synaptic facilitation in the biological neural networks. This paper focuses on the structural balance in dynamic complex networks. Generally speaking, the state of the connection relationships subsystem is difficult to be measured accurately in practical applications, and thus it is not easy to implant the controller directly into the connection relationships subsystem. It is noted that the nodes subsystem and the relationships subsystem are mutually coupled, which implies that the state of the connection relationships subsystem can be affected by the controllable state of nodes subsystem. Inspired by this observation, by using the structural balance theory of triad, the controller with the parameter adaptive law is proposed for the nodes subsystem in this paper, which may ensure the connection relationship matrix to approximate a given structural balance matrix in the sense of the uniformly ultimately bounded (UUB). That is, the structural balance may be obtained by employing the controlling state of the nodes subsystem. Finally, the simulations are used to show the validity of the method in this paper.
Directory of Open Access Journals (Sweden)
Joshua Rodewald
2016-10-01
Full Text Available Supply networks existing today in many industries can behave as complex adaptive systems making them more difficult to analyze and assess. Being able to fully understand both the complex static and dynamic structures of a complex adaptive supply network (CASN are key to being able to make more informed management decisions and prioritize resources and production throughout the network. Previous efforts to model and analyze CASN have been impeded by the complex, dynamic nature of the systems. However, drawing from other complex adaptive systems sciences, information theory provides a model-free methodology removing many of those barriers, especially concerning complex network structure and dynamics. With minimal information about the network nodes, transfer entropy can be used to reverse engineer the network structure while local transfer entropy can be used to analyze the network structure’s dynamics. Both simulated and real-world networks were analyzed using this methodology. Applying the methodology to CASNs allows the practitioner to capitalize on observations from the highly multidisciplinary field of information theory which provides insights into CASN’s self-organization, emergence, stability/instability, and distributed computation. This not only provides managers with a more thorough understanding of a system’s structure and dynamics for management purposes, but also opens up research opportunities into eventual strategies to monitor and manage emergence and adaption within the environment.
Energy Technology Data Exchange (ETDEWEB)
Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Lu Hongqian [Shandong Institute of Light Industry, Shandong Jinan 250353 (China)
2009-12-28
This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.
International Nuclear Information System (INIS)
Xu Yuhua; Zhou Wuneng; Fang Jian'an; Lu Hongqian
2009-01-01
This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.
Voter dynamics on an adaptive network with finite average connectivity
Mukhopadhyay, Abhishek; Schmittmann, Beate
2009-03-01
We study a simple model for voter dynamics in a two-party system. The opinion formation process is implemented in a random network of agents in which interactions are not restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships, so that there is no history dependence in the model. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion and with opponents. Using simulations and analytic arguments, we determine the final steady states and the relaxation into these states for different system sizes. In contrast to earlier studies, the average connectivity (``degree'') of each agent is constant here, independent of the system size. This has significant consequences for the long-time behavior of the model.
Energy Technology Data Exchange (ETDEWEB)
Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teachers' College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen [School of Mathematics and Information, Yangtze University, Hubei Jingzhou 434023 (China)
2010-04-05
This Letter investigates the synchronization of a general complex dynamical network with non-derivative and derivative coupling. Based on LaSalle's invariance principle, adaptive synchronization criteria are obtained. Analytical result shows that under the designed adaptive controllers, a general complex dynamical network with non-derivative and derivative coupling can asymptotically synchronize to a given trajectory, and several useful criteria for synchronization are given. What is more, the coupling matrix is not assumed to be symmetric or irreducible. Finally, simulations results show the method is effective.
Adaptive Dynamics, Control, and Extinction in Networked Populations
2015-07-09
network geometries. From the pre-history of paths that go extinct, a density function is created from the prehistory of these paths, and a clear local...density plots of Fig. 3b. Using the IAMM to compute the most probable path and comparing it to the prehistory of extinction events on stochastic networks
Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control
Ding, Da-Wei; Yan, Jie; Wang, Nian; Liang, Dong
2017-09-01
In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fractional order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more practical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective. Supported by National Natural Science Foundation of China under Grant No. 61201227, National Natural Science Foundation of China Guangdong Joint Fund under Grant No. U1201255, the Natural Science Foundation of Anhui Province under Grant No. 1208085MF93, 211 Innovation Team of Anhui University under Grant Nos. KJTD007A and KJTD001B, and also supported by Chinese Scholarship Council
Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam
2017-07-01
In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Chaos Synchronization Using Adaptive Dynamic Neural Network Controller with Variable Learning Rates
Directory of Open Access Journals (Sweden)
Chih-Hong Kao
2011-01-01
Full Text Available This paper addresses the synchronization of chaotic gyros with unknown parameters and external disturbance via an adaptive dynamic neural network control (ADNNC system. The proposed ADNNC system is composed of a neural controller and a smooth compensator. The neural controller uses a dynamic RBF (DRBF network to online approximate an ideal controller. The DRBF network can create new hidden neurons online if the input data falls outside the hidden layer and prune the insignificant hidden neurons online if the hidden neuron is inappropriate. The smooth compensator is designed to compensate for the approximation error between the neural controller and the ideal controller. Moreover, the variable learning rates of the parameter adaptation laws are derived based on a discrete-type Lyapunov function to speed up the convergence rate of the tracking error. Finally, the simulation results which verified the chaotic behavior of two nonlinear identical chaotic gyros can be synchronized using the proposed ADNNC scheme.
Macroscopic description of complex adaptive networks coevolving with dynamic node states
Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
An Adaptive Learning Based Network Selection Approach for 5G Dynamic Environments
Directory of Open Access Journals (Sweden)
Xiaohong Li
2018-03-01
Full Text Available Networks will continue to become increasingly heterogeneous as we move toward 5G. Meanwhile, the intelligent programming of the core network makes the available radio resource be more changeable rather than static. In such a dynamic and heterogeneous network environment, how to help terminal users select optimal networks to access is challenging. Prior implementations of network selection are usually applicable for the environment with static radio resources, while they cannot handle the unpredictable dynamics in 5G network environments. To this end, this paper considers both the fluctuation of radio resources and the variation of user demand. We model the access network selection scenario as a multiagent coordination problem, in which a bunch of rationally terminal users compete to maximize their benefits with incomplete information about the environment (no prior knowledge of network resource and other users’ choices. Then, an adaptive learning based strategy is proposed, which enables users to adaptively adjust their selections in response to the gradually or abruptly changing environment. The system is experimentally shown to converge to Nash equilibrium, which also turns out to be both Pareto optimal and socially optimal. Extensive simulation results show that our approach achieves significantly better performance compared with two learning and non-learning based approaches in terms of load balancing, user payoff and the overall bandwidth utilization efficiency. In addition, the system has a good robustness performance under the condition with non-compliant terminal users.
Adaptive control of dynamical synchronization on evolving networks with noise disturbances
Yuan, Wu-Jie; Zhou, Jian-Fang; Sendiña-Nadal, Irene; Boccaletti, Stefano; Wang, Zhen
2018-02-01
In real-world networked systems, the underlying structure is often affected by external and internal unforeseen factors, making its evolution typically inaccessible. An adaptive strategy was introduced for maintaining synchronization on unpredictably evolving networks [Sorrentino and Ott, Phys. Rev. Lett. 100, 114101 (2008), 10.1103/PhysRevLett.100.114101], which yet does not consider the noise disturbances widely existing in networks' environments. We provide here strategies to control dynamical synchronization on slowly and unpredictably evolving networks subjected to noise disturbances which are observed at the node and at the communication channel level. With our strategy, the nodes' coupling strength is adaptively adjusted with the aim of controlling synchronization, and according only to their received signal and noise disturbances. We first provide a theoretical analysis of the control scheme by introducing an error potential function to seek for the minimization of the synchronization error. Then, we show numerical experiments which verify our theoretical results. In particular, it is found that our adaptive strategy is effective even for the case in which the dynamics of the uncontrolled network would be explosive (i.e., the states of all the nodes would diverge to infinity).
Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network
International Nuclear Information System (INIS)
Mai, Huanhuan; Liao, Xiaofeng; Song, Gangbing
2013-01-01
Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller. (paper)
Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network
Mai, Huanhuan; Song, Gangbing; Liao, Xiaofeng
2013-01-01
Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller.
Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.
Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong
2015-03-01
This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.
Efficient Dynamic Adaptation Strategies for Object Tracking Tree in Wireless Sensor Network
Directory of Open Access Journals (Sweden)
CHEN, M.
2012-12-01
Full Text Available Most object tracking trees are established using the predefined mobility profile. However, when the real object's movement behaviors and query rates are different from the predefined mobility profile and query rates, the update cost and query cost of object tracking tree may increase. To upgrade the object tracking tree, the sink needs to send very large messages to collect the real movement information from the network, introducing a very large message overhead, which is referred to as adaptation cost. The Sub Root Message-Tree Adaptive procedure was proposed to dynamically collect the real movement information under the sub-tree and reconstruct the sub-tree to provide good performance based on the collected information. The simulation results indicates that the Sub Root Message-Tree Adaptive procedure is sufficient to achieve good total cost and lower adaptation cost.
An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.
Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun
2015-12-03
Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.
An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Chunyang Lei
2015-12-01
Full Text Available Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT, Machine-to-Machine (M2M communications, Vehicular-to-Vehicular (V2V communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.
Aperiodic dynamics in a deterministic adaptive network model of attitude formation in social groups
Ward, Jonathan A.; Grindrod, Peter
2014-07-01
Adaptive network models, in which node states and network topology coevolve, arise naturally in models of social dynamics that incorporate homophily and social influence. Homophily relates the similarity between pairs of nodes' states to their network coupling strength, whilst social influence causes coupled nodes' states to convergence. In this paper we propose a deterministic adaptive network model of attitude formation in social groups that includes these effects, and in which the attitudinal dynamics are represented by an activato-inhibitor process. We illustrate that consensus, corresponding to all nodes adopting the same attitudinal state and being fully connected, may destabilise via Turing instability, giving rise to aperiodic dynamics with sensitive dependence on initial conditions. These aperiodic dynamics correspond to the formation and dissolution of sub-groups that adopt contrasting attitudes. We discuss our findings in the context of cultural polarisation phenomena. Social influence. This reflects the fact that people tend to modify their behaviour and attitudes in response to the opinions of others [22-26]. We model social influence via diffusion: agents adjust their state according to a weighted sum (dictated by the evolving network) of the differences between their state and the states of their neighbours. Homophily. This relates the similarity of individuals' states to their frequency and strength of interaction [27]. Thus in our model, homophily drives the evolution of the weighted ‘social' network. A precise formulation of our model is given in Section 2. Social influence and homophily underpin models of social dynamics [21], which cover a wide range of sociological phenomena, including the diffusion of innovations [28-32], complex contagions [33-36], collective action [37-39], opinion dynamics [19,20,40,10,11,13,15,41,16], the emergence of social norms [42-44], group stability [45], social differentiation [46] and, of particular relevance
Fei, Juntao; Lu, Cheng
2018-04-01
In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.
Mata-Machuca, Juan L.; Aguilar-López, Ricardo
2018-01-01
This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.
Kasatkin, D. V.; Yanchuk, S.; Schöll, E.; Nekorkin, V. I.
2017-12-01
We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state, and these states can coexist on different scales of subnetwork sizes.
Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing
2014-01-15
A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P
2017-03-01
In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Takiyama, Ken
2017-12-01
How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.
Shen, Lin; Yang, Weitao
2018-03-13
Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of
Vantomme, Ghislaine; Jiang, Shimei; Lehn, Jean-Marie
2014-07-02
Constitutional dynamic libraries of hydrazones (a)A(b)B and acylhydrazones (a)A(c)C undergo reorganization and adaptation in response to a chemical effector (metal cations) or a physical stimulus (light). The set of hydrazones [(1)A(1)B, (1)A(2)B, (2)A(1)B, (2)A(2)B] undergoes metalloselection on addition of zinc cations which drive the amplification of Zn((1)A(2)B)2 by selection of the fittest component (1)A(2)B. The set of acylhydrazones [E-(1)A(1)C, (1)A(2)C, (2)A(1)C, (2)A(2)C] undergoes photoselection by irradiation of the system, which causes photoisomerization of E-(1)A(1)C into Z-(1)A(1)C with amplification of the latter. The set of acyl hydrazones [E-(1)A(1)C, (1)A(3)C, (2)A(1)C, (2)A(3)C] undergoes a dual adaptation via component exchange and selection in response to two orthogonal external agents: a chemical effector, metal cations, and a physical stimulus, light irradiation. Metalloselection takes place on addition of zinc cations which drive the amplification of Zn((1)A(3)C)2 by selection of the fittest constituent (1)A(3)C. Photoselection is obtained on irradiation of the acylhydrazones that leads to photoisomerization from E-(1)A(1)C to Z-(1)A(1)C configuration with amplification of the latter. These changes may be represented by square constitutional dynamic networks that display up-regulation of the pairs of agonists ((1)A(2)B, (2)A(1)B), (Z-(1)A(1)C, (2)A(2)C), ((1)A(3)C, (2)A(1)C), (Z-(1)A(1)C, (2)A(3)C) and the simultaneous down-regulation of the pairs of antagonists ((1)A(1)B, (2)A(2)B), ((1)A(2)C, (2)A(1)C), (E-(1)A(1)C, (2)A(3)C), ((1)A(3)C, (2)A(1)C). The orthogonal dual adaptation undergone by the set of acylhydrazones amounts to a network switching process.
Tiwari, Shivendra N.; Padhi, Radhakant
2018-01-01
Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.
Adaptive Protocols for Mobile Wireless Networks
National Research Council Canada - National Science Library
Pursley, Michael B
2005-01-01
.... Research results are presented on adaptive, energy-efficient, distributed protocols for mobile wireless networks that must operate effectively over unreliable communication links in highly dynamic...
Tang, Li; Liu, Jing-Ning; Feng, Dan; Tong, Wei
2008-12-01
Existing security solutions in network storage environment perform poorly because cryptographic operations (encryption and decryption) implemented in software can dramatically reduce system performance. In this paper we propose a cryptographic hardware accelerator on dynamically reconfigurable platform for the security of high performance network storage system. We employ a dynamic reconfigurable platform based on a FPGA to implement a PowerPCbased embedded system, which executes cryptographic algorithms. To reduce the reconfiguration latency, we apply prefetch scheduling. Moreover, the processing elements could be dynamically configured to support different cryptographic algorithms according to the request received by the accelerator. In the experiment, we have implemented AES (Rijndael) and 3DES cryptographic algorithms in the reconfigurable accelerator. Our proposed reconfigurable cryptographic accelerator could dramatically increase the performance comparing with the traditional software-based network storage systems.
Analysis of Social Network Dynamics with Models from the Theory of Complex Adaptive Systems
Lymperopoulos , Ilias; Lekakos , George
2013-01-01
Part 4: Protocols, Regulation and Social Networking; International audience; The understanding and modeling of social dynamics in a complex and unpredictable world, emerges as a research target of particular importance. Success in this direction can yield valuable knowledge as to how social phenomena form and evolve in varying socioeconomic contexts comprising economic crises, societal disasters, cultural differences and security threats among others. The study of social dynamics occurring in...
Iglič, Hajdeja; Rus, Andrej
2014-01-01
This article deals with the process of elite adaptation in Slovenia in the period between 1988 and 1995. While negotiated settlement between the old and new elites in Slovenia contributed to high reproduction rates of Slovenian old elites, there was significant change going on within the new and old elites. By looking at their ego networks, we show that the debate on elite reproduction is overlooking an important aspect of change, i.e. the adaptation of elites. We analyze changes in the compo...
Directory of Open Access Journals (Sweden)
Zhi-Jun Fu
2017-01-01
Full Text Available In view of the performance requirements (e.g., ride comfort, road holding, and suspension space limitation for vehicle suspension systems, this paper proposes an adaptive optimal control method for quarter-car active suspension system by using the approximate dynamic programming approach (ADP. Online optimal control law is obtained by using a single adaptive critic NN to approximate the solution of the Hamilton-Jacobi-Bellman (HJB equation. Stability of the closed-loop system is proved by Lyapunov theory. Compared with the classic linear quadratic regulator (LQR approach, the proposed ADP-based adaptive optimal control method demonstrates improved performance in the presence of parametric uncertainties (e.g., sprung mass and unknown road displacement. Numerical simulation results of a sedan suspension system are presented to verify the effectiveness of the proposed control strategy.
Chaudhuri, Arijit
2014-01-01
Combining the two statistical techniques of network sampling and adaptive sampling, this book illustrates the advantages of using them in tandem to effectively capture sparsely located elements in unknown pockets. It shows how network sampling is a reliable guide in capturing inaccessible entities through linked auxiliaries. The text also explores how adaptive sampling is strengthened in information content through subsidiary sampling with devices to mitigate unmanageable expanding sample sizes. Empirical data illustrates the applicability of both methods.
DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Francisco José Estévez
2016-06-01
Full Text Available The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities.
Adaptive dynamic inversion robust control for BTT missile based on wavelet neural network
Li, Chuanfeng; Wang, Yongji; Deng, Zhixiang; Wu, Hao
2009-10-01
A new nonlinear control strategy incorporated the dynamic inversion method with wavelet neural networks is presented for the nonlinear coupling system of Bank-to-Turn(BTT) missile in reentry phase. The basic control law is designed by using the dynamic inversion feedback linearization method, and the online learning wavelet neural network is used to compensate the inversion error due to aerodynamic parameter errors, modeling imprecise and external disturbance in view of the time-frequency localization properties of wavelet transform. Weights adjusting laws are derived according to Lyapunov stability theory, which can guarantee the boundedness of all signals in the whole system. Furthermore, robust stability of the closed-loop system under this tracking law is proved. Finally, the six degree-of-freedom(6DOF) simulation results have shown that the attitude angles can track the anticipant command precisely under the circumstances of existing external disturbance and in the presence of parameter uncertainty. It means that the dependence on model by dynamic inversion method is reduced and the robustness of control system is enhanced by using wavelet neural network(WNN) to reconstruct inversion error on-line.
Kirsanov, Daniil V.; Nedaivozov, Vladimir O.; Makarov, Vladimir V.; Goremyko, Mikhail V.; Hramov, Alexander E.
2017-04-01
In the report we study the mechanisms of phase synchronization in the model of adaptive network of Kuramoto phase oscillators and discuss the possibility of the further application of the obtained results for the analysis of the neural network of brain. In our theoretical study the model network represents itself as the multilayer structure, in which the links between the elements belonging to the different layers are arranged according to the competitive rule. In order to analyze the dynamical states of the multilayer network we calculate and compare the values of local and global order parameter, which describe the degree of coherence between the neighboring nodes and the elements over whole network, respectively. We find that the global synchronous dynamics takes place for the large values of the coupling strength and are characterized by the identical topology of the interacting layers and a homogeneous distribution of the link strength within each layer. We also show that the partial (or cluster) synchronization, occurs for the small values of the coupling strength, lead to the emergence of the scale-free topology, within the layers.
Peng, Zhouhua; Wang, Dan; Zhang, Hongwei; Sun, Gang
2014-08-01
This paper addresses the leader-follower synchronization problem of uncertain dynamical multiagent systems with nonlinear dynamics. Distributed adaptive synchronization controllers are proposed based on the state information of neighboring agents. The control design is developed for both undirected and directed communication topologies without requiring the accurate model of each agent. This result is further extended to the output feedback case where a neighborhood observer is proposed based on relative output information of neighboring agents. Then, distributed observer-based synchronization controllers are derived and a parameter-dependent Riccati inequality is employed to prove the stability. This design has a favorable decouple property between the observer and the controller designs for nonlinear multiagent systems. For both cases, the developed controllers guarantee that the state of each agent synchronizes to that of the leader with bounded residual errors. Two illustrative examples validate the efficacy of the proposed methods.
Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang
2014-06-01
This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.
Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun
2016-02-01
As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.
Dynamical adaptation in photoreceptors.
Directory of Open Access Journals (Sweden)
Damon A Clark
Full Text Available Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300[Formula: see text] ms-i. e., over the time scale of the response itself-and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant.
Hwang, Chih-Lyang; Jan, Chau
2016-02-01
At the beginning, an approximate nonlinear autoregressive moving average (NARMA) model is employed to represent a class of multivariable nonlinear dynamic systems with time-varying delay. It is known that the disadvantages of robust control for the NARMA model are as follows: 1) suitable control parameters for larger time delay are more sensitive to achieving desirable performance; 2) it only deals with bounded uncertainty; and 3) the nominal NARMA model must be learned in advance. Due to the dynamic feature of the NARMA model, a recurrent neural network (RNN) is online applied to learn it. However, the system performance becomes deteriorated due to the poor learning of the larger variation of system vector functions. In this situation, a simple network is employed to compensate the upper bound of the residue caused by the linear parameterization of the approximation error of RNN. An e -modification learning law with a projection for weight matrix is applied to guarantee its boundedness without persistent excitation. Under suitable conditions, the semiglobally ultimately bounded tracking with the boundedness of estimated weight matrix is obtained by the proposed RNN-based multivariable adaptive control. Finally, simulations are presented to verify the effectiveness and robustness of the proposed control.
Adaptive Synchronization of Robotic Sensor Networks
Yıldırım, Kasım Sinan; Gürcan, Önder
2014-01-01
The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, ...
Adaptive, dynamic, and resilient systems
Suri, Niranjan
2015-01-01
As the complexity of today's networked computer systems grows, they become increasingly difficult to understand, predict, and control. Addressing these challenges requires new approaches to building these systems. Adaptive, Dynamic, and Resilient Systems supplies readers with various perspectives of the critical infrastructure that systems of networked computers rely on. It introduces the key issues, describes their interrelationships, and presents new research in support of these areas.The book presents the insights of a different group of international experts in each chapter. Reporting on r
International Nuclear Information System (INIS)
Luo, Shaohua; Wu, Songli; Gao, Ruizhen
2015-01-01
This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation
Luo, Shaohua; Wu, Songli; Gao, Ruizhen
2015-07-01
This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.
Network measures for characterising team adaptation processes
Barth, S.K.; Schraagen, J.M.C.; Schmettow, M.
2015-01-01
The aim of this study was to advance the conceptualisation of team adaptation by applying social network analysis (SNA) measures in a field study of a paediatric cardiac surgical team adapting to changes in task complexity and ongoing dynamic complexity. Forty surgical procedures were observed by
International Nuclear Information System (INIS)
Gherbi, Chirihane; Aliouat, Zibouda; Benmohammed, Mohamed
2016-01-01
Clustering is a well known approach to cope with large nodes density and efficiently conserving energy in Wireless Sensor Networks (WSN). Load balancing is an effective approach for optimizing resources like channel bandwidth, the main objective of this paper is to combine these two valuable approaches in order to significantly improve the main WSN service such as information routing. So, our proposal is a routing protocol in which load traffic is shared among cluster members in order to reduce the dropping probability due to queue overflow at some nodes. To this end, a novel hierarchical approach, called Hierarchical Energy-Balancing Multipath routing protocol for Wireless Sensor Networks (HEBM) is proposed. The HEBM approach aims to fulfill the following purposes: decreasing the overall network energy consumption, balancing the energy dissipation among the sensor nodes and as direct consequence: extending the lifetime of the network. In fact, the cluster-heads are optimally determined and suitably distributed over the area of interest allowing the member nodes reaching them with adequate energy dissipation and appropriate load balancing utilization. In addition, nodes radio are turned off for fixed time duration according to sleeping control rules optimizing so their energy consumption. The performance evaluation of the proposed protocol is carried out through the well-known NS2 simulator and the exhibited results are convincing. Like this, the residual energy of sensor nodes was measured every 20 s throughout the duration of simulation, in order to calculate the total number of alive nodes. Based on the simulation results, we concluded that our proposed HEBM protocol increases the profit of energy, and prolongs the network lifetime duration from 32% to 40% compared to DEEAC reference protocol and from 25% to 28% compared to FEMCHRP protocol. The authors also note that the proposed protocol is 41.7% better than DEEAC with respect to FND (Fist node die), and 25
Entropy of dynamical social networks
Zhao, Kun; Karsai, Marton; Bianconi, Ginestra
2012-02-01
Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.
International Nuclear Information System (INIS)
Peng Haipeng; Wei Nan; Li Lixiang; Xie Weisheng; Yang Yixian
2010-01-01
In this Letter, time-delay has been introduced in to split the networks, upon which a model of complex dynamical networks with multi-links has been constructed. Moreover, based on Lyapunov stability theory and some hypotheses, we achieve synchronization between two complex networks with different structures by designing effective controllers. The validity of the results was proved through numerical simulations of this Letter.
Adaptive Networks Theory, Models and Applications
Gross, Thilo
2009-01-01
With adaptive, complex networks, the evolution of the network topology and the dynamical processes on the network are equally important and often fundamentally entangled. Recent research has shown that such networks can exhibit a plethora of new phenomena which are ultimately required to describe many real-world networks. Some of those phenomena include robust self-organization towards dynamical criticality, formation of complex global topologies based on simple, local rules, and the spontaneous division of "labor" in which an initially homogenous population of network nodes self-organizes into functionally distinct classes. These are just a few. This book is a state-of-the-art survey of those unique networks. In it, leading researchers set out to define the future scope and direction of some of the most advanced developments in the vast field of complex network science and its applications.
Directory of Open Access Journals (Sweden)
M. Louta
2014-01-01
Full Text Available WiMAX (Worldwide Interoperability for Microwave Access constitutes a candidate networking technology towards the 4G vision realization. By adopting the Orthogonal Frequency Division Multiple Access (OFDMA technique, the latest IEEE 802.16x amendments manage to provide QoS-aware access services with full mobility support. A number of interesting scheduling and mapping schemes have been proposed in research literature. However, they neglect a considerable asset of the OFDMA-based wireless systems: the dynamic adjustment of the downlink-to-uplink width ratio. In order to fully exploit the supported mobile WiMAX features, we design, develop, and evaluate a rigorous adaptive model, which inherits its main aspects from the reinforcement learning field. The model proposed endeavours to efficiently determine the downlink-to-uplinkwidth ratio, on a frame-by-frame basis, taking into account both the downlink and uplink traffic in the Base Station (BS. Extensive evaluation results indicate that the model proposed succeeds in providing quite accurate estimations, keeping the average error rate below 15% with respect to the optimal sub-frame configurations. Additionally, it presents improved performance compared to other learning methods (e.g., learning automata and notable improvements compared to static schemes that maintain a fixed predefined ratio in terms of service ratio and resource utilization.
In-Network Adaptation of Video Streams Using Network Processors
Directory of Open Access Journals (Sweden)
Mohammad Shorfuzzaman
2009-01-01
problem can be addressed, near the network edge, by applying dynamic, in-network adaptation (e.g., transcoding of video streams to meet available connection bandwidth, machine characteristics, and client preferences. In this paper, we extrapolate from earlier work of Shorfuzzaman et al. 2006 in which we implemented and assessed an MPEG-1 transcoding system on the Intel IXP1200 network processor to consider the feasibility of in-network transcoding for other video formats and network processor architectures. The use of “on-the-fly” video adaptation near the edge of the network offers the promise of simpler support for a wide range of end devices with different display, and so forth, characteristics that can be used in different types of environments.
Emergent explosive synchronization in adaptive complex networks
Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.
2018-04-01
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.
Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun
2016-02-01
We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.
Deng, Yue; Zenil, Hector; Tegnér, Jesper; Kiani, Narsis A
2017-12-15
The use of differential equations (ODE) is one of the most promising approaches to network inference. The success of ODE-based approaches has, however, been limited, due to the difficulty in estimating parameters and by their lack of scalability. Here, we introduce a novel method and pipeline to reverse engineer gene regulatory networks from gene expression of time series and perturbation data based upon an improvement on the calculation scheme of the derivatives and a pre-filtration step to reduce the number of possible links. The method introduces a linear differential equation model with adaptive numerical differentiation that is scalable to extremely large regulatory networks. We demonstrate the ability of this method to outperform current state-of-the-art methods applied to experimental and synthetic data using test data from the DREAM4 and DREAM5 challenges. Our method displays greater accuracy and scalability. We benchmark the performance of the pipeline with respect to dataset size and levels of noise. We show that the computation time is linear over various network sizes. The Matlab code of the HiDi implementation is available at: www.complexitycalculator.com/HiDiScript.zip. hzenilc@gmail.com or narsis.kiani@ki.se. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Deng, Yue
2017-08-05
Motivation: The use of differential equations (ODE) is one of the most promising approaches to network inference. The success of ODE-based approaches has, however, been limited, due to the difficulty in estimating parameters and by their lack of scalability. Here, we introduce a novel method and pipeline to reverse engineer gene regulatory networks from gene expression of time series and perturbation data based upon an improvement on the calculation scheme of the derivatives and a pre-filtration step to reduce the number of possible links. The method introduces a linear differential equation model with adaptive numerical differentiation that is scalable to extremely large regulatory networks. Results: We demonstrate the ability of this method to outperform current state-of-the-art methods applied to experimental and synthetic data using test data from the DREAM4 and DREAM5 challenges. Our method displays greater accuracy and scalability. We benchmark the performance of the pipeline with respect to dataset size and levels of noise. We show that the computation time is linear over various network sizes.
Xu, Zhanqi; Huang, Jiangjiang; Zhou, Zhiqiang; Ding, Zhe; Ma, Tao; Wang, Junping
2013-10-01
To maximize the resource utilization of optical networks, the dynamic traffic grooming, which could efficiently multiplex many low-speed services arriving dynamically onto high-capacity optical channels, has been studied extensively and used widely. However, the link weights in the existing research works can be improved since they do not adapt to the network status and load well. By exploiting the information on the holding times of the preexisting and new lightpaths, and the requested bandwidth of a user service, this paper proposes a grooming algorithm using Adaptively Weighted Links for Holding-Time-Aware (HTA) (abbreviated as AWL-HTA) traffic, especially in the setup process of new lightpath(s). Therefore, the proposed algorithm can not only establish a lightpath that uses network resource efficiently, but also achieve load balancing. In this paper, the key issues on the link weight assignment and procedure within the AWL-HTA are addressed in detail. Comprehensive simulation and experimental results show that the proposed algorithm has a much lower blocking ratio and latency than other existing algorithms.
Dynamic adaption of vascular morphology
DEFF Research Database (Denmark)
Okkels, Fridolin; Jacobsen, Jens Christian Brings
2012-01-01
The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here ...
Adaptive Graph Convolutional Neural Networks
Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou
2018-01-01
Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...
DEFF Research Database (Denmark)
Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin
2016-01-01
Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior...
Dynamic and interacting complex networks
Dickison, Mark E.
This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible
Wang, Pengfei; Jin, Wei; Su, Huan
2018-04-01
This paper deals with the synchronization problem of a class of coupled stochastic complex-valued drive-response networks with time-varying delays via aperiodically intermittent adaptive control. Different from the previous works, the intermittent control is aperiodic and adaptive, and the restrictions on the control width and time delay are removed, which lead to a larger application scope for this control strategy. Then, based on the Lyapunov method and Kirchhoff's Matrix Tree Theorem as well as differential inequality techniques, several novel synchronization conditions are derived for the considered model. Specially, impulsive control is also considered, which can be seen as a special case of the aperiodically intermittent control when the control width tends to zero. And the corresponding synchronization criteria are given as well. As an application of the theoretical results, a class of stochastic complex-valued coupled oscillators with time-varying delays is studied, and the numerical simulations are also given to demonstrate the effectiveness of the control strategies.
Li, Xiao-Jian; Yang, Guang-Hong
2017-03-01
This paper is concerned with the problem of adaptive fault-tolerant synchronization control of a class of complex dynamical networks (CDNs) with actuator faults and unknown coupling weights. The considered input distribution matrix is assumed to be an arbitrary matrix, instead of a unit one. Within this framework, an adaptive fault-tolerant controller is designed to achieve synchronization for the CDN. Moreover, a convex combination technique and an important graph theory result are developed, such that the rigorous convergence analysis of synchronization errors can be conducted. In particular, it is shown that the proposed fault-tolerant synchronization control approach is valid for the CDN with both time-invariant and time-varying coupling weights. Finally, two simulation examples are provided to validate the effectiveness of the theoretical results.
Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation
Li, Luozheng; Mi, Yuanyuan; Zhang, Wenhao; Wang, Da-Hui; Wu, Si
2018-01-01
Adaptation refers to the general phenomenon that the neural system dynamically adjusts its response property according to the statistics of external inputs. In response to an invariant stimulation, neuronal firing rates first increase dramatically and then decrease gradually to a low level close to the background activity. This prompts a question: during the adaptation, how does the neural system encode the repeated stimulation with attenuated firing rates? It has been suggested that the neural system may employ a dynamical encoding strategy during the adaptation, the information of stimulus is mainly encoded by the strong independent spiking of neurons at the early stage of the adaptation; while the weak but synchronized activity of neurons encodes the stimulus information at the later stage of the adaptation. The previous study demonstrated that short-term facilitation (STF) of electrical synapses, which increases the synchronization between neurons, can provide a mechanism to realize dynamical encoding. In the present study, we further explore whether short-term plasticity (STP) of chemical synapses, an interaction form more common than electrical synapse in the cortex, can support dynamical encoding. We build a large-size network with chemical synapses between neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations between neurons mildly, but its effect on increasing synchronization of the network can be significant, and hence it can serve as a mechanism to convey the stimulus information. To read-out the stimulus information, we consider that a downstream neuron receives balanced excitatory and inhibitory inputs from the network, so that the downstream neuron only responds to synchronized firings of the network. Therefore, the response of the downstream neuron indicates the presence of the repeated stimulation. Overall, our study demonstrates that STP of chemical synapse can serve as a mechanism to realize dynamical neural
Atomic switch networks as complex adaptive systems
Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.
2018-03-01
Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.
Epidemics in Adaptive Social Networks with Temporary Link Deactivation
Tunc, Ilker; Shkarayev, Maxim S.; Shaw, Leah B.
2013-04-01
Disease spread in a society depends on the topology of the network of social contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to reduce the risk of infection, thus changing the network structure and affecting future disease spread. We propose an adaptation mechanism where healthy individuals may choose to temporarily deactivate their contacts with sick individuals, allowing reactivation once both individuals are healthy. We develop a mean-field description of this system and find two distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces the effective number of contacts per individual, and fast network dynamics, where more efficient adaptation reduces the spread of disease by targeting dangerous connections. Analysis of the bifurcation structure is supported by numerical simulations of disease spread on an adaptive network. The system displays a single parameter-dependent stable steady state and non-monotonic dependence of connectivity on link deactivation rate.
Transitions from Trees to Cycles in Adaptive Flow Networks
DEFF Research Database (Denmark)
Martens, Erik Andreas; Klemm, Konstantin
2017-01-01
-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization...... principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances). We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable......Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real...
Complex and adaptive dynamical systems a primer
Gros, Claudius
2007-01-01
We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...
Complex and Adaptive Dynamical Systems A Primer
Gros, Claudius
2011-01-01
We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...
Adaptive competitive learning neural networks
Directory of Open Access Journals (Sweden)
Ahmed R. Abas
2013-11-01
Full Text Available In this paper, the adaptive competitive learning (ACL neural network algorithm is proposed. This neural network not only groups similar input feature vectors together but also determines the appropriate number of groups of these vectors. This algorithm uses a new proposed criterion referred to as the ACL criterion. This criterion evaluates different clustering structures produced by the ACL neural network for an input data set. Then, it selects the best clustering structure and the corresponding network architecture for this data set. The selected structure is composed of the minimum number of clusters that are compact and balanced in their sizes. The selected network architecture is efficient, in terms of its complexity, as it contains the minimum number of neurons. Synaptic weight vectors of these neurons represent well-separated, compact and balanced clusters in the input data set. The performance of the ACL algorithm is evaluated and compared with the performance of a recently proposed algorithm in the literature in clustering an input data set and determining its number of clusters. Results show that the ACL algorithm is more accurate and robust in both determining the number of clusters and allocating input feature vectors into these clusters than the other algorithm especially with data sets that are sparsely distributed.
Transitions from Trees to Cycles in Adaptive Flow Networks
Directory of Open Access Journals (Sweden)
Erik A. Martens
2017-11-01
Full Text Available Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances. We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins.
Using Bayesian belief networks in adaptive management.
J.B. Nyberg; B.G. Marcot; R. Sulyma
2006-01-01
Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...
How adaptation shapes spike rate oscillations in recurrent neuronal networks
Directory of Open Access Journals (Sweden)
Moritz eAugustin
2013-02-01
Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.
Transitions from Trees to Cycles in Adaptive Flow Networks
DEFF Research Database (Denmark)
Martens, Erik Andreas; Klemm, Konstantin
2017-01-01
. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two......Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real......-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization...
Adaptive learning and complex dynamics
International Nuclear Information System (INIS)
Gomes, Orlando
2009-01-01
In this paper, we explore the dynamic properties of a group of simple deterministic difference equation systems in which the conventional perfect foresight assumption gives place to a mechanism of adaptive learning. These systems have a common feature: under perfect foresight (or rational expectations) they all possess a unique fixed point steady state. This long-term outcome is obtained also under learning if the quality underlying the learning process is high. Otherwise, when the degree of inefficiency of the learning process is relatively strong, nonlinear dynamics (periodic and a-periodic cycles) arise. The specific properties of each one of the proposed systems is explored both in terms of local and global dynamics. One macroeconomic model is used to illustrate how the formation of expectations through learning may eventually lead to awkward long-term outcomes.
Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.
2015-12-01
The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.
Epidemics in adaptive networks with community structure
Shaw, Leah; Tunc, Ilker
2010-03-01
Models for epidemic spread on static social networks do not account for changes in individuals' social interactions. Recent studies of adaptive networks have modeled avoidance behavior, as non-infected individuals try to avoid contact with infectives. Such models have not generally included realistic social structure. Here we study epidemic spread on an adaptive network with community structure. We model the effect of heterogeneous communities on infection levels and epidemic extinction. We also show how an epidemic can alter the community structure.
Complex and adaptive dynamical systems a primer
Gros, Claudius
2015-01-01
This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard ...
Complex and adaptive dynamical systems a primer
Gros, Claudius
2013-01-01
Complex system theory is rapidly developing and gaining importance, providing tools and concepts central to our modern understanding of emergent phenomena. This primer offers an introduction to this area together with detailed coverage of the mathematics involved. All calculations are presented step by step and are straightforward to follow. This new third edition comes with new material, figures and exercises. Network theory, dynamical systems and information theory, the core of modern complex system sciences, are developed in the first three chapters, covering basic concepts and phenomena like small-world networks, bifurcation theory and information entropy. Further chapters use a modular approach to address the most important concepts in complex system sciences, with the emergence and self-organization playing a central role. Prominent examples are self-organized criticality in adaptive systems, life at the edge of chaos, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase...
Information Dynamics as Foundation for Network Management
2014-12-04
developed to adapt to channel dynamics in a mobile network environment. We devise a low- complexity online scheduling algorithm integrated with the...has been accepted for the Journal on Network and Systems Management in 2014. - RINC programmable platform for Infrastructure -as-a-Service public... backend servers. Rather than implementing load balancing in dedicated appliances, commodity SDN switches can perform this function. We design
Stochastic analysis of epidemics on adaptive time varying networks
Kotnis, Bhushan; Kuri, Joy
2013-06-01
Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.
Studying Dynamics in Business Networks
DEFF Research Database (Denmark)
Andersen, Poul Houman; Anderson, Helen; Havila, Virpi
1998-01-01
This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland......This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland...
Direct adaptive control using feedforward neural networks
Cajueiro, Daniel Oliveira; Hemerly, Elder Moreira
2003-01-01
ABSTRACT: This paper proposes a new scheme for direct neural adaptive control that works efficiently employing only one neural network, used for simultaneously identifying and controlling the plant. The idea behind this structure of adaptive control is to compensate the control input obtained by a conventional feedback controller. The neural network training process is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm. Additionally, the conver...
Learning Transferable Features with Deep Adaptation Networks
Long, Mingsheng; Cao, Yue; Wang, Jianmin; Jordan, Michael I.
2015-01-01
Recent studies reveal that a deep neural network can learn transferable features which generalize well to novel tasks for domain adaptation. However, as deep features eventually transition from general to specific along the network, the feature transferability drops significantly in higher layers with increasing domain discrepancy. Hence, it is important to formally reduce the dataset bias and enhance the transferability in task-specific layers. In this paper, we propose a new Deep Adaptation...
Adaptive mechanism-based congestion control for networked systems
Liu, Zhi; Zhang, Yun; Chen, C. L. Philip
2013-03-01
In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.
Dynamic training algorithm for dynamic neural networks
International Nuclear Information System (INIS)
Tan, Y.; Van Cauwenberghe, A.; Liu, Z.
1996-01-01
The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper
Public goods games on adaptive coevolutionary networks
Pichler, Elgar; Shapiro, Avi M.
2017-07-01
Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such games, contributions to the public good are made only by cooperators, while all players, including defectors, reap public goods benefits, which are shares of the contributions amplified by a synergy factor. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a complex network in which players adapt to their environment in order to increase individual payoffs relative to past payoffs parameterized by greediness. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players' strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.
QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding
Razzaque, Mohammad Abdur; Javadi, Saeideh S.; Coulibaly, Yahaya; Hira, Muta Tah
2015-01-01
Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts. PMID:25551485
QOS-aware error recovery in wireless body sensor networks using adaptive network coding.
Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah
2014-12-29
Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.
Evolution of Cooperation in Adaptive Social Networks
Segbroeck, Sven Van; Santos, Francisco C.; Traulsen, Arne; Lenaerts, Tom; Pacheco, Jorge M.
Humans are organized in societies, a phenomenon that would never have been possible without the evolution of cooperative behavior. Several mechanisms that foster this evolution have been unraveled over the years, with population structure as a prominent promoter of cooperation. Modern networks of exchange and cooperation are, however, becoming increasingly volatile, and less and less based on long-term stable structure. Here, we address how this change of paradigm aspects the evolution of cooperation. We discuss analytical and numerical models in which individuals can break social ties and create new ones. Interactions are modeled as two-player dilemmas of cooperation. Once a link between two individuals has formed, the productivity of this link is evaluated. Links can be broken off at different rates. This individual capacity of forming new links or severing inconvenient ones can effectively change the nature of the game. We address random formation of new links and local linking rules as well as different individual capacities to maintain social interactions. We conclude by discussing how adaptive social networks can become an important step towards more realistic models of cultural dynamics.
Adaptive Learning in Weighted Network Games
Bayer, Péter; Herings, P. Jean-Jacques; Peeters, Ronald; Thuijsman, Frank
2017-01-01
This paper studies adaptive learning in the class of weighted network games. This class of games includes applications like research and development within interlinked firms, crime within social networks, the economics of pollution, and defense expenditures within allied nations. We show that for
Synchronization in complex networks with adaptive coupling
International Nuclear Information System (INIS)
Zhang Rong; Hu Manfeng; Xu Zhenyuan
2007-01-01
Generally it is very difficult to realized synchronization for some complex networks. In order to synchronize, the coupling coefficient of networks has to be very large, especially when the number of coupled nodes is larger. In this Letter, we consider the problem of synchronization in complex networks with adaptive coupling. A new concept about asymptotic stability is presented, then we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize an arbitrary assigned state of an isolated node of the network as long as the feedback gain is positive. Unified system is simulated as the nodes of adaptive coupling complex networks with different topologies
Adaptive Mobile Positioning in WCDMA Networks
Directory of Open Access Journals (Sweden)
Dong B.
2005-01-01
Full Text Available We propose a new technique for mobile tracking in wideband code-division multiple-access (WCDMA systems employing multiple receive antennas. To achieve a high estimation accuracy, the algorithm utilizes the time difference of arrival (TDOA measurements in the forward link pilot channel, the angle of arrival (AOA measurements in the reverse-link pilot channel, as well as the received signal strength. The mobility dynamic is modelled by a first-order autoregressive (AR vector process with an additional discrete state variable as the motion offset, which evolves according to a discrete-time Markov chain. It is assumed that the parameters in this model are unknown and must be jointly estimated by the tracking algorithm. By viewing a nonlinear dynamic system such as a jump-Markov model, we develop an efficient auxiliary particle filtering algorithm to track both the discrete and continuous state variables of this system as well as the associated system parameters. Simulation results are provided to demonstrate the excellent performance of the proposed adaptive mobile positioning algorithm in WCDMA networks.
Critical dynamics in associative memory networks
Directory of Open Access Journals (Sweden)
Maximilian eUhlig
2013-07-01
Full Text Available Critical behavior in neural networks is characterized by scale-free avalanche size distributions and can be explained by self-regulatory mechanisms. Theoretical and experimental evidence indicates that information storage capacity reaches its maximum in the critical regime. We study the effect of structural connectivity formed by Hebbian learning on the criticality of network dynamics. The network endowed with Hebbian learning only does not allow for simultaneous information storage and criticality. However, the critical regime is can be stabilized by short-term synaptic dynamics in the form of synaptic depression and facilitation or, alternatively, by homeostatic adaptation of the synaptic weights. We show that a heterogeneous distribution of maximal synaptic strengths does not preclude criticality if the Hebbian learning is alternated with periods of critical dynamics recovery. We discuss the relevance of these findings for the flexibility of memory in aging and with respect to the recent theory of synaptic plasticity.
Epidemic spreading on preferred degree adaptive networks.
Jolad, Shivakumar; Liu, Wenjia; Schmittmann, B; Zia, R K P
2012-01-01
We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ. Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erdös-Rényi or scale free networks. By letting κ depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either 'blind' or 'selective'--depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λ(c)/μ = / and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With 'blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The 'selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.
Rashvand, Habib
2013-01-01
Motivated by the exciting new application paradigm of using amalgamated technologies of the Internet and wireless, the next generation communication networks (also called 'ubiquitous', 'complex' and 'unstructured' networking) are changing the way we develop and apply our future systems and services at home and on local, national and global scales. Whatever the interconnection - a WiMAX enabled networked mobile vehicle, MEMS or nanotechnology enabled distributed sensor systems, Vehicular Ad hoc Networking (VANET) or Mobile Ad hoc Networking (MANET) - all can be classified under new networking s
QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding
Directory of Open Access Journals (Sweden)
Mohammad Abdur Razzaque
2014-12-01
Full Text Available Wireless body sensor networks (WBSNs for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS, in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network’s QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.
Cognitive Dynamic Optical Networks
DEFF Research Database (Denmark)
de Miguel, Ignacio; Duran, Ramon J.; Lorenzo, Ruben M.
2013-01-01
Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project.......Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project....
Adaptive Moving Object Tracking Integrating Neural Networks And Intelligent Processing
Lee, James S. J.; Nguyen, Dziem D.; Lin, C.
1989-03-01
A real-time adaptive scheme is introduced to detect and track moving objects under noisy, dynamic conditions including moving sensors. This approach integrates the adaptiveness and incremental learning characteristics of neural networks with intelligent reasoning and process control. Spatiotemporal filtering is used to detect and analyze motion, exploiting the speed and accuracy of multiresolution processing. A neural network algorithm constitutes the basic computational structure for classification. A recognition and learning controller guides the on-line training of the network, and invokes pattern recognition to determine processing parameters dynamically and to verify detection results. A tracking controller acts as the central control unit, so that tracking goals direct the over-all system. Performance is benchmarked against the Widrow-Hoff algorithm, for target detection scenarios presented in diverse FLIR image sequences. Efficient algorithm design ensures that this recognition and control scheme, implemented in software and commercially available image processing hardware, meets the real-time requirements of tracking applications.
Periodic dynamics in queuing networks
Energy Technology Data Exchange (ETDEWEB)
Addabbo, Tommaso [Information Engineering Department, University of Siena, Via Roma 56, 53100 Siena (Italy)], E-mail: addabbo@dii.unisi.it; Kocarev, Ljupco [Macedonian Academy of Sciences and Arts, bul. Krste Misirkov 2, P.O. Box 428, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of)], E-mail: lkocarev@ucsd.edu
2009-08-30
This paper deals with state-dependent open Markovian (or exponential) queuing networks, for which arrival and service rates, as well as routing probabilities, may depend on the queue lengths. For a network of this kind, following Mandelbaum and Pats, we provide a formal definition of its associated fluid model, and we focus on the relationships which may occur between the network stochastic dynamics and the deterministic dynamics of its corresponding fluid model, particularly focusing on queuing networks whose fluid models have global periodic attractors.
Cognitive Dynamic Optical Networks
DEFF Research Database (Denmark)
de Miguel, Ignacio; Duran, Ramon J.; Jimenez, Tamara
2013-01-01
The use of cognition is a promising element for the control of heterogeneous optical networks. Not only are cognitive networks able to sense current network conditions and act according to them, but they also take into account the knowledge acquired through past experiences; that is, they include...... learning with the aim of improving performance. In this paper, we review the fundamentals of cognitive networks and focus on their application to the optical networking area. In particular, a number of cognitive network architectures proposed so far, as well as their associated supporting technologies......, are reviewed. Moreover, several applications, mainly developed in the framework of the EU FP7 Cognitive Heterogeneous Reconfigurable Optical Network (CHRON) project, are also described....
Nonlinear Dynamics on Interconnected Networks
Arenas, Alex; De Domenico, Manlio
2016-06-01
Networks of dynamical interacting units can represent many complex systems, from the human brain to transportation systems and societies. The study of these complex networks, when accounting for different types of interactions has become a subject of interest in the last few years, especially because its representational power in the description of users' interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.) [1], or in representing different transportation modes in urban networks [2,3]. The general name coined for these networks is multilayer networks, where each layer accounts for a type of interaction (see Fig. 1).
Dynamic behaviors in directed networks
International Nuclear Information System (INIS)
Park, Sung Min; Kim, Beom Jun
2006-01-01
Motivated by the abundance of directed synaptic couplings in a real biological neuronal network, we investigate the synchronization behavior of the Hodgkin-Huxley model in a directed network. We start from the standard model of the Watts-Strogatz undirected network and then change undirected edges to directed arcs with a given probability, still preserving the connectivity of the network. A generalized clustering coefficient for directed networks is defined and used to investigate the interplay between the synchronization behavior and underlying structural properties of directed networks. We observe that the directedness of complex networks plays an important role in emerging dynamical behaviors, which is also confirmed by a numerical study of the sociological game theoretic voter model on directed networks
National Research Council Canada - National Science Library
Schott, Brian
2004-01-01
...: Declarative Languages and Execution Environment includes topographical soldier interface and a sensor network simulation environment for algorithm development, deployment planning, and operational support. Finally, Task 3...
Directory of Open Access Journals (Sweden)
Xueling Jiang
2014-01-01
Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.
Wireless sensor network adaptive cooling
Energy Technology Data Exchange (ETDEWEB)
Mitchell, T. [SynapSense Corp., Folsom, CA (United States)
2009-07-01
Options for reducing data centre cooling energy requirements and their cost savings were discussed with particular reference to a wireless control solution developed by SynapSense Corporation. The wireless sensor network reduces cooling energy use at data centres by providing improved air flow management through the installation of cold aisle containment. The use of this low cost, non-invasive wireless sensor network has reduced the cooling energy use in a data center at BC Hydro by 30 per cent. The system also reduced the server and storage fan energy by 3 per cent by maintaining inlet air temperature below ASHRAE recommended operating range. The distribution of low power, low cost wireless sensors has enabled visualization tools that are changing the way that data centres are managed. The annual savings have been estimated at 4,560,000 kWh and the annual carbon dioxide abatement is approximately 1,400 metric tons. tabs., figs.
Complex networks: Dynamics and security
Indian Academy of Sciences (India)
This paper presents a perspective in the study of complex networks by focusing on how dynamics may affect network security under attacks. ... Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287, USA; Institute of Mathematics and Computer Science, University of Sao Paulo, Brazil ...
Power Aware Dynamic Provisioning of HPC Networks
Energy Technology Data Exchange (ETDEWEB)
Groves, Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-10-01
Future exascale systems are under increased pressure to find power savings. The network, while it consumes a considerable amount of power is often left out of the picture when discussing total system power. Even when network power is being considered, the references are frequently a decade or older and rely on models that lack validation on modern inter- connects. In this work we explore how dynamic mechanisms of an Infiniband network save power and at what granularity we can engage these features. We explore this within the context of the host controller adapter (HCA) on the node and for the fabric, i.e. switches, using three different mechanisms of dynamic link width, frequency and disabling of links for QLogic and Mellanox systems. Our results show that while there is some potential for modest power savings, real world systems need to improved responsiveness to adjustments in order to fully leverage these savings. This page intentionally left blank.
Dynamic optimization and adaptive controller design
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Cooperative Media Streaming Using Adaptive Network Compression
DEFF Research Database (Denmark)
Møller, Janus Heide; Sørensen, Jesper Hemming; Krigslund, Rasmus
2008-01-01
as an adaptive hybrid between LC and MDC. In order to facilitate the use of MDC-CC, a new overlay network approach is proposed, using tree of meshes. A control system for managing description distribution and compression in a small mesh is implemented in the discrete event simulator NS-2. The two traditional...... approaches, MDC and LC, are used as references for the performance evaluation of the proposed scheme. The system is simulated in a heterogeneous network environment, where packet errors are introduced. Moreover, a test is performed at different network loads. Performance gain is shown over both LC and MDC....
Dynamic capabilities and network benefits
Directory of Open Access Journals (Sweden)
Helge Svare
2017-01-01
Full Text Available The number of publicly funded initiatives to establish or strengthen networks and clusters, in order to enhance innovation, has been increasing. Returns on such investments vary, and the aim of this study is to explore to what extent the variation in benefits for firms participating in networks or clusters can be explained by their dynamic capabilities (DC. Based on survey data from five Norwegian networks, the results suggest that firms with higher DC are more successful in harvesting the potential benefits of being member of a network.
Adaptive networks as second order governance systems
S.G. Nooteboom (Sibout); P.K. Marks (Peter)
2010-01-01
textabstractWe connect the idea of 'levers for change' with 'governance capacity' and propose 'adaptive networks' as an ideal type embedded in, and leveraging change in, governance systems. Discourses connect practices of citizens and companies with that governance system. Aware of
Brain-wide neuronal dynamics during motor adaptation in zebrafish.
Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben
2012-05-09
A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.
Network Experiences Lead to the Adaption of a Firm’s Network Competence
Directory of Open Access Journals (Sweden)
Bianka Kühne
2011-12-01
Full Text Available Networks become increasingly important as external sources of innovation for firms. Through networks firms get incontact with different actors with whom they can exchange information and collaborate. A firm’s ability to be asuccessful network actor depends on its network competence. This term can be defined as having the necessaryknowledge, skills and qualifications for networking as well as using them effectively. In this paper we investigate thelink between a firm’s network competence and the benefits resulting from it in a two‐way direction. First, thenetwork competence of the firm facilitates the adoption of information from other network actors which may leadto innovation success. Second the perceived network benefits shall in their turn influence the network competenceof the firm. Consequently, firms will adapt their network strategy corresponding their experiences. The objective ofthis paper is to investigate the dynamics of networking and its influence on the firm’s network competence. For thisexploratory research 3 Belgian networks are examined. In‐depth interviews are used in combination with semistructuredinterview guides to conduct the research. Our results indicate that some firms perceive benefits fromtheir network efforts, for others it is more a burden. Furthermore, in some of our cases we found that positiveexperiences with clear benefits motivate the firm to enhance its network competence. This is illustrated by the factthat collaborations are more frequently initiated, trust is more easily build, firms are more open to communicateinformation and the confidentiality threshold is overcome.
Collaborative Trust Networks in Engineering Design Adaptation
DEFF Research Database (Denmark)
Atkinson, Simon Reay; Maier, Anja; Caldwell, Nicholas
2011-01-01
); applying the Change Prediction Method (CPM) tool. It posits the idea of the ‘Networks-in-Being’ with varying individual and collective characteristics. [Social] networks are considered to facilitate information exchange between actors. At the same time, networks failing to provide trusted-information can...... hinder effective communication and collaboration. Different combinations of trust may therefore improve or impair the likelihood of information flow, transfer and subsequent action (cause and effect). This paper investigates how analysing different types of network-structures-in-being can support......Within organisations, decision makers have to rely on collaboration with other actors from different disciplines working within highly dynamic and distributed associated networks of varying size and scales. This paper develops control and influence networks within Design Structure Matrices (DSM...
Topology Identification of General Dynamical Network with Distributed Time Delays
International Nuclear Information System (INIS)
Zhao-Yan, Wu; Xin-Chu, Fu
2009-01-01
General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method. (general)
Decoding network dynamics in cancer
DEFF Research Database (Denmark)
Linding, Rune
2014-01-01
Biological systems are composed of highly dynamic and interconnected molecular networks that drive biological decision processes. The goal of network biology is to describe, quantify and predict the information flow and functional behaviour of living systems in a formal language and with an accur......Biological systems are composed of highly dynamic and interconnected molecular networks that drive biological decision processes. The goal of network biology is to describe, quantify and predict the information flow and functional behaviour of living systems in a formal language...... and with an accuracy that parallels our characterisation of other physical systems such as Jumbo-jets. Decades of targeted molecular and biological studies have led to numerous pathway models of developmental and disease related processes. However, so far no global models have been derived from pathways, capable...
Adaptive filtering for hidden node detection and tracking in networks.
Hamilton, Franz; Setzer, Beverly; Chavez, Sergio; Tran, Hien; Lloyd, Alun L
2017-07-01
The identification of network connectivity from noisy time series is of great interest in the study of network dynamics. This connectivity estimation problem becomes more complicated when we consider the possibility of hidden nodes within the network. These hidden nodes act as unknown drivers on our network and their presence can lead to the identification of false connections, resulting in incorrect network inference. Detecting the parts of the network they are acting on is thus critical. Here, we propose a novel method for hidden node detection based on an adaptive filtering framework with specific application to neuronal networks. We consider the hidden node as a problem of missing variables when model fitting and show that the estimated system noise covariance provided by the adaptive filter can be used to localize the influence of the hidden nodes and distinguish the effects of different hidden nodes. Additionally, we show that the sequential nature of our algorithm allows for tracking changes in the hidden node influence over time.
Neural network-based model reference adaptive control system.
Patino, H D; Liu, D
2000-01-01
In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.
Evolving RBF neural networks for adaptive soft-sensor design.
Alexandridis, Alex
2013-12-01
This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.
Dynamics of associating networks
Tang, Shengchang; Habicht, Axel; Wang, Muzhou; Li, Shuaili; Seiffert, Sebastian; Olsen, Bradley
Associating polymers offer important technological solutions to renewable and self-healing materials, conducting electrolytes for energy storage and transport, and vehicles for cell and protein deliveries. The interplay between polymer topologies and association chemistries warrants new interesting physics from associating networks, yet poses significant challenges to study these systems over a wide range of time and length scales. In a series of studies, we explored self-diffusion mechanisms of associating polymers above the percolation threshold, by combining experimental measurements using forced Rayleigh scattering and analytical insights from a two-state model. Despite the differences in molecular structures, a universal super-diffusion phenomenon is observed when diffusion of molecular species is hindered by dissociation kinetics. The molecular dissociation rate can be used to renormalize shear rheology data, which yields an unprecedented time-temperature-concentration superposition. The obtained shear rheology master curves provide experimental evidence of the relaxation hierarchy in associating networks.
Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes
International Nuclear Information System (INIS)
Liu Tao; Zhao Jun; Hill, David J.
2009-01-01
In this paper, we study the global synchronization of nonlinearly coupled complex delayed dynamical networks with both directed and undirected graphs. Via Lyapunov-Krasovskii stability theory and the network topology, we investigate the global synchronization of such networks. Under the assumption that coupling coefficients are known, a family of delay-independent decentralized nonlinear feedback controllers are designed to globally synchronize the networks. When coupling coefficients are unavailable, an adaptive mechanism is introduced to synthesize a family of delay-independent decentralized adaptive controllers which guarantee the global synchronization of the uncertain networks. Two numerical examples of directed and undirected delayed dynamical network are given, respectively, using the Lorenz system as the nodes of the networks, which demonstrate the effectiveness of proposed results.
Microcomputer Network for Computerized Adaptive Testing (CAT)
1984-03-01
PRDC TR 84-33 \\Q.�d-33- \\ MICROCOMPUTER NETWOJlt FOR COMPUTERIZED ADAPTIVE TESTING ( CAT ) Baldwin Quan Thomas A . Park Gary Sandahl John H...ACCEIIION NO NPRDC TR 84-33 4. TITLE (-d Sul>tlllo) MICROCOMP UTER NETWORK FOR COMPUTERIZED ADA PTIVE TESTING ( CAT ) 1. Q B. uan T. A . Park...adaptive testing ( CAT ) Bayesian sequential testing 20. ABSTitACT (Continuo on ro•••• aide II noco .. _, _., ld-tlly ,.,. t.loclt _._.) DO Computerized
Network Dynamics of Innovation Processes
Iacopini, Iacopo; Milojević, Staša; Latora, Vito
2018-01-01
We introduce a model for the emergence of innovations, in which cognitive processes are described as random walks on the network of links among ideas or concepts, and an innovation corresponds to the first visit of a node. The transition matrix of the random walk depends on the network weights, while in turn the weight of an edge is reinforced by the passage of a walker. The presence of the network naturally accounts for the mechanism of the "adjacent possible," and the model reproduces both the rate at which novelties emerge and the correlations among them observed empirically. We show this by using synthetic networks and by studying real data sets on the growth of knowledge in different scientific disciplines. Edge-reinforced random walks on complex topologies offer a new modeling framework for the dynamics of correlated novelties and are another example of coevolution of processes and networks.
Adaptive Management of Computing and Network Resources for Spacecraft Systems
Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)
2000-01-01
It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.
SVC VIDEO STREAM ALLOCATION AND ADAPTATION IN HETEROGENEOUS NETWORK
Directory of Open Access Journals (Sweden)
E. A. Pakulova
2016-07-01
Full Text Available The paper deals with video data transmission in format H.264/SVC standard with QoS requirements satisfaction. The Sender-Side Path Scheduling (SSPS algorithm and Sender-Side Video Adaptation (SSVA algorithm were developed. SSPS algorithm gives the possibility to allocate video traffic among several interfaces while SSVA algorithm dynamically changes the quality of video sequence in relation to QoS requirements. It was shown that common usage of two developed algorithms enables to aggregate throughput of access networks, increase parameters of Quality of Experience and decrease losses in comparison with Round Robin algorithm. For evaluation of proposed solution, the set-up was made. The trace files with throughput of existing public networks were used in experiments. Based on this information the throughputs of networks were limited and losses for paths were set. The results of research may be used for study and transmission of video data in heterogeneous wireless networks.
Adaptive numerical modeling of dynamic crack propagation
International Nuclear Information System (INIS)
Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.
2006-01-01
We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)
Network inference via adaptive optimal design
Directory of Open Access Journals (Sweden)
Stigter Johannes D
2012-09-01
Full Text Available Abstract Background Current research in network reverse engineering for genetic or metabolic networks very often does not include a proper experimental and/or input design. In this paper we address this issue in more detail and suggest a method that includes an iterative design of experiments based, on the most recent data that become available. The presented approach allows a reliable reconstruction of the network and addresses an important issue, i.e., the analysis and the propagation of uncertainties as they exist in both the data and in our own knowledge. These two types of uncertainties have their immediate ramifications for the uncertainties in the parameter estimates and, hence, are taken into account from the very beginning of our experimental design. Findings The method is demonstrated for two small networks that include a genetic network for mRNA synthesis and degradation and an oscillatory network describing a molecular network underlying adenosine 3’-5’ cyclic monophosphate (cAMP as observed in populations of Dyctyostelium cells. In both cases a substantial reduction in parameter uncertainty was observed. Extension to larger scale networks is possible but needs a more rigorous parameter estimation algorithm that includes sparsity as a constraint in the optimization procedure. Conclusion We conclude that a careful experiment design very often (but not always pays off in terms of reliability in the inferred network topology. For large scale networks a better parameter estimation algorithm is required that includes sparsity as an additional constraint. These algorithms are available in the literature and can also be used in an adaptive optimal design setting as demonstrated in this paper.
Bursting endemic bubbles in an adaptive network
Sherborne, N.; Blyuss, K. B.; Kiss, I. Z.
2018-04-01
The spread of an infectious disease is known to change people's behavior, which in turn affects the spread of disease. Adaptive network models that account for both epidemic and behavioral change have found oscillations, but in an extremely narrow region of the parameter space, which contrasts with intuition and available data. In this paper we propose a simple susceptible-infected-susceptible epidemic model on an adaptive network with time-delayed rewiring, and show that oscillatory solutions are now present in a wide region of the parameter space. Altering the transmission or rewiring rates reveals the presence of an endemic bubble—an enclosed region of the parameter space where oscillations are observed.
Solving Dynamic Battlespace Movement Problems Using Dynamic Distributed Computer Networks
National Research Council Canada - National Science Library
Bradford, Robert
2000-01-01
.... The thesis designs a system using this architecture that invokes operations research network optimization algorithms to solve problems involving movement of people and equipment over dynamic road networks...
Competitive Dynamics on Complex Networks
Zhao, Jiuhua; Liu, Qipeng; Wang, Xiaofan
2014-07-01
We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors' states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is most likely to be the winner. These findings may shed new light on the role of network structure in competition and to what extent could competitors adjust network structure so as to win the competition.
Antagonistic Phenomena in Network Dynamics
Motter, Adilson E.; Timme, Marc
2018-03-01
Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.
Successive lag synchronization on dynamical networks with communication delay
International Nuclear Information System (INIS)
Zhang Xin-Jian; Wei Ai-Ju; Li Ke-Zan
2016-01-01
In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems. (paper)
Epidemics on adaptive networks with geometric constraints
Shaw, Leah; Schwartz, Ira
2008-03-01
When a population is faced with an epidemic outbreak, individuals may modify their social behavior to avoid exposure to the disease. Recent work has considered models in which the contact network is rewired dynamically so that susceptibles avoid contact with infectives. We consider extensions in which the rewiring is subject to constraints that preserve key properties of the social network structure. Constraining to a fixed degree distribution destroys previously observed bistable behavior. The most effective rewiring strategy is found to depend on the spreading rate.
Epidemic spreading on adaptively weighted scale-free networks.
Sun, Mengfeng; Zhang, Haifeng; Kang, Huiyan; Zhu, Guanghu; Fu, Xinchu
2017-04-01
We introduce three modified SIS models on scale-free networks that take into account variable population size, nonlinear infectivity, adaptive weights, behavior inertia and time delay, so as to better characterize the actual spread of epidemics. We develop new mathematical methods and techniques to study the dynamics of the models, including the basic reproduction number, and the global asymptotic stability of the disease-free and endemic equilibria. We show the disease-free equilibrium cannot undergo a Hopf bifurcation. We further analyze the effects of local information of diseases and various immunization schemes on epidemic dynamics. We also perform some stochastic network simulations which yield quantitative agreement with the deterministic mean-field approach.
Enhanced vaccine control of epidemics in adaptive networks
Shaw, Leah B.; Schwartz, Ira B.
2010-04-01
We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.
Adaptation dynamics of the quasispecies model
Indian Academy of Sciences (India)
We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness valleys. We mainly ...
Adaptive Integration of Nonsmooth Dynamical Systems
2017-10-11
2017 W911NF-12-R-0012-03: Adaptive Integration of Nonsmooth Dynamical Systems The views, opinions and/or findings contained in this report are those of...Integration of Nonsmooth Dynamical Systems Report Term: 0-Other Email: drum@gwu.edu Distribution Statement: 1-Approved for public release; distribution is...classdrake_1_1systems_1_1_integrator_base.html ; 3) a solver for dynamical systems with arbitrary unilateral and bilateral constraints (the key component of the time stepping systems )- see
An adaptive routing strategy for packet delivery in complex networks
International Nuclear Information System (INIS)
Zhang, Huan; Liu, Zonghua; Tang, Ming; Hui, P.M.
2007-01-01
We present an efficient routing approach for delivering packets in complex networks. On delivering a message from a node to a destination, a node forwards the message to a neighbor by estimating the waiting time along the shortest path from each of its neighbors to the destination. This projected waiting time is dynamical in nature and the path through which a message is delivered would be adapted to the distribution of messages in the network. Implementing the approach on scale-free networks, we show that the present approach performs better than the shortest-path approach and another approach that takes into account of the waiting time only at the neighboring nodes. Key features in numerical results are explained by a mean field theory. The approach has the merit that messages are distributed among the nodes according to the capabilities of the nodes in handling messages
Asynchronous networks: modularization of dynamics theorem
Bick, Christian; Field, Michael
2017-02-01
Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.
Characterization of Static/Dynamic Topological Routing For Grid Networks
DEFF Research Database (Denmark)
Gutierrez Lopez, Jose Manuel; Cuevas, Ruben; Riaz, M. Tahir
2009-01-01
Grid or 2D Mesh structures are becoming one of the most attractive network topologies to study. They can be used in many different fields raging from future broadband networks to multiprocessors structures. In addition, the high requirements of future services and applications demand more flexible...... and adaptive networks. Topological routing in grid networks is a simple and efficient alternative to traditional routing techniques, e.g. routing tables, and the paper extends this kind of routing providing a "Dynamic" attribute. This new property attempts to improve the overall network performance for future...
Adaptive local routing strategy on a scale-free network
International Nuclear Information System (INIS)
Feng, Liu; Han, Zhao; Ming, Li; Yan-Bo, Zhu; Feng-Yuan, Ren
2010-01-01
Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies. (general)
Naming game with biased assimilation over adaptive networks
Fu, Guiyuan; Zhang, Weidong
2018-01-01
The dynamics of two-word naming game incorporating the influence of biased assimilation over adaptive network is investigated in this paper. Firstly an extended naming game with biased assimilation (NGBA) is proposed. The hearer in NGBA accepts the received information in a biased manner, where he may refuse to accept the conveyed word from the speaker with a predefined probability, if the conveyed word is different from his current memory. Secondly, the adaptive network is formulated by rewiring the links. Theoretical analysis is developed to show that the population in NGBA will eventually reach global consensus on either A or B. Numerical simulation results show that the larger strength of biased assimilation on both words, the slower convergence speed, while larger strength of biased assimilation on only one word can slightly accelerate the convergence; larger population size can make the rate of convergence slower to a large extent when it increases from a relatively small size, while such effect becomes minor when the population size is large; the behavior of adaptively reconnecting the existing links can greatly accelerate the rate of convergence especially on the sparse connected network.
Network-Oriented Modeling of Multi-Criteria Homophily and Opinion Dynamics in Social Media
Kozyreva, Olga; Pechina, Anna; Treur, J.
2018-01-01
In this paper we model the opinion dynamics in social groups in combination with adaptation of the connections based on a multicriteria homophily principle. The adaptive network model has been designed according to a Network-Oriented Modeling approach based on temporal-causal networks. The model has
Design and implementation of dynamic hybrid Honeypot network
Qiao, Peili; Hu, Shan-Shan; Zhai, Ji-Qiang
2013-05-01
The method of constructing a dynamic and self-adaptive virtual network is suggested to puzzle adversaries, delay and divert attacks, exhaust attacker resources and collect attacking information. The concepts of Honeypot and Honeyd, which is the frame of virtual Honeypot are introduced. The techniques of network scanning including active fingerprint recognition are analyzed. Dynamic virtual network system is designed and implemented. A virtual network similar to real network topology is built according to the collected messages from real environments in this system. By doing this, the system can perplex the attackers when Hackers attack and can further analyze and research the attacks. The tests to this system prove that this design can successfully simulate real network environment and can be used in network security analysis.
Anomaly Detection in Dynamic Networks
Energy Technology Data Exchange (ETDEWEB)
Turcotte, Melissa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-10-14
Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. A second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the
Adaptive Dynamic Programming for Control Algorithms and Stability
Zhang, Huaguang; Luo, Yanhong; Wang, Ding
2013-01-01
There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming for Control approaches the challenging topic of optimal control for nonlinear systems using the tools of adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-...
A network dynamics approach to chemical reaction networks
van der Schaft, Abraham; Rao, S.; Jayawardhana, B.
2016-01-01
A treatment of chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a
Traffic Adaptive MAC Protocols in Wireless Body Area Networks
Directory of Open Access Journals (Sweden)
Farhan Masud
2017-01-01
Full Text Available In Wireless Body Area Networks (WBANs, every healthcare application that is based on physical sensors is responsible for monitoring the vital signs data of patient. WBANs applications consist of heterogeneous and dynamic traffic loads. Routine patient’s observation is described as low-load traffic while an alarming situation that is unpredictable by nature is referred to as high-load traffic. This paper offers a thematic review of traffic adaptive Medium Access Control (MAC protocols in WBANs. First, we have categorized them based on their goals, methods, and metrics of evaluation. The Zigbee standard IEEE 802.15.4 and the baseline MAC IEEE 802.15.6 are also reviewed in terms of traffic adaptive approaches. Furthermore, a comparative analysis of the protocols is made and their performances are analyzed in terms of delay, packet delivery ratio (PDR, and energy consumption. The literature shows that no review work has been done on traffic adaptive MAC protocols in WBANs. This review work, therefore, could add enhancement to traffic adaptive MAC protocols and will stimulate a better way of solving the traffic adaptivity problem.
Adaptive resummation of Markovian quantum dynamics
International Nuclear Information System (INIS)
Lucas, Felix
2014-01-01
In this thesis we derive a highly convergent, nonperturbative expansion of Markovian open quantum dynamics. It is based on a splitting of the incoherent dynamics into periods of continuous evolution and abrupt jumps and attains its favorable convergence properties from an adaptive resummation of this so-called jump expansion. By means of the long-standing problems of spatial particle detection and Landau-Zener tunneling in the presence of dephasing, we show that this adaptive resummation technique facilitates new highly accurate analytic approximations of Markovian open systems. The open Landau-Zener model leads us to propose an efficient and robust incoherent control technique for the isomerization reaction of the visual pigment protein rhodopsin. Besides leading to approximate analytic descriptions of Markovian open quantum dynamics, the adaptive resummation of the jump expansion implies an efficient numerical simulation method. We spell out the corresponding numerical algorithm by means of Monte Carlo integration of the relevant terms in the jump expansion and demonstrate it in a set of paradigmatic open quantum systems.
Dynamical community structure of populations evolving on genotype networks
International Nuclear Information System (INIS)
Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna
2015-01-01
Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics
Structure-based control of complex networks with nonlinear dynamics.
Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka
2017-07-11
What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.
Lifescience Database Archive (English)
Full Text Available 17223959 Translational mini-review series on Toll-like receptors: networks regulate...ol. 2007 Feb;147(2):199-207. (.png) (.svg) (.html) (.csml) Show Translational mini-review series on Toll-lik... immunity. PubmedID 17223959 Title Translational mini-review series on Toll-like receptors: networks regulat
Adaptive Filtering Using Recurrent Neural Networks
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
Ultra Low Energy FDSOI Asynchronous Reconfiguration Network for Adaptive Circuits
Directory of Open Access Journals (Sweden)
Soundous Chairat
2017-05-01
Full Text Available This paper introduces a plug-and-play on-chip asynchronous communication network aimed at the dynamic reconfiguration of a low-power adaptive circuit such as an internet of things (IoT system. By using a separate communication network, we can address both digital and analog blocks at a lower configuration cost, increasing the overall system power efficiency. As reconfiguration only occurs according to specific events and has to be automatically in stand-by most of the time, our design is fully asynchronous using handshake protocols. The paper presents the circuit’s architecture, performance results, and an example of the reconfiguration of frequency locked loops (FLL to validate our work. We obtain an overall energy per bit of 0.07 pJ/bit for one stage, in a 28 nm Fully Depleted Silicon On Insulator (FDSOI technology at 0.6 V and a 1.1 ns/bit latency per stage.
Towards Trustworthy Adaptive Case Management with Dynamic Condition Response Graphs
DEFF Research Database (Denmark)
Mukkamala, Raghava Rao; Hildebrandt, Thomas; Slaats, Tijs
2013-01-01
We describe how the declarative Dynamic Condition Response (DCR) Graphs process model can be used for trustworthy adaptive case management by leveraging the flexible execution, dynamic composition and adaptation supported by DCR Graphs. The dynamically composed and adapted graphs are verified for...
A Holistic Management Architecture for Large-Scale Adaptive Networks
National Research Council Canada - National Science Library
Clement, Michael R
2007-01-01
This thesis extends the traditional notion of network management as an indicator of resource availability and utilization into a systemic model of resource requirements, capabilities, and adaptable...
From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.
Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming
2016-03-14
The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.
Automated adaptive inference of phenomenological dynamical models
Daniels, Bryan
Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.
Donges, Jonathan; Lucht, Wolfgang; Wiedermann, Marc; Heitzig, Jobst; Kurths, Jürgen
2015-04-01
In the anthropocene, the rise of global social and economic networks with ever increasing connectivity and speed of interactions, e.g., the internet or global financial markets, is a key challenge for sustainable development. The spread of opinions, values or technologies on these networks, in conjunction with the coevolution of the network structures themselves, underlies nexuses of current concern such as anthropogenic climate change, biodiversity loss or global land use change. To isolate and quantitatively study the effects and implications of network dynamics for sustainable development, we propose an agent-based model of information flow on adaptive networks between myopic harvesters that exploit private renewable resources. In this conceptual model of a network of socio-ecological systems, information on management practices flows between agents via boundedly rational imitation depending on the state of the resource stocks involved in an interaction. Agents can also adapt the structure of their social network locally by preferentially connecting to culturally similar agents with identical management practices and, at the same time, disconnecting from culturally dissimilar agents. Investigating in detail the statistical mechanics of this model, we find that an increasing rate of information flow through faster imitation dynamics or growing density of network connectivity leads to a marked increase in the likelihood of environmental resource collapse. However, we show that an optimal rate of social network adaptation can mitigate this negative effect without loss of social cohesion through network fragmentation. Our results highlight that seemingly immaterial network dynamics of spreading opinions or values can be of large relevance for the sustainable management of socio-ecological systems and suggest smartly conservative network adaptation as a strategy for mitigating environmental collapse. Hence, facing the great acceleration, these network dynamics should
Dynamic adaptation of tendon and muscle connective tissue to mechanical loading
DEFF Research Database (Denmark)
Mackey, Abigail; Heinemeier, Katja Maria; Koskinen, Satu Osmi Anneli
2008-01-01
The connective tissue of tendon and skeletal muscle is a crucial structure for force transmission. A dynamic adaptive capacity of these tissues in healthy individuals is evident from reports of altered gene expression and protein levels of the fibrillar and network-forming collagens, when subjected...... in this article provide strong evidence for the highly adaptable nature of connective tissue in muscle and tendon....
Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons
Directory of Open Access Journals (Sweden)
Tanguy Fardet
2018-02-01
Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.
Adaptive training of feedforward neural networks by Kalman filtering
International Nuclear Information System (INIS)
Ciftcioglu, Oe.
1995-02-01
Adaptive training of feedforward neural networks by Kalman filtering is described. Adaptive training is particularly important in estimation by neural network in real-time environmental where the trained network is used for system estimation while the network is further trained by means of the information provided by the experienced/exercised ongoing operation. As result of this, neural network adapts itself to a changing environment to perform its mission without recourse to re-training. The performance of the training method is demonstrated by means of actual process signals from a nuclear power plant. (orig.)
Directory of Open Access Journals (Sweden)
M. E. Migabo
2017-01-01
Full Text Available Despite its low computational cost, the Gradient Based Routing (GBR broadcast of interest messages in Wireless Sensor Networks (WSNs causes significant packets duplications and unnecessary packets transmissions. This results in energy wastage, traffic load imbalance, high network traffic, and low throughput. Thanks to the emergence of fast and powerful processors, the development of efficient network coding strategies is expected to enable efficient packets aggregations and reduce packets retransmissions. For multiple sinks WSNs, the challenge consists of efficiently selecting a suitable network coding scheme. This article proposes a Cooperative and Adaptive Network Coding for GBR (CoAdNC-GBR technique which considers the network density as dynamically defined by the average number of neighbouring nodes, to efficiently aggregate interest messages. The aggregation is performed by means of linear combinations of random coefficients of a finite Galois Field of variable size GF(2S at each node and the decoding is performed by means of Gaussian elimination. The obtained results reveal that, by exploiting the cooperation of the multiple sinks, the CoAdNC-GBR not only improves the transmission reliability of links and lowers the number of transmissions and the propagation latency, but also enhances the energy efficiency of the network when compared to the GBR-network coding (GBR-NC techniques.
Evolution of regulatory networks towards adaptability and stability in a changing environment
Lee, Deok-Sun
2014-11-01
Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.
Tourism-planning network knowledge dynamics
DEFF Research Database (Denmark)
Dredge, Dianne
2014-01-01
This chapter explores the characteristics and functions of tourism networks as a first step in understanding how networks facilitate and reproduce knowledge. A framework to progress understandings of knowledge dynamics in tourism networks is presented that includes four key dimensions: context......, network agents, network boundaries and network resources. A case study of the development of the Next Generation Tourism Handbook (Queensland, Australia), a policy initiative that sought to bring tourism and land use planning knowledge closer together is presented. The case study illustrates...... that the tourism policy and land use planning networks operate in very different spheres and that context, network agents, network boundaries and network resources have a significant influence not only on knowledge dynamics but also on the capacity of network agents to overcome barriers to learning and to innovate....
Traffic Dynamics on Complex Networks: A Survey
Directory of Open Access Journals (Sweden)
Shengyong Chen
2012-01-01
Full Text Available Traffic dynamics on complex networks are intriguing in recent years due to their practical implications in real communication networks. In this survey, we give a brief review of studies on traffic routing dynamics on complex networks. Strategies for improving transport efficiency, including designing efficient routing strategies and making appropriate adjustments to the underlying network structure, are introduced in this survey. Finally, a few open problems are discussed in this survey.
Adaptation and inertia in dynamic environments
DEFF Research Database (Denmark)
Stieglitz, Nils; Knudsen, Thorbjørn; Becker, Markus C.
2016-01-01
responses to these dimensions. Our results show how frequent directional changes undermine the value of exploration and decisively shift performance advantages to inert organizations that restrict exploration. In contrast, increased environmental variance rewards exploration. Our results also show that......Research summary: We address conflicting claims and mixed empirical findings about adaptation as a response to increased environmental dynamism. We disentangle distinct dimensions of environmental dynamism—the direction, magnitude, and frequency of change—and identify how selection shapes adaptive...... business environments characterized by persistent trends and by large, infrequently occurring structural shocks reward strategic pursuit of temporary advantage. Thus, exploration and strategic flexibility are preferred strategies. In contrast, the challenge in frequently changing environments with fleeting...
Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling
International Nuclear Information System (INIS)
Jian-Rui, Chen; Li-Cheng, Jiao; Jian-She, Wu; Xiao-Hua, Wang
2009-01-01
A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication. (general)
Directory of Open Access Journals (Sweden)
Guilin Zheng
2011-03-01
Full Text Available Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.
Adaptive learning by extremal dynamics and negative feedback
International Nuclear Information System (INIS)
Bak, Per; Chialvo, Dante R.
2001-01-01
We describe a mechanism for biological learning and adaptation based on two simple principles: (i) Neuronal activity propagates only through the network's strongest synaptic connections (extremal dynamics), and (ii) the strengths of active synapses are reduced if mistakes are made, otherwise no changes occur (negative feedback). The balancing of those two tendencies typically shapes a synaptic landscape with configurations which are barely stable, and therefore highly flexible. This allows for swift adaptation to new situations. Recollection of past successes is achieved by punishing synapses which have once participated in activity associated with successful outputs much less than neurons that have never been successful. Despite its simplicity, the model can readily learn to solve complicated nonlinear tasks, even in the presence of noise. In particular, the learning time for the benchmark parity problem scales algebraically with the problem size N, with an exponent k∼1.4
A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics
Yuan, Kai; Liu, Jian; Liu, Kaipei; Tan, Tianyuan
2015-01-01
Background Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. Methods This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors – device, structure, load and special operation – a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method. Conclusion Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic. PMID:25789859
Malcom, Jacob W
2011-04-25
Ecologists have increasingly come to understand that evolutionary change on short time-scales can alter ecological dynamics (and vice-versa), and this idea is being incorporated into community ecology research programs. Previous research has suggested that the size and topology of the gene network underlying a quantitative trait should constrain or facilitate adaptation and thereby alter population dynamics. Here, I consider a scenario in which two species with different genetic architectures compete and evolve in fluctuating environments. An important trade-off emerges between adaptive accuracy and adaptive speed, driven by the size of the gene network underlying the ecologically-critical trait and the rate of environmental change. Smaller, scale-free networks confer a competitive advantage in rapidly-changing environments, but larger networks permit increased adaptive accuracy when environmental change is sufficiently slow to allow a species time to adapt. As the differences in network characteristics increase, the time-to-resolution of competition decreases. These results augment and refine previous conclusions about the ecological implications of the genetic architecture of quantitative traits, emphasizing a role of adaptive accuracy. Along with previous work, in particular that considering the role of gene network connectivity, these results provide a set of expectations for what we may observe as the field of ecological genomics develops.
Airborne Network Optimization with Dynamic Network Update
2015-03-26
source si and a target ti . For each commodity (si, ki) the commodity specifies a non- negative demand di [5]. The objective of the multi-commodity...queue predictions, and network con- gestion [15]. The implementation of the DRQC uses the Kalman filter to predict the state of the network and optimize
Simulating market dynamics: interactions between consumer psychology and social networks.
Janssen, Marco A; Jager, Wander
2003-01-01
Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).
Adaptive Dynamic Surface Control for Generator Excitation Control System
Directory of Open Access Journals (Sweden)
Zhang Xiu-yu
2014-01-01
Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.
Adaptive typography for dynamic mapping environments
Bardon, Didier
1991-08-01
When typography moves across a map, it passes over areas of different colors, densities, and textures. In such a dynamic environment, the aspect of typography must be constantly adapted to provide disernibility for every new background. Adaptive typography undergoes two adaptive operations: background control and contrast control. The background control prevents the features of the map (edges, lines, abrupt changes of densities) from destroying the integrity of the letterform. This is achieved by smoothing the features of the map in the area where a text label is displayed. The modified area is limited to the space covered by the characters of the label. Dispositions are taken to insure that the smoothing operation does not introduce any new visual noise. The contrast control assures that there are sufficient lightness differences between the typography and its ever-changing background. For every new situation, background color and foreground color are compared and the foreground color lightness is adjusted according to a chosen contrast value. Criteria and methods of choosing the appropriate contrast value are presented as well as the experiments that led to them.
Networked Airborne Communications Using Adaptive Multi Beam Directional Links
2016-03-05
Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach
Modulation of neuronal dynamic range using two different adaptation mechanisms
Directory of Open Access Journals (Sweden)
Lei Wang
2017-01-01
Full Text Available The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range. A larger dynamic range indicates a greater probability of neuronal survival. In this study, the potential roles of adaptation mechanisms (ion currents in modulating neuronal dynamic range were numerically investigated. Based on the adaptive exponential integrate-and-fire model, which includes two different adaptation mechanisms, i.e. subthreshold and suprathreshold (spike-triggered adaptation, our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range. Specifically, subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range, while suprathreshold adaptation has little influence on the neuronal dynamic range. Moreover, when stochastic noise was introduced into the adaptation mechanisms, the dynamic range was apparently enhanced, regardless of what state the neuron was in, e.g. adaptive or non-adaptive. Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms. Additionally, noise was a non-ignorable factor, which could effectively modulate the neuronal dynamic range.
Adapting Mobile Beacon-Assisted Localization in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Wei Dong
2009-04-01
Full Text Available The ability to automatically locate sensor nodes is essential in many Wireless Sensor Network (WSN applications. To reduce the number of beacons, many mobile-assisted approaches have been proposed. Current mobile-assisted approaches for localization require special hardware or belong to centralized localization algorithms involving some deterministic approaches due to the fact that they explicitly consider the impreciseness of location estimates. In this paper, we first propose a range-free, distributed and probabilistic Mobile Beacon-assisted Localization (MBL approach for static WSNs. Then, we propose another approach based on MBL, called Adapting MBL (A-MBL, to increase the efficiency and accuracy of MBL by adapting the size of sample sets and the parameter of the dynamic model during the estimation process. Evaluation results show that the accuracy of MBL and A-MBL outperform both Mobile and Static sensor network Localization (MSL and Arrival and Departure Overlap (ADO when both of them use only a single mobile beacon for localization in static WSNs.
Adapting mobile beacon-assisted localization in wireless sensor networks.
Teng, Guodong; Zheng, Kougen; Dong, Wei
2009-01-01
The ability to automatically locate sensor nodes is essential in many Wireless Sensor Network (WSN) applications. To reduce the number of beacons, many mobile-assisted approaches have been proposed. Current mobile-assisted approaches for localization require special hardware or belong to centralized localization algorithms involving some deterministic approaches due to the fact that they explicitly consider the impreciseness of location estimates. In this paper, we first propose a range-free, distributed and probabilistic Mobile Beacon-assisted Localization (MBL) approach for static WSNs. Then, we propose another approach based on MBL, called Adapting MBL (A-MBL), to increase the efficiency and accuracy of MBL by adapting the size of sample sets and the parameter of the dynamic model during the estimation process. Evaluation results show that the accuracy of MBL and A-MBL outperform both Mobile and Static sensor network Localization (MSL) and Arrival and Departure Overlap (ADO) when both of them use only a single mobile beacon for localization in static WSNs.
Learning dynamic Bayesian networks with mixed variables
DEFF Research Database (Denmark)
Bøttcher, Susanne Gammelgaard
This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learned...
Temporal fidelity in dynamic social networks
DEFF Research Database (Denmark)
Stopczynski, Arkadiusz; Sapiezynski, Piotr; Pentland, Alex ‘Sandy’
2015-01-01
of the network dynamics can be used to inform the process of measuring social networks. The details of measurement are of particular importance when considering dynamic processes where minute-to-minute details are important, because collection of physical proximity interactions with high temporal resolution...
LTE Adaptation for Mobile Broadband Satellite Networks
Directory of Open Access Journals (Sweden)
Bastia Francesco
2009-01-01
Full Text Available One of the key factors for the successful deployment of mobile satellite systems in 4G networks is the maximization of the technology commonalities with the terrestrial systems. An effective way of achieving this objective consists in considering the terrestrial radio interface as the baseline for the satellite radio interface. Since the 3GPP Long Term Evolution (LTE standard will be one of the main players in the 4G scenario, along with other emerging technologies, such as mobile WiMAX; this paper analyzes the possible applicability of the 3GPP LTE interface to satellite transmission, presenting several enabling techniques for this adaptation. In particular, we propose the introduction of an inter-TTI interleaving technique that exploits the existing H-ARQ facilities provided by the LTE physical layer, the use of PAPR reduction techniques to increase the resilience of the OFDM waveform to non linear distortion, and the design of the sequences for Random Access, taking into account the requirements deriving from the large round trip times. The outcomes of this analysis show that, with the required proposed enablers, it is possible to reuse the existing terrestrial air interface to transmit over the satellite link.
Revealing networks from dynamics: an introduction
International Nuclear Information System (INIS)
Timme, Marc; Casadiego, Jose
2014-01-01
What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity. (topical review)
Generalization in adaptation to stable and unstable dynamics.
Directory of Open Access Journals (Sweden)
Abdelhamid Kadiallah
Full Text Available Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization.
Local Dynamics in Trained Recurrent Neural Networks.
Rivkind, Alexander; Barak, Omri
2017-06-23
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Local Dynamics in Trained Recurrent Neural Networks
Rivkind, Alexander; Barak, Omri
2017-06-01
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Using Network Dynamical Influence to Drive Consensus
Punzo, Giuliano; Young, George F.; MacDonald, Malcolm; Leonard, Naomi E.
2016-05-01
Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks.
Inferring network topology from complex dynamics
International Nuclear Information System (INIS)
Shandilya, Srinivas Gorur; Timme, Marc
2011-01-01
Inferring the network topology from dynamical observations is a fundamental problem pervading research on complex systems. Here, we present a simple, direct method for inferring the structural connection topology of a network, given an observation of one collective dynamical trajectory. The general theoretical framework is applicable to arbitrary network dynamical systems described by ordinary differential equations. No interference (external driving) is required and the type of dynamics is hardly restricted in any way. In particular, the observed dynamics may be arbitrarily complex; stationary, invariant or transient; synchronous or asynchronous and chaotic or periodic. Presupposing a knowledge of the functional form of the dynamical units and of the coupling functions between them, we present an analytical solution to the inverse problem of finding the network topology from observing a time series of state variables only. Robust reconstruction is achieved in any sufficiently long generic observation of the system. We extend our method to simultaneously reconstructing both the entire network topology and all parameters appearing linear in the system's equations of motion. Reconstruction of network topology and system parameters is viable even in the presence of external noise that distorts the original dynamics substantially. The method provides a conceptually new step towards reconstructing a variety of real-world networks, including gene and protein interaction networks and neuronal circuits.
Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks
Directory of Open Access Journals (Sweden)
Xiao-Li Li
2014-01-01
Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.
Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.
2017-07-01
Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule—which preserves connections between more out-of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by
Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.
Yang, Yongliang; Wunsch, Donald; Yin, Yixin
2017-08-01
This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.
Nonlinear adaptive inverse control via the unified model neural network
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
Network on Target: Remotely Configured Adaptive Tactical Networks
National Research Council Canada - National Science Library
Bordetsky, Alex; Bourakov, Eugene
2006-01-01
The emerging tactical networks represent complex network-centric systems, in which multiple sensors, unmanned vehicles, and geographically distributed units of highly mobile decision makers, transfer...
Convergent dynamics for multistable delayed neural networks
International Nuclear Information System (INIS)
Shih, Chih-Wen; Tseng, Jui-Pin
2008-01-01
This investigation aims at developing a methodology to establish convergence of dynamics for delayed neural network systems with multiple stable equilibria. The present approach is general and can be applied to several network models. We take the Hopfield-type neural networks with both instantaneous and delayed feedbacks to illustrate the idea. We shall construct the complete dynamical scenario which comprises exactly 2 n stable equilibria and exactly (3 n − 2 n ) unstable equilibria for the n-neuron network. In addition, it is shown that every solution of the system converges to one of the equilibria as time tends to infinity. The approach is based on employing the geometrical structure of the network system. Positively invariant sets and componentwise dynamical properties are derived under the geometrical configuration. An iteration scheme is subsequently designed to confirm the convergence of dynamics for the system. Two examples with numerical simulations are arranged to illustrate the present theory
Information governance in dynamic networked business process management
Rasouli, M.; Eshuis, H.; Grefen, P.W.P.J.; Trienekens, J.J.M.; Kusters, R.J.
2016-01-01
Competition in today’s globalized markets forces organizations to collaborate within dynamic business networks to provide mass-customized integrated solutions for customers. The collaboration within dynamic business networks necessitates forming dynamic networked business processes (DNBPs).
Adaptive control of call acceptance in WCDMA network
Directory of Open Access Journals (Sweden)
Milan Manojle Šunjevarić
2013-10-01
characteristic in networks with hard capacities. For systems with so-called "Soft" capacity, there is no direct relationship between the number of users and available capacity for incoming requests, and the number of served users depends on the SIR threshold. However, there is the algorithm that follows a very simple approach in which decisions about access are based only on the number of users already present in the system. The use of the algorithm represents a direct mapping of strategies from 2G systems in which the capacity is limited with hard boundaries, and a decision is made on the basis of already admitted users in the system. The methods of resource management used in modern wireless networks In previous research of access control algorithms in wireless networks, in the broadest terms, two basic methods could be used: deterministic and stochastic methods. Deterministic algorithms imply that QoS parameters are one hundred percent guaranteed for the duration of the connection, which is not practical in real systems. In the stochastic CAC algorithms, QoS cannot be guaranteed one hundred percent, but instead, with a certain probability. Resource reservation Methods with reserved channels, or generally speaking the reserved resources, are known in the literature as Guard Channel or GC methods. Algorithms with static reservation often result in poor utilization of resources. Algorithms with dynamic thresholds have the threshold that adapts to real needs (for example, if at the particular location many requests for handover connections appear, then the part of the resources saved for handover can dynamically be increased. Influence of the OVSF codes distribution method to the number of accepted requests in the WCDMA network The OVSF codes are used in WCDMA networks to support different transmission rates for multimedia services. They are variable in length, and using a smaller factor achieves higher transmission rates. In recent years, a significant number of papers have
Pinning Synchronization of Switched Complex Dynamical Networks
Directory of Open Access Journals (Sweden)
Liming Du
2015-01-01
Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.
Psychology and social networks: a dynamic network theory perspective.
Westaby, James D; Pfaff, Danielle L; Redding, Nicholas
2014-04-01
Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Lifetime Maximizing Adaptive Power Control in Wireless Sensor Networks
National Research Council Canada - National Science Library
Sun, Fangting; Shayman, Mark
2006-01-01
...: adaptive power control. They focus on the sensor networks that consist of a sink and a set of homogeneous wireless sensor nodes, which are randomly deployed according to a uniform distribution...
Largenet2: an object-oriented programming library for simulating large adaptive networks.
Zschaler, Gerd; Gross, Thilo
2013-01-15
The largenet2 C++ library provides an infrastructure for the simulation of large dynamic and adaptive networks with discrete node and link states. The library is released as free software. It is available at http://biond.github.com/largenet2. Largenet2 is licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License. gerd@biond.org
Impact of constrained rewiring on network structure and node dynamics
Rattana, P.; Berthouze, L.; Kiss, I. Z.
2014-11-01
In this paper, we study an adaptive spatial network. We consider a susceptible-infected-susceptible (SIS) epidemic on the network, with a link or contact rewiring process constrained by spatial proximity. In particular, we assume that susceptible nodes break links with infected nodes independently of distance and reconnect at random to susceptible nodes available within a given radius. By systematically manipulating this radius we investigate the impact of rewiring on the structure of the network and characteristics of the epidemic. We adopt a step-by-step approach whereby we first study the impact of rewiring on the network structure in the absence of an epidemic, then with nodes assigned a disease status but without disease dynamics, and finally running network and epidemic dynamics simultaneously. In the case of no labeling and no epidemic dynamics, we provide both analytic and semianalytic formulas for the value of clustering achieved in the network. Our results also show that the rewiring radius and the network's initial structure have a pronounced effect on the endemic equilibrium, with increasingly large rewiring radiuses yielding smaller disease prevalence.
Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems
Volyanskyy, Kostyantyn Y.
Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance
2016-12-22
for the global pattern. A network view has proven useful in modeling a supply - chain for patterns of interaction. Queuing theory can be used to...phenomena. Second, operations management and supply - chain management lack metrics for evolution and dynamism in supply networks. Third, developing...robust theories in the presence of 14 adaptation is a formidable task. Supply - chain management theory can be built by identifying CAS phenomena and
Adaptive nonlinear control using input normalized neural networks
International Nuclear Information System (INIS)
Leeghim, Henzeh; Seo, In Ho; Bang, Hyo Choong
2008-01-01
An adaptive feedback linearization technique combined with the neural network is addressed to control uncertain nonlinear systems. The neural network-based adaptive control theory has been widely studied. However, the stability analysis of the closed-loop system with the neural network is rather complicated and difficult to understand, and sometimes unnecessary assumptions are involved. As a result, unnecessary assumptions for stability analysis are avoided by using the neural network with input normalization technique. The ultimate boundedness of the tracking error is simply proved by the Lyapunov stability theory. A new simple update law as an adaptive nonlinear control is derived by the simplification of the input normalized neural network assuming the variation of the uncertain term is sufficiently small
Cooperative adaptive responses in gene regulatory networks with many degrees of freedom.
Inoue, Masayo; Kaneko, Kunihiko
2013-04-01
Cells generally adapt to environmental changes by first exhibiting an immediate response and then gradually returning to their original state to achieve homeostasis. Although simple network motifs consisting of a few genes have been shown to exhibit such adaptive dynamics, they do not reflect the complexity of real cells, where the expression of a large number of genes activates or represses other genes, permitting adaptive behaviors. Here, we investigated the responses of gene regulatory networks containing many genes that have undergone numerical evolution to achieve high fitness due to the adaptive response of only a single target gene; this single target gene responds to changes in external inputs and later returns to basal levels. Despite setting a single target, most genes showed adaptive responses after evolution. Such adaptive dynamics were not due to common motifs within a few genes; even without such motifs, almost all genes showed adaptation, albeit sometimes partial adaptation, in the sense that expression levels did not always return to original levels. The genes split into two groups: genes in the first group exhibited an initial increase in expression and then returned to basal levels, while genes in the second group exhibited the opposite changes in expression. From this model, genes in the first group received positive input from other genes within the first group, but negative input from genes in the second group, and vice versa. Thus, the adaptation dynamics of genes from both groups were consolidated. This cooperative adaptive behavior was commonly observed if the number of genes involved was larger than the order of ten. These results have implications in the collective responses of gene expression networks in microarray measurements of yeast Saccharomyces cerevisiae and the significance to the biological homeostasis of systems with many components.
Optimal region of latching activity in an adaptive Potts model for networks of neurons
International Nuclear Information System (INIS)
Abdollah-nia, Mohammad-Farshad; Saeedghalati, Mohammadkarim; Abbassian, Abdolhossein
2012-01-01
In statistical mechanics, the Potts model is a model for interacting spins with more than two discrete states. Neural networks which exhibit features of learning and associative memory can also be modeled by a system of Potts spins. A spontaneous behavior of hopping from one discrete attractor state to another (referred to as latching) has been proposed to be associated with higher cognitive functions. Here we propose a model in which both the stochastic dynamics of Potts models and an adaptive potential function are present. A latching dynamics is observed in a limited region of the noise(temperature)–adaptation parameter space. We hence suggest noise as a fundamental factor in such alternations alongside adaptation. From a dynamical systems point of view, the noise–adaptation alternations may be the underlying mechanism for multi-stability in attractor-based models. An optimality criterion for realistic models is finally inferred
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Fundamental structures of dynamic social networks
DEFF Research Database (Denmark)
Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann
2016-01-01
Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships...... and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection......, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals...
Adaptive Protocols for Mobile Wireless Networks
National Research Council Canada - National Science Library
Pursley, Michael B
2005-01-01
Results are reported for basic research in mobile wireless communication networks for tactical applications including investigations of new methods for error-control coding and decoding, modulation...
Evolutionary dynamics of complex communications networks
Karyotis, Vasileios; Papavassiliou, Symeon
2013-01-01
Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to
Adapting Bayes Network Structures to Non-stationary Domains
DEFF Research Database (Denmark)
Nielsen, Søren Holbech; Nielsen, Thomas Dyhre
2008-01-01
When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit a sequential stream of observations, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN is gradu...
A mathematical programming approach for sequential clustering of dynamic networks
Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia
2016-02-01
A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.
Network on Target: Remotely Configured Adaptive Tactical Networks
National Research Council Canada - National Science Library
Bordetsky, Alex; Bourakov, Eugene
2006-01-01
.... The node mobility as well as ad hoc network topology reconfiguration becomes a powerful control option, which network operators or intelligent management agents could apply to provide for self...
Dynamics on Networks of Manifolds
DeVille, Lee; Lerman, Eugene
2015-03-01
We propose a precise definition of a continuous time dynamical system made up of interacting open subsystems. The interconnections of subsystems are coded by directed graphs. We prove that the appropriate maps of graphs called graph fibrations give rise to maps of dynamical systems. Consequently surjective graph fibrations give rise to invariant subsystems and injective graph fibrations give rise to projections of dynamical systems.
Adaptive dynamics of extortion and compliance.
Directory of Open Access Journals (Sweden)
Christian Hilbe
Full Text Available Direct reciprocity is a mechanism for the evolution of cooperation. For the iterated prisoner's dilemma, a new class of strategies has recently been described, the so-called zero-determinant strategies. Using such a strategy, a player can unilaterally enforce a linear relationship between his own payoff and the co-player's payoff. In particular the player may act in such a way that it becomes optimal for the co-player to cooperate unconditionally. In this way, a player can manipulate and extort his co-player, thereby ensuring that the own payoff never falls below the co-player's payoff. However, using a compliant strategy instead, a player can also ensure that his own payoff never exceeds the co-player's payoff. Here, we use adaptive dynamics to study when evolution leads to extortion and when it leads to compliance. We find a remarkable cyclic dynamics: in sufficiently large populations, extortioners play a transient role, helping the population to move from selfish strategies to compliance. Compliant strategies, however, can be subverted by altruists, which in turn give rise to selfish strategies. Whether cooperative strategies are favored in the long run critically depends on the size of the population; we show that cooperation is most abundant in large populations, in which case average payoffs approach the social optimum. Our results are not restricted to the case of the prisoners dilemma, but can be extended to other social dilemmas, such as the snowdrift game. Iterated social dilemmas in large populations do not lead to the evolution of strategies that aim to dominate their co-player. Instead, generosity succeeds.
On the Adaptive Design Rules of Biochemical Networks in Evolution
Directory of Open Access Journals (Sweden)
Bor-Sen Chen
2007-01-01
Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.
Adaptive pseudolinear compensators of dynamic characteristics of automatic control systems
Skorospeshkin, M. V.; Sukhodoev, M. S.; Timoshenko, E. A.; Lenskiy, F. V.
2016-04-01
Adaptive pseudolinear gain and phase compensators of dynamic characteristics of automatic control systems are suggested. The automatic control system performance with adaptive compensators has been explored. The efficiency of pseudolinear adaptive compensators in the automatic control systems with time-varying parameters has been demonstrated.
Specification and Support of Adaptable Networked Multimedia
D.C.A. Bulterman (Dick)
1993-01-01
htmlabstractAccessing multimedia information in a networked environment introduces problems that don't exist when the same information is accessed locally. These problems include: competing for network resources within and across applications, synchronizing data arrivals from various sources within
Network-topology-adaptive quantum conference protocols
International Nuclear Information System (INIS)
Zhang Sheng; Wang Jian; Tang Chao-Jing; Zhang Quan
2011-01-01
As an important application of the quantum network communication, quantum multiparty conference has made multiparty secret communication possible. Previous quantum multiparty conference schemes based on quantum data encryption are insensitive to network topology. However, the topology of the quantum network significantly affects the communication efficiency, e.g., parallel transmission in a channel with limited bandwidth. We have proposed two distinctive protocols, which work in two basic network topologies with efficiency higher than the existing ones. We first present a protocol which works in the reticulate network using Greeberger—Horne—Zeilinger states and entanglement swapping. Another protocol, based on quantum multicasting with quantum data compression, which can improve the efficiency of the network, works in the star-like network. The security of our protocols is guaranteed by quantum key distribution and one-time-pad encryption. In general, the two protocols can be applied to any quantum network where the topology can be equivalently transformed to one of the two structures we propose in our protocols. (general)
How complex a dynamical network can be?
International Nuclear Information System (INIS)
Baptista, M.S.; Kakmeni, F. Moukam; Del Magno, Gianluigi; Hussein, M.S.
2011-01-01
Positive Lyapunov exponents measure the asymptotic exponential divergence of nearby trajectories of a dynamical system. Not only they quantify how chaotic a dynamical system is, but since their sum is an upper bound for the rate of information production, they also provide a convenient way to quantify the complexity of a dynamical network. We conjecture based on numerical evidences that for a large class of dynamical networks composed by equal nodes, the sum of the positive Lyapunov exponents is bounded by the sum of all the positive Lyapunov exponents of both the synchronization manifold and its transversal directions, the last quantity being in principle easier to compute than the latter. As applications of our conjecture we: (i) show that a dynamical network composed of equal nodes and whose nodes are fully linearly connected produces more information than similar networks but whose nodes are connected with any other possible connecting topology; (ii) show how one can calculate upper bounds for the information production of realistic networks whose nodes have parameter mismatches, randomly chosen; (iii) discuss how to predict the behavior of a large dynamical network by knowing the information provided by a system composed of only two coupled nodes.
The Social Dynamics of Innovation Networks
Rutten, Roel; Benneworth, Paul Stephen; Irawati, Dessy; Boekema, Frans
2014-01-01
The social dynamics of innovation networks captures the important role of trust, social capital, institutions and norms and values in the creation of knowledge in innovation networks. In doing so, this book connects to a long-standing debate on the socio-spatial context of innovation in economic
Interference mitigation through adaptive power control in wireless sensor networks
Chincoli, M.; Bacchiani, C.; Syed, Aly; Exarchakos, G.; Liotta, A.
2016-01-01
Adaptive transmission power control schemes have been introduced in wireless sensor networks to adjust energy consumption under different network conditions. This is a crucial goal, given the constraints under which sensor communications operate. Power reduction may however have counter-productive
Adaptive Capacity Management in Bluetooth Networks
DEFF Research Database (Denmark)
Son, L.T.
, such as limited wireless bandwidth operation, routing, scheduling, network control, etc. Currently Bluetooth specification particularly does not describe in details about how to implement Quality of Service and Resource Management in Bluetooth protocol stacks. These issues become significant, when the number...... of Bluetooth devices is increasing, a larger-scale ad hoc network, scatternet, is formed, as well as the booming of Internet has demanded for large bandwidth and low delay mobile access. This dissertation is to address the capacity management issues in Bluetooth networks. The main goals of the network capacity...... capacity allocation, network traffic control, inter-piconet scheduling, and buffer management. First, after a short presentation about Bluetooth technology, and QoS issues, queueing models and a simulation-based buffer management have been constructed. Then by using analysis and simulation, it shows some...
Dynamic Frequency Control in Power Networks
Zhao, Changhong; Mallada Garcia, Enrique; Low, Steven H.
2016-01-01
Node controllers in power distribution networks in accordance with embodiments of the invention enable dynamic frequency control. One embodiment includes a node controller comprising a network interface a processor; and a memory containing a frequency control application; and a plurality of node operating parameters describing the operating parameters of a node, where the node is selected from a group consisting of at least one generator node in a power distribution network wherein the proces...
An Efficient Dynamic Trust Evaluation Model for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Zhengwang Ye
2017-01-01
Full Text Available Trust evaluation is an effective method to detect malicious nodes and ensure security in wireless sensor networks (WSNs. In this paper, an efficient dynamic trust evaluation model (DTEM for WSNs is proposed, which implements accurate, efficient, and dynamic trust evaluation by dynamically adjusting the weights of direct trust and indirect trust and the parameters of the update mechanism. To achieve accurate trust evaluation, the direct trust is calculated considering multitrust including communication trust, data trust, and energy trust with the punishment factor and regulating function. The indirect trust is evaluated conditionally by the trusted recommendations from a third party. Moreover, the integrated trust is measured by assigning dynamic weights for direct trust and indirect trust and combining them. Finally, we propose an update mechanism by a sliding window based on induced ordered weighted averaging operator to enhance flexibility. We can dynamically adapt the parameters and the interactive history windows number according to the actual needs of the network to realize dynamic update of direct trust value. Simulation results indicate that the proposed dynamic trust model is an efficient dynamic and attack-resistant trust evaluation model. Compared with existing approaches, the proposed dynamic trust model performs better in defending multiple malicious attacks.
Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.
Detection of network attacks based on adaptive resonance theory
Bukhanov, D. G.; Polyakov, V. M.
2018-05-01
The paper considers an approach to intrusion detection systems using a neural network of adaptive resonant theory. It suggests the structure of an intrusion detection system consisting of two types of program modules. The first module manages connections of user applications by preventing the undesirable ones. The second analyzes the incoming network traffic parameters to check potential network attacks. After attack detection, it notifies the required stations using a secure transmission channel. The paper describes the experiment on the detection and recognition of network attacks using the test selection. It also compares the obtained results with similar experiments carried out by other authors. It gives findings and conclusions on the sufficiency of the proposed approach. The obtained information confirms the sufficiency of applying the neural networks of adaptive resonant theory to analyze network traffic within the intrusion detection system.
Time course of dynamic range adaptation in the auditory nerve
Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand
2012-01-01
Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797–13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430–6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological “dual adaptation” model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100–400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds. PMID:22457465
Efficient community-based control strategies in adaptive networks
International Nuclear Information System (INIS)
Yang Hui; Tang Ming; Zhang Haifeng
2012-01-01
Most studies on adaptive networks concentrate on the properties of steady state, but neglect transient dynamics. In this study, we pay attention to the emergence of community structure in the transient process and the effects of community-based control strategies on epidemic spreading. First, by normalizing the modularity, we investigate the evolution of community structure during the transient process, and find that a strong community structure is induced by the rewiring mechanism in the early stage of epidemic dynamics, which, remarkably, delays the outbreak of disease. We then study the effects of control strategies started at different stages on the prevalence. Both immunization and quarantine strategies indicate that it is not ‘the earlier, the better’ for the implementation of control measures. And the optimal control effect is obtained if control measures can be efficiently implemented in the period of a strong community structure. For the immunization strategy, immunizing the susceptible nodes on susceptible–infected links and immunizing susceptible nodes randomly have similar control effects. However, for the quarantine strategy, quarantining the infected nodes on susceptible–infected links can yield a far better result than quarantining infected nodes randomly. More significantly, the community-based quarantine strategy performs better than the community-based immunization strategy. This study may shed new light on the forecast and the prevention of epidemics among humans. (paper)
Network Physiology: How Organ Systems Dynamically Interact.
Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch
2015-01-01
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.
Network Physiology: How Organ Systems Dynamically Interact
Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.
2015-01-01
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073
Adapted Boolean network models for extracellular matrix formation
Directory of Open Access Journals (Sweden)
Wollbold Johannes
2009-07-01
Full Text Available Abstract Background Due to the rapid data accumulation on pathogenesis and progression of chronic inflammation, there is an increasing demand for approaches to analyse the underlying regulatory networks. For example, rheumatoid arthritis (RA is a chronic inflammatory disease, characterised by joint destruction and perpetuated by activated synovial fibroblasts (SFB. These abnormally express and/or secrete pro-inflammatory cytokines, collagens causing joint fibrosis, or tissue-degrading enzymes resulting in destruction of the extra-cellular matrix (ECM. We applied three methods to analyse ECM regulation: data discretisation to filter out noise and to reduce complexity, Boolean network construction to implement logic relationships, and formal concept analysis (FCA for the formation of minimal, but complete rule sets from the data. Results First, we extracted literature information to develop an interaction network containing 18 genes representing ECM formation and destruction. Subsequently, we constructed an asynchronous Boolean network with biologically plausible time intervals for mRNA and protein production, secretion, and inactivation. Experimental gene expression data was obtained from SFB stimulated by TGFβ1 or by TNFα and discretised thereafter. The Boolean functions of the initial network were improved iteratively by the comparison of the simulation runs to the experimental data and by exploitation of expert knowledge. This resulted in adapted networks for both cytokine stimulation conditions. The simulations were further analysed by the attribute exploration algorithm of FCA, integrating the observed time series in a fine-tuned and automated manner. The resulting temporal rules yielded new contributions to controversially discussed aspects of fibroblast biology (e.g., considerable expression of TNF and MMP9 by fibroblasts stimulation and corroborated previously known facts (e.g., co-expression of collagens and MMPs after TNF
Adaptive intelligent power systems: Active distribution networks
International Nuclear Information System (INIS)
McDonald, Jim
2008-01-01
Electricity networks are extensive and well established. They form a key part of the infrastructure that supports industrialised society. These networks are moving from a period of stability to a time of potentially major transition, driven by a need for old equipment to be replaced, by government policy commitments to cleaner and renewable sources of electricity generation, and by change in the power industry. This paper looks at moves towards active distribution networks. The novel transmission and distribution systems of the future will challenge today's system designs. They will cope with variable voltages and frequencies, and will offer more flexible, sustainable options. Intelligent power networks will need innovation in several key areas of information technology. Active control of flexible, large-scale electrical power systems is required. Protection and control systems will have to react to faults and unusual transient behaviour and ensure recovery after such events. Real-time network simulation and performance analysis will be needed to provide decision support for system operators, and the inputs to energy and distribution management systems. Advanced sensors and measurement will be used to achieve higher degrees of network automation and better system control, while pervasive communications will allow networks to be reconfigured by intelligent systems
Adaptive fuzzy-neural-network control for maglev transportation system.
Wai, Rong-Jong; Lee, Jeng-Dao
2008-01-01
A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.
Time scales in evolutionary game on adaptive networks
Energy Technology Data Exchange (ETDEWEB)
Cong, Rui, E-mail: congrui0000@126.com [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Wu, Te; Qiu, Yuan-Ying [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Wang, Long [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing (China)
2014-02-01
Most previous studies concerning spatial games have assumed strategy updating occurs with a fixed ratio relative to interactions. We here set up a coevolutionary model to investigate how different ratio affects the evolution of cooperation on adaptive networks. Simulation results demonstrate that cooperation can be significantly enhanced under our rewiring mechanism, especially with slower natural selection. Meanwhile, slower selection induces larger network heterogeneity. Strong selection contracts the parameter area where cooperation thrives. Therefore, cooperation prevails whenever individuals are offered enough chances to adapt to the environment. Robustness of the results has been checked under rewiring cost or varied networks.
Incremental Centrality Algorithms for Dynamic Network Analysis
2013-08-01
literature. 7.1.3 Small World Networks In 1998, Watts and Strogatz introduced a model that starts with a regular lattice (ring) of n nodes and...and S. Strogatz , "Collective Dynamics of ‘Small-World’ Networks," Nature, vol. 393, pp. 440-442, 1998. [13] T. Opsahl, "Structure and Evolution of...34On Random Graphs," Publicationes Mathematicae, vol. 6, 1959. [167] D.J. Watts and S.H. Strogatz , "Collective Dynamics of ‘Small-World’ Networks
Spreading dynamics on complex networks: a general stochastic approach.
Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J
2014-12-01
Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.
Engineering Issues for an Adaptive Defense Network
National Research Council Canada - National Science Library
Piszcz, Alan; Orlans, Nicholas; Eyler-Walker, Zachary; Moore, David
2001-01-01
.... The primary issue was the capability to detect and defend against DDoS. Experimentation was performed with a packet filtering firewall, a network Quality of Service manager, multiple DDoS tools, and traffic generation tools...
Adaptive Sampling in Autonomous Marine Sensor Networks
National Research Council Canada - National Science Library
Eickstedt, Donald P
2006-01-01
... oceanographic network scenario. This architecture has three major components, an intelligent, logical sensor that provides high-level environmental state information to a behavior-based autonomous vehicle control system, a new...
Adaptive Capacity Management in Bluetooth Networks
Son, L.T.
2004-01-01
With the Internet and mobile wireless development, accelerated by high-speed and low cost VLSI device evolution, short range wireless communications have become more and more popular, especially Bluetooth. Bluetooth is a new short range radio technology that promises to be very convenient, low power, and low cost mobile ad hoc solution for the global interconnection of all mobile devices. To implement Bluetooth network as a true mobile ad hoc wireless network operating in short radio range, h...
The Hitchhiker’s Guide to Adaptive Dynamics
Directory of Open Access Journals (Sweden)
Jacob Johansson
2013-06-01
Full Text Available Adaptive dynamics is a mathematical framework for studying evolution. It extends evolutionary game theory to account for more realistic ecological dynamics and it can incorporate both frequency- and density-dependent selection. This is a practical guide to adaptive dynamics that aims to illustrate how the methodology can be applied to the study of specific systems. The theory is presented in detail for a single, monomorphic, asexually reproducing population. We explain the necessary terminology to understand the basic arguments in models based on adaptive dynamics, including invasion fitness, the selection gradient, pairwise invasibility plots (PIP, evolutionarily singular strategies, and the canonical equation. The presentation is supported with a worked-out example of evolution of arrival times in migratory birds. We show how the adaptive dynamics methodology can be extended to study evolution in polymorphic populations using trait evolution plots (TEPs. We give an overview of literature that generalises adaptive dynamics techniques to other scenarios, such as sexual, diploid populations, and spatially-structured populations. We conclude by discussing how adaptive dynamics relates to evolutionary game theory and how adaptive-dynamics techniques can be used in speciation research.
A network dynamics approach to chemical reaction networks
van der Schaft, A. J.; Rao, S.; Jayawardhana, B.
2016-04-01
A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.
Conflict and convention in dynamic networks.
Foley, Michael; Forber, Patrick; Smead, Rory; Riedl, Christoph
2018-03-01
An important way to resolve games of conflict (snowdrift, hawk-dove, chicken) involves adopting a convention: a correlated equilibrium that avoids any conflict between aggressive strategies. Dynamic networks allow individuals to resolve conflict via their network connections rather than changing their strategy. Exploring how behavioural strategies coevolve with social networks reveals new dynamics that can help explain the origins and robustness of conventions. Here, we model the emergence of conventions as correlated equilibria in dynamic networks. Our results show that networks have the tendency to break the symmetry between the two conventional solutions in a strongly biased way. Rather than the correlated equilibrium associated with ownership norms (play aggressive at home, not away), we usually see the opposite host-guest norm (play aggressive away, not at home) evolve on dynamic networks, a phenomenon common to human interaction. We also show that learning to avoid conflict can produce realistic network structures in a way different than preferential attachment models. © 2017 The Author(s).
Markovian dynamics on complex reaction networks
Energy Technology Data Exchange (ETDEWEB)
Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu
2013-08-10
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.
Markovian dynamics on complex reaction networks
International Nuclear Information System (INIS)
Goutsias, J.; Jenkinson, G.
2013-01-01
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples
Learning State Space Dynamics in Recurrent Networks
Simard, Patrice Yvon
Fully recurrent (asymmetrical) networks can be used to learn temporal trajectories. The network is unfolded in time, and backpropagation is used to train the weights. The presence of recurrent connections creates internal states in the system which vary as a function of time. The resulting dynamics can provide interesting additional computing power but learning is made more difficult by the existence of internal memories. This study first exhibits the properties of recurrent networks in terms of convergence when the internal states of the system are unknown. A new energy functional is provided to change the weights of the units in order to the control the stability of the fixed points of the network's dynamics. The power of the resultant algorithm is illustrated with the simulation of a content addressable memory. Next, the more general case of time trajectories on a recurrent network is studied. An application is proposed in which trajectories are generated to draw letters as a function of an input. In another application of recurrent systems, a neural network certain temporal properties observed in human callosally sectioned brains. Finally the proposed algorithm for stabilizing dynamics around fixed points is extended to one for stabilizing dynamics around time trajectories. Its effects are illustrated on a network which generates Lisajous curves.
Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft
Directory of Open Access Journals (Sweden)
Yanchao Yin
2017-01-01
Full Text Available A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA. Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eliminate the approximation error, where a radial basis function (RBF neural network is used to online regulate the equivalent sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and comparative simulations are included to verify the efficacy of the proposed control method.
Enhancement of large fluctuations to extinction in adaptive networks
Hindes, Jason; Schwartz, Ira B.; Shaw, Leah B.
2018-01-01
During an epidemic, individual nodes in a network may adapt their connections to reduce the chance of infection. A common form of adaption is avoidance rewiring, where a noninfected node breaks a connection to an infected neighbor and forms a new connection to another noninfected node. Here we explore the effects of such adaptivity on stochastic fluctuations in the susceptible-infected-susceptible model, focusing on the largest fluctuations that result in extinction of infection. Using techniques from large-deviation theory, combined with a measurement of heterogeneity in the susceptible degree distribution at the endemic state, we are able to predict and analyze large fluctuations and extinction in adaptive networks. We find that in the limit of small rewiring there is a sharp exponential reduction in mean extinction times compared to the case of zero adaption. Furthermore, we find an exponential enhancement in the probability of large fluctuations with increased rewiring rate, even when holding the average number of infected nodes constant.
Connection adaption for control of networked mobile chaotic agents.
Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Xiao, Gaoxi; Boccaletti, S
2017-11-22
In this paper, we propose a strategy for the control of mobile chaotic oscillators by adaptively rewiring connections between nearby agents with local information. In contrast to the dominant adaptive control schemes where coupling strength is adjusted continuously according to the states of the oscillators, our method does not request adaption of coupling strength. As the resulting interaction structure generated by this proposed strategy is strongly related to unidirectional chains, by investigating synchronization property of unidirectional chains, we reveal that there exists a certain coupling range in which the agents could be controlled regardless of the length of the chain. This feature enables the adaptive strategy to control the mobile oscillators regardless of their moving speed. Compared with existing adaptive control strategies for networked mobile agents, our proposed strategy is simpler for implementation where the resulting interaction networks are kept unweighted at all time.
Time-adaptive and history-adaptive multicriterion routing in stochastic, time-dependent networks
DEFF Research Database (Denmark)
Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan
2009-01-01
We compare two different models for multicriterion routing in stochastic time-dependent networks: the classic "time-adaptive'' model and the more flexible "history-adaptive'' one. We point out several properties of the sets of efficient solutions found under the two models. We also devise a method...
Dynamic Protection of Optical Networks
DEFF Research Database (Denmark)
Ruepp, Sarah Renée
2008-01-01
This thesis deals with making optical networks resilient to failures. The recovery performance of path, segment and span restoration is evaluated in a network with limited wavelength conversion capability using both standard and enhanced wavelength assignment schemes. The enhanced wavelength...... stubs at the failure adjacent nodes. Both modifcations have a positive influence on the recovery percentage. The recovery enhancements are applicable in both single and multi-domain network environments. Stub release, where the still working parts of a failure affected connection are released prior...... of the modularity of capacity units is investigated for resilient network design. Different span upgrading strategies and algorithms for finding restoration paths are evaluated. Furthermore, the capacity effciency of constraining restoration requests for the same destination node to the same restoration path...
Cognitive radio networks dynamic resource allocation schemes
Wang, Shaowei
2014-01-01
This SpringerBrief presents a survey of dynamic resource allocation schemes in Cognitive Radio (CR) Systems, focusing on the spectral-efficiency and energy-efficiency in wireless networks. It also introduces a variety of dynamic resource allocation schemes for CR networks and provides a concise introduction of the landscape of CR technology. The author covers in detail the dynamic resource allocation problem for the motivations and challenges in CR systems. The Spectral- and Energy-Efficient resource allocation schemes are comprehensively investigated, including new insights into the trade-off
Xia, Kewei; Huo, Wei
2016-05-01
This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin
2015-01-01
correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking...... dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural...... mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online...
Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network
Directory of Open Access Journals (Sweden)
Yundi Chu
2015-01-01
Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.
Competing dynamic phases of active polymer networks
Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.
Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Dynamics of High-Resolution Networks
DEFF Research Database (Denmark)
Sekara, Vedran
the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...... are we all affected by an ever changing network structure? Answering these questions will enrich our understanding of ourselves, our organizations, and our societies. Yet, mapping the dynamics of social networks has traditionally been an arduous undertaking. Today, however, it is possible to use...... of such dynamic maps allows us to probe the underlying social network and understand how individuals interact and form lasting friendships. More importantly, these highly detailed dynamic maps provide us new perspectives at traditional problems and allow us to quantify and predict human life....
Control theory of digitally networked dynamic systems
Lunze, Jan
2013-01-01
The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamic
Directory of Open Access Journals (Sweden)
Barbara Martini
2016-06-01
Full Text Available Emerging technologies such as Software-Defined Networks (SDN and Network Function Virtualization (NFV promise to address cost reduction and flexibility in network operation while enabling innovative network service delivery models. However, operational network service delivery solutions still need to be developed that actually exploit these technologies, especially at the multi-provider level. Indeed, the implementation of network functions as software running over a virtualized infrastructure and provisioned on a service basis let one envisage an ecosystem of network services that are dynamically and flexibly assembled by orchestrating Virtual Network Functions even across different provider domains, thereby coping with changeable user and service requirements and context conditions. In this paper we propose an approach that adopts Service-Oriented Architecture (SOA technology-agnostic architectural guidelines in the design of a solution for orchestrating and dynamically chaining Virtual Network Functions. We discuss how SOA, NFV, and SDN may complement each other in realizing dynamic network function chaining through service composition specification, service selection, service delivery, and placement tasks. Then, we describe the architecture of a SOA-inspired NFV orchestrator, which leverages SDN-based network control capabilities to address an effective delivery of elastic chains of Virtual Network Functions. Preliminary results of prototype implementation and testing activities are also presented. The benefits for Network Service Providers are also described that derive from the adaptive network service provisioning in a multi-provider environment through the orchestration of computing and networking services to provide end users with an enhanced service experience.
Extending the Lifetime of Sensor Networks through Adaptive Reclustering
Directory of Open Access Journals (Sweden)
Gianluigi Ferrari
2007-06-01
Full Text Available We analyze the lifetime of clustered sensor networks with decentralized binary detection under a physical layer quality-of-service (QoS constraint, given by the maximum tolerable probability of decision error at the access point (AP. In order to properly model the network behavior, we consider four different distributions (exponential, uniform, Rayleigh, and lognormal for the lifetime of a single sensor. We show the benefits, in terms of longer network lifetime, of adaptive reclustering. We also derive an analytical framework for the computation of the network lifetime and the penalty, in terms of time delay and energy consumption, brought by adaptive reclustering. On the other hand, absence of reclustering leads to a shorter network lifetime, and we show the impact of various clustering configurations under different QoS conditions. Our results show that the organization of sensors in a few big clusters is the winning strategy to maximize the network lifetime. Moreover, the observation of the phenomenon should be frequent in order to limit the penalties associated with the reclustering procedure. We also apply the developed framework to analyze the energy consumption associated with the proposed reclustering protocol, obtaining results in good agreement with the performance of realistic wireless sensor networks. Finally, we present simulation results on the lifetime of IEEE 802.15.4 wireless sensor networks, which enrich the proposed analytical framework and show that typical networking performance metrics (such as throughput and delay are influenced by the sensor network lifetime.
Extending the Lifetime of Sensor Networks through Adaptive Reclustering
Directory of Open Access Journals (Sweden)
Ferrari Gianluigi
2007-01-01
Full Text Available We analyze the lifetime of clustered sensor networks with decentralized binary detection under a physical layer quality-of-service (QoS constraint, given by the maximum tolerable probability of decision error at the access point (AP. In order to properly model the network behavior, we consider four different distributions (exponential, uniform, Rayleigh, and lognormal for the lifetime of a single sensor. We show the benefits, in terms of longer network lifetime, of adaptive reclustering. We also derive an analytical framework for the computation of the network lifetime and the penalty, in terms of time delay and energy consumption, brought by adaptive reclustering. On the other hand, absence of reclustering leads to a shorter network lifetime, and we show the impact of various clustering configurations under different QoS conditions. Our results show that the organization of sensors in a few big clusters is the winning strategy to maximize the network lifetime. Moreover, the observation of the phenomenon should be frequent in order to limit the penalties associated with the reclustering procedure. We also apply the developed framework to analyze the energy consumption associated with the proposed reclustering protocol, obtaining results in good agreement with the performance of realistic wireless sensor networks. Finally, we present simulation results on the lifetime of IEEE 802.15.4 wireless sensor networks, which enrich the proposed analytical framework and show that typical networking performance metrics (such as throughput and delay are influenced by the sensor network lifetime.
Applications of flow-networks to opinion-dynamics
Tupikina, Liubov; Kurths, Jürgen
2015-04-01
Networks were successfully applied to describe complex systems, such as brain, climate, processes in society. Recently a socio-physical problem of opinion-dynamics was studied using network techniques. We present the toy-model of opinion-formation based on the physical model of advection-diffusion. We consider spreading of the opinion on the fixed subject, assuming that opinion on society is binary: if person has opinion then the state of the node in the society-network equals 1, if the person doesn't have opinion state of the node equals 0. Opinion can be spread from one person to another if they know each other, or in the network-terminology, if the nodes are connected. We include into the system governed by advection-diffusion equation the external field to model such effects as for instance influence from media. The assumptions for our model can be formulated as the following: 1.the node-states are influenced by the network structure in such a way, that opinion can be spread only between adjacent nodes (the advective term of the opinion-dynamics), 2.the network evolution can have two scenarios: -network topology is not changing with time; -additional links can appear or disappear each time-step with fixed probability which requires adaptive networks properties. Considering these assumptions for our system we obtain the system of equations describing our model-dynamics which corresponds well to other socio-physics models, for instance, the model of the social cohesion and the famous voter-model. We investigate the behavior of the suggested model studying "waiting time" of the system, time to get to the stable state, stability of the model regimes for different values of model parameters and network topology.
Scalable Lunar Surface Networks and Adaptive Orbit Access
Wang, Xudong
2015-01-01
Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.
International Nuclear Information System (INIS)
Zhou Jin; Chen Tianping; Xiang Lan
2006-01-01
This paper investigates synchronization dynamics of delayed neural networks with all the parameters unknown. By combining the adaptive control and linear feedback with the updated law, some simple yet generic criteria for determining the robust synchronization based on the parameters identification of uncertain chaotic delayed neural networks are derived by using the invariance principle of functional differential equations. It is shown that the approaches developed here further extend the ideas and techniques presented in recent literature, and they are also simple to implement in practice. Furthermore, the theoretical results are applied to a typical chaotic delayed Hopfied neural networks, and numerical simulation also demonstrate the effectiveness and feasibility of the proposed technique
PAQ: Persistent Adaptive Query Middleware for Dynamic Environments
Rajamani, Vasanth; Julien, Christine; Payton, Jamie; Roman, Gruia-Catalin
Pervasive computing applications often entail continuous monitoring tasks, issuing persistent queries that return continuously updated views of the operational environment. We present PAQ, a middleware that supports applications' needs by approximating a persistent query as a sequence of one-time queries. PAQ introduces an integration strategy abstraction that allows composition of one-time query responses into streams representing sophisticated spatio-temporal phenomena of interest. A distinguishing feature of our middleware is the realization that the suitability of a persistent query's result is a function of the application's tolerance for accuracy weighed against the associated overhead costs. In PAQ, programmers can specify an inquiry strategy that dictates how information is gathered. Since network dynamics impact the suitability of a particular inquiry strategy, PAQ associates an introspection strategy with a persistent query, that evaluates the quality of the query's results. The result of introspection can trigger application-defined adaptation strategies that alter the nature of the query. PAQ's simple API makes developing adaptive querying systems easily realizable. We present the key abstractions, describe their implementations, and demonstrate the middleware's usefulness through application examples and evaluation.
Designing Networked Adaptive Interactive Hybrid Systems
Kester, L.J.H.M.
2008-01-01
Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. In these systems humans and intelligent machines will, in close interaction, be able to reach their goals under
Adaptive Importance Sampling Simulation of Queueing Networks
de Boer, Pieter-Tjerk; Nicola, V.F.; Rubinstein, N.; Rubinstein, Reuven Y.
2000-01-01
In this paper, a method is presented for the efficient estimation of rare-event (overflow) probabilities in Jackson queueing networks using importance sampling. The method differs in two ways from methods discussed in most earlier literature: the change of measure is state-dependent, i.e., it is a
Adaptive neural network motion control for aircraft under uncertainty conditions
Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.
2018-02-01
We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.
Adaptive traffic control systems for urban networks
Directory of Open Access Journals (Sweden)
Radivojević Danilo
2017-01-01
Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.
Traffic Dynamics of Computer Networks
Fekete, Attila
2008-10-01
Two important aspects of the Internet, namely the properties of its topology and the characteristics of its data traffic, have attracted growing attention of the physics community. My thesis has considered problems of both aspects. First I studied the stochastic behavior of TCP, the primary algorithm governing traffic in the current Internet, in an elementary network scenario consisting of a standalone infinite-sized buffer and an access link. The effect of the fast recovery and fast retransmission (FR/FR) algorithms is also considered. I showed that my model can be extended further to involve the effect of link propagation delay, characteristic of WAN. I continued my thesis with the investigation of finite-sized semi-bottleneck buffers, where packets can be dropped not only at the link, but also at the buffer. I demonstrated that the behavior of the system depends only on a certain combination of the parameters. Moreover, an analytic formula was derived that gives the ratio of packet loss rate at the buffer to the total packet loss rate. This formula makes it possible to treat buffer-losses as if they were link-losses. Finally, I studied computer networks from a structural perspective. I demonstrated through fluid simulations that the distribution of resources, specifically the link bandwidth, has a serious impact on the global performance of the network. Then I analyzed the distribution of edge betweenness in a growing scale-free tree under the condition that a local property, the in-degree of the "younger" node of an arbitrary edge, is known in order to find an optimum distribution of link capacity. The derived formula is exact even for finite-sized networks. I also calculated the conditional expectation of edge betweenness, rescaled for infinite networks.
The dynamics of transmission and the dynamics of networks.
Farine, Damien
2017-05-01
A toy example depicted here highlighting the results of a study in this issue of the Journal of Animal Ecology that investigates the impact of network dynamics on potential disease outbreaks. Infections (stars) that spread by contact only (left) reduce the predicted outbreak size compared to situations where individuals can become infected by moving through areas that previously contained infected individuals (right). This is potentially important in species where individuals, or in this case groups, have overlapping ranges (as depicted on the top right). Incorporating network dynamics that maintain information about the ordering of contacts (central blocks; including the ordering of spatial overlap as noted by the arrows that highlight the blue group arriving after the red group in top-right of the figure) is important for capturing how a disease might not have the opportunity to spread to all individuals. By contrast, a static or 'average' network (lower blocks) does not capture any of these dynamics. Interestingly, although static networks generally predict larger outbreak sizes, the authors find that in cases when transmission probability is low, this prediction can switch as a result of changes in the estimated intensity of contacts among individuals. [Colour figure can be viewed at wileyonlinelibrary.com]. Springer, A., Kappeler, P.M. & Nunn, C.L. (2017) Dynamic vs. static social networks in models of parasite transmission: Predicting Cryptosporidium spread in wild lemurs. Journal of Animal Ecology, 86, 419-433. The spread of disease or information through networks can be affected by several factors. Whether and how these factors are accounted for can fundamentally change the predicted impact of a spreading epidemic. Springer, Kappeler & Nunn () investigate the role of different modes of transmission and network dynamics on the predicted size of a disease outbreak across several groups of Verreaux's sifakas, a group-living species of lemur. While some factors
Modeling Networks and Dynamics in Complex Systems: from Nano-Composites to Opinion Formation
Shi, Feng
Complex networks are ubiquitous in systems of physical, biological, social or technological origin. Components in those systems range from as large as cities in power grids, to as small as molecules in metabolic networks. Since the dawn of network science, significant attention has focused on the implications of dynamics in establishing network structure and the impact of structural properties on dynamics on those networks. The first part of the thesis follows this direction, studying the network formed by conductive nanorods in nano-materials, and focuses on the electrical response of the composite to the structure change of the network. New scaling laws for the shear-induced anisotropic percolation are introduced and a robust exponential tail of the current distribution across the network is identified. These results are relevant especially to "active" composite materials where materials are exposed to mechanical loading and strain deformations. However, in many real-world networks the evolution of the network topology is tied to the states of the vertices and vice versa. Networks that exhibit such a feedback are called adaptive or coevolutionary networks. The second part of the thesis examines two closely related variants of a simple, abstract model for coevolution of a network and the opinions of its members. As a representative model for adaptive networks, it displays the feature of self-organization of the system into a stable configuration due to the interplay between the network topology and the dynamics on the network. This simple model yields interesting dynamics and the slight change in the rewiring strategy results in qualitatively different behaviors of the system. In conclusion, the dissertation aims to develop new network models and tools which enable insights into the structure and dynamics of various systems, and seeks to advance network algorithms which provide approaches to coherently articulated questions in real-world complex systems such as
Dynamics-based centrality for directed networks.
Masuda, Naoki; Kori, Hiroshi
2010-11-01
Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.
Epidemic spreading on contact networks with adaptive weights.
Zhu, Guanghu; Chen, Guanrong; Xu, Xin-Jian; Fu, Xinchu
2013-01-21
The heterogeneous patterns of interactions within a population are often described by contact networks, but the variety and adaptivity of contact strengths are usually ignored. This paper proposes a modified epidemic SIS model with a birth-death process and nonlinear infectivity on an adaptive and weighted contact network. The links' weights, named as 'adaptive weights', which indicate the intimacy or familiarity between two connected individuals, will reduce as the disease develops. Through mathematical and numerical analyses, conditions are established for population extermination, disease extinction and infection persistence. Particularly, it is found that the fixed weights setting can trigger the epidemic incidence, and that the adaptivity of weights cannot change the epidemic threshold but it can accelerate the disease decay and lower the endemic level. Finally, some corresponding control measures are suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.
A candidate multimodal functional genetic network for thermal adaptation
Directory of Open Access Journals (Sweden)
Katharina C. Wollenberg Valero
2014-09-01
Full Text Available Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1, affect genes with different cellular functions, namely (2 lipoprotein metabolism, (3 membrane channels, (4 stress response, (5 response to oxidative stress, (6 muscle contraction and relaxation, and (7 vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and
Agent-based modeling and network dynamics
Namatame, Akira
2016-01-01
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...
Adaptation of coordination mechanisms to network structures
Directory of Open Access Journals (Sweden)
Herwig Mittermayer
2008-12-01
Full Text Available The coordination efficiency of Supply Chain Management is determined by two opposite poles: benefit from improved planning results and associated coordination cost. The centralization grade, applied coordination mechanisms and IT support have influence on both categories. Therefore three reference types are developed and subsequently detailed in business process models for different network structures. In a simulation study the performance of these organization forms are compared in a process plant network. Coordination benefit is observed if the planning mode is altered by means of a demand planning IT tool. Coordination cost is divided into structural and activity-dependent cost. The activity level rises when reactive planning iterations become necessary as a consequence of inconsistencies among planning levels. Some characteristic influence factors are considered to be a reason for uninfeasible planning. In this study the effect of capacity availability and stochastic machine downtimes is investigated in an uncertain demand situation. Results that if the network runs with high overcapacity, central planning is less likely to increase benefit enough to outweigh associated cost. Otherwise, if capacity constraints are crucial, a central planning mode is recommendable. When also unforeseen machine downtimes are low, the use of sophisticated IT tools is most profitable.
Agility and adaptive autonomy in networked organizations
Neef, R.M.; Vecht, B. van der
2010-01-01
In any multi-actor environment, there is an inevitable trade-off between achieving global coordination of activities and respecting the autonomy of the actors involved. Agile and resilient behavior demands dynamic coordination capabilities, but task and resource allocation quickly becomes
Hydrogen application dynamics and networks
Energy Technology Data Exchange (ETDEWEB)
Schmidt, E. [Air Liquide Large Industries, Champigny-sur-Marne (France)
2010-12-30
The Chemical Industry consumes large volumes of hydrogen as raw material for the manufacture of numerous products (e.g. polyamides and polyurethanes account for 60% of hydrogen demand). The hydrogen demand was in the recent past and will continue to be driven by the polyurethane family. China will host about 60% of new hydrogen needs over the period 2010-2015 becoming the first hydrogen market next year and reaching 25% of market share by 2015 (vs. only 4% in 2001). Air Liquide supplies large volumes of Hydrogen (and other Industrial Gases) to customers by on-site plants and through pipeline networks which offer significant benefits such as higher safety, reliability and flexibility of supply. Thanks to its long term strategy and heavy investment in large units and pipeline networks, Air Liquide is the Industrial Gas leader in most of the world class Petrochemical basins (Rotterdam, Antwerp, US Gulf Coast, Yosu, Caojing,..) (orig.)
Scalable Harmonization of Complex Networks With Local Adaptive Controllers
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav; Herzallah, R.
2017-01-01
Roč. 47, č. 3 (2017), s. 394-404 ISSN 2168-2216 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive control * Adaptive estimation * Bayes methods * Complex networks * Decentralized control * Fee dback * Fee dforward systems * Recursive estimation Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 2.350, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0457337.pdf
An Adaptive Damping Network Designed for Strapdown Fiber Optic Gyrocompass System for Ships
Directory of Open Access Journals (Sweden)
Jin Sun
2017-03-01
Full Text Available The strapdown fiber optic gyrocompass (strapdown FOGC system for ships primarily works on external horizontal damping and undamping statuses. When there are large sea condition changes, the system will switch frequently between the external horizontal damping status and the undamping status. This means that the system is always in an adjustment status and influences the dynamic accuracy of the system. Aiming at the limitations of the conventional damping method, a new design idea is proposed, where the adaptive control method is used to design the horizontal damping network of the strapdown FOGC system. According to the size of acceleration, the parameters of the damping network are changed to make the system error caused by the ship’s maneuvering to a minimum. Furthermore, the jump in damping coefficient was transformed into gradual change to make a smooth system status switch. The adaptive damping network was applied for strapdown FOGC under the static and dynamic condition, and its performance was compared with the conventional damping, and undamping means. Experimental results showed that the adaptive damping network was effective in improving the dynamic performance of the strapdown FOGC.
Radio propagation and adaptive antennas for wireless communication networks
Blaunstein, Nathan
2014-01-01
Explores novel wireless networks beyond 3G, and advanced 4G technologies, such as MIMO, via propagation phenomena and the fundamentals of adapted antenna usage.Explains how adaptive antennas can improve GoS and QoS for any wireless channel, with specific examples and applications in land, aircraft and satellite communications.Introduces new stochastic approach based on several multi-parametric models describing various terrestrial scenarios, which have been experimentally verified in different environmental conditionsNew chapters on fundamentals of wireless networks, cellular and non-cellular,
Adaptive control using neural networks and approximate models.
Narendra, K S; Mukhopadhyay, S
1997-01-01
The NARMA model is an exact representation of the input-output behavior of finite-dimensional nonlinear discrete-time dynamical systems in a neighborhood of the equilibrium state. However, it is not convenient for purposes of adaptive control using neural networks due to its nonlinear dependence on the control input. Hence, quite often, approximate methods are used for realizing the neural controllers to overcome computational complexity. In this paper, we introduce two classes of models which are approximations to the NARMA model, and which are linear in the control input. The latter fact substantially simplifies both the theoretical analysis as well as the practical implementation of the controller. Extensive simulation studies have shown that the neural controllers designed using the proposed approximate models perform very well, and in many cases even better than an approximate controller designed using the exact NARMA model. In view of their mathematical tractability as well as their success in simulation studies, a case is made in this paper that such approximate input-output models warrant a detailed study in their own right.
Adaptive Information Access on Multiple Applications Support Wireless Sensor Networks
DEFF Research Database (Denmark)
Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee
2014-01-01
information is challenged by dynamic nature of information elements. These challenges are more prominent in case of wireless sensor network (WSN) applications, as the information that the sensor node collects are mostly dynamic in nature (say, temperature). Therefore, it is likely that there can be a mismatch...
On Organizational Adaptation via Dynamic Process Selection
National Research Council Canada - National Science Library
Handley, Holly A; Levis, Alexander H
2000-01-01
.... An executable organizational model composed of individual models of a five stage interacting decision maker is used to evaluate the effectiveness of the different adaptation strategies on organizational performance...
Complex networks under dynamic repair model
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection.
Clima, Lilia; Peptanariu, Dragos; Pinteala, Mariana; Salic, Adrian; Barboiu, Mihail
2015-12-25
Dynamic constitutional frameworks, based on squalene, PEG and PEI components, reversibly connected to core centers, allow the efficient identification of adaptive vectors for good DNA transfection efficiency and are well tolerated by mammalian cells.
perception of communication network fraud dynamics by network ...
African Journals Online (AJOL)
ES Obe
work fraud dynamics by network administrators and stakeholders. In considering ... cyber crime within the last two years. How- ever, two-thirds of the ... ˆ increased exposure to unpredictable fi- nancial losses ... The intentions of the customers are reflected ..... 'There is a 95% confidence that the differ- ence between the ...
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Social Networking Adapted for Distributed Scientific Collaboration
Karimabadi, Homa
2012-01-01
Share is a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data sets among scientists. The site will include not only the standard features found on popular consumer-oriented social networking sites such as Facebook and Myspace, but also a number of powerful tools to extend its functionality to a science collaboration site. A Virtual Observatory is a promising technology for making data accessible from various missions and instruments through a Web browser. Sci-Share augments services provided by Virtual Observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase science returns from NASA missions. Sci-Share also enables better utilization of NASA s high-performance computing resources by providing an easy and central mechanism to access and share large files on users space or those saved on mass storage. The most common means of remote scientific collaboration today remains the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. Each of these tools has well-known limitations. Sci-Share transforms the social networking paradigm into a scientific collaboration environment by offering powerful tools for cooperative discourse and digital content sharing. Sci-Share differentiates itself by serving as an online repository for users digital content with the following unique features: a) Sharing of any file type, any size, from anywhere; b) Creation of projects and groups for controlled sharing; c) Module for sharing files on HPC (High Performance Computing) sites; d) Universal accessibility of staged files as embedded links on other sites (e.g. Facebook) and tools (e.g. e-mail); e) Drag-and-drop transfer of large files, replacing awkward e-mail attachments (and file size limitations); f) Enterprise-level data and
Chemotactic response and adaptation dynamics in Escherichia coli.
Directory of Open Access Journals (Sweden)
Diana Clausznitzer
2010-05-01
Full Text Available Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.
Impact of sub and supra-threshold adaptation currents in networks of spiking neurons.
Colliaux, David; Yger, Pierre; Kaneko, Kunihiko
2015-12-01
Neuronal adaptation is the intrinsic capacity of the brain to change, by various mechanisms, its dynamical responses as a function of the context. Such a phenomena, widely observed in vivo and in vitro, is known to be crucial in homeostatic regulation of the activity and gain control. The effects of adaptation have already been studied at the single-cell level, resulting from either voltage or calcium gated channels both activated by the spiking activity and modulating the dynamical responses of the neurons. In this study, by disentangling those effects into a linear (sub-threshold) and a non-linear (supra-threshold) part, we focus on the the functional role of those two distinct components of adaptation onto the neuronal activity at various scales, starting from single-cell responses up to recurrent networks dynamics, and under stationary or non-stationary stimulations. The effects of slow currents on collective dynamics, like modulation of population oscillation and reliability of spike patterns, is quantified for various types of adaptation in sparse recurrent networks.
Opportunistic Adaptive Transmission for Network Coding Using Nonbinary LDPC Codes
Directory of Open Access Journals (Sweden)
Cocco Giuseppe
2010-01-01
Full Text Available Network coding allows to exploit spatial diversity naturally present in mobile wireless networks and can be seen as an example of cooperative communication at the link layer and above. Such promising technique needs to rely on a suitable physical layer in order to achieve its best performance. In this paper, we present an opportunistic packet scheduling method based on physical layer considerations. We extend channel adaptation proposed for the broadcast phase of asymmetric two-way bidirectional relaying to a generic number of sinks and apply it to a network context. The method consists of adapting the information rate for each receiving node according to its channel status and independently of the other nodes. In this way, a higher network throughput can be achieved at the expense of a slightly higher complexity at the transmitter. This configuration allows to perform rate adaptation while fully preserving the benefits of channel and network coding. We carry out an information theoretical analysis of such approach and of that typically used in network coding. Numerical results based on nonbinary LDPC codes confirm the effectiveness of our approach with respect to previously proposed opportunistic scheduling techniques.
Dynamic Adaptation in Child-Adult Language Interaction
van Dijk, Marijn; van Geert, Paul; Korecky-Kröll, Katharina; Maillochon, Isabelle; Laaha, Sabine; Dressler, Wolfgang U.; Bassano, Dominique
2013-01-01
When speaking to young children, adults adapt their language to that of the child. In this article, we suggest that this child-directed speech (CDS) is the result of a transactional process of dynamic adaptation between the child and the adult. The study compares developmental trajectories of three children to those of the CDS of their caregivers.…
International Nuclear Information System (INIS)
Dai Hao; Jia Li-Xin; Zhang Yan-Bin
2012-01-01
The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria are derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure. (general)
Directory of Open Access Journals (Sweden)
Yao Yao
Full Text Available One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN. An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment.
Yao, Yao; Marchal, Kathleen; Van de Peer, Yves
2014-01-01
One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store ‘good behaviour’ and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485
Spreading dynamics in complex networks
Pei, Sen; Makse, Hernán A.
2013-12-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
Spreading dynamics in complex networks
International Nuclear Information System (INIS)
Pei, Sen; Makse, Hernán A
2013-01-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality. (paper)
Epidemic dynamics on a risk-based evolving social network
Antwi, Shadrack; Shaw, Leah
2013-03-01
Social network models have been used to study how behavior affects the dynamics of an infection in a population. Motivated by HIV, we consider how a trade-off between benefits and risks of sexual connections determine network structure and disease prevalence. We define a stochastic network model with formation and breaking of links as changes in sexual contacts. Each node has an intrinsic benefit its neighbors derive from connecting to it. Nodes' infection status is not apparent to others, but nodes with more connections (higher degree) are assumed more likely to be infected. The probability to form and break links is determined by a payoff computed from the benefit and degree-dependent risk. The disease is represented by a SI (susceptible-infected) model. We study network and epidemic evolution via Monte Carlo simulation and analytically predict the behavior with a heterogeneous mean field approach. The dependence of network connectivity and infection threshold on parameters is determined, and steady state degree distribution and epidemic levels are obtained. We also study a situation where system-wide infection levels alter perception of risk and cause nodes to adjust their behavior. This is a case of an adaptive network, where node status feeds back to change network geometry.
Adaptive Suspicious Prevention for Defending DoS Attacks in SDN-Based Convergent Networks.
Dao, Nhu-Ngoc; Kim, Joongheon; Park, Minho; Cho, Sungrae
2016-01-01
The convergent communication network will play an important role as a single platform to unify heterogeneous networks and integrate emerging technologies and existing legacy networks. Although there have been proposed many feasible solutions, they could not become convergent frameworks since they mainly focused on converting functions between various protocols and interfaces in edge networks, and handling functions for multiple services in core networks, e.g., the Multi-protocol Label Switching (MPLS) technique. Software-defined networking (SDN), on the other hand, is expected to be the ideal future for the convergent network since it can provide a controllable, dynamic, and cost-effective network. However, SDN has an original structural vulnerability behind a lot of advantages, which is the centralized control plane. As the brains of the network, a controller manages the whole network, which is attractive to attackers. In this context, we proposes a novel solution called adaptive suspicious prevention (ASP) mechanism to protect the controller from the Denial of Service (DoS) attacks that could incapacitate an SDN. The ASP is integrated with OpenFlow protocol to detect and prevent DoS attacks effectively. Our comprehensive experimental results show that the ASP enhances the resilience of an SDN network against DoS attacks by up to 38%.
Neural network for adapting nuclear power plant control for wide-range operation
International Nuclear Information System (INIS)
Ku, C.C.; Lee, K.Y.; Edwards, R.M.
1991-01-01
A new concept of using neural networks has been evaluated for optimal control of a nuclear reactor. The neural network uses the architecture of a standard backpropagation network; however, a new dynamic learning algorithm has been developed to capture the underlying system dynamics. The learning algorithm is based on parameter estimation for dynamic systems. The approach is demonstrated on an optimal reactor temperature controller by adjusting the feedback gains for wide-range operation. Application of optimal control to a reactor has been considered for improving temperature response using a robust fifth-order reactor power controller. Conventional gain scheduling can be employed to extend the range of good performance to accommodate large changes in power where nonlinear characteristics significantly modify the dynamics of the power plant. Gain scheduling is developed based on expected parameter variations, and it may be advantageous to further adapt feedback gains on-line to better match actual plant performance. A neural network approach is used here to adapt the gains to better accommodate plant uncertainties and thereby achieve improved robustness characteristics
Hortos, William S.
1997-04-01
The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics
Emergence of a multilayer structure in adaptive networks of phase oscillators
International Nuclear Information System (INIS)
Makarov, V.V.; Koronovskii, A.A.; Maksimenko, V.A.; Hramov, A.E.; Moskalenko, O.I.; Buldú, J.M.; Boccaletti, S.
2016-01-01
We report on self-organization of adaptive networks, where topology and dynamics evolve in accordance to a competition between homophilic and homeostatic mechanisms, and where links are associated to a vector of weights. Under an appropriate balance between the intra- and inter- layer coupling strengths, we show that a multilayer structure emerges due to the adaptive evolution, resulting in different link weights at each layer, i.e. different components of the weights’ vector. In parallel, synchronized clusters at each layer are formed, which may overlap or not, depending on the values of the coupling strengths. Only when intra- and inter- layer coupling strengths are high enough, all layers reach identical final topologies, collapsing the system into, in fact, a monolayer network. The relationships between such steady state topologies and a set of dynamical network’s properties are discussed.
In-network adaptation of SHVC video in software-defined networks
Awobuluyi, Olatunde; Nightingale, James; Wang, Qi; Alcaraz Calero, Jose Maria; Grecos, Christos
2016-04-01
Software Defined Networks (SDN), when combined with Network Function Virtualization (NFV) represents a paradigm shift in how future networks will behave and be managed. SDN's are expected to provide the underpinning technologies for future innovations such as 5G mobile networks and the Internet of Everything. The SDN architecture offers features that facilitate an abstracted and centralized global network view in which packet forwarding or dropping decisions are based on application flows. Software Defined Networks facilitate a wide range of network management tasks, including the adaptation of real-time video streams as they traverse the network. SHVC, the scalable extension to the recent H.265 standard is a new video encoding standard that supports ultra-high definition video streams with spatial resolutions of up to 7680×4320 and frame rates of 60fps or more. The massive increase in bandwidth required to deliver these U-HD video streams dwarfs the bandwidth requirements of current high definition (HD) video. Such large bandwidth increases pose very significant challenges for network operators. In this paper we go substantially beyond the limited number of existing implementations and proposals for video streaming in SDN's all of which have primarily focused on traffic engineering solutions such as load balancing. By implementing and empirically evaluating an SDN enabled Media Adaptation Network Entity (MANE) we provide a valuable empirical insight into the benefits and limitations of SDN enabled video adaptation for real time video applications. The SDN-MANE is the video adaptation component of our Video Quality Assurance Manager (VQAM) SDN control plane application, which also includes an SDN monitoring component to acquire network metrics and a decision making engine using algorithms to determine the optimum adaptation strategy for any real time video application flow given the current network conditions. Our proposed VQAM application has been implemented and
Synchronization of coupled chaotic dynamics on networks
Indian Academy of Sciences (India)
We review some recent work on the synchronization of coupled dynamical systems on a variety of networks. When nodes show synchronized behaviour, two interesting phenomena can be observed. First, there are some nodes of the floating type that show intermittent behaviour between getting attached to some clusters ...
Modular networks with hierarchical organization: The dynamical ...
Indian Academy of Sciences (India)
Most of the complex systems seen in real life also have associated dynamics [10], and the ... another example, this time a hierarchical structure, viz., the Cayley tree with b ..... natural constraints operating on networks in real life, such as the ...
Dynamical networks with topological self-organization
Zak, M.
2001-01-01
Coupled evolution of state and topology of dynamical networks is introduced. Due to the well organized tensor structure, the governing equations are presented in a canonical form, and required attractors as well as their basins can be easily implanted and controlled.
Dynamics of nephron-vascular network
DEFF Research Database (Denmark)
Postnov, Dmitry; Postnov, D E; Marsh, D J
2012-01-01
The paper presents a modeling study of the spatial dynamics of a nephro-vascular network consisting of individual nephrons connected via a tree-like vascular branching structure. We focus on the effects of nonlinear mechanisms that are responsible for the formation of synchronous patterns in order...
Discerning connectivity from dynamics in climate networks
Czech Academy of Sciences Publication Activity Database
Paluš, Milan; Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin
2011-01-01
Roč. 18, č. 5 (2011), s. 751-763 ISSN 1023-5809 R&D Projects: GA ČR GCP103/11/J068 Institutional research plan: CEZ:AV0Z10300504 Keywords : complex networks * climate dynamics * connectivity * North Atlantic Oscillation * solar activity Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.597, year: 2011
Adaptive Regularization of Neural Networks Using Conjugate Gradient
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...
Compensation for unmatched uncertainty with adaptive RBF network
African Journals Online (AJOL)
Robust control for nonlinear uncertain systems has been solved for matched uncertainty but has not been completely solved yet for unmatched uncertainty. This paper developed a new method in which an adaptive radial basis function neural network is used to compensate for the effects of unmatched uncertainty in the ...
Adaptive Media Access Control for Energy Harvesting - Wireless Sensor Networks
DEFF Research Database (Denmark)
Fafoutis, Xenofon; Dragoni, Nicola
2012-01-01
ODMAC (On-Demand Media Access Control) is a recently proposed MAC protocol designed to support individual duty cycles for Energy Harvesting — Wireless Sensor Networks (EH-WSNs). Individual duty cycles are vital for EH-WSNs, because they allow nodes to adapt their energy consumption to the ever-ch...
Dynamical Networks Characterization of Space Weather Events
Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.
2017-12-01
Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show
Dynamical systems on networks a tutorial
Porter, Mason A
2016-01-01
This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Appli...
Individual heterogeneity generating explosive system network dynamics.
Manrique, Pedro D; Johnson, Neil F
2018-03-01
Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.
Individual heterogeneity generating explosive system network dynamics
Manrique, Pedro D.; Johnson, Neil F.
2018-03-01
Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.
Adaptive game AI with dynamic scripting
Spronck, P.; Ponsen, M.J.V.; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.
2006-01-01
Online learning in commercial computer games allows computer-controlled opponents to adapt to the way the game is being played. As such it provides a mechanism to deal with weaknesses in the game AI, and to respond to changes in human player tactics.We argue that online learning of game AI should
Exploring dynamics of embedded ADC through adapted digital input stimuli
Sheng, Xiaoqin; Kerkhoff, Hans G.; Zjajo, A.; Gronthoud, G.
2008-01-01
This paper reports an evaluation of adapted digital signals as a test stimulus to test dynamic parameters of analog-to-digital converters (ADC). In the first instance, the simplest digital waveform, a pulse signal, is taken as the test stimulus. The dynamics of the device under test while applying
Genetic adaptation of the antibacterial human innate immunity network
Directory of Open Access Journals (Sweden)
Lazarus Ross
2011-07-01
Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.
Genetic adaptation of the antibacterial human innate immunity network.
Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume
2011-07-11
Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.
Cortical microcircuit dynamics mediating Binocular Rivalry: The role of adaptation in inhibition
Directory of Open Access Journals (Sweden)
Panagiota eTheodoni
2011-11-01
Full Text Available Perceptual bistability arises when two conflicting interpretations of an ambiguous stimulus or images in binocular rivalry (BR compete for perceptual dominance. From a computational point of view competition models based on cross-inhibition and adaptation have shown that noise is a crucial force for rivalry and operates in balance with adaptation in order to explain the observed alternations in perception. In particular, noise-driven transitions and adaptation-driven oscillations define two dynamical regimes and the system operates near its boundary. In order to gain insights into the microcircuit dynamics mediating spontaneous perceptual alternations we used a reduced recurrent attractor-based biophysically realistic spiking network well known for working memory, attention and decision-making, where a spike-frequency adaptation mechanism is implemented to account for perceptual bistability. We, thus, derived a consistently reduced four-variable population rate model using mean-field techniques and tested it on BR data collected from human subjects. Our model accounts for experimental data parameters such as time dominance, coefficient of variation and gamma distribution. In addition, we show that our model also operates on the boundary between noise and adaptation and agrees with Levelt’s second revised and fourth propositions. These results show for the first time that a consistent reduction of a biophysically realistic spiking network of integrate and fire neurons with spike frequency adaptation could account for BR. Moreover, we demonstrate that BR can be explained only through the dynamics of the competing neuronal pools, without taking into account the adaptation of inhibitory interneurons..However, adaptation of interneurons affects the optimal parametric space of the system, by decreasing the overall adaptation necessary for the bifurcation to occur.
Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter
2014-05-01
During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.
Innovation networking between stability and political dynamics
DEFF Research Database (Denmark)
Koch, Christian
2004-01-01
of the contribution is to challenge and transcend these notions and develop an understanding of innovation networks as an interplay between stable and dynamic elements, where political processes in innovation are much more than a disruptive and even a counterproductive feature. It reviews the growing number...... of studies that highlight the political aspect of innovation. The paper reports on a study of innovation processes conducted within the EU—TSER-programme and a study made under the banner of management of technology. Intensive field studies in two constellations of enterprises were carried out. One......This contribution views innovation as a social activity of building networks, using software product development in multicompany alliances and networks as example. Innovation networks are frequently understood as quite stable arrangements characterised by high trust among the participants. The aim...
International Development Research Centre (IDRC) Digital Library (Canada)
building skills, knowledge or networks on adaptation, ... the African partners leading the AfricaAdapt network, together with the UK-based Institute of Development Studies; and ... UNCCD Secretariat, Regional Coordination Unit for Africa, Tunis, Tunisia .... 26 Rural–urban Cooperation on Water Management in the Context of.
Adaptive game AI with dynamic scripting
Spronck, P.; Ponsen, M.J.V.; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.
2006-01-01
Online learning in commercial computer games allows computer-controlled opponents to adapt to the way the game is being played. As such it provides a mechanism to deal with weaknesses in the game AI, and to respond to changes in human player tactics.We argue that online learning of game AI should meet four computational and four functional requirements. The computational requirements are speed, effectiveness, robustness and ef- ficiency. The functional requirements are clarity, variety, consi...
Analog forecasting with dynamics-adapted kernels
Zhao, Zhizhen; Giannakis, Dimitrios
2016-09-01
Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.
Nonparametric inference of network structure and dynamics
Peixoto, Tiago P.
The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among
Volunteerism: Social Network Dynamics and Education
Ajrouch, Kristine J.; Antonucci, Toni C.; Webster, Noah J.
2016-01-01
Objectives . We examine how changes in social networks influence volunteerism through bridging (diversity) and bonding (spending time) mechanisms. We further investigate whether social network change substitutes or amplifies the effects of education on volunteerism. Methods . Data (n = 543) are drawn from a two-wave survey of Social Relations and Health over the Life Course (SRHLC). Zero-inflated negative binomial regressions were conducted to test competing hypotheses about how changes in social network characteristics alone and in conjunction with education level predict likelihood and frequency of volunteering. Results . Changes in social networks were associated with volunteerism: as the proportion of family members decreased and the average number of network members living within a one-hour drive increased over time, participants reported higher odds of volunteering. The substitution hypothesis was supported: social networks that exhibited more geographic proximity and greater contact frequency over-time compensated for lower levels of education to predict volunteering more hours. Discussion . The dynamic role of social networks and the ways in which they may work through bridging and bonding to influence both likelihood and frequency of volunteering are discussed. The potential benefits of volunteerism in light of longer life expectancies and smaller families are also considered. PMID:25512570
Wang, Wei; Guyet, Thomas; Quiniou, René
2014-01-01
In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.
Wang, Wei
2014-06-22
In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.
Secure Adaptive Topology Control for Wireless Ad-Hoc Sensor Networks
Directory of Open Access Journals (Sweden)
Yen-Chieh Ouyang
2010-02-01
Full Text Available This paper presents a secure decentralized clustering algorithm for wireless ad-hoc sensor networks. The algorithm operates without a centralized controller, operates asynchronously, and does not require that the location of the sensors be known a priori. Based on the cluster-based topology, secure hierarchical communication protocols and dynamic quarantine strategies are introduced to defend against spam attacks, since this type of attacks can exhaust the energy of sensor nodes and will shorten the lifetime of a sensor network drastically. By adjusting the threshold of infected percentage of the cluster coverage, our scheme can dynamically coordinate the proportion of the quarantine region and adaptively achieve the cluster control and the neighborhood control of attacks. Simulation results show that the proposed approach is feasible and cost effective for wireless sensor networks.
International Nuclear Information System (INIS)
Kim, Han Me; Kim, Jong Shik; Han, Seong Ik
2009-01-01
To improve position tracking performance of servo systems, a position tracking control using adaptive back-stepping control(ABSC) scheme and recurrent fuzzy neural networks(RFNN) is proposed. An adaptive rule of the ABSC based on system dynamics and dynamic friction model is also suggested to compensate nonlinear dynamic friction characteristics. However, it is difficult to reduce the position tracking error of servo systems by using only the ABSC scheme because of the system uncertainties which cannot be exactly identified during the modeling of servo systems. Therefore, in order to overcome system uncertainties and then to improve position tracking performance of servo systems, the RFNN technique is additionally applied to the servo system. The feasibility of the proposed control scheme for a servo system is validated through experiments. Experimental results show that the servo system with ABS controller based on the dual friction observer and RFNN including the reconstruction error estimator can achieve desired tracking performance and robustness
Advances in dynamic network modeling in complex transportation systems
Ukkusuri, Satish V
2013-01-01
This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.
Dynamic social networks based on movement
Scharf, Henry; Hooten, Mevin B.; Fosdick, Bailey K.; Johnson, Devin S.; London, Joshua M.; Durban, John W.
2016-01-01
Network modeling techniques provide a means for quantifying social structure in populations of individuals. Data used to define social connectivity are often expensive to collect and based on case-specific, ad hoc criteria. Moreover, in applications involving animal social networks, collection of these data is often opportunistic and can be invasive. Frequently, the social network of interest for a given population is closely related to the way individuals move. Thus, telemetry data, which are minimally invasive and relatively inexpensive to collect, present an alternative source of information. We develop a framework for using telemetry data to infer social relationships among animals. To achieve this, we propose a Bayesian hierarchical model with an underlying dynamic social network controlling movement of individuals via two mechanisms: an attractive effect and an aligning effect. We demonstrate the model and its ability to accurately identify complex social behavior in simulation, and apply our model to telemetry data arising from killer whales. Using auxiliary information about the study population, we investigate model validity and find the inferred dynamic social network is consistent with killer whale ecology and expert knowledge.
Modeling Insurgent Network Structure and Dynamics
Gabbay, Michael; Thirkill-Mackelprang, Ashley
2010-03-01
We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.
Dynamic motifs in socio-economic networks
Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo
2014-12-01
Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.
Directory of Open Access Journals (Sweden)
Jean-Denis Mathias
2017-03-01
Full Text Available Information and collaboration patterns embedded in social networks play key roles in multilevel and polycentric modes of governance. However, modeling the dynamics of such social networks in multilevel settings has been seldom addressed in the literature. Here we use an adaptive social network model to elaborate the interplay between a central and a local government in order to maintain a polycentric governance. More specifically, our analysis explores in what ways specific policy choices made by a central agent affect the features of an emerging social network composed of local organizations and local users. Using two types of stylized policies, adaptive co-management and adaptive one-level management, we focus on the benefits of multi-level adaptive cooperation for network management. Our analysis uses viability theory to explore and to quantify the ability of these policies to achieve specific network properties. Viability theory gives the family of policies that enables maintaining the polycentric governance unlike optimal control that gives a unique blueprint. We found that the viability of the policies can change dramatically depending on the goals and features of the social network. For some social networks, we also found a very large difference between the viability of the adaptive one-level management and adaptive co-management policies. However, results also show that adaptive co-management doesn’t always provide benefits. Hence, we argue that applying viability theory to governance networks can help policy design by analyzing the trade-off between the costs of adaptive co-management and the benefits associated with its ability to maintain desirable social network properties in a polycentric governance framework.
Adaptive Strategies for Dynamic Pricing Agents
S. Ramezani (Sara); P.A.N. Bosman (Peter); J.A. La Poutré (Han)
2011-01-01
htmlabstractDynamic Pricing (DyP) is a form of Revenue Management in which the price of a (usually) perishable good is changed over time to increase revenue. It is an effective method that has become even more relevant and useful with the emergence of Internet firms and the possibility of readily
Mean field methods for cortical network dynamics
DEFF Research Database (Denmark)
Hertz, J.; Lerchner, Alexander; Ahmadi, M.
2004-01-01
We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...
MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS.
Austin, Daniel; Dinwoodie, Ian H
We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks.
Adaptive robotic control driven by a versatile spiking cerebellar network.
Directory of Open Access Journals (Sweden)
Claudia Casellato
Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.
Adaptive robotic control driven by a versatile spiking cerebellar network.
Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio
2014-01-01
The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.
Dynamic Trust Management for Mobile Networks and Its Applications
Bao, Fenye
2013-01-01
Trust management in mobile networks is challenging due to dynamically changing network environments and the lack of a centralized trusted authority. In this dissertation research, we "design" and "validate" a class of dynamic trust management protocols for mobile networks, and demonstrate the utility of dynamic trust management…
Network dynamics: The World Wide Web
Adamic, Lada Ariana
Despite its rapidly growing and dynamic nature, the Web displays a number of strong regularities which can be understood by drawing on methods of statistical physics. This thesis finds power-law distributions in website sizes, traffic, and links, and more importantly, develops a stochastic theory which explains them. Power-law link distributions are shown to lead to network characteristics which are especially suitable for scalable localized search. It is also demonstrated that the Web is a "small world": to reach one site from any other takes an average of only 4 hops, while most related sites cluster together. Additional dynamical properties of the Web graph are extracted from diffusion processes.
Directory of Open Access Journals (Sweden)
Bahita Mohamed
2011-01-01
Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.
On Sustaining Dynamic Adaptation of Context-Aware Services
Directory of Open Access Journals (Sweden)
Boudjemaa Boudaa
2015-03-01
Full Text Available The modern human is getting more and more mobile having access to online services by using mobile cutting-edge computational devices. In the last decade, the field of context-aware services had led to emerge several works. However, most of the proposed approaches have not provided clear adaptation strategies in case of unforeseen contexts. Dealing with this last at runtime is also another crucial need that has been ignored in their proposals. This paper aims to propose a generic dynamic adaptation process as a phase in a model-driven development life-cycle for context-aware services using the MAPE-K control loop to meet the runtime adaptation. This process is validated by implementing an illustrative application on FraSCAti platform. The main benefit of the proposed process is to sustain the self-reconfiguration of such services at model and code levels by enabling successive dynamic adaptations depending on the changing context.
Functional asynchronous networks: Factorization of dynamics and function
Directory of Open Access Journals (Sweden)
Bick Christian
2016-01-01
Full Text Available In this note we describe the theory of functional asynchronous networks and one of the main results, the Modularization of Dynamics Theorem, which for a large class of functional asynchronous networks gives a factorization of dynamics in terms of constituent subnetworks. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network and thereby answer a question originally raised by Alon in the context of biological networks.
Framework based on communicability and flow to analyze complex network dynamics
Gilson, M.; Kouvaris, N. E.; Deco, G.; Zamora-López, G.
2018-05-01
Graph theory constitutes a widely used and established field providing powerful tools for the characterization of complex networks. The intricate topology of networks can also be investigated by means of the collective dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems, which are different from those employed to reveal their topological characteristics. This stresses the necessity for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow that describes the interplay between the network connectivity and external inputs. This multivariate measure relates to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be adapted to other local dynamics for which the Green function is known. We provide applications to classical network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards for network analysis, from the pairwise interactions between nodes to the global properties of networks including community detection.
Information Retrieval on social network: An Adaptive Proof
Elveny, M.; Syah, R.; Elfida, M.; Nasution, M. K. M.
2018-01-01
Information Retrieval has become one of the areas for studying to get the trusty information, with which the recall and precision become the measurement form that represents it. Nevertheless, development in certain scientific fields make it possible to improve the performance of the Information Retrieval. In this case, through social networks whereby the role of social actor degrees plays a role. This is an implication of the query in which co-occurrence becomes an indication of social networks. An adaptive approach we use by involving this query in sequence to a stand-alone query, it has proven the relationship among them.
Adaptive Reference Control for Pressure Management in Water Networks
DEFF Research Database (Denmark)
Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal
2015-01-01
Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....
Adaptive Smoothing in fMRI Data Processing Neural Networks
DEFF Research Database (Denmark)
Vilamala, Albert; Madsen, Kristoffer Hougaard; Hansen, Lars Kai
2017-01-01
in isolation. With the advent of new tools for deep learning, recent work has proposed to turn these pipelines into end-to-end learning networks. This change of paradigm offers new avenues to improvement as it allows for a global optimisation. The current work aims at benefitting from this paradigm shift...... by defining a smoothing step as a layer in these networks able to adaptively modulate the degree of smoothing required by each brain volume to better accomplish a given data analysis task. The viability is evaluated on real fMRI data where subjects did alternate between left and right finger tapping tasks....
Adaptation in Food Networks: Theoretical Framework and Empirical Evidences
Directory of Open Access Journals (Sweden)
Gaetano Martino
2013-03-01
Full Text Available The paper concerns the integration in food networks under a governance point of view. We conceptualize the integration processes in terms of the adaptation theory and focus the issues related under a transaction cost economics perspective. We conjecture that the allocation of decisions rights between the parties to a transaction is a key instrument in order to cope with the sources of basic uncertainty in food networks: technological innovation, sustainability strategies, quality and safety objectives. Six case studies are proposed which contribute to corroborate our conjecture. Managerial patters based on a joint decision approach also are documented
Activating and inhibiting connections in biological network dynamics
Directory of Open Access Journals (Sweden)
Knight Rob
2008-12-01
Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.
System crash as dynamics of complex networks.
Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim
2016-10-18
Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.
Information quality in dynamic networked business process management
Rasouli, M.; Eshuis, H.; Trienekens, J.J.M.; Kusters, R.J.; Grefen, P.W.P.J.; Devruyne, C.; Panetto, H.; Meersman, R.; Dillon, T.; Weichhart, G.; An, Y.; Ardagna, C.A.
2015-01-01
The competition in globalized markets forces organizations to provide mass-customized integrated solutions for customers. Mass-customization of integrated solutions by business network requires adaptive interactions between parties to address emerging requirements of customers. These adaptive
Organization of excitable dynamics in hierarchical biological networks.
Directory of Open Access Journals (Sweden)
Mark Müller-Linow
Full Text Available This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.
ADAPTIVE GOSSIP BASED PROTOCOL FOR ENERGY EFFICIENT MOBILE ADHOC NETWORK
Directory of Open Access Journals (Sweden)
S. Rajeswari
2012-03-01
Full Text Available In Gossip Sleep Protocol, network performance is enhanced based on energy resource. But energy conservation is achieved with the reduced throughput. In this paper, it has been proposed a new Protocol for Mobile Ad hoc Network to achieve reliability with energy conservation. Based on the probability (p values, the value of sleep nodes is fixed initially. The probability value can be adaptively adjusted by Remote Activated Switch during the transmission process. The adaptiveness of gossiping probability is determined by the Packet Delivery Ratio. For performance comparison, we have taken Routing overhead, Packet Delivery Ratio, Number of dropped packets and Energy consumption with the increasing number of forwarding nodes. We used UDP based traffic models to analyze the performance of this protocol. We analyzed TCP based traffic models for average end to end delay. We have used the NS-2 simulator.
Dynamics of domain wall networks with junctions
International Nuclear Information System (INIS)
Avelino, P. P.; Oliveira, J. C. R. E.; Martins, C. J. A. P.; Menezes, J.; Menezes, R.
2008-01-01
We use a combination of analytic tools and an extensive set of the largest and most accurate three-dimensional field theory numerical simulations to study the dynamics of domain wall networks with junctions. We build upon our previous work and consider a class of models which, in the limit of large number N of coupled scalar fields, approaches the so-called ''ideal'' model (in terms of its potential to lead to network frustration). We consider values of N between N=2 and N=20, and a range of cosmological epochs, and we also compare this class of models with other toy models used in the past. In all cases we find compelling evidence for a gradual approach to scaling, strongly supporting our no-frustration conjecture. We also discuss the various possible types of junctions (including cases where there is a hierarchy of them) and their roles in the dynamics of the network. Finally, we provide a cosmological Zel'dovich-type bound on the energy scale of this kind of defect network: it must be lower than 10 keV.
Adaptive Bio-Inspired Wireless Network Routing for Planetary Surface Exploration
Alena, Richard I.; Lee, Charles
2004-01-01
Wireless mobile networks suffer connectivity loss when used in a terrain that has hills, and valleys when line of sight is interrupted or range is exceeded. To resolve this problem and achieve acceptable network performance, we have designed an adaptive, configurable, hybrid system to automatically route network packets along the best path between multiple geographically dispersed modules. This is very useful in planetary surface exploration, especially for ad-hoc mobile networks, where computational devices take an active part in creating a network infrastructure, and can actually be used to route data dynamically and even store data for later transmission between networks. Using inspiration from biological systems, this research proposes to use ant trail algorithms with multi-layered information maps (topographic maps, RF coverage maps) to determine the best route through ad-hoc network at real time. The determination of best route is a complex one, and requires research into the appropriate metrics, best method to identify the best path, optimizing traffic capacity, network performance, reliability, processing capabilities and cost. Real ants are capable of finding the shortest path from their nest to a food source without visual sensing through the use of pheromones. They are also able to adapt to changes in the environment using subtle clues. To use ant trail algorithms, we need to define the probability function. The artificial ant is, in this case, a software agent that moves from node to node on a network graph. The function to calculate the fitness (evaluate the better path) includes: length of the network edge, the coverage index, topology graph index, and pheromone trail left behind by other ant agents. Each agent modifies the environment in two different ways: 1) Local trail updating: As the ant moves between nodes it updates the amount of pheromone on the edge; and 2) Global trail updating: When all ants have completed a tour the ant that found the
Directory of Open Access Journals (Sweden)
K. Mohaideen Pitchai
2017-07-01
Full Text Available Wireless Sensor Network (WSN consists of a large number of small sensors with restricted energy. Prolonged network lifespan, scalability, node mobility and load balancing are important needs for several WSN applications. Clustering the sensor nodes is an efficient technique to reach these goals. WSN have the characteristics of topology dynamics because of factors like energy conservation and node movement that leads to Dynamic Load Balanced Clustering Problem (DLBCP. In this paper, Elitism based Random Immigrant Genetic Approach (ERIGA is proposed to solve DLBCP which adapts to topology dynamics. ERIGA uses the dynamic Genetic Algorithm (GA components for solving the DLBCP. The performance of load balanced clustering process is enhanced with the help of this dynamic GA. As a result, the ERIGA achieves to elect suitable cluster heads which balances the network load and increases the lifespan of the network.
Adaptive PID control based on orthogonal endocrine neural networks.
Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D
2016-12-01
A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Yepeng Ni
2016-01-01
Full Text Available We consider the problem of streaming media transmission in a heterogeneous network from a multisource server to home multiple terminals. In wired network, the transmission performance is limited by network state (e.g., the bandwidth variation, jitter, and packet loss. In wireless network, the multiple user terminals can cause bandwidth competition. Thus, the streaming media distribution in a heterogeneous network becomes a severe challenge which is critical for QoS guarantee. In this paper, we propose a context-aware adaptive streaming media distribution system (CAASS, which implements the context-aware module to perceive the environment parameters and use the strategy analysis (SA module to deduce the most suitable service level. This approach is able to improve the video quality for guarantying streaming QoS. We formulate the optimization problem of QoS relationship with the environment parameters based on the QoS testing algorithm for IPTV in ITU-T G.1070. We evaluate the performance of the proposed CAASS through 12 types of experimental environments using a prototype system. Experimental results show that CAASS can dynamically adjust the service level according to the environment variation (e.g., network state and terminal performances and outperforms the existing streaming approaches in adaptive streaming media distribution according to peak signal-to-noise ratio (PSNR.
Peng, Jinzhu; Dubay, Rickey
2011-10-01
In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive enhanced sampling by force-biasing using neural networks
Guo, Ashley Z.; Sevgen, Emre; Sidky, Hythem; Whitmer, Jonathan K.; Hubbell, Jeffrey A.; de Pablo, Juan J.
2018-04-01
A machine learning assisted method is presented for molecular simulation of systems with rugged free energy landscapes. The method is general and can be combined with other advanced sampling techniques. In the particular implementation proposed here, it is illustrated in the context of an adaptive biasing force approach where, rather than relying on discrete force estimates, one can resort to a self-regularizing artificial neural network to generate continuous, estimated generalized forces. By doing so, the proposed approach addresses several shortcomings common to adaptive biasing force and other algorithms. Specifically, the neural network enables (1) smooth estimates of generalized forces in sparsely sampled regions, (2) force estimates in previously unexplored regions, and (3) continuous force estimates with which to bias the simulation, as opposed to biases generated at specific points of a discrete grid. The usefulness of the method is illustrated with three different examples, chosen to highlight the wide range of applicability of the underlying concepts. In all three cases, the new method is found to enhance considerably the underlying traditional adaptive biasing force approach. The method is also found to provide improvements over previous implementations of neural network assisted algorithms.
Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks
Kanevski, Mikhail
2015-04-01
The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press
Directory of Open Access Journals (Sweden)
Shaohua Luo
2014-01-01
Full Text Available This paper focuses on an adaptive dynamic surface control based on the Radial Basis Function Neural Network for a fourth-order permanent magnet synchronous motor system wherein the unknown parameters, disturbances, chaos, and uncertain time delays are presented. Neural Network systems are used to approximate the nonlinearities and an adaptive law is employed to estimate accurate parameters. Then, a simple and effective controller has been obtained by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed control has been illustrated through simulation results.
Dynamical networks of influence in small group discussions.
Moussaïd, Mehdi; Noriega Campero, Alejandro; Almaatouq, Abdullah
2018-01-01
In many domains of life, business and management, numerous problems are addressed by small groups of individuals engaged in face-to-face discussions. While research in social psychology has a long history of studying the determinants of small group performances, the internal dynamics that govern a group discussion are not yet well understood. Here, we rely on computational methods based on network analyses and opinion dynamics to describe how individuals influence each other during a group discussion. We consider the situation in which a small group of three individuals engages in a discussion to solve an estimation task. We propose a model describing how group members gradually influence each other and revise their judgments over the course of the discussion. The main component of the model is an influence network-a weighted, directed graph that determines the extent to which individuals influence each other during the discussion. In simulations, we first study the optimal structure of the influence network that yields the best group performances. Then, we implement a social learning process by which individuals adapt to the past performance of their peers, thereby affecting the structure of the influence network in the long run. We explore the mechanisms underlying the emergence of efficient or maladaptive networks and show that the influence network can converge towards the optimal one, but only when individuals exhibit a social discounting bias by downgrading the relative performances of their peers. Finally, we find a late-speaker effect, whereby individuals who speak later in the discussion are perceived more positively in the long run and are thus more influential. The numerous predictions of the model can serve as a basis for future experiments, and this work opens research on small group discussion to computational social sciences.
Dynamics of the ethanolamine glycerophospholipid remodeling network.
Directory of Open Access Journals (Sweden)
Lu Zhang
Full Text Available Acyl chain remodeling in lipids is a critical biochemical process that plays a central role in disease. However, remodeling remains poorly understood, despite massive increases in lipidomic data. In this work, we determine the dynamic network of ethanolamine glycerophospholipid (PE remodeling, using data from pulse-chase experiments and a novel bioinformatic network inference approach. The model uses a set of ordinary differential equations based on the assumptions that (1 sn1 and sn2 acyl positions are independently remodeled; (2 remodeling reaction rates are constant over time; and (3 acyl donor concentrations are constant. We use a novel fast and accurate two-step algorithm to automatically infer model parameters and their values. This is the first such method applicable to dynamic phospholipid lipidomic data. Our inference procedure closely fits experimental measurements and shows strong cross-validation across six independent experiments with distinct deuterium-labeled PE precursors, demonstrating the validity of our assumptions. In contrast, fits of randomized data or fits using random model parameters are worse. A key outcome is that we are able to robustly distinguish deacylation and reacylation kinetics of individual acyl chain types at the sn1 and sn2 positions, explaining the established prevalence of saturated and unsaturated chains in the respective positions. The present study thus demonstrates that dynamic acyl chain remodeling processes can be reliably determined from dynamic lipidomic data.
Network structure shapes spontaneous functional connectivity dynamics.
Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R
2015-04-08
The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.
Adaptive comanagement of a marine protected area network in Fiji.
Weeks, Rebecca; Jupiter, Stacy D
2013-12-01
Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9-year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well-defined resource-access rights; community respect for a flexible system of customary governance; long-term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district-wide coordination, which provided a broader spatial context for adaptive-management decision making. Co-Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.
Adaptive Gain Scheduled Semiactive Vibration Control Using a Neural Network
Directory of Open Access Journals (Sweden)
Kazuhiko Hiramoto
2018-01-01
Full Text Available We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN. Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA. The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.
Kenney, Michael; Horgan, John; Horne, Cale; Vining, Peter; Carley, Kathleen M; Bigrigg, Michael W; Bloom, Mia; Braddock, Kurt
2013-09-01
Social networks are said to facilitate learning and adaptation by providing the connections through which network nodes (or agents) share information and experience. Yet, our understanding of how this process unfolds in real-world networks remains underdeveloped. This paper explores this gap through a case study of al-Muhajiroun, an activist network that continues to call for the establishment of an Islamic state in Britain despite being formally outlawed by British authorities. Drawing on organisation theory and social network analysis, we formulate three hypotheses regarding the learning capacity and social network properties of al-Muhajiroun (AM) and its successor groups. We then test these hypotheses using mixed methods. Our methods combine quantitative analysis of three agent-based networks in AM measured for structural properties that facilitate learning, including connectedness, betweenness centrality and eigenvector centrality, with qualitative analysis of interviews with AM activists focusing organisational adaptation and learning. The results of these analyses confirm that al-Muhajiroun activists respond to government pressure by changing their operations, including creating new platforms under different names and adjusting leadership roles among movement veterans to accommodate their spiritual leader's unwelcome exodus to Lebanon. Simple as they are effective, these adaptations have allowed al-Muhajiroun and its successor groups to continue their activism in an increasingly hostile environment. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2017-07-01
This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.
Analysis and Design of Adaptive OCDMA Passive Optical Networks
Hadi, Mohammad; Pakravan, Mohammad Reza
2017-07-01
OCDMA systems can support multiple classes of service by differentiating code parameters, power level and diversity order. In this paper, we analyze BER performance of a multi-class 1D/2D OCDMA system and propose a new approximation method that can be used to generate accurate estimation of system BER using a simple mathematical form. The proposed approximation provides insight into proper system level analysis, system level design and sensitivity of system performance to the factors such as code parameters, power level and diversity order. Considering code design, code cardinality and system performance constraints, two design problems are defined and their optimal solutions are provided. We then propose an adaptive OCDMA-PON that adaptively shares unused resources of inactive users among active ones to improve upstream system performance. Using the approximated BER expression and defined design problems, two adaptive code allocation algorithms for the adaptive OCDMA-PON are presented and their performances are evaluated by simulation. Simulation results show that the adaptive code allocation algorithms can increase average transmission rate or decrease average optical power consumption of ONUs for dynamic traffic patterns. According to the simulation results, for an adaptive OCDMA-PON with BER value of 1e-7 and user activity probability of 0.5, transmission rate (optical power consumption) can be increased (decreased) by a factor of 2.25 (0.27) compared to fixed code assignment.
Adaptive multi-resolution Modularity for detecting communities in networks
Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He
2018-02-01
Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.
LAMAN: Load Adaptable MAC for Ad Hoc Networks
Directory of Open Access Journals (Sweden)
Realp Marc
2005-01-01
Full Text Available In mobile ad hoc radio networks, mechanisms on how to access the radio channel are extremely important in order to improve network efficiency. In this paper, the load adaptable medium access control for ad hoc networks (LAMAN protocol is described. LAMAN is a novel decentralized multipacket MAC protocol designed following a cross-layer approach. Basically, this protocol is a hybrid CDMA-TDMA-based protocol that aims at throughput maximization in multipacket communication environments by efficiently combining contention and conflict-free protocol components. Such combination of components is used to adapt the nodes' access priority to changes on the traffic load while, at the same time, accounting for the multipacket reception (MPR capability of the receivers. A theoretical analysis of the system is developed presenting closed expressions of network throughput and packet delay. By simulations the validity of our analysis is shown and the performances of a LAMAN-based system and an Aloha-CDMA-based one are compared.
Jablonski, Piotr; Poe, Gina; Zochowski, Michal
2007-03-01
The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.
Adaptive Sliding Mode Control of MEMS Gyroscope Based on Neural Network Approximation
Directory of Open Access Journals (Sweden)
Yuzheng Yang
2014-01-01
Full Text Available An adaptive sliding controller using radial basis function (RBF network to approximate the unknown system dynamics microelectromechanical systems (MEMS gyroscope sensor is proposed. Neural controller is proposed to approximate the unknown system model and sliding controller is employed to eliminate the approximation error and attenuate the model uncertainties and external disturbances. Online neural network (NN weight tuning algorithms, including correction terms, are designed based on Lyapunov stability theory, which can guarantee bounded tracking errors as well as bounded NN weights. The tracking error bound can be made arbitrarily small by increasing a certain feedback gain. Numerical simulation for a MEMS angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive neural control scheme and demonstrate the satisfactory tracking performance and robustness.
Adaptive Decision-Making Scheme for Cognitive Radio Networks
Alqerm, Ismail
2014-05-01
Radio resource management becomes an important aspect of the current wireless networks because of spectrum scarcity and applications heterogeneity. Cognitive radio is a potential candidate for resource management because of its capability to satisfy the growing wireless demand and improve network efficiency. Decision-making is the main function of the radio resources management process as it determines the radio parameters that control the use of these resources. In this paper, we propose an adaptive decision-making scheme (ADMS) for radio resources management of different types of network applications including: power consuming, emergency, multimedia, and spectrum sharing. ADMS exploits genetic algorithm (GA) as an optimization tool for decision-making. It consists of the several objective functions for the decision-making process such as minimizing power consumption, packet error rate (PER), delay, and interference. On the other hand, maximizing throughput and spectral efficiency. Simulation results and test bed evaluation demonstrate ADMS functionality and efficiency.
Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control
Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan
2003-01-01
An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.
A local adaptive algorithm for emerging scale-free hierarchical networks
International Nuclear Information System (INIS)
Gomez Portillo, I J; Gleiser, P M
2010-01-01
In this work we study a growing network model with chaotic dynamical units that evolves using a local adaptive rewiring algorithm. Using numerical simulations we show that the model allows for the emergence of hierarchical networks. First, we show that the networks that emerge with the algorithm present a wide degree distribution that can be fitted by a power law function, and thus are scale-free networks. Using the LaNet-vi visualization tool we present a graphical representation that reveals a central core formed only by hubs, and also show the presence of a preferential attachment mechanism. In order to present a quantitative analysis of the hierarchical structure we analyze the clustering coefficient. In particular, we show that as the network grows the clustering becomes independent of system size, and also presents a power law decay as a function of the degree. Finally, we compare our results with a similar version of the model that has continuous non-linear phase oscillators as dynamical units. The results show that local interactions play a fundamental role in the emergence of hierarchical networks.
Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao
2017-09-01
This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.
Directory of Open Access Journals (Sweden)
Eduard eGrinke
2015-10-01
Full Text Available Walking animals, like insects, with little neural computing can effectively perform complex behaviors. They can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a walking robot is a challenging task. In this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors in the network to generate different turning angles with short-term memory for a biomechanical walking robot. The turning information is transmitted as descending steering signals to the locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations as well as escaping from sharp corners or deadlocks. Using backbone joint control embedded in the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments.
Adaptive control of a PWR core power using neural networks
International Nuclear Information System (INIS)
Arab-Alibeik, H.; Setayeshi, S.
2005-01-01
Reactor power control is important because of safety concerns and the call for regular and appropriate operation of nuclear power plants. It seems that the load-follow operation of these plants will be unavoidable in the future. Discrepancies between the real plant and the model used in controller design for load-follow operation encourage one to use auto-tuning and (or) adaptive techniques. Neural network technology shows great promise for addressing many problems in non-model-based adaptive control methods. Also, there has been a great attention to inverse control especially in the neural and fuzzy control context. Fortunately, online adaptation eliminates some limitations of inverse control and its shortcomings for real world applications. We use a neural adaptive inverse controller to control the power of a PWR reactor. The stability of the system and convergence of the controller parameters are guaranteed during online adaptation phase provided the controller is near the plant's real inverse after offline training period. The performance of the controller is verified using nonlinear simulations in diverse operating conditions
Directory of Open Access Journals (Sweden)
Pusztai Beáta
2015-08-01
Full Text Available With respect to adaptation studies, contemporary Japanese popular culture signifies a unique case, as different types of media (be those textual, auditive, visual or audio-visual are tightly intertwined through the “recycling” of successful characters and stories. As a result, a neatly woven net of intermedial adaptations has been formed - the core of this complex system being the manga-anime-live-action film “adaptational triangle.” On the one hand, the paper addresses the interplay of the various factors by which the very existence of this network is made possible, such as the distinctive cultural attitude to “originality,” the structure of the comics, animation and film industries, and finally, the role of fictitious genealogies of both traditional and contemporary media in the negotiation of national identity. On the other hand, the essay also considers some of the most significant thematic, narrative, and stylistic effects this close interconnectedness has on the individual medium. Special attention is being paid to the nascent trend of merging the adaptive medium with that of the original story (viewing adaptation as integration, apparent in contemporary manga-based live- action comedies, as the extreme case of intermedial adaptation. That is, when the aim of the adaptational process is no longer the transposition of the story but the adaptation (i.e. the incorporation of the medium itself- elevating certain medium-specific devices into transmedial phenomena.
Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.
Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul
2018-04-05
In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.
Discrete Opinion Dynamics on Online Social Networks
Hu, Yan-Li; Bai, Liang; Zhang, Wei-Ming
2013-01-01
This paper focuses on the dynamics of binary opinions {+1, -1} on online social networks consisting of heterogeneous actors. In our model, actors update their opinions under the interplay of social influence and self- affirmation, which leads to rich dynamical behaviors on online social networks. We find that the opinion leading to the consensus features an advantage of the initially weighted fraction based on actors' strength over the other, instead of the population. For the role of specific actors, the consensus converges towards the opinion that a small fraction of high-strength actors hold, and individual diversity of self-affirmation slows down the ordering process of consensus. These indicate that high-strength actors play an essential role in opinion formation with strong social influence as well as high persistence. Further investigations show that the initial fraction of high-strength actors to dominate the evolution depends on the heterogeneity of the strength distribution, and less high-strength actors are needed in the case of a smaller exponent of power-law distribution of actors' strength. Our study provides deep insights into the role of social influence and self-affirmation on opinion formation on online social networks.
Discrete Opinion Dynamics on Online Social Networks
International Nuclear Information System (INIS)
Hu Yan-Li; Bai Liang; Zhang Wei-Ming
2013-01-01
This paper focuses on the dynamics of binary opinions {+1, −1} on online social networks consisting of heterogeneous actors. In our model, actors update their opinions under the interplay of social influence and self- affirmation, which leads to rich dynamical behaviors on online social networks. We find that the opinion leading to the consensus features an advantage of the initially weighted fraction based on actors' strength over the other, instead of the population. For the role of specific actors, the consensus converges towards the opinion that a small fraction of high-strength actors hold, and individual diversity of self-affirmation slows down the ordering process of consensus. These indicate that high-strength actors play an essential role in opinion formation with strong social influence as well as high persistence. Further investigations show that the initial fraction of high-strength actors to dominate the evolution depends on the heterogeneity of the strength distribution, and less high-strength actors are needed in the case of a smaller exponent of power-law distribution of actors' strength. Our study provides deep insights into the role of social influence and self-affirmation on opinion formation on online social networks. (general)
Sex speeds adaptation by altering the dynamics of molecular evolution.
McDonald, Michael J; Rice, Daniel P; Desai, Michael M
2016-03-10
Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.
Zealotry effects on opinion dynamics in the adaptive voter model
Klamser, Pascal P.; Wiedermann, Marc; Donges, Jonathan F.; Donner, Reik V.
2017-11-01
The adaptive voter model has been widely studied as a conceptual model for opinion formation processes on time-evolving social networks. Past studies on the effect of zealots, i.e., nodes aiming to spread their fixed opinion throughout the system, only considered the voter model on a static network. Here we extend the study of zealotry to the case of an adaptive network topology co-evolving with the state of the nodes and investigate opinion spreading induced by zealots depending on their initial density and connectedness. Numerical simulations reveal that below the fragmentation threshold a low density of zealots is sufficient to spread their opinion to the whole network. Beyond the transition point, zealots must exhibit an increased degree as compared to ordinary nodes for an efficient spreading of their opinion. We verify the numerical findings using a mean-field approximation of the model yielding a low-dimensional set of coupled ordinary differential equations. Our results imply that the spreading of the zealots' opinion in the adaptive voter model is strongly dependent on the link rewiring probability and the average degree of normal nodes in comparison with that of the zealots. In order to avoid a complete dominance of the zealots' opinion, there are two possible strategies for the remaining nodes: adjusting the probability of rewiring and/or the number of connections with other nodes, respectively.
Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor
Directory of Open Access Journals (Sweden)
F. Haugen, R. Bakke, and B. Lie
2013-04-01
Full Text Available A dynamic model has been adapted to a pilot anaerobic reactor fed diarymanure. Both steady-state data from online sensors and laboratory analysis anddynamic operational data from online sensors are used in the model adaptation.The model is based on material balances, and comprises four state variables,namely biodegradable volatile solids, volatile fatty acids, acid generatingmicrobes (acidogens, and methane generating microbes (methanogens. The modelcan predict the methane gas flow produced in the reactor. The model may beused for optimal reactor design and operation, state-estimation and control.Also, a dynamic model for the reactor temperature based on energy balance ofthe liquid in the reactor is adapted. This model may be used for optimizationand control when energy and economy are taken into account.
Physical Proximity and Spreading in Dynamic Social Networks
Stopczynski, Arkadiusz; Pentland, Alex Sandy; Lehmann, Sune
2015-01-01
Most infectious diseases spread on a dynamic network of human interactions. Recent studies of social dynamics have provided evidence that spreading patterns may depend strongly on detailed micro-dynamics of the social system. We have recorded every single interaction within a large population, mapping out---for the first time at scale---the complete proximity network for a densely-connected system. Here we show the striking impact of interaction-distance on the network structure and dynamics ...
Pushing the network harder `Dynamic Ratings`
Energy Technology Data Exchange (ETDEWEB)
Liondas, V.; Howatt, C.; Norrie, P. [Prospect Electricity, Blacktown, NSW (Australia)
1995-12-31
The demand for electricity in the area serviced by Prospect Electricity, is increasing, necessitating an increase in power transfer through the distribution system. Satisfying this demand generally requires more electrical infrastructure, but this is becoming less feasible due to economic constraints and environmental considerations. This paper discusses an approach to the dynamic (or real time) rating of different network elements. Dynamic rating is taken to mean that rating which is determined essentially in real time using known temperature constraints for the relevant elements, together with the prevailing ambient or environmental conditions. The purpose of dynamic rating is to achieve greater system utilization, thus allowing significant economic benefits, particularly from deferment of capital expenditure and greater operational flexibility. A number of technologies are being developed to do this for overhead lines, underground cables and transformers. The dynamic rating of cables has proved to be the most intractable part of the dynamic rating project. Work done to date, however, using finite element techniques together with the proposals to further develop point and distributed temperature sensing using fibre optic methods gives some confidence to the future success of this development. (author). 2 tabs., 4 figs., 4 refs.
International Nuclear Information System (INIS)
Zhao-Bing, Liu; Hua-Guang, Zhang; Qiu-Ye, Sun
2010-01-01
This paper considers the global stability of controlling an uncertain complex network to a homogeneous trajectory of the uncoupled system by a local pinning control strategy. Several sufficient conditions are derived to guarantee the network synchronisation by investigating the relationship among pinning synchronisation, network topology, and coupling strength. Also, some fundamental and yet challenging problems in the pinning control of complex networks are discussed: (1) what nodes should be selected as pinned candidates? (2) How many nodes are needed to be pinned for a fixed coupling strength? Furthermore, an adaptive pinning control scheme is developed. In order to achieve synchronisation of an uncertain complex network, the adaptive tuning strategy of either the coupling strength or the control gain is utilised. As an illustrative example, a network with the Lorenz system as node self-dynamics is simulated to verify the efficacy of theoretical results. (general)
Forecasting financial asset processes: stochastic dynamics via learning neural networks.
Giebel, S; Rainer, M
2010-01-01
Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.
Collective Dynamics in Physical and Social Networks
Isakov, Alexander
We study four systems where individual units come together to display a range of collective behavior. First, we consider a physical system of phase oscillators on a network that expands the Kuramoto model to include oscillator-network interactions and the presence of noise: using a Hebbian-like learning rule, oscillators that synchronize in turn strengthen their connections to each other. We find that the average degree of connectivity strongly affects rates of flipping between aligned and anti-aligned states, and that this result persists to the case of complex networks. Turning to a fully multi-player, multi-strategy evolutionary dynamics model of cooperating bacteria that change who they give resources to and take resources from, we find several regimes that give rise to high levels of collective structure in the resulting networks. In this setting, we also explore the conditions in which an intervention that affects cooperation itself (e.g. "seeding the network with defectors") can lead to wiping out an infection. We find a non-monotonic connection between the percent of disabled cooperation and cure rate, suggesting that in some regimes a limited perturbation can lead to total population collapse. At a larger scale, we study how the locomotor system recovers after amputation in fruit flies. Through experiment and a theoretical model of multi-legged motion controlled by neural oscillators, we find that proprioception plays a role in the ability of flies to control leg forces appropriately to recover from a large initial turning bias induced by the injury. Finally, at the human scale, we consider a social network in a traditional society in Africa to understand how social ties lead to group formation for collective action (stealth raids). We identify critical and distinct roles for both leadership (important for catalyzing a group) and friendship (important for final composition). We conclude with prospects for future work.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants
International Nuclear Information System (INIS)
Husam Fayiz, Al Masri
2017-01-01
The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms. (paper)
Directory of Open Access Journals (Sweden)
David Fouchet
Full Text Available BACKGROUND: Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks that can be accomplished by a network. METHODOLOGY AND PRINCIPAL FINDINGS: We used a mathematical model to describe a interaction network of adaptive regulatory T cells, in which mature precursor T cells may differentiate into either adaptive regulatory T cells or effector T cells, depending on the activation state of the cell by which the antigen was presented. Using an equilibrium analysis of the mathematical model we show that, for some parameters, the network has two stable equilibrium states: one in which effector T cells are strongly regulated by regulatory T cells and another in which effector T cells are not regulated because the regulatory T cell population is vanishingly small. We then simulate different types of perturbations, such as the introduction of an antigen into a virgin system, and look at the state into which the system falls. We find that whether or not the interaction network switches from the regulated (tolerant state to the unregulated state depends on the strength of the antigenic stimulus and the state from which the network has been perturbed. CONCLUSION/SIGNIFICANCE: Our findings suggest that the interaction network studied in this paper plays an essential part in generating and maintaining tolerance against allergens and self-antigens.
Dynamics of neural networks with continuous attractors
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2008-10-01
We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.
Multinephron dynamics on the renal vascular network
DEFF Research Database (Denmark)
Marsh, Donald J; Wexler, Anthony S; Brazhe, Alexey
2012-01-01
Tubuloglomerular feedback (TGF) and the myogenic mechanism combine in each nephron to regulate blood flow and glomerular filtration rate. Both mechanisms are non-linear, generate self-sustained oscillations, and interact as their signals converge on arteriolar smooth muscle, forming a regulatory...... clusters. In-phase synchronization predominated among nephrons separated by 1 or 3 vascular nodes, and anti-phase synchronization for 5 or 7 nodes of separation. Nephron dynamics were irregular and contained low frequency fluctuations. Results are consistent with simultaneous blood flow measurements...... of both mechanisms in the regulatory ensemble, to examine the effects of network structure on nephron synchronization. Symmetry, as a property of a network, facilitates synchronization. Nephrons received blood from a symmetric electrically conductive vascular tree. Symmetry was created by using identical...
A class of convergent neural network dynamics
Fiedler, Bernold; Gedeon, Tomáš
1998-01-01
We consider a class of systems of differential equations in Rn which exhibits convergent dynamics. We find a Lyapunov function and show that every bounded trajectory converges to the set of equilibria. Our result generalizes the results of Cohen and Grossberg (1983) for convergent neural networks. It replaces the symmetry assumption on the matrix of weights by the assumption on the structure of the connections in the neural network. We prove the convergence result also for a large class of Lotka-Volterra systems. These are naturally defined on the closed positive orthant. We show that there are no heteroclinic cycles on the boundary of the positive orthant for the systems in this class.
Exponential Synchronization of Uncertain Complex Dynamical Networks with Delay Coupling
International Nuclear Information System (INIS)
Wang Lifu; Kong Zhi; Jing Yuanwei
2010-01-01
This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches. (general)
Content Dynamics Over the Network Cloud
2015-11-04
AFRL-AFOSR-CL-TR-2015-0003 Content dynamics over the network cloud Fernando Paganini UNIVERSIDAD ORT URUGUAY CUAREIM 1451 MONTEVIDEO, 11100 UY 11/04...approved for public release. FINAL PERFORMANCE REPORT: 7-15-2012 to 7-14-2015 AFOSR GRANT NUMBER: FA9550-12-1-0398 PI: Fernando Paganini Universidad ORT...349-362, Apr 2014. 7. M. Zubeldía, “From resource allocation to neighbor selection in peer-to-peer networks”, MS Thesis, Universidad ORT Uruguay
Reliable dynamics in Boolean and continuous networks
International Nuclear Information System (INIS)
Ackermann, Eva; Drossel, Barbara; Peixoto, Tiago P
2012-01-01
We investigate the dynamical behavior of a model of robust gene regulatory networks which possess ‘entirely reliable’ trajectories. In a Boolean representation, these trajectories are characterized by being insensitive to the order in which the nodes are updated, i.e. they always go through the same sequence of states. The Boolean model for gene activity is compared with a continuous description in terms of differential equations for the concentrations of mRNA and proteins. We found that entirely reliable Boolean trajectories can be reproduced perfectly in the continuous model when realistic Hill coefficients are used. We investigate to what extent this high correspondence between Boolean and continuous trajectories depends on the extent of reliability of the Boolean trajectories, and we identify simple criteria that enable the faithful reproduction of the Boolean dynamics in the continuous description. (paper)
Adaptive model predictive process control using neural networks
Buescher, K.L.; Baum, C.C.; Jones, R.D.
1997-08-19
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.
Adaptive Dynamic Process Scheduling on Distributed Memory Parallel Computers
Directory of Open Access Journals (Sweden)
Wei Shu
1994-01-01
Full Text Available One of the challenges in programming distributed memory parallel machines is deciding how to allocate work to processors. This problem is particularly important for computations with unpredictable dynamic behaviors or irregular structures. We present a scheme for dynamic scheduling of medium-grained processes that is useful in this context. The adaptive contracting within neighborhood (ACWN is a dynamic, distributed, load-dependent, and scalable scheme. It deals with dynamic and unpredictable creation of processes and adapts to different systems. The scheme is described and contrasted with two other schemes that have been proposed in this context, namely the randomized allocation and the gradient model. The performance of the three schemes on an Intel iPSC/2 hypercube is presented and analyzed. The experimental results show that even though the ACWN algorithm incurs somewhat larger overhead than the randomized allocation, it achieves better performance in most cases due to its adaptiveness. Its feature of quickly spreading the work helps it outperform the gradient model in performance and scalability.
Imaging complex nutrient dynamics in mycelial networks.
Fricker, M D; Lee, J A; Bebber, D P; Tlalka, M; Hynes, J; Darrah, P R; Watkinson, S C; Boddy, L
2008-08-01
techniques shows that as the colony forms, it self-organizes into well demarcated domains that are identifiable by differences in the phase relationship of the pulses. On the centimetre to metre scale, we have begun to use techniques borrowed from graph theory to characterize the development and dynamics of the network, and used these abstracted network models to predict the transport characteristics, resilience, and cost of the network.
Samarasinghe, S; Ling, H
In this paper, we show how to extend our previously proposed novel continuous time Recurrent Neural Networks (RNN) approach that retains the advantage of continuous dynamics offered by Ordinary Differential Equations (ODE) while enabling parameter estimation through adaptation, to larger signalling networks using a modular approach. Specifically, the signalling network is decomposed into several sub-models based on important temporal events in the network. Each sub-model is represented by the proposed RNN and trained using data generated from the corresponding ODE model. Trained sub-models are assembled into a whole system RNN which is then subjected to systems dynamics and sensitivity analyses. The concept is illustrated by application to G1/S transition in cell cycle using Iwamoto et al. (2008) ODE model. We decomposed the G1/S network into 3 sub-models: (i) E2F transcription factor release; (ii) E2F and CycE positive feedback loop for elevating cyclin levels; and (iii) E2F and CycA negative feedback to degrade E2F. The trained sub-models accurately represented system dynamics and parameters were in good agreement with the ODE model. The whole system RNN however revealed couple of parameters contributing to compounding errors due to feedback and required refinement to sub-model 2. These related to the reversible reaction between CycE/CDK2 and p27, its inhibitor. The revised whole system RNN model very accurately matched dynamics of the ODE system. Local sensitivity analysis of the whole system model further revealed the most dominant influence of the above two parameters in perturbing G1/S transition, giving support to a recent hypothesis that the release of inhibitor p27 from Cyc/CDK complex triggers cell cycle stage transition. To make the model useful in a practical setting, we modified each RNN sub-model with a time relay switch to facilitate larger interval input data (≈20min) (original model used data for 30s or less) and retrained them that produced
Stochastic dynamics of genetic broadcasting networks
Potoyan, Davit A.; Wolynes, Peter G.
2017-11-01
The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a "time-scale crisis" for master genes that broadcast their signals to a large number of binding sites. We demonstrate that this time-scale crisis for clearance in a large broadcasting network can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying a model of the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκ B which broadcasts its signals to many downstream genes that regulate immune response, apoptosis, etc.
Adaptive Square-Shaped Trajectory-Based Service Location Protocol in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Hwa-Jung Lim
2010-04-01
Full Text Available In this paper we propose an adaptive square-shaped trajectory (ASST-based service location method to ensure load scalability in wireless sensor networks. This first establishes a square-shaped trajectory over the nodes that surround a target point computed by the hash function and any user can access it, using the hash. Both the width and the size of the trajectory are dynamically adjustable, depending on the number of queries made to the service information on the trajectory. The number of sensor nodes on the trajectory varies in proportion to the changing trajectory shape, allowing high loads to be distributed around the hot spot area.
Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu
2016-01-01
An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.
Quantifying the dynamics of coupled networks of switches and oscillators.
Directory of Open Access Journals (Sweden)
Matthew R Francis
Full Text Available Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems.
Agent Based Modeling on Organizational Dynamics of Terrorist Network
Bo Li; Duoyong Sun; Renqi Zhu; Ze Li
2015-01-01
Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...
Trajanovski, S.; Guo, D.; Van Mieghem, P.F.A.
2015-01-01
The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways:
Sync in Complex Dynamical Networks: Stability, Evolution, Control, and Application
Li, Xiang
2005-01-01
In the past few years, the discoveries of small-world and scale-free properties of many natural and artificial complex networks have stimulated significant advances in better understanding the relationship between the topology and the collective dynamics of complex networks. This paper reports recent progresses in the literature of synchronization of complex dynamical networks including stability criteria, network synchronizability and uniform synchronous criticality in different topologies, ...
An Efficient and Self-Adapting Localization in Static Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Wei Dong
2009-08-01
Full Text Available Localization is one of the most important subjects in Wireless Sensor Networks (WSNs. To reduce the number of beacons and adopt probabilistic methods, some particle filter-based mobile beacon-assisted localization approaches have been proposed, such as Mobile Beacon-assisted Localization (MBL, Adapting MBL (A-MBL, and the method proposed by Hang et al. Some new significant problems arise in these approaches, however. The first question is which probability distribution should be selected as the dynamic model in the prediction stage. The second is whether the unknown node adopts neighbors’ observation in the update stage. The third is how to find a self-adapting mechanism to achieve more flexibility in the adapting stage. In this paper, we give the theoretical analysis and experimental evaluations to suggest which probability distribution in the dynamic model should be adopted to improve the efficiency in the prediction stage. We also give the condition for whether the unknown node should use the observations from its neighbors to improve the accuracy. Finally, we propose a Self-Adapting Mobile Beacon-assisted Localization (SA-MBL approach to achieve more flexibility and achieve almost the same performance with A-MBL.
Capitán, José A.; Manrubia, Susanna
2015-12-01
The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.
Adaptive dynamic programming with applications in optimal control
Liu, Derong; Wang, Ding; Yang, Xiong; Li, Hongliang
2017-01-01
This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP app...
Market mood, adaptive beliefs and asset price dynamics
International Nuclear Information System (INIS)
Dieci, Roberto; Foroni, Ilaria; Gardini, Laura; He Xuezhong
2006-01-01
Empirical evidence has suggested that, facing different trading strategies and complicated decision, the proportions of agents relying on particular strategies may stay at constant level or vary over time. This paper presents a simple 'dynamic market fraction' model of two groups of traders, fundamentalists and trend followers, under a market maker scenario. Market mood and evolutionary adaption are characterized by fixed and adaptive switching fraction among two groups, respectively. Using local stability and bifurcation analysis, as well as numerical simulation, the role played by the key parameters in the market behaviour is examined. Particular attention is paid to the impact of the market fraction, determined by the fixed proportions of confident fundamentalists and trend followers, and by the proportion of adaptively rational agents, who adopt different strategies over time depending on realized profits
Google matrix, dynamical attractors, and Ulam networks.
Shepelyansky, D L; Zhirov, O V
2010-03-01
We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with approximate scale-free scaling and characteristics being in certain features similar to those of the world wide web with approximate scale-free degree distributions as well as two characteristics similar to the web: a power-law decay in PageRank that mirrors the decay of PageRank on the world wide web and a sensitivity to the value alpha in PageRank. The simple dynamical attractors play here the role of popular websites with a strong concentration of PageRank. A variation in the Google parameter alpha or other parameters of the dynamical map can drive the PageRank of the Google matrix to a delocalized phase with a strange attractor where the Google search becomes inefficient.
Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks
Directory of Open Access Journals (Sweden)
Jose P. Perez
2014-01-01
Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.
Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate
2015-01-01
Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles
The ER in 3D: a multifunctional dynamic membrane network.
Friedman, Jonathan R; Voeltz, Gia K
2011-12-01
The endoplasmic reticulum (ER) is a large, singular, membrane-bound organelle that has an elaborate 3D structure with a diversity of structural domains. It contains regions that are flat and cisternal, ones that are highly curved and tubular, and others adapted to form contacts with nearly every other organelle and with the plasma membrane. The 3D structure of the ER is determined by both integral ER membrane proteins and by interactions with the cytoskeleton. In this review, we describe some of the factors that are known to regulate ER structure and discuss how this structural organization and the dynamic nature of the ER membrane network allow it to perform its many different functions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Andrews-Hanna, Jessica R.; Smallwood, Jonathan; Spreng, R. Nathan
2014-01-01
Though only a decade has elapsed since the default network was first emphasized as being a large-scale brain system, recent years have brought great insight into the network’s adaptive functions. A growing theme highlights the default network as playing a key role in internally-directed—or self-generated—thought. Here, we synthesize recent findings from cognitive science, neuroscience, and clinical psychology to focus attention on two emerging topics as current and future directions surrounding the default network. First, we present evidence that self-generated thought is a multi-faceted construct whose component processes are supported by different subsystems within the network. Second, we highlight the dynamic nature of the default network, emphasizing its interaction with executive control systems when regulating aspects of internal thought. We conclude by discussing clinical implications of disruptions to the integrity of the network, and consider disorders when thought content becomes polarized or network interactions become disrupted or imbalanced. PMID:24502540
Interestingness-Driven Diffusion Process Summarization in Dynamic Networks
DEFF Research Database (Denmark)
Qu, Qiang; Liu, Siyuan; Jensen, Christian S.
2014-01-01
The widespread use of social networks enables the rapid diffusion of information, e.g., news, among users in very large communities. It is a substantial challenge to be able to observe and understand such diffusion processes, which may be modeled as networks that are both large and dynamic. A key...... tool in this regard is data summarization. However, few existing studies aim to summarize graphs/networks for dynamics. Dynamic networks raise new challenges not found in static settings, including time sensitivity and the needs for online interestingness evaluation and summary traceability, which...... render existing techniques inapplicable. We study the topic of dynamic network summarization: how to summarize dynamic networks with millions of nodes by only capturing the few most interesting nodes or edges over time, and we address the problem by finding interestingness-driven diffusion processes...
Self-organization of complex networks as a dynamical system.
Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio
2015-01-01
To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response
Directory of Open Access Journals (Sweden)
Franca Citarella
2013-08-01
Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.
Magnetoencephalography from signals to dynamic cortical networks
Aine, Cheryl
2014-01-01
"Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...
Attractor dynamics in local neuronal networks
Directory of Open Access Journals (Sweden)
Jean-Philippe eThivierge
2014-03-01
Full Text Available Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus.
Quantum Processes and Dynamic Networks in Physical and Biological Systems.
Dudziak, Martin Joseph
, by virtue of mathematical and computational models that may be transferred from the macroscopic domain to the microscopic. A consequence of this multi-faceted thesis is that there may be mature analytical tools and techniques that have heretofore not been adequately recognized for their value to quantum physics. These may include adaptations of neural networks, cellular automata, chaotic attractors, and parallel processing systems. Conceptual and practical architectures are presented for the development of software and hardware environments to employ massively parallel computing for the modeling of large populations of dynamic processes.
Exponentially asymptotical synchronization in uncertain complex dynamical networks with time delay
Energy Technology Data Exchange (ETDEWEB)
Luo Qun; Yang Han; Li Lixiang; Yang Yixian [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Han Jiangxue, E-mail: luoqun@bupt.edu.c [National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China)
2010-12-10
Over the past decade, complex dynamical network synchronization has attracted more and more attention and important developments have been made. In this paper, we explore the scheme of globally exponentially asymptotical synchronization in complex dynamical networks with time delay. Based on Lyapunov stability theory and through defining the error function between adjacent nodes, four novel adaptive controllers are designed under four situations where the Lipschitz constants of the state function in nodes are known or unknown and the network structure is certain or uncertain, respectively. These controllers could not only globally asymptotically synchronize all nodes in networks, but also ensure that the error functions do not exceed the pre-scheduled exponential function. Finally, simulations of the synchronization among the chaotic system in the small-world and scale-free network structures are presented, which prove the effectiveness and feasibility of our controllers.
A Neural Network Approach to Intention Modeling for User-Adapted Conversational Agents
Directory of Open Access Journals (Sweden)
David Griol
2016-01-01
Full Text Available Spoken dialogue systems have been proposed to enable a more natural and intuitive interaction with the environment and human-computer interfaces. In this contribution, we present a framework based on neural networks that allows modeling of the user’s intention during the dialogue and uses this prediction to dynamically adapt the dialogue model of the system taking into consideration the user’s needs and preferences. We have evaluated our proposal to develop a user-adapted spoken dialogue system that facilitates tourist information and services and provide a detailed discussion of the positive influence of our proposal in the success of the interaction, the information and services provided, and the quality perceived by the users.
A Neural Network Approach to Intention Modeling for User-Adapted Conversational Agents.
Griol, David; Callejas, Zoraida
2016-01-01
Spoken dialogue systems have been proposed to enable a more natural and intuitive interaction with the environment and human-computer interfaces. In this contribution, we present a framework based on neural networks that allows modeling of the user's intention during the dialogue and uses this prediction to dynamically adapt the dialogue model of the system taking into consideration the user's needs and preferences. We have evaluated our proposal to develop a user-adapted spoken dialogue system that facilitates tourist information and services and provide a detailed discussion of the positive influence of our proposal in the success of the interaction, the information and services provided, and the quality perceived by the users.
Dynamics of subway networks based on vehicles operation timetable
Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui
2017-05-01
In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.
The stochastic network dynamics underlying perceptual discrimination
Directory of Open Access Journals (Sweden)
Genis Prat-Ortega
2015-04-01
Full Text Available The brain is able to interpret streams of high-dimensional ambiguous information and yield coherent percepts. The mechanisms governing sensory integration have been extensively characterized using time-varying visual stimuli (Britten et al. 1996; Roitman and Shadlen 2002, but some of the basic principles regarding the network dynamics underlying this process remain largely unknown. We captured the basic features of a neural integrator using three canonical one-dimensional models: (1 the Drift Diffusion Model (DDM, (2 the Perfect Integrator (PI which is a particular case of the DDM where the bounds are set to infinity and (3 the double-well potential (DW which captures the dynamics of the attractor networks (Wang 2002; Roxin and Ledberg 2008. Although these models has been widely studied (Bogacz et al. 2006; Roxin and Ledberg 2008; Gold and Shadlen 2002, it has been difficult to experimentally discriminate among them because most of the observables measured are only quantitatively different among these models (e.g. psychometric curves. Here we aim to find experimentally measurable quantities that can yield qualitatively different behaviors depending on the nature of the underlying network dynamics. We examined the categorization dynamics of these models in response to fluctuating stimuli of different duration (T. On each time step, stimuli are drawn from a Gaussian distribution N(μ, σ and the two stimulus categories are defined by μ > 0 and μ < 0. Psychometric curves can therefore be obtained by quantifying the probability of the integrator to yield one category versus μ . We find however that varying σ can reveal more clearly the differences among the different integrators. In the small σ regime, both the DW and the DDM perform transient integration and exhibit a decaying stimulus reverse correlation kernel revealing a primacy effect (Nienborg and Cumming 2009; Wimmer et al. 2015 . In the large σ regime, the integration in the DDM
Short-term memory in olfactory network dynamics
Stopfer, Mark; Laurent, Gilles
1999-12-01
Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas.. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clock. Here we examine, using locusts, the changes in population dynamics of projection-neuron assemblies over repeated odour stimulations, as would occur when an animal first encounters and then repeatedly samples an odour for identification or localization. We find that the responses of these assemblies rapidly decrease in intensity, while they show a marked increase in spike time precision and inter-neuronal oscillatory coherence. Once established, this enhanced precision in the representation endures for several minutes. This change is stimulus-specific, and depends on events within the antennal lobe circuits, independent of olfactory receptor adaptation: it may thus constitute a form of sensory memory. Our results suggest that this progressive change in olfactory network dynamics serves to converge, over repeated odour samplings, on a more precise and readily classifiable odour representation, using relational information contained across neural assemblies.
The Dynamics of Initiative in Communication Networks.
Directory of Open Access Journals (Sweden)
Anders Mollgaard
Full Text Available Human social interaction is often intermittent. Two acquainted persons can have extended periods without social interaction punctuated by periods of repeated interaction. In this case, the repeated interaction can be characterized by a seed initiative by either of the persons and a number of follow-up interactions. The tendency to initiate social interaction plays an important role in the formation of social networks and is in general not symmetric between persons. In this paper, we study the dynamics of initiative by analysing and modeling a detailed call and text message network sampled from a group of 700 individuals. We show that in an average relationship between two individuals, one part is almost twice as likely to initiate communication compared to the other part. The asymmetry has social consequences and ultimately might lead to the discontinuation of a relationship. We explain the observed asymmetry by a positive feedback mechanism where individuals already taking initiative are more likely to take initiative in the future. In general, people with many initiatives receive attention from a broader spectrum of friends than people with few initiatives. Lastly, we compare the likelihood of taking initiative with the basic personality traits of the five factor model.
Choice Shift in Opinion Network Dynamics
Gabbay, Michael
Choice shift is a phenomenon associated with small group dynamics whereby group discussion causes group members to shift their opinions in a more extreme direction so that the mean post-discussion opinion exceeds the mean pre-discussion opinion. Also known as group polarization, choice shift is a robust experimental phenomenon and has been well-studied within social psychology. In opinion network models, shifts toward extremism are typically produced by the presence of stubborn agents at the extremes of the opinion axis, whose opinions are much more resistant to change than moderate agents. However, we present a model in which choice shift can arise without the assumption of stubborn agents; the model evolves member opinions and uncertainties using coupled nonlinear differential equations. In addition, we briefly describe the results of a recent experiment conducted involving online group discussion concerning the outcome of National Football League games are described. The model predictions concerning the effects of network structure, disagreement level, and team choice (favorite or underdog) are in accord with the experimental results. This research was funded by the Office of Naval Research and the Defense Threat Reduction Agency.
Filtering in Hybrid Dynamic Bayesian Networks
Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin
2000-01-01
We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).
Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa
2016-01-01
Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE
Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo
2016-04-13
Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. It is unclear
Passivation and control of partially known SISO nonlinear systems via dynamic neural networks
Directory of Open Access Journals (Sweden)
Reyes-Reyes J.
2000-01-01
Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.
Directory of Open Access Journals (Sweden)
István A Kovács
Full Text Available BACKGROUND: Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. METHODOLOGY/PRINCIPAL FINDINGS: Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1 determine persvasively overlapping modules with high resolution; (2 uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3 allow the determination of key network nodes and (4 help to predict network dynamics. CONCLUSIONS/SIGNIFICANCE: The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction.
Creep-induced anisotropy in covalent adaptable network polymers.
Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai
2017-10-11
Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.
Adaptive Reliable Routing Based on Cluster Hierarchy for Wireless Multimedia Sensor Networks
Directory of Open Access Journals (Sweden)
Kai Lin
2010-01-01
Full Text Available As a multimedia information acquisition and processing method, wireless multimedia sensor network(WMSN has great application potential in military and civilian areas. Compared with traditional wireless sensor network, the routing design of WMSN should obtain more attention on the quality of transmission. This paper proposes an adaptive reliable routing based on clustering hierarchy named ARCH, which includes energy prediction and power allocation mechanism. To obtain a better performance, the cluster structure is formed based on cellular topology. The introduced prediction mechanism makes the sensor nodes predict the remaining energy of other nodes, which dramatically reduces the overall information needed for energy balancing. ARCH can dynamically balance the energy consumption of nodes based on the predicted results provided by power allocation. The simulation results prove the efficiency of the proposed ARCH routing.
Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics
Chen, Yu-Zhong; Lai, Ying-Cheng
2018-03-01
Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.
SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks
Lin, Likun
monitoring sensors. In order to maintain signal quality while optimizing network resources, we find that it is essential to model and update estimates of the physical link impairments in real-time. In this thesis, we consider the key elements required to enable an agile optical network, with contributions as follows: • Control Framework: extended the SDN concept to include the optical transport network through extensions to the OpenFlow (OF) protocol. A unified SDN control plane is built to facilitate control and management capability across the electrical/packet-switched and optical/circuit-switched portions of the network seamlessly. The SDN control plane serves as a platform to abstract the resources of multilayer/multivendor networks. Through this platform, applications can dynamically request the network resources to meet their service requirements. • Use of In-situ Monitors: enabled real-time physical impairment sensing in the control plane using in-situ Optical Performance Monitoring (OPM) and bit error rate (BER) analyzers. OPM and BER values are used as quantitative indicators of the link status and are fed to the control plane through a high-speed data collection interface to form a closed-loop feedback system to enable adaptive resource allocation. • Predictive Network Model: used a network model embedded in the control layer to study the link status. The estimated results of network status is fed into the control decisions to precompute the network resources. The performance of the network model can be enhanced by the sensing results. • Real-Time Control Algorithms: investigated various dynamic resource allocation mechanisms supporting an agile optical network. Intelligent routing and wavelength switching for recovering from traffic impairments is achieved experimentally in the agile optical network within one second. A distance-adaptive spectrum allocation scheme to address transmission impairments caused by cascaded Wavelength Selective Switches (WSS
Modelling flow dynamics in water distribution networks using ...
African Journals Online (AJOL)
One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics ...
A recurrent neural network for adaptive beamforming and array correction.
Che, Hangjun; Li, Chuandong; He, Xing; Huang, Tingwen
2016-08-01
In this paper, a recurrent neural network (RNN) is proposed for solving adaptive beamforming problem. In order to minimize sidelobe interference, the problem is described as a convex optimization problem based on linear array model. RNN is designed to optimize system's weight values in the feasible region which is derived from arrays' state and plane wave's information. The new algorithm is proven to be stable and converge to optimal solution in the sense of Lyapunov. So as to verify new algorithm's performance, we apply it to beamforming under array mismatch situation. Comparing with other optimization algorithms, simulations suggest that RNN has strong ability to search for exact solutions under the condition of large scale constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adaptive Probabilistic Broadcasting over Dense Wireless Ad Hoc Networks
Directory of Open Access Journals (Sweden)
Victor Gau
2010-01-01
Full Text Available We propose an idle probability-based broadcasting method, iPro, which employs an adaptive probabilistic mechanism to improve performance of data broadcasting over dense wireless ad hoc networks. In multisource one-hop broadcast scenarios, the modeling and simulation results of the proposed iPro are shown to significantly outperform the standard IEEE 802.11 under saturated condition. Moreover, the results also show that without estimating the number of competing nodes and changing the contention window size, the performance of the proposed iPro can still approach the theoretical bound. We further apply iPro to multihop broadcasting scenarios, and the experiment results show that within the same elapsed time after the broadcasting, the proposed iPro has significantly higher Packet-Delivery Ratios (PDR than traditional methods.
A Multi-Pathfinder for Developing Adaptive Robust Policies in System Dynamics
Hamarat, C.; Pruyt, E.; Loonen, E.T.
2013-01-01
Adaptivity is essential for dynamically complex and uncertain systems. Adaptive policymaking is an approach to design policies that can be adapted over time to how the future unfolds. It is crucial for adaptive policymaking to specify under what conditions and how to adapt the policy. The
Scalable Lunar Surface Networks and Adaptive Orbit Access, Phase I
National Aeronautics and Space Administration — Innovative network architecture, protocols, and algorithms are proposed for both lunar surface networks and orbit access networks. Firstly, an overlaying...
Dissolution of covalent adaptable network polymers in organic solvent
Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.
2017-12-01
It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.
Dynamic synchronization of a time-evolving optical network of chaotic oscillators.
Cohen, Adam B; Ravoori, Bhargava; Sorrentino, Francesco; Murphy, Thomas E; Ott, Edward; Roy, Rajarshi
2010-12-01
We present and experimentally demonstrate a technique for achieving and maintaining a global state of identical synchrony of an arbitrary network of chaotic oscillators even when the coupling strengths are unknown and time-varying. At each node an adaptive synchronization algorithm dynamically estimates the current strength of the net coupling signal to that node. We experimentally demonstrate this scheme in a network of three bidirectionally coupled chaotic optoelectronic feedback loops and we present numerical simulations showing its application in larger networks. The stability of the synchronous state for arbitrary coupling topologies is analyzed via a master stability function approach. © 2010 American Institute of Physics.
Dynamic Evolution Model Based on Social Network Services
Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen
2013-11-01
Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.
Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.
Lehn, Jean-Marie
2012-01-01
Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.
Dynamic Mobile IP routers in ad hoc networks
Kock, B.A.; Schmidt, J.R.
2005-01-01
This paper describes a concept combining mobile IP and ad hoc routing to create a robust mobile network. In this network all nodes are mobile and globally and locally reachable under the same IP address. Essential for implementing this network are the dynamic mobile IP routers. They act as gateways
Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds
Johnson, C. E.
2017-12-01
Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.
An Adaptive Channel Model for VBLAST in Vehicular Networks
Directory of Open Access Journals (Sweden)
Ghassan M. T. Abdalla
2009-01-01
Full Text Available The wireless transmission environment in vehicular ad hoc systems varies from line of sight with few surroundings to rich Rayleigh fading. An efficient communication system must adapt itself to these diverse conditions. Multiple antenna systems are known to provide superior performance compared to single antenna systems in terms of capacity and reliability. The correlation between the antennas has a great effect on the performance of MIMO systems. In this paper we introduce a novel adaptive channel model for MIMO-VBLAST systems in vehicular ad hoc networks. Using the proposed model, the correlation between the antennas was investigated. Although the line of sight is ideal for single antenna systems, it severely degrades the performance of VBLAST systems since it increases the correlation between the antennas. A channel update algorithm using single tap Kalman filters for VBLAST in flat fading channels has also been derived and evaluated. At 12 dB Es/N0, the new algorithm showed 50% reduction in the mean square error (MSE between the actual channel and the corresponding updated estimate compared to the MSE without update. The computational requirement of the proposed algorithm for a p×q VBLAST is 6p×q real multiplications and 4p×q real additions.
Gender, Friendship Networks, and Delinquency: A Dynamic Network Approach.
Haynie, Dana L; Doogan, Nathan J; Soller, Brian
2014-11-01
Researchers have examined selection and influence processes in shaping delinquency similarity among friends, but little is known about the role of gender in moderating these relationships. Our objective is to examine differences between adolescent boys and girls regarding delinquency-based selection and influence processes. Using longitudinal network data from adolescents attending two large schools in AddHealth ( N = 1,857) and stochastic actor-oriented models, we evaluate whether girls are influenced to a greater degree by friends' violence or delinquency than boys (influence hypothesis) and whether girls are more likely to select friends based on violent or delinquent behavior than boys (selection hypothesis). The results indicate that girls are more likely than boys to be influenced by their friends' involvement in violence. Although a similar pattern emerges for nonviolent delinquency, the gender differences are not significant. Some evidence shows that boys are influenced toward increasing their violence or delinquency when exposed to more delinquent or violent friends but are immune to reducing their violence or delinquency when associating with less violent or delinquent friends. In terms of selection dynamics, although both boys and girls have a tendency to select friends based on friends' behavior, girls have a stronger tendency to do so, suggesting that among girls, friends' involvement in violence or delinquency is an especially decisive factor for determining friendship ties.
Gender, Friendship Networks, and Delinquency: A Dynamic Network Approach**
Haynie, Dana L.; Doogan, Nathan J.; Soller, Brian
2014-01-01
Researchers have examined selection and influence processes in shaping delinquency similarity among friends, but little is known about the role of gender in moderating these relationships. Our objective is to examine differences between adolescent boys and girls regarding delinquency-based selection and influence processes. Using longitudinal network data from adolescents attending two large schools in AddHealth (N = 1,857) and stochastic actor-oriented models, we evaluate whether girls are influenced to a greater degree by friends' violence or delinquency than boys (influence hypothesis) and whether girls are more likely to select friends based on violent or delinquent behavior than boys (selection hypothesis). The results indicate that girls are more likely than boys to be influenced by their friends' involvement in violence. Although a similar pattern emerges for nonviolent delinquency, the gender differences are not significant. Some evidence shows that boys are influenced toward increasing their violence or delinquency when exposed to more delinquent or violent friends but are immune to reducing their violence or delinquency when associating with less violent or delinquent friends. In terms of selection dynamics, although both boys and girls have a tendency to select friends based on friends' behavior, girls have a stronger tendency to do so, suggesting that among girls, friends' involvement in violence or delinquency is an especially decisive factor for determining friendship ties. PMID:26097241
Dynamic defense and network randomization for computer systems
Chavez, Adrian R.; Stout, William M. S.; Hamlet, Jason R.; Lee, Erik James; Martin, Mitchell Tyler
2018-05-29
The various technologies presented herein relate to determining a network attack is taking place, and further to adjust one or more network parameters such that the network becomes dynamically configured. A plurality of machine learning algorithms are configured to recognize an active attack pattern. Notification of the attack can be generated, and knowledge gained from the detected attack pattern can be utilized to improve the knowledge of the algorithms to detect a subsequent attack vector(s). Further, network settings and application communications can be dynamically randomized, wherein artificial diversity converts control systems into moving targets that help mitigate the early reconnaissance stages of an attack. An attack(s) based upon a known static address(es) of a critical infrastructure network device(s) can be mitigated by the dynamic randomization. Network parameters that can be randomized include IP addresses, application port numbers, paths data packets navigate through the network, application randomization, etc.
Use of dynamic grid adaption in the ASWR-method
International Nuclear Information System (INIS)
Graf, U.; Romstedt, P.; Werner, W.
1985-01-01
A dynamic grid adaption method has been developed for use with the ASWR-method. The method automatically adapts the number and position of the spatial meshpoints as the solution of hyperbolic or parabolic vector partial differential equations progresses in time. The mesh selection algorithm is based on the minimization of the L 2 -norm of the spatial discretization error. The method permits accurate calculation of the evolution of inhomogenities like wave fronts, shock layers and other sharp transitions, while generally using a coarse computational grid. The number of required mesh points is significantly reduced, relative to a fixed Eulerian grid. Since the mesh selection algorithm is computationally inexpensive, a corresponding reduction of computing time results
Arresting Strategy Based on Dynamic Criminal Networks Changing over Time
Directory of Open Access Journals (Sweden)
Junqing Yuan
2013-01-01
Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.
Discrete rate and variable power adaptation for underlay cognitive networks
Abdallah, Mohamed M.
2010-01-01
We consider the problem of maximizing the average spectral efficiency of a secondary link in underlay cognitive networks. In particular, we consider the network setting whereby the secondary transmitter employs discrete rate and variable power adaptation under the constraints of maximum average transmit power and maximum average interference power allowed at the primary receiver due to the existence of an interference link between the secondary transmitter and the primary receiver. We first find the optimal discrete rates assuming a predetermined partitioning of the signal-to-noise ratio (SNR) of both the secondary and interference links. We then present an iterative algorithm for finding a suboptimal partitioning of the SNR of the interference link assuming a fixed partitioning of the SNR of secondary link selected for the case where no interference link exists. Our numerical results show that the average spectral efficiency attained by using the iterative algorithm is close to that achieved by the computationally extensive exhaustive search method for the case of Rayleigh fading channels. In addition, our simulations show that selecting the optimal partitioning of the SNR of the secondary link assuming no interference link exists still achieves the maximum average spectral efficiency for the case where the average interference constraint is considered. © 2010 IEEE.
Disruption and adaptation of urban transport networks from flooding
Directory of Open Access Journals (Sweden)
Pregnolato Maria
2016-01-01
Full Text Available Transport infrastructure networks are increasingly vulnerable to disruption from extreme rainfall events due to increasing surface water runoff from urbanization and changes in climate. Impacts from such disruptions typically extend far beyond the flood footprint, because of the interconnection and spatial extent of modern infrastructure. An integrated flood risk assessment couples high resolution information on depth and velocity from the CityCAT urban flood model with empirical analysis of vehicle speeds in different depths of flood water, to perturb a transport accessibility model and determine the impact of a given event on journey times across the urban area. A case study in Newcastle-upon-Tyne (UK shows that even minor flooding associate with a 1 in 10 year event can cause traffic disruptions of nearly half an hour. Two adaptation scenarios are subsequently tested (i hardening (i.e. flood protection a single major junction, (ii introduction of green roofs across all buildings. Both options have benefits in terms of reduced disruption, but for a 1 in 200 year event greening all roofs in the city provided only three times the benefit of protecting one critical road junction, highlighting the importance of understanding network attributes such as capacity and flows.
Major component analysis of dynamic networks of physiologic organ interactions
International Nuclear Information System (INIS)
Liu, Kang K L; Ma, Qianli D Y; Ivanov, Plamen Ch; Bartsch, Ronny P
2015-01-01
The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function. (paper)
Elucidating Microbial Adaptation Dynamics via Autonomous Exposure and Sampling
Grace, Joseph M.; Verseux, Cyprien; Gentry, Diana; Moffet, Amy; Thayabaran, Ramanen; Wong, Nathan; Rothschild, Lynn
2013-01-01
The adaptation of micro-organisms to their environments is a complex process of interaction between the pressures of the environment and of competition. Reducing this multifactorial process to environmental exposure in the laboratory is a common tool for elucidating individual mechanisms of evolution, such as mutation rates. Although such studies inform fundamental questions about the way adaptation and even speciation occur, they are often limited by labor-intensive manual techniques. Current methods for controlled study of microbial adaptation limit the length of time, the depth of collected data, and the breadth of applied environmental conditions. Small idiosyncrasies in manual techniques can have large effects on outcomes; for example, there are significant variations in induced radiation resistances following similar repeated exposure protocols. We describe here a project under development to allow rapid cycling of multiple types of microbial environmental exposure. The system allows continuous autonomous monitoring and data collection of both single species and sampled communities, independently and concurrently providing multiple types of controlled environmental pressure (temperature, radiation, chemical presence or absence, and so on) to a microbial community in dynamic response to the ecosystem's current status. When combined with DNA sequencing and extraction, such a controlled environment can cast light on microbial functional development, population dynamics, inter- and intra-species competition, and microbe-environment interaction. The project's goal is to allow rapid, repeatable iteration of studies of both natural and artificial microbial adaptation. As an example, the same system can be used both to increase the pH of a wet soil aliquot over time while periodically sampling it for genetic activity analysis, or to repeatedly expose a culture of bacteria to the presence of a toxic metal, automatically adjusting the level of toxicity based on the
Identify Dynamic Network Modules with Temporal and Spatial Constraints
Energy Technology Data Exchange (ETDEWEB)
Jin, R; McCallen, S; Liu, C; Almaas, E; Zhou, X J
2007-09-24
Despite the rapid accumulation of systems-level biological data, understanding the dynamic nature of cellular activity remains a difficult task. The reason is that most biological data are static, or only correspond to snapshots of cellular activity. In this study, we explicitly attempt to detangle the temporal complexity of biological networks by using compilations of time-series gene expression profiling data.We define a dynamic network module to be a set of proteins satisfying two conditions: (1) they form a connected component in the protein-protein interaction (PPI) network; and (2) their expression profiles form certain structures in the temporal domain. We develop the first efficient mining algorithm to discover dynamic modules in a temporal network, as well as frequently occurring dynamic modules across many temporal networks. Using yeast as a model system, we demonstrate that the majority of the identified dynamic modules are functionally homogeneous. Additionally, many of them provide insight into the sequential ordering of molecular events in cellular systems. We further demonstrate that identifying frequent dynamic network modules can significantly increase the signal to noise separation, despite the fact that most dynamic network modules are highly condition-specific. Finally, we note that the applicability of our algorithm is not limited to the study of PPI systems, instead it is generally applicable to the combination of any type of network and time-series data.
Dynamic and adaptive data-management in ATLAS
Lassnig, M; Branco, M; Molfetas, A
2010-01-01
Distributed data-management on the grid is subject to huge uncertainties yet static policies govern its usage. Due to the unpredictability of user behaviour, the high-latency and the heterogeneous nature of the environment, distributed data-management on the grid is challenging. In this paper we present the first steps towards a future dynamic data-management system that adapts to the changing conditions and environment. Such a system would eliminate the number of manual interventions and remove unnecessary software layers, thereby providing a higher quality of service to the collaboration.