WorldWideScience

Sample records for adaptive control architecture

  1. Bio-inspired adaptive feedback error learning architecture for motor control.

    Science.gov (United States)

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  2. Adaptive Architectural Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Kirkegaard, Poul Henning

    2010-01-01

    . The general scopes of this paper are to develop a new adaptive kinetic architectural structure, particularly a reconfigurable architectural structure which can transform body shape from planar geometries to hyper-surfaces using different control strategies, i.e. a transformation into more than one or two...

  3. Scenario design : adaptive architecture for command and control experiment eight

    OpenAIRE

    Clark, Frankie J.

    2002-01-01

    Approved for public release; distribution is unlimited. The Adaptive Architectures for Command and Control (A2C2) project is an ongoing research effort sponsored by the Office of Naval Research to explore adaptation in joint command and control. The objective of the project's eighth experiment is to study the adjustments that organizations make when they are confronted with a scenario for which their organizational is ill-suited. To accomplish this, teams will each be in one of two fundame...

  4. Control architecture for an adaptive electronically steerable flash lidar and associated instruments

    Science.gov (United States)

    Ruppert, Lyle; Craner, Jeremy; Harris, Timothy

    2014-09-01

    An Electronically Steerable Flash Lidar (ESFL), developed by Ball Aerospace & Technologies Corporation, allows realtime adaptive control of configuration and data-collection strategy based on recent or concurrent observations and changing situations. This paper reviews, at a high level, some of the algorithms and control architecture built into ESFL. Using ESFL as an example, it also discusses the merits and utility such adaptable instruments in Earth-system studies.

  5. Multiple Estimation Architecture in Discrete-Time Adaptive Mixing Control

    Directory of Open Access Journals (Sweden)

    Simone Baldi

    2013-05-01

    Full Text Available Adaptive mixing control (AMC is a recently developed control scheme for uncertain plants, where the control action coming from a bank of precomputed controller is mixed based on the parameter estimates generated by an on-line parameter estimator. Even if the stability of the control scheme, also in the presence of modeling errors and disturbances, has been shown analytically, its transient performance might be sensitive to the initial conditions of the parameter estimator. In particular, for some initial conditions, transient oscillations may not be acceptable in practical applications. In order to account for such a possible phenomenon and to improve the learning capability of the adaptive scheme, in this paper a new mixing architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each one working on a small subset of the uncertainty set. A supervisory logic, using performance signals based on the past and present estimation error, selects the parameter estimate to determine the mixing of the controllers. The stability and robustness properties of the resulting approach, referred to as multi-estimator adaptive mixing control (Multi-AMC, are analytically established. Besides, extensive simulations demonstrate that the scheme improves the transient performance of the original AMC with a single estimator. The control scheme and the analysis are carried out in a discrete-time framework, for easier implementation of the method in digital control.

  6. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems.

    Science.gov (United States)

    Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel

    2016-08-16

    The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  7. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems

    Directory of Open Access Journals (Sweden)

    Ali Albattat

    2016-08-01

    Full Text Available The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems. These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  8. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    Science.gov (United States)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  9. Neural Architectures for Control

    Science.gov (United States)

    Peterson, James K.

    1991-01-01

    The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.

  10. A set-theoretic model reference adaptive control architecture for disturbance rejection and uncertainty suppression with strict performance guarantees

    Science.gov (United States)

    Arabi, Ehsan; Gruenwald, Benjamin C.; Yucelen, Tansel; Nguyen, Nhan T.

    2018-05-01

    Research in adaptive control algorithms for safety-critical applications is primarily motivated by the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting from exogenous disturbances, imperfect dynamical system modelling, degraded modes of operation, and changes in system dynamics. Although government and industry agree on the potential of these algorithms in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-priori, user-defined performance guarantees with adaptive control algorithms. In this paper, a new model reference adaptive control architecture for uncertain dynamical systems is presented to address disturbance rejection and uncertainty suppression. The proposed framework is predicated on a set-theoretic adaptive controller construction using generalised restricted potential functions.The key feature of this framework allows the system error bound between the state of an uncertain dynamical system and the state of a reference model, which captures a desired closed-loop system performance, to be less than a-priori, user-defined worst-case performance bound, and hence, it has the capability to enforce strict performance guarantees. Examples are provided to demonstrate the efficacy of the proposed set-theoretic model reference adaptive control architecture.

  11. The ABC Adaptive Fusion Architecture

    DEFF Research Database (Denmark)

    Bunde-Pedersen, Jonathan; Mogensen, Martin; Bardram, Jakob Eyvind

    2006-01-01

    and early implementation of a systemcapable of adapting to its operating environment, choosingthe best fit combination of the client-server and peerto-peer architectures. The architecture creates a seamlessintegration between a centralized hybrid architecture and adecentralized architecture, relying on what...

  12. Inhabiting Adaptive Architecture

    Directory of Open Access Journals (Sweden)

    Holger Schnädelbach

    2017-12-01

    Full Text Available Adaptive Architecture concerns buildings that are specifically designed to adapt to their inhabitants and to their environments. Work in this space has a very long history, with a number of adaptive buildings emerging during the modernist period, such as Rietveld’s Schröder house, Gaudi’s Casa Batlló and Chareau's Maison de Verre. Such early work included manual adaptivity, even if that was motor-assisted. Today, buildings have started to combine this with varying degrees of automation and designed-for adaptivity is commonplace in office buildings and eco homes, where lighting, air conditioning, access and energy generation respond to and influence the behaviour of people, and the internal and external climate.

  13. A single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems.

    Science.gov (United States)

    Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N

    2006-12-01

    Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

  14. Predictor-Based Model Reference Adaptive Control

    Science.gov (United States)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2010-01-01

    This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.

  15. Active materials for adaptive architectural envelopes based on plant adaptation principles

    Directory of Open Access Journals (Sweden)

    Marlen Lopez

    2015-06-01

    Full Text Available In this paper, the authors present research into adaptive architectural envelopes that adapt to environmental changes using active materials, as a result of application of biomimetic principles from plants to architecture. Buildings use large amounts of energy in order to maintain their internal comfort, because conventional buildings are designed to provide a static design solution. Most of the current solutions for facades are not designed for optimum adaptation to contextual issues and needs, while biological solutions to adaptation are often complex, multi-functional and highly responsive. We focus on plant adaptations to the environment, as, due to their immobility, they have developed special means of protection against weather changing conditions. Furthermore, recent developments in new technologies are allowing the possibility to transfer these plant adaptation strategies to technical implementation. These technologies include: multi-material 3D printing, advances in materials science and new capabilities in simulation software. Unlike traditional mechanical activation used for dynamic systems in kinetic facades, adaptive architectural envelopes require no complex electronics, sensors, or actuators. The paper proposes a research of the relationship that can be developed between active materials and environmental issues in order to propose innovative and low-tech design strategies to achieve living envelopes according to plant adaptation principles.  

  16. Architecture and Knowledge-Driven Self-Adaptive Security in Smart Space

    Directory of Open Access Journals (Sweden)

    Antti Evesti

    2013-03-01

    Full Text Available Dynamic and heterogeneous smart spaces cause challenges for security because it is impossible to anticipate all the possible changes at design-time. Self-adaptive security is an applicable solution for this challenge. This paper presents an architectural approach for security adaptation in smart spaces. The approach combines an adaptation loop, Information Security Measuring Ontology (ISMO and a smart space security-control model. The adaptation loop includes phases to monitor, analyze, plan and execute changes in the smart space. The ISMO offers input knowledge for the adaptation loop and the security-control model enforces dynamic access control policies. The approach is novel because it defines the whole adaptation loop and knowledge required in each phase of the adaptation. The contributions are validated as a part of the smart space pilot implementation. The approach offers reusable and extensible means to achieve adaptive security in smart spaces and up-to-date access control for devices that appear in the space. Hence, the approach supports the work of smart space application developers.

  17. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  18. Adaptive hybrid control of manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.

  19. Mapping the Intangible: On Adaptivity and Relational Prototyping in Architectural Design

    DEFF Research Database (Denmark)

    Bolbroe, Cameline

    2016-01-01

    In recent years, new computing technologies in architecture have led to the possibility of designing architecture with non-static qualities, which affords the architectural designer with a whole new opportunity space to explore. At the same time, this opportunity space challenges both...... to meet the challenges of designing with adaptivity in architecture, I propose a particular method specifically tailored for adaptive architectural design. The method, relational prototyping, is founded on the idea of inhabitation as an act. Relational prototyping adapts techniques from performance...

  20. Adaptive architectures for resilient control of networked multiagent systems in the presence of misbehaving agents

    Science.gov (United States)

    Torre, Gerardo De La; Yucelen, Tansel

    2018-03-01

    Control algorithms of networked multiagent systems are generally computed distributively without having a centralised entity monitoring the activity of agents; and therefore, unforeseen adverse conditions such as uncertainties or attacks to the communication network and/or failure of agent-wise components can easily result in system instability and prohibit the accomplishment of system-level objectives. In this paper, we study resilient coordination of networked multiagent systems in the presence of misbehaving agents, i.e. agents that are subject to exogenous disturbances that represent a class of adverse conditions. In particular, a distributed adaptive control architecture is presented for directed and time-varying graph topologies to retrieve a desired networked multiagent system behaviour. Apart from the existing relevant literature that make specific assumptions on the graph topology and/or the fraction of misbehaving agents, we show that the considered class of adverse conditions can be mitigated by the proposed adaptive control approach that utilises a local state emulator - even if all agents are misbehaving. Illustrative numerical examples are provided to demonstrate the theoretical findings.

  1. Monitoring the Performance of a Neuro-Adaptive Controller

    Science.gov (United States)

    Schumann, Johann; Gupta, Pramod

    2004-01-01

    Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.

  2. On Control Strategies for Responsive Architectural Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Parigi, Dario

    2012-01-01

    The present paper considers control of responsive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability. The general scope of...

  3. Design of a Model Reference Adaptive Controller for an Unmanned Air Vehicle

    Science.gov (United States)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper presents the "Adaptive Control Technology for Safe Flight (ACTS)" architecture, which consists of a non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off nominal ones. The design and implementation procedures of both controllers are presented. The aim of these procedures, which encompass both theoretical and practical considerations, is to develop a controller suitable for flight. The ACTS architecture is applied to the Generic Transport Model developed by NASA-Langley Research Center. The GTM is a dynamically scaled test model of a transport aircraft for which a flight-test article and a high-fidelity simulation are available. The nominal controller at the core of the ACTS architecture has a multivariable LQR-PI structure while the adaptive one has a direct, model reference structure. The main control surfaces as well as the throttles are used as control inputs. The inclusion of the latter alleviates the pilot s workload by eliminating the need for cancelling the pitch coupling generated by changes in thrust. Furthermore, the independent usage of the throttles by the adaptive controller enables their use for attitude control. Advantages and potential drawbacks of adaptation are demonstrated by performing high fidelity simulations of a flight-validated controller and of its adaptive augmentation.

  4. Benchmarking hardware architecture candidates for the NFIRAOS real-time controller

    Science.gov (United States)

    Smith, Malcolm; Kerley, Dan; Herriot, Glen; Véran, Jean-Pierre

    2014-07-01

    As a part of the trade study for the Narrow Field Infrared Adaptive Optics System, the adaptive optics system for the Thirty Meter Telescope, we investigated the feasibility of performing real-time control computation using a Linux operating system and Intel Xeon E5 CPUs. We also investigated a Xeon Phi based architecture which allows higher levels of parallelism. This paper summarizes both the CPU based real-time controller architecture and the Xeon Phi based RTC. The Intel Xeon E5 CPU solution meets the requirements and performs the computation for one AO cycle in an average of 767 microseconds. The Xeon Phi solution did not meet the 1200 microsecond time requirement and also suffered from unpredictable execution times. More detailed benchmark results are reported for both architectures.

  5. A flexible architecture for advanced process control solutions

    Science.gov (United States)

    Faron, Kamyar; Iourovitski, Ilia

    2005-05-01

    Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue

  6. Pilot-Induced Oscillation Suppression by Using 1 Adaptive Control

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2012-01-01

    research activities that aim to alleviate this problem. In this paper, the L1 adaptive controller has been introduced to suppress the PIO, which is caused by rate limiting and pure time delay. Due to its architecture, the L1 adaptive controller will achieve a desired response with fast adaptation. The analysis of PIO and its suppression by L1 adaptive controller are presented in detail in the paper. The simulation results indicate that the L1 adaptive control is efficient in solving this kind of problem.

  7. Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies.

    Science.gov (United States)

    Huber, B; Whibley, A; Poul, Y L; Navarro, N; Martin, A; Baxter, S; Shah, A; Gilles, B; Wirth, T; McMillan, W O; Joron, M

    2015-05-01

    Understanding the genetic architecture of adaptive traits has been at the centre of modern evolutionary biology since Fisher; however, evaluating how the genetic architecture of ecologically important traits influences their diversification has been hampered by the scarcity of empirical data. Now, high-throughput genomics facilitates the detailed exploration of variation in the genome-to-phenotype map among closely related taxa. Here, we investigate the evolution of wing pattern diversity in Heliconius, a clade of neotropical butterflies that have undergone an adaptive radiation for wing-pattern mimicry and are influenced by distinct selection regimes. Using crosses between natural wing-pattern variants, we used genome-wide restriction site-associated DNA (RAD) genotyping, traditional linkage mapping and multivariate image analysis to study the evolution of the architecture of adaptive variation in two closely related species: Heliconius hecale and H. ismenius. We implemented a new morphometric procedure for the analysis of whole-wing pattern variation, which allows visualising spatial heatmaps of genotype-to-phenotype association for each quantitative trait locus separately. We used the H. melpomene reference genome to fine-map variation for each major wing-patterning region uncovered, evaluated the role of candidate genes and compared genetic architectures across the genus. Our results show that, although the loci responding to mimicry selection are highly conserved between species, their effect size and phenotypic action vary throughout the clade. Multilocus architecture is ancestral and maintained across species under directional selection, whereas the single-locus (supergene) inheritance controlling polymorphism in H. numata appears to have evolved only once. Nevertheless, the conservatism in the wing-patterning toolkit found throughout the genus does not appear to constrain phenotypic evolution towards local adaptive optima.

  8. ADAPTING TO AND ADAPTED BY ADAPT-R - ARCHITECTURE, DESIGN AND ART PRACTICE TRAINING-RESEARCH

    Directory of Open Access Journals (Sweden)

    Johan Verbeke

    2014-12-01

    Full Text Available Recently Schools of Architecture have started paying much more attention to their research endeavors. Especially research by design is high on the agenda as well as research projects where experience and knowledge from creative practice plays a key role as a research method. This paper introduces the ADAPT-r project. The project acronym stands for Architecture, Design, Arts Practice training Research. ADAPT-r is funded under the 7th Framework of Research of the European Commission. The project partners stimulate and explore the potential of creative practice research . This paper reports on its setting and first experiences and results and tries to contribute to an ongoing debate and framing of the development.

  9. An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation

    Science.gov (United States)

    Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.

    2018-01-01

    This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.

  10. Conceptual service architecture for adaptive mobile location services

    DEFF Research Database (Denmark)

    Schou, Saowanee

    2008-01-01

    This paper presents a conceptual service architecture for adaptive mobile location services designed to be used on the next generation wireless network. The developed service architecture consists of a set of concepts, principles, rules and guidelines for constructing, deploying, and operating...... the mobile location services. The service architecture identifies the components required to build the mobile location services and describes how these components are combined and how they should interact. As a means of exploring the developed conceptual service architecture, an illustrative case study...... of a new-concept tracking service is chosen to demonstrate the applicability of the architecture. Through the case study, the service request and response processes will be illustrated. New possible service functions provided by the developed service architecture will be examined and discussed...

  11. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun

    2012-10-16

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo-diode current were analyzed in detail. The proposed architecture can extend the DR for about 20N log2 dB at the high end of Photo-diode current with an N bit Up-Down counter. At the low end, it can compensate for the larger readout noise by employing Extended Counting. The Adaptive Delta-Sigma architecture employing a 4-bit Up-Down counter achieved about 160dB in the DR, with a Peak SNR (PSNR) of 80dB at the high end. Compared to the other HDR architectures, the Adaptive Delta-Sigma based architecture provides the widest DR with the best SNR performance in the extended range.

  12. Distributed sensor architecture for intelligent control that supports quality of control and quality of service.

    Science.gov (United States)

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-02-25

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  13. Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service

    Directory of Open Access Journals (Sweden)

    Jose-Luis Poza-Lujan

    2015-02-01

    Full Text Available This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS parameters and the optimization of control using Quality of Control (QoC parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS communication standard as proposed by the Object Management Group (OMG. As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  14. A generic architecture for an adaptive, interoperable and intelligent type 2 diabetes mellitus care system.

    Science.gov (United States)

    Uribe, Gustavo A; Blobel, Bernd; López, Diego M; Schulz, Stefan

    2015-01-01

    Chronic diseases such as Type 2 Diabetes Mellitus (T2DM) constitute a big burden to the global health economy. T2DM Care Management requires a multi-disciplinary and multi-organizational approach. Because of different languages and terminologies, education, experiences, skills, etc., such an approach establishes a special interoperability challenge. The solution is a flexible, scalable, business-controlled, adaptive, knowledge-based, intelligent system following a systems-oriented, architecture-centric, ontology-based and policy-driven approach. The architecture of real systems is described, using the basics and principles of the Generic Component Model (GCM). For representing the functional aspects of a system the Business Process Modeling Notation (BPMN) is used. The system architecture obtained is presented using a GCM graphical notation, class diagrams and BPMN diagrams. The architecture-centric approach considers the compositional nature of the real world system and its functionalities, guarantees coherence, and provides right inferences. The level of generality provided in this paper facilitates use case specific adaptations of the system. By that way, intelligent, adaptive and interoperable T2DM care systems can be derived from the presented model as presented in another publication.

  15. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  16. Architecture of a general purpose embedded Slow-Control Adapter ASIC for future high-energy physics experiments

    International Nuclear Information System (INIS)

    Gabrielli, Alessandro; Loddo, Flavio; Ranieri, Antonio; De Robertis, Giuseppe

    2008-01-01

    This work is aimed at defining the architecture of a new digital ASIC, namely Slow-Control Adapter (SCA), which will be designed in a commercial 130-nm CMOS technology. This chip will be embedded within a high-speed data acquisition optical link (GBT) to control and monitor the front-end electronics in future high-energy physics experiments. The GBT link provides a transparent transport layer between the SCA and control electronics in the counting room. The proposed SCA supports a variety of common bus protocols to interface with end-user general-purpose electronics. Between the GBT and the SCA a standard 100 Mb/s IEEE-802.3 compatible protocol will be implemented. This standard protocol allows off-line tests of the prototypes using commercial components that support the same standard. The project is justified because embedded applications in modern large HEP experiments require particular care to assure the lowest possible power consumption, still offering the highest reliability demanded by very large particle detectors.

  17. Architecture of a general purpose embedded Slow-Control Adapter ASIC for future high-energy physics experiments

    Science.gov (United States)

    Gabrielli, Alessandro; Loddo, Flavio; Ranieri, Antonio; De Robertis, Giuseppe

    2008-10-01

    This work is aimed at defining the architecture of a new digital ASIC, namely Slow-Control Adapter (SCA), which will be designed in a commercial 130-nm CMOS technology. This chip will be embedded within a high-speed data acquisition optical link (GBT) to control and monitor the front-end electronics in future high-energy physics experiments. The GBT link provides a transparent transport layer between the SCA and control electronics in the counting room. The proposed SCA supports a variety of common bus protocols to interface with end-user general-purpose electronics. Between the GBT and the SCA a standard 100 Mb/s IEEE-802.3 compatible protocol will be implemented. This standard protocol allows off-line tests of the prototypes using commercial components that support the same standard. The project is justified because embedded applications in modern large HEP experiments require particular care to assure the lowest possible power consumption, still offering the highest reliability demanded by very large particle detectors.

  18. HoneyComb: An Application-Driven Online Adaptive Reconfigurable Hardware Architecture

    Directory of Open Access Journals (Sweden)

    Alexander Thomas

    2012-01-01

    Full Text Available Since the introduction of the first reconfigurable devices in 1985 the field of reconfigurable computing developed a broad variety of architectures from fine-grained to coarse-grained types. However, the main disadvantages of the reconfigurable approaches, the costs in area, and power consumption, are still present. This contribution presents a solution for application-driven adaptation of our reconfigurable architecture at register transfer level (RTL to reduce the resource requirements and power consumption while keeping the flexibility and performance for a predefined set of applications. Furthermore, implemented runtime adaptive features like online routing and configuration sequencing will be presented and discussed. A presentation of the prototype chip of this architecture designed in 90 nm standard cell technology manufactured by TSMC will conclude this contribution.

  19. 3D-SoftChip: A Novel Architecture for Next-Generation Adaptive Computing Systems

    Directory of Open Access Journals (Sweden)

    Lee Mike Myung-Ok

    2006-01-01

    Full Text Available This paper introduces a novel architecture for next-generation adaptive computing systems, which we term 3D-SoftChip. The 3D-SoftChip is a 3-dimensional (3D vertically integrated adaptive computing system combining state-of-the-art processing and 3D interconnection technology. It comprises the vertical integration of two chips (a configurable array processor and an intelligent configurable switch through an indium bump interconnection array (IBIA. The configurable array processor (CAP is an array of heterogeneous processing elements (PEs, while the intelligent configurable switch (ICS comprises a switch block, 32-bit dedicated RISC processor for control, on-chip program/data memory, data frame buffer, along with a direct memory access (DMA controller. This paper introduces the novel 3D-SoftChip architecture for real-time communication and multimedia signal processing as a next-generation computing system. The paper further describes the advanced HW/SW codesign and verification methodology, including high-level system modeling of the 3D-SoftChip using SystemC, being used to determine the optimum hardware specification in the early design stage.

  20. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    Science.gov (United States)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  1. Adaptive Architecture and the Prevention of Infections in Hospitals

    Directory of Open Access Journals (Sweden)

    Khai Tran van

    2016-12-01

    Full Text Available Researches has shown that climate change may spark global epidemics. The objectives of hospital design consistent with a high standard of sustainable architecture must not only be the tropicalization of buildings but also a system to confront the impact of infectious diseases which arise from climate change. Infection control is the discipline concerned with preventing nosocomial or healthcare-associated infection. Infection control addresses factors related to the spread of infections within the hospital building, including prevention, monitoring and management measures. As the application of new technologies such as the Heating, ventilation and air conditioning system (HVAC with high-efficiency particulate arrestance (HEPA has application range within stamina, the study suggests the need to adopt an integrated adaptive hospital design strategy to prevent infection.

  2. Logs Analysis of Adapted Pedagogical Scenarios Generated by a Simulation Serious Game Architecture

    Science.gov (United States)

    Callies, Sophie; Gravel, Mathieu; Beaudry, Eric; Basque, Josianne

    2017-01-01

    This paper presents an architecture designed for simulation serious games, which automatically generates game-based scenarios adapted to learner's learning progression. We present three central modules of the architecture: (1) the learner model, (2) the adaptation module and (3) the logs module. The learner model estimates the progression of the…

  3. Nonlinear adaptive inverse control via the unified model neural network

    Science.gov (United States)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  4. Development of fault tolerant adaptive control laws for aerospace systems

    Science.gov (United States)

    Perez Rocha, Andres E.

    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.

  5. Verification and Tuning of an Adaptive Controller for an Unmanned Air Vehicle

    Science.gov (United States)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper focuses on the analysis and tuning of a controller based on the Adaptive Control Technology for Safe Flight (ACTS) architecture. The ACTS architecture consists of a nominal, non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make the controller s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart. The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability of the controller to track pilot commands, the ability of the controller to keep the aircraft s state within the reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.

  6. Evaluating Architecture Implementation Alternatives based on Adaptability Concerns

    NARCIS (Netherlands)

    Aksit, Mehmet; Tekinerdogan, B.

    Software is rarely designed for ultimate adaptability, performance or reusability but rather it is a compromise of multiple considerations. Even for a simple architecture specification, one may identify many alternative implementations. This paper makes an attempt to depict the space of

  7. Mitigation/Adaptation: landscape architecture meets sustainable energy transition

    NARCIS (Netherlands)

    Stremke, S.

    2009-01-01

    Mitigation of climate change and adaptation to renewable energy sources are among the emerging fields of activity in landscape architecture. If landscape architects recognize the need for sustainable development on the basis of renewable energy sources, then how can we contribute to sustainable and

  8. ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1995-02-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  9. An Adaptive Critic Approach to Reference Model Adaptation

    Science.gov (United States)

    Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.

    2003-01-01

    Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.

  10. Multiple model adaptive control with mixing

    Science.gov (United States)

    Kuipers, Matthew

    Despite the remarkable theoretical accomplishments and successful applications of adaptive control, the field is not sufficiently mature to solve challenging control problems requiring strict performance and safety guarantees. Towards addressing these issues, a novel deterministic multiple-model adaptive control approach called adaptive mixing control is proposed. In this approach, adaptation comes from a high-level system called the supervisor that mixes into feedback a number of candidate controllers, each finely-tuned to a subset of the parameter space. The mixing signal, the supervisor's output, is generated by estimating the unknown parameters and, at every instant of time, calculating the contribution level of each candidate controller based on certainty equivalence. The proposed architecture provides two characteristics relevant to solving stringent, performance-driven applications. First, the full-suite of linear time invariant control tools is available. A disadvantage of conventional adaptive control is its restriction to utilizing only those control laws whose solutions can be feasibly computed in real-time, such as model reference and pole-placement type controllers. Because its candidate controllers are computed off line, the proposed approach suffers no such restriction. Second, the supervisor's output is smooth and does not necessarily depend on explicit a priori knowledge of the disturbance model. These characteristics can lead to improved performance by avoiding the unnecessary switching and chattering behaviors associated with some other multiple adaptive control approaches. The stability and robustness properties of the adaptive scheme are analyzed. It is shown that the mean-square regulation error is of the order of the modeling error. And when the parameter estimate converges to its true value, which is guaranteed if a persistence of excitation condition is satisfied, the adaptive closed-loop system converges exponentially fast to a closed

  11. Analysis and Design of a Context Adaptable SAD/MSE Architecture

    Directory of Open Access Journals (Sweden)

    Arvind Sudarsanam

    2009-01-01

    Full Text Available Design of flexible multimedia accelerators that can cater to multiple algorithms is being aggressively pursued in the media processors community. Such an approach is justified in the era of sub-45 nm technology where an increasingly dominating leakage power component is forcing designers to make the best possible use of on-chip resources. In this paper we present an analysis of two commonly used window-based operations (sum of absolute differences and mean squared error across a variety of search patterns and block sizes (2×3, 5×5, etc.. We propose a context adaptable architecture that has (i configurable 2D systolic array and (ii 2D Configurable Register Array (CRA. CRA can cater to variable pixel access patterns while reusing fetched pixels across search windows. Benefits of proposed architecture when compared to 15 other published architectures are adaptability, high throughput, and low latency at a cost of increased footprint, when ported on a Xilinx FPGA.

  12. Adaptive Backstepping Control of Lightweight Tower Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Borup, Kasper Trolle; Niemann, Hans Henrik

    2015-01-01

    the angular deflection of the tower with respect to the vertical axis in response to variations in wind speed. The controller is shown to guarantee asymptotic tracking of the reference trajectory. The performance of the control system is evaluated through deterministic and stochastic simulations including......This paper investigates the feasibility of operating a wind turbine with lightweight tower in the full load region exploiting an adaptive nonlinear controller that allows the turbine to dynamically lean against the wind while maintaining nominal power output. The use of lightweight structures...... for towers and foundations would greatly reduce the construction cost of the wind turbine, however extra features ought be included in the control system architecture to avoid tower collapse. An adaptive backstepping collective pitch controller is proposed for tower point tracking control, i.e. to modify...

  13. Adaptive Control with Reference Model Modification

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example

  14. STABLE ADAPTIVE CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITHOUT USE OF A SUPERVISORY TERM IN THE CONTROL LAW

    Directory of Open Access Journals (Sweden)

    MOHAMED BAHITA

    2012-02-01

    Full Text Available In this paper, a direct adaptive control scheme for a class of nonlinear systems is proposed. The architecture employs a Gaussian radial basis function (RBF network to construct an adaptive controller. The parameters of the adaptive controller are adapted and changed according to a law derived using Lyapunov stability theory. The centres of the RBF network are adapted on line using the k-means algorithm. Asymptotic Lyapunov stability is established without the use of a supervisory (compensatory term in the control law and with the tracking errors converging to a neighbourhood of the origin. Finally, a simulation is provided to explore the feasibility of the proposed neuronal controller design method.

  15. L(sub 1) Adaptive Control Design for NASA AirSTAR Flight Test Vehicle

    Science.gov (United States)

    Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira; Zou, Xiaotian

    2009-01-01

    In this paper we present a new L(sub 1) adaptive control architecture that directly compensates for matched as well as unmatched system uncertainty. To evaluate the L(sub 1) adaptive controller, we take advantage of the flexible research environment with rapid prototyping and testing of control laws in the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. We apply the L(sub 1) adaptive control laws to the subscale turbine powered Generic Transport Model. The presented results are from a full nonlinear simulation of the Generic Transport Model and some preliminary pilot evaluations of the L(sub 1) adaptive control law.

  16. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    Science.gov (United States)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  17. Multi-agent based distributed control architecture for microgrid energy management and optimization

    International Nuclear Information System (INIS)

    Basir Khan, M. Reyasudin; Jidin, Razali; Pasupuleti, Jagadeesh

    2016-01-01

    Highlights: • A new multi-agent based distributed control architecture for energy management. • Multi-agent coordination based on non-cooperative game theory. • A microgrid model comprised of renewable energy generation systems. • Performance comparison of distributed with conventional centralized control. - Abstract: Most energy management systems are based on a centralized controller that is difficult to satisfy criteria such as fault tolerance and adaptability. Therefore, a new multi-agent based distributed energy management system architecture is proposed in this paper. The distributed generation system is composed of several distributed energy resources and a group of loads. A multi-agent system based decentralized control architecture was developed in order to provide control for the complex energy management of the distributed generation system. Then, non-cooperative game theory was used for the multi-agent coordination in the system. The distributed generation system was assessed by simulation under renewable resource fluctuations, seasonal load demand and grid disturbances. The simulation results show that the implementation of the new energy management system proved to provide more robust and high performance controls than conventional centralized energy management systems.

  18. Bayesian nonparametric adaptive control using Gaussian processes.

    Science.gov (United States)

    Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A

    2015-03-01

    Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.

  19. ELT-scale Adaptive Optics real-time control with thes Intel Xeon Phi Many Integrated Core Architecture

    Science.gov (United States)

    Jenkins, David R.; Basden, Alastair; Myers, Richard M.

    2018-05-01

    We propose a solution to the increased computational demands of Extremely Large Telescope (ELT) scale adaptive optics (AO) real-time control with the Intel Xeon Phi Knights Landing (KNL) Many Integrated Core (MIC) Architecture. The computational demands of an AO real-time controller (RTC) scale with the fourth power of telescope diameter and so the next generation ELTs require orders of magnitude more processing power for the RTC pipeline than existing systems. The Xeon Phi contains a large number (≥64) of low power x86 CPU cores and high bandwidth memory integrated into a single socketed server CPU package. The increased parallelism and memory bandwidth are crucial to providing the performance for reconstructing wavefronts with the required precision for ELT scale AO. Here, we demonstrate that the Xeon Phi KNL is capable of performing ELT scale single conjugate AO real-time control computation at over 1.0kHz with less than 20μs RMS jitter. We have also shown that with a wavefront sensor camera attached the KNL can process the real-time control loop at up to 966Hz, the maximum frame-rate of the camera, with jitter remaining below 20μs RMS. Future studies will involve exploring the use of a cluster of Xeon Phis for the real-time control of the MCAO and MOAO regimes of AO. We find that the Xeon Phi is highly suitable for ELT AO real time control.

  20. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    Science.gov (United States)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance

  1. A Conceptual Architecture for Adaptive Human-Computer Interface of a PT Operation Platform Based on Context-Awareness

    Directory of Open Access Journals (Sweden)

    Qing Xue

    2014-01-01

    Full Text Available We present a conceptual architecture for adaptive human-computer interface of a PT operation platform based on context-awareness. This architecture will form the basis of design for such an interface. This paper describes components, key technologies, and working principles of the architecture. The critical contents covered context information modeling, processing, relationship establishing between contexts and interface design knowledge by use of adaptive knowledge reasoning, and visualization implementing of adaptive interface with the aid of interface tools technology.

  2. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  3. Thirty Meter Telescope (TMT) Narrow Field Infrared Adaptive Optics System (NFIRAOS) real-time controller preliminary architecture

    Science.gov (United States)

    Kerley, Dan; Smith, Malcolm; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi

    2016-08-01

    The Narrow Field Infrared Adaptive Optics System (NFIRAOS) is the first light Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). A critical component of NFIRAOS is the Real-Time Controller (RTC) subsystem which provides real-time wavefront correction by processing wavefront information to compute Deformable Mirror (DM) and Tip/Tilt Stage (TTS) commands. The National Research Council of Canada - Herzberg (NRC-H), in conjunction with TMT, has developed a preliminary design for the NFIRAOS RTC. The preliminary architecture for the RTC is comprised of several Linux-based servers. These servers are assigned various roles including: the High-Order Processing (HOP) servers, the Wavefront Corrector Controller (WCC) server, the Telemetry Engineering Display (TED) server, the Persistent Telemetry Storage (PTS) server, and additional testing and spare servers. There are up to six HOP servers that accept high-order wavefront pixels, and perform parallelized pixel processing and wavefront reconstruction to produce wavefront corrector error vectors. The WCC server performs low-order mode processing, and synchronizes and aggregates the high-order wavefront corrector error vectors from the HOP servers to generate wavefront corrector commands. The Telemetry Engineering Display (TED) server is the RTC interface to TMT and other subsystems. The TED server receives all external commands and dispatches them to the rest of the RTC servers and is responsible for aggregating several offloading and telemetry values that are reported to other subsystems within NFIRAOS and TMT. The TED server also provides the engineering GUIs and real-time displays. The Persistent Telemetry Storage (PTS) server contains fault tolerant data storage that receives and stores telemetry data, including data for Point-Spread Function Reconstruction (PSFR).

  4. ADAPTIVE REUSE FOR NEW SOCIAL AND MUNICIPAL FUNCTIONS AS AN ACCEPTABLE APPROACH FOR CONSERVATION OF INDUSTRIAL HERITAGE ARCHITECTURE IN THE CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Oleg Fetisov

    2016-04-01

    Full Text Available The present paper deals with a problem of conservation and adaptive reuse of industrial heritage architecture. The relevance and topicality of the problem of adaptive reuse of industrial heritage architecture for new social and municipal functions as the conservation concept are defined. New insights on the typology of industrial architecture are reviewed (e. g. global changes in all European industry, new concepts and technologies in manufacturing, new features of industrial architecture and their construction and typology, first results of industrialization and changes in the typology of industrial architecture in post-industrial period. General goals and tasks of conservation in context of adaptive reuse of industrial heritage architecture are defined (e. g. historical, architectural and artistic, technical. Adaptive reuse as an acceptable approach for conservation and new use is proposed and reviewed. Moreover, the logical model of adaptive reuse of industrial heritage architecture as an acceptable approach for new use has been developed. Consequently, three general methods for the conservation of industrial heritage architecture by the adaptive reuse approach are developed: historical, architectural and artistic, technical. Relevant functional methods' concepts (social concepts are defined and classified. General beneficial effect of the adaptive reuse approach is given. On the basis of analysis results of experience in adaptive reuse of industrial architecture with new social functions general conclusions are developed.

  5. Control Architecture of a 10 DOF Lower Limbs Exoskeleton for Gait Rehabilitation

    Directory of Open Access Journals (Sweden)

    Natasa Koceska

    2013-01-01

    Full Text Available This paper describes the control architecture of a 10 DOF (Degrees of Freedom lower limbs exoskeleton for the gait rehabilitation of patients with gait dysfunction. The system has 4 double-acting rod pneumatic actuators (two for each leg that control the hip and knee joints. The motion of each cylinder's piston is controlled by two proportional pressure valves, connected to both cylinder chambers. The control strategy has been specifically designed in order to ensure a proper trajectory control for guiding patient's legs along a fixed reference gait pattern. An adaptive fuzzy controller which is capable of compensating for the influence of the dry friction was successfully designed, implemented and tested on an embedded real-time PC/104. In order to verify the proposed control architecture, laboratory experiments without a patient were carried out and the results are reported here and discussed.

  6. Algebraic and adaptive learning in neural control systems

    Science.gov (United States)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  7. Distributed Control Architecture for Gas Turbine Engine. Chapter 4

    Science.gov (United States)

    Culley, Dennis; Garg, Sanjay

    2009-01-01

    The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.

  8. Control architectures for IT management

    International Nuclear Information System (INIS)

    Wang Ting

    2003-01-01

    This paper summaries the three financial control architectures for IT department in an enterprise or organization, they are unallocated cost center, allocated cost center and profit center, analyses the characteristics of them and in the end gives the detailed suggestions for choosing these control architectures. (authors)

  9. A Risk Management Architecture for Emergency Integrated Aircraft Control

    Science.gov (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  10. Guidance and Control Architecture Design and Demonstration for Low Ballistic Coefficient Atmospheric Entry

    Science.gov (United States)

    Swei, Sean

    2014-01-01

    We propose to develop a robust guidance and control system for the ADEPT (Adaptable Deployable Entry and Placement Technology) entry vehicle. A control-centric model of ADEPT will be developed to quantify the performance of candidate guidance and control architectures for both aerocapture and precision landing missions. The evaluation will be based on recent breakthroughs in constrained controllability/reachability analysis of control systems and constrained-based energy-minimum trajectory optimization for guidance development operating in complex environments.

  11. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  12. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture.

    Science.gov (United States)

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-09-16

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.

  13. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture

    Science.gov (United States)

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-01-01

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957

  14. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture

    Directory of Open Access Journals (Sweden)

    Song Zheng

    2017-09-01

    Full Text Available In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.

  15. A Workload-Adaptive and Reconfigurable Bus Architecture for Multicore Processors

    Directory of Open Access Journals (Sweden)

    Shoaib Akram

    2010-01-01

    Full Text Available Interconnection networks for multicore processors are traditionally designed to serve a diversity of workloads. However, different workloads or even different execution phases of the same workload may benefit from different interconnect configurations. In this paper, we first motivate the need for workload-adaptive interconnection networks. Subsequently, we describe an interconnection network framework based on reconfigurable switches for use in medium-scale (up to 32 cores shared memory multicore processors. Our cost-effective reconfigurable interconnection network is implemented on a traditional shared bus interconnect with snoopy-based coherence, and it enables improved multicore performance. The proposed interconnect architecture distributes the cores of the processor into clusters with reconfigurable logic between clusters to support workload-adaptive policies for inter-cluster communication. Our interconnection scheme is complemented by interconnect-aware scheduling and additional interconnect optimizations which help boost the performance of multiprogramming and multithreaded workloads. We provide experimental results that show that the overall throughput of multiprogramming workloads (consisting of two and four programs can be improved by up to 60% with our configurable bus architecture. Similar gains can be achieved also for multithreaded applications as shown by further experiments. Finally, we present the performance sensitivity of the proposed interconnect architecture on shared memory bandwidth availability.

  16. RF Sub-sampling Receiver Architecture based on Milieu Adapting Techniques

    DEFF Research Database (Denmark)

    Behjou, Nastaran; Larsen, Torben; Jensen, Ole Kiel

    2012-01-01

    A novel sub-sampling based architecture is proposed which has the ability of reducing the problem of image distortion and improving the signal to noise ratio significantly. The technique is based on sensing the environment and adapting the sampling rate of the receiver to the best possible...

  17. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  18. An adaptive neuro-fuzzy controller for mold level control in continuous casting

    International Nuclear Information System (INIS)

    Zolghadri Jahromi, M.; Abolhassan Tash, F.

    2001-01-01

    Mold variations in continuous casting are believed to be the main cause of surface defects in the final product. Although a Pid controller is well capable of controlling the level under normal conditions, it cannot prevent large variations of mold level when a disturbance occurs in the form of nozzle unclogging. In this paper, dual controller architecture is presented, a Pid controller is used as the main controller of the plant and an adaptive neuro-fuzzy controller is used as an auxiliary controller to help the Pid during disturbed phases. The control is passed back to the Pid controller after the disturbance is being dealt with. Simulation results prove the effectiveness of this control strategy in reducing mold level variations during the unclogging period

  19. High-throughput sample adaptive offset hardware architecture for high-efficiency video coding

    Science.gov (United States)

    Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin

    2018-03-01

    A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.

  20. Access control and service-oriented architectures

    NARCIS (Netherlands)

    Leune, C.J.

    2007-01-01

    Access Control and Service-Oriented Architectures" investigates in which way logical access control can be achieved effectively, in particular in highly dynamic environments such as service-oriented architectures (SOA's). The author combines state-of-the-art best-practice and projects these onto the

  1. An architecture for implementation of multivariable controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    1999-01-01

    Browse > Conferences> American Control Conference, Prev | Back to Results | Next » An architecture for implementation of multivariable controllers 786292 searchabstract Niemann, H. ; Stoustrup, J. ; Dept. of Autom., Tech. Univ., Lyngby This paper appears in: American Control Conference, 1999....... Proceedings of the 1999 Issue Date : 1999 Volume : 6 On page(s): 4029 - 4033 vol.6 Location: San Diego, CA Meeting Date : 02 Jun 1999-04 Jun 1999 Print ISBN: 0-7803-4990-3 References Cited: 7 INSPEC Accession Number: 6403075 Digital Object Identifier : 10.1109/ACC.1999.786292 Date of Current Version : 06...... august 2002 Abstract An architecture for implementation of multivariable controllers is presented in this paper. The architecture is based on the Youla-Jabr-Bongiorno-Kucera parameterization of all stabilizing controllers. By using this architecture for implementation of multivariable controllers...

  2. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun; Kavusi, Sam; Salama, Khaled N.

    2012-01-01

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo

  3. The control architecture of the D0 experiment

    International Nuclear Information System (INIS)

    J. Fredrick Bartlett et al.

    2002-01-01

    From a controls viewpoint, contemporary high energy physics collider detectors are comparable in complexity to small to medium size accelerators: however, their controls requirements often differ significantly. D0, one of two collider experiments at Fermilab, has recently started a second, extended running period that will continue for the next five years. EPICS [1], an integrated set of software building blocks for implementing a distributed control system, has been adapted to satisfy the slow controls needs of the D0 detector by (1) extending the support for new device types and an additional field bus, (2) by the addition of a global event reporting system that augments the existing EPICS alarm support, and (3) by the addition of a centralized database with supporting tools for defining the configuration of the control system. This paper discusses the control architecture of the current D0 experiment, how the EPICS system was extended to meet the control requirements of a large, high-energy physics detector, and how a formal control system contributes to the management of detector operations

  4. Towards Adaptive Evolutionary Architecture

    DEFF Research Database (Denmark)

    Bak, Sebastian HOlt; Rask, Nina; Risi, Sebastian

    2016-01-01

    This paper presents first results from an interdisciplinary project, in which the fields of architecture, philosophy and artificial life are combined to explore possible futures of architecture. Through an interactive evolutionary installation, called EvoCurtain, we investigate aspects of how...... to the development of designs tailored to the individual preferences of inhabitants, changing the roles of architects and designers entirely. Architecture-as-it-could-be is a philosophical approach conducted through artistic methods to anticipate the technological futures of human-centered development within...

  5. Adaptive Monitoring and Control Architectures for Power Distribution Grids over Heterogeneous ICT Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Hägerling, Christian; Kurtz, Fabian M.

    2014-01-01

    The expected growth in distributed generation will significantly affect the operation and control of today’s distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses) and the q......The expected growth in distributed generation will significantly affect the operation and control of today’s distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses...... to the reliability due to the stochastic behaviour found in such networks. Therefore, key concepts are presented in this paper targeting the support of proper smart grid control in these network environments. An overview on the required Information and Communication Technology (ICT) architecture and its...

  6. L1 Adaptive Control Augmentation System with Application to the X-29 Lateral/Directional Dynamics: A Multi-Input Multi-Output Approach

    Science.gov (United States)

    Griffin, Brian Joseph; Burken, John J.; Xargay, Enric

    2010-01-01

    This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.

  7. The implementation of common object request broker architecture (CORBA) for controlling robot arm via web

    International Nuclear Information System (INIS)

    Syed Mahamad Zuhdi Amin; Mohd Yazid Idris; Wan Mohd Nasir Wan Kadir

    2001-01-01

    This paper presents the employment of the Common Object Request Broker Architecture (CORBA) technology in the implementation of our distributed Arm Robot Controller (ARC). CORBA is an industrial standard architecture based on distributed abstract object model, which is developed by Object Management Group (OMG). The architecture consists of five components i.e. Object Request Broker (ORB), Interface Definition Language (IDL), Dynamic Invocation Interface (DII), Interface Repositories (IR) and Object adapter (OA). CORBA objects are different from typical programming objects in three ways i.e. they can be executed on any platform, located anywhere on the network and written in any language that supports IDL mapping. In the implementation of the system, 5 degree of freedom (DOF) arm robot RCS 6.0 and Java as a programming mapping to the CORBA IDL. By implementing this architecture, the objects in the server machine can be distributed over the network in order to run the controller. the ultimate goal for our ARC system is to demonstrate concurrent execution of multiple arm robots through multiple instantiations of distributed object components. (Author)

  8. An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation

    Science.gov (United States)

    Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan

    2008-01-01

    This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.

  9. Extending and implementing the Self-adaptive Virtual Processor for distributed memory architectures

    NARCIS (Netherlands)

    van Tol, M.W.; Koivisto, J.

    2011-01-01

    Many-core architectures of the future are likely to have distributed memory organizations and need fine grained concurrency management to be used effectively. The Self-adaptive Virtual Processor (SVP) is an abstract concurrent programming model which can provide this, but the model and its current

  10. Partially Decentralized Control Architectures for Satellite Formations

    Science.gov (United States)

    Carpenter, J. Russell; Bauer, Frank H.

    2002-01-01

    In a partially decentralized control architecture, more than one but less than all nodes have supervisory capability. This paper describes an approach to choosing the number of supervisors in such au architecture, based on a reliability vs. cost trade. It also considers the implications of these results for the design of navigation systems for satellite formations that could be controlled with a partially decentralized architecture. Using an assumed cost model, analytic and simulation-based results indicate that it may be cheaper to achieve a given overall system reliability with a partially decentralized architecture containing only a few supervisors, than with either fully decentralized or purely centralized architectures. Nominally, the subset of supervisors may act as centralized estimation and control nodes for corresponding subsets of the remaining subordinate nodes, and act as decentralized estimation and control peers with respect to each other. However, in the context of partially decentralized satellite formation control, the absolute positions and velocities of each spacecraft are unique, so that correlations which make estimates using only local information suboptimal only occur through common biases and process noise. Covariance and monte-carlo analysis of a simplified system show that this lack of correlation may allow simplification of the local estimators while preserving the global optimality of the maneuvers commanded by the supervisors.

  11. The adaptive nature of the human neurocognitive architecture: an alternative model.

    Science.gov (United States)

    La Cerra, P; Bingham, R

    1998-09-15

    The model of the human neurocognitive architecture proposed by evolutionary psychologists is based on the presumption that the demands of hunter-gatherer life generated a vast array of cognitive adaptations. Here we present an alternative model. We argue that the problems inherent in the biological markets of ancestral hominids and their mammalian predecessors would have required an adaptively flexible, on-line information-processing system, and would have driven the evolution of a functionally plastic neural substrate, the neocortex, rather than a confederation of evolutionarily prespecified social cognitive adaptations. In alignment with recent neuroscientific evidence, we suggest that human cognitive processes result from the activation of constructed cortical representational networks, which reflect probabilistic relationships between sensory inputs, behavioral responses, and adaptive outcomes. The developmental construction and experiential modification of these networks are mediated by subcortical circuitries that are responsive to the life history regulatory system. As a consequence, these networks are intrinsically adaptively constrained. The theoretical and research implications of this alternative evolutionary model are discussed.

  12. ADAPTIVE REUSE FOR NEW SOCIAL AND MUNICIPAL FUNCTIONS AS AN ACCEPTABLE APPROACH FOR CONSERVATION OF INDUSTRIAL HERITAGE ARCHITECTURE IN THE CZECH REPUBLIC

    OpenAIRE

    Oleg Fetisov

    2016-01-01

    The present paper deals with a problem of conservation and adaptive reuse of industrial heritage architecture. The relevance and topicality of the problem of adaptive reuse of industrial heritage architecture for new social and municipal functions as the conservation concept are defined. New insights on the typology of industrial architecture are reviewed (e. g. global changes in all European industry, new concepts and technologies in manufacturing, new features of industrial architecture and...

  13. Adaptive homodyne phase discrimination and qubit measurement

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Whaley, K. Birgitta

    2007-01-01

    Fast and accurate measurement is a highly desirable, if not vital, feature of quantum computing architectures. In this work we investigate the usefulness of adaptive measurements in improving the speed and accuracy of qubit measurement. We examine a particular class of quantum computing architectures, ones based on qubits coupled to well-controlled harmonic oscillator modes (reminiscent of cavity QED), where adaptive schemes for measurement are particularly appropriate. In such architectures, qubit measurement is equivalent to phase discrimination for a mode of the electromagnetic field, and we examine adaptive techniques for doing this. In the final section we present a concrete example of applying adaptive measurement to the particularly well-developed circuit-QED architecture

  14. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  15. Agent Based Framework Architecture for Supporting Content Adaptation for Mobile Government

    Directory of Open Access Journals (Sweden)

    Hasan Omar Al-Sakran

    2013-01-01

    Full Text Available Rapid spread of smart mobile technology that supports internet access is transforming the way governments provide services to their citizens. Mobile devices have different capabilities based on the manufacturers and models. This paper proposes a new framework for adapting the content of M-government services using mobile agent technology. The framework is based on a mediation architecture that uses multiple mobile agents and XML as semi-structure mediation language. The flexibility of the mediation and XML provide an adaptive environment to stream data based on the capabilities of the device sending the query to the system.

  16. Implementation of high-speed–low-power adaptive finite impulse response filter with novel architecture

    Directory of Open Access Journals (Sweden)

    Manish Jaiswal

    2015-03-01

    Full Text Available An energy efficient high-speed adaptive finite impulse response filter with novel architecture is developed. Synthesis results along with novel architecture on different complementary metal–oxide semiconductor (CMOS families are presented. Analysis is performed using Artix-7, Spartan-6 and Virtex-4 for most popular adaptive least mean square filter for different orders such as N = 8, 16, 32. The presented work is done using MATLAB (2013b and Xilinx (14.2. From the synthesis results, it can be found that CMOS (28 nm achieves the lowest power and critical path delay compared to others, and thus proves its efficiency in terms of energy. Different parameters are considered such as look up tables and input–output blocks, along with their optimised results.

  17. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including......A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...

  18. An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration Architecture Based on Redundant Measurement Noise Covariance Estimation.

    Science.gov (United States)

    Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan

    2017-09-05

    The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes.

  19. Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb.

    Science.gov (United States)

    Dudley-Javoroski, S; Petrie, M A; McHenry, C L; Amelon, R E; Saha, P K; Shields, R K

    2016-03-01

    This study examined the effect of a controlled dose of vibration upon bone density and architecture in people with spinal cord injury (who eventually develop severe osteoporosis). Very sensitive computed tomography (CT) imaging revealed no effect of vibration after 12 months, but other doses of vibration may still be useful to test. The purposes of this report were to determine the effect of a controlled dose of vibratory mechanical input upon individual trabecular bone regions in people with chronic spinal cord injury (SCI) and to examine the longitudinal bone architecture changes in both the acute and chronic state of SCI. Participants with SCI received unilateral vibration of the constrained lower limb segment while sitting in a wheelchair (0.6g, 30 Hz, 20 min, three times weekly). The opposite limb served as a control. Bone mineral density (BMD) and trabecular micro-architecture were measured with high-resolution multi-detector CT. For comparison, one participant was studied from the acute (0.14 year) to the chronic state (2.7 years). Twelve months of vibration training did not yield adaptations of BMD or trabecular micro-architecture for the distal tibia or the distal femur. BMD and trabecular network length continued to decline at several distal femur sub-regions, contrary to previous reports suggesting a "steady state" of bone in chronic SCI. In the participant followed from acute to chronic SCI, BMD and architecture decline varied systematically across different anatomical segments of the tibia and femur. This study supports that vibration training, using this study's dose parameters, is not an effective anti-osteoporosis intervention for people with chronic SCI. Using a high-spatial-resolution CT methodology and segmental analysis, we illustrate novel longitudinal changes in bone that occur after spinal cord injury.

  20. Controlling material reactivity using architecture

    Science.gov (United States)

    Sullivan, Kyle

    2017-06-01

    The reactivity of thermites can be tailored through selection of several parameters, and can range from very slow burns to rapid deflagrations. 3D printing is a rapidly emerging field, and offers the potential to build architected parts. Here we sought to explore whether controlling such features could be a suitable path forward for gaining additional control of the reactivity. This talk discusses several new methods for preparing thermite samples with controlled architectures using 3D printing. Additionally, we demonstrate that the architecture can play a role in the reactivity of an object. Our results suggest that architecture can be used to tailor the convective and/or advective energy transport during a deflagration, thus enhancing or retarding the reaction. The results are promising in that they give researchers an additional way of controlling the energy release rate without defaulting to the conventional approach of changing the formulation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-708525. In collaboration with: Cheng Zhu, Eric Duoss, Matt Durban, Alex Gash, Alexandra Golobic, Michael Grapes, David Kolesky, Joshua Kuntz, Jennifer Lewis, Christopher Spadaccini; LAWRENCE LIVERMORE NATIONAL LAB.

  1. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    the investigations of lighting scenarios carried out in two test installations: White Cube and White Box. The test installations are discussed as large-scale experiential instruments. In these test installations we examine what could potentially occur when light using LED technology is integrated and distributed......Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  2. Adaptive Optics Simulation for the World's Largest Telescope on Multicore Architectures with Multiple GPUs

    KAUST Repository

    Ltaief, Hatem; Gratadour, Damien; Charara, Ali; Gendron, Eric

    2016-01-01

    We present a high performance comprehensive implementation of a multi-object adaptive optics (MOAO) simulation on multicore architectures with hardware accelerators in the context of computational astronomy. This implementation will be used

  3. Launch Vehicle Control Center Architectures

    Science.gov (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  4. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a ''standard model''. The ''standard model'' consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the ''standard model'' to determine if the requirements of ''non-standard'' architectures can be met. Several possible extensions to the ''standard model'' are suggested including software as well as the hardware architectural feature

  5. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    Science.gov (United States)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  6. Distributed and decentralized control architectures for converter-interfaced microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Wu, Dan; Shafiee, Qobad

    2017-01-01

    This paper gives a summary on recently available technologies for decentralized and distributed control of microgrids. They can be classified into two general categories: 1) power line communication based architectures and 2) multi-agent based architectures. The essential control methods and info......This paper gives a summary on recently available technologies for decentralized and distributed control of microgrids. They can be classified into two general categories: 1) power line communication based architectures and 2) multi-agent based architectures. The essential control methods...... and information sharing algorithms applied in these architectures are reviewed and examined in a hierarchical manner, in order to point out benefits they will bring to future microgrid applications. The paper is concluded with a summary on existing methods and a discussion on future development trends....

  7. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a open-quotes standard modelclose quotes. The open-quotes standard modelclose quotes consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the open-quotes standard modelclose quotes to determine if the requirements of open-quotes non-standardclose quotes architectures can be met. Several possible extensions to the open-quotes standard modelclose quotes are suggested including software as well as the hardware architectural features

  8. Architecture of conference control functions

    Science.gov (United States)

    Kausar, Nadia; Crowcroft, Jon

    1999-11-01

    Conference control is an integral part in many-to-many communications that is used to manage and co-ordinate multiple users in conferences. There are different types of conferences which require different types of control. Some of the features of conference control may be user invoked while others are for internal management of a conference. In recent years, ITU (International Telecommunication Union) and IETF (Internet Engineering Task Force) have standardized two main models of conferencing, each system providing a set of conference control functionalities that are not easily provided in the other one. This paper analyzes the main activities appropriate for different types of conferences and presents an architecture for conference control called GCCP (Generic Conference Control Protocol). GCCP interworks different types of conferencing and provides a set of conference control functions that can be invoked by users directly. As an example of interworking, interoperation of IETF's SIP and ITU's H.323 call control functions have been examined here. This paper shows that a careful analysis of a conferencing architecture can provide a set of control functions essential for any group communication model that can be extensible if needed.

  9. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    Science.gov (United States)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  10. Different micromanipulation applications based on common modular control architecture

    Science.gov (United States)

    Sipola, Risto; Vallius, Tero; Pudas, Marko; Röning, Juha

    2010-01-01

    This paper validates a previously introduced scalable modular control architecture and shows how it can be used to implement research equipment. The validation is conducted by presenting different kinds of micromanipulation applications that use the architecture. Conditions of the micro-world are very different from those of the macro-world. Adhesive forces are significant compared to gravitational forces when micro-scale objects are manipulated. Manipulation is mainly conducted by automatic control relying on haptic feedback provided by force sensors. The validated architecture is a hierarchical layered hybrid architecture, including a reactive layer and a planner layer. The implementation of the architecture is modular, and the architecture has a lot in common with open architectures. Further, the architecture is extensible, scalable, portable and it enables reuse of modules. These are the qualities that we validate in this paper. To demonstrate the claimed features, we present different applications that require special control in micrometer, millimeter and centimeter scales. These applications include a device that measures cell adhesion, a device that examines properties of thin films, a device that measures adhesion of micro fibers and a device that examines properties of submerged gel produced by bacteria. Finally, we analyze how the architecture is used in these applications.

  11. Speed control of permanent magnet excitation transverse flux linear motor by using adaptive neuro-fuzzy controller

    Energy Technology Data Exchange (ETDEWEB)

    Hasanien, Hany M., E-mail: Hanyhasanien@ieee.or [Dept. of Elec. Power and Machines, Faculty of Eng., Ain-shams Univ. Cairo (Egypt); Muyeen, S.M. [Department of Electrical Engineering, Petroleum Institute, Abu Dhabi (United Arab Emirates); Tamura, Junji [Department of EEE, Kitami Institute of Technology, 165 Koen Cho, Kitami 090-8507, Hokkaido (Japan)

    2010-12-15

    This paper presents a novel adaptive neuro-fuzzy controller applies on transverse flux linear motor for controlling its speed. The proposed controller presents fuzzy logic controller with self tuning scaling factors based on artificial neural network structure. It has two input variables and one control output variable. Firstly the fuzzy logic control rules are described then NN architecture is represented to self tune the output scaling factors of the controller. The application of this control technique represents the novelty of work, where this algorithm has so far not been stated before for this type of drives. This methodology solves the problem of nonlinearities and load changes of TFLM drives. The dynamic response of the motor is studied under the rated load condition as well as load disturbances. The proposed controller ensures fast and accurate dynamic response with an excellent steady state performance. The dynamic response of the motor with the proposed controller is compared with PI and adaptive NN controllers. It is found that the proposed controller gives better and faster response from the viewpoint of overshoot and settling time. Matlab/Simulink tool is used for this dynamic simulation study.

  12. An integrated architecture for the ITER RH control system

    International Nuclear Information System (INIS)

    Hamilton, David Thomas; Tesini, Alessandro

    2012-01-01

    Highlights: ► Control system architecture integrating ITER remote handling equipment systems. ► Standard control system architecture for remote handling equipment systems. ► Research and development activities to validate control system architecture. ► Standardization studies to select standard parts for control system architecture. - Abstract: The ITER remote handling (RH) system has been divided into 7 major equipment system procurements that deliver complete systems (operator interfaces, equipment controllers, and equipment) according to task oriented functional specifications. Each equipment system itself is an assembly of transporters, power manipulators, telemanipulators, vehicular systems, cameras, and tooling with a need for controllers and operator interfaces. From an operational perspective, the ITER RH systems are bound together by common control rooms, operations team, and maintenance team; and will need to achieve, to a varying degree, synchronization of operations, co-operation on tasks, hand-over of components, and sharing of data and resources. The separately procured RH systems must, therefore, be integrated to form a unified RH system for operation from the RH control rooms. The RH system will contain a heterogeneous mix of specially developed RH systems and off-the-shelf RH equipment and parts. The ITER Organization approach is to define a control system architecture that supports interoperable heterogeneous modules, and to specify a standard set of modules for each system to implement within this architecture. Compatibility with standard parts for selected modules is required to limit the complexity for operations and maintenance. A key requirement for integrating the control system modules is interoperability, and no module should have dependencies on the implementation details of other modules. The RH system is one of the ITER Plant systems that are integrated and coordinated through the hierarchical structure of the ITER CODAC system

  13. The architecture of LAMOST observatory control system

    International Nuclear Information System (INIS)

    Wang Jian; Jin Ge; Yu Xiaoqi; Wan Changsheng; Hao Likai; Li Xihua

    2005-01-01

    The design of architecture is the one of the most important part in development of Observatory Control System (OCS) for LAMOST. Based on the complexity of LAMOST, long time of development for LAMOST and long life-cycle of OCS system, referring many kinds of architecture pattern, the architecture of OCS is established which is a component-based layered system using many patterns such as the MVC and proxy. (authors)

  14. Adaptive Architecture - a Spatial Objective

    DEFF Research Database (Denmark)

    Unterrainer, Walter

    2011-01-01

    New challenges of a fast changing society with new social phenomena as well as growing environmental problems ask for rethinking our habitats on all scales and reflecting our design methods to produce them. Many Megacities prepare with big projects against dramatic environmental threats (New York...... detail in itself, does not create humanity: We have today enough of superficial and rather bad architecture which is modern.´ There is nothing to add on....... the weakest point in the development towards a more sustainable architecture on all scales, the problems and solutions are discussed as spatial challenges, including all aspects of spatial creations and spatial retrofitting. To get to the point: The ´sustainable´ in ´sustainable architecture´ is reduced...... in too many buildings to implementations of new technologies, in its worst examples reduced to meaningless applications of new technologies to rather mediocre architecture. I am not arguing in general against new building technologies and I have been involved myself in developments of new building skins...

  15. ADAPTATION STRATEGY OF MOSQUE ARCHITECTURE IN THE MINORITY NEIGHBORHOOD Case Studies: Mosques in Denpasar City and Badung Regency, Province of Bali.

    Directory of Open Access Journals (Sweden)

    Andika Saputra

    2014-12-01

    Full Text Available Mosque for Muslims who living in the middle of minority neighborhood in Province of Bali not only function as a signifier for the presence a Muslims community, but also have a central role because mosque is the only gathering place for fellow Muslims. In the present, Muslims in the province of Bali is facing various challenge that cause adaptation strategies of mosque architecture for the existence of mosque in the neighborhood can be accepted by society from other faith. This preliminary study aim to knowing the adaptation strategies of mosque architecture undertaken Muslims in the province of Bali along with the factor that drive adaptation. Study conducted using qualitative-inductive method. Locus of study in the Denpasar City and Badung Regency where is the center of activity and concentration of Muslims in the province of Bali with a different background neighborhood. Object of study used a large mosque that are the central of Muslims activity. The finding this study showed that there are three types of mosque architecture adaptation strategies undertaken by Muslims in the Province of Bali are (1 external factor are responded by applying dominate elements of Balinese style architecture, (2 internal factor is awareness to applying elements of Balinese style architecture to show identity as a Muslims who appreciate local value, and (3 internal factor to applying the characteristic architectural style of the Middle East mosque is considered ideal to represent identity as Muslims.

  16. A Basic Architecture of an Autonomous Adaptive System With Conscious-Like Function for a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Yasuo Kinouchi

    2018-04-01

    Full Text Available In developing a humanoid robot, there are two major objectives. One is developing a physical robot having body, hands, and feet resembling those of human beings and being able to similarly control them. The other is to develop a control system that works similarly to our brain, to feel, think, act, and learn like ours. In this article, an architecture of a control system with a brain-oriented logical structure for the second objective is proposed. The proposed system autonomously adapts to the environment and implements a clearly defined “consciousness” function, through which both habitual behavior and goal-directed behavior are realized. Consciousness is regarded as a function for effective adaptation at the system-level, based on matching and organizing the individual results of the underlying parallel-processing units. This consciousness is assumed to correspond to how our mind is “aware” when making our moment to moment decisions in our daily life. The binding problem and the basic causes of delay in Libet’s experiment are also explained by capturing awareness in this manner. The goal is set as an image in the system, and efficient actions toward achieving this goal are selected in the goal-directed behavior process. The system is designed as an artificial neural network and aims at achieving consistent and efficient system behavior, through the interaction of highly independent neural nodes. The proposed architecture is based on a two-level design. The first level, which we call the “basic-system,” is an artificial neural network system that realizes consciousness, habitual behavior and explains the binding problem. The second level, which we call the “extended-system,” is an artificial neural network system that realizes goal-directed behavior.

  17. Developing a System Architecture for Holonic Shop Floor Control

    DEFF Research Database (Denmark)

    Sørensen, Christian; Langer, Gilad; Alting, Leo

    1998-01-01

    This paper describes the results of research regarding the emerging theory of Holonic Manufacturing Systems. This theory and in particular its corresponding reference architecture serves as the basis for the development of a system-architecture for shop floor control systems in a multi-cellular c......This paper describes the results of research regarding the emerging theory of Holonic Manufacturing Systems. This theory and in particular its corresponding reference architecture serves as the basis for the development of a system-architecture for shop floor control systems in a multi...

  18. Research of Smart Grid Cyber Architecture and Standards Deployment with High Adaptability for Security Monitoring

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    Security Monitoring is a critical function for smart grid. As a consequence of strongly relying on communication, cyber security must be guaranteed by the specific system. Otherwise, the DR signals and bidding information can be easily forged or intercepted. Customers’ privacy and safety may suffer...... huge losses. Although OpenADR specificationsprovide continuous, secure and reliable two-way communications in application level defined in ISO model, which is also an open architecture for security is adopted by it and no specific or proprietary technologies is restricted to OpenADR itself....... It is significant to develop a security monitoring system. This paper discussed the cyber architecture of smart grid with high adaptability for security monitoring. An adaptable structure with Demilitarized Zone (DMZ) is proposed. Focusing on this network structure, the rational utilization of standards...

  19. Architectural Considerations for Holonic Shop Floor Control

    DEFF Research Database (Denmark)

    Langer, Gilad; Bilberg, Arne

    1997-01-01

    of the HMS concept, followed by an investigation regard-ing the development of shop floor control architectures. This will include a summary of the ongoing research on HMS, and current results regarding the development of a holonic SFC architecture in a cellular manufacturing perspective. The paper...

  20. SUSTAINABLE ARCHITECTURAL DESIGN: REVIVING TRADITIONAL DESIGN AND ADAPTING MODERN SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Ibrahim Mostafa Eldemery

    2010-03-01

    Full Text Available Architecture is the art and science of designing which involves the manipulation of mass, space, volume, texture, light, shadow, materials, program and other elements in order to achieve an end which is aesthetic, functional and sustainable. Sustainability is a growing trend within the field of architecture, it is currently the most pressing, complex and challenging agenda facing architects. The industrialization and modernization of the world has led to increased initiatives regarding sustainability debate, where recently the word ‘sustainable’ entered into the consciousness of architects and became an essential concern in the discourse of architecture. What is more, we are nowadays witnessing the defense of former ways of life that affect not only the architecture, but also the habitat, work, and, in short, what can be called sustainability. Although sustainability at the human settlement scale has received great attention so far in most of the developing countries, it still remains the most glaring challenge in terms of its demand on resources and expertise. The aim today is to bring modern technologies and knowledge representing design solutions as guidelines like double skin façade, adapting traditional concepts, in tune with such practices to develop solutions that provide us with sustainable buildings that interact and are in harmony with natural climatic conditions. The paper will make an attempt at highlighting sustainability challenges we currently face including its implications for the built environment, in order to propose a sustainability evaluation framework, drawing out transferable lessons learned for future development.

  1. Baseline Architecture of ITER Control System

    Science.gov (United States)

    Wallander, A.; Di Maio, F.; Journeaux, J.-Y.; Klotz, W.-D.; Makijarvi, P.; Yonekawa, I.

    2011-08-01

    The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.

  2. Architectures of adaptive integration in large collaborative projects

    Directory of Open Access Journals (Sweden)

    Lois Wright Morton

    2015-12-01

    Full Text Available Collaborations to address complex societal problems associated with managing human-natural systems often require large teams comprised of scientists from multiple disciplines. For many such problems, large-scale, transdisciplinary projects whose members include scientists, stakeholders, and other professionals are necessary. The success of very large, transdisciplinary projects can be facilitated by attending to the diversity of types of collaboration that inevitably occur within them. As projects progress and evolve, the resulting dynamic collaborative heterogeneity within them constitutes architectures of adaptive integration (AAI. Management that acknowledges this dynamic and fosters and promotes awareness of it within a project can better facilitate the creativity and innovation required to address problems from a systems perspective. In successful large projects, AAI (1 functionally meets objectives and goals, (2 uses disciplinary expertise and concurrently bridges many disciplines, (3 has mechanisms to enable connection, (4 delineates boundaries to keep focus but retain flexibility, (5 continuously monitors and adapts, and (6 encourages project-wide awareness. These principles are illustrated using as case studies three large climate change and agriculture projects funded by the U.S. Department of Agriculture-National Institute of Food and Agriculture.

  3. High-Level Design Space and Flexibility Exploration for Adaptive, Energy-Efficient WCDMA Channel Estimation Architectures

    Directory of Open Access Journals (Sweden)

    Zoltán Endre Rákossy

    2012-01-01

    Full Text Available Due to the fast changing wireless communication standards coupled with strict performance constraints, the demand for flexible yet high-performance architectures is increasing. To tackle the flexibility requirement, software-defined radio (SDR is emerging as an obvious solution, where the underlying hardware implementation is tuned via software layers to the varied standards depending on power-performance and quality requirements leading to adaptable, cognitive radio. In this paper, we conduct a case study for representatives of two complexity classes of WCDMA channel estimation algorithms and explore the effect of flexibility on energy efficiency using different implementation options. Furthermore, we propose new design guidelines for both highly specialized architectures and highly flexible architectures using high-level synthesis, to enable the required performance and flexibility to support multiple applications. Our experiments with various design points show that the resulting architectures meet the performance constraints of WCDMA and a wide range of options are offered for tuning such architectures depending on power/performance/area constraints of SDR.

  4. Training-specific muscle architecture adaptation after 5-wk training in athletes.

    Science.gov (United States)

    Blazevich, Anthony J; Gill, Nicholas D; Bronks, Roger; Newton, Robert U

    2003-12-01

    This study examined changes in the muscle size, muscle architecture, strength, and sprint/jump performances of concurrently training athletes during 5 wk of "altered" resistance training (RT). Eight female and 15 male athletes performed 4 wk of sprint, jump, and resistance training in addition to their sports training (standardization) before adopting one of three different programs for 5 wk: 1) squat lift training (SQ, N = 8) with sprint/jump training; 2) forward hack squat training (FHS, N = 7) with sprint/jump training; or 3) sprint/jump training only (SJ, N = 8). Muscle size, fascicle angle, and fascicle length of the vastus lateralis (VL) and rectus femoris (RF) muscles (using ultrasound procedures) as well as 20-m sprint run, vertical jump, and strength performance changes were examined. A small increase in VL fascicle angle in SQ and FHS was statistically different to the decrease in SJ subjects (P < 0.05 at distal, P < 0.1 at proximal). VL fascicle length increased for SJ only (P < 0.05 at distal, P < 0.1 at proximal) and increased in RF in SQ subjects (P < 0.05). Muscle thickness of VL and RF increased in all training groups (P < 0.05) but only at proximal sites. There were no between-group differences in squat, forward hack squat, or isokinetic strength performances, or in sprint or jump performances, despite improvements in some of the tests across the groups. Significant muscle size and architectural adaptations can occur in concurrently training athletes in response to a 5-wk training program. These adaptations were possibly associated with the force and velocity characteristics of the training exercises but not the movement patterns. Factors other than, or in addition to, muscle architecture must mediate changes in strength, sprint, and jump performance.

  5. Supervisory Control System Architecture for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M [ORNL; Cole, Daniel L [University of Pittsburgh; Fugate, David L [ORNL; Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Muhlheim, Michael David [ORNL; Rao, Nageswara S [ORNL; Wood, Richard Thomas [ORNL

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  6. Development of a modular integrated control architecture for flexible manipulators. Final report

    International Nuclear Information System (INIS)

    Burks, B.L.; Battiston, G.

    1994-01-01

    In April 1994, ORNL and SPAR completed the joint development of a manipulator controls architecture for flexible structure controls under a CRADA between the two organizations. The CRADA project entailed design and development of a new architecture based upon the Modular Integrated Control Architecture (MICA) previously developed by ORNL. The new architecture, dubbed MICA-II, uses an object-oriented coding philosophy to provide a highly modular and expandable architecture for robotic manipulator control. This architecture can be readily ported to control of many different manipulator systems. The controller also provides a user friendly graphical operator interface and display of many forms of data including system diagnostics. The capabilities of MICA-II were demonstrated during oscillation damping experiments using the Flexible Beam Experimental Test Bed at Hanford

  7. Control architecture of power systems: Modeling of purpose and function

    DEFF Research Database (Denmark)

    Heussen, Kai; Saleem, Arshad; Lind, Morten

    2009-01-01

    Many new technologies with novel control capabilities have been developed in the context of “smart grid” research. However, often it is not clear how these capabilities should best be integrated in the overall system operation. New operation paradigms change the traditional control architecture...... of power systems and it is necessary to identify requirements and functions. How does new control architecture fit with the old architecture? How can power system functions be specified independent of technology? What is the purpose of control in power systems? In this paper, a method suitable...... for semantically consistent modeling of control architecture is presented. The method, called Multilevel Flow Modeling (MFM), is applied to the case of system balancing. It was found that MFM is capable of capturing implicit control knowledge, which is otherwise difficult to formalize. The method has possible...

  8. Retrospective Cost Adaptive Control with Concurrent Closed-Loop Identification

    Science.gov (United States)

    Sobolic, Frantisek M.

    Retrospective cost adaptive control (RCAC) is a discrete-time direct adaptive control algorithm for stabilization, command following, and disturbance rejection. RCAC is known to work on systems given minimal modeling information which is the leading numerator coefficient and any nonminimum-phase (NMP) zeros of the plant transfer function. This information is normally needed a priori and is key in the development of the filter, also known as the target model, within the retrospective performance variable. A novel approach to alleviate the need for prior modeling of both the leading coefficient of the plant transfer function as well as any NMP zeros is developed. The extension to the RCAC algorithm is the use of concurrent optimization of both the target model and the controller coefficients. Concurrent optimization of the target model and controller coefficients is a quadratic optimization problem in the target model and controller coefficients separately. However, this optimization problem is not convex as a joint function of both variables, and therefore nonconvex optimization methods are needed. Finally, insights within RCAC that include intercalated injection between the controller numerator and the denominator, unveil the workings of RCAC fitting a specific closed-loop transfer function to the target model. We exploit this interpretation by investigating several closed-loop identification architectures in order to extract this information for use in the target model.

  9. A portable modular architecture for robotic manipulator control

    International Nuclear Information System (INIS)

    Butler, P.L.

    1993-01-01

    A control architecture has been developed to provide a framework for robotic manipulator control. This architecture, called the Modular Integrated Control Architecture (MICA), has been successfully applied to two different manipulator systems. MICA is a portable system in two respects. First, it can be used for the control of different types of manipulator systems. Second, the MICA code is portable across several operating environments. This portability allows the sharing of common control code among various systems. A major portion of MICA is the precise control of multiple processors that have to be coordinated to control a manipulator system. By having NUCA control the processor synchronization, the system developer can concentrate on the specific aspects of a new manipulator system. MICA also provides standard functions for trajectory generation that can be used for most manipulators. Custom trajectory generators can be easily added to suit the needs of a particular robotic control system. Another facility that MICA provides is a simulation of the manipulator, allowing the control code to be simulated before trying it on a manipulator system. Using this technique, one can develop code for a manipulator system without risking damage to the arm during development

  10. Adaptive Controller Effects on Pilot Behavior

    Science.gov (United States)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  11. A Formal Framework for Adaptive Access Control Models.

    NARCIS (Netherlands)

    Spaccapietra, S.; Rinderle, S.B.; Reichert, M.U.

    For several reasons enterprises are frequently subject to organizational change. Respective adaptations may concern business processes, but also other components of an enterprise architecture. In particular, changes of organizational structures often become necessary. The information about

  12. An Architectural Style for Closed-loop Process-Control

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Eriksen, Ole

    2003-01-01

    This report describes an architectural style for distributed closed-loop process control systems with high performance and hard real-time constraints. The style strikes a good balance between the architectural qualities of performance and modifiability/maintainability that traditionally are often...

  13. An Architectural Style for Closed-loop Process-Control

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    This report describes an architectural style for distributed closed-loop process control systems with high performance and hard real-time constraints. The style strikes a good balance between the architectural qualities of performance and modifiability/maintainability that traditionally are often...

  14. Distributed behavior-based control architecture for a wall climbing robot

    International Nuclear Information System (INIS)

    Nadir Ould Khessal; Shamsudin H.M. Amin . nadir.ok@ieee.org

    1999-01-01

    In the past two decades, Behavior-based AI (Artificial Intelligence) has emerged as a new approach in designing mobile robot control architecture. It stresses on the issues of reactivity, concurrency and real-time control. In this paper we propose a new approach in designing robust intelligent controllers for mobile robot platforms. The Behaviour-based paradigm implemented in a multiprocessing firmware architecture will further enhance parallelism present in the subsumption paradigm itself and increased real-timeness. The paper summarises research done to design a four-legged wall climbing robot. The emphasis will be on the control architecture of the robot based on the Behavior -based paradigm. The robot control architecture is made up of two layers, the locomotion layer and the gait controller layer. The two layers are implemented on a Vesta 68332 processor board running the Behaviour-based kernel, The software is developed using the L programming language, introduced by IS Robotics. The Behaviour-based paradigm is outlined and contrasted with the classical Knowledge-based approach. A description of the distributed architecture is presented followed by a presentation of the Behaviour-based agents for the two layers. (author)

  15. The Experimental Physics and Industrial Control System architecture: Past, present, and future

    International Nuclear Information System (INIS)

    Dalesio, L.R.; Hill, J.O.; Kraimer, M.; Lewis, S.; Murray, D.; Hunt, S.; Claussen, M.; Watson, W.

    1993-01-01

    The Experimental Physics and Industrial Control System (EPICS), has been used at a number of sites for performing data acquisition, supervisory control, closed-loop control, sequential control, and operational optimization. The EPICS architecture was originally developed by a group with diverse backgrounds in physics and industrial control. The current architecture represents one instance of the ''standard model.'' It provides distributed processing and communication from any LAN device to the front end controllers. This paper will present the genealogy, current architecture, performance envelope, current installations, and planned extensions for requirements not met by the current architecture

  16. Feedback control architecture and the bacterial chemotaxis network.

    Directory of Open Access Journals (Sweden)

    Abdullah Hamadeh

    2011-05-01

    Full Text Available Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance.

  17. Adaptive filtering prediction and control

    CERN Document Server

    Goodwin, Graham C

    2009-01-01

    Preface1. Introduction to Adaptive TechniquesPart 1. Deterministic Systems2. Models for Deterministic Dynamical Systems3. Parameter Estimation for Deterministic Systems4. Deterministic Adaptive Prediction5. Control of Linear Deterministic Systems6. Adaptive Control of Linear Deterministic SystemsPart 2. Stochastic Systems7. Optimal Filtering and Prediction8. Parameter Estimation for Stochastic Dynamic Systems9. Adaptive Filtering and Prediction10. Control of Stochastic Systems11. Adaptive Control of Stochastic SystemsAppendicesA. A Brief Review of Some Results from Systems TheoryB. A Summary o

  18. Between architecture and model: Strategies for cognitive control

    NARCIS (Netherlands)

    Taatgen, Niels

    One major limitation of current cognitive architectures is that models are typically constructed in an “empty” architecture, and that the knowledge specifications (typically production rules) are specific to the particular task. This means that general cognitive control strategies have to be

  19. Telerobotic Control Architecture Including Force-Reflection

    National Research Council Canada - National Science Library

    Murphy, Mark

    1998-01-01

    This report describes the implementation of a telerobotic control architecture to manipulate a standard six-degree-of-freedom robot via a unique seven-degree-of-freedom force-reflecting exoskeleton...

  20. An Overview on SDN Architectures with Multiple Controllers

    Directory of Open Access Journals (Sweden)

    Othmane Blial

    2016-01-01

    Full Text Available Software-defined networking offers several benefits for networking by separating the control plane from the data plane. However, networks’ scalability, reliability, and availability remain as a big issue. Accordingly, multicontroller architectures are important for SDN-enabled networks. This paper gives a comprehensive overview of SDN multicontroller architectures. It presents SDN and its main instantiation OpenFlow. Then, it explains in detail the differences between multiple types of multicontroller architectures, like the distribution method and the communication system. Furthermore, it provides already implemented and under research examples of multicontroller architectures by describing their design, their communication process, and their performance results.

  1. THE ARCHITECTURE OF THE REMOTE CONTROL SYSTEM OF ROBOTICS OBJECTS

    Directory of Open Access Journals (Sweden)

    S.V. Shavetov

    2014-03-01

    Full Text Available The paper deals with the architecture for the universal remote control system of robotics objects over the Internet global network. Control objects are assumed to be located at a considerable distance from a reference device or end-users. An overview of studies on the subject matter of remote control of technical objects is given. A structure chart of the architecture demonstrating the system usage in practice is suggested. Server software is considered that makes it possible to work with technical objects connected to the server as with a serial port and organize a stable tunnel connection between the controlled object and the end-user. The proposed architecture has been successfully tested on mobile robots Parallax Boe-Bot and Lego Mindstorms NXT. Experimental data about values of time delays are given demonstrating the effectiveness of the considered architecture.

  2. A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.

    Science.gov (United States)

    Savran, Aydogan; Kahraman, Gokalp

    2014-03-01

    We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities. © 2013 Published by ISA on behalf of ISA.

  3. Islanding Control Architecture in future smart grid with both demand and wind turbine control

    DEFF Research Database (Denmark)

    Chen, Yu; Xu, Zhao; Østergaard, Jacob

    2013-01-01

    , which is the focus of this paper, available resources including both DG units and demand should be fully utilized as reserves. The control and coordination among different resources requires an integral architecture to serve the purpose. This paper develops the Islanding Control Architecture (ICA...

  4. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    Science.gov (United States)

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  5. Neural network for adapting nuclear power plant control for wide-range operation

    International Nuclear Information System (INIS)

    Ku, C.C.; Lee, K.Y.; Edwards, R.M.

    1991-01-01

    A new concept of using neural networks has been evaluated for optimal control of a nuclear reactor. The neural network uses the architecture of a standard backpropagation network; however, a new dynamic learning algorithm has been developed to capture the underlying system dynamics. The learning algorithm is based on parameter estimation for dynamic systems. The approach is demonstrated on an optimal reactor temperature controller by adjusting the feedback gains for wide-range operation. Application of optimal control to a reactor has been considered for improving temperature response using a robust fifth-order reactor power controller. Conventional gain scheduling can be employed to extend the range of good performance to accommodate large changes in power where nonlinear characteristics significantly modify the dynamics of the power plant. Gain scheduling is developed based on expected parameter variations, and it may be advantageous to further adapt feedback gains on-line to better match actual plant performance. A neural network approach is used here to adapt the gains to better accommodate plant uncertainties and thereby achieve improved robustness characteristics

  6. Adaptive PID and Model Reference Adaptive Control Switch Controller for Nonlinear Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Xin Zuo

    2017-01-01

    Full Text Available Nonlinear systems are modeled as piecewise linear systems at multiple operating points, where the operating points are modeled as switches between constituent linearized systems. In this paper, adaptive piecewise linear switch controller is proposed for improving the response time and tracking performance of the hydraulic actuator control system, which is essentially piecewise linear. The controller composed of PID and Model Reference Adaptive Control (MRAC adaptively chooses the proportion of these two components and makes the designed system have faster response time at the transient phase and better tracking performance, simultaneously. Then, their stability and tracking performance are analyzed and evaluated by the hydraulic actuator control system, the hydraulic actuator is controlled by the electrohydraulic system, and its model is built, which has piecewise linear characteristic. Then the controller results are compared between PID and MRAC and the switch controller designed in this paper is applied to the hydraulic actuator; it is obvious that adaptive switch controller has better effects both on response time and on tracking performance.

  7. Nova control system: goals, architecture, and system design

    International Nuclear Information System (INIS)

    Suski, G.J.; Duffy, J.M.; Gritton, D.G.; Holloway, F.W.; Krammen, J.R.; Ozarski, R.G.; Severyn, J.R.; Van Arsdall, P.J.

    1982-01-01

    The control system for the Nova laser must operate reliably in a harsh pulse power environment and satisfy requirements of technical functionality, flexibility, maintainability and operability. It is composed of four fundamental subsystems: Power Conditioning, Alignment, Laser Diagnostics, and Target Diagnostics, together with a fifth, unifying subsystem called Central Controls. The system architecture utilizes a collection of distributed microcomputers, minicomputers, and components interconnected through high speed fiber optic communications systems. The design objectives, development strategy and architecture of the overall control system and each of its four fundamental subsystems are discussed. Specific hardware and software developments in several areas are also covered

  8. A basic system architecture for sensor data diffusion of environment sensors for intelligent cruise control systems; Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren fuer Fahrerassistenzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Darms, M.

    2007-07-01

    The design of the system architecture for sensor data diffusion at the beginning of the development process has significant influence on the cost. With a view to intelligent cruise control systems, the author investigated general assumptions concerning data association and data filtering for sensor data diffusion of environment sensors which must be considered when designing an architecture or may be considered for optimisation. The validity of the assumption is illustrated by simulations of adaptive speed control and time-to-collision calculations as well as on the basis of available literature. A basic sytem architecture is presented as a precursor of the final architecture which is based on these assumptions. Their applicability is proved by implementation in the PRORETA project. The author's work provides a validated basis for architects of a serial system architecture enabling them to design and implement their ultimate systems. (orig.)

  9. Smart Grid Architectures

    DEFF Research Database (Denmark)

    Dondossola, Giovanna; Terruggia, Roberta; Bessler, Sandford

    2014-01-01

    The scope of this paper is to address the evolution of distribution grid architectures following the widespread introduction of renewable energy sources. The increasing connection of distributed resources has a strong impact on the topology and the control functionality of the current distribution...... grids requiring the development of new Information and Communication Technology (ICT) solutions with various degrees of adaptation of the monitoring, communication and control technologies. The costs of ICT based solutions need however to be taken into account, hence it is desirable to work...

  10. Adaptive control of robotic manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.

  11. Analysis of the new architecture proposal for the CMM control system

    International Nuclear Information System (INIS)

    Heikkilae, L.; Saarinen, H.; Aha, L.; Viinikainen, M.; Mattila, J.; Hahto, A.; Siuko, M.; Semeraro, L.

    2011-01-01

    While developing divertor remote handling maintenance systems at the Divertor Test Platform 2 facility, some risks and sensitivity points related to the Cassette Multifunctional Mover control system software were discovered and evaluated. The control system architecture has to simultaneously fulfill the demanding ITER remote handling requirements and to face new requirements being uncovered during the trials. Especially evolving non-functional requirements such as reliability and safety have an effect on the control system architecture as it is getting more mature. An evaluation of the implications from architectural decisions is necessary before implementation efforts, as an architecture left to develop without evaluation may lead to a dead end and therefore soaring development costs. After studying existing architecture analysis methods an analysis method was developed to gain confidence to carry out the proposed changes.

  12. Flexible distributed architecture for semiconductor process control and experimentation

    Science.gov (United States)

    Gower, Aaron E.; Boning, Duane S.; McIlrath, Michael B.

    1997-01-01

    Semiconductor fabrication requires an increasingly expensive and integrated set of tightly controlled processes, driving the need for a fabrication facility with fully computerized, networked processing equipment. We describe an integrated, open system architecture enabling distributed experimentation and process control for plasma etching. The system was developed at MIT's Microsystems Technology Laboratories and employs in-situ CCD interferometry based analysis in the sensor-feedback control of an Applied Materials Precision 5000 Plasma Etcher (AME5000). Our system supports accelerated, advanced research involving feedback control algorithms, and includes a distributed interface that utilizes the internet to make these fabrication capabilities available to remote users. The system architecture is both distributed and modular: specific implementation of any one task does not restrict the implementation of another. The low level architectural components include a host controller that communicates with the AME5000 equipment via SECS-II, and a host controller for the acquisition and analysis of the CCD sensor images. A cell controller (CC) manages communications between these equipment and sensor controllers. The CC is also responsible for process control decisions; algorithmic controllers may be integrated locally or via remote communications. Finally, a system server images connections from internet/intranet (web) based clients and uses a direct link with the CC to access the system. Each component communicates via a predefined set of TCP/IP socket based messages. This flexible architecture makes integration easier and more robust, and enables separate software components to run on the same or different computers independent of hardware or software platform.

  13. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  14. Adaptive Security Architecture based on EC-MQV Algorithm in Personal Network (PN)

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Prasad, Neeli R.

    2007-01-01

    Abstract — Personal Networks (PNs) have been focused on in order to support the user’s business and private activities without jeopardizing privacy and security of the users and their data. In such a network, it is necessary to produce a proper key agreement method according to the feature...... of the network. One of the features of the network is that the personal devices have deferent capabilities such as computational ability, memory size, transmission power, processing speed and implementation cost. Therefore an adaptive security mechanism should be contrived for such a network of various device...... combinations based on user’s location and device’s capability. The paper proposes new adaptive security architecture with three levels of asymmetric key agreement scheme by using context-aware security manager (CASM) based on elliptic curve cryptosystem (EC-MQV)....

  15. Bionics in architecture

    Directory of Open Access Journals (Sweden)

    Sugár Viktória

    2017-04-01

    Full Text Available The adaptation of the forms and phenomena of nature is not a recent concept. Observation of natural mechanisms has been a primary source of innovation since prehistoric ages, which can be perceived through the history of architecture. Currently, this idea is coming to the front again through sustainable architecture and adaptive design. Investigating natural innovations and the clear-outness of evolution during the 20th century led to the creation of a separate scientific discipline, Bionics. Architecture and Bionics are strongly related to each other, since the act of building is as old as the human civilization - moreover its first formal and structural source was obviously the surrounding environment. Present paper discusses the definition of Bionics and its connection with the architecture.

  16. FPGA implementation of bit controller in double-tick architecture

    Science.gov (United States)

    Kobylecki, Michał; Kania, Dariusz

    2017-11-01

    This paper presents a comparison of the two original architectures of programmable bit controllers built on FPGAs. Programmable Logic Controllers (which include, among other things programmable bit controllers) built on FPGAs provide a efficient alternative to the controllers based on microprocessors which are expensive and often too slow. The presented and compared methods allow for the efficient implementation of any bit control algorithm written in Ladder Diagram language into the programmable logic system in accordance with IEC61131-3. In both cases, we have compared the effect of the applied architecture on the performance of executing the same bit control program in relation to its own size.

  17. Migration of supervisory machine control architectures

    NARCIS (Netherlands)

    Graaf, B.; Weber, S.; Deursen, van A.; Nord, R.; Medvidovic, N.; Krikhaar, R.; Stafford, J.; Bosch, J.

    2005-01-01

    In this position paper, we discuss a first step towards an approach for the migration of supervisory machine control (SMC) architectures. This approach is based on the identification of SMC concerns and the definition of corresponding transformation rules.

  18. Architecture of WEST plasma control system

    International Nuclear Information System (INIS)

    Ravenel, N.; Nouailletas, R.; Barana, O.; Brémond, S.; Moreau, P.; Guillerminet, B.; Balme, S.; Allegretti, L.; Mannori, S.

    2014-01-01

    To operate advanced plasma scenario (long pulse with high stored energy) in present and future tokamak devices under safe operation conditions, the control requirements of the plasma control system (PCS) leads to the development of advanced feedback control and real time handling exceptions. To develop these controllers and these exceptions handling strategies, a project aiming at setting up a flight simulator has started at CEA in 2009. Now, the new WEST (W Environment in Steady-state Tokamak) project deals with modifying Tore Supra into an ITER-like divertor tokamak. This upgrade impacts a lot of systems including Tore Supra PCS and is the opportunity to improve the current PCS architecture to implement the previous works and to fulfill the needs of modern tokamak operation. This paper is dealing with the description of the architecture of WEST PCS. Firstly, the requirements will be presented including the needs of new concepts (segments configuration, alternative (or backup) scenario, …). Then, the conceptual design of the PCS will be described including the main components and their functions. The third part will be dedicated to the proposal RT framework and to the technologies that we have to implement to reach the requirements

  19. Modelling of control system architecture for next-generation accelerators

    International Nuclear Information System (INIS)

    Liu, Shi-Yao; Kurokawa, Shin-ichi

    1990-01-01

    Functional, hardware and software system architectures define the fundamental structure of control systems. Modelling is a protocol of system architecture used in system design. This paper reviews various modellings adopted in past ten years and suggests a new modelling for next generation accelerators. (author)

  20. On User Interface Architectures and Implementation

    OpenAIRE

    KUKOLA, TERO

    2008-01-01

    The definition of MVC model has become distorted. Many MVC adaptations use a mediating controller between model and view layers, which is not part of the original MVC/80 model. While the separation of model and view has benefits, the mediating controller leads to excessive redundancy in code and should be avoided. Removing the mediating controller simplifies UI architectures. This simplification can be continued further by adopting dynamic features and ultimately by adopting dynamic languages...

  1. Adaptive control of port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; Edelmayer, András

    2010-01-01

    In this paper an adaptive control scheme is presented for general port-Hamiltonian systems. Adaptive control is used to compensate for control errors that are caused by unknown or uncertain parameter values of a system. The adaptive control is also combined with canonical transformation theory for

  2. An architecture for agile shop floor control systems

    DEFF Research Database (Denmark)

    Langer, Gilad; Alting, Leo

    2000-01-01

    as shop floor control. This paper presents the Holonic Multi-cell Control System (HoMuCS) architecture that allows for design and development of holonic shop floor control systems. The HoMuCS is a shop floor control system which is sometimes referred to as a manufacturing execution system...

  3. A system architecture for holonic manufacturing planning and control (EtoPlan)

    NARCIS (Netherlands)

    Wullink, Gerhard; Giebels, M.M.T.; Kals, H.J.J.

    2002-01-01

    In this paper, we present the system architecture of a flexible manufacturing planning and control system, named EtoPlan. The concept is based on the holonic control approach of building multiple and temporary hierarchies (holarchies). This paper describes the system architecture for flexible

  4. A Theoretical Approach to Norm Ecosystems: Two Adaptive Architectures of Indirect Reciprocity Show Different Paths to the Evolution of Cooperation

    Directory of Open Access Journals (Sweden)

    Satoshi Uchida

    2018-02-01

    Full Text Available Indirect reciprocity is one of the basic mechanisms to sustain mutual cooperation, by which beneficial acts are returned, not by the recipient, but by third parties. This mechanism relies on the ability of individuals to know the past actions of others, and to assess those actions. There are many different systems of assessing others, which can be interpreted as rudimentary social norms (i.e., views on what is “good” or “bad”. In this paper, impacts of different adaptive architectures, i.e., ways for individuals to adapt to environments, on indirect reciprocity are investigated. We examine two representative architectures: one based on replicator dynamics and the other on genetic algorithm. Different from the replicator dynamics, the genetic algorithm requires describing the mixture of all possible norms in the norm space under consideration. Therefore, we also propose an analytic method to study norm ecosystems in which all possible second order social norms potentially exist and compete. The analysis reveals that the different adaptive architectures show different paths to the evolution of cooperation. Especially we find that so called Stern-Judging, one of the best studied norms in the literature, exhibits distinct behaviors in both architectures. On one hand, in the replicator dynamics, Stern-Judging remains alive and gets a majority steadily when the population reaches a cooperative state. On the other hand, in the genetic algorithm, it gets a majority only temporarily and becomes extinct in the end.

  5. A Theoretical Approach to Norm Ecosystems: Two Adaptive Architectures of Indirect Reciprocity Show Different Paths to the Evolution of Cooperation

    Science.gov (United States)

    Uchida, Satoshi; Yamamoto, Hitoshi; Okada, Isamu; Sasaki, Tatsuya

    2018-02-01

    Indirect reciprocity is one of the basic mechanisms to sustain mutual cooperation, by which beneficial acts are returned, not by the recipient, but by third parties. This mechanism relies on the ability of individuals to know the past actions of others, and to assess those actions. There are many different systems of assessing others, which can be interpreted as rudimentary social norms (i.e., views on what is “good” or “bad”). In this paper, impacts of different adaptive architectures, i.e., ways for individuals to adapt to environments, on indirect reciprocity are investigated. We examine two representative architectures: one based on replicator dynamics and the other on genetic algorithm. Different from the replicator dynamics, the genetic algorithm requires describing the mixture of all possible norms in the norm space under consideration. Therefore, we also propose an analytic method to study norm ecosystems in which all possible second order social norms potentially exist and compete. The analysis reveals that the different adaptive architectures show different paths to the evolution of cooperation. Especially we find that so called Stern-Judging, one of the best studied norms in the literature, exhibits distinct behaviors in both architectures. On one hand, in the replicator dynamics, Stern-Judging remains alive and gets a majority steadily when the population reaches a cooperative state. On the other hand, in the genetic algorithm, it gets a majority only temporarily and becomes extinct in the end.

  6. Control algorithms and applications of the wavefront sensorless adaptive optics

    Science.gov (United States)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  7. Knowledge and Architectural Practice

    DEFF Research Database (Denmark)

    Verbeke, Johan

    2017-01-01

    of the level of research methods and will explain that the research methods and processes in creative practice research are very similar to grounded theory which is an established research method in the social sciences. Finally, an argument will be made for a more explicit research attitude in architectural......This paper focuses on the specific knowledge residing in architectural practice. It is based on the research of 35 PhD fellows in the ADAPT-r (Architecture, Design and Art Practice Training-research) project. The ADAPT-r project innovates architectural research in combining expertise from academia...... and from practice in order to highlight and extract the specific kind of knowledge which resides and is developed in architectural practice (creative practice research). The paper will discuss three ongoing and completed PhD projects and focusses on the outcomes and their contribution to the field...

  8. Microgrids architectures and control

    CERN Document Server

    Hatziargyriou, Nikos

    2014-01-01

    Microgrids are the most innovative area in the electric power industry today. Future microgrids could exist as energy-balanced cells within existing power distribution grids or stand-alone power networks within small communities. A definitive presentation on all aspects of microgrids, this text examines the operation of microgrids - their control concepts and advanced architectures including multi-microgrids. It takes a logical approach to overview the purpose and the technical aspects of microgrids, discussing the social, economic and environmental benefits to power system operation. The bo

  9. Adaptive sequential controller

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Xing, Jian (Seattle, WA); Butler, Nicholas G. (Newberg, OR); Rodriguez, Alonso (Pasadena, CA)

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  10. Adaptive sequential controller

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  11. Towards a preliminary design of the ITER plasma control system architecture

    International Nuclear Information System (INIS)

    Treutterer, W.; Rapson, C.J.; Raupp, G.; Snipes, J.; Vries, P. de; Winter, A.; Humphreys, D.A.; Walker, M.; Tommasi, G. de; Cinque, M.; Bremond, S.; Moreau, P.; Nouailletas, R.; Felton, R.

    2017-01-01

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  12. Towards a preliminary design of the ITER plasma control system architecture

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Rapson, C.J.; Raupp, G. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Snipes, J.; Vries, P. de; Winter, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Humphreys, D.A.; Walker, M. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Tommasi, G. de; Cinque, M. [CREATE/Università di Napoli Federico II, Napoli (Italy); Bremond, S.; Moreau, P.; Nouailletas, R. [Association CEA pour la Fusion Contrôlée, CEA Cadarache, 13108 St Paul les Durance (France); Felton, R. [CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Oxfordshire, OX14 3DB (United Kingdom)

    2017-02-15

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  13. Model-based design of adaptive embedded systems

    CERN Document Server

    Hamberg, Roelof; Reckers, Frans; Verriet, Jacques

    2013-01-01

    Today’s embedded systems have to operate in a wide variety of dynamically changing environmental circumstances. Adaptivity, the ability of a system to autonomously adapt itself, is a means to optimise a system’s behaviour to accommodate changes in its environment. It involves making in-product trade-offs between system qualities at system level. The main challenge in the development of adaptive systems is keeping control of the intrinsic complexity of such systems while working with multi-disciplinary teams to create different parts of the system. Model-Based Development of Adaptive Embedded Systems focuses on the development of adaptive embedded systems both from an architectural and methodological point of view. It describes architectural solution patterns for adaptive systems and state-of-the-art model-based methods and techniques to support adaptive system development. In particular, the book describes the outcome of the Octopus project, a cooperation of a multi-disciplinary team of academic and indus...

  14. Adaptive heterogeneous multi-robot teams

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1998-11-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail the experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  15. Adaptive Extremum Control and Wind Turbine Control

    DEFF Research Database (Denmark)

    Ma, Xin

    1997-01-01

    This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important....... Firstly, it is assumed that the nonlinear processes can be divided into a dynamic linear part and static nonlinear part. Consequently the processes with input nonlinearity and output nonlinearity are treated separately. With the nonlinearity at the input it is easy to set up a model which is linear...

  16. Control system devices : architectures and supply channels overview.

    Energy Technology Data Exchange (ETDEWEB)

    Trent, Jason; Atkins, William Dee; Schwartz, Moses Daniel; Mulder, John C.

    2010-08-01

    This report describes a research project to examine the hardware used in automated control systems like those that control the electric grid. This report provides an overview of the vendors, architectures, and supply channels for a number of control system devices. The research itself represents an attempt to probe more deeply into the area of programmable logic controllers (PLCs) - the specialized digital computers that control individual processes within supervisory control and data acquisition (SCADA) systems. The report (1) provides an overview of control system networks and PLC architecture, (2) furnishes profiles for the top eight vendors in the PLC industry, (3) discusses the communications protocols used in different industries, and (4) analyzes the hardware used in several PLC devices. As part of the project, several PLCs were disassembled to identify constituent components. That information will direct the next step of the research, which will greatly increase our understanding of PLC security in both the hardware and software areas. Such an understanding is vital for discerning the potential national security impact of security flaws in these devices, as well as for developing proactive countermeasures.

  17. Adaptive Architecture - a Spatial Objective

    DEFF Research Database (Denmark)

    Unterrainer, Walter

    2011-01-01

    New challenges of a fast changing society with new social phenomena as well as growing environmental problems ask for rethinking our habitats on all scales and reflecting our design methods to produce them. Many Megacities prepare with big projects against dramatic environmental threats (New York...... in too many buildings to implementations of new technologies, in its worst examples reduced to meaningless applications of new technologies to rather mediocre architecture. I am not arguing in general against new building technologies and I have been involved myself in developments of new building skins...... and systems. But I strongly oppose to the prevailing tendency of confusing architectural solutions with technical solutions. Bernard Rudofski´s postulation (written 1987) ´no new construction methods - we need a new way of life !´ seems more relevant than ever, when thinking sustainably and socially conscious...

  18. Autotuning of Adaptive Mesh Refinement PDE Solvers on Shared Memory Architectures

    KAUST Repository

    Nogina, Svetlana

    2012-01-01

    Many multithreaded, grid-based, dynamically adaptive solvers for partial differential equations permanently have to traverse subgrids (patches) of different and changing sizes. The parallel efficiency of this traversal depends on the interplay of the patch size, the architecture used, the operations triggered throughout the traversal, and the grain size, i.e. the size of the subtasks the patch is broken into. We propose an oracle mechanism delivering grain sizes on-the-fly. It takes historical runtime measurements for different patch and grain sizes as well as the traverse\\'s operations into account, and it yields reasonable speedups. Neither magic configuration settings nor an expensive pre-tuning phase are necessary. It is an autotuning approach. © 2012 Springer-Verlag.

  19. A Decentralized Control Architecture applied to DC Nanogrid Clusters for Rural Electrification in Developing Regions

    DEFF Research Database (Denmark)

    Nasir, Mashood; Jin, Zheming; Khan, Hassan

    2018-01-01

    resources with the community. An adaptive I-V droop method is used which relies on local measurements of SOC and DC bus voltage for the coordinated power sharing among the contributing nanogrids. PV generation capability of individual nanogrids is synchronized with the grid stability conditions through......DC microgrids built through bottom-up approach are becoming very popular for swarm electrification due to their scalability and resource sharing capabilities. However, they typically require sophisticated control techniques involving communication among the distributed resources for stable...... and coordinated operation. In this work, we present a communication-less strategy for the decentralized control of a PV/battery-based highly distributed DC microgrid. The architecture consists of clusters of nanogrids (households), where each nanogrid can work independently along with provisions of sharing...

  20. Adaptive control of discrete-time chaotic systems: a fuzzy control approach

    International Nuclear Information System (INIS)

    Feng Gang; Chen Guanrong

    2005-01-01

    This paper discusses adaptive control of a class of discrete-time chaotic systems from a fuzzy control approach. Using the T-S model of discrete-time chaotic systems, an adaptive control algorithm is developed based on some conventional adaptive control techniques. The resulting adaptively controlled chaotic system is shown to be globally stable, and its robustness is discussed. A simulation example of the chaotic Henon map control is finally presented, to illustrate an application and the performance of the proposed control algorithm

  1. Adaptive Architectures for Command and Control: Toward an Empirical Evaluation of Organizational Congruence and Adaptation

    National Research Council Canada - National Science Library

    Diedrich, Frederick J; Hocevar, Susan P; Entin, Elliot E; Hutchins, Susan G; Kemple, William G; Kleinman, Davied L

    2005-01-01

    ... on the behaviors of organizations as they strive to adapt. In this paper, we present a series of lessons learned based on a pilot experiment in which we explored the performance of two organizations...

  2. The ABC Adaptive Fusion Architecture

    DEFF Research Database (Denmark)

    Bunde-Pedersen, Jonathan; Mogensen, Martin; Bardram, Jakob Eyvind

    2006-01-01

    Contemporary distributed collaborative systems tend to utilizeeither a client-server or a pure peer-to-peer paradigm. Aclient-server solution may potentially spawn direct connectionsbetween the clients to offload the server thereby creatinga hybrid architecture. A pure peer-to-peer paradigmmay on...

  3. Adaptive Augmenting Control and Launch Vehicle Adaptive Control Flight Experiments

    Data.gov (United States)

    National Aeronautics and Space Administration — Researchers at NASA Armstrong are working to further the development of an adaptive augmenting control algorithm (AAC). The AAC was developed to improve the...

  4. An adaptive Cartesian control scheme for manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    A adaptive control scheme for direct control of manipulator end-effectors to achieve trajectory tracking in Cartesian space is developed. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for online implementation with high sampling rates.

  5. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    Science.gov (United States)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  6. Stability and performance of propulsion control systems with distributed control architectures and failures

    Science.gov (United States)

    Belapurkar, Rohit K.

    Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.

  7. Dynamic optimization and adaptive controller design

    Science.gov (United States)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  8. Flexible software architecture for user-interface and machine control in laboratory automation.

    Science.gov (United States)

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  9. Adaptive Flight Control Research at NASA

    Science.gov (United States)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  10. A white box perspective on behavioural adaptation

    DEFF Research Database (Denmark)

    Bruni, Roberto; Corradini, Andrea; Gadducci, Fabio

    2015-01-01

    We present a white-box conceptual framework for adaptation developed in the context of the EU Project ASCENS coordinated by Martin Wirsing. We called it CoDA, for Control Data Adaptation, since it is based on the notion of control data. CoDA promotes a neat separation between application and adap......We present a white-box conceptual framework for adaptation developed in the context of the EU Project ASCENS coordinated by Martin Wirsing. We called it CoDA, for Control Data Adaptation, since it is based on the notion of control data. CoDA promotes a neat separation between application...... and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation, ranging from programming languages and paradigms to computational models and architectural...

  11. Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture.

    Science.gov (United States)

    González, Isaías; Calderón, Antonio José; Barragán, Antonio Javier; Andújar, José Manuel

    2017-06-27

    The interconnection between sensors, controllers and instruments through a communication network plays a vital role in the performance and effectiveness of a control system. Since its inception in the 90s, the Object Linking and Embedding for Process Control (OPC) protocol has provided open connectivity for monitoring and automation systems. It has been widely used in several environments such as industrial facilities, building and energy automation, engineering education and many others. This paper presents a novel OPC-based architecture to implement automation systems devoted to R&D and educational activities. The proposal is a novel conceptual framework, structured into four functional layers where the diverse components are categorized aiming to foster the systematic design and implementation of automation systems involving OPC communication. Due to the benefits of OPC, the proposed architecture provides features like open connectivity, reliability, scalability, and flexibility. Furthermore, four successful experimental applications of such an architecture, developed at the University of Extremadura (UEX), are reported. These cases are a proof of concept of the ability of this architecture to support interoperability for different domains. Namely, the automation of energy systems like a smart microgrid and photobioreactor facilities, the implementation of a network-accessible industrial laboratory and the development of an educational hardware-in-the-loop platform are described. All cases include a Programmable Logic Controller (PLC) to automate and control the plant behavior, which exchanges operative data (measurements and signals) with a multiplicity of sensors, instruments and supervisory systems under the structure of the novel OPC architecture. Finally, the main conclusions and open research directions are highlighted.

  12. Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller

    Directory of Open Access Journals (Sweden)

    Muzaffer Metin

    2014-01-01

    Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.

  13. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2006-09-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  14. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2008-11-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  15. Adaptive control of a Stewart platform-based manipulator

    Science.gov (United States)

    Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.

    1993-01-01

    A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.

  16. Skeletal muscle architectural adaptations to marathon run training.

    Science.gov (United States)

    Murach, Kevin; Greever, Cory; Luden, Nicholas D

    2015-01-01

    We assessed lateral gastrocnemius (LG) and vastus lateralis (VL) architecture in 16 recreational runners before and after 12 weeks of marathon training. LG fascicle length decreased 10% while pennation angle increased 17% (p training can modify skeletal muscle architectural features.

  17. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    Science.gov (United States)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  18. Implementation of Model View Controller (Mvc) Architecture on Building Web-based Information System

    OpenAIRE

    'Uyun, Shofwatul; Ma'arif, Muhammad Rifqi

    2010-01-01

    The purpose of this paper is to introduce the use of MVC architecture in web-based information systemsdevelopment. MVC (Model-View-Controller) architecture is a way to decompose the application into threeparts: model, view and controller. Originally applied to the graphical user interaction model of input,processing and output. Expected to use the MVC architecture, applications can be built maintenance of moremodular, rusable, and easy and migrate. We have developed a management system of sch...

  19. IMPLEMENTATION OF MODEL VIEW CONTROLLER (MVC) ARCHITECTURE ON BUILDING WEB-BASED INFORMATION SYSTEM

    OpenAIRE

    'Uyun, Shofwatul; Ma'arif, Muhammad Rifqi

    2010-01-01

    The purpose of this paper is to introduce the use of MVC architecture in web-based information systemsdevelopment. MVC (Model-View-Controller) architecture is a way to decompose the application into threeparts: model, view and controller. Originally applied to the graphical user interaction model of input,processing and output. Expected to use the MVC architecture, applications can be built maintenance of moremodular, rusable, and easy and migrate. We have developed a management system of sch...

  20. Genetic and Molecular Mechanisms of Quantitative Trait Loci Controlling Maize Inflorescence Architecture.

    Science.gov (United States)

    Li, Manfei; Zhong, Wanshun; Yang, Fang; Zhang, Zuxin

    2018-03-01

    The establishment of inflorescence architecture is critical for the reproduction of flowering plant species. The maize plant generates two types of inflorescences, the tassel and the ear, and their architectures have a large effect on grain yield and yield-related traits that are genetically controlled by quantitative trait loci (QTLs). Since ear and tassel architecture are deeply affected by the activity of inflorescence meristems, key QTLs and genes regulating meristematic activity have important impacts on inflorescence development and show great potential for optimizing grain yield. Isolation of yield trait-related QTLs is challenging, but these QTLs have direct application in maize breeding. Additionally, characterization and functional dissection of QTLs can provide genetic and molecular knowledge of quantitative variation in inflorescence architecture. In this review, we summarize currently identified QTLs responsible for the establishment of ear and tassel architecture and discuss the potential genetic control of four ear-related and four tassel-related traits. In recent years, several inflorescence architecture-related QTLs have been characterized at the gene level. We review the mechanisms of these characterized QTLs.

  1. Hierarchical Control Architecture for Demand Response in Smart Grid Scenario

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    , a number of issues, including DR enabling technologies, control strategy, and control architecture, are still under discussion. This paper outlines novel control requirements based on the categorization of existing DR techniques. More specifically, the roles and responsibilities of smart grid actors...... effective tool for optimum asset utilization and to avoid or delay the need for new infrastructure investment. Furthermore, most of the power networks are under the process of reconfiguration to realize the concept of smart grid and are at the transforming stage to support various forms of DR. However...... for every DR category are allotted and their mode of interactions to coordinate individual as well as coordinative goals is described. Next, hierarchical control architecture (HCA) is developed for the overall coordination of control strategies for individual DR categories. The involved issues are discussed...

  2. Modular reconfigurable machines incorporating modular open architecture control

    CSIR Research Space (South Africa)

    Padayachee, J

    2008-01-01

    Full Text Available degrees of freedom on a single platform. A corresponding modular Open Architecture Control (OAC) system is presented. OAC overcomes the inflexibility of fixed proprietary automation, ensuring that MRMs provide the reconfigurability and extensibility...

  3. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    Science.gov (United States)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  4. Adaptive powertrain control for plugin hybrid electric vehicles

    Science.gov (United States)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  5. Adaptive self-correcting control system

    International Nuclear Information System (INIS)

    Ellis, S.H.

    1984-01-01

    A control system for regulating a controlled device or process, such as a turbofan engine, produces independent multiple estimates of one or more controlled variables of the device or process by combining the signals from a plurality of feedback sensors, which provide information related to the controlled variables, in weighted nonordered pairs. The independent multiple estimates of each controlled variable are combined into a weighted average, and individual estimates which differ by more than a specified amount from the weighted average are edited and temporarily removed from consideration. A revised weighted average value of each controlled variable is then produced, and this value is used to limit or control operation of the device or process. Adaptive trim is provided to compensate for changes in the device or process being controlled, such as engine deterioration, by slowly trimming each individual estimate toward the mean, and includes error compensation which constrains the weighted sum of the adaptive trims to equal zero, thereby preventing the adaptive trim from changing the operating level of the device or process. A secondary editing circuit based on a majority rule principle identifies a failed feedback sensor and permanently excludes all individual estimates of the controlled variable based on the failed sensor. Editing boundaries are increased and adaptive trim rate is varied when a transient occurs in the operation of the device or process. Further transient compensation may be required for a system with more severe transient requirements, and this invention includes compensation to selected feedback parameters such as turbine temperature to account for differences between steady state and transient values

  6. The genetic architecture of novel trophic specialists: larger effect sizes are associated with exceptional oral jaw diversification in a pupfish adaptive radiation.

    Science.gov (United States)

    Martin, Christopher H; Erickson, Priscilla A; Miller, Craig T

    2017-01-01

    The genetic architecture of adaptation is fundamental to understanding the mechanisms and constraints governing diversification. However, most case studies focus on loss of complex traits or parallel speciation in similar environments. It is still unclear how the genetic architecture of these local adaptive processes compares to the architecture of evolutionary transitions contributing to morphological and ecological novelty. Here, we identify quantitative trait loci (QTL) between two trophic specialists in an excellent case study for examining the origins of ecological novelty: a sympatric radiation of pupfishes endemic to San Salvador Island, Bahamas, containing a large-jawed scale-eater and a short-jawed molluscivore with a skeletal nasal protrusion. These specialized niches and trophic traits are unique among over 2000 related species. Measurements of the fitness landscape on San Salvador demonstrate multiple fitness peaks and a larger fitness valley isolating the scale-eater from the putative ancestral intermediate phenotype of the generalist, suggesting that more large-effect QTL should contribute to its unique phenotype. We evaluated this prediction using an F2 intercross between these specialists. We present the first linkage map for pupfishes and detect significant QTL for sex and eight skeletal traits. Large-effect QTL contributed more to enlarged scale-eater jaws than the molluscivore nasal protrusion, consistent with predictions from the adaptive landscape. The microevolutionary genetic architecture of large-effect QTL for oral jaws parallels the exceptional diversification rates of oral jaws within the San Salvador radiation observed over macroevolutionary timescales and may have facilitated exceptional trophic novelty in this system. © 2016 John Wiley & Sons Ltd.

  7. Direct adaptive control of manipulators in Cartesian space

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.

  8. Memory intensive functional architecture for distributed computer control systems

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1983-10-01

    A memory-intensive functional architectue for distributed data-acquisition, monitoring, and control systems with large numbers of nodes has been conceptually developed and applied in several large-scale and some smaller systems. This discussion concentrates on: (1) the basic architecture; (2) recent expansions of the architecture which now become feasible in view of the rapidly developing component technologies in microprocessors and functional large-scale integration circuits; and (3) implementation of some key hardware and software structures and one system implementation which is a system for performing control and data acquisition of a neutron spectrometer at the Brookhaven High Flux Beam Reactor. The spectrometer is equipped with a large-area position-sensitive neutron detector

  9. Architectural concept for the ITER Plasma Control System

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Humphreys, D., E-mail: humphreys@fusion.gat.com [General Atomics, San Diego, CA (United States); Raupp, G., E-mail: Gerhard.Raupp@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Schuster, E., E-mail: schuster@lehigh.edu [Lehigh University, Bethlehem, PA (United States); Snipes, J., E-mail: Joseph.Snipes@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France); De Tommasi, G., E-mail: detommas@unina.it [CREATE/Università di Napoli Federico II, Napoli (Italy); Walker, M., E-mail: walker@fusion.gat.com [General Atomics, San Diego, CA (United States); Winter, A., E-mail: Axel.Winter@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France)

    2014-05-15

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  10. Architectural concept for the ITER Plasma Control System

    International Nuclear Information System (INIS)

    Treutterer, W.; Humphreys, D.; Raupp, G.; Schuster, E.; Snipes, J.; De Tommasi, G.; Walker, M.; Winter, A.

    2014-01-01

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  11. Intelligent control and adaptive systems; Proceedings of the Meeting, Philadelphia, PA, Nov. 7, 8, 1989

    Science.gov (United States)

    Rodriguez, Guillermo (Editor)

    1990-01-01

    Various papers on intelligent control and adaptive systems are presented. Individual topics addressed include: control architecture for a Mars walking vehicle, representation for error detection and recovery in robot task plans, real-time operating system for robots, execution monitoring of a mobile robot system, statistical mechanics models for motion and force planning, global kinematics for manipulator planning and control, exploration of unknown mechanical assemblies through manipulation, low-level representations for robot vision, harmonic functions for robot path construction, simulation of dual behavior of an autonomous system. Also discussed are: control framework for hand-arm coordination, neural network approach to multivehicle navigation, electronic neural networks for global optimization, neural network for L1 norm linear regression, planning for assembly with robot hands, neural networks in dynamical systems, control design with iterative learning, improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm.

  12. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb.

    Directory of Open Access Journals (Sweden)

    James P Charles

    Full Text Available Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion.

  13. Distributed Control Architectures for Precision Spacecraft Formations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — LaunchPoint Technologies, Inc. (LaunchPoint) proposes to develop synthesis methods and design architectures for distributed control systems in precision spacecraft...

  14. Adaptive Behavior for Mobile Robots

    Science.gov (United States)

    Huntsberger, Terrance

    2009-01-01

    The term "System for Mobility and Access to Rough Terrain" (SMART) denotes a theoretical framework, a control architecture, and an algorithm that implements the framework and architecture, for enabling a land-mobile robot to adapt to changing conditions. SMART is intended to enable the robot to recognize adverse terrain conditions beyond its optimal operational envelope, and, in response, to intelligently reconfigure itself (e.g., adjust suspension heights or baseline distances between suspension points) or adapt its driving techniques (e.g., engage in a crabbing motion as a switchback technique for ascending steep terrain). Conceived for original application aboard Mars rovers and similar autonomous or semi-autonomous mobile robots used in exploration of remote planets, SMART could also be applied to autonomous terrestrial vehicles to be used for search, rescue, and/or exploration on rough terrain.

  15. Simulation and Rapid Prototyping of Adaptive Control Systems using the Adaptive Blockset for Simulink

    DEFF Research Database (Denmark)

    Ravn, Ole

    1998-01-01

    The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller implement...... design, controller and state variable filter.The use of the Adaptive Blockset is demonstrated using a simple laboratory setup. Both the use of the blockset for simulation and for rapid prototyping of a real-time controller are shown.......The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller...... implementation. This is done using the code generation capabilities of Real Time Workshop in combination with C s-function blocks for adaptive control in Simulink. In the paper the design of each group of blocks normally found in adaptive controllers is outlined. The block types are, identification, controller...

  16. Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

    Science.gov (United States)

    Behbahani, Alireza; Culley, Dennis; Garg, Sanjay; Millar, Richard; Smith, Bert; Wood, Jim; Mahoney, Tim; Quinn, Ronald; Carpenter, Sheldon; Mailander, Bill; hide

    2007-01-01

    A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.

  17. A software architecture for a transportation control tower

    NARCIS (Netherlands)

    Baumgrass, A.; Dijkman, R.M.; Grefen, P.W.P.J.; Pourmirza, S.; Völzer, H.; Weske, M.H.

    2014-01-01

    A Transportation Control Tower is a software application that facilitates transportation planners with easily monitoring and dispatching transportation resources. This paper presents a software architecture for such an application. It focuses in particular on the novel aspects of the software

  18. Adaptive control for solar energy based DC microgrid system development

    Science.gov (United States)

    Zhang, Qinhao

    During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.

  19. Adaptation in the fuzzy self-organising controller

    DEFF Research Database (Denmark)

    Jantzen, Jan; Poulsen, Niels Kjølstad

    2003-01-01

    This simulation study provides an analysis of the adaptation mechanism in the self-organising fuzzy controller, SOC. The approach is to apply a traditional adaptive control viewpoint. A simplified performance measure in the SOC controller is used in a loss function, and thus the MIT rule implies...... an update mechanism similar to the SOC update mechanism. Two simulations of proportionally controlled systems show the behaviour of the proportional gain as it adapts to a specified behaviour....

  20. Adaptive Neuron Model: An architecture for the rapid learning of nonlinear topological transformations

    Science.gov (United States)

    Tawel, Raoul (Inventor)

    1994-01-01

    A method for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network was applied to the highly degenerate inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10(exp 9) ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at approximately 10 microsec.

  1. A structured architecture for advanced plasma control experiments

    International Nuclear Information System (INIS)

    Penaflor, B.G.; Ferron, J.R.; Walker, M.L.

    1996-10-01

    Recent new and improved plasma control regimes have evolved from enhancements to the systems responsible for managing the plasma configuration on the DIII-D tokamak. The collection of hardware and software components designed for this purpose is known at DIII-D as the Plasma Control System or PCS. Several new user requirements have contributed to the rapid growth of the PCS. Experiments involving digital control of the plasma vertical position have resulted in the addition of new high performance processors to operate in real-time. Recent studies in plasma disruptions involving the use of neural network based software have resulted in an increase in the number of input diagnostic signals sampled. Better methods for estimating the plasma shape and position have brought about numerous software changes and the addition of several new code modules. Furthermore, requests for performing multivariable control and feedback on the current profile are continuing to add to the demands being placed on the PCS. To support all of these demands has required a structured yet flexible hardware and software architecture for maintaining existing capabilities and easily adding new ones. This architecture along with a general overview of the DIII-D Plasma Control System is described. In addition, the latest improvements to the PCS are presented

  2. Design and reliability analysis of DP-3 dynamic positioning control architecture

    Science.gov (United States)

    Wang, Fang; Wan, Lei; Jiang, Da-Peng; Xu, Yu-Ru

    2011-12-01

    As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.

  3. The LHC dipole test control architecture

    International Nuclear Information System (INIS)

    Gorskaya, E.; Samojlov, V.; Raimondo, A.; Rijllart, A.

    2003-01-01

    The next large accelerator project at CERN is the Large Hadron Collider, which is foreseen to be installed in the existing LEP tunnel, and scheduled to be commissioned in 2007. For this project, 1200 15-metre long dipole magnets need to be tested at CERN in warm and cold conditions on dedicated test benches that are under development. The final LHC dipole series test set-up will consist of 12 benches organized in 6 clusters of two benches sharing the largest and most expensive devices. This sharing is made possible by a deliberate de-phasing of the tests among magnets, ensuring an optimum use of resources, such as cryogenics and power equipment, without limiting the total throughput. An offered two-level control architecture includes: 1) the Test 'Master' that drives the test for a cluster; 2) the Resource 'Manager' that allocates common devices and central resources. The implementation of this architecture is done in the LabVIEW environment

  4. Neural network based adaptive control for nonlinear dynamic regimes

    Science.gov (United States)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  5. Temperature uniformity control in RTP using multivariable adaptive control

    Energy Technology Data Exchange (ETDEWEB)

    Morales, S.; Dahhou, B.; Dilhac, J.M. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Morales, S.

    1995-12-31

    In Rapid Thermal Processing (RTP) control of the wafer temperature during all processing to get good trajectory following, together with spatial temperature uniformity, is essential. It is well know as RTP process is nonlinear, classical control laws are not very efficient. In this work, the authors aim at studying the applicability of MIMO (Multiple Inputs Multiple Outputs) adaptive techniques to solve the temperature control problems in RTP. A multivariable linear discrete time CARIMA (Controlled Auto Regressive Integrating Moving Average) model of the highly non-linear process is identified on-line using a robust identification technique. The identified model is used to compute an infinite time LQ (Linear Quadratic) based control law, with a partial state reference model. This reference model smooths the original setpoint sequence, and at the same time gives a tracking capability to the LQ control law. After an experimental open-loop investigation, the results of the application of the adaptive control law are presented. Finally, some comments on the future difficulties and developments of the application of adaptive control in RTP are given. (author) 13 refs.

  6. Intelligent perception control based on a blackboard architecture

    International Nuclear Information System (INIS)

    Taibi, I.; Koenig, A.; Vacherand, F.

    1991-01-01

    In this paper, is described the intelligent perception control system GESPER which is presently equipped with a set of three cameras, a telemeter and a camera associated with a structured strip light. This system is of great interest for all our robotic applications as it is capable of autonomously planning, triggering acquisitions, integrating and interpreting multisensory data. The GESPER architecture, based on the blackboard model, provides a generic development method for indoor and outdoor perception. The modularity and the independence of the knowledge sources make the software evolving easily without breaking down the architecture. New sensors and/or new data processing can be integrated by the addition of new knowledge sources that modelize them. At present, first results are obtained in our testbed hall which simulates the nuclear plant as gives similar experimental conditions. Our ongoing research concerns the improvement of fusion algorithms and the embedding of the whole system (hardware and software) on target robots and distributed architecture

  7. Control of Macromolecular Architectures for Renewable Polymers: Case Studies

    Science.gov (United States)

    Tang, Chuanbing

    The development of sustainable polymers from nature biomass is growing, but facing fierce competition from existing petrochemical-based counterparts. Controlling macromolecular architectures to maximize the properties of renewable polymers is a desirable approach to gain advantages. Given the complexity of biomass, there needs special consideration other than traditional design. In the presentation, I will talk about a few case studies on how macromolecular architectures could tune the properties of sustainable bioplastics and elastomers from renewable biomass such as resin acids (natural rosin) and plant oils.

  8. Considerations for control system software verification and validation specific to implementations using distributed processor architectures

    International Nuclear Information System (INIS)

    Munro, J.K. Jr.

    1993-01-01

    Until recently, digital control systems have been implemented on centralized processing systems to function in one of several ways: (1) as a single processor control system; (2) as a supervisor at the top of a hierarchical network of multiple processors; or (3) in a client-server mode. Each of these architectures uses a very different set of communication protocols. The latter two architectures also belong to the category of distributed control systems. Distributed control systems can have a central focus, as in the cases just cited, or be quite decentralized in a loosely coupled, shared responsibility arrangement. This last architecture is analogous to autonomous hosts on a local area network. Each of the architectures identified above will have a different set of architecture-associated issues to be addressed in the verification and validation activities during software development. This paper summarizes results of efforts to identify, describe, contrast, and compare these issues

  9. Adaptive Method Using Controlled Grid Deformation

    Directory of Open Access Journals (Sweden)

    Florin FRUNZULICA

    2011-09-01

    Full Text Available The paper presents an adaptive method using the controlled grid deformation over an elastic, isotropic and continuous domain. The adaptive process is controlled with the principal strains and principal strain directions and uses the finite elements method. Numerical results are presented for several test cases.

  10. Adaptive LQG controller tuning

    Czech Academy of Sciences Publication Activity Database

    Novák, Miroslav; Böhm, Josef; Nedoma, Petr; Tesař, Ludvík

    2003-01-01

    Roč. 150, č. 6 (2003), s. 655-665 ISSN 1350-2379 R&D Projects: GA ČR GA102/02/0204; GA AV ČR IBS1075102 Institutional research plan: CEZ:AV0Z1075907 Keywords : adaptive controller * LQG controller * controller design Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 0.745, year: 2003

  11. The Arab Vernacular Architecture and its Adaptation to Mediterranean Climatic Zones

    Science.gov (United States)

    Paz, Shlomit; Hamza, Efat

    2014-05-01

    Throughout history people have employed building strategies adapted to local climatic conditions in an attempt to achieve thermal comfort in their homes. In the Mediterranean climate, a mixed strategy developed - utilizing positive parameters (e.g. natural lighting), while at the same time addressing negative variables (e.g. high temperatures during summer). This study analyzes the adaptation of construction strategies of traditional Arab houses to Mediterranean climatic conditions. It is based on the assumption that the climate of the eastern Mediterranean led to development of unique architectural patterns. The way in which the inhabitants chose to build their homes was modest but creative in the context of climate awareness, with simple ideas. These were often instinctive responses to climate challenges. Nine traditional Arab houses, built from the mid-19th century to the beginning of the 20th century, were analyzed in three different regions in Israel: the "Meshulash" - an area in the center of the country, and the Lower and Upper Galilees (in the north). In each region three houses were examined. It is important to note that only a few houses from these periods still remain, particularly in light of new construction in many of the villages' core areas. Qualitative research methodologies included documentation of all the elements of these traditional houses which were assumed to be a result of climatic factors, such as - house position (direction), thickness of walls, thermal mass, ceiling height, location of windows, natural ventilation, exterior wall colors and shading strategies. Additionally, air temperatures and relative humidity were measured at selected dates throughout all seasons both inside and immediately outside the houses during morning, noon, evening and night-time hours. The documentation of the architectural elements and strategies demonstrate that climatic considerations were an integral part of the planning and construction process of these

  12. Reference-shaping adaptive control by using gradient descent optimizers.

    Directory of Open Access Journals (Sweden)

    Baris Baykant Alagoz

    Full Text Available This study presents a model reference adaptive control scheme based on reference-shaping approach. The proposed adaptive control structure includes two optimizer processes that perform gradient descent optimization. The first process is the control optimizer that generates appropriate control signal for tracking of the controlled system output to a reference model output. The second process is the adaptation optimizer that performs for estimation of a time-varying adaptation gain, and it contributes to improvement of control signal generation. Numerical update equations derived for adaptation gain and control signal perform gradient descent optimization in order to decrease the model mismatch errors. To reduce noise sensitivity of the system, a dead zone rule is applied to the adaptation process. Simulation examples show the performance of the proposed Reference-Shaping Adaptive Control (RSAC method for several test scenarios. An experimental study demonstrates application of method for rotor control.

  13. The perceptual control of goal-directed locomotion: a common control architecture for interception and navigation?

    Science.gov (United States)

    Chardenon, A; Montagne, G; Laurent, M; Bootsma, R J

    2004-09-01

    Intercepting a moving object while locomoting is a highly complex and demanding ability. Notwithstanding the identification of several informational candidates, the role of perceptual variables in the control process underlying such skills remains an open question. In this study we used a virtual reality set-up for studying locomotor interception of a moving ball. The subject had to walk along a straight path and could freely modify forward velocity, if necessary, in order to intercept-with the head-a ball moving along a straight path that led it to cross the agent's displacement axis. In a series of experiments we manipulated a local (ball size) and a global (focus of expansion) component of the visual flow but also the egocentric orientation of the ball. The experimental observations are well captured by a dynamic model linking the locomotor acceleration to properties of both global flow and egocentric direction. More precisely the changes in locomotor velocity depend on a linear combination of the change in bearing angle and the change in egocentric orientation, allowing the emergence of adaptive behavior under a variety of circumstances. We conclude that the mechanisms underlying the control of different goal-directed locomotion tasks (i.e. steering and interceptive tasks) could share a common architecture.

  14. Development of Universal Controller Architecture for SiC Based Power Electronic Building Blocks

    Science.gov (United States)

    2017-10-30

    SiC Based Power Electronic Building Blocks Award Number Title of Research 30 October 2017 SUBMITTED BY D R. HERBERT L. G INN, Pl DEPT. OF...Naval Research , Philadelphia PA, Aug. 2017. • Ginn, H.L. Bakos J., "Development of Universal Controller Architecture for SiC Based Power Electronic...Controller Implementation for MMC Converters", Workshop on Control Architectures for Modular Power Conversion Systems, Office of Naval Research , Arlington VA

  15. Adaptive Optics Simulation for the World's Largest Telescope on Multicore Architectures with Multiple GPUs

    KAUST Repository

    Ltaief, Hatem

    2016-06-02

    We present a high performance comprehensive implementation of a multi-object adaptive optics (MOAO) simulation on multicore architectures with hardware accelerators in the context of computational astronomy. This implementation will be used as an operational testbed for simulating the de- sign of new instruments for the European Extremely Large Telescope project (E-ELT), the world\\'s biggest eye and one of Europe\\'s highest priorities in ground-based astronomy. The simulation corresponds to a multi-step multi-stage pro- cedure, which is fed, near real-time, by system and turbulence data coming from the telescope environment. Based on the PLASMA library powered by the OmpSs dynamic runtime system, our implementation relies on a task-based programming model to permit an asynchronous out-of-order execution. Using modern multicore architectures associated with the enormous computing power of GPUS, the resulting data-driven compute-intensive simulation of the entire MOAO application, composed of the tomographic reconstructor and the observing sequence, is capable of coping with the aforementioned real-time challenge and stands as a reference implementation for the computational astronomy community.

  16. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    Science.gov (United States)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  17. Adaptive tracking control of nonholonomic systems: an example

    NARCIS (Netherlands)

    Lefeber, A.A.J.; Nijmeijer, Henk

    1999-01-01

    We study an example of an adaptive (state) tracking control problem for a four-wheel mobile robot, as it is an illustrative example of the general adaptive state-feedback tracking control problem. It turns out that formulating the adaptive state-feedback tracking control problem is not

  18. Intercalated Injection, Target Model Construction and H 2 Performance of Retrospective Cost Adaptive Control

    Science.gov (United States)

    Rahman, Yousaf

    This dissertation extends retrospective cost adaptive control (RCAC) by devel- oping a novel interpretation of RCAC, wherein the retrospective cost minimization uses intercalated injection between the controller numerator and denominator to fit a specific closed-loop transfer function to a target model. The target model thus incor- porates the modeling information required by RCAC. To demonstrate the effect of the target model on closed-loop performance, RCAC is applied to a collection of problems that demonstrate adaptive pole placement, where the target model is used to place closed-loop poles; adaptive PID control, where RCAC adaptively tunes PID gains; and LQG cost minimization, where the optimality and closed-loop frequency response of RCAC is compared with the performance of discrete-time LQG controllers. Next, RCAC is applied to plants that are difficult to control using fixed gain con- trollers, including an aircraft lateral dynamics model that has an unknown transition from minimum-phase to nonminimum-phase (NMP) dynamics, as well as plants with severely limited achievable gain and delay margin. xvi. Methods are developed to control NMP plants without knowledge of the NMP zero. Specifically, a decentralized feedback-feedforward architecture as well as quasi- FIR controllers are considered, where the FIR controller operates in parallel with an internal model controller in order to follow commands for NMP plants without knowledge of the NMP zeros. Next, the following question is considered: Are all full-order dynamic compen- sators observer-based? It is shown that the only case where a dynamic compensator is not observer-based is the case where n is odd and the closed-loop spectrum has no real eigenvalues. Since this is the case, such controllers are necessarily suboptimal in the sense of LQG. This question is relevant to understanding the closed-loop pole locations arising from full-order RCAC compensators. Finally, retrospective cost model refinement (RCMR

  19. Maritime adaptive optics beam control

    OpenAIRE

    Corley, Melissa S.

    2010-01-01

    The Navy is interested in developing systems for horizontal, near ocean surface, high-energy laser propagation through the atmosphere. Laser propagation in the maritime environment requires adaptive optics control of aberrations caused by atmospheric distortion. In this research, a multichannel transverse adaptive filter is formulated in Matlab's Simulink environment and compared to a complex lattice filter that has previously been implemented in large system simulations. The adaptive fil...

  20. Memory controllers for mixed-time-criticality systems architectures, methodologies and trade-offs

    CERN Document Server

    Goossens, Sven; Akesson, Benny; Goossens, Kees

    2016-01-01

    This book discusses the design and performance analysis of SDRAM controllers that cater to both real-time and best-effort applications, i.e. mixed-time-criticality memory controllers. The authors describe the state of the art, and then focus on an architecture template for reconfigurable memory controllers that addresses effectively the quickly evolving set of SDRAM standards, in terms of worst-case timing and power analysis, as well as implementation. A prototype implementation of the controller in SystemC and synthesizable VHDL for an FPGA development board are used as a proof of concept of the architecture template.

  1. Adaptive Torque Control of Variable Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. E.

    2004-08-01

    The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry for variable speed wind turbines below rated power. This adaptive controller uses a simple, highly intuitive gain adaptation law designed to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds.

  2. Design of a Control System for an Autonomous Vehicle Based on Adaptive-PID

    Directory of Open Access Journals (Sweden)

    Pan Zhao

    2012-07-01

    Full Text Available The autonomous vehicle is a mobile robot integrating multi-sensor navigation and positioning, intelligent decision making and control technology. This paper presents the control system architecture of the autonomous vehicle, called “Intelligent Pioneer”, and the path tracking and stability of motion to effectively navigate in unknown environments is discussed. In this approach, a two degree-of-freedom dynamic model is developed to formulate the path-tracking problem in state space format. For controlling the instantaneous path error, traditional controllers have difficulty in guaranteeing performance and stability over a wide range of parameter changes and disturbances. Therefore, a newly developed adaptive-PID controller will be used. By using this approach the flexibility of the vehicle control system will be increased and achieving great advantages. Throughout, we provide examples and results from Intelligent Pioneer and the autonomous vehicle using this approach competed in the 2010 and 2011 Future Challenge of China. Intelligent Pioneer finished all of the competition programmes and won first position in 2010 and third position in 2011.

  3. Control Architecture for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    for assessment of control architecture of electric power systems with a means-ends perspective. Given this purpose-oriented understanding of a power system, the increasingly stochastic nature of this problem shall be addressed and approaches for robust, distributed control will be proposed and analyzed....... The introduction of close-to-real-time markets is envisioned to enable fast distributed resource allocation while guaranteeing system stability. Electric vehicles will be studied as a means of distributed reversible energy storage and a flexible power electronic interface, with application to the case......This project looks at control of future electric power grids with a high proportion of wind power and a large number of decentralized power generation, consumption and storage units participating to form a reliable supply of electrical energy. The first objective is developing a method...

  4. Multi-core System Architecture for Safety-critical Control Applications

    DEFF Research Database (Denmark)

    Li, Gang

    and size, and high power consumption. Increasing the frequency of a processor is becoming painful now due to the explosive power consumption. Furthermore, components integrated into a single-core processor have to be certified to the highest SIL, due to that no isolation is provided in a traditional single...... certification cost. Meanwhile, hardware platforms with improved processing power are required to execute the applications of larger size. To tackle the two issues mentioned above, the state of the art approaches are using more Electronic Control Units (ECU) in a federated architecture or increasing......-core processor. A promising alternative to improve processing power and provide isolation is to adopt a multi-core architecture with on-chip isolation. In general, a specific multi-core architecture can facilitate the development and certification of safety-related systems, due to its physical isolation between...

  5. A new approach to adaptive control of manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    An approach in which the manipulator inverse is used as a feedforward controller is employed in the adaptive control of manipulators in order to achieve trajectory tracking by the joint angles. The desired trajectory is applied as an input to the feedforward controller, and the controller output is used as the driving torque for the manipulator. An adaptive algorithm obtained from MRAC theory is used to update the controller gains to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal enhance closed-loop stability and achieve faster adaptation. Simulation results demonstrate the effectiveness of the proposed control scheme for different reference trajectories, and despite large variations in the payload.

  6. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    Science.gov (United States)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  7. Determination Of Adaptive Control Parameter Using Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Omur Can Ozguney

    2017-08-01

    Full Text Available The robot industry has developed along with the increasing the use of robots in industry. This has led to increase the studies on robots. The most important part of these studies is that the robots must be work with minimum tracking trajectory error. But it is not easy for robots to track the desired trajectory because of the external disturbances and parametric uncertainty. Therefore adaptive and robust controllers are used to decrease tracking error. The aim of this study is to increase the tracking performance of the robot and minimize the trajectory tracking error. For this purpose adaptive control law for robot manipulator is identified and fuzzy logic controller is applied to find the accurate values for adaptive control parameter. Based on the Lyapunov theory stability of the uncertain system is guaranteed. In this study robot parameters are assumed to be unknown. This controller is applied to a robot model and the results of simulations are given. Controller with fuzzy logic and without fuzzy logic are compared with each other. Simulation results show that the fuzzy logic controller has improved the results.

  8. MWAHCA: a multimedia wireless ad hoc cluster architecture.

    Science.gov (United States)

    Diaz, Juan R; Lloret, Jaime; Jimenez, Jose M; Sendra, Sandra

    2014-01-01

    Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.

  9. MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture

    Directory of Open Access Journals (Sweden)

    Juan R. Diaz

    2014-01-01

    Full Text Available Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node’s capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss. The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.

  10. Specific Adaptations in Performance and Muscle Architecture After Weighted Jump-Squat vs. Body Mass Squat Jump Training in Recreational Soccer Players.

    Science.gov (United States)

    Coratella, Giuseppe; Beato, Marco; Milanese, Chiara; Longo, Stefano; Limonta, Eloisa; Rampichini, Susanna; Cè, Emiliano; Bisconti, Angela V; Schena, Federico; Esposito, Fabio

    2018-04-01

    Coratella, G, Beato, M, Milanese, C, Longo, S, Limonta, E, Rampichini, S, Cè, E, Bisconti, AV, Schena, F, and Esposito, F. Specific adaptations in performance and muscle architecture after weighted jump-squat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res 32(4): 921-929, 2018-The aim of the present study was to compare the effects of weighted jump-squat training (WJST) vs. body mass squat jump training (BMSJT) on quadriceps' muscle architecture, lower-limb lean-mass (LM) and muscle strength, performance in change of direction (COD), and sprint and jump in recreational soccer players. Forty-eight healthy soccer players participated in an offseason randomized controlled trial. Before and after an 8-week training intervention, vastus lateralis pennation angle, fascicle length, muscle thickness, LM, squat 1RM, quadriceps and hamstrings isokinetic peak torque, agility T-test, 10-and 30-m sprints, and squat-jump (SJ) were measured. Although similar increases were observed in muscle thickness, fascicle length increased more in WJST (Effect size [ES] = 1.18, 0.82-1.54) than in BMSJT (ES = 0.54, 0.40-0.68), and pennation angle increased only in BMSJT (ES = 1.03, 0.78-1.29). Greater increases in LM were observed in WJST (ES = 0.44, 0.29-0.59) than in BMSJT (ES = 0.21, 0.07-0.37). The agility T-test (ES = 2.95, 2.72-3.18), 10-m (ES = 0.52, 0.22-0.82), and 30-m sprints (ES = 0.52, 0.23-0.81) improved only in WJST, whereas SJ improved in BMSJT (ES = 0.89, 0.43-1.35) more than in WJST (ES = 0.30, 0.03-0.58). Similar increases in squat 1RM and peak torque occurred in both groups. The greater inertia accumulated within the landing phase in WJST vs. BMSJT has increased the eccentric workload, leading to specific eccentric-like adaptations in muscle architecture. The selective improvements in COD in WJST may be related to the increased braking ability generated by the enhanced eccentric workload.

  11. HAMSTRING ARCHITECTURAL AND FUNCTIONAL ADAPTATIONS FOLLOWING LONG VS. SHORT MUSCLE LENGTH ECCENTRIC TRAINING

    Directory of Open Access Journals (Sweden)

    Kenny Guex

    2016-08-01

    Full Text Available Most common preventive eccentric-based exercises, such as Nordic hamstring do not include any hip flexion. So, the elongation stress reached is lower than during the late swing phase of sprinting. The aim of this study was to assess the evolution of hamstring architectural (fascicle length and pennation angle and functional (concentric and eccentric optimum angles and concentric and eccentric peak torques parameters following a 3-week eccentric resistance program performed at long (LML versus short muscle length (SML. Both groups performed eight sessions of 3-5x8 slow maximal eccentric knee extensions on an isokinetic dynamometer: the SML group at 0° and the LML group at 80° of hip flexion. Architectural parameters were measured using ultrasound imaging and functional parameters using the isokinetic dynamometer. The fascicle length increased by 4.9% (p<0.01, medium effect size in the SML and by 9.3% (p<0.001, large effect size in the LML group. The pennation angle did not change (p=0.83 in the SML and tended to decrease by 0.7° (p=0.09, small effect size in the LML group. The concentric optimum angle tended to decrease by 8.8° (p=0.09, medium effect size in the SML and by 17.3° (p<0.01, large effect size in the LML group. The eccentric optimum angle did not change (p=0.19, small effect size in the SML and tended to decrease by 10.7° (p=0.06, medium effect size in the LML group. The concentric peak torque did not change in the SML (p=0.37 and the LML (p=0.23 groups, whereas eccentric peak torque increased by 12.9% (p<0.01, small effect size and 17.9% (p<0.001, small effect size in the SML and the LML group, respectively. No group-by-time interaction was found for any parameters. A correlation was found between the training-induced change in fascicle length and the change in concentric optimum angle (r=-0.57, p<0.01. These results suggest that performing eccentric exercises lead to several architectural and functional adaptations. However

  12. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    Science.gov (United States)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  13. Controller Architecture Design for MMC-HVDC

    Directory of Open Access Journals (Sweden)

    ZHANG, B.

    2014-05-01

    Full Text Available Compared with high voltage direct current (HVDC, the primary and secondary systems of modular multilevel converter based HVDC (MMC-HVDC are complicated. And the characteristics of the control system determine the properties of the MMC-HVDC system to a certain extent. This paper investigates the design of control architecture. First, the structure and parameters of the 21-level MMC-HVDC are designed. Second, the framework of the control system is studied in details and a complete control system is established. The communication mode and content are built between each layer, and the control system program is developed and debugged. Then The steady state test platform of the sub-module and the relevant control system are designed. Finally, the steady-state tests and the system test of the physical MMC-HVDC simulation system are conducted, which prove that the SMC can control the sub-module (SM efficiently, and the control system could realize efficient start and stop of the physical system. Meanwhile, the capacitor voltage balance between the sub-modules and the basic fault protection and control of the DC voltage and power are verified to be effective.

  14. Direct adaptive control using feedforward neural networks

    OpenAIRE

    Cajueiro, Daniel Oliveira; Hemerly, Elder Moreira

    2003-01-01

    ABSTRACT: This paper proposes a new scheme for direct neural adaptive control that works efficiently employing only one neural network, used for simultaneously identifying and controlling the plant. The idea behind this structure of adaptive control is to compensate the control input obtained by a conventional feedback controller. The neural network training process is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm. Additionally, the conver...

  15. Separating VNF and Network Control for Hardware‐Acceleration of SDN/NFV Architecture

    Directory of Open Access Journals (Sweden)

    Tong Duan

    2017-08-01

    Full Text Available A hardware‐acceleration architecture that separates virtual network functions (VNFs and network control (called HSN is proposed to solve the mismatch between the simple flow steering requirements and strong packet processing abilities of software‐defined networking (SDN forwarding elements (FEs in SDN/network function virtualization (NFV architecture, while improving the efficiency of NFV infrastructure and the performance of network‐intensive functions. HSN makes full use of FEs and accelerates VNFs through two mechanisms: (1 separation of traffic steering and packet processing in the FEs; (2 separation of SDN and NFV control in the FEs. Our HSN prototype, built on NetFPGA‐10G, demonstrates that the processing performance can be greatly improved with only a small modification of the traditional SDN/NFV architecture.

  16. Adaptive control system having hedge unit and related apparatus and methods

    Science.gov (United States)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2007-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  17. TCP-Call Admission Control Interaction in Multiplatform Space Architectures

    Directory of Open Access Journals (Sweden)

    Georgios Theodoridis

    2007-06-01

    Full Text Available The implementation of efficient call admission control (CAC algorithms is useful to prevent congestion and guarantee target quality of service (QoS. When TCP protocol is adopted, some inefficiencies can arise due to the peculiar evolution of the congestion window. The development of cross-layer techniques can greatly help to improve efficiency and flexibility for wireless networks. In this frame, the present paper addresses the introduction of TCP feedback into the CAC procedures in different nonterrestrial wireless architectures. CAC performance improvement is shown for different space-based architectures, including both satellites and high altitude platform (HAP systems.

  18. TCP-Call Admission Control Interaction in Multiplatform Space Architectures

    Directory of Open Access Journals (Sweden)

    Roseti Cesare

    2007-01-01

    Full Text Available The implementation of efficient call admission control (CAC algorithms is useful to prevent congestion and guarantee target quality of service (QoS. When TCP protocol is adopted, some inefficiencies can arise due to the peculiar evolution of the congestion window. The development of cross-layer techniques can greatly help to improve efficiency and flexibility for wireless networks. In this frame, the present paper addresses the introduction of TCP feedback into the CAC procedures in different nonterrestrial wireless architectures. CAC performance improvement is shown for different space-based architectures, including both satellites and high altitude platform (HAP systems.

  19. One-Chip Solution to Intelligent Robot Control: Implementing Hexapod Subsumption Architecture Using a Contemporary Microprocessor

    Directory of Open Access Journals (Sweden)

    Nikita Pashenkov

    2008-11-01

    Full Text Available This paper introduces a six-legged autonomous robot managed by a single controller and a software core modeled on subsumption architecture. We begin by discussing the features and capabilities of IsoPod, a new processor for robotics which has enabled a streamlined implementation of our project. We argue that this processor offers a unique set of hardware and software features, making it a practical development platform for robotics in general and for subsumption-based control architectures in particular. Next, we summarize original ideas on subsumption architecture implementation for a six-legged robot, as presented by its inventor Rodney Brooks in 1980's. A comparison is then made to a more recent example of a hexapod control architecture based on subsumption. The merits of both systems are analyzed and a new subsumption architecture layout is formulated as a response. We conclude with some remarks regarding the development of this project as a hint at new potentials for intelligent robot design, opened up by a recent development in embedded controller market.

  20. Adaptive PI Controller for a Nonlinear System

    Directory of Open Access Journals (Sweden)

    D. Rathikarani

    2009-10-01

    Full Text Available Most of the industrial processes are inherently nonlinear in their behaviour. Designs of controllers for these nonlinear processes are difficult, as they do not follow superposition theorem. Adaptive controller can change its behaviour in response to changes in the dynamics of the process and disturbances. Hence adaptive controller can be used to control nonlinear processes. Direct Model Reference Adaptive Control is a technique, in which a reference model involving the desired performances is specified. In the present work, a DMRAC is designed and implemented to achieve satisfactory control of a nonlinear system in all its local linear operating regions. The closed loop system is made BIBO stable by proper control techniques. The controller is designed through simulation in Matlab platform and is validated in real time by conducting experiments on the laboratory Air Flow Control System using the dSPACE interface.

  1. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    Science.gov (United States)

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. The Basal Ganglia and Adaptive Motor Control

    Science.gov (United States)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  3. Adaptive control method for core power control in TRIGA Mark II reactor

    Science.gov (United States)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  4. A performance analysis of advanced I/O architectures for PC-based network file servers

    Science.gov (United States)

    Huynh, K. D.; Khoshgoftaar, T. M.

    1994-12-01

    In the personal computing and workstation environments, more and more I/O adapters are becoming complete functional subsystems that are intelligent enough to handle I/O operations on their own without much intervention from the host processor. The IBM Subsystem Control Block (SCB) architecture has been defined to enhance the potential of these intelligent adapters by defining services and conventions that deliver command information and data to and from the adapters. In recent years, a new storage architecture, the Redundant Array of Independent Disks (RAID), has been quickly gaining acceptance in the world of computing. In this paper, we would like to discuss critical system design issues that are important to the performance of a network file server. We then present a performance analysis of the SCB architecture and disk array technology in typical network file server environments based on personal computers (PCs). One of the key issues investigated in this paper is whether a disk array can outperform a group of disks (of same type, same data capacity, and same cost) operating independently, not in parallel as in a disk array.

  5. Adaptive modified function projective synchronization of multiple time-delayed chaotic Rossler system

    International Nuclear Information System (INIS)

    Sudheer, K. Sebastian; Sabir, M.

    2011-01-01

    In this Letter we consider modified function projective synchronization of unidirectionally coupled multiple time-delayed Rossler chaotic systems using adaptive controls. Recently, delay differential equations have attracted much attention in the field of nonlinear dynamics. The high complexity of the multiple time-delayed systems can provide a new architecture for enhancing message security in chaos based encryption systems. Adaptive control can be used for synchronization when the parameters of the system are unknown. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems are function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

  6. Architecture at Hydro-Quebec. L'architecture a Hydro-Quebec

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Architecture at Hydro-Quebec is concerned not only with combining function and aesthetics in designing buildings and other structures for an electrical utility, but also to satisfy technical and administrative needs and to help solve contemporary problems such as the rational use of energy. Examples are presented of Hydro-Quebec's architectural accomplishments in the design of hydroelectric power stations and their surrounding landscapes, thermal power stations, transmission substations, research and testing facilities, and administrative buildings. It is shown how some buildings are designed to adapt to local environments and to conserve energy. The utility's policy of conserving installations of historic value, such as certain pre-1930 power stations, is illustrated, and aspects of its general architectural policy are outlined. 20 figs.

  7. Enhanced vaccine control of epidemics in adaptive networks

    Science.gov (United States)

    Shaw, Leah B.; Schwartz, Ira B.

    2010-04-01

    We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.

  8. Applications of adaptive filters in active noise control

    Science.gov (United States)

    Darlington, Paul

    The active reduction of acoustic noise is achieved by the addition of a cancelling acoustic signal to the unwanted sound. Successful definition of the cancelling signal amounts to a system identification problem. Recent advances in adaptive signal processing have allowed this problem to be tackled using adaptive filters, which offer significant advantages over conventional solutions. The extension of adaptive noise cancelling techniques, which were developed in the electrical signal conditioning context, to the control of acoustic systems is studied. An analysis is presented of the behavior of the Widrow-Hoff LMS adaptive noise canceller with a linear filter in its control loop. The active control of plane waves propagating axially in a hardwalled duct is used as a motivating model problem. The model problem also motivates the study of the effects of feedback around an LMS adaptive filter. An alternative stochastic gradient algorithm for controlling adaptive filters in the presence of feedback is presented.

  9. Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

    Directory of Open Access Journals (Sweden)

    Guoliang Zhao

    2013-01-01

    Full Text Available This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.

  10. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  11. Applicability of Agent-Based Technology for Acquisition, Monitoring and Process Control Systems at Real Time for Distributed Architectures

    International Nuclear Information System (INIS)

    Dorao, Carlos; Fontanini, H; Fernandez, R

    2000-01-01

    Modern industrial plants are characterized by their large size and higher complexity of the processes involved in their operations.The real time monitoring systems of theses plants must be used a distributed architecture.Due to the pressure of competitive markets, an efficient adaptability to changes must be present in the plants.Modifications in the plants due to changes in the lay-out, the introduction of newer supervision, control and monitoring technologies must not affect the integrity of the systems.The aim of this work is give an introduction to the agent-based technology and analyze it advantage for the development of a modern monitoring system

  12. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  13. A game-theoretic architecture for visible watermarking system of ACOCOA (adaptive content and contrast aware technique

    Directory of Open Access Journals (Sweden)

    Tsai Min-Jen

    2011-01-01

    Full Text Available Abstract Digital watermarking techniques have been developed to protect the intellectual property. A digital watermarking system is basically judged based on two characteristics: security robustness and image quality. In order to obtain a robust visible watermarking in practice, we present a novel watermarking algorithm named adaptive content and contrast aware (ACOCOA, which considers the host image content and watermark texture. In addition, we propose a powerful security architecture against attacks for visible watermarking system which is based on game-theoretic approach that provides an equilibrium condition solution for the decision maker by studying the effects of transmission power on intensity and perceptual efficiency. The experimental results demonstrate that the feasibility of the proposed approach not only provides effectiveness and robustness for the watermarked images, but also allows the watermark encoder to obtain the best adaptive watermarking strategy under attacks.

  14. Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes

    Science.gov (United States)

    Huang, Shaoming

    2003-06-01

    An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.

  15. Architectural Decision Management for Digital Transformation of Products and Services

    Directory of Open Access Journals (Sweden)

    Alfred Zimmermann

    2016-04-01

    Full Text Available The digitization of our society changes the way we live, work, learn, communicate, and collaborate. The Internet of Things, Enterprise Social Networks, Adaptive Case Management, Mobility systems, Analytics for Big Data, and Cloud services environments are emerging to support smart connected products and services and the digital transformation. Biological metaphors of living and adaptable ecosystems provide the logical foundation for self-optimizing and resilient run-time environments for intelligent business services and service-oriented enterprise architectures. Our aim is to support flexibility and agile transformations for both business domains and related information technology. The present research paper investigates mechanisms for decision analytics in the context of multi-perspective explorations of enterprise services and their digital enterprise architectures by extending original architecture reference models with state of art elements for agile architectural engineering for the digitization and collaborative architectural decision support. The paper’s context focuses on digital transformations of business and IT and integrates fundamental mappings between adaptable digital enterprise architectures and service-oriented information systems. We are putting a spotlight on the example domain – Internet of Things.

  16. A Composite Agent Architecture for Multi-Agent Simulations

    OpenAIRE

    VanPutte, Michael; Osborn, Brian; Hiles, John

    2002-01-01

    CGF Computer Generated Forces and Behavioral Representation The MOVES Institute’s Computer-Generated Autonomy Group has focused on a research goal of modeling complex and adaptive behavior while at the same time making the behavior easier to create and control. This research has led to several techniques for agent construction, that includes a social and organization relationship management engine, a composite agent architecture, an agent goal apparatus, a structure for capturi...

  17. Adaptive change in corporate control practices.

    Science.gov (United States)

    Alexander, J A

    1991-03-01

    Multidivisional organizations are not concerned with what structure to adopt but with how they should exercise control within the divisional form to achieve economic efficiencies. Using an information-processing framework, I examined control arrangements between the headquarters and operating divisions of such organizations and how managers adapted control practices to accommodate increasing environmental uncertainty. Also considered were the moderating effects of contextual attributes on such adaptive behavior. Analyses of panel data from 97 multihospital systems suggested that organizations generally practice selective decentralization under conditions of increasing uncertainty but that organizational age, dispersion, and initial control arrangements significantly moderate the direction and magnitude of such changes.

  18. A novel approach to locomotion learning: Actor-Critic architecture using central pattern generators and dynamic motor primitives.

    Science.gov (United States)

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2014-01-01

    In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a "reshaping" function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal "reshaping" functions). In this article, we use this architecture with the actor-critic algorithms for finding a good "reshaping" function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.

  19. A Novel Approach to Locomotion Learning: Actor-Critic Architecture using Central Pattern Generators and Dynamic Motor Primitives

    Directory of Open Access Journals (Sweden)

    Cai eLi

    2014-10-01

    Full Text Available In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modelling objective is split into two: baseline motion modelling and dynamics adaptation. Baseline motion modelling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a ``reshaping function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the the baseline motion and dynamic motor primitives (DMPs, a model with universal ``reshaping functions. In this article, we use this architecture with the actor-critic algorithms for finding a good ``reshaping function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: 1 learning to crawl on a humanoid and, 2 learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.

  20. Do Architectural Design Decisions Improve the Understanding of Software Architecture? Two Controlled Experiments

    NARCIS (Netherlands)

    Shahin, M.; Liang, P.; Li, Z.

    2014-01-01

    Architectural design decision (ADD) and its design rationale, as a paradigm shift on documenting and enriching architecture design description, is supposed to facilitate the understanding of architecture and the reasoning behind the design rationale, which consequently improves the architecting

  1. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

    DEFF Research Database (Denmark)

    Andersen, T.O.; Hansen, M.R.; Conrad, Finn

    2004-01-01

    control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each......A method for synthesis of a robust adaptive scheme for a hydraulically driven manipulator, that takes full advantage of any known system dynamics to simplify the adaptive control problem for the unknown portion of the dynamics is presented. The control method is based on adaptive perturbation...

  2. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  3. Control Architecture Modeling for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    electricity exchange. However, at the same time, it seems that the overall system design cannot keep up by simply adapting in response to changes, but that also new strategies have to be designed in anticipation. Changes to the electricity markets have been suggested to adapt to the limited predictability...... of wind power, and several new control strategies have been proposed, in particular to enable the control of distributed energy resources, including for example, distributed generation or electric vehicles. Market designs addressing the procurement of balancing resources are highly dependent...... on the operation strategies specifying the resource requirements. How should one decide which control strategy and market configuration is best for a future power system? Most research up to this point has addressed single isolated aspects of this design problem. Those of the ideas that fit with current markets...

  4. Integrated control and diagnostic system architectures for future installations

    International Nuclear Information System (INIS)

    Wood, R.; March-Leuba, J.

    2000-01-01

    Nuclear reactors of the 21st century will employ increasing levels of automation and fault tolerance to increase availability, reduce accident risk, and lower operating costs. Key developments in control algorithms, fault diagnostics, fault tolerance, and distributed communications are needed to implement the fully automated plant. It will be equally challenging to integrate developments in separate information and control fields into a cohesive system, which collectively achieves the overall goals of improved safety, reliability, maintainability, and cost-effectiveness. Under the Nuclear Energy Research Initiative (NERI), the US Department of Energy is sponsoring a project to address some of the technical issues involved in meeting the long-range goal of 21st century reactor control systems. This project involves researchers from Oak Ridge National Laboratory, the University of Tennessee, and North Carolina State University. The research tasks under this project focus on some of the first-level breakthroughs in control design, diagnostic techniques, and information system design that will provide a path to enable the design process to be automated in the future. This paper describes the conceptual development of an integrated nuclear plant control and information system architecture, which incorporates automated control system development that can be traced to a set of technical requirements. The expectation is that an integrated plant architecture with optimal control and efficient use of diagnostic information can reduce the potential for operational errors and minimize challenges to the plant safety systems

  5. Space Power Program, Instrumentation and Control System Architecture, Preconceptual Design, for Information

    International Nuclear Information System (INIS)

    JM Ross

    2005-01-01

    The purpose of this letter is to forward the Prometheus preconceptual Instrumentation and Control (I and C) system architecture (Enclosure (1)) to NR for information as part of the Prometheus closeout work. The preconceptual 1 and C system architecture was considered a key planning document for development of the I and C system for Project Prometheus. This architecture was intended to set the technical approach for the entire I and C system. It defines interfaces to other spacecraft systems, defines hardware blocks for future development, and provides a basis for accurate cost and schedule estimates. Since the system requirements are not known at this time, it was anticipated that the architecture would evolve as the design of the reactor module was matured

  6. Feedback control and adaptive control of the energy resource chaotic system

    International Nuclear Information System (INIS)

    Sun Mei; Tian Lixin; Jiang Shumin; Xu Jun

    2007-01-01

    In this paper, the problem of control for the energy resource chaotic system is considered. Two different method of control, feedback control (include linear feedback control, non-autonomous feedback control) and adaptive control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. The Routh-Hurwitz criteria and Lyapunov direct method are used to study the conditions of the asymptotic stability of the steady states of the controlled system. The designed adaptive controller is robust with respect to certain class of disturbances in the energy resource chaotic system. Numerical simulations are presented to show these results

  7. Advances in quantum control of three-level superconducting circuit architectures

    Energy Technology Data Exchange (ETDEWEB)

    Falci, G.; Paladino, E. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); CNR-IMM UOS Universita (MATIS), Consiglio Nazionale delle Ricerche, Catania (Italy); INFN, Sezione di Catania (Italy); Di Stefano, P.G. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University Belfast(United Kingdom); Ridolfo, A.; D' Arrigo, A. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Paraoanu, G.S. [Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science (Finland)

    2017-06-15

    Advanced control in Lambda (Λ) scheme of a solid state architecture of artificial atoms and quantized modes would allow the translation to the solid-state realm of a whole class of phenomena from quantum optics, thus exploiting new physics emerging in larger integrated quantum networks and for stronger couplings. However control solid-state devices has constraints coming from selection rules, due to symmetries which on the other hand yield protection from decoherence, and from design issues, for instance that coupling to microwave cavities is not directly switchable. We present two new schemes for the Λ-STIRAP control problem with the constraint of one or two classical driving fields being always-on. We show how these protocols are converted to apply to circuit-QED architectures. We finally illustrate an application to coherent spectroscopy of the so called ultrastrong atom-cavity coupling regime. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. SCOS 2: A distributed architecture for ground system control

    Science.gov (United States)

    Keyte, Karl P.

    The current generation of spacecraft ground control systems in use at the European Space Agency/European Space Operations Centre (ESA/ESOC) is based on the SCOS 1. Such systems have become difficult to manage in both functional and financial terms. The next generation of spacecraft is demanding more flexibility in the use, configuration and distribution of control facilities as well as functional requirements capable of matching those being planned for future missions. SCOS 2 is more than a successor to SCOS 1. Many of the shortcomings of the existing system have been carefully analyzed by user and technical communities and a complete redesign was made. Different technologies were used in many areas including hardware platform, network architecture, user interfaces and implementation techniques, methodologies and language. As far as possible a flexible design approach has been made using popular industry standards to provide vendor independence in both hardware and software areas. This paper describes many of the new approaches made in the architectural design of the SCOS 2.

  9. Adaptive Control Of Remote Manipulator

    Science.gov (United States)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  10. The CEBAF [Continuous Electron Beam Accelerator Facility] control system architecture

    International Nuclear Information System (INIS)

    Bork, R.

    1987-01-01

    The focus of this paper is on CEBAF's computer control system. This control system will utilize computers in a distributed, networked configuration. The architecture, networking and operating system of the computers, and preliminary performance data are presented. We will also discuss the design of the operator consoles and the interfacing between the computers and CEBAF's instrumentation and operating equipment

  11. HoMuCS - A methodology and architecture for Holonic Multi-cell Control Systems

    DEFF Research Database (Denmark)

    Langer, Gilad

    it in practice. An iterative developmentprocess was used to obtain the empiricalbasis for the research work. This involved development of prototypes aimed at testing the feasibility of the theory and investigating its applicability. The main issue that the prototypes were tested for was their agile performance...... as the hypothesis of the research. Firstly that it is possible to realise holonic systems based on the HMS theory, specifically its reference architecture, and secondly that they are in fact agile. Itpresents the concept of a Holonic Multi-cell Control System system-architecture and corresponding methodology, which...... suggests a solution for realising an agile shop floor control system. The current state of the technological development of the HoMuCS architecture and methodology is described....

  12. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    Science.gov (United States)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  13. Robust and Adaptive Control With Aerospace Applications

    CERN Document Server

    Lavretsky, Eugene

    2013-01-01

    Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems.  The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: ·         case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; ·         detailed background material for each chapter to motivate theoretical developments; ·         realistic examples and simulation data illustrating key features ...

  14. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  15. The message architecture of the LEP control system

    International Nuclear Information System (INIS)

    Altaber, J.; van der Stok, P.; Frammery, V.; Gareyte, C.; Rausch, R.

    1985-01-01

    The LEP control system will be constructed as a global communication system where microprocessors will be used everywhere, from the management of the communication mechanisms, the execution of complex control procedures, and the supervision of the equipment. To achieve this, the global control problem has been cut into sizeable functions which will be encapsulated into microprocessor modules containing enough hardware for the function to be mostly self-contained. This leads to a function architecture where messages are exchanged between the functions on miscellaneous media. It is shown how these message exchanges can be organized into a uniform flow of data all through the system

  16. Prediction of fibre architecture and adaptation in diseased carotid bifurcations.

    LENUS (Irish Health Repository)

    Creane, Arthur

    2011-12-01

    Many studies have used patient-specific finite element models to estimate the stress environment in atherosclerotic plaques, attempting to correlate the magnitude of stress to plaque vulnerability. In complex geometries, few studies have incorporated the anisotropic material response of arterial tissue. This paper presents a fibre remodelling algorithm to predict the fibre architecture, and thus anisotropic material response in four patient-specific models of the carotid bifurcation. The change in fibre architecture during disease progression and its affect on the stress environment in the plaque were predicted. The mean fibre directions were assumed to lie at an angle between the two positive principal strain directions. The angle and the degree of dispersion were assumed to depend on the ratio of principal strain values. Results were compared with experimental observations and other numerical studies. In non-branching regions of each model, the typical double helix arterial fibre pattern was predicted while at the bifurcation and in regions of plaque burden, more complex fibre architectures were found. The predicted change in fibre architecture in the arterial tissue during plaque progression was found to alter the stress environment in the plaque. This suggests that the specimen-specific anisotropic response of the tissue should be taken into account to accurately predict stresses in the plaque. Since determination of the fibre architecture in vivo is a difficult task, the system presented here provides a useful method of estimating the fibre architecture in complex arterial geometries.

  17. Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2018-01-01

    This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.

  18. Distributed hierarchical control architecture for integrating smart grid assets during normal and disrupted operations

    Science.gov (United States)

    Kalsi, Karan; Fuller, Jason C.; Somani, Abhishek; Pratt, Robert G.; Chassin, David P.; Hammerstrom, Donald J.

    2017-09-12

    Disclosed herein are representative embodiments of methods, apparatus, and systems for facilitating operation and control of a resource distribution system (such as a power grid). Among the disclosed embodiments is a distributed hierarchical control architecture (DHCA) that enables smart grid assets to effectively contribute to grid operations in a controllable manner, while helping to ensure system stability and equitably rewarding their contribution. Embodiments of the disclosed architecture can help unify the dispatch of these resources to provide both market-based and balancing services.

  19. Adaptive Control Algorithm of the Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Shevchenko Victor

    2017-01-01

    Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.

  20. Adaptive Sliding Mode Control for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback...... employing parameter adaption through a recursive algorithm is presented. This is based on a reduced order model approximation of a VCD with unmatched valve flow- and cylinder asymmetries. Bounds on parameters are obtained despite lack of parameter knowledge, and the proposed controller demonstrates improved...

  1. Projection Operator: A Step Towards Certification of Adaptive Controllers

    Science.gov (United States)

    Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.

  2. Optimal and robust control of a class of nonlinear systems using dynamically re-optimised single network adaptive critic design

    Science.gov (United States)

    Tiwari, Shivendra N.; Padhi, Radhakant

    2018-01-01

    Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.

  3. Adaptive Controller Design for Continuous Stirred Tank Reactor

    OpenAIRE

    K. Prabhu; V. Murali Bhaskaran

    2014-01-01

    Continues Stirred Tank Reactor (CSTR) is an important issue in chemical process and a wide range of research in the area of chemical engineering. Temperature Control of CSTR has been an issue in the chemical control engineering since it has highly non-linear complex equations. This study presents problem of temperature control of CSTR with the adaptive Controller. The Simulation is done in MATLAB and result shows that adaptive controller is an efficient controller for temperature control of C...

  4. Developing a real-time emulation of multiresolutional control architectures for complex, discrete-event systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.J.; Macro, J.G.; Brook, A.L. [Univ. of Illinois, Urbana, IL (United States)] [and others

    1996-12-31

    This paper first discusses an object-oriented, control architecture and then applies the architecture to produce a real-time software emulator for the Rapid Acquisition of Manufactured Parts (RAMP) flexible manufacturing system (FMS). In specifying the control architecture, the coordinated object is first defined as the primary modeling element. These coordinated objects are then integrated into a Recursive, Object-Oriented Coordination Hierarchy. A new simulation methodology, the Hierarchical Object-Oriented Programmable Logic Simulator, is then employed to model the interactions among the coordinated objects. The final step in implementing the emulator is to distribute the models of the coordinated objects over a network of computers and to synchronize their operation to a real-time clock. The paper then introduces the Hierarchical Subsystem Controller as an intelligent controller for the coordinated object. The proposed approach to intelligent control is then compared to the concept of multiresolutional semiosis that has been developed by Dr. Alex Meystel. Finally, the plans for implementing an intelligent controller for the RAMP FMS are discussed.

  5. ['FLEXIBLE WALLS' IN HOSPITALS - ASSESSING THE 'VALUE' OF SOCIAL IMPACT ON ARCHITECTURE].

    Science.gov (United States)

    Tal, Orna; Tal, Shy-Lee

    2018-05-01

    : The development of hospital architecture is influenced by social trends, with mutual influence. Architecture enables 'organic-design' that leads to development, growth and adaptation of the structure to changing functions. A literature review reveals different perceptions of the flexibility of adapting hospital structure to changing needs, focusing on external forces pressures (expensive technologies, budgetary constraints limiting innovation implementation and regulatory barriers), as well as patients' demands. The degree of contribution of structural changes to the measured or perceived benefit to the patient and staff, has not yet been fully assessed. Expressions of this benefit are infection-control and increasing operational efficiency by energy saving and sustainability. To examine workers' perceptions towards value-based-architecture in relation to the patient or staff in a hospital setting. A survey was conducted among health care workers who underwent management training, using a structured questionnaire. Sixty responders ranked hospital leadership and relevant professionals (engineers and architects) as key players in the decision to change architecture in a hospital; economists, doctors and nurses were ranked as less important, while patients and families were ranked the lowest. Among the factors that contribute to the 'value' of the decision were the agility to adapt to emergency, and to changing morbidity trends in an efficient way. Factors ranked as being of medium importance were the contribution to hospital profitability and, to a lesser extent, the contribution to branding and improved service. 'Flexible walls' (shifting rooms between departments according to clinical need) can provide a response to morbidity changes. Hospital workers can play a role in the process of value-based architecture, thereby improving decisions concerning hospital construction and increasing their commitment to additional quality processes.

  6. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  7. Collaborative-Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Tom [USC; Ghani, Nasir [UNM; Boyd, Eric [UCAID

    2010-08-31

    At a high level, there were four basic task areas identified for the Hybrid-MLN project. They are: o Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation, including OSCARS layer2 and InterDomain Adaptation, Integration of LambdaStation and Terapaths with Layer2 dynamic provisioning, Control plane software release, Scheduling, AAA, security architecture, Network Virtualization architecture, Multi-Layer Network Architecture Framework Definition; o Heterogeneous DataPlane Testing; o Simulation; o Project Publications, Reports, and Presentations.

  8. Artificial Selection Response due to Polygenic Adaptation from a Multilocus, Multiallelic Genetic Architecture.

    Science.gov (United States)

    Zan, Yanjun; Sheng, Zheya; Lillie, Mette; Rönnegård, Lars; Honaker, Christa F; Siegel, Paul B; Carlborg, Örjan

    2017-10-01

    The ability of a population to adapt to changes in their living conditions, whether in nature or captivity, often depends on polymorphisms in multiple genes across the genome. In-depth studies of such polygenic adaptations are difficult in natural populations, but can be approached using the resources provided by artificial selection experiments. Here, we dissect the genetic mechanisms involved in long-term selection responses of the Virginia chicken lines, populations that after 40 generations of divergent selection for 56-day body weight display a 9-fold difference in the selected trait. In the F15 generation of an intercross between the divergent lines, 20 loci explained >60% of the additive genetic variance for the selected trait. We focused particularly on fine-mapping seven major QTL that replicated in this population and found that only two fine-mapped to single, bi-allelic loci; the other five contained linked loci, multiple alleles or were epistatic. This detailed dissection of the polygenic adaptations in the Virginia lines provides a deeper understanding of the range of different genome-wide mechanisms that have been involved in these long-term selection responses. The results illustrate that the genetic architecture of a highly polygenic trait can involve a broad range of genetic mechanisms, and that this can be the case even in a small population bred from founders with limited genetic diversity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Adaptive control of bifurcation and chaos in a time-delayed system

    International Nuclear Information System (INIS)

    Li Ning; Zhang Qing-Ling; Yuan Hui-Qun; Sun Hai-Yi

    2013-01-01

    In this paper, the stabilization of a continuous time-delayed system is considered. To control the bifurcation and chaos in a time-delayed system, a parameter perturbation control and a hybrid control are proposed. Then, to ensure the asymptotic stability of the system in the presence of unexpected system parameter changes, the adaptive control idea is introduced, i.e., the perturbation control parameter and the hybrid control parameter are automatically tuned according to the adaptation laws, respectively. The adaptation algorithms are constructed based on the Lyapunov-Krasovskii stability theorem. The adaptive parameter perturbation control and the adaptive hybrid control methods improve the corresponding constant control methods. They have the advantages of increased stability, adaptability to the changes of the system parameters, control cost saving, and simplicity. Numerical simulations for a well-known chaotic time-delayed system are performed to demonstrate the feasibility and superiority of the proposed control methods. A comparison of the two adaptive control methods is also made in an experimental study

  10. Energy-aware architecture for multi-rate ad hoc networks

    Directory of Open Access Journals (Sweden)

    Ahmed Yahya

    2010-06-01

    Full Text Available The backbone of ad hoc network design is energy performance and bandwidth resources limitations. Multi-rate adaptation architectures have been proposed to reduce the control overhead and to increase bandwidth utilization efficiency. In this paper, we propose a multi-rate protocol to provide the highest network performance under very low control overhead. The efficiency of the proposed auto multi-rate protocol is validated extensive simulations using QualNet network simulator. The simulation results demonstrate that our solution significantly improves the overall network performance.

  11. Controlling chaos based on an adaptive adjustment mechanism

    International Nuclear Information System (INIS)

    Zheng Yongai

    2006-01-01

    In this paper, we extend the ideas and techniques developed by Huang [Huang W. Stabilizing nonlinear dynamical systems by an adaptive adjustment mechanism. Phys Rev E 2000;61:R1012-5] for controlling discrete-time chaotic system using adaptive adjustment mechanism to continuous-time chaotic system. Two control approaches, namely adaptive adjustment mechanism (AAM) and modified adaptive adjustment mechanism (MAAM), are investigated. In both case sufficient conditions for the stabilization of chaotic systems are given analytically. The simulation results on Chen chaotic system have verified the effectiveness of the proposed techniques

  12. Auto-adaptative Robot-aided Therapy based in 3D Virtual Tasks controlled by a Supervised and Dynamic Neuro-Fuzzy System

    Directory of Open Access Journals (Sweden)

    Luis Daniel Lledó

    2015-03-01

    Full Text Available This paper presents an application formed by a classification method based on the architecture of ART neural network (Adaptive Resonance Theory and the Fuzzy Set Theory to classify physiological reactions in order to automatically and dynamically adapt a robot-assisted rehabilitation therapy to the patient needs, using a three-dimensional task in a virtual reality system. Firstly, the mathematical and structural model of the neuro-fuzzy classification method is described together with the signal and training data acquisition. Then, the virtual designed task with physics behavior and its development procedure are explained. Finally, the general architecture of the experimentation for the auto-adaptive therapy is presented using the classification method with the virtual reality exercise.

  13. Overview of service oriented architecture: definition, use in ...

    African Journals Online (AJOL)

    Overview of service oriented architecture: definition, use in healthcare ... of service oriented architecture in Healthcare with focus on the pros and cons of its use as ... technologies adapted the required healthcare standards and challenges and ...

  14. Full Gradient Solution to Adaptive Hybrid Control

    Science.gov (United States)

    Bean, Jacob; Schiller, Noah H.; Fuller, Chris

    2017-01-01

    This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.

  15. Adaptive fuzzy PID control for a quadrotor stabilisation

    Science.gov (United States)

    Cherrat, N.; Boubertakh, H.; Arioui, H.

    2018-02-01

    This paper deals with the design of an adaptive fuzzy PID control law for attitude and altitude stabilization of a quadrotor despite the system model uncertainties and disturbances. To this end, a PID control with adaptive gains is used in order to approximate a virtual ideal control previously designed to achieve the predefined objective. Specifically, the control gains are estimated and adjusted by mean of a fuzzy system whose parameters are adjusted online via a gradient descent-based adaptation law. The analysis of the closed-loop system is given by the Lyapunov approach. The simulation results are presented to illustrate the efficiency of the proposed approach.

  16. Connection adaption for control of networked mobile chaotic agents.

    Science.gov (United States)

    Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Xiao, Gaoxi; Boccaletti, S

    2017-11-22

    In this paper, we propose a strategy for the control of mobile chaotic oscillators by adaptively rewiring connections between nearby agents with local information. In contrast to the dominant adaptive control schemes where coupling strength is adjusted continuously according to the states of the oscillators, our method does not request adaption of coupling strength. As the resulting interaction structure generated by this proposed strategy is strongly related to unidirectional chains, by investigating synchronization property of unidirectional chains, we reveal that there exists a certain coupling range in which the agents could be controlled regardless of the length of the chain. This feature enables the adaptive strategy to control the mobile oscillators regardless of their moving speed. Compared with existing adaptive control strategies for networked mobile agents, our proposed strategy is simpler for implementation where the resulting interaction networks are kept unweighted at all time.

  17. A modular control architecture for real-time synchronous and asynchronous systems

    International Nuclear Information System (INIS)

    Butler, P.L.; Jones, J.P.

    1993-01-01

    This paper describes a control architecture for real-time control of complex robotic systems. The Modular Integrated Control Architecture (MICA), which is actually two complementary control systems, recognizes and exploits the differences between asynchronous and synchronous control. The asynchronous control system simulates shared memory on a heterogeneous network. For control information, a portable event-scheme is used. This scheme provides consistent interprocess coordination among multiple tasks on a number of distributed systems. The machines in the network can vary with respect to their native operating systems and the intemal representation of numbers they use. The synchronous control system is needed for tight real-time control of complex electromechanical systems such as robot manipulators, and the system uses multiple processors at a specified rate. Both the synchronous and asynchronous portions of MICA have been developed to be extremely modular. MICA presents a simple programming model to code developers and also considers the needs of system integrators and maintainers. MICA has been used successfully in a complex robotics project involving a mobile 7-degree-of-freedom manipulator in a heterogeneous network with a body of software totaling over 100,000 lines of code. MICA has also been used in another robotics system, controlling a commercial long-reach manipulator

  18. Adaptive learning fuzzy control of a mobile robot

    International Nuclear Information System (INIS)

    Tsukada, Akira; Suzuki, Katsuo; Fujii, Yoshio; Shinohara, Yoshikuni

    1989-11-01

    In this report a problem is studied to construct a fuzzy controller for a mobile robot to move autonomously along a given reference direction curve, for which control rules are generated and acquired through an adaptive learning process. An adaptive learning fuzzy controller has been developed for a mobile robot. Good properties of the controller are shown through the travelling experiments of the mobile robot. (author)

  19. Adaptive mechanism-based congestion control for networked systems

    Science.gov (United States)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  20. The development of an open architecture control system for CBN high speed grinding

    OpenAIRE

    Silva, E. Jannone da; Biffi, M.; Oliveira, J. F. G. de

    2004-01-01

    The aim of this project is the development of an open architecture controlling (OAC) system to be applied in the high speed grinding process using CBN tools. Besides other features, the system will allow a new monitoring and controlling strategy, by the adoption of open architecture CNC combined with multi-sensors, a PC and third-party software. The OAC system will be implemented in a high speed CBN grinding machine, which is being developed in a partnership between the University of São Paul...

  1. Space Power Program, Instrumentation and Control System Architecture, Pre-conceptual Design, for Information

    Energy Technology Data Exchange (ETDEWEB)

    JM Ross

    2005-10-20

    The purpose of this letter is to forward the Prometheus preconceptual Instrumentation and Control (I&C) system architecture (Enclosure (1)) to NR for information as part of the Prometheus closeout work. The preconceptual 1&C system architecture was considered a key planning document for development of the I&C system for Project Prometheus. This architecture was intended to set the technical approach for the entire I&C system. It defines interfaces to other spacecraft systems, defines hardware blocks for future development, and provides a basis for accurate cost and schedule estimates. Since the system requirements are not known at this time, it was anticipated that the architecture would evolve as the design of the reactor module was matured.

  2. ADEX optimized adaptive controllers and systems from research to industrial practice

    CERN Document Server

    Martín-Sánchez, Juan M

    2015-01-01

    This book is a didactic explanation of the developments of predictive, adaptive predictive and optimized adaptive control, including the latest methodology of adaptive predictive expert (ADEX) control, and their practical applications. It is focused on the stability perspective, used in the introduction of these methodologies, and is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. ADEX Optimized Adaptive Controllers and Systems begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guarantee achievement of desired control performance. The second and third parts are centered on the design of the driver block and adaptive mechanism, which verify these stability conditions. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control m...

  3. Decentralized and Modular Electrical Architecture

    Science.gov (United States)

    Elisabelar, Christian; Lebaratoux, Laurence

    2014-08-01

    This paper presents the studies made on the definition and design of a decentralized and modular electrical architecture that can be used for power distribution, active thermal control (ATC), standard inputs-outputs electrical interfaces.Traditionally implemented inside central unit like OBC or RTU, these interfaces can be dispatched in the satellite by using MicroRTU.CNES propose a similar approach of MicroRTU. The system is based on a bus called BRIO (Bus Réparti des IO), which is composed, by a power bus and a RS485 digital bus. BRIO architecture is made with several miniature terminals called BTCU (BRIO Terminal Control Unit) distributed in the spacecraft.The challenge was to design and develop the BTCU with very little volume, low consumption and low cost. The standard BTCU models are developed and qualified with a configuration dedicated to ATC, while the first flight model will fly on MICROSCOPE for PYRO actuations and analogue acquisitions. The design of the BTCU is made in order to be easily adaptable for all type of electric interface needs.Extension of this concept is envisaged for power conditioning and distribution unit, and a Modular PCDU based on BRIO concept is proposed.

  4. All-Coefficient Adaptive Control of Dual-Motor Driving Servo System

    Directory of Open Access Journals (Sweden)

    Zhao Haibo

    2017-01-01

    Full Text Available Backlash nonlinearity and friction nonlinearity exist in dual-motor driving servo system, which reducing system response speed, steady accuracy and anti-interference ability. In order to diminish the adverse effects of backlash and friction nonlinearity to system, we proposed a new all-coefficient adaptive control method. Firstly, we introduced the dynamic model of backlash and friction nonlinearity respectively. Then on this basis, we established the characteristic model when backlash and friction nonlinearity coexist. We used recursive least square method for parameter estimation. Finally we designed the all-coefficient adaptive controller. On the basis of simplex all-coefficient adaptive controller, we designed a feedforward all-coefficient adaptive controller. The simulations of feedforward all-coefficient adaptive control and simplex all-coefficient adaptive control were compared. The results show that the former has quicker response speed, higher steady accuracy, stronger anti-interference performance and better robustness, which validating the efficacy of the proposed control strategy.

  5. Robust Adaptive Speed Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Bidstrup, N.

    , (LS) identification and generalized predictive control (GPC) has been implemented and tested on the CVC drive. Allthough GPC is a robust control method, it was not possible to maintain specified controller performance in the entire operating range. This was the main reason for investigating truly...... adaptive speed control of the CVC drive. A direct truly adaptive speed controller has been implemented. The adaptive controller is a moving Average Self-Tuning Regulator which is abbreviated MASTR throughout the thesis. Two practical implementations of this controller were proposed. They were denoted MASTR...... and measurement noise in general, were the major reasons for the drifting parameters. Two approaches was proposed to robustify MASTR2 against the output noise. The first approach consists of filtering the output. Output filtering had a significant effect in simulations, but the robustness against the output noise...

  6. Adaptive Control Methods for Soft Robots

    Data.gov (United States)

    National Aeronautics and Space Administration — I propose to develop methods for soft and inflatable robots that will allow the control system to adapt and change control parameters based on changing conditions...

  7. Disturbance Accommodating Adaptive Control with Application to Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2012-01-01

    Adaptive control techniques are well suited to applications that have unknown modeling parameters and poorly known operating conditions. Many physical systems experience external disturbances that are persistent or continually recurring. Flexible structures and systems with compliance between components often form a class of systems that fail to meet standard requirements for adaptive control. For these classes of systems, a residual mode filter can restore the ability of the adaptive controller to perform in a stable manner. New theory will be presented that enables adaptive control with accommodation of persistent disturbances using residual mode filters. After a short introduction to some of the control challenges of large utility-scale wind turbines, this theory will be applied to a high-fidelity simulation of a wind turbine.

  8. Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)

    2016-01-01

    Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.

  9. Adaptive Backstepping Flight Control for Modern Fighter Aircraft

    NARCIS (Netherlands)

    Sonneveldt, L.

    2010-01-01

    The main goal of this thesis is to investigate the potential of the nonlinear adaptive backstepping control technique in combination with online model identification for the design of a reconfigurable flight control system for a modern fighter aircraft. Adaptive backstepping is a recursive,

  10. Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)

    National Research Council Canada - National Science Library

    Behbahani, Alireza R

    2007-01-01

    .... Distributed control is potentially an enabling technology for advanced intelligent propulsion system concepts and is one of the few control approaches that is able to provide improved component...

  11. Design and implementation of adaptive inverse control algorithm for a micro-hand control system

    Directory of Open Access Journals (Sweden)

    Wan-Cheng Wang

    2014-01-01

    Full Text Available The Letter proposes an online tuned adaptive inverse position control algorithm for a micro-hand. First, the configuration of the micro-hand is discussed. Next, a kinematic analysis of the micro-hand is investigated and then the relationship between the rotor position of micro-permanent magnet synchronous motor and the tip of the micro-finger is derived. After that, an online tuned adaptive inverse control algorithm, which includes an adaptive inverse model and an adaptive inverse control, is designed. The online tuned adaptive inverse control algorithm has better performance than the proportional–integral control algorithm does. In addition, to avoid damaging the object during the grasping process, an online force control algorithm is proposed here as well. An embedded micro-computer, cRIO-9024, is used to realise the whole position control algorithm and the force control algorithm by using software. As a result, the hardware circuit is very simple. Experimental results show that the proposed system can provide fast transient responses, good load disturbance responses, good tracking responses and satisfactory grasping responses.

  12. Adaptive landing gear concept—feedback control validation

    Science.gov (United States)

    Mikulowski, Grzegorz M.; Holnicki-Szulc, Jan

    2007-12-01

    The objective of this paper is to present an integrated feedback control concept for adaptive landing gears (ALG) and its experimental validation. Aeroplanes are subjected to high dynamic loads as a result of the impact during each landing. Classical landing gears, which are in common use, are designed in accordance with official regulations in a way that ensures the optimal energy dissipation for the critical (maximum) sink speed. The regulations were formulated in order to ensure the functional capability of the landing gears during an emergency landing. However, the landing gears, whose characteristics are optimized for these critical conditions, do not perform well under normal impact conditions. For that situation it is reasonable to introduce a system that would adapt the characteristics of the landing gears according to the sink speed of landing. The considered system assumes adaptation of the damping force generated by the landing gear, which would perform optimally in an emergency situation and would adapt itself for regular landings as well. This research covers the formulation and design of the control algorithms for an adaptive landing gear based on MR fluid, implementation of the algorithms on an FPGA platform and experimental verification on a lab-scale landing gear device. The main challenge of the research was to develop a control methodology that could operate effectively within 50 ms, which is assumed to be the total duration of the phenomenon. The control algorithm proposed in this research was able to control the energy dissipation process on the experimental stand.

  13. Adaptive pseudolinear compensators of dynamic characteristics of automatic control systems

    Science.gov (United States)

    Skorospeshkin, M. V.; Sukhodoev, M. S.; Timoshenko, E. A.; Lenskiy, F. V.

    2016-04-01

    Adaptive pseudolinear gain and phase compensators of dynamic characteristics of automatic control systems are suggested. The automatic control system performance with adaptive compensators has been explored. The efficiency of pseudolinear adaptive compensators in the automatic control systems with time-varying parameters has been demonstrated.

  14. Look and Do Ancient Greece. Teacher's Manual: Primary Program, Greek Art & Architecture [and] Workbook: The Art and Architecture of Ancient Greece [and] K-4 Videotape. History through Art and Architecture.

    Science.gov (United States)

    Luce, Ann Campbell

    This resource, containing a teacher's manual, reproducible student workbook, and a color teaching poster, is designed to accompany a 21-minute videotape program, but may be adapted for independent use. Part 1 of the program, "Greek Architecture," looks at elements of architectural construction as applied to Greek structures, and…

  15. Control of multi-machine using adaptive fuzzy

    Directory of Open Access Journals (Sweden)

    Bouchiba Bousmaha

    2011-01-01

    Full Text Available An indirect Adaptive fuzzy excitation control (IAFLC of power systems based on multi-input-multi-output linearization technique is developed in this paper. The power system considered in this paper consists of two generators and infinite bus connected through a network of transformers and transmission lines. The fuzzy controller is constructed from fuzzy feedback linearization controller whose parameters are adjusted indirectly from the estimates of plant parameters. The adaptation law adjusts the controller parameters on-line so that the plant output tracks the reference model output. Simulation results shown that the proposed controller IAFLC, compared with a controller based on tradition linearization technique can enhance the transient stability of the power system.

  16. Adaptive control of manipulators handling hazardous waste

    International Nuclear Information System (INIS)

    Colbaugh, R.; Glass, K.

    1994-01-01

    This article focuses on developing a robot control system capable of meeting hazardous waste handling application requirements, and presents as a solution an adaptive strategy for controlling the mechanical impedance of kinematically redundant manipulators. The proposed controller is capable of accurate end-effector impedance control and effective redundancy utilization, does not require knowledge of the complex robot dynamic model or parameter values for the robot or the environment, and is implemented without calculation of the robot inverse transformation. Computer simulation results are given for a four degree of freedom redundant robot under adaptive impedance control. These results indicate that the proposed controller is capable of successfully performing important tasks in robotic waste handling applications. (author) 3 figs., 39 refs

  17. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    International Nuclear Information System (INIS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-01-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller

  18. Adaptive Regularization of Neural Classifiers

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; Larsen, Jan; Hansen, Lars Kai

    1997-01-01

    We present a regularization scheme which iteratively adapts the regularization parameters by minimizing the validation error. It is suggested to use the adaptive regularization scheme in conjunction with optimal brain damage pruning to optimize the architecture and to avoid overfitting. Furthermo......, we propose an improved neural classification architecture eliminating an inherent redundancy in the widely used SoftMax classification network. Numerical results demonstrate the viability of the method...

  19. Optical Neural Network Classifier Architectures

    National Research Council Canada - National Science Library

    Getbehead, Mark

    1998-01-01

    We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and classification of high-dimensional data for Air...

  20. On the Inevitable Intertwining of Requirements and Architecture

    Science.gov (United States)

    Sutcliffe, Alistair

    The chapter investigates the relationship between architecture and requirements, arguing that architectural issues need to be addressed early in the RE process. Three trends are driving architectural implications for RE: the growth of intelligent, context-aware and adaptable systems. First the relationship between architecture and requirements is considered from a theoretical viewpoint of problem frames and abstract conceptual models. The relationships between architectural decisions and non-functional requirements is reviewed, and then the impact of architecture on the RE process is assessed using a case study of developing configurable, semi-intelligent software to support medical researchers in e-science domains.

  1. Adaptive robust control of the EBR-II reactor

    International Nuclear Information System (INIS)

    Power, M.A.; Edwards, R.M.

    1996-01-01

    Simulation results are presented for an adaptive H ∞ controller, a fixed H ∞ controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H ∞ controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H ∞ and classical controllers. This makes for a superior and more robust controller

  2. Network based control point for UPnP QoS architecture

    DEFF Research Database (Denmark)

    Brewka, Lukasz Jerzy; Wessing, Henrik; Rossello Busquet, Ana

    2011-01-01

    Enabling coexistence of non-UPnP Devices in an UPnP QoS Architecture is an important issue that might have a major impact on the deployment and usability of UPnP in future home networks. The work presented here shows potential issues of placing non-UPnP Device in the network managed by UPnP QoS. We...... address this issue by extensions to the UPnP QoS Architecture that can prevent non-UPnP Devices from degrading the overall QoS level. The obtained results show that deploying Network Based Control Point service with efficient traffic classifier, improves significantly the end-to-end packet delay...

  3. Design of a real-time open architecture controller for a reconfigurable machine tool

    CSIR Research Space (South Africa)

    Masekamela, I

    2008-11-01

    Full Text Available The paper presents the design and the development of a real-time, open architecture controller that is used for control of reconfigurable manufacturing tools (RMTs) in reconfigurable manufacturing systems (RMS). The controller that is presented can...

  4. Can architecture be barbaric?

    Science.gov (United States)

    Hürol, Yonca

    2009-06-01

    The title of this article is adapted from Theodor W. Adorno's famous dictum: 'To write poetry after Auschwitz is barbaric.' After the catastrophic earthquake in Kocaeli, Turkey on the 17th of August 1999, in which more than 40,000 people died or were lost, Necdet Teymur, who was then the dean of the Faculty of Architecture of the Middle East Technical University, referred to Adorno in one of his 'earthquake poems' and asked: 'Is architecture possible after 17th of August?' The main objective of this article is to interpret Teymur's question in respect of its connection to Adorno's philosophy with a view to make a contribution to the politics and ethics of architecture in Turkey. Teymur's question helps in providing a new interpretation of a critical approach to architecture and architectural technology through Adorno's philosophy. The paper also presents a discussion of Adorno's dictum, which serves for a better understanding of its universality/particularity.

  5. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    Science.gov (United States)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  6. Adaptive control of a PWR core power using neural networks

    International Nuclear Information System (INIS)

    Arab-Alibeik, H.; Setayeshi, S.

    2005-01-01

    Reactor power control is important because of safety concerns and the call for regular and appropriate operation of nuclear power plants. It seems that the load-follow operation of these plants will be unavoidable in the future. Discrepancies between the real plant and the model used in controller design for load-follow operation encourage one to use auto-tuning and (or) adaptive techniques. Neural network technology shows great promise for addressing many problems in non-model-based adaptive control methods. Also, there has been a great attention to inverse control especially in the neural and fuzzy control context. Fortunately, online adaptation eliminates some limitations of inverse control and its shortcomings for real world applications. We use a neural adaptive inverse controller to control the power of a PWR reactor. The stability of the system and convergence of the controller parameters are guaranteed during online adaptation phase provided the controller is near the plant's real inverse after offline training period. The performance of the controller is verified using nonlinear simulations in diverse operating conditions

  7. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    This paper reports on four fault-tolerant architectures that were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant, both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault-tolerant systems. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failure modes that may be important in nuclear power plants

  8. Control System Architectures, Technologies and Concepts for Near Term and Future Human Exploration of Space

    Science.gov (United States)

    Boulanger, Richard; Overland, David

    2004-01-01

    Technologies that facilitate the design and control of complex, hybrid, and resource-constrained systems are examined. This paper focuses on design methodologies, and system architectures, not on specific control methods that may be applied to life support subsystems. Honeywell and Boeing have estimated that 60-80Y0 of the effort in developing complex control systems is software development, and only 20-40% is control system development. It has also been shown that large software projects have failure rates of as high as 50-65%. Concepts discussed include the Unified Modeling Language (UML) and design patterns with the goal of creating a self-improving, self-documenting system design process. Successful architectures for control must not only facilitate hardware to software integration, but must also reconcile continuously changing software with much less frequently changing hardware. These architectures rely on software modules or components to facilitate change. Architecting such systems for change leverages the interfaces between these modules or components.

  9. Future control architecture and emerging observability needs

    DEFF Research Database (Denmark)

    Morch, Andrei Z.; Jakobsen, Sigurd Hofsmo; Visscher, Klaas

    2015-01-01

    The paper presents the first findings from workpackage "Increased Observability" in EU FP7 project ELECTRA. Accommodation of intermittent generation into the network and its reliable operation require a gradual evolution of the network structure and in particular improvement of its monitoring...... or observing. The present practices of observing distribution networks are quite limited and vary from country to country. New network architectures are expected to evolve in the close future, including web-of-cells (concept defined in ELECTRA), which will result in new control schemes, significantly different...

  10. Fuzzy logic controller architecture for water level control in nuclear power plant steam generator using ANFIS training method

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Ekrami, AmirHasan; Naseri, Zahra

    2003-01-01

    Since suitable control of water level can greatly enhance the operation of a power station, a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical model of the object to be controlled. It is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial membership functions will be trained and appropriate functions are generated to control water level inside the steam generator while using the stated rules. The proposed architecture can construct an input-output mapping based on both human knowledge (in the from of fuzzy if - then rules) and stipulated input-output data. This fuzzy logic controller is applied to the steam generator level control by computer simulations. The simulation results confirm the excellent performance of this control architecture in compare with a well-turned PID controller. (author)

  11. Verification and Validation Challenges for Adaptive Flight Control of Complex Autonomous Systems

    Science.gov (United States)

    Nguyen, Nhan T.

    2018-01-01

    Autonomy of aerospace systems requires the ability for flight control systems to be able to adapt to complex uncertain dynamic environment. In spite of the five decades of research in adaptive control, the fact still remains that currently no adaptive control system has ever been deployed on any safety-critical or human-rated production systems such as passenger transport aircraft. The problem lies in the difficulty with the certification of adaptive control systems since existing certification methods cannot readily be used for nonlinear adaptive control systems. Research to address the notion of metrics for adaptive control began to appear in the recent years. These metrics, if accepted, could pave a path towards certification that would potentially lead to the adoption of adaptive control as a future control technology for safety-critical and human-rated production systems. Development of certifiable adaptive control systems represents a major challenge to overcome. Adaptive control systems with learning algorithms will never become part of the future unless it can be proven that they are highly safe and reliable. Rigorous methods for adaptive control software verification and validation must therefore be developed to ensure that adaptive control system software failures will not occur, to verify that the adaptive control system functions as required, to eliminate unintended functionality, and to demonstrate that certification requirements imposed by regulatory bodies such as the Federal Aviation Administration (FAA) can be satisfied. This presentation will discuss some of the technical issues with adaptive flight control and related V&V challenges.

  12. Adaptive Levels of Autonomy (ALOA) for UAV Supervisory Control

    National Research Council Canada - National Science Library

    Johnson, Rubin; Leen, Michael; Goldberg, Dan; Chiu, Michael

    2005-01-01

    .... To demonstrate the architecture and LOA implementation, we designed a prototype Multi-UAV Control Station Emulator research test bed, by building on existing ORCA-developed software components...

  13. Adaptive piezoelectric sensoriactuators for active structural acoustic control

    Science.gov (United States)

    Vipperman, Jeffrey Stuart

    1997-09-01

    A new transducer technology with application to active control systems, modal analysis, and autonomous system health monitoring, is brought to fruition in this work. It has the advantages of being lightweight, potentially cost-effective, self-tuning, has negligible dynamics, and most importantly (from a robustness perspective), it provides a colocated sensor/actuator pair. The transducer consists of a piezoceramic element which serves as both an actuator and a sensor and will be referred to in this work as a sensoriactuator. Simple, adaptive signal processing in conjunction with a voltage controlled amplifier, reference capacitor, and a common-mode rejection circuit extract the mechanical response from the total response of the piezoelectric sensoriactuator for sensing. The digital portion of the adaptive piezoelectric sensoriactuator merely serves to tune the circuit, avoiding the potentially destabilizing effects of introducing a digital delay in the signal path, when used for feedback control applications. Adaptive compensation of the sensoriactuator is necessary since the signal to noise ratio is typically greater than 40 dB, making it prohibitive to tune the circuit manually. In addition, the constitutive properties of piezoceramics vary with time and environment, necessitating that the circuit be periodically re-tuned. The analog portion of the hardware is based upon op-amp circuits and an AD632 analog multiplier chip, which serves as both a voltage controlled amplifier (VCA) and a common mode rejection (CMR) circuit. A single coefficient least-mean square (LMS) adaptive filter continuously adjusts the gain of the VCA circuit as necessary. Nonideal behavior of piezoceramics is discussed along with methods to counter the consequential deterioration in circuit performance. A multiple input multiple output (MIMO) implementation of the adaptive piezoelectric sensoriactuator is developed using orthogonal white noise training signals for each sensoriactuator. Two

  14. An Adaptive Speed Control Approach for DC Shunt Motors

    Directory of Open Access Journals (Sweden)

    Ruben Tapia-Olvera

    2016-11-01

    Full Text Available A B-spline neural networks-based adaptive control technique for angular speed reference trajectory tracking tasks with highly efficient performance for direct current shunt motors is proposed. A methodology for adaptive control and its proper training procedure are introduced. This algorithm sets the control signal without using a detailed mathematical model nor exact values of the parameters of the nonlinear dynamic system. The proposed robust adaptive tracking control scheme only requires measurements of the velocity output signal. Thus, real-time measurements or estimations of acceleration, current and disturbance signals are avoided. Experimental results confirm the efficient and robust performance of the proposed control approach for highly demanding motor operation conditions exposed to variable-speed reference trajectories and completely unknown load torque. Hence, laboratory experimental tests on a direct current shunt motor prove the viability of the proposed adaptive output feedback trajectory tracking control approach.

  15. Adaptive Critic Nonlinear Robust Control: A Survey.

    Science.gov (United States)

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.

  16. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  17. Shape Control of Responsive Building Envelopes

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Kirkegaard, Poul Henning; Christensen, Jesper Thøger

    2010-01-01

    The present paper considers shape control of adaptive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability. The general scop...... environmental system to a primary structural system joint into a collective behavioral system equipment with an actuator system is presented....... alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock-up concept of a secondary...

  18. Emerging opportunities in enterprise integration with open architecture computer numerical controls

    Science.gov (United States)

    Hudson, Christopher A.

    1997-01-01

    The shift to open-architecture machine tool computer numerical controls is providing new opportunities for metal working oriented manufacturers to streamline the entire 'art to part' process. Production cycle times, accuracy, consistency, predictability and process reliability are just some of the factors that can be improved, leading to better manufactured product at lower costs. Open architecture controllers are allowing manufacturers to apply general purpose software and hardware tools increase where previous approaches relied on proprietary and unique hardware and software. This includes DNC, SCADA, CAD, and CAM, where the increasing use of general purpose components is leading to lower cost system that are also more reliable and robust than the past proprietary approaches. In addition, a number of new opportunities exist, which in the past were likely impractical due to cost or performance constraints.

  19. Adaptive Trajectory Tracking Control using Reinforcement Learning for Quadrotor

    Directory of Open Access Journals (Sweden)

    Wenjie Lou

    2016-02-01

    Full Text Available Inaccurate system parameters and unpredicted external disturbances affect the performance of non-linear controllers. In this paper, a new adaptive control algorithm under the reinforcement framework is proposed to stabilize a quadrotor helicopter. Based on a command-filtered non-linear control algorithm, adaptive elements are added and learned by policy-search methods. To predict the inaccurate system parameters, a new kernel-based regression learning method is provided. In addition, Policy learning by Weighting Exploration with the Returns (PoWER and Return Weighted Regression (RWR are utilized to learn the appropriate parameters for adaptive elements in order to cancel the effect of external disturbance. Furthermore, numerical simulations under several conditions are performed, and the ability of adaptive trajectory-tracking control with reinforcement learning are demonstrated.

  20. Design of adaptive switching control for hypersonic aircraft

    Directory of Open Access Journals (Sweden)

    Xin Jiao

    2015-10-01

    Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.

  1. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    Directory of Open Access Journals (Sweden)

    Shun-Yuan Wang

    2015-03-01

    Full Text Available This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC in the speed sensorless vector control of an induction motor (IM drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  2. Thermal Space in Architecture

    DEFF Research Database (Denmark)

    Petersen, Mads Dines

    Present research is revolving around the design process and the use of digital applications to support the design process among architects. This work is made in relation to the current discussions about sustainable architecture and the increased focus on energy consumption and the comfort in our...... and understanding of spaces in buildings can change significantly and instead of the creation of frozen geometrical spaces, thermal spaces can be created as it is suggested in meteorological architecture where functions are distributed in relation to temperature gradients. This creates an interesting contrast......-introducing an increased adaptability in the architecture can be a part of re-defining the environmental agenda and re-establish a link between the environment of the site and the environment of the architecture and through that an increased appreciation of the sensuous space here framed in discussions about thermal...

  3. Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project

    Science.gov (United States)

    Bosworth, John

    2006-01-01

    A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions

  4. How can we adapt education programmes to the architecture of the future?

    DEFF Research Database (Denmark)

    Knudstrup, Mary-Ann

    2010-01-01

    teaching methods at the Department of Architecture & Design at Aalborg University that are tailored to dealing with current societal/technological, environmental and sustainability issues. In terms of both research and teaching, Aalborg University utilises an interdisciplinary approach to a considerable...... extent. At Architecture & Design at Aalborg University, we are working with environmentally sustainable architecture. We use a method called the Integrated Design Process, which is developed for this purpose and which is an interdisciplinary approach to designing environmentally sustainable architecture...

  5. Service oriented network architecture for control and management of home appliances

    Science.gov (United States)

    Hayakawa, Hiroshi; Koita, Takahiro; Sato, Kenya

    2005-12-01

    Recent advances in multimedia network systems and mechatronics have led to the development of a new generation of applications that associate the use of various multimedia objects with the behavior of multiple robotic actors. The connection of audio and video devices through high speed multimedia networks is expected to make the system more convenient to use. For example, many home appliances, such as a video camera, a display monitor, a video recorder, an audio system and so on, are being equipped with a communication interface in the near future. Recently some platforms (i.e. UPnP1, HAVi2 and so on) are proposed for constructing home networks; however, there are some issues to be solved to realize various services by connecting different equipment via the pervasive peer-to-peer network. UPnP offers network connectivity of PCs of intelligent home appliances, practically, which means to require a PC in the network to control other devices. Meanwhile, HAVi has been developed for intelligent AV equipments with sophisticated functions using high CPU power and large memory. Considering the targets of home alliances are embedded systems, this situation raises issues of software and hardware complexity, cost, power consumption and so on. In this study, we have proposed and developed the service oriented network architecture for control and management of home appliances, named SONICA (Service Oriented Network Interoperability for Component Adaptation), to address these issues described before.

  6. Architectural conceptual definition of the CAREM-25 reactor's control system

    International Nuclear Information System (INIS)

    Perez, J.C.; Santome, D.; Drexler, J.; Escudero, S.

    1990-01-01

    This work presents the conceptual definition of the CAREM 25 reactor's digital and monitoring control system structure. The requirements of the system are analyzed and different implementation alternatives are studied where possible basic architectures of the system and its topology are considered and evaluated. (Author) [es

  7. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    Science.gov (United States)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  8. Controlled phase gate for solid-state charge-qubit architectures

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Oi, D.K.L.; Greentree, Andrew D.

    2005-01-01

    We describe a mechanism for realizing a controlled phase gate for solid-state charge qubits. By augmenting the positionally defined qubit with an auxiliary state, and changing the charge distribution in the three-dot system, we are able to effectively switch the Coulombic interaction, effecting an entangling gate. We consider two architectures, and numerically investigate their robustness to gate noise

  9. Learning sequential control in a Neural Blackboard Architecture for in situ concept reasoning

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; Besold, Tarek R.; Lamb, Luis; Serafini, Luciano; Tabor, Whitney

    2016-01-01

    Simulations are presented and discussed of learning sequential control in a Neural Blackboard Architecture (NBA) for in situ concept-based reasoning. Sequential control is learned in a reservoir network, consisting of columns with neural circuits. This allows the reservoir to control the dynamics of

  10. A Flexible and Configurable Architecture for Automatic Control Remote Laboratories

    Science.gov (United States)

    Kalúz, Martin; García-Zubía, Javier; Fikar, Miroslav; Cirka, Luboš

    2015-01-01

    In this paper, we propose a novel approach in hardware and software architecture design for implementation of remote laboratories for automatic control. In our contribution, we show the solution with flexible connectivity at back-end, providing features of multipurpose usage with different types of experimental devices, and fully configurable…

  11. Adaptive Backstepping Self-balancing Control of a Two-wheel Electric Scooter

    Directory of Open Access Journals (Sweden)

    Nguyen Ngoc Son

    2014-10-01

    Full Text Available This paper introduces an adaptive backstepping control law for a two-wheel electric scooter (eScooter with a nonlinear uncertain model. Adaptive backstepping control is integrated with feedback control that satisfies Lyapunov stability. By using the recursive structure to find the controlled function and estimate uncertain parameters, an adaptive backstepping method allows us to build a feedback control law that efficiently controls a self-balancing controller of the eScooter. Additionally, a controller area network (CAN bus with high reliability is applied for communicating between the modules of the eScooter. Simulation and experimental results demonstrate the robustness and good performance of the proposed adaptive backstepping control.

  12. Adaptive feedforward in the LANL rf control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feedforward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF field feedback control system can be eliminated with a feedforward system. Many RF field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feedforward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feedforward system are presented

  13. Adaptive lighting controllers using smart sensors

    Science.gov (United States)

    Papantoniou, Sotiris; Kolokotsa, Denia; Kalaitzakis, Kostas; Cesarini, Davide Nardi; Cubi, Eduard; Cristalli, Cristina

    2016-07-01

    The aim of this paper is to present an advanced controller for artificial lights evaluated in several rooms in two European Hospitals located in Chania, Greece and Ancona, Italy. Fuzzy techniques have been used for the architecture of the controller. The energy efficiency of the controllers has been calculated by running the controller coupled with validated models of the RADIANCE back-wards ray tracing software. The input of the controller is the difference between the current illuminance value and the desired one, while the output is the change of the light level that should be applied in the artificial lights. Simulation results indicate significant energy saving potentials. Energy saving potential is calculated from the comparison of the current use of the artificial lights by the users and the proposed one. All simulation work has been conducted using Matlab and RADIANCE environment.

  14. Architecture Governance: The Importance of Architecture Governance for Achieving Operationally Responsive Ground Systems

    Science.gov (United States)

    Kolar, Mike; Estefan, Jeff; Giovannoni, Brian; Barkley, Erik

    2011-01-01

    Topics covered (1) Why Governance and Why Now? (2) Characteristics of Architecture Governance (3) Strategic Elements (3a) Architectural Principles (3b) Architecture Board (3c) Architecture Compliance (4) Architecture Governance Infusion Process. Governance is concerned with decision making (i.e., setting directions, establishing standards and principles, and prioritizing investments). Architecture governance is the practice and orientation by which enterprise architectures and other architectures are managed and controlled at an enterprise-wide level

  15. Adaptive and technology-independent architecture for fault-tolerant distributed AAL solutions.

    Science.gov (United States)

    Schmidt, Michael; Obermaisser, Roman

    2018-04-01

    Today's architectures for Ambient Assisted Living (AAL) must cope with a variety of challenges like flawless sensor integration and time synchronization (e.g. for sensor data fusion) while abstracting from the underlying technologies at the same time. Furthermore, an architecture for AAL must be capable to manage distributed application scenarios in order to support elderly people in all situations of their everyday life. This encompasses not just life at home but in particular the mobility of elderly people (e.g. when going for a walk or having sports) as well. Within this paper we will introduce a novel architecture for distributed AAL solutions whose design follows a modern Microservices approach by providing small core services instead of a monolithic application framework. The architecture comprises core services for sensor integration, and service discovery while supporting several communication models (periodic, sporadic, streaming). We extend the state-of-the-art by introducing a fault-tolerance model for our architecture on the basis of a fault-hypothesis describing the fault-containment regions (FCRs) with their respective failure modes and failure rates in order to support safety-critical AAL applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Adaptive nonlinear control using input normalized neural networks

    International Nuclear Information System (INIS)

    Leeghim, Henzeh; Seo, In Ho; Bang, Hyo Choong

    2008-01-01

    An adaptive feedback linearization technique combined with the neural network is addressed to control uncertain nonlinear systems. The neural network-based adaptive control theory has been widely studied. However, the stability analysis of the closed-loop system with the neural network is rather complicated and difficult to understand, and sometimes unnecessary assumptions are involved. As a result, unnecessary assumptions for stability analysis are avoided by using the neural network with input normalization technique. The ultimate boundedness of the tracking error is simply proved by the Lyapunov stability theory. A new simple update law as an adaptive nonlinear control is derived by the simplification of the input normalized neural network assuming the variation of the uncertain term is sufficiently small

  17. Architectures and Algorithms for Control and Diagnostics of Coupled-Bunch Instabilities in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, Dmitry

    2003-07-08

    Modern light sources and circular colliders employ large numbers of high-intensity particle bunches in order to achieve high luminosity. The electromagnetic coupling of bunches via resonant structures causes coherent instabilities at high beam currents. Achieving high luminosity requires the control of such unstable motion. Feedback control is challenging due to wideband nature of the problem with up to 250 MHz bandwidths required. This thesis presents digital signal processing architectures and diagnostic techniques for control of longitudinal and transverse coupled-bunch instabilities. Diagnostic capabilities integrated into the feedback system allow one to perform fast transient measurements of unstable dynamics by perturbing the beam from the controlled state via feedback and recording the time-domain response. Such measurements enable one to thoroughly characterize plant (beam) dynamics as well as performance of the feedback system. Beam dynamics can change significantly over the operating range of accelerator currents and energies . Here we present several methods for design of robust stabilizing feedback controllers. Experimental results from several accelerators are presented. A new baseband architecture for transverse feedback is described that compactly implements the digital processing functions using field-programmable gate array devices. The architecture is designed to be software configurable so that the same hardware can be used for instability control in different accelerators.

  18. Architectures and Algorithms for Control and Diagnostics of Coupled-Bunch Instabilities in Circular Accelerators

    International Nuclear Information System (INIS)

    Teytelman, Dmitry

    2003-01-01

    Modern light sources and circular colliders employ large numbers of high-intensity particle bunches in order to achieve high luminosity. The electromagnetic coupling of bunches via resonant structures causes coherent instabilities at high beam currents. Achieving high luminosity requires the control of such unstable motion. Feedback control is challenging due to wideband nature of the problem with up to 250 MHz bandwidths required. This thesis presents digital signal processing architectures and diagnostic techniques for control of longitudinal and transverse coupled-bunch instabilities. Diagnostic capabilities integrated into the feedback system allow one to perform fast transient measurements of unstable dynamics by perturbing the beam from the controlled state via feedback and recording the time-domain response. Such measurements enable one to thoroughly characterize plant (beam) dynamics as well as performance of the feedback system. Beam dynamics can change significantly over the operating range of accelerator currents and energies . Here we present several methods for design of robust stabilizing feedback controllers. Experimental results from several accelerators are presented. A new baseband architecture for transverse feedback is described that compactly implements the digital processing functions using field-programmable gate array devices. The architecture is designed to be software configurable so that the same hardware can be used for instability control in different accelerators

  19. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  20. Catalyst Architecture:New York Copenhagen Tokyo Rio de Janeiro

    OpenAIRE

    Kiib, Hans; Marling, Gitte; Hansen, Peter Mandal

    2014-01-01

    How can architecture promote the enriching experiences of the tolerant, the democratic, and the learning city - a city worth living in, worth supporting and worth investing in?Catalyst Architecture comprises architectural projects, which, by virtue of their location, context and their combination of programs, have a role in mediating positive social and/or cultural development. In this sense, we talk about architecture as a catalyst for:sustainable adaptation of the city’s infrastructureappro...

  1. Adaptive fuzzy controller based MPPT for photovoltaic systems

    International Nuclear Information System (INIS)

    Guenounou, Ouahib; Dahhou, Boutaib; Chabour, Ferhat

    2014-01-01

    Highlights: • We propose a fuzzy controller with adaptive output scaling factor as a maximum power point tracker of photovoltaic system. • The proposed controller integrates two different rule bases defined on error and change of error. • Our controller can track the maximum power point with better performances when compared to its conventional counterpart. - Abstract: This paper presents an intelligent approach to optimize the performances of photovoltaic systems. The system consists of a PV panel, a DC–DC boost converter, a maximum power point tracker controller and a resistive load. The key idea of the proposed approach is the use of a fuzzy controller with an adaptive gain as a maximum power point tracker. The proposed controller integrates two different rule bases. The first is used to adjust the duty cycle of the boost converter as in the case of a conventional fuzzy controller while the second rule base is designed for an online adjusting of the controller’s gain. The performances of the adaptive fuzzy controller are compared with those obtained using a conventional fuzzy controllers with different gains and in each case, the proposed controller outperforms its conventional counterpart

  2. A software architecture for adaptive modular sensing systems.

    Science.gov (United States)

    Lyle, Andrew C; Naish, Michael D

    2010-01-01

    By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.

  3. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    Four fault tolerant architectures were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant (TMR), both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault tolerant systems. An advantage of fault-tolerant controllers over those not fault tolerant, is that fault-tolerant controllers continue to function after the occurrence of most single hardware faults. However, most fault-tolerant controllers have single hardware components that will cause system failure, almost all controllers have single points of failure in software, and all are subject to common cause failures. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failures modes that may be important in nuclear power plants. 7 refs., 4 tabs

  4. Adaptive Functional-Based Neuro-Fuzzy-PID Incremental Controller Structure

    Directory of Open Access Journals (Sweden)

    Ashraf Ahmed Fahmy

    2014-03-01

    Full Text Available This paper presents an adaptive functional-based Neuro-fuzzy-PID incremental (NFPID controller structure that can be tuned either offline or online according to required controller performance. First, differential membership functions are used to represent the fuzzy membership functions of the input-output space of the three term controller. Second, controller rules are generated based on the discrete proportional, derivative, and integral function for the fuzzy space. Finally, a fully differentiable fuzzy neural network is constructed to represent the developed controller for either offline or online controller parameter adaptation.  Two different adaptation methods are used for controller tuning, offline method based on controller transient performance cost function optimization using Bees Algorithm, and online method based on tracking error minimization using back-propagation with momentum algorithm. The proposed control system was tested to show the validity of the controller structure over a fixed PID controller gains to control SCARA type robot arm.

  5. Tracking Control of Hysteretic Piezoelectric Actuator using Adaptive Rate-Dependent Controller.

    Science.gov (United States)

    Tan, U-Xuan; Latt, Win Tun; Widjaja, Ferdinan; Shee, Cheng Yap; Riviere, Cameron N; Ang, Wei Tech

    2009-03-16

    With the increasing popularity of actuators involving smart materials like piezoelectric, control of such materials becomes important. The existence of the inherent hysteretic behavior hinders the tracking accuracy of the actuators. To make matters worse, the hysteretic behavior changes with rate. One of the suggested ways is to have a feedforward controller to linearize the relationship between the input and output. Thus, the hysteretic behavior of the actuator must first be modeled by sensing the relationship between the input voltage and output displacement. Unfortunately, the hysteretic behavior is dependent on individual actuator and also environmental conditions like temperature. It is troublesome and costly to model the hysteresis regularly. In addition, the hysteretic behavior of the actuators also changes with age. Most literature model the actuator using a cascade of rate-independent hysteresis operators and a dynamical system. However, the inertial dynamics of the structure is not the only contributing factor. A complete model will be complex. Thus, based on the studies done on the phenomenological hysteretic behavior with rate, this paper proposes an adaptive rate-dependent feedforward controller with Prandtl-Ishlinskii (PI) hysteresis operators for piezoelectric actuators. This adaptive controller is achieved by adapting the coefficients to manipulate the weights of the play operators. Actual experiments are conducted to demonstrate the effectiveness of the adaptive controller. The main contribution of this paper is its ability to perform tracking control of non-periodic motion and is illustrated with the tracking control ability of a couple of different non-periodic waveforms which were created by passing random numbers through a low pass filter with a cutoff frequency of 20Hz.

  6. Modern architecture in a life cycle perspective

    DEFF Research Database (Denmark)

    Vestergaard, Inge

    2017-01-01

    By confronting the mistakes from the Modern Movement, the ideas of modernistic architecture are under pressure. This paper will summarize the primary architectural mistakes of the mono-functional thinking in planning and building and the non-appropriate environmental dispositions of the big plans...... architectural transformations on city level and on housing level. The transformation goals are to secure the economy and the social and the environmental aspects in the transformation´s life-cycle perspective in order to make the buildings and the districts interact with and adapt to society. The conclusion...... points out the architectural consequences of prioritizing in the transformation process the social parameters higher than the original rigid architectural theories....

  7. Development of adaptive control applied to chaotic systems

    Science.gov (United States)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  8. Architecture at Hydro-Quebec

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Architecture at Hydro-Quebec is concerned not only with combining function and aesthetics in designing buildings and other structures for an electrical utility, but also to satisfy technical and administrative needs and to help solve contemporary problems such as the rational use of energy. Examples are presented of Hydro-Quebec's architectural accomplishments in the design of hydroelectric power stations and their surrounding landscapes, thermal power stations, transmission substations, research and testing facilities, and administrative buildings. It is shown how some buildings are designed to adapt to local environments and to conserve energy. The utility's policy of conserving installations of historic value, such as certain pre-1930 power stations, is illustrated, and aspects of its general architectural policy are outlined. 20 figs.

  9. Predicting Loss-of-Control Boundaries Toward a Piloting Aid

    Science.gov (United States)

    Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.

  10. The LHC Collimator Controls Architecture - Design and beam tests

    CERN Document Server

    Redaelli, S; Gander, P; Jonker, M; Lamont, M; Losito, R; Masi, A; Sobczak, M

    2007-01-01

    The LHC collimation system will require simultaneous management by the LHC control system of more than 500 jaw positioning mechanisms in order to ensure the required beam cleaning and machine protection performance in all machine phases, from injection at 450 GeV to collision at 7 TeV. Each jaw positionis a critical parameter for the machine safety. In this paper, the architecture of the LHC collimator controls is presented. The basic design to face the accurate control of the LHC collimators and the interfaces to the other components of LHC Software Application and control infrastructures are described. The full controls system has been tested in a real accelerator environment in the CERN SPS during beam tests with a full scale collimator prototype. The results and the lessons learned are presented.

  11. A new architecture for Fermilab's cryogenic control system

    International Nuclear Information System (INIS)

    Smolucha, J.; Frank, A.; Seino, K.; Lackey, S.

    1992-01-01

    In order to achieve design energy in the Tevatron, the magnet system will be operated at lower temperatures. The increased requirements of operating the Tevatron at lower temperatures necessitated a major upgrade to the both the hardware and software components of the cryogenic control system. The new architecture is based on a distributed topology which couples Fermilab designed I/O subsystems to high performance, 80386 execution processors via a variety of networks including: Arcnet, iPSB, and token ring. (author)

  12. Design of L1 -Adaptive Controller for Single Axis Positioning Table

    Directory of Open Access Journals (Sweden)

    Amjad Jalil Humaidi

    2017-11-01

    Full Text Available L1 adaptive controller has proven to provide fast adaptation with guaranteed transients in a large variety of systems. It is commonly used for controlling systems with uncertain time-varying unknown parameters. The effectiveness of L1 adaptive controller for position control of single axis has been examined and compared with Model Reference Adaptive Controller (MRAC. The Linear servo motor is one of the main constituting elements of the x-y table which is mostly used in automation application. It is characterized by time-varying friction and disturbance

  13. Adaptive traffic control systems for urban networks

    Directory of Open Access Journals (Sweden)

    Radivojević Danilo

    2017-01-01

    Full Text Available Adaptive traffic control systems represent complex, but powerful tool for improvement of traffic flow conditions in locations or zones where applied. Many traffic agencies, especially those that have a large number of signalized intersections with high variability of the traffic demand, choose to apply some of the adaptive traffic control systems. However, those systems are manufactured and offered by multiple vendors (companies that are competing for the market share. Due to that fact, besides the information available from the vendors themselves, or the information from different studies conducted on different continents, very limited amount of information is available about the details how those systems are operating. The reason for that is the protecting of the intellectual property from plagiarism. The primary goal of this paper is to make a brief analysis of the functionalities, characteristics, abilities and results of the most recognized, but also less known adaptive traffic control systems to the professional public and other persons with interest in this subject.

  14. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  15. Intelligent Lighting Control System

    OpenAIRE

    García, Elena; Rodríguez González, Sara; de Paz Santana, Juan F.; Bajo Pérez, Javier

    2014-01-01

    This paper presents an adaptive architecture that allows centralized control of public lighting and intelligent management, in order to economise on lighting and maintain maximum comfort status of the illuminated areas. To carry out this management, architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA and a Service Oriented Aproach (SOA). It performs optim...

  16. New control architecture for the SPS accelerator at CERN

    International Nuclear Information System (INIS)

    Kissler, K.H.; Rausch, R.

    1992-01-01

    The Control System for the 450 Gev proton accelerator SPS at CERN was conceived and implemented some 18 years ago. The 16 Bit minicomputers with their proprietary operating system and interconnection with a dedicated network do not permit the use of modern workstations, international communication standards and industrial software packages. The upgrading of the system has therefore become necessary. After a short review of the history and the current state of the SPS control system, the paper describes how CERN's new control architecture, which will be common to all accelerators, will be realized at the SPS. The migration path ensuring a smooth transition to the final system is outlined. Once the SPS upgrade is complete and following some enhancements to the LEP control system, the operator in the SPS/LEP control center will be working in a single uniform control environment. (author)

  17. Application of adaptive fuzzy control technology to pressure control of a pressurizer

    Institute of Scientific and Technical Information of China (English)

    YANG Ben-kun; BIAN Xin-qian; GUO Wei-lai

    2005-01-01

    A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor,therefor,the study of pressurizer's pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a pressurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.

  18. Control uncertain Genesio-Tesi chaotic system: Adaptive sliding mode approach

    International Nuclear Information System (INIS)

    Dadras, Sara; Momeni, Hamid Reza

    2009-01-01

    An adaptive sliding mode control (ASMC) technique is introduced in this paper for a chaotic dynamical system (Genesio-Tesi system). Using the sliding mode control technique, a sliding surface is determined and the control law is established. An adaptive sliding mode control law is derived to make the states of the Genesio-Tesi system asymptotically track and regulate the desired state. The designed control scheme can control the uncertain chaotic behaviors to a desired state without oscillating very fast and guarantee the property of asymptotical stability. An illustrative simulation result is given to demonstrate the effectiveness of the proposed adaptive sliding mode control design.

  19. A Software Architecture for Adaptive Modular Sensing Systems

    Directory of Open Access Journals (Sweden)

    Andrew C. Lyle

    2010-08-01

    Full Text Available By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.

  20. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  1. RoCoMAR: Robots' Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Science.gov (United States)

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2013-01-01

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134

  2. RoCoMAR: Robots’ Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Seokhoon Yoon

    2013-07-01

    Full Text Available In a practical deployment, mobile sensor network (MSN suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots’ Controllable Mobility Aided Routing that uses robotic nodes’ controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.

  3. From CAD to BIM: A New Way to Understand Architecture

    OpenAIRE

    Pérez Sánchez, Juan Carlos; Mora García, Raúl Tomás; Pérez Sánchez, Vicente Raúl; Piedecausa-García, Beatriz

    2017-01-01

    In recent years, and despite the effects of the economic crisis in the building sector, technicians involved in the architectural process had to adapt themselves to many changes, in search of new job opportunities. In this situation, traditional methods imposed by computer-aided design (CAD) in the development of new projects have evolved towards the use of Building Information Modelling (BIM) methodologies, enabling the control of different aspects such as the design, construction and monito...

  4. ALLIANCE: An architecture for fault tolerant multi-robot cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1995-02-01

    ALLIANCE is a software architecture that facilitates the fault tolerant cooperative control of teams of heterogeneous mobile robots performing missions composed of loosely coupled, largely independent subtasks. ALLIANCE allows teams of robots, each of which possesses a variety of high-level functions that it can perform during a mission, to individually select appropriate actions throughout the mission based on the requirements of the mission, the activities of other robots, the current environmental conditions, and the robot`s own internal states. ALLIANCE is a fully distributed, behavior-based architecture that incorporates the use of mathematically modeled motivations (such as impatience and acquiescence) within each robot to achieve adaptive action selection. Since cooperative robotic teams usually work in dynamic and unpredictable environments, this software architecture allows the robot team members to respond robustly, reliably, flexibly, and coherently to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. The feasibility of this architecture is demonstrated in an implementation on a team of mobile robots performing a laboratory version of hazardous waste cleanup.

  5. ALLIANCE: An architecture for fault tolerant multi-robot cooperation

    International Nuclear Information System (INIS)

    Parker, L.E.

    1995-02-01

    ALLIANCE is a software architecture that facilitates the fault tolerant cooperative control of teams of heterogeneous mobile robots performing missions composed of loosely coupled, largely independent subtasks. ALLIANCE allows teams of robots, each of which possesses a variety of high-level functions that it can perform during a mission, to individually select appropriate actions throughout the mission based on the requirements of the mission, the activities of other robots, the current environmental conditions, and the robot's own internal states. ALLIANCE is a fully distributed, behavior-based architecture that incorporates the use of mathematically modeled motivations (such as impatience and acquiescence) within each robot to achieve adaptive action selection. Since cooperative robotic teams usually work in dynamic and unpredictable environments, this software architecture allows the robot team members to respond robustly, reliably, flexibly, and coherently to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. The feasibility of this architecture is demonstrated in an implementation on a team of mobile robots performing a laboratory version of hazardous waste cleanup

  6. Virtualized cognitive network architecture for 5G cellular networks

    KAUST Repository

    Elsawy, Hesham

    2015-07-17

    Cellular networks have preserved an application agnostic and base station (BS) centric architecture1 for decades. Network functionalities (e.g. user association) are decided and performed regardless of the underlying application (e.g. automation, tactile Internet, online gaming, multimedia). Such an ossified architecture imposes several hurdles against achieving the ambitious metrics of next generation cellular systems. This article first highlights the features and drawbacks of such architectural ossification. Then the article proposes a virtualized and cognitive network architecture, wherein network functionalities are implemented via software instances in the cloud, and the underlying architecture can adapt to the application of interest as well as to changes in channels and traffic conditions. The adaptation is done in terms of the network topology by manipulating connectivities and steering traffic via different paths, so as to attain the applications\\' requirements and network design objectives. The article presents cognitive strategies to implement some of the classical network functionalities, along with their related implementation challenges. The article further presents a case study illustrating the performance improvement of the proposed architecture as compared to conventional cellular networks, both in terms of outage probability and handover rate.

  7. Emerging trends in the evolution of service-oriented and enterprise architectures

    CERN Document Server

    Zimmermann, Alfred; Jain, Lakhmi

    2016-01-01

    This book presents emerging trends in the evolution of service-oriented and enterprise architectures. New architectures and methods of both business and IT are integrating services to support mobility systems, Internet of Things, Ubiquitous Computing, collaborative and adaptive business processes, Big Data, and Cloud ecosystems. They inspire current and future digital strategies and create new opportunities for the digital transformation of next digital products and services. Services Oriented Architectures (SOA) and Enterprise Architectures (EA) have emerged as a useful framework for developing interoperable, large-scale systems, typically implementing various standards, like Web Services, REST, and Microservices. Managing the adaptation and evolution of such systems presents a great challenge. Service-Oriented Architecture enables flexibility through loose coupling, both between the services themselves and between the IT organizations that manage them. Enterprises evolve continuously by transforming and ext...

  8. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Security Architecture Lab Test Report

    Science.gov (United States)

    Iannicca, Dennis C.; McKim, James H.; Stewart, David H.; Thadhani, Suresh K.; Young, Daniel P.

    2015-01-01

    NASA Glenn Research Center, in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the FAA and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the current GRC prototype CNPC architecture as a demonstration platform. The security controls were integrated into a lab test bed mock-up of the Mobile IPv6 architecture currently being used for NASA flight testing, and a series of network tests were conducted to evaluate the security overhead of the controls compared to the baseline CNPC link without any security. The aim of testing was to evaluate the performance impact of the additional security control overhead when added to the Mobile IPv6 architecture in various modes of operation. The statistics collected included packet captures at points along the path to gauge packet size as the sample data traversed the CNPC network, round trip latency, jitter, and throughput. The effort involved a series of tests of the baseline link, a link with Robust Header Compression (ROHC) and without security controls, a link with security controls and without ROHC, and finally a link with both ROHC and security controls enabled. The effort demonstrated that ROHC is both desirable and necessary to offset the additional expected overhead of applying security controls to the CNPC link.

  9. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression.

    Science.gov (United States)

    Cai, Hanyang; Zhao, Lihua; Wang, Lulu; Zhang, Man; Su, Zhenxia; Cheng, Yan; Zhao, Heming; Qin, Yuan

    2017-06-01

    Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. $H_2$ optimal controllers with observer based architecture for continuous-time systems : separation principle

    NARCIS (Netherlands)

    Saberi, A.; Sannuti, P.; Stoorvogel, A.A.

    1994-01-01

    For a general H2 optimal control problem, at first all Hz optimal measurement feedback controllers are characterized and parameterized, and then attention is focused on controllers with observer based architecture. Both full order as well as reduced order observer based H2 optimal controllers are

  11. Online Adaptation and Over-Trial Learning in Macaque Visuomotor Control

    Science.gov (United States)

    Braun, Daniel A.; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten

    2011-01-01

    When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning. PMID:21720526

  12. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    Science.gov (United States)

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  13. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  14. Adaptive control for accelerators

    International Nuclear Information System (INIS)

    Eaton, L.E.; Jachim, S.P.; Natter, E.F.

    1991-01-01

    This patent describes an adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity

  15. Adaptive control for accelerators

    Science.gov (United States)

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  16. Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles

    Science.gov (United States)

    2007-11-01

    Tolerant Overactuated Autonomous Vehicles Casavola, A.; Garone, E. (2007) Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous ...Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Tolerant Overactuated Autonomous Vehicles 3.2 - 2 RTO-MP-AVT-145 UNCLASSIFIED/UNLIMITED Control allocation problem (CAP) - Given a virtual input v(t

  17. Adaptive Robot Control – An Experimental Comparison

    Directory of Open Access Journals (Sweden)

    Francesco Alonge

    2012-11-01

    Full Text Available This paper deals with experimental comparison between stable adaptive controllers of robotic manipulators based on Model Based Adaptive, Neural Network and Wavelet -Based control. The above control methods were compared with each other in terms of computational efficiency, need for accurate mathematical model of the manipulator and tracking performances. An original management algorithm of the Wavelet Network control scheme has been designed, with the aim of constructing the net automatically during the trajectory tracking, without the need to tune it to the trajectory itself. Experimental tests, carried out on a planar two link manipulator, show that the Wavelet-Based control scheme, with the new management algorithm, outperforms the conventional Model-Based schemes in the presence of structural uncertainties in the mathematical model of the robot, without pre-training and more efficiently than the Neural Network approach.

  18. Architectural Lessons: Look Back In Order To Move Forward

    Science.gov (United States)

    Huang, T.; Djorgovski, S. G.; Caltagirone, S.; Crichton, D. J.; Hughes, J. S.; Law, E.; Pilone, D.; Pilone, T.; Mahabal, A.

    2015-12-01

    True elegance of scalable and adaptable architecture is not about incorporating the latest and greatest technologies. Its elegance is measured by its ability to scale and adapt as its operating environment evolves over time. Architecture is the link that bridges people, process, policies, interfaces, and technologies. Architectural development begins by observe the relationships which really matter to the problem domain. It follows by the creation of a single, shared, evolving, pattern language, which everyone contributes to, and everyone can use [C. Alexander, 1979]. Architects are the true artists. Like all masterpieces, the values and strength of architectures are measured not by the volumes of publications, it is measured by its ability to evolve. An architect must look back in order to move forward. This talk discusses some of the prior works including onboard data analysis system, knowledgebase system, cloud-based Big Data platform, as enablers to help shape the new generation of Earth Science projects at NASA and EarthCube where a community-driven architecture is the key to enable data-intensive science. [C. Alexander, The Timeless Way of Building, Oxford University, 1979.

  19. System architecture of Detector Control and safety for the ATLAS Inner Detector Upgrade

    International Nuclear Information System (INIS)

    Ferrere, D.; Kersten, S.

    2011-01-01

    In the current ATLAS Upgrade plan a new Inner Detector (ID) based upon silicon sensor technology is being considered. The operational monitoring and control of the ID will be very demanding. The Detector Control System (DCS) is a common tool that is essential for the operational safety of a system. Even at this early stage the DCS system architecture has to be defined such that it is well integrated and optimized for its later implementation and use. For example the DCS diagnostics for the front-end (FE) chips is a serious option being considered that needs an early requirement and specification definition. In addition one of the main constraints is the service reuse between the service patch panels of the ATLAS ID and the counting room that limits the number of electrical lines to be reused. Conceptual differences in terms of readout architecture and layout have been identified between the strip and the pixel detector that lead to two distinct architectures. Nevertheless, the limitation of available electrical lines going to the counting room as well as the low material budget requirements inside the ID volume are two major constraints that lead the ID to consider an on-detector radiation hard integrated circuitry for the slow control. At this stage of the project, the definitions of the logical actions and protocol for the ADCs of such a chip are still being specified. In addition the experience gained from the current ID will be essential for the guidance of tuning the future DCS architecture in the coming years.

  20. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  1. Architecture of distributed control system at Hazira (Paper No. 3.2)

    International Nuclear Information System (INIS)

    Nema, V.P.

    1992-01-01

    The architecture of control system at Heavy Water Plant, Hazira has a physically centralized and functionally de-centralized configuration. The sub-systems for the functional areas such as automation system (AS), operating and monitoring system (OS) and communication system (CS) are described. (author). 3 figs

  2. Model reference adaptive control and adaptive stability augmentation

    DEFF Research Database (Denmark)

    Henningsen, Arne; Ravn, Ole

    1993-01-01

    A comparison of the standard concepts in MRAC design suggests that a combination of the implicit and the explicit design techniques may lead to an improvement of the overall system performance in the presence of unmodelled dynamics. Using the ideas of adaptive stability augmentation a combined...... stability augmented model reference design is proposed. By utilizing the closed-loop control error, a simple auxiliary controller is tuned, using a normalized MIT rule for the parameter adjustment. The MIT adjustment is protected against the effects of unmodelled dynamics by lowpass filtering...... of the gradient. The proposed method is verified through simulation results indicating that the method may lead to an improvement of the model reference controller in the presence of unmodelled dynamics...

  3. Adaptive neuro-fuzzy control of ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Thinh, Nguyen Truong; Yang, Young-Soo; Oh, Il-Kwon

    2009-01-01

    An adaptive neuro-fuzzy controller was newly designed to overcome the degradation of the actuation performance of ionic polymer metal composite actuators that show highly nonlinear responses such as a straightening-back problem under a step excitation. An adaptive control algorithm with the merits of fuzzy logic and neural networks was applied for controlling the tip displacement of the ionic polymer metal composite actuators. The reference and actual displacements and the change of the error with the electrical inputs were recorded to generate the training data. These data were used for training the adaptive neuro-fuzzy controller to find the membership functions in the fuzzy control algorithm. Software simulation and real-time experiments were conducted by using the Simulink and dSPACE environments. Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the reliable control of the ionic polymer metal composite actuator for which the performance degrades under long-time actuation

  4. Functional Dual Adaptive Control with Recursive Gaussian Process Model

    International Nuclear Information System (INIS)

    Prüher, Jakub; Král, Ladislav

    2015-01-01

    The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded. (paper)

  5. Controlling smart grid adaptivity

    OpenAIRE

    Toersche, Hermen; Nykamp, Stefan; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2012-01-01

    Methods are discussed for planning oriented smart grid control to cope with scenarios with limited predictability, supporting an increasing penetration of stochastic renewable resources. The performance of these methods is evaluated with simulations using measured wind generation and consumption data. Forecast errors are shown to affect worst case behavior in particular, the severity of which depends on the chosen adaptivity strategy and error model.

  6. PI controller based model reference adaptive control for nonlinear

    African Journals Online (AJOL)

    user

    Keywords: Model Reference Adaptive Controller (MRAC), Artificial Neural ... attention, and many new approaches have been applied to practical process .... effectiveness of proposed method, it is compared with the simulation results of the ...

  7. An adaptive unscented Kalman filter-based adaptive tracking control for wheeled mobile robots with control constrains in the presence of wheel slipping

    Directory of Open Access Journals (Sweden)

    Mingyue Cui

    2016-09-01

    Full Text Available A novel control approach is proposed for trajectory tracking of a wheeled mobile robot with unknown wheels’ slipping. The longitudinal and lateral slipping are considered and processed as three time-varying parameters. The adaptive unscented Kalman filter is then designed to estimate the slipping parameters online, an adaptive adjustment of the noise covariances in the estimation process is implemented using a technique of covariance matching in the adaptive unscented Kalman filter context. Considering the practical physical constrains, a stable tracking control law for this robot system is proposed by the backstepping method. Asymptotic stability is guaranteed by Lyapunov stability theory. Control gains are determined online by applying pole placement method. Simulation and real experiment results show the effectiveness and robustness of the proposed control method.

  8. Indirect adaptive control of discrete chaotic systems

    International Nuclear Information System (INIS)

    Salarieh, Hassan; Shahrokhi, Mohammad

    2007-01-01

    In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations

  9. Adaptive automatic generation control with superconducting magnetic energy storage in power systems

    International Nuclear Information System (INIS)

    Tripathy, S.C.; Balasubramanian, R.; Nair, P.S.C.

    1992-01-01

    An improved automatic generation control (AGC) employing self-tuning adaptive control for both main AGC loop and superconducting magnetic energy storage (SMES) is presented in this paper. Computer simulations on a two-area interconnected power system show that the proposed adaptive control scheme is very effective in damping out oscillations caused by load disturbances and its performance is quite insensitive to controller gain parameter changes of SMES. A comprehensive comparative performance evaluation of control schemes using adaptive and non-adaptive controllers in the main AGC and in the SMES control loops is presented. The improvement in performance brought in by the adaptive scheme is particularly pronounced for load changes of random magnitude and duration. The proposed controller can be easily implemented using microprocessors

  10. A Declarative Approach to Architectural Reflection

    DEFF Research Database (Denmark)

    Ingstrup, Mads; Hansen, Klaus Marius

    2005-01-01

    which both creates runtime models of specific distributed architectures and allow for evaluation of AQL queries on these models. We illustrate the viability of the approach in two particular applications of such a model: constraint checking relative to an architectural style, and reasoning about certain......Recent research shows runtime architectural reflection is instrumental in, for instance, building adaptive and flexible systems or checking correspondence between design and implementation. Moreover, experience with computational reflection in various branches of computer science shows...... that the interface through which the meta-information of the running system is accessed, and possibly modified, lies at the heart of designing reflective systems. This paper proposes that such an interface should be like a database: accessed through queries expressed using the concepts with which architecture...

  11. Fully probabilistic control design in an adaptive critic framework

    Czech Academy of Sciences Publication Activity Database

    Herzallah, R.; Kárný, Miroslav

    2011-01-01

    Roč. 24, č. 10 (2011), s. 1128-1135 ISSN 0893-6080 R&D Projects: GA ČR GA102/08/0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic control design * Fully probabilistic design * Adaptive control * Adaptive critic Subject RIV: BC - Control Systems Theory Impact factor: 2.182, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/karny-0364820.pdf

  12. Indirect fuzzy adaptive control of a class of SISO nonlinear systems

    International Nuclear Information System (INIS)

    Laboid, S.; Boucherit, M.S.

    2006-01-01

    This paper presents an adaptive fuzzy control scheme for a class of continuous-time single-input single-output nonlinear systems with unknown dynamics and disturbance. Within this scheme, the fuzzy systems are employed to approximate the unknown system's dynamics. The proposed controller is composed of a well-defined adaptive fuzzy control term that uses the adaptive fuzzy approximation errors and disturbance. Based on a Lyapunov synthesis method, it is shown that the proposed adaptive control scheme guarantees the convergence of the tracking error to zero and the global boundedness of all signals in the closed-loop system. Moreover, the proposed controller allows initialization by zero of all adjusted parameters in the fuzzy approximators, and does not require the knowledge of the lower bound of the control gain and upper bounds of the approximation errors and disturbance. Simulation results performed on an inverted pendulum system are given to point out the good performance of the developed adaptive controller. (author)

  13. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  14. On Using Exponential Parameter Estimators with an Adaptive Controller

    Science.gov (United States)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  15. FRIEND: a brain-monitoring agent for adaptive and assistive systems.

    Science.gov (United States)

    Morris, Alexis; Ulieru, Mihaela

    2012-01-01

    This paper presents an architectural design for adaptive-systems agents (FRIEND) that use brain state information to make more effective decisions on behalf of a user; measuring brain context versus situational demands. These systems could be useful for alerting users to cognitive workload levels or fatigue, and could attempt to compensate for higher cognitive activity by filtering noise information. In some cases such systems could also share control of devices, such as pulling over in an automated vehicle. These aim to assist people in everyday systems to perform tasks better and be more aware of internal states. Achieving a functioning system of this sort is a challenge, involving a unification of brain- computer-interfaces, human-computer-interaction, soft-computin deliberative multi-agent systems disciplines. Until recently, these were not able to be combined into a usable platform due largely to technological limitations (e.g., size, cost, and processing speed), insufficient research on extracting behavioral states from EEG signals, and lack of low-cost wireless sensing headsets. We aim to surpass these limitations and develop control architectures for making sense of brain state in applications by realizing an agent architecture for adaptive (human-aware) technology. In this paper we present an early, high-level design towards implementing a multi-purpose brain-monitoring agent system to improve user quality of life through the assistive applications of psycho-physiological monitoring, noise-filtering, and shared system control.

  16. Fuzzy adaptive speed control of a permanent magnet synchronous motor

    Science.gov (United States)

    Choi, Han Ho; Jung, Jin-Woo; Kim, Rae-Young

    2012-05-01

    A fuzzy adaptive speed controller is proposed for a permanent magnet synchronous motor (PMSM). The proposed fuzzy adaptive speed regulator is insensitive to model parameter and load torque variations because it does not need any accurate knowledge about the motor parameter and load torque values. The stability of the proposed control system is also proven. The proposed adaptive speed regulator system is implemented by using a TMS320F28335 floating point DSP. Simulation and experimental results are presented to verify the effectiveness of the proposed fuzzy adaptive speed controller under uncertainties such as motor parameter and load torque variations using a prototype PMSM drive system.

  17. XML in an Adaptive Framework for Instrument Control

    Science.gov (United States)

    Ames, Troy J.

    2004-01-01

    NASA Goddard Space Flight Center is developing an extensible framework for instrument command and control, known as Instrument Remote Control (IRC), that combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms.

  18. Adaptive pitch control for load mitigation of wind turbines

    Science.gov (United States)

    Yuan, Yuan; Tang, J.

    2015-04-01

    In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.

  19. Evaluation-Function-based Model-free Adaptive Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Agus Naba

    2016-12-01

    Full Text Available Designs of adaptive fuzzy controllers (AFC are commonly based on the Lyapunov approach, which requires a known model of the controlled plant. They need to consider a Lyapunov function candidate as an evaluation function to be minimized. In this study these drawbacks were handled by designing a model-free adaptive fuzzy controller (MFAFC using an approximate evaluation function defined in terms of the current state, the next state, and the control action. MFAFC considers the approximate evaluation function as an evaluative control performance measure similar to the state-action value function in reinforcement learning. The simulation results of applying MFAFC to the inverted pendulum benchmark verified the proposed scheme’s efficacy.

  20. Eco-architecture: Nostalgia or present-day challenge

    Energy Technology Data Exchange (ETDEWEB)

    Spath, R.

    1982-05-01

    Ecological architecture contains the so-called alternative ways of building, taking into consideration passive energy systems in accordance with building-biological aspects and their natural incorporation in the landscape. The objective of ecological architecture is to connect the historical experiences in the adaptation of buildings to regional, local, and climate conditions with todays possibilities of building. This requests a changed planning of the building. Alternative architecture begins with the planning process and the user has to participate actively. It also includes the greening of the plot and the external arrangement.

  1. Biologically-Inspired Control Architecture for Musical Performance Robots

    Directory of Open Access Journals (Sweden)

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  2. Dramaturgies of Adaptive Lighting Design

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve

    2017-01-01

    The changes from static to dynamic, and further to adaptive behaviours in architectural lighting design asks for a re-interpretation of the relation between the environment and the engaged experiencing human; i.e. the architecture and the inhabitant. To grasp the many factors involved, and to focus...

  3. A Multi-Agent Control Architecture for a Robotic Wheelchair

    Directory of Open Access Journals (Sweden)

    C. Galindo

    2006-01-01

    Full Text Available Assistant robots like robotic wheelchairs can perform an effective and valuable work in our daily lives. However, they eventually may need external help from humans in the robot environment (particularly, the driver in the case of a wheelchair to accomplish safely and efficiently some tricky tasks for the current technology, i.e. opening a locked door, traversing a crowded area, etc. This article proposes a control architecture for assistant robots designed under a multi-agent perspective that facilitates the participation of humans into the robotic system and improves the overall performance of the robot as well as its dependability. Within our design, agents have their own intentions and beliefs, have different abilities (that include algorithmic behaviours and human skills and also learn autonomously the most convenient method to carry out their actions through reinforcement learning. The proposed architecture is illustrated with a real assistant robot: a robotic wheelchair that provides mobility to impaired or elderly people.

  4. An architecture for efficient reuse in flexible production scenarios

    DEFF Research Database (Denmark)

    Andersen, Rasmus Hasle; Dalgaard, Lars; Beck, Anders Billesø

    2015-01-01

    Traditionally, small batch production has not been automated - it has been too resource demanding compared to the expected benefit. However, this is set to change with the new developments in easily trainable robotic co-worker systems, capable of being adapted to new tasks through intuitive user....... We present the DTI Robot CoWorker architecture, which is a generic robotic architecture, which provides a system-independent execution framework for adaptive and interactive robotic applications. Our approach has proven viable as we have successfully automated a complicated integration task (among...

  5. Supervisory control in a distributed, hierarchical architecture for a multimodular LMR

    International Nuclear Information System (INIS)

    Otaduy, P.J.; Brittain, C.R.; Rovere, L.A.

    1989-01-01

    This paper describes the directions and present status of the research in supervisory control for multimodular nuclear plants being conducted at Oak Ridge National Laboratory (ORNL) as part of US Department of Energy's (DOE) Advanced Controls Program. First, the hierarchical supervisory control structure envisioned for a Power Reactor Inherently Safe Module (PRISM) multimodular LMR is discussed. Next, the architecture of the supervisory module closest to the process actuators and its implementation for demonstration in a network of CPU's are presented. 12 refs., 3 figs

  6. A flexible and testable software architecture: applying presenter first to a device server for the DOOCS accelerator control system of the European XFEL

    International Nuclear Information System (INIS)

    Beckmann, A.; Karabekyan, S.; Pflüger, J.

    2012-01-01

    Presenter First (PF) uses a variant of Model View Presenter design pattern to add implementation flexibility and to improve testability of complex event-driven applications. It has been introduced in the context of GUI applications, but can easily be adapted to server applications. This paper describes how Presenter First methodology is used to develop a device server for the Programmable Logic Controls (PLC) of the European XFEL undulator systems, which are Windows PCs running PLC software from Beckhoff. The server implements a ZeroMQ message interface to the PLC allowing the DOOCS accelerator control system of the European XFEL to exchange data with the PLC by sending messages over the network. Our challenge is to develop a well-tested device server with a flexible architecture that allows integrating the server into other accelerator control systems like EPICS. (author)

  7. Software architecture for control and data acquisition of linear plasma generator Magnum-PSI

    International Nuclear Information System (INIS)

    Groen, P.W.C.; Beveren, V. van; Broekema, A.; Busch, P.J.; Genuit, J.W.; Kaas, G.; Poelman, A.J.; Scholten, J.; Zeijlmans van Emmichoven, P.A.

    2013-01-01

    Highlights: ► An architecture based on a modular design. ► The design offers flexibility and extendability. ► The design covers the overall software architecture. ► It also covers its (sub)systems’ internal structure. -- Abstract: The FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research has completed the construction phase of Magnum-PSI, a magnetized, steady-state, large area, high-flux linear plasma beam generator to study plasma surface interactions under ITER divertor conditions. Magnum-PSI consists of several hardware subsystems, and a variety of diagnostic systems. The COntrol, Data Acquisition and Communication (CODAC) system integrates these subsystems and provides a complete interface for the Magnum-PSI users. Integrating it all, from the lowest hardware level of sensors and actuators, via the level of networked PLCs and computer systems, up to functions and classes in programming languages, demands a sound and modular software architecture, which is extendable and scalable for future changes. This paper describes this architecture, and the modular design of the software subsystems. The design is implemented in the CODAC system at the level of services and subsystems (the overall software architecture), as well as internally in the software subsystems

  8. Architecture and Vector Control

    DEFF Research Database (Denmark)

    von Seidlein, Lorenz; Knols, Bart GJ; Kirby, Matthew

    2012-01-01

    , closing of eaves and insecticide treated bednets. All of these interventions have an effect on the indoor climate. Temperature, humidity and airflow are critical for a comfortable climate. Air-conditioning and fans allow us to control indoor climate, but many people in Africa and Asia who carry the brunt...... of vector-borne diseases have no access to electricity. Many houses in the hot, humid regions of Asia have adapted to the environment, they are built of porous materials and are elevated on stilts features which allow a comfortable climate even in the presence of bednets and screens. In contrast, many...... buildings in Africa and Asia in respect to their indoor climate characteristics and finally, show how state-of-the-art 3D modelling can predict climate characteristics and help to optimize buildings....

  9. Service-oriented architecture for the ARGOS instrument control software

    Science.gov (United States)

    Borelli, J.; Barl, L.; Gässler, W.; Kulas, M.; Rabien, Sebastian

    2012-09-01

    The Advanced Rayleigh Guided ground layer Adaptive optic System, ARGOS, equips the Large Binocular Telescope (LBT) with a constellation of six rayleigh laser guide stars. By correcting atmospheric turbulence near the ground, the system is designed to increase the image quality of the multi-object spectrograph LUCIFER approximately by a factor of 3 over a field of 4 arc minute diameter. The control software has the critical task of orchestrating several devices, instruments, and high level services, including the already existing adaptive optic system and the telescope control software. All these components are widely distributed over the telescope, adding more complexity to the system design. The approach used by the ARGOS engineers is to write loosely coupled and distributed services under the control of different ownership systems, providing a uniform mechanism to offer, discover, interact and use these distributed capabilities. The control system counts with several finite state machines, vibration and flexure compensation loops, and safety mechanism, such as interlocks, aircraft, and satellite avoidance systems.

  10. Automation and Control Learning Environment with Mixed Reality Remote Experiments Architecture

    Directory of Open Access Journals (Sweden)

    Frederico M. Schaf

    2007-05-01

    Full Text Available This work aims to the use of remotely web-based experiments to improve the learning process of automation and control systems theory courses. An architecture combining virtual learning environments, remote experiments, students guide and experiments analysis is proposed based on a wide state of art study. The validation of the architecture uses state of art technologies and new simple developed programs to implement the case studies presented. All implementations presented use an internet accessible virtual learning environment providing educational resources, guides and learning material to create a distance learning course associated with the remote mixed reality experiment. This work is part of the RExNet consortium, supported by the European Alfa project.

  11. Adaptive Embedded Systems – Challenges of Run-Time Resource Management

    DEFF Research Database (Denmark)

    Understanding and efficiently controlling the dynamic behavior of adaptive embedded systems is a challenging endavor. The challenges come from the often very complicated interplay between the application, the application mapping, and the underlying hardware architecture. With MPSoC, we have...... the technology to design and fabricate dynamically reconfigurable hardware platforms. However, such platforms will pose new challenges to tools and methods to efficiently explore these platforms at run-time. This talk will address some of the challenges of run-time resource management in adaptive embedded...... systems....

  12. [The architectural design of psychiatric care buildings].

    Science.gov (United States)

    Dunet, Lionel

    2012-01-01

    The architectural design of psychiatric care buildings. In addition to certain "classic" creations, the Dunet architectural office has designed several units for difficult patients as well as a specially adapted hospitalisation unit. These creations which are demanding in terms of the organisation of care require close consultation with the nursing teams. Testimony of an architect who is particularly engaged in the universe of psychiatry.

  13. Multivariable adaptive control of bio process

    Energy Technology Data Exchange (ETDEWEB)

    Maher, M.; Bahhou, B.; Roux, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Maher, M. [Faculte des Sciences, Rabat (Morocco). Lab. de Physique

    1995-12-31

    This paper presents a multivariable adaptive control of a continuous-flow fermentation process for the alcohol production. The linear quadratic control strategy is used for the regulation of substrate and ethanol concentrations in the bioreactor. The control inputs are the dilution rate and the influent substrate concentration. A robust identification algorithm is used for the on-line estimation of linear MIMO model`s parameters. Experimental results of a pilot-plant fermenter application are reported and show the control performances. (authors) 8 refs.

  14. Interval type-2 fuzzy gain-adaptive controller of a Doubly Fed ...

    African Journals Online (AJOL)

    ... Interval Type-2 Fuzzy Gain Adaptive IP (IT2FGAIP) controller and a conventional IP controller ... and an adaptive IP controller is proposed for the speed control of DFIM in the presence of ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  15. Architecture of built-in microcontrollers in the U-70 complex control system

    International Nuclear Information System (INIS)

    Balakin, S.I.; Voevodin, V.P.; Inchagov, A.A.; Komarov, V.V.

    2000-01-01

    The distributed system of built-in microcontrollers (BMS) for functional control of supply sources of magnetooptical elements is created within the frames of works on modernization of the U-70 control complex. The BMS architecture and functional diagram of one of them are presented. The microcontrollers operation algorithm is based on the eventuation principle. The BMS basic parameters are presented [ru

  16. A Generic Architecture for Autonomous Uninhabited Vehicles

    National Research Council Canada - National Science Library

    Barbier, Magali; Gabard, Jean-Francois; Ayreault, Herve

    2007-01-01

    ...; few solutions propose architecture adaptive to several types of platform. Autonomous vehicles that move in partially known and dynamic environments have to deal with asynchronous disruptive events...

  17. Focused cognitive control in dishonesty: Evidence for predominantly transient conflict adaptation.

    Science.gov (United States)

    Foerster, Anna; Pfister, Roland; Schmidts, Constantin; Dignath, David; Wirth, Robert; Kunde, Wilfried

    2018-04-01

    Giving a dishonest response to a question entails cognitive conflict due to an initial activation of the truthful response. Following conflict monitoring theory, dishonest responding could therefore elicit transient and sustained control adaptation processes to mitigate such conflict, and the current experiments take on the scope and specificity of such conflict adaptation in dishonesty. Transient adaptation reduces differences between honest and dishonest responding following a recent dishonest response. Sustained adaptation has a similar behavioral signature but is driven by the overall frequency of dishonest responding. Both types of adaptation to recent and frequent dishonest responses have been separately documented, leaving open whether control processes in dishonest responding can flexibly adapt to transient and sustained conflict signals of dishonest and other actions. This was the goal of the present experiments which studied (dis)honest responding to autobiographical yes/no questions. Experiment 1 showed robust transient adaptation to recent dishonest responses whereas sustained control adaptation failed to exert an influence on behavior. It further revealed that transient effects may create a spurious impression of sustained adaptation in typical experimental settings. Experiments 2 and 3 examined whether dishonest responding can profit from transient and sustained adaption processes triggered by other behavioral conflicts. This was clearly not the case: Dishonest responding adapted markedly to recent (dis)honest responses but not to any context of other conflicts. These findings indicate that control adaptation in dishonest responding is strong but surprisingly focused and they point to a potential trade-off between transient and sustained adaptation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Adaptive feed forward in the LANL RF control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feed forward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF-field feedback control system can be eliminated with a feed forward system. Many RF-field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feed forward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feed forward system are presented. (Author) 3 figs., 2 refs

  19. Digitally-Driven Architecture

    Directory of Open Access Journals (Sweden)

    Henriette Bier

    2014-07-01

    Full Text Available The shift from mechanical to digital forces architects to reposition themselves: Architects generate digital information, which can be used not only in designing and fabricating building components but also in embedding behaviours into buildings. This implies that, similar to the way that industrial design and fabrication with its concepts of standardisation and serial production influenced modernist architecture, digital design and fabrication influences contemporary architecture. While standardisation focused on processes of rationalisation of form, mass-customisation as a new paradigm that replaces mass-production, addresses non-standard, complex, and flexible designs. Furthermore, knowledge about the designed object can be encoded in digital data pertaining not just to the geometry of a design but also to its physical or other behaviours within an environment. Digitally-driven architecture implies, therefore, not only digitally-designed and fabricated architecture, it also implies architecture – built form – that can be controlled, actuated, and animated by digital means.In this context, this sixth Footprint issue examines the influence of digital means as pragmatic and conceptual instruments for actuating architecture. The focus is not so much on computer-based systems for the development of architectural designs, but on architecture incorporating digital control, sens­ing, actuating, or other mechanisms that enable buildings to inter­act with their users and surroundings in real time in the real world through physical or sensory change and variation.

  20. The architecture of the CMS Level-1 Trigger Control and Monitoring System using UML

    International Nuclear Information System (INIS)

    Magrans de Abril, Marc; Ghabrous Larrea, Carlos; Lazaridis, Christos; Da Rocha Melo, Jose L; Hammer, Josef; Hartl, Christian

    2011-01-01

    The architecture of the Compact Muon Solenoid (CMS) Level-1 Trigger Control and Monitoring software system is presented. This system has been installed and commissioned on the trigger online computers and is currently used for data taking. It has been designed to handle the trigger configuration and monitoring during data taking as well as all communications with the main run control of CMS. Furthermore its design has foreseen the provision of the software infrastructure for detailed testing of the trigger system during beam down time. This is a medium-size distributed system that runs over 40 PCs and 200 processes that control about 4000 electronic boards. The architecture of this system is described using the industry-standard Universal Modeling Language (UML). This way the relationships between the different subcomponents of the system become clear and all software upgrades and modifications are simplified. The described architecture has allowed for frequent upgrades that were necessary during the commissioning phase of CMS when the trigger system evolved constantly. As a secondary objective, the paper provides a UML usage example and tries to encourage the standardization of the software documentation of large projects across the LHC and High Energy Physics community.

  1. The architecture of the CMS Level-1 Trigger Control and Monitoring System using UML

    Science.gov (United States)

    Magrans de Abril, Marc; Da Rocha Melo, Jose L.; Ghabrous Larrea, Carlos; Hammer, Josef; Hartl, Christian; Lazaridis, Christos

    2011-12-01

    The architecture of the Compact Muon Solenoid (CMS) Level-1 Trigger Control and Monitoring software system is presented. This system has been installed and commissioned on the trigger online computers and is currently used for data taking. It has been designed to handle the trigger configuration and monitoring during data taking as well as all communications with the main run control of CMS. Furthermore its design has foreseen the provision of the software infrastructure for detailed testing of the trigger system during beam down time. This is a medium-size distributed system that runs over 40 PCs and 200 processes that control about 4000 electronic boards. The architecture of this system is described using the industry-standard Universal Modeling Language (UML). This way the relationships between the different subcomponents of the system become clear and all software upgrades and modifications are simplified. The described architecture has allowed for frequent upgrades that were necessary during the commissioning phase of CMS when the trigger system evolved constantly. As a secondary objective, the paper provides a UML usage example and tries to encourage the standardization of the software documentation of large projects across the LHC and High Energy Physics community.

  2. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.

    Science.gov (United States)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-14

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  3. A discrete-time adaptive control scheme for robot manipulators

    Science.gov (United States)

    Tarokh, M.

    1990-01-01

    A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.

  4. A scalable-low cost architecture for high gain beamforming antennas

    KAUST Repository

    Bakr, Omar; Johnson, Mark; Jungdong Park,; Adabi, Ehsan; Jones, Kevin; Niknejad, Ali

    2010-01-01

    Many state-of-the-art wireless systems, such as long distance mesh networks and high bandwidth networks using mm-wave frequencies, require high gain antennas to overcome adverse channel conditions. These networks could be greatly aided by adaptive beamforming antenna arrays, which can significantly simplify the installation and maintenance costs (e.g., by enabling automatic beam alignment). However, building large, low cost beamforming arrays is very complicated. In this paper, we examine the main challenges presented by large arrays, starting from electromagnetic and antenna design and proceeding to the signal processing and algorithms domain. We propose 3-dimensional antenna structures and hybrid RF/digital radio architectures that can significantly reduce the complexity and improve the power efficiency of adaptive array systems. We also present signal processing techniques based on adaptive filtering methods that enhance the robustness of these architectures. Finally, we present computationally efficient vector quantization techniques that significantly improve the interference cancellation capabilities of analog beamforming architectures. © 2010 IEEE.

  5. A scalable-low cost architecture for high gain beamforming antennas

    KAUST Repository

    Bakr, Omar

    2010-10-01

    Many state-of-the-art wireless systems, such as long distance mesh networks and high bandwidth networks using mm-wave frequencies, require high gain antennas to overcome adverse channel conditions. These networks could be greatly aided by adaptive beamforming antenna arrays, which can significantly simplify the installation and maintenance costs (e.g., by enabling automatic beam alignment). However, building large, low cost beamforming arrays is very complicated. In this paper, we examine the main challenges presented by large arrays, starting from electromagnetic and antenna design and proceeding to the signal processing and algorithms domain. We propose 3-dimensional antenna structures and hybrid RF/digital radio architectures that can significantly reduce the complexity and improve the power efficiency of adaptive array systems. We also present signal processing techniques based on adaptive filtering methods that enhance the robustness of these architectures. Finally, we present computationally efficient vector quantization techniques that significantly improve the interference cancellation capabilities of analog beamforming architectures. © 2010 IEEE.

  6. Fuzzy systems for process identification and control

    International Nuclear Information System (INIS)

    Gorrini, V.; Bersini, H.

    1994-01-01

    Various issues related to the automatic construction and on-line adaptation of fuzzy controllers are addressed. A Direct Adaptive Fuzzy Control (this is an adaptive control methodology requiring a minimal knowledge of the processes to be coupled with) derived in a way reminiscent of neurocontrol methods, is presented. A classical fuzzy controller and a fuzzy realization of a PID controller is discussed. These systems implement a highly non-linear control law, and provide to be quite robust, even in the case of noisy inputs. In order to identify dynamic processes of order superior to one, we introduce a more complex architecture, called Recurrent Fuzzy System, that use some fuzzy internal variables to perform an inferential chaining.I

  7. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    Science.gov (United States)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  8. Robust synchronization of drive-response chaotic systems via adaptive sliding mode control

    International Nuclear Information System (INIS)

    Li, W.-L.; Chang, K.-M.

    2009-01-01

    A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.

  9. Federated Access Control in Heterogeneous Intercloud Environment: Basic Models and Architecture Patterns

    NARCIS (Netherlands)

    Demchenko, Y.; Ngo, C.; de Laat, C.; Lee, C.

    2014-01-01

    This paper presents on-going research to define the basic models and architecture patterns for federated access control in heterogeneous (multi-provider) multi-cloud and inter-cloud environment. The proposed research contributes to the further definition of Intercloud Federation Framework (ICFF)

  10. Adaptive integral robust control and application to electromechanical servo systems.

    Science.gov (United States)

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Direct adaptive control of a PUMA 560 industrial robot

    Science.gov (United States)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1989-01-01

    The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.

  12. Adaptive Gain Scheduled Semiactive Vibration Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Kazuhiko Hiramoto

    2018-01-01

    Full Text Available We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN. Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA. The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.

  13. Perspectives on Adaptivity in Information Retrieval Interaction (PAIRI)

    DEFF Research Database (Denmark)

    Ingwersen, Peter; Larsen, Birger; Kelly, Diane

    2010-01-01

    Adaptivity in IR interactions requires the IR systems adapting to users’ situations and the users adapting to the systems. System adaption entails dynamic user modeling, effective information architecture and enhanced search features such as search integration and relevance feedback; user adaptat...

  14. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    Science.gov (United States)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  15. Design and Architecture of SST-1 basic plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kirit, E-mail: kpatel@ipr.res.in; Raju, D.; Dhongde, J.; Mahajan, K.; Chudasama, H.; Gulati, H.; Chauhan, A.; Masand, H.; Bhandarkar, M.; Pradhan, S.

    2016-11-15

    Highlights: • Reflective Memory network. • FPAG based Timing system for trigger distribution. • IRIG-B network for GPS time synchronization. • PMC based Digital Signal Processors and VME. • Simultaneous sampling ADC. - Abstract: Primary objective of SST-1 Plasma control system is to achieve Plasma position, shape and current profile control. Architecture of control system for SST-1 is distributed in nature. Fastest control loop time requirement of 100 μs is achieved using VME based simultaneous sampling ADCs, PMC based quad core DSP, Reflective Memory [RFM] based real-time network, VME based real-time trigger distribution network and Ethernet network. All the control loops for shape control, position control and current profile control share common signals from Magnetic diagnostic so it is planned to accommodate all the algorithms on the same PMC based quad core DSP module TS C-43. RFM based real-time data network replicate data from one node to next node in a ring network topology at sustained throughput rate of 13.4 MBps. Real-time Timing System network provides guaranteed trigger distribution in 3.8 μs from one node to all node of the network. Monitoring and configuration of different systems participating in the operation of SST-1 is done by Ethernet network. Magnetic sensors data is acquired using Pentek 6802 simultaneously sampling ADC card at the rate of 10KSPS. All the real-time raw data along with the control data will be archived using RFM network and SCSI HDD for the experiment duration of 1000 s. RFM network is also planned for real-time plotting of key parameter of Plasma during long experiment. After experiment this data is transferred to central storage server for archival purpose. This paper discusses the architecture and hardware implementation of the control system by describing all the involved hardware and software along with future plans for up-gradations.

  16. Robotic control architecture development for automated nuclear material handling systems

    International Nuclear Information System (INIS)

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies

  17. Software architecture for a multi-purpose real-time control unit for research purposes

    Science.gov (United States)

    Epple, S.; Jung, R.; Jalba, K.; Nasui, V.

    2017-05-01

    A new, freely programmable, scalable control system for academic research purposes was developed. The intention was, to have a control unit capable of handling multiple PT1000 temperature sensors at reasonable accuracy and temperature range, as well as digital input signals and providing powerful output signals. To take full advantage of the system, control-loops are run in real time. The whole eight bit system with very limited memory runs independently of a personal computer. The two on board RS232 connectors allow to connect further units or to connect other equipment, as required in real time. This paper describes the software architecture for the third prototype that now provides stable measurements and an improvement in accuracy compared to the previous designs. As test case a thermal solar system to produce hot tap water and assist heating in a single-family house was implemented. The solar fluid pump was power-controlled and several temperatures at different points in the hydraulic system were measured and used in the control algorithms. The software architecture proved suitable to test several different control strategies and their corresponding algorithms for the thermal solar system.

  18. Revisionist integral deferred correction with adaptive step-size control

    KAUST Repository

    Christlieb, Andrew

    2015-03-27

    © 2015 Mathematical Sciences Publishers. Adaptive step-size control is a critical feature for the robust and efficient numerical solution of initial-value problems in ordinary differential equations. In this paper, we show that adaptive step-size control can be incorporated within a family of parallel time integrators known as revisionist integral deferred correction (RIDC) methods. The RIDC framework allows for various strategies to implement stepsize control, and we report results from exploring a few of them.

  19. Fuzzy Adaptive Model Following Speed Control for Vector Controlled Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Baghdad BELABES

    2008-12-01

    Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.

  20. Adaptive hybrid optimal quantum control for imprecisely characterized systems.

    Science.gov (United States)

    Egger, D J; Wilhelm, F K

    2014-06-20

    Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.

  1. Novel hybrid adaptive controller for manipulation in complex perturbation environments.

    Directory of Open Access Journals (Sweden)

    Alex M C Smith

    Full Text Available In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing.

  2. Non-identifier based adaptive control in mechatronics theory and application

    CERN Document Server

    Hackl, Christoph M

    2017-01-01

    This book introduces non-identifier-based adaptive control (with and without internal model) and its application to the current, speed and position control of mechatronic systems such as electrical synchronous machines, wind turbine systems, industrial servo systems, and rigid-link, revolute-joint robots. In mechatronics, there is often only rough knowledge of the system. Due to parameter uncertainties, nonlinearities and unknown disturbances, model-based control strategies can reach their performance or stability limits without iterative controller design and performance evaluation, or system identification and parameter estimation. The non-identifier-based adaptive control presented is an alternative that neither identifies the system nor estimates its parameters but ensures stability. The adaptive controllers are easy to implement, compensate for disturbances and are inherently robust to parameter uncertainties and nonlinearities. For controller implementation only structural system knowledge (like relativ...

  3. Architecture of SPIDER control and data acquisition system

    International Nuclear Information System (INIS)

    Luchetta, A.; Manduchi, G.; Taliercio, C.; Soppelsa, A.; Barbalace, A.; Paolucci, F.; Sartori, F.; Barbato, P.; Breda, M.; Capobianco, R.; Molon, F.; Moressa, M.; Polato, S.; Simionato, P.; Zampiva, E.

    2012-01-01

    The ITER Heating Neutral Beam injectors will be implemented in three steps: development of the ion source prototype, development of the full injector prototype, and, finally, construction of up to three ITER injectors. The first two steps will be carried out in the ITER neutral beam test facility under construction in Italy. The ion source prototype, referred to as SPIDER, which is currently in the development phase, is a complex experiment involving more than 20 plant units and operating with beam-on pulses lasting up to 1 h. As for control and data acquisition it requires fast and slow control (cycle time around 0.1 ms and 10 ms, respectively), synchronization (10 ns resolution), and data acquisition for about 1000 channels (analogue and images) with sampling frequencies up to tens of MS/s, data throughput up to 200 MB/s, and data storage volume of up to tens of TB/year. The paper describes the architecture of the SPIDER control and data acquisition system, discussing the SPIDER requirements and the ITER CODAC interfaces and specifications for plant system instrumentation and control.

  4. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    Science.gov (United States)

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  5. System architecture for ubiquitous live video streaming in university network environment

    CSIR Research Space (South Africa)

    Dludla, AG

    2013-09-01

    Full Text Available an architecture which supports ubiquitous live streaming for university or campus networks using a modified bluetooth inquiry mechanism with extended ID, integrated end-user device usage and adaptation to heterogeneous networks. Riding on that architecture...

  6. Modeling and (adaptive) control of greenhouse climates

    NARCIS (Netherlands)

    Udink ten Cate, A.J.

    1983-01-01

    The material presented in this thesis can be grouped around four themes, system concepts, modeling, control and adaptive control. In this summary these themes will be treated separately.

    System concepts

    In Chapters 1 and 2 an overview of the problem formulation

  7. Bayesian selective response-adaptive design using the historical control.

    Science.gov (United States)

    Kim, Mi-Ok; Harun, Nusrat; Liu, Chunyan; Khoury, Jane C; Broderick, Joseph P

    2018-06-13

    High quality historical control data, if incorporated, may reduce sample size, trial cost, and duration. A too optimistic use of the data, however, may result in bias under prior-data conflict. Motivated by well-publicized two-arm comparative trials in stroke, we propose a Bayesian design that both adaptively incorporates historical control data and selectively adapt the treatment allocation ratios within an ongoing trial responsively to the relative treatment effects. The proposed design differs from existing designs that borrow from historical controls. As opposed to reducing the number of subjects assigned to the control arm blindly, this design does so adaptively to the relative treatment effects only if evaluation of cumulated current trial data combined with the historical control suggests the superiority of the intervention arm. We used the effective historical sample size approach to quantify borrowed information on the control arm and modified the treatment allocation rules of the doubly adaptive biased coin design to incorporate the quantity. The modified allocation rules were then implemented under the Bayesian framework with commensurate priors addressing prior-data conflict. Trials were also more frequently concluded earlier in line with the underlying truth, reducing trial cost, and duration and yielded parameter estimates with smaller standard errors. © 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons, Ltd.

  8. Adaptive fuzzy trajectory control for biaxial motion stage system

    Directory of Open Access Journals (Sweden)

    Wei-Lung Mao

    2016-04-01

    Full Text Available Motion control is an essential part of industrial machinery and manufacturing systems. In this article, the adaptive fuzzy controller is proposed for precision trajectory tracking control in biaxial X-Y motion stage system. The theoretical analyses of direct fuzzy control which is insensitive to parameter uncertainties and external load disturbances are derived to demonstrate the feasibility to track the reference trajectories. The Lyapunov stability theorem has been used to testify the asymptotic stability of the whole system, and all the signals are bounded in the closed-loop system. The intelligent position controller combines the merits of the adaptive fuzzy control with robust characteristics and learning ability for periodic command tracking of a servo drive mechanism. The simulation and experimental results on square, triangle, star, and circle reference contours are presented to show that the proposed controller indeed accomplishes the better tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the conventional adaptive fuzzy control in terms of average tracking error and tracking error standard deviation.

  9. Digitally-Driven Architecture

    Directory of Open Access Journals (Sweden)

    Henriette Bier

    2010-06-01

    Full Text Available The shift from mechanical to digital forces architects to reposition themselves: Architects generate digital information, which can be used not only in designing and fabricating building components but also in embedding behaviours into buildings. This implies that, similar to the way that industrial design and fabrication with its concepts of standardisation and serial production influenced modernist architecture, digital design and fabrication influences contemporary architecture. While standardisa­tion focused on processes of rationalisation of form, mass-customisation as a new paradigm that replaces mass-production, addresses non-standard, complex, and flexible designs. Furthermore, knowledge about the designed object can be encoded in digital data pertaining not just to the geometry of a design but also to its physical or other behaviours within an environment. Digitally-driven architecture implies, therefore, not only digitally-designed and fabricated architecture, it also implies architecture – built form – that can be controlled, actuated, and animated by digital means. In this context, this sixth Footprint issue examines the influence of digital means as prag­matic and conceptual instruments for actuating architecture. The focus is not so much on computer-based systems for the development of architectural designs, but on architecture incorporating digital control, sens­ing, actuating, or other mechanisms that enable buildings to inter­act with their users and surroundings in real time in the real world through physical or sensory change and variation.

  10. Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2009-01-01

    Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. The turbulent and unpredictable conditions in which wind turbines operate create many challenges for their operation. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller in Region 3 is to regulate generator speed and reject step disturbances. The control objective is accomplished by collectively pitching the turbine blades. We use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to track a reference point and to reject persistent disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine which has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a bas celliansesical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the baseline PI pitch controller and it demonstrated robustness to modeling errors.

  11. Data acquisition, storage and control architecture for the SuperNova Acceleration Probe

    International Nuclear Information System (INIS)

    Prosser, Alan; Fermilab; Cardoso, Guilherme; Chramowicz, John; Marriner, John; Rivera, Ryan; Turqueti, Marcos; Fermilab

    2007-01-01

    The SuperNova Acceleration Probe (SNAP) instrument is being designed to collect image and spectroscopic data for the study of dark energy in the universe. In this paper, we describe a distributed architecture for the data acquisition system which interfaces to visible light and infrared imaging detectors. The architecture includes the use of NAND flash memory for the storage of exposures in a file system. Also described is an FPGA-based lossless data compression algorithm with a configurable pre-scaler based on a novel square root data compression method to improve compression performance. The required interactions of the distributed elements with an instrument control unit will be described as well

  12. Can we manipulate root system architecture to control soil erosion?

    Science.gov (United States)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  13. Implementation of robust adaptive control for robotic manipulator using TMS320C30

    International Nuclear Information System (INIS)

    Han, S. H.

    1996-01-01

    A new adaptive digital control scheme for the robotic manipulator is proposed in this paper. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved Lyapunov second stability analysis based on the adaptive feedforward and feedback controller and PI type time-varying control elements. The control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot. (author)

  14. Unibot, a Universal Agent Architecture for Robots

    Directory of Open Access Journals (Sweden)

    Saša Mladenović

    2017-01-01

    Full Text Available Today there are numerous robots in different applications domains despite the fact that they still have limitations in perception, actuation and decision process. Consequently, robots usually have limited autonomy, they are domain specific or have difficulty to adapt on new environments. Learning is the property that makes an agent intelligent and the crucial property that a robot should have to proliferate into the human society. Embedding the learning ability into the robot may simplify the development of the robot control mechanism. The motivation for this research is to develop the agent architecture of the universal robot – Unibot. In our approach the agent is the robot i.e. Unibot that acts in the physical world and is capable of learning. The Unibot conducts several simultaneous simulations of a problem of interest like path-finding. The novelty in our approach is the Multi-Agent Decision Support System which is developed and integrated into the Unibot agent architecture in order to execute simultaneous simulations. Furthermore, the Unibot calculates and evaluates between multiple solutions, decides which action should be performed and performs the action. The prototype of the Unibot agent architecture is described and evaluated in the experiment supported by the Lego Mindstorms robot and the NetLogo.

  15. Fault tolerancy in cooperative adaptive cruise control

    NARCIS (Netherlands)

    Nunen, E. van; Ploeg, J.; Medina, A.M.; Nijmeijer, H.

    2013-01-01

    Future mobility requires sound solutions in the field of fault tolerance in real-time applications amongst which Cooperative Adaptive Cruise Control (CACC). This control system cannot rely on the driver as a backup and is constantly active and therefore more prominent to the occurrences of faults

  16. An integrated command and control architecture concept for unmanned systems in the year 2030

    OpenAIRE

    Johnson, Jamarr J.; Buckley, Omari D.; Cunningham, Dustin; Matthews, Adam; Quincy, Keith E.; Fontenot, Dion G.; Moran, Michael G.; Tham, Gabriel; Wong, Jason; Quah, Raymond; Chia, Tommy; Costica, Yionon; Gho, Delvin; Seet, Henry; Ang, Teo Hong

    2010-01-01

    Approved for public release; distribution is unlimited. U.S. Forces require an integrated Command and Control Architecture that enables operations of a dynamic mix of manned and unmanned systems. The level of autonomous behavior correlates to: 1) the amount of trust with the reporting vehicles, and 2) the multi-spectral perspective of the observations. The intent to illuminate the architectural issues for force protection in 2030 was based on a multi-phased analytical model of High Value ...

  17. Synthesis of fixed-architecture, robust H2 and H∞ controllers

    Directory of Open Access Journals (Sweden)

    Emmanuel G. Collins

    2000-01-01

    Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H2 or H∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H∞ performance. Both robust H2 and H∞, controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H∞ performance is much more computationally intensive than that for robust H2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis.

  18. Research on the adaptive optical control technology based on DSP

    Science.gov (United States)

    Zhang, Xiaolu; Xue, Qiao; Zeng, Fa; Zhao, Junpu; Zheng, Kuixing; Su, Jingqin; Dai, Wanjun

    2018-02-01

    Adaptive optics is a real-time compensation technique using high speed support system for wavefront errors caused by atmospheric turbulence. However, the randomness and instantaneity of atmospheric changing introduce great difficulties to the design of adaptive optical systems. A large number of complex real-time operations lead to large delay, which is an insurmountable problem. To solve this problem, hardware operation and parallel processing strategy are proposed, and a high-speed adaptive optical control system based on DSP is developed. The hardware counter is used to check the system. The results show that the system can complete a closed loop control in 7.1ms, and improve the controlling bandwidth of the adaptive optical system. Using this system, the wavefront measurement and closed loop experiment are carried out, and obtain the good results.

  19. Adaptive PID control based on orthogonal endocrine neural networks.

    Science.gov (United States)

    Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D

    2016-12-01

    A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A Model of Trusted Connection Architecture

    Directory of Open Access Journals (Sweden)

    Zhang Xun

    2017-01-01

    Full Text Available According to that traditional trusted network connection architecture (TNC has limitations on dynamic network environment and the user behavior support, we develop TCA to propose a trusted connection architecture supporting behavior measurement (TCA-SBM, besides, the structure diagram of network architecture is given. Through introducing user behavior measure elements, TCA-SBM can conduct measurement on the whole network in time dimension periodically, and refine the measurement on network behavior in measure dimension to conduct fine-grained dynamic trusted measurement. As a result, TCA-SBM enhances the TCA’s ability to adapt to the dynamic change of network and makes up the deficiency of trusted computing framework in the network connection.