WorldWideScience

Sample records for adaptations impaired oxidative

  1. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Justin D Crane

    Full Text Available Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 (+/- mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 (+/- mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 (+/- mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity.

  2. Elevated Mitochondrial Oxidative Stress Impairs Metabolic Adaptations to Exercise in Skeletal Muscle

    Science.gov (United States)

    Crane, Justin D.; Abadi, Arkan; Hettinga, Bart P.; Ogborn, Daniel I.; MacNeil, Lauren G.; Steinberg, Gregory R.; Tarnopolsky, Mark A.

    2013-01-01

    Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 +/- mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 +/- mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 +/- mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity. PMID:24324727

  3. Inhibition of Nitric Oxide Synthesis and Gene Knockout of Neuronal Nitric Oxide Synthase Impaired Adaptation of Mouse Optokinetic Response Eye Movements

    OpenAIRE

    Katoh, Akira; Kitazawa, Hiromasa; Itohara, Shigeyoshi; Nagao, Soichi

    2000-01-01

    Nitric oxide (NO) plays a key role in synaptic transmission efficiency in the central nervous system. To gain an insight on the role of NO in cerebellar functions, we, here, measured the dynamics of the horizontal optokinetic response (HOKR) and vestibulo-ocular reflex (HVOR), and the adaptation of HOKR in mice locally injected with NG-monomethyl-l-arginine (L-NMMA) that inhibits NO synthesis and in mice devoid of neuronal nitric oxide synthase (nNOS). Local application of L-NMMA into the cer...

  4. Adaptive behavior of children with visual impairment

    Directory of Open Access Journals (Sweden)

    Anđelković Marija

    2014-01-01

    Full Text Available Adaptive behavior includes a wide range of skills necessary for independent, safe and adequate performance of everyday activities. Practical, social and conceptual skills make the concept of adaptive behavior. The aim of this paper is to provide an insight into the existing studies of adaptive behavior in persons with visual impairment. The paper mainly focuses on the research on adaptive behavior in children with visual impairment. The results show that the acquisition of adaptive skills is mainly low or moderately low in children and youth with visual impairment. Children with visual impairment achieve the worst results in social skills and everyday life skills, while the most acquired are communication skills. Apart from the degree of visual impairment, difficulties in motor development also significantly influence the acquisition of practical and social skills of blind persons and persons with low vision.

  5. Mitochondrial DNA depletion promotes impaired oxidative status and adaptive resistance to apoptosis in T47D breast cancer cells.

    Science.gov (United States)

    Yu, Man; Shi, Yurong; Wei, Xiyin; Yang, Yi; Zang, Fenglin; Niu, Ruifang

    2009-11-01

    The mutation and reduction of mitochondrial DNA (mtDNA) have been extensively detected in human cancers. The effects of mitochondrial dysfunction are particularly important in breast cancer, because estrogen-mediated metabolites generate large quantities of local reactive oxygen species in the breast, which directly bind to mtDNA and facilitate neoplastic transformation. To further elucidate the molecular roles of mtDNA in breast cancer, we determined the oxidative status of a breast tumor cell line lacking mtDNA (T47D ρ⁰) and analyzed its susceptibility after exposure to various anticancer drugs as well as different proapoptotic signals. Our data showed that T47D ρ⁰ cells generated significantly increased levels of lactate with concomitantly reduced oxygen consumption and ATP production compared with the wild-type (WT). The amount of reactive oxygen species generation in ρ cells was lowered to approximately 12% that of parental cells, as evidenced by the oxidation of redox-sensitive probes. Although mtDNA depletion did not affect the expression of superoxide dismutase or its activity, the activities of antioxidant enzymes, catalase and glutathione peroxidase, were significantly higher in ρ⁰ cells compared with WT cells. In addition, mtDNA-depleted cells displayed a decreased sensitivity and accumulation of chemotherapeutic drugs (doxorubicin, vincristine, and paclitaxel), potentially because of the upregulated expression of multidrug resistance 1 (MDR1) gene and its product P-glycoprotein. When compared with their WT counterparts, T47D ρ⁰ cells were also more resistant to apoptosis induced by varying concentrations of staurosporine and anti-Fas antibody. Altogether, our results indicate the importance of intact mtDNA for maintaining the proper intracellular oxidative status. These data provide evidence for a possible role of mtDNA content reduction in acquiring an apoptosis-resistant phenotype during breast tumor progression and might contribute to

  6. Oxidation of multiple methionine residues impairs rapid sodium channel inactivation

    Science.gov (United States)

    Kassmann, Mario; Hansel, Alfred; Leipold, Enrico; Birkenbeil, Jan; Lu, Song-Qing; Hoshi, Toshinori; Heinemann, Stefan H.

    2010-01-01

    Reactive oxygen species (ROS) readily oxidize the sulfur-containing amino acids cysteine and methionine (Met). The impact of Met oxidation on the fast inactivation of the skeletal muscle sodium channel NaV1.4 expressed in human embryonic kidney cells was studied by applying the Met-preferring oxidant chloramine-T (ChT) or by irradiating the ROS-producing dye Lucifer Yellow in the patch pipettes. Both interventions dramatically slowed down inactivation of the sodium channels. Replacement of Met in the Ile-Phe-Met inactivation motif with Leu (M1305L) strongly attenuated the oxidizing effect on inactivation but did not eliminate it completely. Mutagenesis of conserved Met residues in the intracellular linkers connecting the membrane-spanning segments of the channel (M1469L and M1470L) also markedly diminished the oxidation sensitivity of the channel, while that of other conserved Met residues (442, 1139, 1154, 1316) were without any noticeable effect. The results of mutagenesis of results, assays of other NaV channel isoforms (NaV1.2, NaV1.5, NaV1.7) and the kinetics of the oxidation-induced removal of inactivation collectively indicate that multiple Met target residues need to be oxidized to completely impair inactivation. This arrangement using multiple Met residues confers a finely graded oxidative modulation of NaV channels and allows organisms to adapt to a variety of oxidative stress conditions, such as ischemic reperfusion. PMID:18369661

  7. Effective Classroom Adaptations for Students with Visual Impairments.

    Science.gov (United States)

    Cox, Penny R.; Dykes, Mary K.

    2001-01-01

    This article discusses strategies for including students with visual impairments in general education settings. It explains categories of visual impairments and how students with visual impairments learn. Auditory learning and visual learning accommodations are addressed, and checklists for orientation and mobility adaptations, and for classroom…

  8. Adaptive Behavior of Children and Adolescents with Visual Impairments

    Science.gov (United States)

    Papadopoulos, Konstantinos; Metsiou, Katerina; Agaliotis, Ioannis

    2011-01-01

    The present study explored the total adaptive behavior of children and adolescents with visual impairments, as well as their adaptive behavior in each of the domains of Communication, Daily Living Skills, and Socialization. Moreover, the predictors of the performance and developmental delay in adaptive behavior were investigated. Instrumentation…

  9. Parkinson's disease associated with impaired oxidative phosphorylation

    International Nuclear Information System (INIS)

    Finsterer, J.; Jarius, C.; Baumgartner, M.

    2001-01-01

    Parkinson's disease may be due to primary or secondary oxidative phosphorylation (OXPHOS) defects. In a 76-year-old man with Parkinson's disease since 1992, slightly but recurrently elevated creatine phosphokinase, recurrently elevated blood glucose, thickening of the left ventricular myocardium, bifascicular block and hypacusis were found. Cerebral MRI showed atrophy, periventricular demyelination, multiple, disseminated, supra- and infratentorial lacunas, and haemosiderin deposits in both posterior horns. Muscle biopsy showed typical features of an OXPHOS defect. Whether the association of Parkinson's disease and impaired OXPHOS was causative or coincidental remains unknown. Possibly, the mitochondrial defect acted as an additional risk factor for Parkinson's disease or the OXPHOS defect worsened the preexisting neurological impairments by a cumulative or synergistic mechanism. In conclusion, this case shows that Parkinson's disease may be associated with a mitochondrially or nuclearly encoded OXPHOS defect, manifesting as hypacusis, myopathy, axonal polyneuropathy, cardiomyopathy and recurrent subclinical ischaemic strokes and haemorrhages. (orig.)

  10. Loneliness, adaptation to vision impairment, social support and depression among visually impaired elderly

    NARCIS (Netherlands)

    Verstraten, P.F.J.; Brinkmann, W.L.J.H.; Stevens, N.L.; Schouten, J.S.A.G.

    2006-01-01

    The purpose of this study is to investigate the prevalence of loneliness among visually impaired elderly, and its relations with adaptation to vision loss, received social support and depression. Clients aged 55 years or older who contacted Sensis, a rehabilitation centre for visually impaired

  11. Familiar Sports and Activities Adapted for Multiply Impaired Persons.

    Science.gov (United States)

    Schilling, Mary Lou, Ed.

    1984-01-01

    Means of adapting some familiar and popular physical activities for multiply impaired persons are described. Games reviewed are dice baseball, one base baseball, in-house bowling, wheelchair bowling, ramp bowling, swing-ball bowling, table tennis, shuffleboard, beanbag bingo and tic-tac-toe, balloon basketball, circle football, and wheelchair…

  12. Spatial compression impairs prism-adaptation in healthy individuals

    Directory of Open Access Journals (Sweden)

    Rachel J Scriven

    2013-05-01

    Full Text Available Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation is effective in ameliorating some neglect behaviours, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control processes in prism-adaptation may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced strategic control might result from a failure to detect prism-induced reaching errors properly either because a the size of the error is underestimated in compressed visual space or b pathologically increased error detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether strategic control and subsequent aftereffects were abnormal compared to standard prism adaptation. Each participant completed three prism-adaptation procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During prism-adaptation, visual-feedback of the reach could be compressed, perturbed by noise or represented veridically. Compressed visual space significantly reduced strategic control and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms.

  13. Variance in exposed perturbations impairs retention of visuomotor adaptation.

    Science.gov (United States)

    Canaveral, Cesar Augusto; Danion, Frédéric; Berrigan, Félix; Bernier, Pierre-Michel

    2017-11-01

    Sensorimotor control requires an accurate estimate of the state of the body. The brain optimizes state estimation by combining sensory signals with predictions of the sensory consequences of motor commands using a forward model. Given that both sensory signals and predictions are uncertain (i.e., noisy), the brain optimally weights the relative reliance on each source of information during adaptation. In support, it is known that uncertainty in the sensory predictions influences the rate and generalization of visuomotor adaptation. We investigated whether uncertainty in the sensory predictions affects the retention of a new visuomotor relationship. This was done by exposing three separate groups to a visuomotor rotation whose mean was common at 15° counterclockwise but whose variance around the mean differed (i.e., SD of 0°, 3.2°, or 4.5°). Retention was assessed by measuring the persistence of the adapted behavior in a no-vision phase. Results revealed that mean reach direction late in adaptation was similar across groups, suggesting it depended mainly on the mean of exposed rotations and was robust to differences in variance. However, retention differed across groups, with higher levels of variance being associated with a more rapid reversion toward nonadapted behavior. A control experiment ruled out the possibility that differences in retention were accounted for by differences in success rates. Exposure to variable rotations may have increased the uncertainty in sensory predictions, making the adapted forward model more labile and susceptible to change or decay. NEW & NOTEWORTHY The brain predicts the sensory consequences of motor commands through a forward model. These predictions are subject to uncertainty. We use visuomotor adaptation and modulate uncertainty in the sensory predictions by manipulating the variance in exposed rotations. Results reveal that variance does not influence the final extent of adaptation but selectively impairs the retention of

  14. Nitric oxide and coronary vascular endothelium adaptations in hypertension

    Directory of Open Access Journals (Sweden)

    Andrew S Levy

    2009-12-01

    Full Text Available Andrew S Levy*, Justin CS Chung*, Jeffrey T Kroetsch*, James WE RushDepartment of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada; *These authors contributed equally to this workAbstract: This review highlights a number of nitric oxide (NO-related mechanisms that contribute to coronary vascular function and that are likely affected by hypertension and thus become important clinically as potential considerations in prevention, diagnosis, and treatment of coronary complications of hypertension. Coronary vascular resistance is elevated in hypertension in part due to impaired endothelium-dependent function of coronary arteries. Several lines of evidence suggest that other NO synthase isoforms and dilators other than NO may compensate for impairments in endothelial NO synthase (eNOS to protect coronary artery function, and that NO-dependent function of coronary blood vessels depends on the position of the vessel in the vascular tree. Adaptations in NOS isoforms in the coronary circulation to hypertension are not well described so the compensatory relationship between these and eNOS in hypertensive vessels is not clear. It is important to understand potential functional consequences of these adaptations as they will impact the efficacy of treatments designed to control hypertension and coronary vascular disease. Polymorphisms of the eNOS gene result in significant associations with incidence of hypertension, although mechanistic details linking the polymorphisms with alterations in coronary vasomotor responses and adaptations to hypertension are not established. This understanding should be developed in order to better predict those individuals at the highest risk for coronary vascular complications of hypertension. Greater endothelium-dependent dilation observed in female coronary arteries is likely related to endothelial Ca2+ control and eNOS expression and activity. In hypertension models, the coronary vasculature has not been

  15. Adaptive changes in autophagy after UPS impairment in Parkinson's disease.

    Science.gov (United States)

    Shen, Yu-fei; Tang, Yu; Zhang, Xiao-jie; Huang, Kai-xing; Le, Wei-dong

    2013-05-01

    Ubiquitin-proteasome system (UPS) and autophagosome-lysosome pathway (ALP) are the most important machineries responsible for protein degradation in Parkinson's disease (PD). The aim of this study is to investigate the adaptive alterations in autophagy upon proteasome inhibition in dopaminergic neurons in vitro and in vivo. Human dopaminergic neuroblastoma SH-SY5Y cells were treated with the proteasome inhibitor lactacystin (5 μmol/L) for 5, 12, or 24 h. The expression of autophagy-related proteins in the cells was detected with immunoblotting. UPS-impaired mouse model of PD was established by microinjection of lactacystin (2 μg) into the left hemisphere of C57BL/6 mice that were sacrificed 2 or 4 weeks later. The midbrain tissues were dissected to assess alterations in autophagy using immunofluorescence, immunoblotting and electron microscopy assays. Both in SH-SY5Y cells and in the midbrain of UPS-impaired mouse model of PD, treatment with lactacystin significantly increased the expression levels of LC3-I/II and Beclin 1, and reduced the levels of p-mTOR, mTOR and p62/SQSTM1. Furthermore, lactacystin treatment in UPS-impaired mouse model of PD caused significant loss of TH-positive neurons in the substantia nigra, and dramatically increased the number of autophagosomes in the left TH-positive neurons. Inhibition of UPS by lactacystin in dopaminergic neurons activates another protein degradation system, the ALP, which includes both the mTOR signaling pathway and Beclin 1-associated pathway.

  16. Human mitochondrial oxidative capacity is acutely impaired after burn trauma.

    Science.gov (United States)

    Cree, Melanie G; Fram, Ricki Y; Herndon, David N; Qian, Ting; Angel, Carlos; Green, Justin M; Mlcak, Ronald; Aarsland, Asle; Wolfe, Robert R

    2008-08-01

    Mitochondrial proteins and genes are damaged after burn injury in animals and are assessed in human burn patients in this study. The rates of maximal muscle mitochondrial oxidative capacity (adenosine triphosphate production) and uncoupled oxidation (heat production) for both palmitate and pyruvate were measured in muscle biopsies from 40 children sustaining burns on more than 40% of their body surface area and from 13 healthy children controls. Maximal mitochondrial oxidation of pyruvate and palmitate were reduced in burn patients compared with controls (4.0 +/- .2:1.9 +/- .1 micromol O2/citrate synthase activity/mg protein/min pyruvate; control:burn; P < .001 and 3.0 +/- .1: .9 +/- .03 micromol O2/citrate synthase activity/mg protein/min palmityl CoA; control:burn; P = .003). Uncoupled oxidation was the same between groups. The maximal coupled mitochondrial oxidative capacity is severely impaired after burn injury, although there are no alterations in the rate of uncoupled oxidative capacity. It may be that the ratio of these indicates that a larger portion of energy production in trauma patients is wasted through uncoupling, rather than used for healing.

  17. Human mitochondrial oxidative capacity is acutely impaired following burn trauma

    Science.gov (United States)

    Cree, Melanie G.; Fram, Ricki Y.; Herndon, David N.; Qian, Ting; Angel, Carlos; Green, Justin M.; Mlcak, Ronald; Aarsland, Asle; Wolfe, Robert R.

    2008-01-01

    Background Mitochondrial proteins and genes are damaged after burn injury in animals but have not previously been assessed in human burn patients. Methods The rates of maximal muscle mitochondrial oxidative capacity(ATP production) and uncoupled oxidation(heat production) for both palmitate and pyruvate were measured in muscle biopsies from 40 children sustaining burns >40% body surface area and from 13 healthy children controls. Results Maximal mitochondrial oxidation of pyruvate and palmitate were reduced in burn patients compared to controls (4.0±0.2:1.9±0.1 µmolO2/citrate synthase activity/mg protein/min pyruvate; Control:Burn;P<0.001 and 3.0±0.1:0.9±0.03 µmolO2/citrate synthase activity/mg protein/min palmatyl CoA; Control:Burn;P=0.003). Uncoupled oxidation was the same between groups. Conclusions The maximal coupled mitochondrial oxidative capacity is severely impaired after burn injury, although there are no alterations in the rate of uncoupled oxidative capacity. It may be that the ratio of these indicates that a larger portion of energy production in trauma patients is wasted through uncoupling, rather than used for healing. PMID:18639661

  18. 5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection.

    Directory of Open Access Journals (Sweden)

    Adriana Secatto

    Full Text Available 5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/- mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/- mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.

  19. The impact of psychosocial adaptation status on quality of life for Chinese patients with visual impairments.

    Science.gov (United States)

    Zhang, Xiu-jie; Wang, Ai-ping; Yin, An-chun

    2014-01-01

    To analyse the association of psychosocial adaptation with quality of life and to examine the influential factors for Chinese people with visual impairments. The status of psychosocial adaptation is the main influential factor for quality of life. The correlation between psychosocial adaptation and quality of life for various diseases has been studied previously. However, there have been few reports on the impact of psychosocial adaptation on quality of life in people with visual impairments. Survey. In this study, subjects with visual impairment (n = 213) were interviewed to assess their demographics, disease-related information, psychosocial adaptation status and quality of life. The psychosocial adaptation questionnaire and quality of life scale for visually impaired patients were used to survey psychosocial adaptation and quality of life. Correlation and multiple stepwise regression analyses were used to study the association of psychosocial adaptation with quality of life in visually impaired patients. Psychosocial adaptation was significantly associated with quality of life, including the sense of belonging and psychological dimensions. The results also showed that there was statistical significance for the impact of occupational status, payment, monthly income (family), vision classification and psychosocial adaptation on quality of life, and the status of psychosocial adaptation was the main factor affecting the quality of life in people with visual impairments. It was found that the status of psychosocial adaptation was conspicuously associated with multiple dimensions of quality of life. Therefore, psychosocial adaptation status should be given close attention in clinical care. Our results could be used to guide nurses in making a plan for health education and nursing that improves the quality of life for the visually impaired. © 2012 Blackwell Publishing Ltd.

  20. Adapted physical education for a student with visual impairment

    OpenAIRE

    Debevec, Karin

    2016-01-01

    Pupils with special needs, among which are blind and visually impaired children, are involved in various educational programs and attend all educational subjects, including physical education. However, teachers lack experience with teaching blind and visually impaired pupils and often find it challenging to find a way to include such pupils in physical activities. The purpose of this master's thesis was to identify the most common issues and adjustments that need to be made to individual p...

  1. Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Christiansen, Liselotte Bruun; Dela, Flemming; Koch, Jørgen

    2015-01-01

    Mitochondrial dysfunction and oxidative stress are important players in the development of various cardiovascular diseases, but their roles in hypertrophic cardiomyopathy (HCM) remain unknown. We examined whether mitochondrial oxidative phosphorylation (OXPHOS) capacity was impaired with enhanced...... mitochondrial oxidative stress in HCM. Cardiac and skeletal muscles were obtained from 9 domestic cats with spontaneously occurring HCM with preserved left ventricular systolic function and from 15 age-matched control cats. Mitochondrial OXPHOS capacities with nonfatty acid and fatty acid substrates...... in permeabilized fibers and isolated mitochondria were assessed using high-resolution respirometry. ROS release originating from isolated mitochondria was assessed by spectrofluorometry. Thiobarbituric acid-reactive substances were also measured as a marker of oxidative damage. Mitochondrial ADP-stimulated state 3...

  2. Adaptive Assessment of Young Children with Visual Impairment

    Science.gov (United States)

    Ruiter, Selma; Nakken, Han; Janssen, Marleen; Van Der Meulen, Bieuwe; Looijestijn, Paul

    2011-01-01

    The aim of this study was to assess the effect of adaptations for children with low vision of the Bayley Scales, a standardized developmental instrument widely used to assess development in young children. Low vision adaptations were made to the procedures, item instructions and play material of the Dutch version of the Bayley Scales of Infant…

  3. High glucose-mediated oxidative stress impairs cell migration.

    Directory of Open Access Journals (Sweden)

    Marcelo L Lamers

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG, 25 mM D-glucose (high glucose, HG or 25 mM L-glucose medium (osmotic control--OC, we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC. We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

  4. Development of a psychosocial adaptation questionnaire for Chinese patients with visual impairments.

    Science.gov (United States)

    Zhang, Xiu-jie; Wang, Ai-ping

    2011-10-01

    To develop a psychosocial adaptation questionnaire for Chinese patients with visual impairments and to examine its reliability and validity. Psychosocial adaptation with disease has been studied, however, there have been few reports on the impact of visual impairment on psychosocial adaptation. An instrument has not been developed to assess psychosocial adaptation with visual impairment specifically for patients in China. Both qualitative and quantitative research methods were used. A questionnaire was developed based on the concept of psychosocial adaptation with visual impairment. Items for the questionnaire were developed by reviewing the literature and carrying out a semi-structured interview with 12 visually impaired patients. Five ophthalmologists and ten patients evaluated the content validity and face validity of the questionnaire, respectively. The method of convenient sampling was used to select 213 visually impaired patients in the Ophthalmology Department of the First Affiliated Hospital of China Medical University to participate in the study. Discriminative index and item-total correlation analyses were used to delete items that were lower than a set criterion. Regarding construct validity, factor analysis was performed. The Self-rating Anxiety Scale (SAS), General Self-Efficacy Scale (GSES) and Self Acceptance Questionnaire (SAQ) were used to evaluate criterion validity. Cronbach's alpha coefficient was used as an index of internal consistency. To evaluate test-retest reliability, 50 patients were re-evaluated after 24 hours. A total of 204 questionnaire items were created. 22 items were deleted by discriminative index and item-total correlation before factor analysis; 38 items were entered into the model for factor analysis. Seven factors were extracted by using principal factor analysis and varimax rotation, with a cumulative contribution of 59·18%. The correlation coefficients between the psychosocial adaptation questionnaire for visual impairment

  5. Mitochondrial Adaptations to Oxidative Stress Confer Resistance to Apoptosis in Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Margaret M. Briehl

    2012-08-01

    Full Text Available Acquired resistance to drugs commonly used for lymphoma treatment poses a significant barrier to improving lymphoma patient survival. Previous work with a lymphoma tissue culture model indicates that selection for resistance to oxidative stress confers resistance to chemotherapy-induced apoptosis. This suggests that adaptation to chronic oxidative stress can contribute to chemoresistance seen in lymphoma patients. Oxidative stress-resistant WEHI7.2 cell variants in a lymphoma tissue culture model exhibit a range of apoptosis sensitivities. We exploited this phenotype to test for mitochondrial changes affecting sensitivity to apoptosis in cells made resistant to oxidative stress. We identified impaired release of cytochrome c, and the intermembrane proteins adenylate kinase 2 and Smac/DIABLO, indicating inhibition of the pathway leading to permeabilization of the outer mitochondrial membrane. Blunting of a glucocorticoid-induced signal and intrinsic mitochondrial resistance to cytochrome c release contributed to both points of resistance. The level of Bcl-2 family members or a difference in Bim induction were not contributing factors. The extent of cardiolipin oxidation following dexamethasone treatment, however, did correlate with apoptosis resistance. The differences found in the variants were all proportionate to the degree of resistance to glucocorticoid treatment. We conclude that tolerance to oxidative stress leads to mitochondrial changes that confer resistance to apoptosis.

  6. Hot Water Bathing Impairs Training Adaptation in Elite Teen Archers.

    Science.gov (United States)

    Hung, Ta-Cheng; Liao, Yi-Hung; Tsai, Yung-Shen; Ferguson-Stegall, Lisa; Kuo, Chia-Hua; Chen, Chung-Yu

    2018-03-12

    Despite heat imposes considerable physiological stress to human body, hot water immersion remains as a popular relaxation modality for athletes. Here we examined the lingering effect of hot tub relaxation after training on performance-associated measures and dehydroepiandrosterone sulfate (DHEA-S) in junior archers. Ten national level archers, aged 16.6 ± 0.3 years (M = 8, F = 2), participated in a randomized counter-balanced crossover study after baseline measurements. In particular, half participants were assigned to the hot water immersion (HOT) group, whereas another halves were assigned to the untreated control (CON) group. Crossover trial was conducted following a 2-week washout period. During the HOT trial, participants immersed in hot water for 30 min at 40°C, 1 h after training, twice a week (every 3 days) for 2 weeks. Participants during control trial sat at the same environment without hot water after training. Performance-associated measures and salivary DHEA-S were determined 3 days after the last hot tub session. We found that the HOT intervention significantly decreased shooting performance (CON: -4%; HOT: -22%, P training adaptation specific to shooting performance in archers.

  7. Adaptive psychological structure in childhood hearing impairment: audiological correlations.

    Science.gov (United States)

    Serra, A; Spinato, G; Cocuzza, S; Licciardello, L; Pavone, P; Maiolino, L

    2017-06-01

    . On the contrary, in normal hearing children, the emotion 'fear' is the most difficult to identify. Deaf children seem to be more susceptible to recognition of visual emotions. Furthermore, deaf children present significant problem-solving skills and emotional recognition skills, possibly as a result of their hearing impairment. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  8. Cross-Cultural Adaptation of a Developmental Assessment for Arabic-Speaking Children with Visual Impairment

    Science.gov (United States)

    Macrine, Sheila L.; Heji, Hayat; Sabri, Amel; Dalton, Sara

    2015-01-01

    Developmental screening has become an established component of child health programs in many developed countries. The research objective of this project was to translate and adapt a developmental assessment (Oregon Project Skills Inventory) for use with young children with visual impairments who speak Arabic. The study was prompted by the lack of…

  9. Nitrate tolerance impairs nitric oxide-mediated vasodilation in vivo

    DEFF Research Database (Denmark)

    Laursen, Jørn Bech; Boesgaard, Søren; Poulsen, Henrik E.

    1996-01-01

    Nitrates, Nitrate tolerence, Nitric oxide, acetylcholine, N-acetylcholine, N-acetylcysteine, L-NAME, Rat, Anesthetized......Nitrates, Nitrate tolerence, Nitric oxide, acetylcholine, N-acetylcholine, N-acetylcysteine, L-NAME, Rat, Anesthetized...

  10. Humanin: a mitochondrial signaling peptide as a biomarker for impaired fasting glucose-related oxidative stress.

    Science.gov (United States)

    Voigt, Annet; Jelinek, Herbert F

    2016-05-01

    Mitochondrial RNR-2 (mt-RNR2, humanin) has been shown to play a role in protecting several types of cells and tissues from the effects of oxidative stress. Humanin (HN) functions through extracellular and intracellular pathways adjusting mitochondrial oxidative phosphorylation and ATP production. Addition of HN improved insulin sensitivity in animal models of diabetes mellitus but no clinical studies have been carried out to measure HN levels in humans associated with hyperglycemia. The plasma levels of HN in participants attending a diabetes complications screening clinic were measured. Clinical history and anthropometric data were obtained from all participants. Plasma levels of HN were measured by a commercial ELISA kit. All data were analyzed applying nonparametric statistics and general linear modeling to correct for age and gender. A significant decrease (P = 0.0001) in HN was observed in the impaired fasting glucose (IFG) group (n = 23; 204.84 ± 92.87 pg mL(-1)) compared to control (n = 58; 124.3 ± 83.91 pg mL(-1)) consistent with an adaptive cellular response by HN to a slight increase in BGL. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2014-01-01

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citric acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  12. Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Estéfani García-Rios

    2016-08-01

    Full Text Available Many factors, such as must composition, juice clarification, fermentation temperature or inoculated yeast strain, strongly affect the alcoholic fermentation and aromatic profile of wine. As fermentation temperature is effectively controlled by the wine industry, low-temperature fermentation (10-15 ºC is becoming more prevalent in order to produce white and rosé wines with more pronounced aromatic profiles. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. Previous research has shown the strong implication of oxidative stress response in adaptation to low temperature during the fermentation process. Here we aimed first to quantify the correlation between recovery after shock with different oxidants and cold, and then to detect the key genes involved in cold adaptation that belong to sulfur assimilation, peroxiredoxins, glutathione-glutaredoxins and thioredoxins pathways. To do so, we analyzed the growth of knockouts from the EUROSCARF collection S. cerevisiae BY4743 strain at low and optimal temperatures. The growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted and validated as key genes in the background of two commercial wine strains with a divergent phenotype in their low-temperature growth. We identified three genes, AHP1, MUP1 and URM1, whose deletion strongly impaired low-temperature growth.

  13. Mangifera indica Fruit Extract Improves Memory Impairment, Cholinergic Dysfunction, and Oxidative Stress Damage in Animal Model of Mild Cognitive Impairment

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-Mee, Wipawee; Ingkaninan, Kornkanok; Wittaya-Areekul, Sakchai

    2014-01-01

    To date, the effective preventive paradigm against mild cognitive impairment (MCI) is required. Therefore, we aimed to determine whether Mangifera indica fruit extract, a substance possessing antioxidant and cognitive enhancing effects, could improve memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment. Male Wistar rats, weighing 180–200 g, were orally given the extract at doses of 12.5, 50, and 200 mg·kg−1 BW for 2 weeks before and 1 week after the bilateral injection of AF64A (icv). At the end of study, spatial memory, cholinergic neurons density, MDA level, and the activities of SOD, CAT, and GSH-Px enzymes in hippocampus were determined. The results showed that all doses of extract could improve memory together with the decreased MDA level and the increased SOD and GSH-Px enzymes activities. The increased cholinergic neurons density in CA1 and CA3 of hippocampus was also observed in rats treated with the extract at doses of 50 and 200 mg·kg−1 BW. Therefore, our results suggested that M. indica, the potential protective agent against MCI, increased cholinergic function and the decreased oxidative stress which in turn enhanced memory. However, further researches are essential to elucidate the possible active ingredients and detail mechanism. PMID:24672632

  14. Mangifera indica Fruit Extract Improves Memory Impairment, Cholinergic Dysfunction, and Oxidative Stress Damage in Animal Model of Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2014-01-01

    Full Text Available To date, the effective preventive paradigm against mild cognitive impairment (MCI is required. Therefore, we aimed to determine whether Mangifera indica fruit extract, a substance possessing antioxidant and cognitive enhancing effects, could improve memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment. Male Wistar rats, weighing 180–200 g, were orally given the extract at doses of 12.5, 50, and 200 mg·kg−1 BW for 2 weeks before and 1 week after the bilateral injection of AF64A (icv. At the end of study, spatial memory, cholinergic neurons density, MDA level, and the activities of SOD, CAT, and GSH-Px enzymes in hippocampus were determined. The results showed that all doses of extract could improve memory together with the decreased MDA level and the increased SOD and GSH-Px enzymes activities. The increased cholinergic neurons density in CA1 and CA3 of hippocampus was also observed in rats treated with the extract at doses of 50 and 200 mg·kg−1 BW. Therefore, our results suggested that M. indica, the potential protective agent against MCI, increased cholinergic function and the decreased oxidative stress which in turn enhanced memory. However, further researches are essential to elucidate the possible active ingredients and detail mechanism.

  15. Neuroprotective Effects of Centella asiatica against Intracerebroventricular Colchicine-Induced Cognitive Impairment and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2009-01-01

    Full Text Available Oxidative stress appears to be an early event involved in the pathogenesis of Alzheimer's disease. The present study was designed to investigate the neuroprotective effects of Centella asiatica against colchicine-induced memory impairment and oxidative damage in rats. Colchicine (15 μg/5 μL was administered intracerebroventricularly in the lateral ventricle of male wistar rats. Morris water maze and plus-maze performance tests were used to assess memory performance tasks. Various biochemical parameters such as lipid peroxidation, nitrite, reduced glutathione, glutathione-S-transferase, superoxide dismutase, acetylcholinesterase were also assessed. ICV colchicine resulted marked memory impairment and oxidative damage. Chronic treatment with Centella asiatica extract (150 and 300 mg/kg, p.o. for a period of 25 days, beginning 4 days prior to colchicine administration, significantly attenuated colchicine-induced memory impairment and oxidative damage. Besides, Centella asiatica significantly reversed colchicines administered increase in acetylcholinesterase activity. Thus, present study indicates protective effect of Centella asiatica against colchicine-induced cognitive impairment and associated oxidative damage.

  16. Neuroprotective Effects of Centella asiatica against Intracerebroventricular Colchicine-Induced Cognitive Impairment and Oxidative Stress

    Science.gov (United States)

    Kumar, Anil; Dogra, Samrita; Prakash, Atish

    2009-01-01

    Oxidative stress appears to be an early event involved in the pathogenesis of Alzheimer's disease. The present study was designed to investigate the neuroprotective effects of Centella asiatica against colchicine-induced memory impairment and oxidative damage in rats. Colchicine (15 μg/5 μL) was administered intracerebroventricularly in the lateral ventricle of male wistar rats. Morris water maze and plus-maze performance tests were used to assess memory performance tasks. Various biochemical parameters such as lipid peroxidation, nitrite, reduced glutathione, glutathione-S-transferase, superoxide dismutase, acetylcholinesterase were also assessed. ICV colchicine resulted marked memory impairment and oxidative damage. Chronic treatment with Centella asiatica extract (150 and 300 mg/kg, p.o.) for a period of 25 days, beginning 4 days prior to colchicine administration, significantly attenuated colchicine-induced memory impairment and oxidative damage. Besides, Centella asiatica significantly reversed colchicines administered increase in acetylcholinesterase activity. Thus, present study indicates protective effect of Centella asiatica against colchicine-induced cognitive impairment and associated oxidative damage. PMID:20798885

  17. Association between oxidized low-density lipoprotein and cognitive impairment in patients with ischemic stroke.

    Science.gov (United States)

    Wang, A; Liu, J; Meng, X; Li, J; Wang, H; Wang, Y; Su, Z; Zhang, N; Dai, L; Wang, Y; Wang, Y

    2018-01-01

    The association between oxidized low-density lipoprotein (oxLDL) and cognitive impairment is unclear. This study aimed to investigate the potential association between oxLDL and cognitive impairment among patients with acute ischemic stroke. We measured the levels of oxLDL and recorded the Mini-Mental State Examination (MMSE) score in patients with acute ischemic stroke who were recruited from the Study of Oxidative Stress in Patients with Acute Ischemic Stroke. Cognitive impairment was defined as an MMSE score of impairment was assessed by multivariate logistic or linear regression analysis. Other clinical variables of interest were also studied. A total of 3726 patients [1287 (34.54%) female] were included in this study, with a mean age of 63.62 ± 11.96 years. After adjusting for potential confounders in our logistic regression model, each SD increase in oxLDL was associated with a 26% increase in the prevalence of cognitive impairment (odds radio, 1.26; 95% confidence interval, 1.13-1.39; P impairment (all interactions, P > 0.05). Elevated levels of oxLDL were associated with a higher prevalence of cognitive impairment in patients with ischemic stroke. © 2017 EAN.

  18. Mitochondrial Oxidative Phosphorylation Is Impaired in Patients with Congenital Lipodystrophy

    OpenAIRE

    Sleigh, Alison; Stears, Anna; Thackray, Kerrie; Watson, Laura; Gambineri, Alessandra; Nag, Sath; Campi, V. Irene; Schoenmakers, Nadia; Brage, Soren; Carpenter, T. Adrian; Murgatroyd, Peter R.; O'Rahilly, Stephen; Kemp, Graham J.; Savage, David B.

    2012-01-01

    Objective: Lipid accumulation in skeletal muscle and the liver is strongly implicated in the development of insulin resistance and type 2 diabetes, but the mechanisms underpinning fat accrual in these sites remain incompletely understood. Accumulating evidence of muscle mitochondrial dysfunction in insulin-resistant states has fuelled the notion that primary defects in mitochondrial fat oxidation may be a contributory mechanism. The purpose of our study was to determine whether patients with ...

  19. Implications of impaired ketogenesis in fatty acid oxidation disorders.

    Science.gov (United States)

    Olpin, Simon Edward

    2004-03-01

    Long-chain fatty acids are important sources of respiratory fuel for many tissues and during fasting the rate of hepatic production of ketone bodies is markedly increased. Many extra hepatic tissues utilize ketone bodies in the fasted state with the advantage that glucose is "spared" for more vital tissues like the brain. This glucose sparing effect of ketones is especially important in infants where there is a high proportional glucose utilization in cerebral tissue. The first reported inherited defect affecting fatty acid oxidation was described in 1973 and to date about 15 separate disorders have been described. Although individually rare, cumulatively fatty acid oxidation defects are relatively common, have major consequences for affected individuals and their families, and carry significant health care implications. The major biochemical consequence of fatty acid oxidation defects is an inability of extra hepatic tissues to utilize fatty acids as an energy source with absent or limited hepatic capacity to generate ketones. Clinically patients usually present in infancy with acute life-threatening hypoketotic hypoglycaemia, liver disease, hyperammonaemia and cerebral oedema, with or without cardiac involvement, usually following a period of catabolic stress. Chronically there may be muscle involvement with hypotonia or exercise intolerance with or without cardiomyopathy. Treatment is generally by the avoidance of fasting, frequent carbohydrate rich feeds and for long-chain defects, the replacement of long-chain dietary fats with medium-chain formulae. Novel approaches to treatment include the use of d,l-3-hydoxybutyrate or heptanoate as an alternative energy source.

  20. Application of adaptive digital signal processing to speech enhancement for the hearing impaired.

    Science.gov (United States)

    Chabries, D M; Christiansen, R W; Brey, R H; Robinette, M S; Harris, R W

    1987-01-01

    A major complaint of individuals with normal hearing and hearing impairments is a reduced ability to understand speech in a noisy environment. This paper describes the concept of adaptive noise cancelling for removing noise from corrupted speech signals. Application of adaptive digital signal processing has long been known and is described from a historical as well as technical perspective. The Widrow-Hoff LMS (least mean square) algorithm developed in 1959 forms the introduction to modern adaptive signal processing. This method uses a "primary" input which consists of the desired speech signal corrupted with noise and a second "reference" signal which is used to estimate the primary noise signal. By subtracting the adaptively filtered estimate of the noise, the desired speech signal is obtained. Recent developments in the field as they relate to noise cancellation are described. These developments include more computationally efficient algorithms as well as algorithms that exhibit improved learning performance. A second method for removing noise from speech, for use when no independent reference for the noise exists, is referred to as single channel noise suppression. Both adaptive and spectral subtraction techniques have been applied to this problem--often with the result of decreased speech intelligibility. Current techniques applied to this problem are described, including signal processing techniques that offer promise in the noise suppression application.

  1. The muscle oxidative regulatory response to acute exercise is not impaired in less advanced COPD despite a decreased oxidative phenotype.

    Directory of Open Access Journals (Sweden)

    Ilse G M Slot

    Full Text Available Already in an early disease stage, patients with chronic obstructive pulmonary disease (COPD are confronted with impaired skeletal muscle function and physical performance due to a loss of oxidative type I muscle fibers and oxidative capacity (i.e. oxidative phenotype; Oxphen. Physical activity is a well-known stimulus of muscle Oxphen and crucial for its maintenance. We hypothesized that a blunted response of Oxphen genes to an acute bout of exercise could contribute to decreased Oxphen in COPD. For this, 28 patients with less advanced COPD (age 65 ± 7 yrs, FEV1 59 ± 16% predicted and 15 age- and gender-matched healthy controls performed an incremental cycle ergometry test. The Oxphen response to exercise was determined by the measurement of gene expression levels of Oxphen markers in pre and 4h-post exercise quadriceps biopsies. Because exercise-induced hypoxia and oxidative stress may interfere with Oxphen response, oxygen saturation and oxidative stress markers were assessed as well. Regardless of oxygen desaturation and absolute exercise intensities, the Oxphen regulatory response to exercise was comparable between COPD patients and controls with no evidence of increased oxidative stress. In conclusion, the muscle Oxphen regulatory response to acute exercise is not blunted in less advanced COPD, regardless of exercise-induced hypoxia. Hence, this study provides further rationale for incorporation of exercise training as integrated part of disease management to prevent or slow down loss of muscle Oxphen and related functional impairment in COPD.

  2. Platelet hyperaggregability in obesity: is there a role for nitric oxide impairment and oxidative stress?

    Science.gov (United States)

    Leite, Natália Rodrigues Pereira; Siqueira de Medeiros, Mariana; Mury, Wanda Vianna; Matsuura, Cristiane; Perszel, Monique Bandeira Moss; Noronha Filho, Gerson; Brunini, Tatiana Mc; Mendes-Ribeiro, Antônio Claúdio

    2016-08-01

    Epidemiological evidence has shown that platelet activation markers are consistently elevated in obesity, contributing to its prothrombotic state. In order to improve the understanding of the regulation of platelet function in obesity, the aim of this study was to investigate the l-arginine-nitric oxide (NO) pathway in obese adults without other cardiovascular risk factor. Seventeen obese (body mass index [BMI] 35.9±1.0 kg/m(2) ) and eighteen age-matched normal weight subjects (BMI 22.0±0.6 kg/m(2) ) were included in this study. l-arginine influx was measured with incubation of l-[(3) H]-arginine. NO synthase (NOS) and arginase activities were determined by the citrulline assay and the conversion of l-[(14) C]-arginine to [(14) C]-urea, respectively. Cyclic guanosine monophosphate (cGMP) content was evaluated by enzyme-linked immunosorbent assay. In addition, the study analyzed: platelet aggregation; intraplatelet antioxidant enzymes, via superoxide dismutase (SOD) and catalase activities; and systemic levels of l-arginine, fibrinogen, and C-reactive protein (CRP). Obese patients presented a significant decrease of platelet l-arginine influx, NOS activity, and cGMP levels, along with platelet hyperaggregability. On the presence of NO donor, platelet aggregation was similar between the groups. The fibrinogen and CRP systemic levels were significantly higher and SOD activity was reduced in obesity. No significant differences were observed in plasma levels of l-arginine and intraplatelet arginase and catalase activities between groups. The diminished NO bioavailability associated with inflammatory status and impaired enzymatic antioxidant defence may contribute to future cardiovascular complications in obesity. © 2016 John Wiley & Sons Australia, Ltd.

  3. Impaired butyrate oxidation in ulcerative colitis is due to decreased butyrate uptake and a defect in the oxidation pathway.

    Science.gov (United States)

    De Preter, Vicky; Arijs, Ingrid; Windey, Karen; Vanhove, Wiebe; Vermeire, Severine; Schuit, Frans; Rutgeerts, Paul; Verbeke, Kristin

    2012-06-01

    In ulcerative colitis (UC) butyrate metabolism is impaired due to a defect in the butyrate oxidation pathway and/or transport. In the present study we correlated butyrate uptake and oxidation to the gene expression of the butyrate transporter SLC16A1 and the enzymes involved in butyrate oxidation (ACSM3, ACADS, ECHS1, HSD17B10, and ACAT2) in UC and controls. Colonic mucosal biopsies were collected during endoscopy of 88 UC patients and 20 controls with normal colonoscopy. Butyrate uptake and oxidation was measured by incubating biopsies with (14) C-labeled Na-butyrate. To assess gene expression, total RNA from biopsies was used for quantitative reverse-transcription polymerase chain reaction (qRT-PCR). In 20 UC patients, gene expression was reassessed after treatment with infliximab. Butyrate uptake and oxidation were significantly decreased in UC versus controls (P Butyrate oxidation remained significantly reduced in UC after correction for butyrate uptake (P butyrate oxidation pathway itself is also affected. Also, the mucosal gene expression of SLC16A1, ACSM3, ACADS, ECHS1, HSD17B10, and ACAT2 was significantly decreased in UC as compared with controls (P butyrate metabolism in UC is initiated at the gene expression level and is the result of a decreased expression of SLC16A1 and enzymes in the β-oxidation pathway of butyrate. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  4. Centella asiatica Attenuates D-Galactose-Induced Cognitive Impairment, Oxidative and Mitochondrial Dysfunction in Mice

    Science.gov (United States)

    Kumar, Anil; Prakash, Atish; Dogra, Samrita

    2011-01-01

    D-galactose induced neurotoxicity is well known model for studying aging and related oxidative damage and memory impairment. Aging is a biological process, characterized by the gradual loss of physiological functions by unknown mechanism. Centella asiatica, Indian pennywort has been documented in the treatment of various neurological disorders including aging. Therefore, present study has been conducted in order to explore the possible role of Centella asiatica against D-galactose induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Chronic administration of D-galactose (100 mg/kg s.c.) for a period of six weeks significantly impaired cognitive task (both in both Morris water maze and elevated plus maze) and oxidative defense (Increased lipid peroxidation, nitrite concentration and decreased activity of superoxide dismutase, catalase and non-protein thiols) and impaired mitochondrial complex (I, II and III) enzymes activities as compared to sham group. Six weeks Centella asiatica (150 and 300 mg/kg, p.o) treatment significantly improved behavioral alterations, oxidative damage and mitochondrial enzyme complex activities as compared to contro l (D-galactose). Centella asiatica also attenuated enhanced acetylcholine esterase enzyme level in D-galactose senescence mice. Present study highlights the protective effect of Centella asiatica against D-galactose induced behavioral, biochemical and mitochondrial dysfunction in mice. PMID:21629743

  5. Non motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment

    Directory of Open Access Journals (Sweden)

    Josef eFaller

    2014-10-01

    Full Text Available Individuals with severe motor impairment can use event-related desynchronization (ERD based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (SMR-AdBCI have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total of cue-guided, five-class electroencephalography (EEG data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI significantly (p<0.01 improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 versus 66.3%.

  6. Neuropsychological presentation and adaptive skills in high-functioning adolescents with visual impairment: A preliminary investigation.

    Science.gov (United States)

    Greenaway, R; Pring, L; Schepers, A; Isaacs, D P; Dale, N J

    2017-01-01

    Studies in infants and young children with congenital visual impairment (VI) have indicated early developmental vulnerabilities, conversely research with older children and adults have highlighted areas of cognitive strength. A minimal amount is known, however, about the possible combination of strengths and weaknesses in adolescence, and this present study therefore aims to explore the neuropsychological presentation and adaptive behavior profile in high-functioning adolescents with congenital VI. Participants completed a battery of commonly used neuropsychological measures assessing memory, executive function, and attention. The measures utilized focused on auditory neuropsychological function, because only subtests that could be completed with auditory administration were suitable for this sample. Parents completed standardized measures of adaptive behavior, executive function, and social communication. Compared to aged-based norms for normal sight, adolescents with VI demonstrated strengths in aspects of working memory and verbal memory. Furthermore, performance across the neuropsychological battery was within or above the average range for the majority of the sample. In contrast, parent-report measures indicated areas of weakness in adaptive functioning, social communication, and behavioral executive functioning. Overall, this study provides preliminary evidence that relative to fully sighted peers, high-functioning adolescents with VI present with an uneven profile of cognitive and adaptive skills, which has important implications for assessment and intervention.

  7. Adaptation and validation into Portuguese language of the six-item cognitive impairment test (6CIT).

    Science.gov (United States)

    Apóstolo, João Luís Alves; Paiva, Diana Dos Santos; Silva, Rosa Carla Gomes da; Santos, Eduardo José Ferreira Dos; Schultz, Timothy John

    2017-07-25

    The six-item cognitive impairment test (6CIT) is a brief cognitive screening tool that can be administered to older people in 2-3 min. To adapt the 6CIT for the European Portuguese and determine its psychometric properties based on a sample recruited from several contexts (nursing homes; universities for older people; day centres; primary health care units). The original 6CIT was translated into Portuguese and the draft Portuguese version (6CIT-P) was back-translated and piloted. The accuracy of the 6CIT-P was assessed by comparison with the Portuguese Mini-Mental State Examination (MMSE). A convenience sample of 550 older people from various geographical locations in the north and centre of the country was used. The test-retest reliability coefficient was high (r = 0.95). The 6CIT-P also showed good internal consistency (α = 0.88) and corrected item-total correlations ranged between 0.32 and 0.90. Total 6CIT-P and MMSE scores were strongly correlated. The proposed 6CIT-P threshold for cognitive impairment is ≥10 in the Portuguese population, which gives sensitivity of 82.78% and specificity of 84.84%. The accuracy of 6CIT-P, as measured by area under the ROC curve, was 0.91. The 6CIT-P has high reliability and validity and is accurate when used to screen for cognitive impairment.

  8. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Noboru Toda

    2016-08-01

    Full Text Available Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic nerves and nitric oxide (NO liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS/neuronal NOS (nNOS inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD. Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD.

  9. Impact of Adaptive Materials on Teachers and their Students with Visual Impairments in Secondary Science and Mathematics Classes

    Science.gov (United States)

    Rule, Audrey C.; Stefanich, Greg P.; Boody, Robert M.; Peiffer, Belinda

    2011-04-01

    Science, technology, engineering, and mathematics (STEM) fields, important in today's world, are underrepresented by students with disabilities. Students with visual impairments, although cognitively similar to sighted peers, face challenges as STEM subjects are often taught using visuals. They need alternative forms of access such as enlarged or audio-converted text, tactile graphics, and involvement in hands-on science. This project focused on increasing teacher awareness of and providing funds for the purchase of supplemental adaptive resources, supplies, and equipment. We examined attitude and instructional changes across the year of the programme in 15 science and mathematics teachers educating students with visual impairments. Positive changes were noted from pretest to posttest in student and teacher perspectives, and in teacher attitudes towards students with disabilities in STEM classes. Teachers also provided insights into their challenges and successes through a reflective narrative. Several adolescent students resisted accommodations to avoid appearing conspicuous to peers. Teachers implemented three strategies to address this: providing the adaptations to all students in the class; convincing the student of the need for adaptation; and involving the class in understanding and accepting the student's impairment. A variety of teacher-created adaptations for various science and mathematics labs are reported. Another finding was many adaptations provided for the student with visual impairment benefitted the entire class. This study supports the claim that given knowledgeable, supportive teachers, and with appropriate accommodations such as tactile or auditory materials, students with visual impairments can be as successful and engaged as other students in science and mathematics.

  10. Oxidative damage and photosynthetic impairment in tropical rice cultivars upon exposure to excess iron

    Directory of Open Access Journals (Sweden)

    Samuel de Souza Pinto

    2016-06-01

    Full Text Available ABSTRACT Iron plays a pivotal role in the redox reactions of photosynthesis and metabolic processes such as chlorophyll synthesis. Iron availability in waterlogged soils can reach toxic levels and promote oxidative stress. Fe toxicity is the most concerning of stresses for rice in many lowland environments around the world and may cause severe impairments in rice photosynthesis. This study aimed to investigate the extension of oxidative stress after excess Fe exposure and its effects on the photosynthesis of rice cultivars with differential sensitivity. Three Brazilian rice cultivars (EPAGRI 107, BRSMG SELETA and BR IRGA 409 were grown in Hoagland nutrient solution (pH 4.0 with two Fe-EDTA doses corresponding to excess Fe (7 mM and control (0.009 mM treatments. After just three days of excess Fe exposure, there was a significant increase in iron concentration in the shoots. The BR IRGA 409 cultivar exhibited higher Fe accumulation in its shoots, and the EPAGRI 107 cultivar recorded the lowest values, which were below the critical toxicity level, as a resistance strategy. Impairment in light energy partitioning and oxidative damage became evident before changes in stomatal resistance, chlorophyll content, maximal PSII quantum yield or visual symptoms for the most sensitive cultivar (BR IRGA 409. The photosynthesis limitations, in addition to the impairment of excess energy dissipation in rice from iron toxicity, are the results of oxidative damage.

  11. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Haffar, T. [Université de Montreal (Canada); Montreal Heart Institute (Canada); Bérubé-Simard, F. [Montreal Heart Institute (Canada); Bousette, N., E-mail: nicolas.bousette@umontreal.ca [Université de Montreal (Canada); Montreal Heart Institute (Canada)

    2015-12-04

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring {sup 14}C–CO{sub 2} production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO

  12. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    International Nuclear Information System (INIS)

    Haffar, T.; Bérubé-Simard, F.; Bousette, N.

    2015-01-01

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring 14 C–CO 2 production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO attenuated

  13. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    International Nuclear Information System (INIS)

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E.; Biswal, Shyam; Ito, Kazuhiro; Barnes, Peter J.

    2011-01-01

    Research highlights: → Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. → HDAC inhibition decreases Nrf2 protein stability. → HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. → HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H 2 O 2 ) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H 2 O 2 -induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  14. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, Nicolas [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom); Thimmulappa, Rajesh [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E. [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom); Biswal, Shyam [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Ito, Kazuhiro [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom); Barnes, Peter J., E-mail: p.j.barnes@imperial.ac.uk [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom)

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  15. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  16. Erythropoietin prevents cognitive impairment and oxidative parameters in Wistar rats subjected to pneumococcal meningitis.

    Science.gov (United States)

    Barichello, Tatiana; Simões, Lutiana R; Generoso, Jaqueline S; Sangiogo, Gustavo; Danielski, Lucineia Gainski; Florentino, Drielly; Dominguini, Diogo; Comim, Clarissa M; Petronilho, Fabricia; Quevedo, João

    2014-05-01

    Pneumococcal meningitis is characterized by a severe inflammatory reaction in the subarachnoid and ventricular space of the brain, disruption of the blood-brain barrier, hearing loss, and neurologic sequelae in as many as 27% of surviving patients. Several experimental studies have shown that erythropoietin (EPO) and its receptor are expressed in the central nervous system and have neuroprotective properties through the inhibition of apoptosis, as well as anti-inflammatory, antioxidant, angiogenic, and neurotrophic effects. In the current study, we demonstrated the effect of erythropoietin (EPO) on lipid peroxidation, protein carbonylation, superoxide dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), and behavioral parameters in rats with pneumococcal meningitis. EPO decreased lipid peroxidation and protein carbonylation, and it prevented protein degradation in the hippocampus and frontal cortex. MPO activity was decreased, and both SOD and CAT activity were increased in the first 6 hours after pneumococcal meningitis induction. Novel object recognition memory was impaired in the meningitis group; however, adjuvant treatment with EPO prevented memory impairment during both the short- and long-term retention tests. The meningitis group showed no difference in motor and exploratory activity between training and test sessions in the open-field task, which indicates that habituation memory was impaired; however, adjuvant treatment with EPO prevented habituation memory impairment. Although there are some limitations with respect to the animal model of pneumococcal meningitis, this study suggests that adjuvant treatment with EPO contributed to decreased oxidative stress and prevented cognitive impairment. Copyright © 2014 Mosby, Inc. All rights reserved.

  17. Phytoestrogen -zearalanol ameliorates memory impairment and neuronal DNA oxidation in ovariectomized mice

    Directory of Open Access Journals (Sweden)

    Yilong Dong

    2013-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effect of a novel phytoestrogen, α-Zearalanol, on Alzheimer's disease-related memory impairment and neuronal oxidation in ovariectomized mice. METHODS: Female C57/BL6 mice were ovariectomized or received sham operations and treatment with equivalent doses of 17β-estradiol or α-Zearalanol for 8 weeks. Their spatial learning and memory were analyzed using the Morris water maze test. The antioxidant enzyme activities and reactive oxygen species generation, neuronal DNA oxidation, and MutT homolog 1 expression in the hippocampus were measured. RESULTS: Treatment with 17β-estradiol or α-Zearalanol significantly improved spatial learning and memory performance in ovariectomized mice. In addition, 17β-estradiol and α-Zearalanol attenuated the decrease in antioxidant enzyme activities and increased reactive oxygen species production in ovariectomized mice. The findings indicated a significant elevation in hippocampi neuronal DNA oxidation and reduction in MutT homolog 1 expression in estrogen-deficient mice, but supplementation with 17β-estradiol or α-Zearalanol efficaciously ameliorated this situation. CONCLUSION: These results demonstrate that α-Zearalanol is potentially beneficial for improving memory impairments and neuronal oxidation damage in a manner similar to that of 17β-estradiol. Therefore, the compound may be a potential therapeutic agent that can ameliorate neurodegenerative disorders related to estrogen deficiency.

  18. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension

    OpenAIRE

    Afolayan, Adeleye J.; Eis, Annie; Alexander, Maxwell; Michalkiewicz, Teresa; Teng, Ru-Jeng; Lakshminrusimha, Satyan; Konduri, Girija G.

    2015-01-01

    Impaired vasodilation in persistent pulmonary hypertension of the newborn (PPHN) is characterized by mitochondrial dysfunction. We investigated the hypothesis that a decreased endothelial nitric oxide synthase level leads to impaired mitochondrial biogenesis and function in a lamb model of PPHN induced by prenatal ductus arteriosus constriction. We ventilated PPHN lambs with 100% O2 alone or with inhaled nitric oxide (iNO). We treated pulmonary artery endothelial cells (PAECs) from normal and...

  19. Impaired metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martin; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina

    2014-01-01

    lipids for energy production. Such changes reflect alterations in membrane composition and dysregulation of sphingolipids signaling during senescence. This study establishes a new concept connecting oxidative protein modifications with the altered cellular metabolism associated with the senescent...... is assured by resident adult stem cells known as satellite cells. During senescence their replication and differentiation is compromised contributing to sarcopenia. In this study we have addressed the impact of oxidatively modified proteins in the impaired metabolism of senescent human satellite cells....... By using a targeted proteomics analysis we have found that proteins involved in protein quality control and glycolytic enzymes are the main targets of oxidation (carbonylation) and modification with advanced glycation/lipid peroxidation end products during replicative senescence of satellite cells...

  20. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection

    NARCIS (Netherlands)

    Richner, Justin M.; Gmyrek, Grzegorz B.; Govero, Jennifer; Tu, Yizheng; van der Windt, Gerritje J. W.; Metcalf, Talibah U.; Haddad, Elias K.; Textor, Johannes; Miller, Mark J.; Diamond, Michael S.

    2015-01-01

    Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein,

  1. Boys with Oppositional Defiant Disorder/Conduct Disorder Show Impaired Adaptation During Stress: An Executive Functioning Study.

    Science.gov (United States)

    Schoorl, Jantiene; van Rijn, Sophie; de Wied, Minet; van Goozen, Stephanie; Swaab, Hanna

    2018-04-01

    Evidence for problems in executive functioning (EF) in children with oppositional defiant disorder/conduct disorder (ODD/CD) is mixed and the impact stress may have on EF is understudied. Working memory, sustained attention, inhibition and cognitive flexibility of boys with ODD/CD (n = 65) and non-clinical controls (n = 32) were examined under typical and stressful test conditions. Boys with ODD/CD showed impaired working memory under typical testing conditions, and impairments in working memory and sustained attention under stressful conditions. In contrast to controls, performance on sustained attention, cognitive flexibility and inhibition was less influenced by stress in boys with ODD/CD. These results suggest that boys with ODD/CD show impairments in adaptation to the environment whereas typically developing boys show adaptive changes in EF.

  2. Chronic oxidative-nitrosative stress impairs coronary vasodilation in metabolic syndrome model rats.

    Science.gov (United States)

    Kagota, Satomi; Maruyama, Kana; Tada, Yukari; Fukushima, Kazuhito; Umetani, Keiji; Wakuda, Hirokazu; Shinozuka, Kazumasa

    2013-07-01

    Metabolic syndrome (MetS) is a combination of clinical disorders that together increase the risk for cardiovascular disease and diabetes. SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP.ZF) rats with MetS show impaired nitric oxide-mediated relaxation in coronary and mesenteric arteries, and angiotensin II receptor type 1 blockers protect against dysfunction and oxidative-nitrosative stress independently of metabolic effects. We hypothesize that superoxide contributes to functional deterioration in SHRSP.ZF rats. To test our hypothesis, we studied effects of treatment with tempol, a membrane-permeable radical scavenger, on impaired vasodilation in SHRSP.ZF rats. Tempol did not alter body weight, high blood pressure, or metabolic abnormalities, but prevented impairment of acetylcholine-induced and nitroprusside-induced vasodilation in the coronary and mesenteric arteries. Furthermore, tempol reduced the levels of serum thiobarbituric acid reactive substance (TBARS) and 3-nitrotyrosine content in mesenteric arteries. Systemic administration of tempol elevated the expression of soluble guanylate cyclase (sGC) above basal levels in mesenteric arteries of SHRSP.ZF rats. However, acute treatment with tempol or ebselen, a peroxynitrite scavenger, did not ameliorate impaired relaxation of isolated mesenteric arteries. No nitration of tyrosine residues in sGC was observed; however, sGC mRNA expression levels in the arteries of SHRSP.ZF rats were lower than those in the arteries of Wistar-Kyoto rats. Levels of Thr(496)- and Ser(1177)-phosphorylated endothelial nitric oxide synthase (eNOS) were lower in arteries of SHRSP.ZF rats, and acetylcholine decreased Thr(496)-phosphorylated eNOS levels. These results indicated that prolonged superoxide production, leading to oxidative-nitrosative stress, was associated with impaired vasodilation in SHRSP.ZF rats with MetS. Down-regulated sGC expression may be linked to dysfunction, while reduced NO bioavailability/eNOS activity and modified s

  3. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    Science.gov (United States)

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Oxidative stress with tau hyperphosphorylation in memory impaired 1,2-diacetylbenzene-treated mice.

    Science.gov (United States)

    Kang, Sin-Woo; Kim, Sung Jin; Kim, Min-Sun

    2017-09-05

    Long-term exposure to organic solvent may be related to the incidence of neuronal diseases, such as, Alzheimer's disease, depression, multiple sclerosis, dementia, Parkinson's disease. Previously, the authors reported 1,2-diacetylbenzene (DAB; a neurotoxic metabolite of 1,2-diethylbenzene) causes central and peripheral neuropathies that lead to motor neuronal deficits. Furthermore, it is known DAB increases oxidative stress and protein adduct levels and impairs hippocampal neurogenesis in mice. The authors examined the relevance of oxidative stress and tau hyperphosphorylation in the hippocampus. Five-week-old male C57BL/6 mice were treated with 1 or 5mg/kg/day DAB for 2weeks. Neither overall body weight increases nor behavioral differences were observed after treatment, but kidney and liver weights decreased. Increased ROS production, activated glycogen synthase kinase-3β (GSK-3β) and tau hyperphosphorylation were observed in hippocampal homogenates. To assess memory impairment, the Morris Water Maze was used. Animals in the DAB-treated groups took longer to reach the platform. Movement patterns of DAB treated mice were more complicated and their swimming speeds were lower than those of controls. When SHSY5Y neuroblastoma cells were pretreated with NAC (an antioxidant) or a GSK-3β inhibitor, the expression of active GSK-3β and tau hyperphosphorylation were reduced. These results suggest ROS produced by DAB causes tau hyperphosphorylation via GSK-3β phosphorylation and it might be related to impaired memory deficit. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Does Vitamin C and E Supplementation Impair the Favorable Adaptations of Regular Exercise?

    Directory of Open Access Journals (Sweden)

    Michalis G. Nikolaidis

    2012-01-01

    Full Text Available The detrimental outcomes associated with unregulated and excessive production of free radicals remains a physiological concern that has implications to health, medicine and performance. Available evidence suggests that physiological adaptations to exercise training can enhance the body’s ability to quench free radicals and circumstantial evidence exists to suggest that key vitamins and nutrients may provide additional support to mitigate the untoward effects associated with increased free radical production. However, controversy has risen regarding the potential outcomes associated with vitamins C and E, two popular antioxidant nutrients. Recent evidence has been put forth suggesting that exogenous administration of these antioxidants may be harmful to performance making interpretations regarding the efficacy of antioxidants challenging. The available studies that employed both animal and human models provided conflicting outcomes regarding the efficacy of vitamin C and E supplementation, at least partly due to methodological differences in assessing oxidative stress and training adaptations. Based on the contradictory evidence regarding the effects of higher intakes of vitamin C and/or E on exercise performance and redox homeostasis, a permanent intake of non-physiological dosages of vitamin C and/or E cannot be recommended to healthy, exercising individuals.

  6. The Adaptive Response to Intestinal Oxidative Stress in Mammalian Hibernation

    National Research Council Canada - National Science Library

    Carey, Hannah V

    2006-01-01

    .... Specific Aim 2 examines consequences of intestinal oxidative stress during hibernation including seasonal changes in NF-kB activation in intestine, seasonal changes in the intestinal mucosal immune...

  7. Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients.

    Science.gov (United States)

    Di Domenico, Fabio; Pupo, Gilda; Giraldo, Esther; Badìa, Mari-Carmen; Monllor, Paloma; Lloret, Ana; Schininà, Maria Eugenia; Giorgi, Alessandra; Cini, Chiara; Tramutola, Antonella; Butterfield, D Allan; Viña, José; Perluigi, Marzia

    2016-02-01

    Several studies suggest that pathological changes in Alzheimer's disease (AD) brain begin around 10-20 years before the onset of cognitive impairment. Biomarkers that can support early diagnosis and predict development of dementia would, therefore, be crucial for patient care and evaluation of drug efficacy. Although cerebrospinal fluid (CSF) levels of Aβ42, tau, and p-tau are well-established diagnostic biomarkers of AD, there is an urgent need to identify additional molecular alterations of neuronal function that can be evaluated at the systemic level. This study was focused on the analysis of oxidative stress-related modifications of the CSF proteome, from subjects with AD and amnestic mild cognitive impairment (aMCI). A targeted proteomics approach has been employed to discover novel CSF biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers. CSF samples from aMCI, AD and control individuals (CTR) were collected and analyzed using a combined redox proteomics approach to identify the specific oxidatively modified proteins in AD and aMCI compared with controls. The majority of carbonylated proteins identified by redox proteomics are found early in the progression of AD, i.e., oxidatively modified CSF proteins were already present in aMCI compared with controls and remain oxidized in AD, thus suggesting that dysfunction of selected proteins initiate many years before severe dementia is diagnosed. The above findings highlight the presence of early oxidative damage in aMCI before clinical dementia of AD is manifested. The identification of early markers of AD that may be detected peripherally may open new prospective for biomarker studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Devices for visually impaired people: High technological devices with low user acceptance and no adaptability for children.

    Science.gov (United States)

    Gori, Monica; Cappagli, Giulia; Tonelli, Alessia; Baud-Bovy, Gabriel; Finocchietti, Sara

    2016-10-01

    Considering that cortical plasticity is maximal in the child, why are the majority of technological devices available for visually impaired users meant for adults and not for children? Moreover, despite high technological advancements in recent years, why is there still no full user acceptance of existing sensory substitution devices? The goal of this review is to create a link between neuroscientists and engineers by opening a discussion about the direction that the development of technological devices for visually impaired people is taking. Firstly, we review works on spatial and social skills in children with visual impairments, showing that lack of vision is associated with other sensory and motor delays. Secondly, we present some of the technological solutions developed to date for visually impaired people. Doing this, we highlight the core features of these systems and discuss their limits. We also discuss the possible reasons behind the low adaptability in children. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Manish Jaiswal

    2015-07-01

    Full Text Available Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.

  10. Intestinal pseudo-obstruction as a manifestation of impaired mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Gilbert, Jeffrey; Ibdah, Jamal A

    2005-01-01

    Intestinal pseudo-obstruction can be caused by mitochondrial disorders. Understanding the association between genetic alterations in mitochondrial function and development of intestinal pseudo-obstruction may provide insight into the pathogenesis of this disorder. Although the association between mitochondrial DNA defects and pseudo-obstruction is documented, little is known about the relationship between mitochondrial beta-oxidation disorders, which are caused by defects in nuclear genes, and development of intestinal pseudo-obstruction. Mitochondrial beta-oxidation defects have emerged recently as an important group of recessively inherited inborn errors of metabolism with multiple phenotypes. Here we report the case history of a 25-year-old patient with mitochondrial trifunctional protein (MTP) deficiency, the eldest known living patient with this disorder. MTP is an enzyme complex that consists of 4alpha and 4beta subunits and catalyzes the last three steps in the beta-oxidation cycle. The patient's MTP deficiency is secondary to a compound heterozygosity for two mutations in the MTP beta-subunit. Over the past 5 years, the patient had worsening symptoms consistent with intestinal pseudo-obstruction associated with progressive skeletal myopathy and polyneuropathy. We hypothesize that impairment of mitochondrial beta-oxidation causes intestinal pseudo-obstruction secondary to accumulation of intracellular long chain fatty acids, activation of extramitochondrial fatty acid oxidation pathways, and generation of excessive reactive oxygen species leading to visceral myopathy.

  11. Cardiac-Specific Deletion of Pyruvate Dehydrogenase Impairs Glucose Oxidation Rates and Induces Diastolic Dysfunction.

    Science.gov (United States)

    Gopal, Keshav; Almutairi, Malak; Al Batran, Rami; Eaton, Farah; Gandhi, Manoj; Ussher, John Reyes

    2018-01-01

    Obesity and type 2 diabetes (T2D) increase the risk for cardiomyopathy, which is the presence of ventricular dysfunction in the absence of underlying coronary artery disease and/or hypertension. As myocardial energy metabolism is altered during obesity/T2D (increased fatty acid oxidation and decreased glucose oxidation), we hypothesized that restricting myocardial glucose oxidation in lean mice devoid of the perturbed metabolic milieu observed in obesity/T2D would produce a cardiomyopathy phenotype, characterized via diastolic dysfunction. We tested our hypothesis via producing mice with a cardiac-specific gene knockout for pyruvate dehydrogenase (PDH, gene name Pdha1 ), the rate-limiting enzyme for glucose oxidation. Cardiac-specific Pdha1 deficient ( Pdha1 Cardiac-/- ) mice were generated via crossing a tamoxifen-inducible Cre expressing mouse under the control of the alpha-myosin heavy chain (αMHC-MerCreMer) promoter with a floxed Pdha1 mouse. Energy metabolism and cardiac function were assessed via isolated working heart perfusions and ultrasound echocardiography, respectively. Tamoxifen administration produced an ~85% reduction in PDH protein expression in Pdha1 Cardiac-/- mice versus their control littermates, which resulted in a marked reduction in myocardial glucose oxidation and a corresponding increase in palmitate oxidation. This myocardial metabolism profile did not impair systolic function in Pdha1 Cardiac-/- mice, which had comparable left ventricular ejection fractions and fractional shortenings as their αMHC-MerCreMer control littermates, but did produce diastolic dysfunction as seen via the reduced mitral E/A ratio. Therefore, it does appear that forced restriction of glucose oxidation in the hearts of Pdha1 Cardiac-/- mice is sufficient to produce a cardiomyopathy-like phenotype, independent of the perturbed metabolic milieu observed in obesity and/or T2D.

  12. [Workshops for cognitive stimulation adapted for elderly illiterate individuals with mild cognitive impairment].

    Science.gov (United States)

    dos Santos, Izabel Borges; Gomes, Lucy; de Matos, Neuza Moreira; do Vale, Maria Sueli; dos Santos, Fernando Borges; Cardenas, Carmen Jansen; Alves, Vicente Paulo

    2012-01-01

    The aim of this study was to assess the self-perception of memory in elderly illiterate with mild cognitive impairment, before and after workshops of cognitive stimulation adapted for illiterate individuals. The research was qualitative, held at the Health Unit of Taguatinga-DF, involving 63 elderly illiterate: 22 in the experimental group (EG), with 10 workshops; 21 in control group 1 (CG1), with 10 lectures; and 20 in the control group 2 (GC2), without intervention. Semi-structured interviews were carried on before and after the interventions, asking about memory status. The activities offered weekly to EG and CG1 have had two hours of duration. The mean age of the participants was 72.8 years, and 92% were female. In pre-intervention, 82% reported worsening memory during the last year. In post-intervention, CG1 and CG2 kept memory changes, while EG improved cognition. One concludes that the provided workshops and lectures improved functionality and socialization / integration.

  13. Neutrophilic iron oxidizers adapted to highly oxic environments

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    indicate that neutrophilic iron oxidizers in highly oxic environments like drinking water treatment systems can be abundant (5 E+04 to 7 E+05 cells per gram of wet sand material). It was furthermore observed that the diversity of the cultivated dominant iron oxidizers differs substantially from those......Rapid sand filtration is an economical way to treat anoxic groundwaters and involves aeration followed by particulate and soluble substrate removal via deep bed filtration. The anoxic source groundwater can contain several potential electron donors (CH4, Fe2+, Mn2+, NH4+ and assimilable organic...... carbon) while oxygen (O2) is the electron acceptor provided during the aeration process. Numerous previous studies have described neutrophilic iron oxidizers as a bacterial guild with a special niche preference, especially the transition zone between aerobic and anoxic regions, where abiotic chemical...

  14. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle

    DEFF Research Database (Denmark)

    Hütter, Eveline; Skovbro, Mette; Lener, Barbara

    2007-01-01

    According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain....... However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated...... mitochondria and that the level of ROS production is higher in young compared to aged muscle. Accordingly, we could not find any increase in oxidative modification of proteins in muscle from elderly donors. However, the accumulation of lipofuscin was identified as a robust marker of human muscle aging...

  15. Oxidative stress impairs insulin signal in skeletal muscle and causes insulin resistance in postinfarct heart failure.

    Science.gov (United States)

    Ohta, Yukihiro; Kinugawa, Shintaro; Matsushima, Shouji; Ono, Taisuke; Sobirin, Mochamad A; Inoue, Naoki; Yokota, Takashi; Hirabayashi, Kagami; Tsutsui, Hiroyuki

    2011-05-01

    Insulin resistance has been shown to occur as a consequence of heart failure. However, its exact mechanisms in this setting remain unknown. We have previously reported that oxidative stress is enhanced in the skeletal muscle from mice with heart failure after myocardial infarction (MI) (30). This study is aimed to investigate whether insulin resistance in postinfarct heart failure is due to the impairment of insulin signaling in the skeletal muscle caused by oxidative stress. Mice were divided into four groups: sham operated (sham); sham treated with apocynin, an inhibitor of NAD(P)H oxidase activation (10 mmol/l in drinking water); MI; and MI treated with apocynin. After 4 wk, intraperitoneal insulin tolerance tests were performed, and skeletal muscle samples were obtained for insulin signaling measurements. MI mice showed left ventricular dilation and dysfunction by echocardiography and increased left ventricular end-diastolic pressure and lung weight. The decrease in glucose level after insulin load significantly attenuated in MI compared with sham. Insulin-stimulated serine phosphorylation of Akt and glucose transporter-4 translocation were decreased in MI mice by 61 and 23%, respectively. Apocynin ameliorated the increase in oxidative stress and NAD(P)H oxidase activities measured by the lucigenin assay in the skeletal muscle after MI. It also improved insulin resistance and inhibited the decrease of Akt phosphorylation and glucose transporter-4 translocation. Insulin resistance was induced by the direct impairment of insulin signaling in the skeletal muscle from postinfarct heart failure, which was associated with the enhanced oxidative stress via NAD(P)H oxidase.

  16. Endogenous nitric oxide and myocardial adaptation to ischemia

    NARCIS (Netherlands)

    Heusch, G.; Post, H.; Michel, M. C.; Kelm, M.; Schulz, R.

    2000-01-01

    Ischemic myocardium does not inevitably undergo necrosis but rather can survive through downregulation of contractile function, ie, "hibernate." To study the role of endogenous NO in this adaptation, 41 enflurane-anesthetized swine were subjected to 90 minutes of moderate left anterior descending

  17. Thymoquinone reverses learning and memory impairments and brain tissue oxidative damage in hypothyroid juvenile rats

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    Full Text Available ABSTRACT In this study, the effect of thymoquinone (TQ on propylthiouracil (PTU-induced memory impairment was investigated in juvenile rats. The rats were grouped into control, Hypo, Hypo-TQ5 and Hypo-TQ10. Propylthiouracil increased latency time in the Morris water maze test and decreased delay in entering the dark compartment in the passive avoidance test. Both 5 mg/kg and 10 mg/kg doses of TQ decreased latency time in the Morris water maze test and increased delay in entering the dark compartment in a passive avoidance test. The PTU also increased malondialdehyde and nitric oxide metabolites in the brain while reduced the thiol content and superoxide dismutase and catalase activities and serum T4 level. Both doses of TQ decreased malondialdehyde and nitric oxide metabolites in the brain while enhanced the thiol content and superoxide dismutase and catalase activities and serum T4 level. The results of the present study showed that TQ protected against PTU-induced memory impairments in rats.

  18. Plant-adapted Escherichia coli show increased lettuce colonizing ability, resistance to oxidative stress and chemotactic response.

    Science.gov (United States)

    Dublan, Maria de los Angeles; Ortiz-Marquez, Juan Cesar Federico; Lett, Lina; Curatti, Leonardo

    2014-01-01

    Escherichia coli is a widespread gut commensal and often a versatile pathogen of public health concern. E. coli are also frequently found in different environments and/or alternative secondary hosts, such as plant tissues. The lifestyle of E. coli in plants is poorly understood and has potential implications for food safety. This work shows that a human commensal strain of E. coli K12 readily colonizes lettuce seedlings and produces large microcolony-like cell aggregates in leaves, especially in young leaves, in proximity to the vascular tissue. Our observations strongly suggest that those cell aggregates arise from multiplication of single bacterial cells that reach those spots. We showed that E. coli isolated from colonized leaves progressively colonize lettuce seedlings to higher titers, suggesting a fast adaptation process. E. coli cells isolated from leaves presented a dramatic rise in tolerance to oxidative stress and became more chemotactic responsive towards lettuce leaf extracts. Mutant strains impaired in their chemotactic response were less efficient lettuce colonizers than the chemotactic isogenic strain. However, acclimation to oxidative stress and/or minimal medium alone failed to prime E. coli cells for enhanced lettuce colonization efficiency. These findings help to understand the physiological adaptation during the alternative lifestyle of E. coli in/on plant tissues.

  19. Plant-adapted Escherichia coli show increased lettuce colonizing ability, resistance to oxidative stress and chemotactic response.

    Directory of Open Access Journals (Sweden)

    Maria de los Angeles Dublan

    Full Text Available Escherichia coli is a widespread gut commensal and often a versatile pathogen of public health concern. E. coli are also frequently found in different environments and/or alternative secondary hosts, such as plant tissues. The lifestyle of E. coli in plants is poorly understood and has potential implications for food safety.This work shows that a human commensal strain of E. coli K12 readily colonizes lettuce seedlings and produces large microcolony-like cell aggregates in leaves, especially in young leaves, in proximity to the vascular tissue. Our observations strongly suggest that those cell aggregates arise from multiplication of single bacterial cells that reach those spots. We showed that E. coli isolated from colonized leaves progressively colonize lettuce seedlings to higher titers, suggesting a fast adaptation process. E. coli cells isolated from leaves presented a dramatic rise in tolerance to oxidative stress and became more chemotactic responsive towards lettuce leaf extracts. Mutant strains impaired in their chemotactic response were less efficient lettuce colonizers than the chemotactic isogenic strain. However, acclimation to oxidative stress and/or minimal medium alone failed to prime E. coli cells for enhanced lettuce colonization efficiency.These findings help to understand the physiological adaptation during the alternative lifestyle of E. coli in/on plant tissues.

  20. Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice.

    Science.gov (United States)

    Budzynska, Barbara; Boguszewska-Czubara, Anna; Kruk-Slomka, Marta; Skalicka-Wozniak, Krystyna; Michalak, Agnieszka; Musik, Irena; Biala, Grazyna

    2015-03-01

    Imperatorin, a naturally occurring furanocoumarin, inactivates gamma-aminobutyric acid transaminase and inhibits acetylcholinesterase activity. The purpose of our experiment was to examine the influence of imperatorin on cognitive impairment and oxidative stress in the brain induced by scopolamine in male Swiss mice. In the present studies, we used scopolamine-invoke memory deficit measured in passive avoidance (PA) paradigm as an animal model of Alzheimer disease (AD). Our finding revealed that imperatorin administered acutely at the doses of 5 and 10 mg/kg prior to the injection of scopolamine (1 mg/kg) improved memory acquisition and consolidation impaired by scopolamine. Furthermore, repeatable (7 days, twice daily) administration of the highest dose of imperatorin (10 mg/kg) significantly attenuated the effects of scopolamine on memory acquisition, whereas the doses of 5 and 10 mg/kg of this furanocoumarin were effective when memory consolidation was measured. Imperatorin, administered with scopolamine, increased antioxidant enzymes activity and decreased concentration of malondiamide, an indicator of lipid peroxidation level. These results demonstrate that imperatorin may offer protection against scopolamine-induced memory impairments and possesses antioxidant properties, thus after further preclinical and clinical studies this compound may provide an interesting approach in pharmacotherapy, as well as prophylactics of AD.

  1. Neuroprotective effect of resveratrol against scopolamine-induced cognitive impairment and oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Pushpalatha Bunadri

    2013-01-01

    Full Text Available The objective of this study was to examine the neuroprotective effect of resveratrol on cognitive impairment induced by scopolamine, a muscarinic antagonist, in rats. Memory impairment was induced by administration of scopolamine (1 mg/kg intraperitoneally. Cognitive functions were assessed using radial arm maze, an active avoidance paradigm. Oxidative stress parameters like malondialdehyde, catalase and superoxide dismutase were assessed and acetylcholinesterase activity was estimated. More working and reference memory errors in the radial arm maze test and fewer avoidances in the active avoidance test were observed with scopolamine in the 1 mg/kg i.p.-treated animals. This phenomenon is a clear indication of memory impairment. Oral administration of resveratrol (20 mg/kg inhibited the occurrence of higher working, reference memory errors and prevented the incidence of less avoidances. Resveratrol appeared to have exerted memory-enhancing effects by inhibiting acetylcholinesterase activity and prevented the rise in malondialdehyde levels and loss of antioxidant enzymes catalase and superoxide dismutase, showing antioxidant potential. Based on the above results of behavioral and biochemical studies, it can be concluded that resveratrol protected against scopolamine-induced loss of cognition. The results also indicate that resveratrol is an antioxidant and an acetylcholinesterase inhibitor, and it is likely that resveratrol’s protective effect is related to its antioxidant and cholinesterase inhibitory effects.

  2. Nitric oxide plasma concentration associated with cognitive impairment in patients with recurrent depressive disorder.

    Science.gov (United States)

    Talarowska, Monika; Gałecki, Piotr; Maes, Michael; Orzechowska, Agata; Chamielec, Marcelina; Bartosz, Grzegorz; Kowalczyk, Edward

    2012-02-29

    Depressive disorders are multifactorial diseases, in which cognitive impairment is one of the characteristic feature. One of the molecules that regulate of various cognitive, emotional and behavioural processes is nitric oxide (NO), synthesized from l-arginine by a family of isoformic enzymes known as nitric oxide synthases (NOS). NO is a gaseous compounds that acts as a biological second messenger in a number of organ system. In addition, NO is a ubiquitous free radical (NO) that affects many normal physiologic functions but is also implicated in the etiology and progression of many diseases. The aim of the study was to determine the concentration of NO in patients with recurrent depressive disorder (rDD) and to define relationship between plasma NO levels and the cognitive performance. The study comprised 78 subjects: patients with rDD (n=45), healthy controls (CG, n=33). Cognitive function assessment was based on: TMT, The Stroop Test, VFT, AVLT. Statistically significant differences were found among patients with rDD in the intensity of depression symptoms, measured by the HDRS on therapy onset vs. the examination results after 8 weeks of treatment (pvisual-spatial and auditory-verbal working memory as well as short-term declarative memory. For rDD patients, elevated NO levels were associated with worse cognitive test performance. The higher was the concentration of plasma NO, the greater was the severity of depressive symptoms measured by HDRS (p=0.03). (1) Higher concentration of plasma NO in rDD patients is associated with the severity of depressive symptoms. (2) Elevated levels of plasma NO are related to impairment of visual-spatial and auditory-verbal working memory as well as to impairment of short-term declarative memory. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Relation of Oxidative Stress and Impaired Fibrinolysis with HDL Biogenesis in Indonesian Men with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Ida Paulina Sormin

    2010-04-01

    Full Text Available BACKGROUND: Biogenesis of HDL involves factors that regulate the synthesis, intravascular remodeling, and catabolism of HDL. Disturbance of these factors can lead to low concentration of HDL-C. Metabolic syndrome (MetS is characterized by low concentration of high-density lipoprotein cholesterol (HDL-C. In MetS occur several pathological conditions including oxidative stress and impaired fibrinolysis, which contribute to the risk of atherosclerosis process. The correlation between oxidative stress and impaired fibrinolysis with HDL biogenesis dysfunction and its correlation with low concentration of HDL-C has not been well understood and therefore needs to be further investigated. METHODS: This study was an observational study with crosssectional design, involving 163 adult men, aged 25-60 years with metabolic syndrome. Concentration of apoA-1, prebeta-1 HDL, CETP, F2-isoprostan, PAI-1, and HDL-C were measured. The apo A1/HDL ratio indicated HDL maturation, whereas the CETP/HDL-C and CETP/TG ratios indicated HDL catabolism. RESULTS: The study showed that there were a positive correlation between PAI-1 with apoA1/HDL-C ratios (r=0.226, p=0.005 and a negative correlation with the CETP/TG ratios (r=-0.215, p=0.007, whereas F2-isoprostan did not have correlation with HDL biogenesis factors. CONCLUSIONS: We concluded that there was correlation between impaired fibrinolysis with decreased HDL maturation and there was increased HDL catabolism leading to low HDL-C concentration in men with metabolic syndrome. KEYWORDS: F2-isoprostan, PAI-1, apoA-1, prebeta-1 HDL, CETP, metabolic syndrome.

  4. Increase in oxidative stress and mitochondrial impairment in hypothalamus of streptozotocin treated diabetic rat: Antioxidative effect of Withania somnifera.

    Science.gov (United States)

    Parihar, P; Shetty, R; Ghafourifar, P; Parihar, M S

    2016-01-22

    Hypothalamus, the primary brain region for glucose sensing, is severely affected by oxidative stress in diabetes mellitus. Oxidative stress in this region of brain may cause severe impairment in neuronal metabolic functions. Mitochondria are prominent targets of oxidative stress and the combination of increased oxidative stress and mitochondrial dysfunctions may further decline hypothalamic neuronal functions. In the present study we examined the oxidative damage response, antioxidative responses and mitochondrial membrane permeability transition in hypothalamus of streptozotocin-treated diabetic rats. Our results show that streptozotocin significantly increases hypothalamic lipid peroxidation, protein carbonyl content while glutathione peroxidase and reduced glutathione were declined. Mitochondrial impairment marked by an increase in mitochondrial membrane permeabilization was seen following streptozotocin treatment in the hypothalamus. The oral administration of Withania somnifera root extract stabilized mitochondrial functions and prevented oxidative damage in the hypothalamus of diabetic rat. These findings suggest an increase in the oxidative stress and decline in antioxidative responses in the hypothalamus of streptozotocin treated diabetic rats. Withania somnifera root extract was found useful in reducing oxidative stress and mitochondrial impairment in hypothalamus of diabetic rat.

  5. Impairment of PPARα and the Fatty Acid Oxidation Pathway Aggravates Renal Fibrosis during Aging.

    Science.gov (United States)

    Chung, Ki Wung; Lee, Eun Kyeong; Lee, Mi Kyung; Oh, Goo Taeg; Yu, Byung Pal; Chung, Hae Young

    2018-04-01

    Defects in the renal fatty acid oxidation (FAO) pathway have been implicated in the development of renal fibrosis. Although, compared with young kidneys, aged kidneys show significantly increased fibrosis with impaired kidney function, the mechanisms underlying the effects of aging on renal fibrosis have not been investigated. In this study, we investigated peroxisome proliferator-activated receptor α (PPAR α ) and the FAO pathway as regulators of age-associated renal fibrosis. The expression of PPAR α and the FAO pathway-associated proteins significantly decreased with the accumulation of lipids in the renal tubular epithelial region during aging in rats. In particular, decreased PPAR α protein expression associated with increased expression of PPAR α -targeting microRNAs. Among the microRNAs with increased expression during aging, miR-21 efficiently decreased PPAR α expression and impaired FAO when ectopically expressed in renal epithelial cells. In cells pretreated with oleic acid to induce lipid stress, miR-21 treatment further enhanced lipid accumulation. Furthermore, treatment with miR-21 significantly exacerbated the TGF- β -induced fibroblast phenotype of epithelial cells. We verified the physiologic importance of our findings in a calorie restriction model. Calorie restriction rescued the impaired FAO pathway during aging and slowed fibrosis development. Finally, compared with kidneys of aged littermate controls, kidneys of aged PPAR α -/- mice showed exaggerated lipid accumulation, with decreased activity of the FAO pathway and a severe fibrosis phenotype. Our results suggest that impaired renal PPAR α signaling during aging aggravates renal fibrosis development, and targeting PPAR α is useful for preventing age-associated CKD. Copyright © 2018 by the American Society of Nephrology.

  6. Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability.

    Science.gov (United States)

    Margaritelis, N V; Theodorou, A A; Paschalis, V; Veskoukis, A S; Dipla, K; Zafeiridis, A; Panayiotou, G; Vrabas, I S; Kyparos, A; Nikolaidis, M G

    2018-02-01

    The aim of this study was to reveal the role of reactive oxygen and nitrogen species (RONS) in exercise adaptations under physiological in vivo conditions and without the interference from other exogenous redox agents (e.g. a pro-oxidant or antioxidant). We invented a novel methodological set-up that exploited the large redox interindividual variability in exercise responses. More specifically, we used exercise-induced oxidative stress as the 'classifier' measure (i.e. low, moderate and high) and investigated the physiological and redox adaptations after a 6-week endurance training protocol. We demonstrated that the group with the low exercise-induced oxidative stress exhibited the lowest improvements in a battery of classic adaptations to endurance training (VO 2 max, time trial and Wingate test) as well as in a set of redox biomarkers (oxidative stress biomarkers and antioxidants), compared to the high and moderate oxidative stress groups. The findings of this study substantiate, for the first time in a human in vivo physiological context, and in the absence of any exogenous redox manipulation, the vital role of RONS produced during exercise in adaptations. The stratification approach, based on a redox phenotype, implemented in this study could be a useful experimental strategy to reveal the role of RONS and antioxidants in other biological manifestations as well. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  8. Experimentally induced hyperthyroidism influences oxidant and antioxidant status and impairs male gonadal functions in adult rats.

    Science.gov (United States)

    Asker, M E; Hassan, W A; El-Kashlan, A M

    2015-08-01

    The objective of the present experiment was to study the effect of hyperthyroidism on male gonadal functions and oxidant/antioxidant biomarkers in testis of adult rats. Induction of hyperthyroidism by L-thyroxine (L-T4, 300 μg kg(-1) body weight) treatment once daily for 3 or 8 weeks caused a decrease in body weight gain as well as in absolute genital sex organs weight. The epididymal sperm counts and their motility were significantly decreased in a time-dependent manner following L-T4 treatment. Significant decline in serum levels of luteinising hormone, follicle stimulating hormone and testosterone along with significant increase in serum estradiol level was observed in hyperthyroid rats compared with euthyroid ones. Significant increase in malondialdehyde and nitric oxide concentration associated with significant decrease in superoxide dismutase and catalase activity was also noticed following hyperthyroidism induction. Both reduced glutathione content and glutathione peroxidase activity were increased in hyperthyroid rats compared with control rats. Marked histopathological alterations were observed in testicular section of hyperthyroid rats. These results provide evidence that hypermetabolic state induced by excess level of thyroid hormones may be a causative factor for the impairment of testicular physiology as a consequence of oxidative stress. © 2014 Blackwell Verlag GmbH.

  9. Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning.

    Directory of Open Access Journals (Sweden)

    Sarah J Borengasser

    Full Text Available In utero exposure to maternal obesity increases the offspring's risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p<0.001 and increases in RER values (p<0.001, which were further exacerbated by high fat diet (45% kcals from fat consumption indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is known to be associated with fatty acid oxidation (FAO in the liver. Several markers of hepatic mitochondrial function were reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012 and mitochondrial protein content (p = 0.002, electron transport chain complexes (II, III, and ATPase, and fasting PGC-1α mRNA expression (p<0.001. Moreover, hepatic LCAD, a SIRT3 target, was not only reduced 2-fold (p<0.001 but was also hyperacetylated in offspring of obese dams (p<0.005 suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such as insulin resistance and NAFLD.

  10. Impairment of extramitochondrial oxidative phosphorylation in mouse rod outer segments by blue light irradiation.

    Science.gov (United States)

    Calzia, Daniela; Panfoli, Isabella; Heinig, Nora; Schumann, Ulrike; Ader, Marius; Traverso, Carlo Enrico; Funk, Richard H W; Roehlecke, Cora

    2016-06-01

    Exposure to short wavelength light causes increased reactive oxygen intermediates production in the outer retina, particularly in the rod Outer Segments (OS). Consistently, the OS were shown to conduct aerobic ATP production through the ectopic expression of the electron transfer chain complexes I-IV and F1Fo-ATP synthase. These facts prompted us to verify if the oxidative phosphorylation in the OS is implied in the oxidative damage of the blue-light (BL) treated OS, in an organotypic model of mouse retina. Whole mouse eyeball cultures were treated with short wavelength BL (peak at 405 nm, output power 1 mW/cm(2)) for 6 h. Immunogold transmission electron microscopy confirmed the expression of Complex I and F1Fo-ATP synthase in the OS. In situ histochemical assays on unfixed sections showed impairment of respiratory Complexes I and II after BL exposure, both in the OS and IS, utilized as a control. Basal O2 consumption and ATP synthesis were impaired in the OS purified from blue-light irradiated eyeball cultures. Electron transfer capacity between Complex I and II as well as activity of Complexes I and II was decreased in blue-light irradiated purified OS. The severe malfunctioning of the OS aerobic respiratory capacity after 6 h BL treatment may be the consequence of a self-induced damage. BL exposure would cause an initial over-functioning of both the phototransduction and respiratory chain, with reactive oxygen species production. In a self-renewal vicious cycle, membrane and protein oxidative damage, proton leakage and uncoupling, would impair redox chains, perpetuating the damage and causing hypo-metabolism with eventual apoptosis of the rod. Data may shed new light on the rod-driven retinopathies such as Age Related Macular Degeneration, of which blue-light irradiated retina represents a model. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment in the kindling model of epilepsy.

    Science.gov (United States)

    Hassanzadeh, Parichehr; Arbabi, Elham; Atyabi, Fatemeh; Dinarvand, Rassoul

    2017-06-15

    Some conventional antiepileptic drugs induce oxidative stress and cognitive impairment which may limit their clinical applications. Ferulic acid is a phenolic phytochemical with antioxidant and neuroprotective properties that prompted us to evaluate its therapeutic potential in epilepsy which is usually associated with oxidative stress and cognitive decline. Male Wistar rats received 30mg/kg of pentylenetetrazole (PTZ) intraperitoneally (i.p.) once every alternate day until the development of kindling. The locomotor activity, elevated plus maze, and passive avoidance tests were performed. Oxidative stress was evaluated by the determination of brain malondialdehyde and reduced glutathione. The effects of pre-treatment with ferulic acid (25, 50, 75, and 100mg/kg, i.p.) against PTZ-kindled seizures, cognitive impairment, and oxidative stress were investigated. Kindling was developed 34.18±1.54days after PTZ treatment which was associated with generalized tonic-clonic seizures (GTCS), myoclonic jerks, cognitive deficit, and oxidative stress. Ferulic acid at doses of 75 and 100mg/kg significantly reduced the seizure score, number of myoclonic jerks, cognitive decline and oxidative stress. Spontaneous locomotor activity did not significantly differ between the groups. Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment induced by PTZ kindling. Therefore, this phenolic phytochemical appears as a promising adjuvant for antiepileptic drugs. Meanwhile, further experimental and clinical studies are required to provide insights into the cellular/molecular mechanism(s) underlying the action of ferulic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Impaired oxidative capacity due to decreased CPT1b levels as a contributing factor to fat accumulation in obesity

    DEFF Research Database (Denmark)

    Ratner, Cecilia; Madsen, Andreas Nygaard; Kristensen, Line Vildbrad

    2015-01-01

    degree of fat accumulation compared to OR rats. Indirect calorimetry showed that the OP rats had higher respiratory exchange ratio (RER) compared to OR rats indicating an impaired ability to oxidize fat. The OP rats had lower expression of carnitine palmitoyltransferase 1b in intra-abdominal fat...... to ghrelin's orexigenic effects as well as ghrelin-induced attenuation of activity and energy expenditure. Thus, increased fat accumulation characterizing obesity may be caused by impaired oxidative capacity due to decreased carnitine palmitoyltransferase 1b levels in the white adipose tissue, while ghrelin...

  13. Reducing barriers to healthy weight: Planned and responsive adaptations to a lifestyle intervention to serve people with impaired mobility.

    Science.gov (United States)

    Betts, Andrea C; Froehlich-Grobe, Katherine; Driver, Simon; Carlton, Danielle; Kramer, M Kaye

    2018-04-01

    People with impaired mobility (IM) disabilities have a higher prevalence of obesity and obesity-related chronic conditions; however, lifestyle interventions that address the unique needs of people with IM are lacking. This paper describes an adapted evidence-based lifestyle intervention developed through community-based participatory research (CBPR). Individuals with IM, health professionals, disability group representatives, and researchers formed an advisory board to guide the process of thoroughly adapting the Diabetes Prevention Program Group Lifestyle Balance (DPP GLB) intervention after a successful pilot in people with IM. The process involved two phases: 1) planned adaptations to DPP GLB content and delivery, and 2) responsive adaptations to address issues that emerged during intervention delivery. Planned adaptations included combining in-person sessions with conference calls, providing arm-based activity trackers, and adding content on adaptive cooking, adaptive physical activity, injury prevention, unique health considerations, self-advocacy, and caregiver support. During the intervention, participants encountered numerous barriers, including health and mental health issues, transportation, caregivers, employment, adjusting to disability, and functional limitations. We addressed barriers with responsive adaptations, such as supporting electronic self-monitoring, offering make up sessions, and adding content and activities on goal setting, problem solving, planning, peer support, reflection, and motivation. Given the lack of evidence on lifestyle change in people with disabilities, it is critical to involve the community in intervention planning and respond to real-time barriers as participants engage in change. A randomized controlled trial (RCT) is underway to examine the usability, feasibility, and preliminary effectiveness of the adapted intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Factors influencing radiation-induced impairment of rat liver mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Alexander, K.C.; Aiyar, A.S.; Sreenivasan, A.

    1975-01-01

    The influence of some experimental conditions on the radiation-induced impairment of oxidative phosphorylation in rat liver mitochondria has been studied. Shielding of the liver during whole body irradiation of the animal does not significantly alter the decreased efficiency of phosphorylation. There exists a great disparity in the in vivo and in vitro radiation doses required for the manifestation of damage to liver mitochondria. While these observations point to the abscopal nature of the radiation effects, direct involvement of the adrenals has been ruled out by studies with adrenalectomised rats. Prior administration of the well known radio-protective agents, serotonin or 2-aminoethyl isothiouronium bromide hydrobromide, is effective in preventing the derangement of mitochondrial function following radioexposure. The hypocholesterolemic drug ethyl-α-p-chlorophenoxy isobutyrate, which is known to influence hepatic mitochondrial turnover, does not afford any significant protection against either mitochondrial damage or the mortality of the animals due to whole body irradiation. (author)

  15. Scopolamine-Induced Memory Impairment Is Alleviated by Xanthotoxin: Role of Acetylcholinesterase and Oxidative Stress Processes.

    Science.gov (United States)

    Skalicka-Wozniak, Krystyna; Budzynska, Barbara; Biala, Grazyna; Boguszewska-Czubara, Anna

    2018-02-09

    Xanthotoxin, popularly occurring furanocoumarin, which can be found in plants from the Apiaceae family, was isolated from fruits of Pastinaca sativa L. by mean of high-performance countercurrent chromatography, and its effects on the scopolamine-induced cognitive deficits in male Swiss mice using the passive avoidance (PA) test were evaluated. To measure the acquisition of memory processes, xanthotoxin (1, 2.5, 5 mg/kg) was administered 30 min before PA test and scopolamine was administered 10 min after xanthotoxin. To measure the consolidation of memory processes, xanthotoxin (1 and 2.5 mg/kg) was injected immediately after removing the mouse from the apparatus and 10 min after scopolamine was administered. In subchronic experiments, mice were injected with xanthotoxin (1 mg/kg) or saline, 6 days, twice daily. At 24 h after the last injection of the drugs, the hippocampus and the prefrontal cortex were removed for biochemical assays. The results demonstrated that either single (2.5 and 5 mg/kg) or repeatable (1 mg/kg) administration of xanthotoxin significantly increased index of latency (IL) in both acquisition and consolidation of memory processes, showing some procognitive effects. The behavioral tests also showed that an acute (2.5 mg/kg) and subchronic (1 mg/kg) administration of xanthotoxin prevent memory impairment induced by injection of scopolamine (1 mg/kg). Observed effects could be due to the inhibition of acetylcholinesterase activities and amelioration of oxidative stress processes in the hippocampus and the prefrontal cortex. It was suggested that xanthotoxin could show neuroprotective effect in scopolamine-induced cognitive impairment connected to cholinergic neurotransmission and oxidative stress in the brain structures.

  16. Impaired endothelial nitric oxide bioavailability: a common link between aging, hypertension, and atherogenesis?

    LENUS (Irish Health Repository)

    Walsh, Thomas

    2012-01-31

    Endothelial-derived nitric oxide (NO) is responsible for maintaining continuous vasodilator tone and for regulating local perfusion and systemic blood pressure. It also has significant antiproliferative effects on vascular smooth muscle and platelet anti-aggregatory effects. Impaired endothelial-dependent (NO mediated) vasorelaxation is observed in most animal and human models of healthy aging. It also occurs in age-associated conditions such as atherosclerosis and hypertension. Such "endotheliopathy" increases vascular risk in older adults. Studies have indicated that pharmacotherapeutic intervention with angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methyl-glutaryl coenzyme-A reductase inhibitors may improve NO-mediated vasomotor function. This review, evaluates the association between impaired endothelial NO bioavailability, accelerated vascular aging, and the age-associated conditions hypertension and atherogenesis. This is important, because pharmacotherapy aimed at improving endothelial NO bioavailability could modify age-related vascular disease and transform age into a potentially modifiable vascular risk factor, at least in a subpopulation of older adults.

  17. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: role of oxidative stress

    Science.gov (United States)

    Greaney, Jody L; DuPont, Jennifer J; Lennon-Edwards, Shannon L; Sanders, Paul W; Edwards, David G; Farquhar, William B

    2012-01-01

    Animal studies have reported dietary salt-induced reductions in vascular function independent of increases in blood pressure (BP). The purpose of this study was to determine if short-term dietary sodium loading impairs cutaneous microvascular function in normotensive adults with salt resistance. Following a control run-in diet, 12 normotensive adults (31 ± 2 years) were randomized to a 7 day low-sodium (LS; 20 mmol day−1) and 7 day high-sodium (HS; 350 mmol day−1) diet (controlled feeding study). Salt resistance, defined as a ≤5 mmHg change in 24 h mean BP determined while on the LS and HS diets, was confirmed in all subjects undergoing study (LS: 84 ± 1 mmHg vs. HS: 85 ± 2 mmHg; P > 0.05). On the last day of each diet, subjects were instrumented with two microdialysis fibres for the local delivery of Ringer solution and 20 mm ascorbic acid (AA). Laser Doppler flowmetry was used to measure red blood cell flux during local heating-induced vasodilatation (42°C). After the established plateau, 10 mm l-NAME was perfused to quantify NO-dependent vasodilatation. All data were expressed as a percentage of maximal cutaneous vascular conductance (CVC) at each site (28 mm sodium nitroprusside; 43°C). Sodium excretion increased during the HS diet (P sodium loading impairs cutaneous microvascular function independent of BP in normotensive adults and suggest a role for oxidative stress. PMID:22907057

  18. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  19. Ethylene oxide sterilization: how hospitals can adapt to the changes.

    Science.gov (United States)

    1994-12-01

    Ethylene oxide (EtO) gas sterilizers have been used by hospitals for over 40 years to sterilize surgical equipment and supplies that are heat sensitive or that cannot tolerate excessive moisture. However, in recent decades, EtO has been recognized as a potential mutagenic, reproductive, neurologic, and fire and explosion hazard to workers, and one agency has reportedly voted to classify EtO as carcinogenic to humans. Strict regulations concerning EtO exposure have been imposed by the Occupational Safety and Health Administration (OSHA), and the use of EtO, along with other toxic pollutants, is also being monitored by the Environmental Protection Agency (EPA) under the Clean Air Act. In addition, the use of chlorofluorocarbons (CFCs) as EtO diluents has focused attention on the EtO-CFC mixtures used in many sterilizers because CFCs have been linked to destruction of the ozone layer. Concerns about restrictive regulations related to these issues have prompted many hospitals to examine their use of EtO sterilization and propagated the misinformation that EtO sterilization is being phased out. In this article, we address some commonly asked questions regarding the use and regulation of EtO mixtures, as well as alternative sterilization agents and methods; provide two case studies illustrating how hospitals can evaluate various sterilization options; and summarize our conclusions and recommendations for hospitals facing decisions about sterilization techniques. For related topics, also see our Evaluation Update on endoscope reprocessors and our Hazard Report on improperly connected EtO-CFC cylinders to EtO sterilizers in this issue.

  20. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress.

    Science.gov (United States)

    Alzoubi, Karem H; Khabour, Omar F; Rashid, Baraa Abu; Damaj, Imad M; Salah, Heba A

    2012-01-01

    Sleep deprivation induces oxidative stress and impairs learning and memory processes. Vitamin E, on the other hand, is a strong antioxidant that has neuroprotective effect on the brain. In this study, we examined the potential protective effect of chronic administration of vitamin E on chronic sleep deprivation-induced cognitive impairment. In addition, possible molecular targets for vitamin E effects on chronic sleep deprivation-induced cognitive impairment were determined. Sleep deprivation was induced in rats using modified multiple platform model. Vitamin E (100mg/kg) was administered to animals by oral gavage. Behavioral study was conducted to test the spatial learning and memory using the radial arm water maze (RAWM). In addition, the hippocampus was dissected out and antioxidant markers including glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) were assessed. The results of this project revealed that chronic sleep deprivation impaired both (short- and long-term) memories (Psleep deprivation-induced reduction in the hippocampus GSH/GSSG ratio, and activity of catalase, SOD, and GPx. In conclusion, sleep deprivation induces memory impairment, and treatment with vitamin E prevented this impairment probably through its antioxidant action in the hippocampus. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans.

    Science.gov (United States)

    Bito, Tomohiro; Misaki, Taihei; Yabuta, Yukinori; Ishikawa, Takahiro; Kawano, Tsuyoshi; Watanabe, Fumio

    2017-04-01

    Oxidative stress is implicated in various human diseases and conditions, such as a neurodegeneration, which is the major symptom of vitamin B 12 deficiency, although the underlying disease mechanisms associated with vitamin B 12 deficiency are poorly understood. Vitamin B 12 deficiency was found to significantly increase cellular H 2 O 2 and NO content in Caenorhabditis elegans and significantly decrease low molecular antioxidant [reduced glutathione (GSH) and L-ascorbic acid] levels and antioxidant enzyme (superoxide dismutase and catalase) activities, indicating that vitamin B 12 deficiency induces severe oxidative stress leading to oxidative damage of various cellular components in worms. An NaCl chemotaxis associative learning assay indicated that vitamin B 12 deficiency did not affect learning ability but impaired memory retention ability, which decreased to approximately 58% of the control value. When worms were treated with 1mmol/L GSH, L-ascorbic acid, or vitamin E for three generations during vitamin B 12 deficiency, cellular malondialdehyde content as an index of oxidative stress decreased to the control level, but the impairment of memory retention ability was not completely reversed (up to approximately 50%). These results suggest that memory retention impairment formed during vitamin B 12 deficiency is partially attributable to oxidative stress. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. [Role of restricted nitric oxide overproduction in the cardioprotective effect of adaptation to intermittent hypoxia].

    Science.gov (United States)

    goriacheva, A V; Belkina, L M; Terekhina, O L; Dawney, H F; Mallet, R T; Smirin, B V; Smirnova, E A; Mashina, S Iu; Manukhina, E B

    2012-01-01

    Adaptation to intermittent normobaric hypoxia is cardioprotective and can stimulate nitric oxide (NO) synthesis. However the role of nitric oxide (NO) in prevention of ischemia-reperfusion (IR) injury of myocardium is controversial. This study was focused on evaluating the effect of adaptation to hypoxia and IR on NO production and development of nitrative stress in the myocardium. Adaptation to hypoxia tended to increase NO production, which was determined by the total level of plasma nitrite and nitrate, and prevented IR-induced NO overproduction. The IR-induced NO overproduction was associated with significant 3-nitrotyrosine (3-NT) accumulation in the left ventricle but not in septum or aorta. In hypoxia-adapted rats, 3-NT after IR was similar to that of control rats without IR. IHC induced marked accumulation of HIF-1alpha in the left ventricle. We suggest that HIF-1alpha contributes to NO-synthase expression during adaptation to hypoxia and thereby facilitates the increase in NO production. NO, in turn, may subsequently prevent NO overproduction during IR by a negative feedback mechanism.

  3. Investigating low adaptive behaviour and presence of the triad of impairments characteristic of autistic spectrum disorder as indicators of risk for challenging behaviour among adults with intellectual disabilities.

    Science.gov (United States)

    Felce, D; Kerr, M

    2013-02-01

    Identification of possible personal indicators of risk for challenging behaviour has generally been through association in cross-sectional prevalence studies, but few analyses have controlled for intercorrelation between potential risk factors. The aim was to investigate the extent to which gender, age, presence of the triad of impairments characteristic of autism and level of adaptive behaviour were independently associated with level of challenging behaviour among adults with intellectual disabilities. Five datasets were merged to produce information on challenging behaviour, adaptive behaviour, presence of the triad of impairments, gender and age of 818 adults. Variables were entered into a multivariate linear regression, which also tested the interaction between the presence of the triad of impairments and level of adaptive behaviour. Presence of the triad of impairments, level of adaptive behaviour, their interaction, and age, but not gender, significantly and independently contributed to the prediction of challenging behaviour. Presence/absence of the triad of impairments moderated the effect of adaptive behaviour on challenging behaviour. The inverse relationship found in the absence of the triad of impairments was virtually removed when present. This study has shown that it is necessary to control for intercorrelation between potential risk factors for challenging behaviour and to explore how interaction between them might moderate associations. © 2012 The Author. Journal of Intellectual Disability Research © 2012 Blackwell Publishing Ltd.

  4. Adaptive developmental assessment of young children with cognitive and/or functional impairments

    NARCIS (Netherlands)

    Visser, L.; Ruiter, S.A.J.; Timmerman, M.E.; Van der Meulen, B.F.; Ruijssenaars, A.J.J.M.

    2011-01-01

    The instrument being developed aims to give additional and more refined information about the developmental course of a child with a cognitive and / or functional impairment than is possible with existing tests. It will help tune interventions to the developmental course and potentials of a child.

  5. Involvement of nitric oxide in granisetron improving effect on scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Javadi-Paydar, Mehrak; Zakeri, Marjan; Norouzi, Abbas; Rastegar, Hossein; Mirazi, Naser; Dehpour, Ahmad Reza

    2012-01-06

    Granisetron, a serotonin 5-HT(3) receptor antagonist, widely used as an antiemetic drug following chemotherapy, has been found to improve learning and memory. In this study, effects of granisetron on spatial recognition memory and fear memory and the involvement of nitric oxide (NO) have been determined in a Y-maze and passive avoidance test. Granisetron (3, 10mg/kg, intraperitoneally) was administered to scopolamine-induced memory-impaired mice prior to acquisition, consolidation and retrieval phases, either in the presence or in the absence of a non-specific NO synthase inhibitor, l-NAME (3, 10mg/kg, intraperitoneally); a specific inducible NO synthase (iNOS) inhibitor, aminoguanidine (100mg/kg); and a NO precursor, l-arginine (750 mg/kg). It is demonstrated that granisetron improved memory acquisition in a dose-dependent manner, but it was ineffective on consolidation and retrieval phases of memory. The beneficial effect of granisetron (10mg/kg) on memory acquisition was significantly reversed by l-NAME (10mg/kg) and aminoguanidine (100mg/kg); however, l-arginine (750 mg/kg) did not potentiate the effect of sub-effective dose of granisetron (3mg/kg) in memory acquisition phase. It is concluded that nitric oxide is probably involved in improvement of memory acquisition by granisetron in both spatial recognition memory and fear memory. This article is part of a Special Issue entitled The Cognitive Neuroscience. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes.

    Science.gov (United States)

    Kwak, Hyo-Bum; Thalacker-Mercer, Anna; Anderson, Ethan J; Lin, Chien-Te; Kane, Daniel A; Lee, Nam-Sihk; Cortright, Ronald N; Bamman, Marcas M; Neufer, P Darrell

    2012-01-01

    Statins, the widely prescribed cholesterol-lowering drugs for the treatment of cardiovascular disease, cause adverse skeletal muscle side effects ranging from fatigue to fatal rhabdomyolysis. The purpose of this study was to determine the effects of simvastatin on mitochondrial respiration, oxidative stress, and cell death in differentiated primary human skeletal muscle cells (i.e., myotubes). Simvastatin induced a dose-dependent decrease in viability of proliferating and differentiating primary human muscle precursor cells, and a similar dose-dependent effect was noted in differentiated myoblasts and myotubes. Additionally, there were decreases in myotube number and size following 48 h of simvastatin treatment (5 μM). In permeabilized myotubes, maximal ADP-stimulated oxygen consumption, supported by palmitoylcarnitine+malate (PCM, complex I and II substrates) and glutamate+malate (GM, complex I substrates), was 32-37% lower (Prespiration at complex I. Mitochondrial superoxide and hydrogen peroxide generation were significantly greater in the simvastatin-treated human skeletal myotube cultures compared to control. In addition, simvastatin markedly increased protein levels of Bax (proapoptotic, +53%) and Bcl-2 (antiapoptotic, +100%, P<0.05), mitochondrial PTP opening (+44%, P<0.05), and TUNEL-positive nuclei in human skeletal myotubes, demonstrating up-regulation of mitochondrial-mediated myonuclear apoptotic mechanisms. These data demonstrate that simvastatin induces myotube atrophy and cell loss associated with impaired ADP-stimulated maximal mitochondrial respiratory capacity, mitochondrial oxidative stress, and apoptosis in primary human skeletal myotubes, suggesting that mitochondrial dysfunction may underlie human statin-induced myopathy. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Quercetin ameliorates hypobaric hypoxia-induced memory impairment through mitochondrial and neuron function adaptation via the PGC-1α pathway.

    Science.gov (United States)

    Liu, Peng; Zou, Dan; Yi, Long; Chen, Mingliang; Gao, Yanxiang; Zhou, Rui; Zhang, Qianyong; Zhou, Yong; Zhu, Jundong; Chen, Ka; Mi, Mantian

    2015-01-01

    Acute hypobaric hypoxia (HH) causes persistent cognitive impairment, affecting memory function specifically. Mitochondrial dysfunction and synaptic morphological change were the prominent pathological features of HH exposure on brain. Quercetin, a flavonoid found in fruits, vegetables, leaves and grains, is reported to prevent ischemia induced by neuronal injury. This study investigated the efficacy of quercetin to ameliorate HH-induced memory deficit. Rats were exposed to HH equivalent to 5000 m for 7 days in a decompression chamber and received quercetin daily (50, 75 or 100 mg/kg·bw) via gavage during the period of exposure. Cognitive performance was assessed by the Morris water maze test. In vitro, the effect of quercetin was tested in hippocampus tissue. Quercetin, especially at 100 mg/kg·bw, significantly reduced HH-induced memory decline. Meanwhile, HH-induced hippocampus mitochondrial and synaptic lesions were ameliorated by quercetin. Furthermore, quercetin regulated the expression of sirtuin 1(Sirt1), PGC-1α, and the proteins related with mitochondrial biogenesis and dynamics. Moreover, quercetin increased expression of fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF), showing the PGC-1α/FNDC5/BNDF pathways might be involved in neuronal adaptation. The results suggest quercetin has prophylactic potential for amelioration of HH-induced memory impairment, which is associated with the mitochondrial and neuronal adaptation in hippocampus.

  8. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress.

    Science.gov (United States)

    Glorieux, Christophe; Sandoval, Juan Marcelo; Fattaccioli, Antoine; Dejeans, Nicolas; Garbe, James C; Dieu, Marc; Verrax, Julien; Renard, Patricia; Huang, Peng; Calderon, Pedro Buc

    2016-10-01

    Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H 2 O 2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H 2 O 2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Systemic Oxidative Stress and Conversion to Dementia of Elderly Patients with Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Carlo Cervellati

    2014-01-01

    Full Text Available Mild cognitive impairment (MCI is regarded as a prodromal phase of late onset Alzheimer’s disease (LOAD. It has been proposed that oxidative stress (OxS might be implicated in the pathogenesis of LOAD. The aim of this study was to investigate whether a redox imbalance measured as serum level of hydroperoxides (i.e., by-products of lipid peroxidation and/or serum antioxidant capacity might be predictive of the clinical progression of MCI to LOAD. The levels of these two markers were measured in 111 patients with MCI (follow-up: 2.0 ± 0.6 years, 105 patients with LOAD, and 118 nondemented healthy controls. Multivariate analysis adjusted for potential confounding factors, including age, gender, smoking, and comorbidities, showed a significant increase (P<0.05 in baseline levels of OxS in MCI and LOAD as compared to cognitive healthy controls. No differences in either of OxS markers were found by comparing MCI patients who converted (n = 29 or not converted (n = 82 to LOAD. Overall, these results suggest that systemic OxS might be a precocious feature of MCI and LOAD. However, the role of OxS as an early prognostic marker of progression to LOAD needs further investigations.

  10. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    Science.gov (United States)

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems. © 2015 SETAC.

  11. Impaired Healing of a Cutaneous Wound in an Inducible Nitric Oxide Synthase-Knockout Mouse

    Directory of Open Access Journals (Sweden)

    Takashi Kitano

    2017-01-01

    Full Text Available Background. We investigated the effects of loss of inducible nitric oxide synthase (iNOS on the healing process of cutaneous excisional injury by using iNOS-null (KO mice. Population of granulation tissue-related cell types, that is, myofibroblasts and macrophages, growth factor expression, and reepithelialization were evaluated. Methods. KO and wild type (WT mice of C57BL/6 background were used. Under general anesthesia two round full-thickness excision wounds of 5.0 mm in diameter were produced in dorsal skin. After specific intervals of healing, macroscopic observation, histology, immunohistochemistry, and real-time reverse transcription-polymerase chain reaction (RT-PCR were employed to evaluate the healing process. Results. The loss of iNOS retards granulation tissue formation and reepithelialization in excision wound model in mice. Detailed analyses showed that myofibroblast appearance, macrophage infiltration, and mRNA expression of transforming growth factor b and of collagen 1α2 were all suppressed by lacking iNOS. Conclusions. iNOS is required in the process of cutaneous wound healing. Lacking iNOS retards macrophage invasion and its expression of fibrogenic components that might further impair fibrogenic behaviors of fibroblasts.

  12. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII.

    Science.gov (United States)

    Zhang, Lei; Zhang, Hu-Qin; Liang, Xiang-Yan; Zhang, Hai-Feng; Zhang, Ting; Liu, Fang-E

    2013-11-01

    Sleep deprivation (SD) has been shown to induce oxidative stress which causes cognitive impairment. Melatonin, an endogenous potent antioxidant, protects neurons from oxidative stress in many disease models. The present study investigated the effect of melatonin against SD-induced cognitive impairment and attempted to define the possible mechanisms involved. SD was induced in rats using modified multiple platform model. Melatonin (15 mg/kg) was administered to the rats via intraperitoneal injection. The open field test and Morris water maze were used to evaluate cognitive ability. The cerebral cortex (CC) and hippocampus were dissected and homogenized. Nitric oxide (NO) and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) enzyme activity of hippocampal and cortical tissues (10% wet weight per volume) were performed to determine the level of oxidative stress. The expression of brain-derived neurotrophic factor (BDNF) and calcium-calmodulin dependent kinase II (CaMKII) proteins in CC and hippocampus was assayed by means of immunohistochemistry. The results revealed that SD impairs cognitive ability, while melatonin treatment prevented these changes. In addition, melatonin reversed SD-induced changes in NO, MDA and SOD in both of the CC and hippocampus. The results of immunoreactivity showed that SD decreased gray values of BDNF and CaMKII in CC and hippocamal CA1, CA3 and dentate gyrus regions, whereas melatonin improved the gray values. In conclusion, our results suggest that melatonin prevents cognitive impairment induced by SD. The possible mechanism may be attributed to its ability to reduce oxidative stress and increase the levels of CaMKII and BDNF in CC and hippocampus. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Syncytiotrophoblast extracellular vesicles impair rat uterine vascular function via the lectin-like oxidized LDL receptor-1.

    Directory of Open Access Journals (Sweden)

    Floor Spaans

    Full Text Available Syncytiotrophoblast extracellular vesicles (STBEVs are placenta derived particles that are released into the maternal circulation during pregnancy. Abnormal levels of STBEVs have been proposed to affect maternal vascular function. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1 is a multi-ligand scavenger receptor. Increased LOX-1 expression and activation has been proposed to contribute to endothelial dysfunction. As LOX-1 has various ligands, we hypothesized that, being essentially packages of lipoproteins, STBEVs are able to activate the LOX-1 receptor thereby impairing vascular function via the production of superoxide and decreased nitric oxide bioavailability. Uterine arteries were obtained in late gestation from Sprague-Dawley rats and incubated for 24h with or without human STBEVs (derived from a normal pregnant placenta in the absence or presence of a LOX-1 blocking antibody. Vascular function was assessed using wire myography. Endothelium-dependent maximal vasodilation to methylcholine was impaired by STBEVs (MCh Emax: 57.7±5.9% in STBEV-incubated arteries vs. 77.8±2.9% in controls, p<0.05. This was prevented by co-incubation of STBEV-incubated arteries with LOX-1 blocking antibodies (MCh Emax: 78.8±4.3%, p<0.05. Pre-incubation of the vessels with a nitric oxide synthase inhibitor (L-NAME demonstrated that the STBEV-induced impairment in vasodilation was due to decreased nitric oxide contribution (ΔAUC 12.2±11.7 in STBEV-arteries vs. 86.5±20 in controls, p<0.05, which was abolished by LOX-1 blocking antibody (ΔAUC 98.9±17, p<0.05. In STBEV-incubated vessels, LOX-1 inhibition resulted in an increased endothelial nitric oxide synthase expression (p<0.05, to a level similar to control vessels. The oxidant scavenger, superoxide dismutase, did not improve this impairment, nor were vascular superoxide levels altered. Our data support an important role for STBEVs in impairment of vascular function via activation of

  14. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle.

    Science.gov (United States)

    Malkus, Kristen A; Tsika, Elpida; Ischiropoulos, Harry

    2009-06-05

    While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD) as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis.

  15. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle

    Directory of Open Access Journals (Sweden)

    Malkus Kristen A

    2009-06-01

    Full Text Available Abstract While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis.

  16. Impairment of the nitric oxide/cyclic GMP pathway in cerebellar slices prepared from the hph-1 mouse.

    Science.gov (United States)

    Brand, M P; Briddon, A; Land, J M; Clark, J B; Heales, S J

    1996-09-30

    In this study, the effect of tetrahydrobiopterin deficiency on the nitric oxide/cGMP pathway has been investigated in cerebellar slices derived from the hph-1 mouse. This animal displays a partial deficiency of tetrahydrobiopterin. Basal levels of cGMP were significantly reduced (-29.5%) in the hph-1 mouse cerebellum compared to controls. Following kainate stimulation (500 microM) cGMP levels increased in both control and hph-1 preparations but were again significantly lower (-29.1%) in the hph-1 mouse. Exposure of slices to the nitric oxide donors, S-nitroso-N-acetylpenicillamine and S-nitroso-glutathione, revealed no difference in cGMP accumulation between the two groups. These findings suggest that the cerebellar nitric oxide/cGMP pathway may be impaired in partial tetrahydrobiopterin deficiency states due to diminished nitric oxide formation.

  17. Dietary Supplementation of Almond Prevents Oxidative Stress by Advocating Antioxidants and Attenuates Impaired Aversive Memory in Male Rats.

    Science.gov (United States)

    Batool, Zehra; Tabassum, Saiqa; Siddiqui, Rafat Ali; Haider, Saida

    2018-03-01

    Scopolamine, an anti-muscarinic agent, has been shown to induce amnesia and oxidative stress similar to that observed in the older age. The present study was designed to determine the relationship between the oxidative status and memory improvement in scopolamine injected rats pre-administered with almonds. Rats (n = 8) in the almond group were administered orally with 400 mg/kg almond suspension for 28 days daily before the intraperitoneal injection of scopolamine (0.5 mg/kg). Passive avoidance task (PAT) was used to assess memory function at the end of treatment. The present study revealed that scopolamine injection significantly impaired the memory function in rats pre-treated with saline which was accompanied by increased oxidative stress as evident by increased brain malondialdehyde (MDA) levels and reduced activities of antioxidant enzymes as compared to healthy controls. Pre-treatment with almond significantly ameliorated scopolamine-induced oxidative stress and memory dysfunction. These findings suggest that dietary supplementation with almonds may have a beneficial effect in reducing the risk of oxidative stress-induced memory loss and delaying or preventing the onset of age-related memory impairment.

  18. Nitric oxide associated with iNOS expression inhibits acetylcholinesterase activity and induces memory impairment during acute hypobaric hypoxia.

    Science.gov (United States)

    Udayabanu, M; Kumaran, D; Nair, R Unnikrishnan; Srinivas, P; Bhagat, Neeta; Aneja, R; Katyal, Anju

    2008-09-16

    The mechanisms responsible for cholinergic dysfunction associated learning and memory impairment during hypoxia are not well-understood. However it is known that inflammatory mediators like inducible nitric oxide synthase (iNOS) hamper the functions of cholinergic neurons. In this present experiment we made an effort to study the iNOS expression mediated retrograde and anterograde memory impairment in Balb/c mice following acute hypobaric hypoxia (at an altitude of 23,000ft for 6h) using elevated plus maze and passive avoidance step-through tasks. Our results demonstrated that hypoxia transiently impairs the retrograde memory without affecting the anterograde memory functions, accompanied with a substantial rise in iNOS expression and nitric oxide levels in cerebral cortex on days 2 and 3 post hypoxia. Treatment with aminoguanidine (iNOS inhibitor ), resulted in down-regulation of the iNOS expression, attenuation of the surge of nitric oxide (NO) in cerebral cortex and reversal of retrograde memory impairment due to hypoxia. Moreover the reduced AChE activity and elevated lipid peroxidation in cerebral cortex were evident during post hypoxia re-oxygenation period, which was not observed in the hippocampus. Additionally, NO donor spermine NONOate could inhibit the AChE activity in brain homogenates in a concentration-dependent manner, which further substantiate that nitric oxide produced during post hypoxia re-oxygenation, primarily contributes to the observed inhibition of cortical AChE activity. Based on these experiments we hypothesize that the NO burst as a result of iNOS upregulation during hypoxia interrupts the memory consolidation by altering the cholinergic functions.

  19. High motor variability in DYT1 dystonia is associated with impaired visuomotor adaptation.

    Science.gov (United States)

    Sadnicka, Anna; Stevenson, Anna; Bhatia, Kailash P; Rothwell, John C; Edwards, Mark J; Galea, Joseph M

    2018-02-26

    For the healthy motor control system, an essential regulatory role is maintaining the equilibrium between keeping unwanted motor variability in check whilst allowing informative elements of motor variability. Kinematic studies in children with generalised dystonia (due to mixed aetiologies) show that movements are characterised by increased motor variability. In this study, the mechanisms by which high motor variability may influence movement generation in dystonia were investigated. Reaching movements in the symptomatic arm of 10 patients with DYT1 dystonia and 12 age-matched controls were captured using a robotic manipulandum and features of motor variability were extracted. Given that task-relevant variability and sensorimotor adaptation are related in health, markers of variability were then examined for any co-variance with performance indicators during an error-based learning visuomotor adaptation task. First, we confirmed that motor variability on a trial-by-trial basis was selectively increased in the homogenous and prototypical dystonic disorder DYT1 dystonia. Second, high baseline variability predicted poor performance in the subsequent visuomotor adaptation task offering insight into the rules which appear to govern dystonic motor control. The potential mechanisms behind increased motor variability and its corresponding implications for the rehabilitation of patients with DYT1 dystonia are highlighted.

  20. Folate deficiency and over-supplementation causes impaired folate metabolism: Regulation and adaptation mechanisms in Caenorhabditis elegans.

    Science.gov (United States)

    Ortbauer, Martina; Ripper, Doris; Fuhrmann, Thomas; Lassi, Maximilian; Auernigg-Haselmaier, Sandra; Stiegler, Christina; König, Jürgen

    2016-04-01

    Impaired folate metabolism increases the risk of birth defects, neurodegenerative and cardiovascular disease, osteoporosis and cancer. We used Caenorhabditis elegans to investigate impaired folate metabolism by RNA interference of key enzymes in the methionine synthase (MS) and thymidylate synthase (TS) cycle and by folate deficiency and over-supplementation feeding studies. Folate status is influenced by genetic variations (polymorphisms), folate deficiency and supplementation. Single RNAi of dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR) and MS revealed that gene regulation is largely affected in both folate cycles. Adaptation requires a close transcriptional connection between TS and MS cycle. Coupled DHFR and MS expression is required to balance both cycles, but seems to reduce the overall rate of folate conversion. Feeding studies showed that folate over-supplementation to functioning metabolism inactivates MS and MTHFR expression and enhances TS activity, which favors DNA synthesis over methylation reactions. Folate deficiency disrupted homeostasis by favoring TS cycle and led to malformation in C. elegans offspring. Embryos show aneuploidy and are nonviable lacking DNA repair during meiotic stage of diakinesis. Single gene silencing alters gene expression in both cycles and disrupts folate homeostasis. Folate over-supplementation and deficiency favors TS over MS cycle and causes prophase DNA damage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Inhibitory effect of ethanol extract of Nannochloropsis oceanica on lipopolysaccharide-induced neuroinflammation, oxidative stress, amyloidogenesis and memory impairment.

    Science.gov (United States)

    Choi, Ji Yeon; Hwang, Chul Ju; Lee, Hee Pom; Kim, Hee Sik; Han, Sang-Bae; Hong, Jin Tae

    2017-07-11

    Oxidative stress and neuroinflammation is implicated in the pathogenesis and development of Alzheimer's disease (AD). Here, we investigated the suppressive possibility of ethanol extract of Nannochloropsis oceanica (N. oceanica) on memory deficiency along with the fundamental mechanisms in lipopolysaccharide (LPS)-treated mice model. Among several extracts of 32 marine microalgae, ethanol extract of N. oceanica showed the most significant inhibitory effect on nitric oxide (NO) generation, NF-κB activity and β-secretase activity in cultured BV-2 cells, neuronal cells and Raw 264.7 cells. Ethanol extract of N. oceanica (50, 100 mg/kg) also ameliorated LPS (250 μg/kg)-induced memory impairment. We also found that ethanol extract of N. oceanica inhibited the LPS-induced expression of iNOS and COX-2. Furthermore, the production of reactive oxygen species (ROS), malondialdehyde (MDA) level as well as glutathione (GSH) level was also decreased by treatment of ethanol extract of N.oceanica. The ethanol extract of N. oceanica also suppresses IκB degradation as well as p50 and p65 translocation into the nucleus in LPS-treated mice brain. Associated with the inhibitory effect on neuroinflammation and oxidative stress, ethanol extract of N. oceanica suppressed Aβ1-42 generation through down-regulation of APP and BACE1 expression in in vivo. These results suggest that ethanol extract of N. oceanica ameliorated memory impairment via anti-inflammatory, anti-oxidant and anti-amyloidogenic mechanisms.

  2. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    OpenAIRE

    Bollmann, A.; Sedlacek, C.J.; Norton, J.; Laanbroek, H.J.; Suwa, Y.; Stein, L.Y.; Klotz, M.G.; Arp, D.; Sayavedra-Soto, L.; Lu, M.; Bruce, D.; Detter, C.; Tapia, R.; Han, J.; Woyke, T.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromos...

  3. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    Science.gov (United States)

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  4. Gross motor function in children with spastic Cerebral Palsy and Cerebral Visual Impairment : A comparison between outcomes of the original and the Cerebral Visual Impairment adapted Gross Motor Function Measure-88 (GMFM-88-CVI)

    NARCIS (Netherlands)

    Salavati, M.; Rameckers, E. A. A.; Waninge, A.; Krijnen, W. P.; Steenbergen, B.; van der Schans, C. P.

    Purpose: To investigate whether the adapted version of the Gross Motor Function Measure 88 (GMFM-88) for children with Cerebral Palsy (CP) and Cerebral Visual Impairment (CVI) results in higher scores. This is most likely to be a reflection of their gross motor function, however it may be the result

  5. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions.

    Directory of Open Access Journals (Sweden)

    Laia Castells-Roca

    Full Text Available Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon. In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.

  6. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors.

    Science.gov (United States)

    Shah, Firoz; Nicolás, César; Bentzer, Johan; Ellström, Magnus; Smits, Mark; Rineau, Francois; Canbäck, Björn; Floudas, Dimitrios; Carleer, Robert; Lackner, Gerald; Braesel, Jana; Hoffmeister, Dirk; Henrissat, Bernard; Ahrén, Dag; Johansson, Tomas; Hibbett, David S; Martin, Francis; Persson, Per; Tunlid, Anders

    2016-03-01

    Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Sleep Deprivation Diminishes Attentional Control Effectiveness and Impairs Flexible Adaptation to Changing Conditions.

    Science.gov (United States)

    Whitney, Paul; Hinson, John M; Satterfield, Brieann C; Grant, Devon A; Honn, Kimberly A; Van Dongen, Hans P A

    2017-11-22

    Insufficient sleep is a global public health problem resulting in catastrophic accidents, increased mortality, and hundreds of billions of dollars in lost productivity. Yet the effect of sleep deprivation (SD) on decision making and performance is often underestimated by fatigued individuals and is only beginning to be understood by scientists. The deleterious impact of SD is frequently attributed to lapses in vigilant attention, but this account fails to explain many SD-related problems, such as loss of situational awareness and perseveration. Using a laboratory study protocol, we show that SD individuals can maintain information in the focus of attention and anticipate likely correct responses, but their use of such a top-down attentional strategy is less effective at preventing errors caused by competing responses. Moreover, when the task environment requires flexibility, performance under SD suffers dramatically. The impairment in flexible shifting of attentional control we observed is distinct from lapses in vigilant attention, as corroborated by the specificity of the influence of a genetic biomarker, the dopaminergic polymorphism DRD2 C957T. Reduced effectiveness of top-down attentional control under SD, especially when conditions require flexibility, helps to explain maladaptive performance that is not readily explained by lapses in vigilant attention.

  8. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows.

    Directory of Open Access Journals (Sweden)

    Ole Lamp

    Full Text Available High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS and one pair-fed (PF at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1, cows were challenged for 6 days (P2 by heat stress (temperature humidity index (THI = 76 or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows.

  9. Atorvastatin improved scopolamine-induced impairment in memory acquisition in mice: involvement of nitric oxide.

    Science.gov (United States)

    Javadi-Paydar, Mehrak; Rayatnia, Farhoud; Fakhraei, Nahid; Zakeri, Marjan; Mirazi, Naser; Norouzi, Abbas; Dehpour, Ahmad Reza

    2011-04-22

    Atorvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, widely used in treatment of hypercholesterolemia, slows the progression of mild-to-moderate Alzheimer's disease. In this study, effects of atorvastatin on acquisition of spatial recognition memory and the involvement of nitric oxide (NO) have been determined in a two-trial recognition Y-maze test and passive avoidance. Atorvastatin (1, 5mg/kg, p.o.) was administered prior to acquisition phase, either in presence or in absence of a non-specific NO synthase inhibitor, L-NAME (3, 10mg/kg, i.p.); a specific inducible NO synthase inhibitor, aminoguanidine (100mg/kg); and a NO precursor, l-arginine (750mg/kg). Atorvastatin significantly improved memory performance in a dose-dependent manner in acquisition of recognition memory, in both Y-maze and passive avoidance tests. 1) Atorvastatin (5mg/kg) significantly increased both exploration time and number of arm entries in scopolamine-treated mice in Y-maze. 2) The beneficial effects of atorvastatin on memory acquisition were significantly reversed by L-NAME (3mg/kg) and aminoguanidine (100mg/kg). 3) The effects of sub-effective dose of atorvastatin (1mg/kg) on memory acquisition were not potentiated by l-arginine (750mg/kg); 4) Administration of atorvastatin (5mg/kg) significantly increased step-through latency in scopolamine-induced memory-impaired mice. 5) Beneficial effect of atorvastatin on passive avoidance was not reversed by L-NAME (up to 10mg/kg). 6) The effects of sub-effective dose of atorvastatin (1mg/kg) on passive avoidance were not potentiated by l-arginine (750mg/kg). The present study demonstrates that atorvastatin improved both short-spatial recognition memory and fear memory. As this effect is reversed by L-NAME and aminoguanidine in short-term memory acquisition, it is concluded that NO might be involved in spatial memory improvement by atorvastatin. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury.

    Science.gov (United States)

    Yu, Wei; Parakramaweera, Randika; Teng, Shavonne; Gowda, Manasa; Sharad, Yashsavi; Thakker-Varia, Smita; Alder, Janet; Sesti, Federico

    2016-10-26

    The delayed rectifier potassium (K + ) channel KCNB1 (Kv2.1), which conducts a major somatodendritic current in cortex and hippocampus, is known to undergo oxidation in the brain, but whether this can cause neurodegeneration and cognitive impairment is not known. Here, we used transgenic mice harboring human KCNB1 wild-type (Tg-WT) or a nonoxidable C73A mutant (Tg-C73A) in cortex and hippocampus to determine whether oxidized KCNB1 channels affect brain function. Animals were subjected to moderate traumatic brain injury (TBI), a condition characterized by extensive oxidative stress. Dasatinib, a Food and Drug Administration-approved inhibitor of Src tyrosine kinases, was used to impinge on the proapoptotic signaling pathway activated by oxidized KCNB1 channels. Thus, typical lesions of brain injury, namely, inflammation (astrocytosis), neurodegeneration, and cell death, were markedly reduced in Tg-C73A and dasatinib-treated non-Tg animals. Accordingly, Tg-C73A mice and non-Tg mice treated with dasatinib exhibited improved behavioral outcomes in motor (rotarod) and cognitive (Morris water maze) assays compared to controls. Moreover, the activity of Src kinases, along with oxidative stress, were significantly diminished in Tg-C73A brains. Together, these data demonstrate that oxidation of KCNB1 channels is a contributing mechanism to cellular and behavioral deficits in vertebrates and suggest a new therapeutic approach to TBI. This study provides the first experimental evidence that oxidation of a K + channel constitutes a mechanism of neuronal and cognitive impairment in vertebrates. Specifically, the interaction of KCNB1 channels with reactive oxygen species plays a major role in the etiology of mouse model of traumatic brain injury (TBI), a condition associated with extensive oxidative stress. In addition, a Food and Drug Administration-approved drug ameliorates the outcome of TBI in mouse, by directly impinging on the toxic pathway activated in response to

  11. Adaptive Immune Response Impairs the Efficacy of Autologous Transplantation of Engineered Stem Cells in Dystrophic Dogs

    Science.gov (United States)

    Sitzia, Clementina; Farini, Andrea; Jardim, Luciana; Razini, Paola; Belicchi, Marzia; Cassinelli, Letizia; Villa, Chiara; Erratico, Silvia; Parolini, Daniele; Bella, Pamela; da Silva Bizario, Joao Carlos; Garcia, Luis; Dias-Baruffi, Marcelo; Meregalli, Mirella; Torrente, Yvan

    2016-01-01

    Duchenne muscular dystrophy is the most common genetic muscular dystrophy. It is caused by mutations in the dystrophin gene, leading to absence of muscular dystrophin and to progressive degeneration of skeletal muscle. We have demonstrated that the exon skipping method safely and efficiently brings to the expression of a functional dystrophin in dystrophic CD133+ cells injected scid/mdx mice. Golden Retriever muscular dystrophic (GRMD) dogs represent the best preclinical model of Duchenne muscular dystrophy, mimicking the human pathology in genotypic and phenotypic aspects. Here, we assess the capacity of intra-arterial delivered autologous engineered canine CD133+ cells of restoring dystrophin expression in Golden Retriever muscular dystrophy. This is the first demonstration of five-year follow up study, showing initial clinical amelioration followed by stabilization in mild and severe affected Golden Retriever muscular dystrophy dogs. The occurrence of T-cell response in three Golden Retriever muscular dystrophy dogs, consistent with a memory response boosted by the exon skipped-dystrophin protein, suggests an adaptive immune response against dystrophin. PMID:27506452

  12. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade

    Directory of Open Access Journals (Sweden)

    Arya A

    2016-03-01

    Full Text Available Aditya Arya,1 Anamika Gangwar,1 Sushil Kumar Singh,2 Manas Roy,3,4 Mainak Das,3 Niroj Kumar Sethy,1 Kalpana Bhargava1 1Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, 2Functional Materials Division, Solid State Physics Laboratory, Defense Research and Development Organization, Timarpur, Delhi, 3Biological Science and Bioengineering, Indian Institute of Technology, Kanpur, 4Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, India Abstract: Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs, also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs, we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5'-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein

  13. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK-PKC-CBP signaling cascade.

    Science.gov (United States)

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5'-adenine monophosphate-activated protein kinase-protein kinase C-cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases.

  14. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade

    Science.gov (United States)

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases. PMID:27069362

  15. Grape powder supplementation prevents oxidative stress-induced anxiety-like behavior, memory impairment, and high blood pressure in rats.

    Science.gov (United States)

    Allam, Farida; Dao, An T; Chugh, Gaurav; Bohat, Ritu; Jafri, Faizan; Patki, Gaurav; Mowrey, Christopher; Asghar, Mohammad; Alkadhi, Karim A; Salim, Samina

    2013-06-01

    We examined whether or not grape powder treatment ameliorates oxidative stress-induced anxiety-like behavior, memory impairment, and hypertension in rats. Oxidative stress in Sprague-Dawley rats was produced by using L-buthionine-(S,R)-sulfoximine (BSO). Four groups of rats were used: 1) control (C; injected with vehicle and provided with tap water), 2) grape powder-treated (GP; injected with vehicle and provided for 3 wk with 15 g/L grape powder dissolved in tap water), 3) BSO-treated [injected with BSO (300 mg/kg body weight), i.p. for 7 d and provided with tap water], and 4) BSO plus grape powder-treated (GP+BSO; injected with BSO and provided with grape powder-treated tap water). Anxiety-like behavior was significantly greater in BSO rats compared with C or GP rats (P blood pressure was significantly greater in BSO rats compared with C or GP rats (P high blood pressure in GP+BSO rats. Furthermore, brain extracellular signal-regulated kinase-1/2 (ERK-1/2) was activated (P oxidative stress-induced anxiety, memory impairment, and hypertension in rats.

  16. The Protective Role of Tempol Against Oxidative Stress-Related Renal Impairment Induced by Gamma Rays in Rats

    International Nuclear Information System (INIS)

    Mekawy, H.M.S.; Elkhouly, W.A.; Tawfik, S.S.

    2015-01-01

    Tempol (4-hydroxy-2,2,6,6-tetramethyl-piperidine-1 oxyl) is a naturally occurring substance that counteracts the harmful and damaging effects of oxidation in animal tissues and has been reported to permeate the biological membranes. In this study, tempol with dose of 18 mg/kg/day for 2 weeks has been shown to be effective in preventing several of the adverse consequences of oxidative stress and inflammation that underlie radiation damage. Adult rats were exposed to a total dose of 6 Gy gamma rays to determine the protective role of tempol on the biochemistry of the injured kidney because gamma rays displayed significant augmentation in renal oxidative modifications markers.The results indicated that plasma renal function tests; urea (Ur), creatinine (Cr), uric acid (UA) and sodium (Na), and plasma renal tubular injury markers; γ -glutamyltransferase ( γ -GT), aspartate aminotransferase (AST), creatine phosphokinase (CPK) and lactate dehydrogenase (LDH), were increased significantly in gamma rays group. In addition, the renal oxidative stress parameters; malondialdehyde (MDA), total cholesterol (TC) and protein carbonyl (PC), were increased significantly, and reduced glutathione (GSH) was decreased significantly in gamma rays group. Moreover, the levels of renal antioxidant enzymes; superoxide dismutase (SOD) and catalase (CAT), were decreased significantly, and myeloperoxidase (MPO) was in creased significantly in gamma rays group.The antioxidant treatment with tempol ameliorates gamma rays-induced biochemical alterations and dysfunction of kidney.Tempol, at levels within tolerable nutritional strategy, reduced the oxidative modification-related renal impairment induced by gamma radiation in rats.

  17. Impairments in Spatiotemporal Gait Adaptation During Obstacle Navigation in Huntington's Disease.

    Science.gov (United States)

    Anwar, Naznine; Labuschagne, Izelle; Simpson, Katrina; Smith, Luke; Georgiou-Karistianis, Nellie

    2017-01-01

    Navigating obstacles whilst walking might be associated with poorer balance and a higher risk of falling in individuals with symptomatic Huntington's disease (symp-HD). However, this issue has not been investigated within the literature. A unique obstacle navigation experiment was designed to examine adaptive gait patterns in order to identify spatiotemporal gait characteristics that might be associated with poorer balance and a higher risk of falling in symp-HD. Sixteen diagnosed symp-HD participants and 16 age- and sex-matched healthy controls were included. Gait was examined in 3 experimental conditions: baseline walking, walking while navigating around 1 obstacle, and walking while navigating around 2 obstacles. Navigation around obstacle walks was divided into three step phases (approach, navigation, recovery). Group differences in gait variables were analyzed at baseline and during walking for each obstacle condition respectively. Gait variables were also correlated with the Berg Balance Scale (BBS) and Timed Up and Go (TUG) test. Symp-HD participants, compared with controls, performed significantly poorer on most gait variables during baseline walking. Symp-HD participants significantly decreased their step-length while navigating around 1 obstacle, and increased their step-time while navigating around 1 and 2 obstacles. There were no significant group differences in step-width. Variables associated with navigating around obstacles correlated significantly with BBS and TUG clinical tools, which have been associated in the literature with an increased risk of falling in symp-HD. These findings could aid clinicians in better managing risk of falls in people with Huntington's disease through targeted and effective strategies.

  18. Tactile Defensiveness and Impaired Adaptation of Neuronal Activity in the Fmr1 Knock-Out Mouse Model of Autism.

    Science.gov (United States)

    He, Cynthia X; Cantu, Daniel A; Mantri, Shilpa S; Zeiger, William A; Goel, Anubhuti; Portera-Cailliau, Carlos

    2017-07-05

    Sensory hypersensitivity is a common symptom in autism spectrum disorders (ASDs), including fragile X syndrome (FXS), and frequently leads to tactile defensiveness. In mouse models of ASDs, there is mounting evidence of neuronal and circuit hyperexcitability in several brain regions, which could contribute to sensory hypersensitivity. However, it is not yet known whether or how sensory stimulation might trigger abnormal sensory processing at the circuit level or abnormal behavioral responses in ASD mouse models, especially during an early developmental time when experience-dependent plasticity shapes such circuits. Using a novel assay, we discovered exaggerated motor responses to whisker stimulation in young Fmr1 knock-out (KO) mice (postnatal days 14-16), a model of FXS. Adult Fmr1 KO mice actively avoided a stimulus that was innocuous to wild-type controls, a sign of tactile defensiveness. Using in vivo two-photon calcium imaging of layer 2/3 barrel cortex neurons expressing GCaMP6s, we found no differences between wild-type and Fmr1 KO mice in overall whisker-evoked activity, though 45% fewer neurons in young Fmr1 KO mice responded in a time-locked manner. Notably, we identified a pronounced deficit in neuronal adaptation to repetitive whisker stimulation in both young and adult Fmr1 KO mice. Thus, impaired adaptation in cortical sensory circuits is a potential cause of tactile defensiveness in autism. SIGNIFICANCE STATEMENT We use a novel paradigm of repetitive whisker stimulation and in vivo calcium imaging to assess tactile defensiveness and barrel cortex activity in young and adult Fmr1 knock-out mice, the mouse model of fragile X syndrome (FXS). We describe evidence of tactile defensiveness, as well as a lack of L2/3 neuronal adaptation in barrel cortex, during whisker stimulation. We propose that a defect in sensory adaptation within local neuronal networks, beginning at a young age and continuing into adulthood, likely contributes to sensory

  19. Impaired oxidative balance and association of blood glucose, insulin and HOMA-IR index in migraine.

    Science.gov (United States)

    Yilmaz, Necat; Aydin, Ozgur; Yegin, Aysenur; Tiltak, Aysun; Eren, Esin; Aykal, Guzin

    2011-01-01

    The nature of the relationship between glucose metabolism and occurrence of migraine has not been elucidated precisely. This study investigated the status of oxidative/antioxidative balance and its relationship with the glucose metabolism in migraineurs to get new points of view for the underlying oxidative mechanisms. Sixty migraineurs and 46 control subjects were included in the study. Oxidative stress index, total oxidant and antioxidant status of both groups were examined in addition to the insulin and HOMA-IR index levels. HOMA-IR index was significantly enhanced in migraineurs (P = 0.038); similarly oxidative stress index and total oxidant status were higher in patients compared to the controls (P HOMA-IR index might play a role in the potential early pathogenesis for migraine.

  20. Aminoguanidine alleviated MMA-induced impairment of cognitive ability in rats by downregulating oxidative stress and inflammatory reaction.

    Science.gov (United States)

    Li, Qiliang; Song, Wenqi; Tian, Ze; Wang, Peichang

    2017-03-01

    Methylmalonic acidemia (MMA) is the most common organic acidemia in childhood. Many "treated" patients continued to display various degrees of mental retardation and psychomotor delay, which could be caused by brain damage from elevated oxidative stress. Aminoguanidine (AG), a synthetic antioxidant, was tested in a MMA rat model for its potential therapeutic effects on memory impairment. The effects of AG on MMA-induced cognitive impairment in Wistar rats were evaluated with Morris Water Maze. The levels of nerve cell apoptosis and microglial activation were investigated to illustrate the mechanisms of the improvement of cognition with AG treatment in MMA rats. To further explore the mechanism of neuroprotection induced by AG, several biomarkers including free radicals and inflammatory cytokines in the hippocampus were quantified. The results showed that the rats treated with AG exhibited better neurological behavior performances than MMA model rats. The AG-treated rats had a decreased level of apoptosis of the hippocampal neurons, which could be the structural basis of the observed neural behavior protection. In addition, AG treatment significantly inhibited the activation of microglia. The AG-treated rats had decreased levels of IL-1β, IL-6, TNF-α, NO, malonaldehyde and iNOS activities in the hippocampus. The level of glutathione and superoxide dismutase activity in the hippocampus of the AG-treated rats increased significantly. In conclusion, AG could alleviate the MMA-induced cognitive impairment via down-regulating of oxidative stress and inflammatory reaction and provide a basis as a therapeutic potential against MMA-induced cognitive impairment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  2. Macrophage mitochondrial damage from StAR transport of 7-hydroperoxycholesterol: implications for oxidative stress-impaired reverse cholesterol transport.

    Science.gov (United States)

    Korytowski, Witold; Wawak, Katarzyna; Pabisz, Pawel; Schmitt, Jared C; Girotti, Albert W

    2014-01-03

    StAR family proteins in vascular macrophages participate in reverse cholesterol transport (RCT). We hypothesize that under pathophysiological oxidative stress, StARs will transport not only cholesterol to macrophage mitochondria, but also pro-oxidant cholesterol hydroperoxides (7-OOHs), thereby impairing early-stage RCT. Upon stimulation with dibutyryl-cAMP, RAW264.7 macrophages exhibited a strong time-dependent induction of mitochondrial StarD1 and plasma membrane ABCA1, which exports cholesterol. 7α-OOH uptake by stimulated RAW cell mitochondria (like cholesterol uptake) was strongly reduced by StarD1 knockdown, consistent with StarD1 involvement. Upon uptake by mitochondria, 7α-OOH (but not redox-inactive 7α-OH) triggered lipid peroxidation and membrane depolarization while reducing ABCA1 upregulation. These findings provide strong initial support for our hypothesis. Copyright © 2013. Published by Elsevier B.V.

  3. Defense mechanisms against oxidative stress in Coxiella burnetii: adaptation to a unique intracellular niche.

    Science.gov (United States)

    Mertens, Katja; Samuel, James E

    2012-01-01

    Survival of intracellular pathogenic bacteria depends on the ability to resist host-mediated degradation and to generate a replicative niche within the host. Usually, after internalization by professional phagocytic cells, the bacteria containing vacuole or phagosome traffics through the endocytic pathway, progressively acidifies and develops into a degradative mature phagolysosome. In this environment bacteria are exposed to a wide variety of anti-microbial agents, such as defensins, proteases, and reactive oxygen species (ROS) and reactive nitrogen species (RNS). Most parasitizing bacteria have evolved strategies to interfere with this maturation process and to direct the development of an environment that supports survival and replication. C. burnetii also follows this paradigm, but directs the biogenesis of a unique parasitophorous vacuole (PV), which resembles, yet is distinct from a terminal phagolysosome. Within the environment of the PV, C. burnetii is exposed to varying levels of ROS and RNS, which represent the primary defense mechanism of the host cell against this invading microorganism. Major mediators for ROS and RNS are superoxide (O (2) (-) ) and nitric oxide (NO(*)), generated by the cellular NADPH oxidase (phox) and inducible nitric oxide synthase (iNOS), respectively. C. burnetii employs several strategies to evade oxidative stress; on the host side (i) delaying phagolysosome fusion and (ii) inhibiting cellular NADPH oxidase. On the bacterial side, maintaining genome stability by (iii) evolving a preference for a low iron environment, (iv) expressing a minimal and likely crucial set of DNA repair genes and (v) detoxifying the PV by ROS and RNS degrading enzymes. Overall defense mechanisms in C. burnetii against oxidative and nitrosative stress and the regulation thereof are not fully defined and our knowledge is mainly based on genome sequence information. Comparison with E. coli as a model bacterium reveals that defense strategies of C. burnetii

  4. Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice.

    Science.gov (United States)

    Yokota, Takashi; Kinugawa, Shintaro; Hirabayashi, Kagami; Matsushima, Shouji; Inoue, Naoki; Ohta, Yukihiro; Hamaguchi, Sanae; Sobirin, Mochamad A; Ono, Taisuke; Suga, Tadashi; Kuroda, Satoshi; Tanaka, Shinya; Terasaki, Fumio; Okita, Koichi; Tsutsui, Hiroyuki

    2009-09-01

    Insulin resistance or diabetes is associated with limited exercise capacity, which can be caused by the abnormal energy metabolism in skeletal muscle. Oxidative stress is involved in mitochondrial dysfunction in diabetes. We hypothesized that increased oxidative stress could cause mitochondrial dysfunction in skeletal muscle and make contribution to exercise intolerance in diabetes. C57/BL6J mice were fed on normal diet or high fat diet (HFD) for 8 wk to induce obesity with insulin resistance and diabetes. Treadmill tests with expired gas analysis were performed to determine the exercise capacity and whole body oxygen uptake (Vo(2)). The work (vertical distance x body weight) to exhaustion was reduced in the HFD mice by 36%, accompanied by a 16% decrease of peak Vo(2). Mitochondrial ADP-stimulated respiration, electron transport chain complex I and III activities, and mitochondrial content in skeletal muscle were decreased in the HFD mice. Furthermore, superoxide production and NAD(P)H oxidase activity in skeletal muscle were significantly increased in the HFD mice. Intriguingly, the treatment of HFD-fed mice with apocynin [10 mmol/l; an inhibitor of NAD(P)H oxidase activation] improved exercise intolerance and mitochondrial dysfunction in skeletal muscle without affecting glucose metabolism itself. The exercise capacity and mitochondrial function in skeletal muscle were impaired in type 2 diabetes, which might be due to enhanced oxidative stress. Therapies designed to regulate oxidative stress and maintain mitochondrial function could be beneficial to improve the exercise capacity in type 2 diabetes.

  5. Endomembrane Ca2+-AtPases play a significant role in virus-induced adaptation to oxidative stress

    DEFF Research Database (Denmark)

    Shabala, Sergey; Bækgaard, Lone; Shabala, Lana

    2011-01-01

    in adaptive responses to oxidative stress by removing excessive Ca2+ from the cytosol, and that their functional expression is significantly altered in PVX-inoculated plants. These findings highlight the crucial role of Ca2+ efflux systems in acquired tolerance to oxidative stress and open up prospects...... for practical applications in agriculture, after in-depth comprehension of the fundamental mechanisms involved in common responses to environmental factors at the genomic, cellular and organismal levels....

  6. Endothelial nitric oxide synthase polymorphisms and adaptation of parasympathetic modulation to exercise training.

    Science.gov (United States)

    Silva, Bruno M; Neves, Fabricia J; Negrão, Marcelo V; Alves, Cleber R; Dias, Rodrigo G; Alves, Guilherme B; Pereira, Alexandre C; Rondon, Maria U; Krieger, José E; Negrão, Carlos E; DA Nóbrega, Antonio Claudio Lucas

    2011-09-01

    There is a large interindividual variation in the parasympathetic adaptation induced by aerobic exercise training, which may be partially attributed to genetic polymorphisms. Therefore, we investigated the association among three polymorphisms in the endothelial nitric oxide gene (-786T>C, 4b4a, and 894G>T), analyzed individually and as haplotypes, and the parasympathetic adaptation induced by exercise training. Eighty healthy males, age 20-35 yr, were genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis, and haplotypes were inferred using the software PHASE 2.1. Autonomic modulation (i.e., HR variability and spontaneous baroreflex sensitivity) and peak oxygen consumption (VO(2peak)) were measured before and after training (running, moderate to severe intensity, three times per week, 60 min·day(-1), during 18 wk). Training increased VO(2peak) (P baroreflex sensitivity after training (change: wild type (-786TT) = 2% ± 89% vs polymorphic (-786TC/CC) = -28% ± 60%, median ± quartile range, P = 0.03), and parasympathetic modulation was marginally reduced in subjects with the 894T polymorphic allele (change: wild type (894GG) = 8% ± 67% vs polymorphic (894GT/TT) = -18% ± 59%, median ± quartile range, P = 0.06). Furthermore, parasympathetic modulation percent change was different between the haplotypes containing wild-type alleles (-786T/4b/894G) and polymorphic alleles at positions -786 and 894 (-786C/4b/894T) (-6% ± 56% vs -41% ± 50%, median ± quartile range, P = 0.04). The polymorphic allele at position -786 and the haplotype containing polymorphic alleles at positions -786 and 894 in the endothelial nitric oxide gene were associated with decreased parasympathetic modulation after exercise training.

  7. Free radicals impair the anti-oxidative stress activity of DJ-1 through the formation of SDS-resistant dimer.

    Science.gov (United States)

    Yasuda, Tatsuki; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2017-04-01

    DJ-1 is a causative gene for familial Parkinson's disease (PD). Loss-of-function of DJ-1 protein is suggested to contribute to the onset of PD, but the causes of DJ-1 dysfunction remain insufficiently elucidated. In this study, we found that the SDS-resistant irreversible dimer of DJ-1 protein was formed in human dopaminergic neuroblastoma SH-SY5Y cells when the cells were exposed to massive superoxide inducers such as paraquat and diquat. The dimer was also formed in vitro by superoxide in PQ redox cycling system and hydroxyl radical produced in Fenton reaction. We, thus, found a novel phenomenon that free radicals directly affect DJ-1 to form SDS-resistant dimers. Moreover, the formation of the SDS-resistant dimer impaired anti-oxidative stress activity of DJ-1 both in cell viability assay and H 2 O 2 -elimination assay in vitro. Similar SDS-resistant dimers were steadily formed with several mutants of DJ-1 found in familial PD patients. These findings suggest that DJ-1 is impaired due to the formation of SDS-resistant dimer when the protein is directly attacked by free radicals yielded by external and internal stresses and that the DJ-1 impairment is one of the causes of sporadic PD.

  8. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  9. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension.

    Science.gov (United States)

    Afolayan, Adeleye J; Eis, Annie; Alexander, Maxwell; Michalkiewicz, Teresa; Teng, Ru-Jeng; Lakshminrusimha, Satyan; Konduri, Girija G

    2016-01-01

    Impaired vasodilation in persistent pulmonary hypertension of the newborn (PPHN) is characterized by mitochondrial dysfunction. We investigated the hypothesis that a decreased endothelial nitric oxide synthase level leads to impaired mitochondrial biogenesis and function in a lamb model of PPHN induced by prenatal ductus arteriosus constriction. We ventilated PPHN lambs with 100% O2 alone or with inhaled nitric oxide (iNO). We treated pulmonary artery endothelial cells (PAECs) from normal and PPHN lambs with detaNONOate, an NO donor. We observed decreased mitochondrial (mt) DNA copy number, electron transport chain (ETC) complex subunit levels, and ATP levels in PAECs and lung tissue of PPHN fetal lambs at baseline compared with gestation matched controls. Phosphorylation of AMP-activated kinase (AMPK) and levels of peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) and sirtuin-1, which facilitate mitochondrial biogenesis, were decreased in PPHN. Ventilation with 100% O2 was associated with larger decreases in ETC subunits in the lungs of PPHN lambs compared with unventilated PPHN lambs. iNO administration, which facilitated weaning of FiO2 , partly restored mtDNA copy number, ETC subunit levels, and ATP levels. DetaNONOate increased eNOS phosphorylation and its interaction with heat shock protein 90 (HSP90); increased levels of superoxide dismutase 2 (SOD2) mRNA, protein, and activity; and decreased the mitochondrial superoxide levels in PPHN-PAECs. Knockdown of eNOS decreased ETC protein levels in control PAECs. We conclude that ventilation with 100% O2 amplifies oxidative stress and mitochondrial dysfunction in PPHN, which are partly improved by iNO and weaning of oxygen. Copyright © 2016 the American Physiological Society.

  10. Adaptation and Evaluation of the Clinical Impairment Assessment to Assess Disordered Eating Related Distress in an Adolescent Female Ethnic Fijian Population

    Science.gov (United States)

    Becker, Anne E; Thomas, Jennifer J; Bainivualiku, Asenaca; Richards, Lauren; Navara, Kesaia; Roberts, Andrea L; Gilman, Stephen E; Striegel-Moore, Ruth H

    2010-01-01

    Objective: Measurement of disease-related impairment and distress is central to diagnostic, therapeutic, and health policy considerations for eating disorders across diverse populations. This study evaluates psychometric properties of a translated and adapted version of the Clinical Impairment Assessment (CIA) in an ethnic Fijian population. Method: The adapted CIA was administered to ethnic Fijian adolescent schoolgirls (N = 215). We calculated Cronbach's α to assess the internal consistency, examined the association between indicators of eating disorder symptom severity and the CIA to assess construct and criterion validity, and compared the strength of relation between the CIA and measures of disordered eating versus with measures of generalized distress. Results: The Fijian version of the CIA is feasible to administer as an investigator-based interview. It has excellent internal consistency (α = 0.93). Both construct and criterion validity were supported by the data, and regression models indicated that the CIA predicts eating disorder severity, even when controlling for generalized distress and psychopathology. Discussion: The adapted CIA has excellent psychometric properties in this Fijian study population. Findings suggest that the CIA can be successfully adapted for use in a non-Western study population and that at least some associated distress and impairment transcends cultural differences. © 2009 by Wiley Periodicals, Inc. Int J Eat Disord, 2010 PMID:19308992

  11. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, H; Leusink, J; Bos, IST; Zaagsma, J; Meurs, H

    2006-01-01

    Background: Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC) nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO) production - due to competition with neuronal

  12. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    DEFF Research Database (Denmark)

    Baraibar, Martín A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina

    2016-01-01

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging...

  13. Nitric oxide-mediated cutaneous microvascular function is impaired in polycystic ovary sydrome but can be improved by exercise training.

    Science.gov (United States)

    Sprung, V S; Cuthbertson, D J; Pugh, C J A; Daousi, C; Atkinson, G; Aziz, N F; Kemp, G J; Green, D J; Cable, N T; Jones, H

    2013-03-15

    Polycystic ovary syndrome (PCOS) is associated with cardiovascular disease. The contribution of the nitric oxide (NO) dilator system to cutaneous endothelial dysfunction is currently unknown in PCOS. Our aim was to examine whether women with PCOS demonstrate impaired cutaneous microvascular NO function and whether exercise training can ameliorate any impairment. Eleven women with PCOS (age, 29 ± 7 years; body mass index, 34 ± 6 kg m(-2)) were compared with six healthy obese control women (age, 29 ± 7 years; body mass index, 34 ± 5 kg m(-2)). Six women with PCOS (30 ± 7 years; 31 ± 6 kg m(-2)) then completed 16 weeks of exercise training. Laser Doppler flowmetry, combined with intradermal microdialysis of l-N(G)-monomethyl-l-arginine, a nitric oxide antagonist, in response to incremental local heating of the forearm was assessed in women with PCOS and control women, and again in women with PCOS following exercise training. Cardiorespiratory fitness, homeostasis model assessment for insulin resistance, hormone and lipid profiles were also assessed. Differences between women with PCOS and control women and changes with exercise were analysed using Student's unpaired t tests. Differences in the contribution of NO to cutaneous blood flow [expressed as a percentage of maximal cutaneous vasodilatation (CVCmax)] were analysed using general linear models. At 42°C heating, cutaneous NO-mediated vasodilatation was attenuated by 17.5%CVCmax (95% confidence interval, 33.3, 1.7; P = 0.03) in women with PCOS vs. control women. Exercise training improved cardiorespiratory fitness by 5.0 ml kg(-1) min(-1) (95% confidence interval, 0.9, 9.2; P = 0.03) and NO-mediated cutaneous vasodilatation at 42°C heating by 19.6% CVCmax (95% confidence interval, 4.3, 34.9; P = 0.02). Cutaneous microvascular NO function is impaired in women with PCOS compared with obese matched control women but can be improved with exercise training.

  14. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  15. Erectile dysfunction and diabetes: Association with the impairment of lipid metabolism and oxidative stress.

    Science.gov (United States)

    Belba, Arben; Cortelazzo, Alessio; Andrea, Giansanti; Durante, Jacopo; Nigi, Laura; Dotta, Francesco; Timperio, Anna Maria; Zolla, Lello; Leoncini, Roberto; Guerranti, Roberto; Ponchietti, Roberto

    2016-01-01

    To test the hypothesis that exists an association of non-diabetic and diabetic patients suffering from erectile dysfunction (ED) with lipid metabolism and oxidative stress. Clinical and laboratory characteristics in non-diabetic (n = 30, middle age range: 41–55.5 years; n = 25, old age range: 55.5–73), diabetic ED patients (n = 30, age range: 55.5–75 years) and diabetic patients (n = 25, age range: 56–73.25), were investigated. Proteomic analysis was performed to identify differentially expressed plasma proteins and to evaluate their oxidative posttranslational modifications. A decreased level of high-density lipoproteins in all ED patients (P < 0.001, C.I. 0.046–0.10), was detected by routine laboratory tests. Proteomic analysis showed a significant decreased expression (P < 0.05) of 5 apolipoproteins (i.e. apolipoprotein H, apolipoprotein A4, apolipoprotein J, apolipoprotein E and apolipoprotein A1) and zinc-alpha-2-glycoprotein, 50% of which are more oxidized proteins. Exclusively for diabetic ED patients, oxidative posttranslational modifications for prealbumin, serum albumin, serum transferrin and haptoglobin markedly increased. Showing evidence for decreased expression of apolipoproteins in ED and the remarkable enhancement of oxidative posttranslational modifications in diabetes-associated ED, considering type 2 diabetes mellitus and age as independent risk factors involved in the ED pathogenesis, lipid metabolism and oxidative stress appear to exert a complex interplay in the disease.

  16. Impaired Mitochondrial Respiratory Functions and Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Subbuswamy K. Prabu

    2011-05-01

    Full Text Available We have previously shown a tissue-specific increase in oxidative stress in the early stages of streptozotocin (STZ-induced diabetic rats. In this study, we investigated oxidative stress-related long-term complications and mitochondrial dysfunctions in the different tissues of STZ-induced diabetic rats (>15 mM blood glucose for 8 weeks. These animals showed a persistent increase in reactive oxygen and nitrogen species (ROS and RNS, respectively production. Oxidative protein carbonylation was also increased with the maximum effect observed in the pancreas of diabetic rats. The activities of mitochondrial respiratory enzymes ubiquinol: cytochrome c oxidoreductase (Complex III and cytochrome c oxidase (Complex IV were significantly decreased while that of NADH:ubiquinone oxidoreductase (Complex I and succinate:ubiquinone oxidoreductase (Complex II were moderately increased in diabetic rats, which was confirmed by the increased expression of the 70 kDa Complex II sub-unit. Mitochondrial matrix aconitase, a ROS sensitive enzyme, was markedly inhibited in the diabetic rat tissues. Increased expression of oxidative stress marker proteins Hsp-70 and HO-1 was also observed along with increased expression of nitric oxide synthase. These results suggest that mitochondrial respiratory complexes may play a critical role in ROS/RNS homeostasis and oxidative stress related changes in type 1 diabetes and may have implications in the etiology of diabetes and its complications.

  17. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes.

    Science.gov (United States)

    Wang, Bin; Li, Xianglong; Zhang, Xianfeng; Luo, Bin; Jin, Meihua; Liang, Minghui; Dayeh, Shadi A; Picraux, S T; Zhi, Linjie

    2013-02-26

    Silicon has been touted as one of the most promising anode materials for next generation lithium ion batteries. Yet, how to build energetic silicon-based electrode architectures by addressing the structural and interfacial stability issues facing silicon anodes still remains a big challenge. Here, we develop a novel kind of self-supporting binder-free silicon-based anodes via the encapsulation of silicon nanowires (SiNWs) with dual adaptable apparels (overlapped graphene (G) sheaths and reduced graphene oxide (RGO) overcoats). In the resulted architecture (namely, SiNW@G@RGO), the overlapped graphene sheets, as adaptable but sealed sheaths, prevent the direct exposure of encapsulated silicon to the electrolyte and enable the structural and interfacial stabilization of silicon nanowires. Meanwhile, the flexible and conductive RGO overcoats accommodate the volume change of embedded SiNW@G nanocables and thus maintain the structural and electrical integrity of the SiNW@G@RGO. As a result, the SiNW@G@RGO electrodes exhibit high reversible specific capacity of 1600 mAh g⁻¹ at 2.1 A g⁻¹, 80% capacity retention after 100 cycles, and superior rate capability (500 mAh g⁻¹ at 8.4 A g⁻¹) on the basis of the total electrode weight.

  18. Androgen Induces Adaptation to Oxidative Stress in Prostate Cancer: Implications for Treatment with Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Jehonathan H. Pinthus

    2007-01-01

    Full Text Available Radiation therapy is a standard treatment for prostate cancer (PC. The postulated mechanism of action for radiation therapy is the generation of reactive oxygen species (ROS. Adjuvant androgen deprivation (AD therapy has been shown to confer a survival advantage over radiation alone in high-risk localized PC. However, the mechanism of this interaction is unclear. We hypothesize that androgens modify the radioresponsiveness of PC through the regulation of cellular oxidative homeostasis. Using androgen receptor (AR+ 22rv1 and AR− PC3 human PC cell lines, we demonstrated that testosterone increased basal reactive oxygen species (bROS levels, resulting in dose-dependent activation of phospho-p38 and pAKT, increased expression of clusterin, catalase, manganese superoxide dismutase. Similar data were obtained in three human PC xenografts; WISH-PC14, WISH-PC23, CWR22, growing in testosterone-supplemented or castrated SCID mice. These effects were reversible through AD or through incubation with a reducing agent. Moreover, testosterone increased the activity of catalase, superoxide dismutases, glutathione reductase. Consequently, AD significantly facilitated the response of AR+ cells to oxidative stress challenge. Thus, testosterone induces a preset cellular adaptation to radiation through the generation of elevated bROS, which is modified by AD. These findings provide a rational for combined hormonal and radiation therapy for localized PC.

  19. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    . Dar es Salaam. Durban. Bloemfontein. Antananarivo. Cape Town. Ifrane ... program strategy. A number of CCAA-supported projects have relevance to other important adaptation-related themes such as disaster preparedness and climate.

  20. Aging Impairs Myocardial Fatty Acid and Ketone Oxidation and Modifies Cardiac Functional and Metabolic Responses to Insulin in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Hyyti, Outi M.; Ledee, Dolena; Ning, Xue-Han; Ge, Ming; Portman, Michael A.

    2010-07-02

    Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4–6 mo) and aged (22–24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing 13C-labeled free fatty acids (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)α and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.

  1. Executive functioning, concern about falling and quadriceps strength mediate the relationship between impaired gait adaptability and fall risk in older people.

    Science.gov (United States)

    Caetano, Maria Joana D; Lord, Stephen R; Brodie, Matthew A; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Menant, Jasmine C

    2018-01-01

    Reduced ability to adapt gait, particularly under challenging conditions, may be an important reason why older adults have an increased risk of falling. This study aimed to identify cognitive, psychological and physical mediators of the relationship between impaired gait adaptability and fall risk in older adults. Fifty healthy older adults (mean±SD: 74±7years) were categorised as high or low fall risk, based on past falls and their performance in the Physiological Profile Assessment. High and low-risk groups were then compared in the gait adaptability test, i.e. an assessment of the ability to adapt gait in response to obstacles and stepping targets under single and dual task conditions. Quadriceps strength, concern about falling and executive function were also measured. The older adults who made errors on the gait adaptability test were 4.76 (95%CI=1.08-20.91) times more likely to be at high risk of falling. Furthermore, each standard deviation reduction in gait speed while approaching the targets/obstacle increased the odds of being at high risk of falling approximately three fold: single task - OR=3.10,95%CI=1.43-6.73; dual task - 3.42,95%CI=1.56-7.52. Executive functioning, concern about falling and quadriceps strength substantially mediated the relationship between the gait adaptability measures and fall risk status. Impaired gait adaptability is associated with high risk of falls in older adults. Reduced executive function, increased concern about falling and weaker quadriceps strength contribute significantly to this relationship. Training gait adaptability directly, as well as addressing the above mediators through cognitive, behavioural and physical training may maximise fall prevention efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Naringin protects memory impairment and mitochondrial oxidative damage against aluminum-induced neurotoxicity in rats.

    Science.gov (United States)

    Prakash, Atish; Shur, Bhargabi; Kumar, Anil

    2013-09-01

    Aluminum has been indicated in neurodegenerative disorders and naringin, a bioflavonoid has been used to reduce neurotoxic effects of aluminum against aluminum chloride-induced rats. Therefore, present study has been designed to explore the possible role of naringin against aluminum-induced cognitive dysfunction and oxidative damage in rats. Aluminum (100 mg/kg) and naringin (40 and 80 mg/kg) drug treatment were administered orally for six weeks to male wistar rats. Various behavioral performance tasks, biochemical, mitochondrial oxidative parameters, and aluminum concentration in the brain were assessed. Aluminum chloride treatment significantly caused cognitive dysfunction and mitochondria oxidative damage as compared to vehicle treated control group. Besides, aluminum chloride treatment significantly increased acetyl cholinesterase activity and aluminum concentration in the brain as compared to sham. Chronic administration of naringin significantly improved cognitive performance and attenuated mitochondria oxidative damage, acetyl cholinesterase activity, and aluminum concentration in aluminum-treated rats as compared to control rats. Results of the study demonstrate neuroprotective potential of naringin against aluminum chloride-induced cognitive dysfunction and mitochondrial oxidative damage.

  3. Oxidative stress impairs function and increases redox protein modifications in human spermatozoa.

    Science.gov (United States)

    Morielli, Tania; O'Flaherty, Cristian

    2015-01-01

    Oxidative stress, generated by excessive reactive oxygen species (ROS) or decreased antioxidant defenses (and possibly both), is associated with male infertility. Oxidative stress results in redox-dependent protein modifications, such as tyrosine nitration and S-glutathionylation. Normozoospermic sperm samples from healthy individuals were included in this study. Samples were incubated with increasing concentrations (0-5 mM) of exogenous hydrogen peroxide, tert-butyl hydroperoxide, or diethylamine NONOate (DA-NONOate, a nitric oxide (NO∙) donor) added to the medium. Spermatozoa treated with or without ROS were incubated under capacitating conditions and then levels of tyrosine phosphorylation and percentage of acrosome reaction (AR) induced by lysophosphatidylcholine were determined. Modified sperm proteins from cytosolic, triton-soluble, and triton-insoluble fractions were analyzed by SDS-PAGE immunoblotting and immunocytochemistry with anti-glutathione and anti-nitrotyrosine antibodies. Levels of S-glutathionylation increased dose dependently after exposure to hydroperoxides (Psperm capacitation by oxidative stress. In conclusion, oxidative stress promotes a dose-dependent increase in tyrosine nitration and S-glutathionylation and alters motility and the ability of spermatozoa to undergo capacitation.Free Spanish abstractA Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/149/1/113/suppl/DC1. © 2015 Society for Reproduction and Fertility.

  4. Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability.

    Science.gov (United States)

    Xiaoli, Feng; Junrong, Wu; Xuan, Lai; Yanli, Zhang; Limin, Wei; Jia, Liu; Longquan, Shao

    2017-04-01

    To examine the neurotoxicity of prenatal exposure to ZnO nanoparticles on rat offspring. Pregnant Sprague-Dawley rats were exposed to ZnO nanoparticles (NPs) by gavage. Toxicity was assessed including zinc biodistribution, cerebral histopathology, antioxidant status and learning and memory capability. A significantly elevated concentration of zinc was detected in offspring brains. Transmission electron microscope observations showed abnormal neuron ultrastructures. Histopathologic changes such as decreased proliferation and higher apoptotic death were observed. An obvious imbalanced antioxidant status occurred in brains. Adult experimental offspring exhibited impaired learning and memory behavior in the Morris water maze test compared with control groups. These adverse effects on offspring brain may cause impaired learning and memory capabilities in adulthood, particularly in female rats.

  5. Escin attenuates behavioral impairments, oxidative stress and inflammation in a chronic MPTP/probenecid mouse model of Parkinson's disease.

    Science.gov (United States)

    Selvakumar, Govindasamy Pushpavathi; Janakiraman, Udaiyappan; Essa, Musthafa Mohamed; Justin Thenmozhi, Arokiasamy; Manivasagam, Thamilarasan

    2014-10-17

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that results mainly due to the death of dopaminergic neurons in the substantia nigra (SN), and subsequently has an effect on one's motor function and coordination. The current investigation explored the neuroprotective potential of escin, a natural triterpene-saponin on chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) induced mouse model of PD. Administration of MPTP led to the depleted striatal dopamine content, impaired patterns of behavior, enhanced oxidative stress and diminished expression of tyrosine hydroxylase (TH), dopamine transporter (DAT) and vesicular monoamine transporter-2 (VMAT-2). The expressions of interleukin-6 and -10, glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor protein-1 (IBA-1), tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) in SN were also enhanced. Oral treatment of escin significantly attenuated MPTP/p induced dopaminergic markers depletion, physiological abnormalities, oxidative stress and inhibit neuroinflammatory cytokine expressions in SN. The result of our study confirmed that escin mediated its protection against experimental PD through its antioxidant and anti-inflammatory properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response.

    Science.gov (United States)

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-05-01

    To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis ( Pg ), Fusobacterium nucleatum and Prevotella intermedia . The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Cimicifuga racemosa impairs fatty acid β-oxidation and induces oxidative stress in livers of ovariectomized rats with renovascular hypertension.

    Science.gov (United States)

    Campos, Lilian Brites; Gilglioni, Eduardo Hideo; Garcia, Rosângela Fernandes; Brito, Márcia do Nascimento; Natali, Maria Raquel Marçal; Ishii-Iwamoto, Emy Luiza; Salgueiro-Pagadigorria, Clairce Luzia

    2012-08-15

    The aim of this work was to evaluate the effects of therapeutic doses of Cimicifuga racemosa on cardiovascular parameters and on liver lipid metabolism and redox status in an animal model of estrogen deficiency associated with hypertension, a condition that could make the liver more vulnerable to drug-induced injuries. Female Wistar rats were subjected to the surgical procedures of bilateral ovariectomy (OVX) and induction of renovascular hypertension (two-kidneys, one-clip; 2K1C). These animals (OVX + 2K1C) were treated with daily doses of a C. racemosa extract, using a dose that is similar to that recommended to postmenopausal women (0.6 mg/kg), over a period of 15 days. The results were compared to those of untreated OVX + 2K1C, OVX, and control rats. The treatment with C. racemosa caused a significant reduction in blood pressure. In the liver, treatment did not prevent the development of steatosis, and it reduced the mitochondrial and peroxisomal capacity to oxidize octanoyl-CoA compared to the untreated animals. In addition, C. racemosa caused numerous undesirable effects on the liver redox status: it increased the mitochondrial reactive oxygen species generation, an event that was not accompanied by an increase in the activity of superoxide dismutase, and it induced a decrease in peroxisomal catalase activity. Although the reduced glutathione content had not been affected, a phenomenon that probably reflected the restoration of glucose-6-phosphate dehydrogenase activity by C. racemosa, oxidative damage was evidenced by the elevated level of thiobarbituric acid-reactive substances found in the liver of treated animals. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  9. Catalase expression impairs oxidative stress-mediated signalling in Trypanosoma cruzi.

    Science.gov (United States)

    Freire, Anna Cláudia Guimarães; Alves, Ceres Luciana; Goes, Grazielle Ribeiro; Resende, Bruno Carvalho; Moretti, Nilmar Silvio; Nunes, Vinícius Santana; Aguiar, Pedro Henrique Nascimento; Tahara, Erich Birelli; Franco, Glória Regina; Macedo, Andréa Mara; Pena, Sérgio Danilo Junho; Gadelha, Fernanda Ramos; Guarneri, Alessandra Aparecida; Schenkman, Sergio; Vieira, Leda Quercia; Machado, Carlos Renato

    2017-09-01

    Trypanosoma cruzi is exposed to oxidative stresses during its life cycle, and amongst the strategies employed by this parasite to deal with these situations sits a peculiar trypanothione-dependent antioxidant system. Remarkably, T. cruzi's antioxidant repertoire does not include catalase. In an attempt to shed light on what are the reasons by which this parasite lacks this enzyme, a T. cruzi cell line stably expressing catalase showed an increased resistance to hydrogen peroxide (H2O2) when compared with wild-type cells. Interestingly, preconditioning carried out with low concentrations of H2O2 led untransfected parasites to be as much resistant to this oxidant as cells expressing catalase, but did not induce the same level of increased resistance in the latter ones. Also, presence of catalase decreased trypanothione reductase and increased superoxide dismutase levels in T. cruzi, resulting in higher levels of residual H2O2 after challenge with this oxidant. Although expression of catalase contributed to elevated proliferation rates of T. cruzi in Rhodnius prolixus, it failed to induce a significant increase of parasite virulence in mice. Altogether, these results indicate that the absence of a gene encoding catalase in T. cruzi has played an important role in allowing this parasite to develop a shrill capacity to sense and overcome oxidative stress.

  10. A stimulatory effect of FFA on glycolysis unmasked in cells with impaired oxidative capacity

    International Nuclear Information System (INIS)

    Blackard, W.G.; Clore, J.N.; Powers, L.P.

    1990-01-01

    The physiological importance of the glucose fatty acid cycle has been controversial. Many studies have failed to demonstrate an inhibitory effect of free fatty acids (FFA) on glucose utilization. Using both hepatoma cells (Hep G2) and human erythrocytes, which have poor oxidative capacity and metabolize glucose primarily anaerobically, we have demonstrated a unique stimulatory effect of FFA on glycolysis. Fructose 2,6-bisphosphate (F-2,6-P2) concentrations also increased significantly in Hep G2 cells incubated with palmitic acid. In contrast, F-2,6-P2 concentrations fell in primary cultured hepatocytes incubated with palmitic acid in association with increased oxidation of FFA and accumulation of beta-hydroxybutyrate. We propose that a stimulatory effect of FFA on glycolysis reported here for the first time may have been masked in previous studies performed in tissues in which the oxidation of FFA and the accumulation of intermediates such as citrate may have decreased F-2,6-P2 concentrations. We conclude that the spectrum of FFA effects in glycolysis probably depends on tissue oxidative capacity

  11. Endogenous nitric oxide enhances the light-response of cones during light-adaptation in the rat retina.

    Science.gov (United States)

    Sato, Masaki; Ohtsuka, Teruya; Stell, William K

    2011-01-01

    The electroretinogram (ERG) is a non-invasive indicator of retinal function. Light flashes evoke a cornea-negative a-wave followed by a cornea-positive b-wave. Light-adaptation is known to increase the amplitude of cone-dependent b-waves. To identify the underlying mechanism, we recorded rat cone photoresponses in situ, using intravitreally-injected glutamate to block synaptic transmission and intense paired-flash stimuli to isolate cone a-waves. Steady adapting illumination caused a progressive increase in cone a-wave amplitude, which was suppressed in a dose-dependent manner by intravitreal CPTIO, a nitric oxide scavenger. We conclude that light-adaptation causes release of nitric oxide, which enhances the cone photoresponse. Copyright © 2010. Published by Elsevier Ltd.

  12. Induction and stability of oxidative stress adaptation in Listeria monocytogenes EGD (Bug600) and F1057 in sublethal concentrations of H2O2 and NaOH

    Science.gov (United States)

    Food processing and food handling environments may contain residual levels of sanitizers or cleaners which may trigger oxidative stress adaptation in Listeria monocytogenes. The aim of this study was to determine the induction and stability of oxidative stress adaptation in L. monocytogenes EGD (Bug...

  13. Nutritional ketone salts increase fat oxidation but impair high-intensity exercise performance in healthy adult males.

    Science.gov (United States)

    O'Malley, Trevor; Myette-Cote, Etienne; Durrer, Cody; Little, Jonathan P

    2017-10-01

    This study investigated the impact of raising plasma beta-hydroxybutyrate (β-OHB) through ingestion of ketone salts on substrate oxidation and performance during cycling exercise. Ten healthy adult males (age, 23 ± 3 years; body mass index, 25 ± 3 kg/m 2 , peak oxygen uptake, 45 ± 10 mL/(kg·min) -1 ) were recruited to complete 2 experimental trials. Before enrollment in the experimental conditions, baseline anthropometrics and cardiorespiratory fitness (peak oxygen uptake) were assessed and familiarization to the study protocol was provided. On experimental days, participants reported to the laboratory in the fasted state and consumed either 0.3 g/kg β-OHB ketone salts or a flavour-matched placebo at 30 min prior to engaging in cycling exercise. Subjects completed steady-state exercise at 30%, 60%, and 90% ventilatory threshold (VT) followed by a 150-kJ cycling time-trial. Respiratory exchange ratio (RER) and total substrate oxidation were derived from indirect calorimetry. Plasma glucose, lactate, and ketones were measured at baseline, 30 min post-supplement, post-steady-state exercise, and immediately following the time-trial. Plasma β-OHB was elevated from baseline and throughout the entire protocol in the ketone condition (p < 0.05). RER was lower at 30% and 60% VT in the ketone compared with control condition. Total fat oxidation was greater in the ketone versus control (p = 0.05). Average time-trial power output was ∼7% lower (-16 W, p = 0.029) in the ketone condition. Ingestion of ketone salts prior to exercise increases fat oxidation during steady-state exercise but impairs high-intensity exercise performance.

  14. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    Nairobi, Kenya. 28 Adapting Fishing Policy to Climate Change with the Aid of Scientific and Endogenous Knowledge. Cap Verde, Gambia,. Guinea, Guinea Bissau,. Mauritania and Senegal. Environment and Development in the Third World. (ENDA-TM). Dakar, Senegal. 29 Integrating Indigenous Knowledge in Climate Risk ...

  15. Angiotensin II-mediated biphasic regulation of proximal tubular Na+/H+ exchanger 3 is impaired during oxidative stress.

    Science.gov (United States)

    Banday, Anees Ahmad; Lokhandwala, Mustafa F

    2011-08-01

    Angiotensin (ANG) II via AT1 receptors (AT1Rs) maintains sodium homeostasis by regulating renal sodium transporters including Na(+)/H(+) exchanger 3 (NHE3) in a biphasic manner. Low-ANG II concentration stimulates whereas high concentrations inhibit NHE3 activity. Oxidative stress has been shown to upregulate AT1R function that could modulate the ANG II-mediated NHE3 regulation. This study was designed to identify the signaling pathways responsible for ANG II-mediated biphasic regulation of proximal tubular NHE3 and the effect of oxidative stress on this phenomenon. Male Sprague-Dawley rats were chronically treated with a pro-oxidant L-buthionine sulfoximine (BSO) with and without an antioxidant tempol in tap water for 3 wk. BSO-treated rats exhibited oxidative stress and high blood pressure. At low concentration (1 pM) ANG II increased NHE3 activity in proximal tubules from all animals. However, in BSO-treated rats, the stimulation was more robust and was normalized by tempol treatment. ANG II (1 pM)-mediated NHE3 activation was abolished by AT1R blocker, intracellular Ca(2+) chelator, and inhibitors of phospholipase C (PLC) and Ca(2+)-dependent calmodulin (CaM) but it was insensitive to Giα and protein kinase C inhibitors or AT2R antagonist. A high concentration of ANG II (1 μM) inhibited NHE3 activity in control and tempol-treated rats. However, in BSO-treated rats, ANG II (1 μM) continued to induce NHE3 stimulation. Tempol restored the inhibitory effect of ANG II (1 μM) in BSO-treated rats. The inhibitory effect of ANG II (1 μM) involved AT1R-dependent, cGMP-dependent protein kinase (PKG) activation and was independent of AT2 receptor and nitric oxide signaling. We conclude that ANG II stimulates NHE3 via AT1R-PLC-CaM pathway and inhibits NHE3 by AT1R-PKG activation. Oxidative stress impaired ANG II-mediated NHE3 biphasic response in that stimulation was observed at both high- and low-ANG II concentration.

  16. Oxidative stress and motility impairment in the semen of fertile males.

    Science.gov (United States)

    Dobrakowski, M; Kasperczyk, S; Horak, S; Chyra-Jach, D; Birkner, E; Kasperczyk, A

    2017-12-01

    The aim of the study was to determine the total oxidant status (TOS) and evaluate the influence of oxidative stress on sperm quality in fertile males. The study population consisted of 55 fertile males. Based on the seminal plasma TOS value, the study subjects were divided into the two subgroups: a group with a low (TOS-L) and a high (TOS-H) value. Comparing the TOS-H group with the TOS-L group, we found poorer sperm motility in the TOS-H group. We found lower total antioxidant capacity values and lower activity levels in the majority of the determined superoxide dismutase, glutathione peroxidase, glutathione-S-transferase and glucose-6-phosphate dehydrogenase. Further, we found higher levels of copper and iron as well as lower levels of zinc in the TOS-H group. We observed lower medians of IL-2, 4, 6, 8 and INF-γ in the TOS-H group compared with the TOS-L group, whereas the medians of IL-1β, IL-10 and IL-12 were significantly higher. In fertile males, higher oxidative stress intensity was associated with poorer semen quality and decreased antioxidant capacity in semen. These negative effects might be a result of decreased activities of antioxidant enzymes and altered levels of trace metals and cytokines. © 2017 Blackwell Verlag GmbH.

  17. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    Science.gov (United States)

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Classical NF-κB activation impairs skeletal muscle oxidative phenotype by reducing IKK-α expression.

    Science.gov (United States)

    Remels, A H V; Gosker, H R; Langen, R C; Polkey, M; Sliwinski, P; Galdiz, J; van den Borst, B; Pansters, N A; Schols, A M W J

    2014-02-01

    Loss of quadriceps muscle oxidative phenotype (OXPHEN) is an evident and debilitating feature of chronic obstructive pulmonary disease (COPD). We recently demonstrated involvement of the inflammatory classical NF-κB pathway in inflammation-induced impairments in muscle OXPHEN. The exact underlying mechanisms however are unclear. Interestingly, IκB kinase α (IKK-α: a key kinase in the alternative NF-κB pathway) was recently identified as a novel positive regulator of skeletal muscle OXPHEN. We hypothesised that inflammation-induced classical NF-κB activation contributes to loss of muscle OXPHEN in COPD by reducing IKK-α expression. Classical NF-κB signalling was activated (molecularly or by tumour necrosis factor α: TNF-α) in cultured myotubes and the impact on muscle OXPHEN and IKK-α levels was investigated. Moreover, the alternative NF-κB pathway was modulated to investigate the impact on muscle OXPHEN in absence or presence of an inflammatory stimulus. As a proof of concept, quadriceps muscle biopsies of COPD patients and healthy controls were analysed for expression levels of IKK-α, OXPHEN markers and TNF-α. IKK-α knock-down in cultured myotubes decreased expression of OXPHEN markers and key OXPHEN regulators. Moreover, classical NF-κB activation (both by TNF-α and IKK-β over-expression) reduced IKK-α levels and IKK-α over-expression prevented TNF-α-induced impairments in muscle OXPHEN. Importantly, muscle IKK-α protein abundance and OXPHEN was reduced in COPD patients compared to controls, which was more pronounced in patients with increased muscle TNF-α mRNA levels. Classical NF-κB activation impairs skeletal muscle OXPHEN by reducing IKK-α expression. TNF-α-induced reductions in muscle IKK-α may accelerate muscle OXPHEN deterioration in COPD. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.

    Science.gov (United States)

    Wadley, G D; Nicolas, M A; Hiam, D S; McConell, G K

    2013-04-15

    The aim of this research was to examine the impact of the xanthine oxidase (XO) inhibitor allopurinol on the skeletal muscle activation of cell signaling kinases' and adaptations to mitochondrial proteins and antioxidant enzymes following acute endurance exercise and endurance training. Male Sprague-Dawley rats performed either acute exercise (60 min of treadmill running, 27 m/min, 5% incline) or 6 wk of endurance training (5 days/wk) while receiving allopurinol or vehicle. Allopurinol treatment reduced XO activity to 5% of the basal levels (P < 0.05), with skeletal muscle uric acid levels being almost undetectable. Following acute exercise, skeletal muscle oxidized glutathione (GSSG) significantly increased in allopurinol- and vehicle-treated groups despite XO activity and uric acid levels being unaltered by acute exercise (P < 0.05). This suggests that the source of ROS was not from XO. Surprisingly, muscle GSSG levels were significantly increased following allopurinol treatment. Following acute exercise, allopurinol treatment prevented the increase in p38 MAPK and ERK phosphorylation and attenuated the increase in mitochondrial transcription factor A (mtTFA) mRNA (P < 0.05) but had no effect on the increase in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor-2, GLUT4, or superoxide dismutase mRNA. Allopurinol also had no impact on the endurance training-induced increases in PGC-1α, mtTFA, and mitochondrial proteins including cytochrome c, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase. In conclusion, although allopurinol inhibits cell signaling pathways in response to acute exercise, the inhibitory effects of allopurinol appear unrelated to exercise-induced ROS production by XO. Allopurinol also has little effect on increases in mitochondrial proteins following endurance training.

  20. Skiing across the Greenland icecap: divergent effects on limb muscle adaptations and substrate oxidation

    DEFF Research Database (Denmark)

    Helge, Jørn W; Lundby, Carsten; Christensen, Dirk L

    2003-01-01

    This study investigates the adaptive response of the lower limb muscles and substrate oxidation during submaximal arm or leg exercise after a crossing of the Greenland icecap on cross-country skies. Before and after the 42-day expedition, four male subjects performed cycle ergometer and arm......-cranking exercise on two separate days. On each occasion, the subjects exercised at two submaximal loads (arm exercise, 45 W and 100 W; leg exercise, 100 W and 200 W). In addition, peak oxygen uptake ((VO(2max))) was determined for both leg and arm exercise. Before and after the crossing, a muscle biopsy...... was obtained from the vastus lateralis and the triceps brachii muscles prior to exercise (N=3). After the crossing, body mass decreased by 5.7+/-0.5 kg (in four of four subjects), whereas (VO(2max)) was unchanged in the arm (3.1+/-0.2 l min(-1)) and leg (4.0+/-0.1 l min(-1)). Before the crossing, respiratory...

  1. Impairment of Hepatic and Renal Functions by 2,5-Hexanedione Is Accompanied by Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    Isaac A. Adedara

    2014-01-01

    Full Text Available 2,5-Hexanedione (2,5-HD is the toxic metabolite of n-hexane which is widely used as solvent in numerous industries. The present study elucidated the precise mechanism of 2,5-HD in hepatorenal toxicity by determining the involvement of oxidative stress in rats. Adult male Wistar rats were exposed to 0, 0.25, 0.5, and 1% 2,5-HD in drinking water for 21 days. Exposure to 2,5-HD caused liver and kidney atrophy evidenced by significant elevation in serum aminotransferases, alkaline phosphatase, albumin, bilirubin, urea, creatinine, and electrolytes levels compared with control. The marked dose-dependent increase in total cholesterol (TC, triglyceride (TG, and low-density lipoprotein (LDL was accompanied with significant decrease in high-density lipoprotein (HDL levels in 2,5-HD-exposed animals when compared with the control. Administration of 2,5-HD significantly diminished glutathione (GSH level but increased the activities of superoxide dismutase (SOD, catalase, glutathione peroxidase (GPx, and glutathione-S-transferase (GST concomitantly with marked elevation in hydrogen peroxide (H2O2 and malondialdehyde (MDA levels in liver and kidney of the treated groups compared with control. These findings suggest that undue exposure to 2,5-HD at environmentally relevant levels may impair liver and kidney functions through induction of oxidative stress.

  2. Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage.

    Science.gov (United States)

    Bailey, Damian M; Evans, Kevin A; McEneny, Jane; Young, Ian S; Hullin, David A; James, Philip E; Ogoh, Shigehiko; Ainslie, Philip N; Lucchesi, Céline; Rockenbauer, Antal; Culcasi, Marcel; Pietri, Sylvia

    2011-11-01

    The present study examined whether dynamic cerebral autoregulation and blood-brain barrier function would become compromised as a result of exercise-induced oxidative-nitrosative stress. Eight healthy men were examined at rest and after an incremental bout of semi-recumbent cycling exercise to exhaustion. Changes in a dynamic cerebral autoregulation index were determined during recovery from continuous recordings of blood flow velocity in the middle cerebral artery (MCAv) and mean arterial pressure during transiently induced hypotension. Electron paramagnetic resonance spectroscopy and ozone-based chemiluminescence were employed for direct detection of spin-trapped free radicals and nitric oxide metabolites in venous blood. Neuron-specific enolase, S100β and 3-nitrotyrosine were determined by ELISA. While exercise did not alter MCAv, it caused a mild reduction in the autoregulation index (from 6.9 ± 0.6 to 5.5 ± 0.9 a.u., P brain barrier permeability without causing structural brain damage subsequent to a free radical-mediated impairment in dynamic cerebral autoregulation.

  3. Cathepsin D deficiency induces oxidative damage in brain pericytes and impairs the blood-brain barrier.

    Science.gov (United States)

    Okada, Ryo; Wu, Zhou; Zhu, Aiqin; Ni, Junjun; Zhang, Jingqi; Yoshimine, Yoshito; Peters, Christoph; Saftig, Paul; Nakanishi, Hiroshi

    2015-01-01

    Recent evidence suggests that peripheral blood mononuclear cells (PBMCs) contribute to the pathogenesis of neuropathological changes in patients with neuronal ceroid lipofuscinosis (NCL) and lysosomal storage diseases. In order to examine the possible increase in the permeability of the blood-brain-barrier (BBB) and resultant infiltration of PBMCs due to cathepsin D (CatD) deficiency, a process underlying the onset of congenital NCL, we examined structural changes in brain vessels in CatD-/- mice. Consequently, the mean diameter of the brain vessels in the cerebral cortex on postnatal day 24 (P24) was significantly larger in CatD-/- mice than in wild-type mice. Furthermore, the mean number of brain pericytes in CatD-/- mice began to decline significantly on P16 and almost disappeared on P24, and oxidative DNA damage was first detected in brain pericytes on P12. Examinations with electron microscopy revealed that brain pericytes were laden with dense granular bodies, cytoplasmic vacuoles and lipid droplets. The infiltration of PBMCs characterized by segmented nucleus laden with dense granular bodies was also noted in the cerebral cortex of CatD-/- mice. When primary cultured microglia prepared from enhanced green fluorescent protein (GFP)-expressing transgenic rats were injected into the common carotid artery, GFP-positive microglia were detected in the brain parenchyma of CatD-/-, but not wild-type, mice. Moreover, pepstatin A, a specific aspartic protease inhibitor, induced mitochondria-derived reactive oxygen species (ROS) production in the isolated brain pericytes, which decreased the cell viability. These observations suggest that increased lysosomal storage due to CatD deficiency causes oxidative damage in brain pericytes, subsequently resulting in an increased vessel diameter, enhanced permeability of the BBB and the infiltration of PBMCs. Therefore, protecting brain pericytes against lysosomal storage-induced oxidative stress may represent an alternative

  4. Development of the Italian version of the trunk impairment scale in subjects with acute and chronic stroke. Cross-cultural adaptation, reliability, validity and responsiveness.

    Science.gov (United States)

    Monticone, Marco; Ambrosini, Emilia; Verheyden, Geert; Brivio, Flavia; Brunati, Roberto; Longoni, Luca; Mauri, Gaia; Molteni, Alessandro; Nava, Claudia; Rocca, Barbara; Ferrante, Simona

    2017-09-10

    To cross-culturally adapt and psychometrically analyse the Italian version of the Trunk Impairment Scale on acute (cohort 1) and chronic stroke patients (cohort 2). The Trunk Impairment Scale was culturally adapted in accordance with international standards. The psychometric testing included: internal consistency (Cronbach's alpha), inter- and intra-rater reliability (intraclass correlation coefficient; standard error of measurement and minimal detectable change), construct validity by comparing Trunk Impairment Scale score with Barthel Index, motor subscale of Functional Independence Measure, and Trunk Control Test (Pearson's correlation), and responsiveness (Effect Size, Effect Size with Guyatt approach, standardized response mean, and Receiver Operating Characteristics curves). The Trunk Impairment Scale was administered to 125 and 116 acute and chronic stroke patients, respectively. Internal consistency was acceptable (α > 0.7), inter- and intra-rater reliability (ICC > 0.9, Minimal Detectable Change for total score  0.4) with all scales but the motor Functional Independence Measure in cohort 2. Distribution-based methods showed large effects in cohort 1 and moderate to large effects in cohort 2. The Minimal Important Difference was 3.5 both from patient's and therapist's perspective in cohort 1 and 2.5 and 1.5 from patient's and therapist's perspective, respectively, in cohort 2. The Trunk Impairment Scale was successfully translated into Italian and proved to be reliable, valid, and responsive. Its use is recommended for clinical and research purposes. Implications for Rehabilitation Trunk control is an essential part of balance and postural control, constituting an important prerequisite for daily activities and function. The TIS administered in subjects with subacute and chronic stroke was reliable, valid and responsive. The TIS is expected to help clinicians and researchers by identifying key functional processes related to disability in people

  5. Fatty Acid Oxidation is Impaired in An Orthologous Mouse Model of Autosomal Dominant Polycystic Kidney Disease.

    Science.gov (United States)

    Menezes, Luis F; Lin, Cheng-Chao; Zhou, Fang; Germino, Gregory G

    2016-03-01

    The major gene mutated in autosomal dominant polycystic kidney disease was first identified over 20 years ago, yet its function remains poorly understood. We have used a systems-based approach to examine the effects of acquired loss of Pkd1 in adult mouse kidney as it transitions from normal to cystic state. We performed transcriptional profiling of a large set of male and female kidneys, along with metabolomics and lipidomics analyses of a subset of male kidneys. We also assessed the effects of a modest diet change on cyst progression in young cystic mice. Fatty acid oxidation and glycolytic rates were measured in five control and mutant pairs of epithelial cells. We find that females have a significantly less severe kidney phenotype and correlate this protection with differences in lipid metabolism. We show that sex is a major determinant of the transcriptional profile of mouse kidneys and that some of this difference is due to genes involved in lipid metabolism. Pkd1 mutant mice have transcriptional profiles consistent with changes in lipid metabolism and distinct metabolite and complex lipid profiles in kidneys. We also show that cells lacking Pkd1 have an intrinsic fatty acid oxidation defect and that manipulation of lipid content of mouse chow modifies cystic disease. Our results suggest PKD could be a disease of altered cellular metabolism.

  6. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle

    Directory of Open Access Journals (Sweden)

    Ragoobirsingh Dalip

    2006-05-01

    Full Text Available Abstract Background Evidence demonstrates that exogenously administered nitric oxide (NO can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP and S-nitrosoglutathione (GSNO on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml in the presence or absence of glucose (25 mM and insulin (100 nM. Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO. Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.

  7. Effect of astaxanthin on kidney function impairment and oxidative stress induced by mercuric chloride in rats.

    Science.gov (United States)

    Augusti, P R; Conterato, G M M; Somacal, S; Sobieski, R; Spohr, P R; Torres, J V; Charão, M F; Moro, A M; Rocha, M P; Garcia, S C; Emanuelli, T

    2008-01-01

    Reactive oxygen species are implicated as mediators of tissue damage in the acute renal failure induced by inorganic mercury. Astaxanthin (ASX), a carotenoid with potent antioxidant properties, exists naturally in various plants, algae, and seafoods. This paper evaluated the ability of ASX to prevent HgCl(2) nephrotoxicity. Rats were injected with HgCl(2) (0 or 5 mg/kg b.w., sc) 6h after ASX had been administered (0, 10, 25, or 50mg/kg, by gavage) and were killed 12h after HgCl(2) exposure. Although ASX prevented the increase of lipid and protein oxidation and attenuated histopathological changes caused by HgCl(2) in kidney, it did not prevent creatinine increase in plasma and delta-aminolevulinic acid dehydratase inhibition induced by HgCl(2). Glutathione peroxidase and catalase activities were enhanced, while superoxide dismutase activity was depressed in HgCl(2)-treated rats when compared to control and these effects were prevented by ASX. Our results indicate that ASX could have a beneficial role against HgCl(2) toxicity by preventing lipid and protein oxidation, changes in the activity of antioxidant enzymes and histopathological changes.

  8. Neuronal nitric oxide synthase-deficient mice have impaired Renin release but normal blood pressure

    DEFF Research Database (Denmark)

    Sällström, Johan; Carlström, Mattias; Jensen, Boye L

    2008-01-01

    NOS(-/-)) and wild-type (nNOS(+/+)) mice after 10 days of low (0.01% NaCl) and high (4% NaCl) sodium diets.ResultsThe resting heart rate was reduced in nNOS(-/-) mice, but the two genotypes had similar blood pressure during the low (nNOS(+/+) 104 +/- 2 mm Hg; nNOS(-/-) 103 +/- 2 mm Hg) and high (nNOS(+/+) 107 +/- 3...... for stimulation of renin in response to sodium restriction. Furthermore, nNOS(-/-) mice are normotensive, and their blood pressure responds normally to an increased dietary sodium intake, indicating that nNOS deficiency does not cause salt-sensitive hypertension.American Journal of Hypertension (2008) 21 111......BackgroundNitric oxide deficiency is involved in the development of hypertension, but the mechanisms are currently unclear. This study was conducted to further elucidate the role of neuronal nitric oxide synthase (nNOS) in blood pressure regulation and renin release in relation to different sodium...

  9. Multiple Model Adaptive Estimation and Control Redistribution Performance on the VISTA F-16 During Partial Actuator Impairments. Volume 1

    National Research Council Canada - National Science Library

    Clark, Curtis

    1997-01-01

    .... This stage of research explores the capability of the existing MMAE algorithm to estimate single, partial actuator impairments, and helps to define refinements and expansions needed in the MMAE...

  10. Multiple Model Adaptive Estimation and Control Redistribution Performance on the Vista F-16 During Partial Actuator Impairments. Volume III

    National Research Council Canada - National Science Library

    Clark, Curtis

    1997-01-01

    .... This stage of research explores the capability of the existing MMAE algorithm to estimate single, partial actuator impairments, and helps to define refinements and expansions needed in the MMAE...

  11. Multiple Model Adaptive Estimation and Control Redistribution Performance on the VISTA F-16 During Partial Actuator Impairments. Volume 2

    National Research Council Canada - National Science Library

    Clark, Curtis

    1997-01-01

    .... This stage of research explores the capability of the existing MMAE algorithm to estimate single, partial actuator impairments, and helps to define refinements and expansions needed in the MMAE...

  12. Neuroprotective Effects of Meloxicam and Selegiline in Scopolamine-Induced Cognitive Impairment and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Puchchakayala Goverdhan

    2012-01-01

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disorder characterized by a gradual decline in memory associated with shrinkage of brain tissue, with localized loss of neurons mainly in the hippocampus and basal forebrain, with diminished level of central cholinergic neurotransmitter-acetylcholine and also reported to be associated with accumulation of ubiquitinated proteins in neuronal inclusions and also with signs of inflammation. In these disorders, the abnormal protein aggregates may themselves trigger the expression of inflammatory mediators, such as cyclooxygenase 2 (COX-2. In the present study, the effects of Meloxicam, Selegiline, and coadministration of these drugs on scopolamine-induced learning and memory impairments in mice were investigated. Rectangular maze test, Morris water maze test, Locomotor activity, and Pole climbing test were conducted to evaluate the learning and memory parameters. Various biochemical parameters such as acetylcholinesterase(AChE, TBARS assay, catalase activity, and DPPH assay were also assessed. The present study demonstrates that Meloxicam, Selegiline, and co-administration of these test drugs had potential therapeutic effects on improving the antiamnesic activity in mice through inhibiting lipid peroxidation, augmenting endogenous antioxidant enzymes, and decreasing acetylcholinesterase activity in brain. The memory enhancing capacity of the drugs was very significant when compared to disease control (P<0.001.

  13. Ganoderma atrum polysaccharide improves age-related oxidative stress and immune impairment in mice.

    Science.gov (United States)

    Li, Wen-Juan; Nie, Shao-Ping; Peng, Xiao-Ping; Liu, Xiao-Zhen; Li, Chang; Chen, Yi; Li, Jing-En; Song, Wan-Rui; Xie, Ming-Yong

    2012-02-15

    The aim of the present study was to investigate whether oxidative stress and immune dysfunction could be attenuated by Ganoderma atrum polysaccharide (PSG-1) in d-galactose (d-gal)-induced aging mice, and provide evidence for its effects. The results showed that PSG-1 significantly decreased lipid peroxidation in liver, brain, and spleen, but concomitantly increased the activities of superoxide dismutase, catalase, and glutathione peroxidase compared with the d-gal group. Elevation of glutathione contents and attenuation of glutathione disulfide contents were also found in PSG-1-treated animals. Furthermore, the results showed that PSG-1 treatment increased basal lymphocyte proliferation as well as T cell and B cell proliferation and enhanced interleukin-2 production. Taken together, the results suggested that PSG-1 had potential as a novel agent to promote health and improve aging-associated pathologies, at least in part, via modification of the redox system and improvement of immune function.

  14. S100A1 deficiency impairs postischemic angiogenesis via compromised proangiogenic endothelial cell function and nitric oxide synthase regulation.

    Science.gov (United States)

    Most, Patrick; Lerchenmüller, Carolin; Rengo, Giuseppe; Mahlmann, Adrian; Ritterhoff, Julia; Rohde, David; Goodman, Chelain; Busch, Cornelius J; Laube, Felix; Heissenberg, Julian; Pleger, Sven T; Weiss, Norbert; Katus, Hugo A; Koch, Walter J; Peppel, Karsten

    2013-01-04

    Mice lacking the EF-hand Ca2+ sensor S100A1 display endothelial dysfunction because of distorted Ca2+ -activated nitric oxide (NO) generation. To determine the pathophysiological role of S100A1 in endothelial cell (EC) function in experimental ischemic revascularization. Patients with chronic critical limb ischemia showed almost complete loss of S100A1 expression in hypoxic tissue. Ensuing studies in S100A1 knockout (SKO) mice subjected to femoral artery resection unveiled insufficient perfusion recovery and high rates of autoamputation. Defective in vivo angiogenesis prompted cellular studies in SKO ECs and human ECs, with small interfering RNA-mediated S100A1 knockdown demonstrating impaired in vitro and in vivo proangiogenic properties (proliferation, migration, tube formation) and attenuated vascular endothelial growth factor (VEGF)-stimulated and hypoxia-stimulated endothelial NO synthase (eNOS) activity. Mechanistically, S100A1 deficiency compromised eNOS activity in ECs by interrupted stimulatory S100A1/eNOS interaction and protein kinase C hyperactivation that resulted in inhibitory eNOS phosphorylation and enhanced VEGF receptor-2 degradation with attenuated VEGF signaling. Ischemic SKO tissue recapitulated the same molecular abnormalities with insufficient in vivo NO generation. Unresolved ischemia entailed excessive VEGF accumulation in SKO mice with aggravated VEGF receptor-2 degradation and blunted in vivo signaling through the proangiogenic phosphoinositide-3-kinase/Akt/eNOS cascade. The NO supplementation strategies rescued defective angiogenesis and salvaged limbs in SKO mice after femoral artery resection. Our study shows for the first time downregulation of S100A1 expression in patients with critical limb ischemia and identifies S100A1 as critical for EC function in postnatal ischemic angiogenesis. These findings link its pathological plasticity in critical limb ischemia to impaired neovascularization, prompting further studies to probe the

  15. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    Directory of Open Access Journals (Sweden)

    Bruno Pereira Carreira

    2014-10-01

    Full Text Available Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO, which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSC, and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (LPS plus IFN-γ, using a culture system of subventricular zone (SVZ-derived NSC mixed with microglia cells obtained from wild-type mice (iNOS+/+ or from iNOS knockout mice (iNOS-/-. We found an impairment of NSC cell proliferation in iNOS+/+ mixed cultures, which was not observed in iNOS-/- mixed cultures. Furthermore, the increased release of NO by activated iNOS+/+ microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite, or using the peroxynitrite degradation catalyst FeTMPyP, cell proliferation and ERK signaling were restored to basal levels in iNOS+/+ mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 µM, for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the

  16. The ‘Goldilocks Zone’ from a redox perspective - Adaptive versus deleterious responses to oxidative stress in striated muscle

    Directory of Open Access Journals (Sweden)

    Rick J Alleman

    2014-09-01

    Full Text Available Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system’s position on the ‘hormetic curve’ is governed by the source and temporality of reactive oxygen species (ROS production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g. months to years inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome.

  17. Type 2 Diabetes and Breast Cancer: The Interplay between Impaired Glucose Metabolism and Oxidant Stress

    Directory of Open Access Journals (Sweden)

    Patrizia Ferroni

    2015-01-01

    Full Text Available Metabolic disorders, especially type 2 diabetes and its associated complications, represent a growing public health problem. Epidemiological findings indicate a close relationship between diabetes and many types of cancer (including breast cancer risk, which regards not only the dysmetabolic condition, but also its underlying risk factors and therapeutic interventions. This review discusses the advances in understanding of the mechanisms linking metabolic disorders and breast cancer. Among the proposed mechanisms to explain such an association, a major role is played by the dysregulated glucose metabolism, which concurs with a chronic proinflammatory condition and an associated oxidative stress to promote tumour initiation and progression. As regards the altered glucose metabolism, hyperinsulinaemia, both endogenous due to insulin-resistance and drug-induced, appears to promote tumour cell growth through the involvement of innate immune activation, platelet activation, increased reactive oxygen species, exposure to protumorigenic and proangiogenic cytokines, and increased substrate availability to neoplastic cells. In this context, understanding the relationship between metabolic disorders and cancer is becoming imperative, and an accurate analysis of these associations could be used to identify biomarkers able to predict disease risk and/or prognosis and to help in the choice of proper evidence-based diagnostic and therapeutic protocols.

  18. Protective effect of raisin (currant) against spatial memory impairment and oxidative stress in Alzheimer disease model.

    Science.gov (United States)

    Gol, Mohammad; Ghorbanian, Davoud; Soltanpour, Nabiollah; Faraji, Jamshid; Pourghasem, Mohsen

    2017-08-16

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive pathological changes of the brain. A number of studies demonstrated compelling evidence of the importance of oxidative processes in AD pathogenesis. Raisin contains polyphenol, phenolic acid, and tannin compounds, which have antioxidant and anti-inflammatory properties. The present study was aimed to evaluate the protective effect of raisin on neurobehavioral and histological changes in rats with Alzheimer. Animal model of AD was induced by intraperitoneal injection of aluminium chloride for 60 days (100 mg/kg body weight). During these 60 days both Alzheimer's and control rats were given 6 g of raisin per rat. At the end of the treatment, blood was collected for biochemical assessment. We used a Morris water task and passive avoidance test to assess spatial memory. Our results showed that aluminium exposure significantly decreased the memory in the MWT and passive avoidance test, but in the raisin + AlCl 3 group, it significantly increased spatial memory in both tests. Also, Aluminium exposure significantly increased malondialdehyde (MDA) and decreased ferric reducing ability of plasma (ferric reducing/antioxidant power (FRAP)), while treatment with raisin significantly decreased MDA and increased FRAP in plasma of blood. Our findings showed that raisin has a neuroprotective effect and improves the spatial memory in AD animal models.

  19. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    Science.gov (United States)

    Mauro, Marcella; Crosera, Matteo; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Piero; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca

    2015-01-01

    Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2) and those with intact skin (1.08 ± 0.20 ng·cm−2). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure. PMID:26193294

  20. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2006-01-01

    Full Text Available Abstract Background Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO production – due to competition with neuronal NO-synthase (nNOS for the common substrate, L-arginine. Furthermore, in a guinea pig model of allergic asthma, airway arginase activity is markedly increased after the early asthmatic reaction (EAR, leading to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity. In this study, we investigated whether increased arginase activity after the EAR affects iNANC nerve-derived NO production and airway smooth muscle relaxation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal open-ring preparations precontracted to 30% with histamine in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to EFS-induced relaxation was assessed by the nonselective NOS inhibitor Nω-nitro-L-arginine (L-NNA, 100 μM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA, 10 μM. Furthermore, the role of substrate availability to nNOS was measured in the presence of exogenous L-arginine (5.0 mM. Results At 6 h after ovalbumin-challenge (after the EAR, EFS-induced relaxation (ranging from 3.2 ± 1.1% at 0.5 Hz to 58.5 ± 2.2% at 16 Hz was significantly decreased compared to unchallenged controls (7.1 ± 0.8% to 75.8 ± 0.7%; P P P Conclusion The results clearly demonstrate that increased arginase activity after the allergen-induced EAR contributes to a deficiency of iNANC nerve-derived NO and decreased airway smooth muscle relaxation, presumably via increased substrate competition with nNOS.

  1. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    Directory of Open Access Journals (Sweden)

    Marcella Mauro

    2015-07-01

    Full Text Available Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1 and needle-abraded human skin (experiment 2. Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2, while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2 and those with intact skin (1.08 ± 0.20 ng·cm−2. To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI uptake assays. The results indicate that a long exposure time (i.e., seven days was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay. This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure.

  2. Gross motor function in children with spastic Cerebral Palsy and Cerebral Visual Impairment: A comparison between outcomes of the original and the Cerebral Visual Impairment adapted Gross Motor Function Measure-88 (GMFM-88-CVI).

    Science.gov (United States)

    Salavati, M; Rameckers, E A A; Waninge, A; Krijnen, W P; Steenbergen, B; van der Schans, C P

    2017-01-01

    To investigate whether the adapted version of the Gross Motor Function Measure-88 (GMFM-88) for children with Cerebral Palsy (CP) and Cerebral Visual Impairment (CVI) results in higher scores. This is most likely to be a reflection of their gross motor function, however it may be the result of a better comprehension of the instruction of the adapted version. The scores of the original and adapted GMFM-88 were compared in the same group of children (n=21 boys and n=16 girls), mean (SD) age 113 (30) months with CP and CVI, within a time span of two weeks. A paediatric physical therapist familiar with the child assessed both tests in random order. The GMFCS level, mental development and age at testing were also collected. The Wilcoxon signed-rank test was used to compare two different measurements (the original and adapted GMFM-88) on a single sample, (the same child with CP and CVI; pchildren with CP and CVI showed a positive difference in percentage score on at least one of the five dimensions and positive percentage scores for the two versions differed on all five dimensions for fourteen children. For six children a difference was seen in four dimensions and in 10 children difference was present in three dimensions (GMFM dimension A, B& C or C, D & E) (pchildren with CP and CVI that is not adversely impacted bytheir visual problems. On the basis of these findings, we recommend using the adapted GMFM-88 to measure gross motor functioning in children with CP and CVI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Can an aversive, extinction-resistant memory trigger impairments in walking adaptability? An experimental study using adult rats

    OpenAIRE

    Medeiros, FM; Myskiw, J; Baptista, P; Neves, L; Martins, LA; Izquierdo, I; Furini, C; Xavier, L; Hollands, KL; Mestriner, RG

    2017-01-01

    Cognitive demands can influence the adaptation of walking, a crucial skill to maintain body stability and prevent falls. Whilst previous research has shown emotional load tunes goal-directed movements, little attention has been given to this finding. This study sought to assess the effects of suffering an extinction-resistant memory on skilled walking performance in adult rats, as an indicator of walking adaptability. Thus, 36 Wistar rats were divided in a two-part experiment. In the first pa...

  4. Local inhibition of hippocampal nitric oxide synthase does not impair place learning in the Morris water escape task in rats.

    Science.gov (United States)

    Blokland, A; de Vente, J; Prickaerts, J; Honig, W; Markerink-van Ittersum, M; Steinbusch, H

    1999-01-01

    Recent studies have provided evidence that nitric oxide (NO) has a role in certain forms of memory formation. Spatial learning is one of the cognitive abilities that has been found to be impaired after systemic administration of an NO-synthase inhibitor. As the hippocampus has a pivotal role in spatial orientation, the present study examined the role of hippocampal NO in spatial learning and reversal learning in a Morris task in adult rats. It was found that N omega-nitro-L-arginine infusions into the dorsal hippocampus affected the manner in which the rats were searching the submerged platform during training, but did not affect the efficiency to find the spatial location of the escape platform. Hippocampal NO-synthase inhibition did not affect the learning of a new platform position in the same water tank (i.e. reversal learning). Moreover, no treatment effects were observed in the probe trials (i.e. after acquisition and after reversal learning), indicating that the rats treated with N omega-nitro-L-arginine had learned the spatial location of the platform. These findings were obtained under conditions where the NO synthesis in the dorsal hippocampus was completely inhibited. On the basis of the present data it was concluded that hippocampal NO is not critically involved in place learning in rats.

  5. Effect of Capparis spinosa L. on cognitive impairment induced by D-galactose in mice via inhibition of oxidative stress.

    Science.gov (United States)

    Turgut, Nergiz Hacer; Kara, Haki; Arslanbaş, Emre; Mert, Derya Güliz; Tepe, Bektaş; Güngör, Hüseyin

    2015-01-01

    To determine the phenolic acid levels and DNA damage protection potential of Capparis spinosa L. seed extract and to investigate the effect of the extract on cognitive impairment and oxidative stress in an Alzheimer disease mice model. Thirty BALB/c mice divided into 5 groups (control, D-galactose, D-galactose + C. spinosa 50, D-galactose + C. spinosa 100, D-galactose + C. spinosa 200) were used. Mice were administered an injection of D-galactose (100 mg/kg, subcutaneous) and orally administered C. spinosa (50, 100, or 200 mg/kg) daily for 8 weeks. Syringic acid was detected and the total amount was 204.629 µg/g. Addition of 0.05 mg/mL C. spinosa extract provided significant protection against the damage of DNA bands. C. spinosa attenuated D-galactose-induced learning dysfunctions in mice and significantly increased memory retention. Malondialdehyde (MDA) levels increased and superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities decreased in the D-galactose group. C. spinosa (200 mg/kg body weight) significantly decreased MDA level and increased SOD, GPx, and CAT activities. These results show that C. spinosa has the potential in ameliorating cognitive deficits induced by D-galactose in mice and the antioxidant activity may partially account for the improvement of learning and memory function.

  6. The chalcone derivative Chana 1 protects against amyloid β peptide-induced oxidative stress and cognitive impairment.

    Science.gov (United States)

    Kwak, Jieun; Kim, Mi-Jeong; Choi, Kyung-Chul; Choi, Hyo-Kyung; Jun, Woojin; Park, Hyun-Jin; Lee, Yoo-Hyun; Yoon, Ho-Geun

    2012-07-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease to cause dementia in the elderly. Amyloid β (Aβ)-peptide induced oxidative stress causes the initiation and progression of AD. Recently, new chalcone derivatives termed the Chana series were synthesized. Among them, Chana 1 showed high free radical scavenging activity (72.5%), as measured by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. In this study, we investigated the effect of Chana 1 against Aβ-induced cytotoxicity and cognitive deficits. Additionally, we sought to estimate the lethal dose, 50% (LD50) of Chana 1 in mice using an acute oral toxicity test. We found that Chana 1 significantly protected against Aβ-induced neuronal cell death in PC12 cells. Oral administration of Chana 1 at a dose of 50 mg/kg body weight/day significantly improved Aβ-induced learning and memory impairment in mice, as measured in Y-maze and passive avoidance tests. In acute toxicity tests, the LD50 in mice was determined to be 520.44 mg/kg body weight. The data are valuable for future studies and suggest that Chana 1 has therapeutic potential for the management of neurodegenerative disease.

  7. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring.

    Directory of Open Access Journals (Sweden)

    Michelle Lane

    Full Text Available Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2, which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity.

  8. Methodological Adaptations for Investigating the Perceptions of Language-Impaired Adolescents Regarding the Relative Importance of Selected Communication Skills

    Science.gov (United States)

    Reed, Vicki A.; Brammall, Helen

    2006-01-01

    This article describes the systematic and detailed processes undertaken to modify a research methodology for use with language-impaired adolescents. The original methodology had been used previously with normally achieving adolescents and speech pathologists to obtain their opinions about the relative importance of selected communication skills…

  9. Adaptation, validation and application of the chemo-thermal oxidation method to quantify black carbon in soils

    International Nuclear Information System (INIS)

    Agarwal, Tripti; Bucheli, Thomas D.

    2011-01-01

    The chemo-thermal oxidation method at 375 o C (CTO-375) has been widely used to quantify black carbon (BC) in sediments. In the present study, CTO-375 was tested and adapted for application to soil, accounting for some matrix specific properties like high organic carbon (≤39%) and carbonate (≤37%) content. Average recoveries of standard reference material SRM-2975 ranged from 25 to 86% for nine representative Swiss and Indian samples, which is similar to literature data for sediments. The adapted method was applied to selected samples of the Swiss soil monitoring network (NABO). BC content exhibited different patterns in three soil profiles while contribution of BC to TOC was found maximum below the topsoil at all three sites, however at different depths (60-130 cm). Six different NABO sites exhibited largely constant BC concentrations over the last 25 years, with short-term (6 months) prevailing over long-term (5 years) temporal fluctuations. - Research highlights: → The CTO-375 method was adapted and validated for BC analysis in soils. → Method validation figures of merit proofed satisfactory. → Application is shown with soil cores and topsoil temporal variability. → BC content can be elevated in subsurface soils. → BC contents in surface soils were largely constant over the last 25 years. - Although widely used also for soils, the chemo-thermal oxidation method at 375 o C to quantify black carbon has never been properly validated for this matrix before.

  10. Winter-swimming as a building-up body resistance factor inducing adaptive changes in the oxidant/antioxidant status.

    Science.gov (United States)

    Lubkowska, Anna; Dołęgowska, Barbara; Szyguła, Zbigniew; Bryczkowska, Iwona; Stańczyk-Dunaj, Małgorzata; Sałata, Daria; Budkowska, Marta

    2013-01-01

    The aim of our research was to examine whether winter-swimming for five consecutive months results in adaptational changes improving tolerance to stress induced by exposure to cryogenic temperatures during whole-body cryostimulation (WBC). The research involved 15 healthy men, with normal bodyweight, who had never been subjected to either WBC or cold water immersion. During the experiment, the participants were twice subjected to WBC (3 min/- 130°C), namely before the winter-swimming season and after the season. Blood was taken seven times: In the morning before each cryostimulation, 30 min after each cryostimulation and the next morning. Additionally, control blood was collected in the middle of the winter season, in February. Our analysis concerned changes in hematological parameters as well as in reduced glutathione and oxidized glutathione, total oxidant status, total antioxidant status and in components of the antioxidant system: Superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and 8-Isoprostanes as a sensitive indicator of oxidative stress. We found significant changes in hemoglobin concentration, the number of red blood cells, the hematocrit index and mean corpuscular volume of red blood cell and the percentage of monocytes and granulocytes after the winter swimming season. The response to cryogenic temperatures was milder after five months of winter-swimming. The obtained results may indicate positive adaptive changes in the antioxidant system of healthy winter-swimmers. These changes seem to increase the readiness of the human body to stress factors.

  11. Can an aversive, extinction-resistant memory trigger impairments in walking adaptability? An experimental study using adult rats.

    Science.gov (United States)

    Medeiros, Filipe Mello; de Carvalho Myskiw, Jociane; Baptista, Pedro Porto Alegre; Neves, Laura Tartari; Martins, Lucas Athaydes; Furini, Cristiane Regina Guerino; Izquierdo, Iván; Xavier, Léder Leal; Hollands, Kristen; Mestriner, Régis Gemerasca

    2018-02-05

    Cognitive demands can influence the adaptation of walking, a crucial skill to maintain body stability and prevent falls. Whilst previous research has shown emotional load tunes goal-directed movements, little attention has been given to this finding. This study sought to assess the effects of suffering an extinction-resistant memory on skilled walking performance in adult rats, as an indicator of walking adaptability. Thus, 36 Wistar rats were divided in a two-part experiment. In the first part (n=16), the aversive, extinction-resistance memory paradigm was established using a fear-conditioning chamber. In the second, rats (n=20) were assessed in a neutral room using the ladder rung walking test before and tree days after inducing an extinction-resistance memory. In addition, the elevated plus-maze test was used to control the influence of the anxiety-like status on gait adaptability. Our results revealed the shock group exhibited worse walking adaptability (lower skilled walking score), when compared to the sham group. Moreover, the immobility time in the ladder rung walking test was similar to the controls, suggesting that gait adaptability performance was not a consequence of the fear generalization. No anxiety-like behavior was observed in the plus maze test. Finally, correlation coefficients also showed the skilled walking performance score was positively correlated with the number of gait cycles and trial time in the ladder rung walking test and the total crossings in the plus maze. Overall, these preliminary findings provide evidence to hypothesize an aversive, extinction-resistant experience might change the emotional load, affecting the ability to adapt walking. Copyright © 2017. Published by Elsevier B.V.

  12. Adaptation of dementia screening for vision-impaired older persons: administration of the Mini-Mental State Examination (MMSE).

    Science.gov (United States)

    Busse, Anja; Sonntag, Astrid; Bischkopf, Jeannette; Matschinger, Herbert; Angermeyer, Matthias C

    2002-09-01

    In epidemiologic field studies on the prevalence and incidence of dementia the problems associated with the cognitive testing of visually impaired individuals are rarely discussed. In the Leipzig Longitudinal Study of the Aged (LEILA 75+) a version of the Mini-Mental State Examination for the visually impaired (MMSE-blind) was employed from which all items requiring image processing had been omitted. To be able to interpret the test results and include vision-impaired individuals in the field study, the scores for the full MMSE were estimated by conducting linear transformation of the scores obtained on the MMSE-blind. The method of linear transformation is based on certain theoretical assumptions that are examined in this article. Linear transformation of scores has proved to be a valid procedure only for individuals with very high or very low cognitive performance. Thus, evaluation of the estimated full MMSE scores based on the norms for the original MMSE is not recommended. A blind version of the MMSE with age- and education-specific norms that has been validated as a screening tool for dementia is therefore presented.

  13. Psychosocial Adaptation to Visual Impairment and Its Relationship to Depressive Affect in Older Adults with Age-Related Macular Degeneration

    Science.gov (United States)

    Tolman, Jennifer; Hill, Robert D.; Kleinschmidt, Julia J.; Gregg, Charles H.

    2005-01-01

    Purpose: In this study we examined psychosocial adaptation to vision loss and its relationship to depressive symptomatology in legally blind older adults with age-related macular degeneration (ARMD). Design and Methods: The 144 study participants were outpatients of a large regional vision clinic that specializes in the diagnosis and treatment of…

  14. Protective role of rosmarinic acid on amyloid beta 42-induced echoic memory decline: Implication of oxidative stress and cholinergic impairment.

    Science.gov (United States)

    Kantar Gok, Deniz; Hidisoglu, Enis; Ocak, Guzide Ayse; Er, Hakan; Acun, Alev Duygu; Yargıcoglu, Piraye

    2018-04-13

    In the present study, we examined whether rosmarinic acid (RA) reverses amyloid β (Aβ) induced reductions in antioxidant defense, lipid peroxidation, cholinergic damage as well as the central auditory deficits. For this purpose, Wistar rats were randomly divided into four groups; Sham(S), Sham + RA (SR), Aβ42 peptide (Aβ) and Aβ42 peptide + RA (AβR) groups. Rat model of Alzheimer was established by bilateral injection of Aβ42 peptide (2,2 nmol/10 μl) into the lateral ventricles. RA (50 mg/kg, daily) was administered orally by gavage for 14 days after intracerebroventricular injection. At the end of the experimental period, we recorded the auditory event related potentials (AERPs) and mismatch negativity (MMN) response to assess auditory functions followed by histological and biochemical analysis. Aβ42 injection led to a significant increase in the levels of thiobarbituric acid reactive substances (TBARS) and 4-Hydroxy-2-nonenal (4-HNE) but decreased the activity of antioxidant enzymes (SOD, CAT, GSH-Px) and glutathione levels. Moreover, Aβ42 injection resulted in a reduction in the acetylcholine content and acetylcholine esterase activity. RA treatment prevented the observed alterations in the AβR group. Furthermore, RA attenuated the increased Aβ staining and astrocyte activation. We also found that Aβ42 injection decreased the MMN response and theta power/coherence of AERPs, suggesting an impairing effect on auditory discrimination and echoic memory processes. RA treatment reversed the Aβ42 related alterations in AERP parameters. In conclusion, our study demonstrates that RA prevented Aβ-induced antioxidant-oxidant imbalance and cholinergic damage, which may contribute to the improvement of neural network dynamics of auditory processes in this rat model. Copyright © 2018. Published by Elsevier Ltd.

  15. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    Science.gov (United States)

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  16. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  17. Inhibition of iron-catalyzed oxidations by attainable uric acid and ascorbic acid levels: therapeutic implications for Alzheimer's disease and late cognitive impairment.

    Science.gov (United States)

    Waugh, William H

    2008-01-01

    Alzheimer's disease (AD) has become one of the major health problems of the developed world. Previous studies have shown that oxidant-induced changes occur in cerebral tissue in AD and in late-onset amnestic mild cognitive impairment. The oxidative damage begins early and involves free radical-mediated effects that cause lipid peroxidations and oxidative protein and nucleic acid damages which begin before the cardinal neuropathologic manifestations. Impaired cerebral iron homeostasis and iron accumulation are postulated to be primary and seminal in the pathogenesis. To demonstrate that the Fenton reaction involving hydrogen peroxide and iron at very low concentrations as has been found in human plasma and cerebrospinal fluid may produce promptly oxidations which may be inhibited by preventive use of uric acid and ascorbic acid as hydrophilic antioxidants. A photometric study in vitro at physiologic pH using concentrations of uric acid and ascorbic acid readily attainable in human extracellular fluids. Uric acid levels of 0.5 and 6.0 mg/dl (below the saturation level for urate precipitation) and ascorbic acid at a level readily attainable in blood plasma inhibited significantly and completely, respectively, oxidations caused by reactions of 20 microM concentrations of hydrogen peroxide with free bivalent iron at 9.8 muM and at a low hemoglobin level of 12 mg/dl of saline. Results suggest that supplemental use orally of ascorbic acid combined with use of metabolic precursor to uric acid, like inosine or hypoxanthine, has the potential for preventing or attenuating the progression of AD and amnestic mild cognitive impairment. Copyright 2008 S. Karger AG, Basel.

  18. Two-component regulatory system ActS/ActR is required for Sinorhizobium meliloti adaptation to oxidative stress.

    Science.gov (United States)

    Tang, Guirong; Wang, Sunjun; Lu, Dawei; Huang, Leqi; Li, Ningning; Luo, Li

    2017-05-01

    The two-component system ActS/ActR plays important roles in bacterial adaptation to abiotic stress, including acid tolerance and oxidant resistance. However, the underlying regulatory mechanism is not clear. In this study, we found that the ActS/ActR system is required for adaptation to oxidative stress by regulating the transcription of the genes actR, katB, gshA and gshB1. The actS and actR mutants were sensitive to low pH and oxidants such as H 2 O 2 , oxidized glutathione (GSSG) and sodium nitroprusside (SNP). The expression of actR by using a plasmid rescued the defect of SNP sensitivity for all actS and actR mutants. The expression of actS and actR were suppressed by treatment with H 2 O 2 . The expression of actS, actR, oxyR, katA and katB was required for ActS and ActR under normal conditions. The induction of katB, gshA and gshB1 depended on ActS and ActR during treatment with H 2 O 2 and SNP. Our findings revealed that the ActS/ActR system is a key redox regulator in S. meliltoi and provides a new cue to understanding Rhizobium-legume symbiosis. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. An eHealth Intervention to Promote Physical Activity and Social Network of Single, Chronically Impaired Older Adults: Adaptation of an Existing Intervention Using Intervention Mapping.

    Science.gov (United States)

    Boekhout, Janet M; Peels, Denise A; Berendsen, Brenda Aj; Bolman, Catherine Aw; Lechner, Lilian

    2017-11-23

    Especially for single older adults with chronic diseases, physical inactivity and a poor social network are regarded as serious threats to their health and independence. The Active Plus intervention is an automated computer-tailored eHealth intervention that has been proven effective to promote physical activity (PA) in the general population of adults older than 50 years. The aim of this study was to report on the methods and results of the systematic adaptation of Active Plus to the wishes and needs of the subgroup of single people older than 65 years who have one or more chronic diseases, as this specific target population may encounter specific challenges regarding PA and social network. The Intervention Mapping (IM) protocol was used to systematically adapt the existing intervention to optimally suit this specific target population. A literature study was performed, and quantitative as well as qualitative data were derived from health care professionals (by questionnaires, n=10) and the target population (by focus group interviews, n=14), which were then systematically integrated into the adapted intervention. As the health problems and the targeted behavior are largely the same in the original and adapted intervention, the outcome of the needs assessment was that the performance objectives remained the same. As found in the literature study and in data derived from health professionals and focus groups, the relative importance and operationalization of the relevant psychosocial determinants related to these objectives are different from the original intervention, resulting in a refinement of the change objectives to optimally fit the specific target population. This refinement also resulted in changes in the practical applications, program components, intervention materials, and the evaluation and implementation strategy for the subgroup of single, chronically impaired older adults. This study demonstrates that the adaptation of an existing intervention is an

  20. Preliminary Data on the Interaction between Some Biometals and Oxidative Stress Status in Mild Cognitive Impairment and Alzheimer’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Ioana-Miruna Balmuș

    2017-01-01

    Full Text Available Increased interest regarding the biometal mechanisms of action and the pathways in which they have regulatory roles was lately observed. Particularly, it was shown that biometal homeostasis dysregulation may lead to neurodegeneration including Alzheimer’s disease, Parkinson disease, or prion protein disease, since important molecular signaling mechanisms in brain functions implicate both oxidative stress and redox active biometals. Oxidative stress could be a result of a breakdown in metal-ion homeostasis which leads to abnormal metal protein chelation. In our previous work, we reported a strong correlation between Alzheimer’s disease and oxidative stress. Consequently, the aim of the present work was to evaluate some of the biometals’ levels (magnesium, manganese, and iron, the specific activity of some antioxidant enzymes (superoxide dismutase and glutathione peroxidase, and a common lipid peroxidation marker (malondialdehyde concentration, in mild cognitive impairment (n=15 and Alzheimer’s disease (n=15 patients, compared to age-matched healthy subjects (n=15. We found increased lipid peroxidation effects, low antioxidant defense, low magnesium and iron concentrations, and high manganese levels in mild cognitive impairment and Alzheimer’s disease patients, in a gradual manner. These data could be relevant for future association studies regarding the prediction of Alzheimer’s disease development risk or circling through stages by analyzing both active redox metals, oxidative stress markers, and the correlations in between.

  1. Impact of exercise on diurnal and nocturnal markers of glycaemic variability and oxidative stress in obese individuals with type 2 diabetes or impaired glucose tolerance.

    Science.gov (United States)

    Farabi, Sarah S; Carley, David W; Smith, Donald; Quinn, Lauretta

    2015-09-01

    We measured the effects of a single bout of exercise on diurnal and nocturnal oxidative stress and glycaemic variability in obese subjects with type 2 diabetes mellitus or impaired glucose tolerance versus obese healthy controls. Subjects (in random order) performed either a single 30-min bout of moderate-intensity exercise or remained sedentary for 30 min at two separate visits. To quantify glycaemic variability, standard deviation of glucose (measured by continuous glucose monitoring system) and continuous overlapping net glycaemic action of 1-h intervals (CONGA-1) were calculated for three 12-h intervals during each visit. Oxidative stress was measured by 15-isoprostane F(2t) levels in urine collections for matching 12-h intervals. Exercise reduced daytime glycaemic variability (ΔCONGA-1 = -12.62 ± 5.31 mg/dL, p = 0.04) and urinary isoprostanes (ΔCONGA-1 = -0.26 ± 0.12 ng/mg, p = 0.04) in the type 2 diabetes mellitus/impaired glucose tolerance group. Daytime exercise-induced change in urinary 15-isoprostane F(2t) was significantly correlated with both daytime standard deviation (r = 0.68, p = 0.03) and with subsequent overnight standard deviation (r = 0.73, p = 0.027) in the type 2 diabetes mellitus/impaired glucose tolerance group. Exercise significantly impacts the relationship between diurnal oxidative stress and nocturnal glycaemic variability in individuals with type 2 diabetes mellitus/impaired glucose tolerance. © The Author(s) 2015.

  2. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Muhsain, Siti Nur Fadzilah, E-mail: sitinurfadzilah077@ppinang.uitm.edu.my [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Faculty of Pharmacy, University Teknologi Mara (Malaysia); Lang, Matti A., E-mail: m.lang@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200 mg pyrazole/kg/day for 3 days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection. - Highlights: • Pyrazole induces oxidative stress in the mouse liver. • Pyrazole-induced oxidative stress induces mitochondrial targeting of key bilirubin regulatory enzymes, HMOX1

  3. Nitric oxide and TNFα are critical regulators of reversible lymph node vascular remodeling and adaptive immune response.

    Directory of Open Access Journals (Sweden)

    Stephanie L Sellers

    Full Text Available Lymph node (LN vascular growth, at the level of the main arteriole, was recently characterized for the first time during infection. Arteriole diameter was shown to increase for at least seven days and to occur via a CD4(+ T cell dependent mechanism, with vascular expansion playing a critical role in regulating induction of adaptive immune response. Here, using intravital microscopy of the inguinal LN during herpes simplex type II (HSV-2 infection, the data provides the first studies that demonstrate arteriole expansion during infection is a reversible vascular event that occurs via eutrophic outward remodeling. Furthermore, using genetic ablation models, and pharmacological blockade, we reveal arteriole remodeling and LN hypertrophy to be dependent upon both endothelial nitric oxide synthase (eNOS and TNFα expression. Additionally, we reveal transient changes in nitric oxide (NO levels to be a notable feature of response to viral infection and LN vascular remodeling and provide evidence that mast cells are the critical source of TNFα required to drive arteriole remodeling. Overall, this study is the first to fully characterize LN arteriole vascular changes throughout the course of infection. It effectively reveals a novel role for NO and TNFα in LN cellularity and changes in LN vascularity, which represent key advances in understanding LN vascular physiology and adaptive immune response.

  4. Tong Luo Jiu Nao ameliorates Aβ1-40-induced cognitive impairment on adaptive behavior learning by modulating ERK/CaMKII/CREB signaling in the hippocampus.

    Science.gov (United States)

    Shi, Zhe; Lu, Cong; Sun, Xiuping; Wang, Qiong; Chen, Shanguang; Li, Yinghui; Qu, Lina; Chen, Lingling; Bu, Lanlan; Liao, Duanfang; Liu, Xinmin

    2015-03-11

    Tong Luo Jiu Nao (TLJN), a modern formula of Chinese medicine extracts on the basis of Traditional Chinese Medicine theory, has been used to treat dementia. The present study aimed to investigate its ameliorating effects on Aβ1-40-induced cognitive impairment in rats using a series of novel reward-directed instrumental learning (RDIL) tasks, and to determine its possible mechanism of action. Rats were pretreated with TLJN extract (0.9 and 1.8 g/kg, p.o.) for 10 daysbefore surgery, and were trained to gain reward reinforcement by lever pressing at the meantime. Thereafter, rats received a bilateral microinjection of Aβ1-40 in CA1 regions of the hippocampus. Cognitive performance was evaluated with the goal directed (higher response ratio) and habit (visual signal discrimination and extinction) learning tasks, as well as on the levels of biochemical parameters and molecules. Our findings first demonstrated that TLJN can improve Aβ1-40-induced amnesia in RDIL via enhancing the comprehension of action-outcome association and the utilization of cue information to guide behavior. Then, its ameliorating effects should attribute to the modulation of ERK/CaMKII/CREB signaling in the hippocampus. TLJN can markedly enhance cognitions of Aβ1-40 microinjection animal model in adaptive behavioral tasks. It has the potential, possibly as complementary and alternative therapy, to prevent and/or delay the deterioration of cognitive impairment in AD.

  5. Impairment of nitric oxide synthase but not heme oxygenase accounts for baroreflex dysfunction caused by chronic nicotine in female rats.

    Directory of Open Access Journals (Sweden)

    Mohamed A Fouda

    Full Text Available We recently reported that chronic nicotine impairs reflex chronotropic activity in female rats. Here, we sought evidence to implicate nitric oxide synthase (NOS and/or heme oxygenase (HO in the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate to increases (phenylephrine or decreases (sodium nitroprusside in blood pressure were generated in conscious female rats treated with nicotine or saline in absence and presence of pharmacological modulators of NOS or HO activity. Compared with saline-treated rats, nicotine (2 mg/kg/day i.p., for 14 days significantly reduced the slopes of baroreflex curves, a measure of baroreflex sensitivity (BRS. Findings that favor the involvement of NOS inhibition in the nicotine effect were (i NOS inhibition (Nω-Nitro-L-arginine methyl ester, L-NAME reduced BRS in control rats but failed to do so in nicotine-treated rats, (ii L-arginine, NO donor, reversed the BRS inhibitory effect of nicotine. Alternatively, HO inhibition (zinc protoporphyrin IX, ZnPP had no effect on BRS in nicotine- or control rats and failed to reverse the beneficial effect of L-arginine on nicotine-BRS interaction. Similar to female rats, BRS was reduced by L-NAME, but not ZnPP, in male rats and the L-NAME effect was not accentuated after concomitant administration of nicotine. Baroreflex dysfunction caused by nicotine in female rats was blunted after supplementation with hemin (HO inducer but not tricarbonyldichlororuthenium(II dimer (CORM-2, a carbon monoxide (CO releasing molecule, or bilirubin, the breakdown product of heme catabolism. The facilitatory effect of hemin was abolished upon simultaneous treatment with L-NAME or 1H-[1], [2], [4] oxadiazolo[4,3-a] quinoxalin-1-one (inhibitor of soluble guanylate cyclase, sGC. The activities of HO and NOS in brainstem tissues were also significantly increased by hemin. Thus, the inhibition of NOS, but not HO, accounts for the baroreflex depressant of chronic nicotine

  6. Impairment of nitric oxide synthase but not heme oxygenase accounts for baroreflex dysfunction caused by chronic nicotine in female rats.

    Science.gov (United States)

    Fouda, Mohamed A; El-Gowelli, Hanan M; El-Gowilly, Sahar M; Rashed, Laila; El-Mas, Mahmoud M

    2014-01-01

    We recently reported that chronic nicotine impairs reflex chronotropic activity in female rats. Here, we sought evidence to implicate nitric oxide synthase (NOS) and/or heme oxygenase (HO) in the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate to increases (phenylephrine) or decreases (sodium nitroprusside) in blood pressure were generated in conscious female rats treated with nicotine or saline in absence and presence of pharmacological modulators of NOS or HO activity. Compared with saline-treated rats, nicotine (2 mg/kg/day i.p., for 14 days) significantly reduced the slopes of baroreflex curves, a measure of baroreflex sensitivity (BRS). Findings that favor the involvement of NOS inhibition in the nicotine effect were (i) NOS inhibition (Nω-Nitro-L-arginine methyl ester, L-NAME) reduced BRS in control rats but failed to do so in nicotine-treated rats, (ii) L-arginine, NO donor, reversed the BRS inhibitory effect of nicotine. Alternatively, HO inhibition (zinc protoporphyrin IX, ZnPP) had no effect on BRS in nicotine- or control rats and failed to reverse the beneficial effect of L-arginine on nicotine-BRS interaction. Similar to female rats, BRS was reduced by L-NAME, but not ZnPP, in male rats and the L-NAME effect was not accentuated after concomitant administration of nicotine. Baroreflex dysfunction caused by nicotine in female rats was blunted after supplementation with hemin (HO inducer) but not tricarbonyldichlororuthenium(II) dimer (CORM-2), a carbon monoxide (CO) releasing molecule, or bilirubin, the breakdown product of heme catabolism. The facilitatory effect of hemin was abolished upon simultaneous treatment with L-NAME or 1H-[1], [2], [4] oxadiazolo[4,3-a] quinoxalin-1-one (inhibitor of soluble guanylate cyclase, sGC). The activities of HO and NOS in brainstem tissues were also significantly increased by hemin. Thus, the inhibition of NOS, but not HO, accounts for the baroreflex depressant of chronic nicotine

  7. Gigaspora margarita with and without its endobacterium shows adaptive responses to oxidative stress.

    Science.gov (United States)

    Venice, Francesco; de Pinto, Maria Concetta; Novero, Mara; Ghignone, Stefano; Salvioli, Alessandra; Bonfante, Paola

    2017-11-01

    Arbuscular mycorrhizal (AM) fungi experience oxidative stress during the plant-fungal interaction, due to endogenous reactive oxygen species (ROS) produced by fungal metabolism and exogenous ROS produced by plant cells. Here, we examine the responses to H 2 O 2 in Gigaspora margarita, an AM fungus containing the endobacterial symbiont Candidatus Glomeribacter gigasporarum (CaGg). Previous studies revealed that G. margarita with its endobacterium produces more ATP and has higher respiratory activity than a cured line that lacks the endobacterium. This higher bioenergetic potential leads to higher production of ROS and to a higher ROS-detoxifying capacity, suggesting a direct or indirect role of the endobacterium in modulating fungal antioxidant responses. To test the hypothesis that the fungal-endobacterial symbiosis may enhance the fitness of the AM fungus in the presence of oxidative stress, we treated the fungus with a sublethal concentration of H 2 O 2 and performed RNA-seq analysis. Our results demonstrate that (i) irrespective of the endobacterium presence, G. margarita faces oxidative stress by activating multiple metabolic processes (methionine oxidation, sulfur uptake, the pentose phosphate pathway, activation of ROS-scavenger genes); (ii) in the presence of its endobacterium, G. margarita upregulates some metabolic pathways, like chromatin status modifications and iron metabolism; and (iii) contrary to our hypothesis, the cured line responds to H 2 O 2 by activating the transcription of specific ROS scavengers. We confirmed the RNA-seq findings by measuring the glutathione and ascorbate concentration, which was the same in both lines after H 2 O 2 treatment. We conclude that both fungal lines may face oxidative stress, but they activate alternative strategies.

  8. The impact of visual and nonvisual factors on quality of life and adaptation in adults with visual impairment.

    Science.gov (United States)

    Hernandez Trillo, Ana; Dickinson, Christine M

    2012-06-28

    Quality of life (QoL) questionnaires have been suggested as the most appropriate way to measure the effectiveness of low vision rehabilitation. This study investigated the relative contribution of visual and psychosocial factors to different aspects of QoL in people with low vision. A total of 448 consecutive patients between the ages of 18 and 96 years, with best-corrected binocular visual acuity≤6/18 and attending a low vision clinic, were recruited. Telephone delivery of previously validated questionnaires was used. The Low Vision Quality of Life (LVQOL), the Adaptation to Age-Related Vision Loss (AVL)-12, and the Keele Participation Restriction Questionnaire (KAP) questionnaires were considered as outcome measures for functional vision, adaptation to vision loss, and participation restriction, respectively. Personality (BFI-10), religious beliefs (SBI-15), social support (MOS), the mental and physical components of general health (the MCS and PCS of SF-12), well-being (WHO-5), use of magnifiers (MLVQ), understanding of their eye condition and satisfaction with the eye clinic (MLVQ), level of education, and financial status were all considered as predictive of QoL. Regression analysis found the PCS and MCS from SF-12 to be major predictors of LVQOL, AVL-12, and KAP scores. Although distance visual acuity and contrast sensitivity were predictors of LVQOL scores, "use of magnifiers" did not contribute to any of the QoL measures. Nonvisual factors, such as physical and mental health, were found to be stronger predictors of QoL in people with low vision than visual factors such as contrast sensitivity and visual acuity, or the use of magnifiers. Researchers need to be aware when measuring QoL in a population with low vision that even vision-related QoL is strongly influenced by nonvisual variables.

  9. Absence of Peroxiredoxin 6 Amplifies the Effect of Oxidant Stress on Mobility and SCSA/CMA3 Defined Chromatin Quality and Impairs Fertilizing Ability of Mouse Spermatozoa1

    Science.gov (United States)

    Ozkosem, Burak; Feinstein, Sheldon I.; Fisher, Aron B.; O'Flaherty, Cristian

    2016-01-01

    Oxidative stress, the imbalance between reactive oxygen species production and antioxidant defenses, is associated with male infertility. Peroxiredoxins (PRDXs) are antioxidant enzymes with a wide distribution in spermatozoa. PRDX6 is highly abundant and located in all subcellular compartments of the spermatozoon. Infertile men have lower levels of sperm PRDX6 associated with low sperm motility and high DNA damage. In order to better understand the role of PRDX6 in male reproduction, the aim of this study was to elucidate the impact of the lack of PRDX6 on male mouse fertility. Spermatozoa lacking PRDX6 showed significantly increased levels of cellular oxidative damage evidenced by high levels of lipid peroxidation, 8-hydroxy-deoxyguanosine (DNA oxidation), and protein oxidation (S-glutathionylation and carbonylation), lower sperm chromatin quality (high DNA fragmentation and low DNA compaction, due to low levels of protamination and a high percentage of free thiols), along with decreased sperm motility and impairment of capacitation as compared with wild-type (WT) spermatozoa. These manifestations of damage are exacerbated by tert-butyl hydroperoxide treatment in vivo. While WT males partially recovered the quality of their spermatozoa (in terms of motility and sperm DNA integrity), Prdx6−/− males showed higher levels of sperm damage (lower motility and chromatin integrity) 6 mo after the end of treatment. In conclusion, Prdx6−/− males are more vulnerable to oxidative stress than WT males, resulting in impairment of sperm quality and ability to fertilize the oocyte, compatible with the subfertility phenotype observed in these knockout mice. PMID:26792942

  10. Absence of Peroxiredoxin 6 Amplifies the Effect of Oxidant Stress on Mobility and SCSA/CMA3 Defined Chromatin Quality and Impairs Fertilizing Ability of Mouse Spermatozoa.

    Science.gov (United States)

    Ozkosem, Burak; Feinstein, Sheldon I; Fisher, Aron B; O'Flaherty, Cristian

    2016-03-01

    Oxidative stress, the imbalance between reactive oxygen species production and antioxidant defenses, is associated with male infertility. Peroxiredoxins (PRDXs) are antioxidant enzymes with a wide distribution in spermatozoa. PRDX6 is highly abundant and located in all subcellular compartments of the spermatozoon. Infertile men have lower levels of sperm PRDX6 associated with low sperm motility and high DNA damage. In order to better understand the role of PRDX6 in male reproduction, the aim of this study was to elucidate the impact of the lack of PRDX6 on male mouse fertility. Spermatozoa lacking PRDX6 showed significantly increased levels of cellular oxidative damage evidenced by high levels of lipid peroxidation, 8-hydroxy-deoxyguanosine (DNA oxidation), and protein oxidation (S-glutathionylation and carbonylation), lower sperm chromatin quality (high DNA fragmentation and low DNA compaction, due to low levels of protamination and a high percentage of free thiols), along with decreased sperm motility and impairment of capacitation as compared with wild-type (WT) spermatozoa. These manifestations of damage are exacerbated by tert-butyl hydroperoxide treatment in vivo. While WT males partially recovered the quality of their spermatozoa (in terms of motility and sperm DNA integrity), Prdx6(-/-) males showed higher levels of sperm damage (lower motility and chromatin integrity) 6 mo after the end of treatment. In conclusion, Prdx6(-/-) males are more vulnerable to oxidative stress than WT males, resulting in impairment of sperm quality and ability to fertilize the oocyte, compatible with the subfertility phenotype observed in these knockout mice. © 2016 by the Society for the Study of Reproduction, Inc.

  11. Impairment by hypoxia or hypoxia/reoxygenation of nitric oxide-mediated relaxation in isolated monkey coronary artery: the role of intracellular superoxide.

    Science.gov (United States)

    Tawa, Masashi; Yamamizu, Kohei; Geddawy, Ayman; Shimosato, Takashi; Imamura, Takeshi; Ayajiki, Kazuhide; Okamura, Tomio

    2011-01-01

    To investigate the effect of hypoxia or hypoxia/reoxygenation on vascular smooth muscle function, mechanical response of monkey coronary artery without endothelium was studied under normoxia, hypoxia, and hypoxia/reoxygenation. Hypoxia or hypoxia/reoxygenation impaired the relaxation by nitroglycerin or isosorbide dinitrate but not that by 8-bromoguanosine-3',5'-cyclic monophosphate or isoproterenol. Tempol restored the impaired relaxation by nitroglycerin or isosorbide dinitrate, but superoxide dismutase had no effect. Apocynin, an NADPH oxidase inhibitor, improved the nitroglycerin-induced relaxation under hypoxia, but not under reoxygenation. Under combined treatment of apocynin with oxypurinol (xanthine oxidase inhibitor), rotenone (mitochondria electron transport inhibitor), or both, hypoxic impairment of vasorelaxation was restored more effectively. Similarly, impairment of the nitroglycerin-induced vasorelaxation under hypoxia/reoxygenation was restored by combined treatment with three inhibitors, apocynin, oxypurinol, and rotenone. Increase in superoxide production under hypoxia tended to be inhibited by apocynin and that under hypoxia/reoxygenation was abolished by combined treatment with three inhibitors. These findings suggest that increased intracellular superoxide production under hypoxia or hypoxia/reoxygenation attenuates vasodilation mediated with a nitric oxide/soluble guanylyl cyclase, but not adenylyl cyclase, signaling pathway. The main source of superoxide production under hypoxia seems to be different from that under reoxygenation: superoxide is produced by NADPH oxidase during hypoxia, whereas it is produced by xanthine oxidase, mitochondria, or both during reoxygenation.[Supplementary Figure: available only at http://dx.doi.org/10.1254/jphs.11031FP].

  12. Omega-3 polyunsaturated fatty acids in large doses attenuate seizures, cognitive impairment, and hippocampal oxidative DNA damage in young kindled rats.

    Science.gov (United States)

    Abdel-Wahab, Basel A; Al-Qahtani, Jobran M; El-Safty, Samy A

    2015-01-01

    Omega-3 (OM3) dietary polyunsaturated fatty acids have promising seizure-protective effects, as well as enhancing effects of cognitive development and memory-related learning. This study aimed to explore the effect of large doses of OM3 on cognitive impairment and hippocampal oxidative DNA damage produced by seizures in epileptic children using a PTZ-kindled young rat model. Cognitive functions, biomarkers of oxidative stress, and DNA damage were assessed in PTZ-kindled young rats (30 mg/kg, i.p. once every other day for 13 injections) pretreated with OM3 (200-500 mg/kg, p.o.). Pretreatment with OM3 at the tested doses significantly attenuated PTZ-induced seizures and decreased cognitive impairment in both passive avoidance and elevated plus maze tests in the PTZ-kindled rats. Moreover, OM3 significantly attenuated the increase in hippocampal malondialdehyde and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, as well as the decrease in reduced glutathione (GSH) levels and GSH-peroxidase activity induced by PTZ kindling, in a dose-related manner. Relatively large dose levels of OM3 (200-500 mg/kg) effectively attenuated seizures and their associated cognitive deficits, and reduced oxidative stress and hippocampal DNA damage in PTZ-kindled young rats. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Grape Powder Supplementation Prevents Oxidative Stress–Induced Anxiety-Like Behavior, Memory Impairment, and High Blood Pressure in Rats123

    Science.gov (United States)

    Allam, Farida; Dao, An T.; Chugh, Gaurav; Bohat, Ritu; Jafri, Faizan; Patki, Gaurav; Mowrey, Christopher; Asghar, Mohammad; Alkadhi, Karim A.; Salim, Samina

    2013-01-01

    We examined whether or not grape powder treatment ameliorates oxidative stress–induced anxiety-like behavior, memory impairment, and hypertension in rats. Oxidative stress in Sprague-Dawley rats was produced by using l-buthionine-(S,R)-sulfoximine (BSO). Four groups of rats were used: 1) control (C; injected with vehicle and provided with tap water), 2) grape powder–treated (GP; injected with vehicle and provided for 3 wk with 15 g/L grape powder dissolved in tap water), 3) BSO-treated [injected with BSO (300 mg/kg body weight), i.p. for 7 d and provided with tap water], and 4) BSO plus grape powder–treated (GP+BSO; injected with BSO and provided with grape powder–treated tap water). Anxiety-like behavior was significantly greater in BSO rats compared with C or GP rats (P blood pressure was significantly greater in BSO rats compared with C or GP rats (P high blood pressure in GP+BSO rats. Furthermore, brain extracellular signal-regulated kinase-1/2 (ERK-1/2) was activated (P oxidative stress–induced anxiety, memory impairment, and hypertension in rats. PMID:23596160

  14. Oral supplements of aqueous extract of tomato seeds alleviate motor abnormality, oxidative impairments and neurotoxicity induced by rotenone in mice: relevance to Parkinson's disease.

    Science.gov (United States)

    Gokul, Krishna; Muralidhara

    2014-07-01

    Although tomato seeds (an industrial by-product) are known to contain several bioactive compounds, studies describing their health effects are limited. Previously, we evidenced that aqueous extract of tomato seeds (TSE) markedly attenuated rotenone (ROT)-induced oxidative stress and neurotoxicity in Drosophila system. This study investigated the neuroprotective effect of TSE in a chronic ROT model of neurotoxicity in mice. Initially, we assessed the potential of oral supplements of TSE to modulate the levels of endogenous markers of oxidative stress in brain regions of mice. Subsequently, employing a co-exposure paradigm, the propensity of TSE (100 mg/kg bw, 3 weeks) to attenuate ROT-induced behavioral phenotype (gait abnormalities, anxiety-like state), oxidative dysfunctions and neurotoxicity was examined. We found that mice provided with TSE supplements exhibited progressive improvement in gait pattern and exploratory behavior. TSE markedly offset ROT-induced oxidative impairments, restored reduced glutathione levels, antioxidant defenses (superoxide dismutase, glutathione peroxidase) and protein carbonyls content in brain regions. Specifically, TSE effectively diminished ROT induced elevation in the activity levels of acetylcholinesterase and restored the dopamine levels in striatum. Interestingly, in mitochondria, TSE was able to restore the activity of mitochondrial complexes and redox state. Collectively, our findings in the chronic ROT model demonstrate the ability of TSE to alleviate behavioral phenotype, oxidative stress, mitochondrial dysfunction and neurotoxicity. Further studies in dopaminergic cell models are necessary to understand the precise molecular mechanism/s by which tomato seed bioactives offer significant neuroprotection.

  15. Adaptations to oxidative stress induced by vitamin E deficiency in rat liver.

    Science.gov (United States)

    de Cabo, Rafael; Burgess, John R; Navas, Placido

    2006-12-01

    Vitamin E deficiency in rats led to a sequence of antioxidant defense adaptations in the liver. After three weeks, alpha-tocopherol concentration was 5% of control, but ascorbate and ubiquinol concentrations were 2- to 3-fold greater than control. During the early phase of adaptation no differences in markers of lipid peroxidation were observed, but the activities of both cytochrome b5 reductase and glucose-6-phosphate dehydrogenase were significantly greater in deficient livers. By nine weeks, accumulation of lipid peroxidation end products began to occur along with declining concentrations of ascorbate, and higher NQO1 activities. At twelve weeks, rat growth ceased, and both lipid peroxidation products and cytosolic calcium-independent phospholipase A2 reached maximum concentrations. Thus, in growing rats the changes progressed from increases in both ubiquinol and quinone reductases through accumulation of lipid peroxidation products and loss of endogenous antioxidants to finally induction of lipid metabolizing enzymes and cessation of rat growth.

  16. Copper-induced adaptation, oxidative stress and its tolerance in Aspergillus niger UCP1261

    Directory of Open Access Journals (Sweden)

    Marcos A. Cavalcanti Luna

    2015-11-01

    Conclusions: The results indicate that the isolate was able to grow in high concentrations of copper, activates mechanisms for adaptation and tolerance in the presence of metal, and is highly efficient at removing the agent. Such data are fundamental if a better understanding is to be reached of the cellular and molecular abilities of native isolates, which can be used to develop bioprocesses in environmental and industrial areas.

  17. A Bacterial Receptor PcrK Senses the Plant Hormone Cytokinin to Promote Adaptation to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fang-Fang Wang

    2017-12-01

    Full Text Available Summary: Recognition of the host plant is a prerequisite for infection by pathogenic bacteria. However, how bacterial cells sense plant-derived stimuli, especially chemicals that function in regulating plant development, remains completely unknown. Here, we have identified a membrane-bound histidine kinase of the phytopathogenic bacterium Xanthomonas campestris, PcrK, as a bacterial receptor that specifically detects the plant cytokinin 2-isopentenyladenine (2iP. 2iP binds to the extracytoplasmic region of PcrK to decrease its autokinase activity. Through a four-step phosphorelay, 2iP stimulation decreased the phosphorylation level of PcrR, the cognate response regulator of PcrK, to activate the phosphodiesterase activity of PcrR in degrading the second messenger 3′,5′-cyclic diguanylic acid. 2iP perception by the PcrK-PcrR remarkably improves bacterial tolerance to oxidative stress by regulating the transcription of 56 genes, including the virulence-associated TonB-dependent receptor gene ctrA. Our results reveal an evolutionarily conserved, inter-kingdom signaling by which phytopathogenic bacteria intercept a plant hormone signal to promote adaptation to oxidative stress. : How pathogenic bacteria use receptors to recognize the signals of the host plant is unknown. Wang et al. have identified a bacterial receptor histidine kinase that specifically senses the plant hormone cytokinin. Through a four-step phosphorelay, cytokinin perception triggers degradation of a second messenger, c-di-GMP, to activate the bacterial response to oxidative stress. Keywords: histidine kinase, ligand, cytokinin, autokinase activity, phosphorelay, response regulator, two-component signal transduction system, Xanthomonas campestris pv. campestris, virulence, oxidative stress

  18. Suppression of nitric oxide synthesis by L-NAME reverses the beneficial effects of pioglitazone on scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Allami, Nika; Javadi-Paydar, Mehrak; Rayatnia, Farhoud; Sehhat, Kourosh; Rahimian, Reza; Norouzi, Abbas; Dehpour, Ahmad Reza

    2011-01-10

    Pioglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPARγ), which is widely used in treatment of type 2 diabetes, has shown some therapeutic effect in Alzheimer's disease. In this study, effects of acute pioglitazone on acquisition, consolidation and retrieval of memory, and also the involvement of nitric oxide (NO) in the effects of pioglitazone on spatial recognition memory has been investigated in a two-trial recognition Y-maze test and passive avoidance in mice. Memory impairment was induced by scopolamine (1mg/kg, i.p.). Pioglitazone (10 and 20mg/kg, p.o.) was administrated prior to either acquisition, consolidation or retention trials, while L-NAME (N-nitro-l-arginine methyl ester), a non-specific NO synthase inhibitor, was administered (10mg/kg, i.p.) 30min before each trial. 1) pioglitazone improved the acquisition of recognition spatial memory-impaired by scopolamine; L-NAME dramatically reversed improving effects of pioglitazone on memory acquisition; 2) pioglitazone did not change the consolidation of spatial memory, impaired by scopolamine; 3) pioglitazone improved the retrieval of spatial memory and L-NAME did not alter the beneficial effect of pioglitazone; 4) pioglitazone did not affect scopolamine-induced cognitive impairments in the passive avoidance test. The present study demonstrates the beneficial effect of acute pioglitazone administration on acquisition and retrieval of scopolamine-induced cognitive deficits. This effect was reversed only in acquisition phase by nitric oxide synthase inhibitor, L-NAME, therefore, it could be concluded that NO might be involved in the pioglitazone beneficial effect of spatial memory acquisition. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Impaired quality of life in growth hormone-deficient adults is independent of the altered skeletal muscle oxidative metabolism found in conditions with peripheral fatigue.

    Science.gov (United States)

    Sinha, Akash; Hollingsworth, Kieren G; Ball, Steve; Cheetham, Tim

    2014-01-01

    Growth hormone-deficient (GHD) adults often report impaired quality of life (QoL) - with fatigue, a key element. This deficit can improve following GH replacement. The basis of this response is unclear. Perturbations in skeletal muscle metabolism have been demonstrated in several conditions in which fatigue is a prominent symptom. We wished to define the role of skeletal muscle metabolism in the impaired QoL observed in patients with GHD. To compare in vivo skeletal muscle mitochondrial oxidative phosphorylation using phosphorus-31 magnetic resonance spectroscopy in matched untreated GHD adults, treated GHD adults and healthy volunteers. Twenty-two untreated GHD adults, 23 treated GHD adults and 20 healthy volunteers were recruited at a regional centre. All patients underwent assessment of muscle mitochondrial function (τ₁/₂ PCr) and proton handling using spectroscopy. Fasting biochemical analyses and anthropometric measurement were obtained. All patients completed the QoL-AGHDA and physical activity assessment (IPAQ) questionnaires. Untreated and treated GHD adults complained of significantly increased fatigue and an impaired QoL (P = 0·002) when compared to healthy controls. There was no difference in maximal mitochondrial function (P = 0·53) nor pH recovery (P = 0·38) of skeletal muscle between the three groups. Untreated GHD patients had significantly lower IGF-1 than both treated GHD and healthy volunteers (P muscle spectroscopic 'footprint' of altered mitochondrial oxidative function, anaerobic glycolysis or proton clearance that are a feature of several conditions in which fatigue is a prominent feature. These data suggest that the pathophysiology of fatigue and impaired QoL in GHD may have a significant central rather than peripheral (skeletal muscle) component. © 2013 John Wiley & Sons Ltd.

  20. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Science.gov (United States)

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  1. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Giralt, M; Carrasco, J

    2000-01-01

    of the antioxidants Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, and catalase remained unaffected by the IL-6 deficiency. The lesioned mice showed increased oxidative stress, as judged by malondialdehyde (MDA) and nitrotyrosine (NITT) levels and by formation of inducible nitric oxide synthase (iNOS). IL-6KO mice...

  2. Albumin-bound fatty acids induce mitochondrial oxidant stress and impair antioxidant responses in proximal tubular cells

    NARCIS (Netherlands)

    Ishola, D. A.; Post, J. A.; van Timmeren, M. M.; Bakker, S. J. L.; Goldschmeding, R.; Koomans, H. A.; Braam, B.; Joles, J. A.

    Albumin induces oxidative stress and cytokine production in proximal tubular cells (PTECs). Albumin-bound fatty acids (FAs) enhance tubulopathic effects of albumin in vivo. We proposed that FA aggravation of albumin-induced oxidative stress in PTECs might be involved. We hypothesized that

  3. Impaired very long-chain acyl-CoA β-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction.

    Science.gov (United States)

    Wiesinger, Christoph; Kunze, Markus; Regelsberger, Günther; Forss-Petter, Sonja; Berger, Johannes

    2013-06-28

    X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity.

  4. Impaired Very Long-chain Acyl-CoA β-Oxidation in Human X-linked Adrenoleukodystrophy Fibroblasts Is a Direct Consequence of ABCD1 Transporter Dysfunction*

    Science.gov (United States)

    Wiesinger, Christoph; Kunze, Markus; Regelsberger, Günther; Forss-Petter, Sonja; Berger, Johannes

    2013-01-01

    X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity. PMID:23671276

  5. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer’s Disease Patients. Relevant Role of Neutrophils in Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Carmen Vida

    2018-01-01

    Full Text Available Since aging is considered the most risk factor for sporadic Alzheimer’s Disease (AD, the age-related impairment of the immune system (immunosenescence, based on a chronic oxidative-inflammatory stress situation, could play a key role in the development and progression of AD. Although AD is accompanied by systemic disturbance, reflecting the damage in the brain, the changes in immune response and redox-state in different types of blood cells in AD patients have been scarcely studied. The aim was to analyze the variations in several immune functions and oxidative-inflammatory stress and damage parameters in both isolated peripheral neutrophils and mononuclear blood cells, as well as in whole blood cells, from patients diagnosed with mild (mAD and severe AD, and of age-matched controls (elderly healthy subjects as well as of adult controls. The cognitive decline of all subjects was determined by Mini-Mental State Examination (MMSE test (mAD stage was established at 20 ≤ MMSE ≤ 23 score; AD stage at <18 MMSE; elderly subjects >27 MMSE. The results showed an impairment of the immune functions of human peripheral blood neutrophils and mononuclear cells of mAD and AD patients in relation to healthy elderly subjects, who showed the typical immunosenescence in comparison with the adult individuals. However, several alterations were only observed in severe AD patients (lower chemotaxis, lipopolysaccharide lymphoproliferation, and interleukin (IL-10 release; higher basal proliferation, tumor necrosis factor (TNF-α release, and IL-10/TNF-α ratio, others only in mAD subjects (higher adherence, meanwhile others appeared in both mAD and AD patients (lower phytohemaglutinin lymphoproliferation and higher IL-6 release. This impairment of immune functions could be mediated by: (1 the higher oxidative stress and damage also observed in blood cells from mAD and AD patients and in isolated neutrophils [lower glutathione (GSH levels, high oxidized

  6. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer’s Disease Patients. Relevant Role of Neutrophils in Oxidative Stress

    Science.gov (United States)

    Vida, Carmen; Martinez de Toda, Irene; Garrido, Antonio; Carro, Eva; Molina, José Antonio; De la Fuente, Mónica

    2018-01-01

    Since aging is considered the most risk factor for sporadic Alzheimer’s Disease (AD), the age-related impairment of the immune system (immunosenescence), based on a chronic oxidative-inflammatory stress situation, could play a key role in the development and progression of AD. Although AD is accompanied by systemic disturbance, reflecting the damage in the brain, the changes in immune response and redox-state in different types of blood cells in AD patients have been scarcely studied. The aim was to analyze the variations in several immune functions and oxidative-inflammatory stress and damage parameters in both isolated peripheral neutrophils and mononuclear blood cells, as well as in whole blood cells, from patients diagnosed with mild (mAD) and severe AD, and of age-matched controls (elderly healthy subjects) as well as of adult controls. The cognitive decline of all subjects was determined by Mini-Mental State Examination (MMSE) test (mAD stage was established at 20 ≤ MMSE ≤ 23 score; AD stage at 27 MMSE). The results showed an impairment of the immune functions of human peripheral blood neutrophils and mononuclear cells of mAD and AD patients in relation to healthy elderly subjects, who showed the typical immunosenescence in comparison with the adult individuals. However, several alterations were only observed in severe AD patients (lower chemotaxis, lipopolysaccharide lymphoproliferation, and interleukin (IL)-10 release; higher basal proliferation, tumor necrosis factor (TNF)-α release, and IL-10/TNF-α ratio), others only in mAD subjects (higher adherence), meanwhile others appeared in both mAD and AD patients (lower phytohemaglutinin lymphoproliferation and higher IL-6 release). This impairment of immune functions could be mediated by: (1) the higher oxidative stress and damage also observed in blood cells from mAD and AD patients and in isolated neutrophils [lower glutathione (GSH) levels, high oxidized glutathione (GSSG)/GSH ratio, and GSSG

  7. Protective effect of Terminalia chebula against seizures, seizure-induced cognitive impairment and oxidative stress in experimental models of seizures in rats.

    Science.gov (United States)

    Kumar, Ritesh; Arora, Renu; Agarwal, Amit; Gupta, Y K

    2018-04-06

    Teminalia chebula (TC) has been traditionally used in the Ayurvedic system of medicine primarily for gastrointestinal disorders. Its fruit extract has also been used to treat epilepsy and other CNS disorders. To evaluate the effect of hydroalcoholic fruit extract of Terminalia chebula (HETC) on experimental models of seizures, seizure-induced cognitive impairment and oxidative stress in rats. In vitro antioxidant activity of HETC was evaluated by using ABTS, NO and DPPH radical scavenging assay. For in-vivo study, seizures were induced in Wistar rats (200-225g) by pentylenetetrazole (PTZ) and maximal-electroshock. (MES). The anticonvulsant effect of the HETC (250, 500, and 1000mg/kg, orally) was evaluated in seizure models. The therapeutic and sub-therapeutic dose of valproate and phenytoin were also assayed. The potential effect of co-administration of HETC (500mg/kg) with sub-therapeutic dose of valproate and phenytoin were also evaluated in PTZ and MES seizures model respectively. Effect on cognition was assessed using elevated plus maze (EPM) and passive avoidance test (PA). The in- vivo oxidative stress parameters (malondialdehyde and glutathione) were assessed in the cerebral cortex and hippocampus part of rat brain. The IC50 value of HETC in in vitro antioxidant assays i.e. ABTS, DPPH and NO radical scavenging assay was found to be 2.27μg/ml, 6.04μg/ml and 4.37μg/ml respectively. In experimental study, PTZ and MES treated groups exhibited 100% seizures with increased oxidative stress (p < 0.001) and cognitive deficits (p < 0.01) as compared to control group. HETC at highest dose (1000mg/kg) showed 83.33% (5/6) protection in MES induced seizures while 66.66% (4/6) protection in PTZ induced seizures. However, HETC (1000mg/kg) and co-administration of sub-therapeutic dose of HETC with valproate and phenytoin showed complete protection. In addition, it also attenuated the seizure induced oxidative stress and cognitive impairment as indicated by significant (p

  8. Fluxomic evidence for impaired contribution of short-chain acyl-CoA dehydrogenase to mitochondrial palmitate β-oxidation in symptomatic patients with ACADS gene susceptibility variants.

    Science.gov (United States)

    Dessein, Anne-Frédérique; Fontaine, Monique; Joncquel-Chevalier Curt, Marie; Briand, Gilbert; Sechter, Claire; Mention-Mulliez, Karine; Dobbelaere, Dries; Douillard, Claire; Lacour, Arnaud; Redonnet-Vernhet, Isabelle; Lamireau, Delphine; Barth, Magalie; Minot-Myhié, Marie-Christine; Kuster, Alice; de Lonlay, Pascale; Gregersen, Niels; Acquaviva, Cécile; Vianey-Saban, Christine; Vamecq, Joseph

    2017-08-01

    Despite ACADS (acyl-CoA dehydrogenase, short-chain) gene susceptibility variants (c.511C>T and c.625G>A) are considered to be non-pathogenic, encoded proteins are known to exhibit altered kinetics. Whether or not, they might affect overall fatty acid β-oxidation still remains, however, unclear. De novo biosynthesis of acylcarnitines by whole blood samples incubated with deuterated palmitate (16- 2 H 3 ,15- 2 H 2 -palmitate) is suitable as a fluxomic exploration to distinguish between normal and disrupted β-oxidation, abnormal profiles and ratios of acylcarnitines with different chain-lengths being indicative of the site for enzymatic blockade. Determinations in 301 control subjects of ratios between deuterated butyrylcarnitine and sum of deuterated C2 to C14 acylcarnitines served here as reference values to state specifically functional SCAD impairment in patients addressed for clinical and/or biological suspicion of a β-oxidation disorder. Functional SCAD impairment was found in 39 patients. The 27 patients accepting subsequent gene studies were all positive for ACADS mutations. Twenty-six of 27 patients were positive for c.625G>A variant. Twenty-three of 27 patients harbored susceptibility variants as sole ACADS alterations (18 homozygous and 3 heterozygous for c.625G>A, 2 compound heterozygous for c.625G>A/c.511C>T). Our present fluxomic assessment of SCAD suggests a link between ACADS susceptibility variants and abnormal β-oxidation consistent with known altered kinetics of these variants. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sympathetic, Metabolic Adaptations, and Oxidative Stress in Autism Spectrum Disorders: How Far From Physiology?

    Directory of Open Access Journals (Sweden)

    Antonietta Messina

    2018-03-01

    Full Text Available Autism spectrum disorders (ASD is a complex and multifaceted neurobehavioral syndrome with no specific cause still identified, despite the worldwide increasing (prevalence for 1,000 children from 6.7 to 14.6, between 2000 and 2012. Many biological and instrumental markers have been suggested as potential predictive factors for the precocious diagnosis during infancy and/or pediatric age. Many studies reported structural and functional abnormalities in the autonomic system in subjects with ASD. Sleep problems in ASD are a prominent feature, having an impact on the social interaction of the patient. Considering the role of orexins (A and B in wake-sleep circadian rhythm, we could speculate that ASD subjects may present a dysregulation in orexinergic neurotransmission. Conversely, oxidative stress is implicated in the pathophysiology of many neurological disorders. Nonetheless, little is known about the linkage between oxidative stress and the occurrence or the progress of autism and autonomic functioning; some markers, such as heart rate (HR, heart rate variability (HRV, body temperature, and galvanic skin response (GSR, may be altered in the patient with this so complex disorder. In the present paper, we analyzed an autism case report, focusing on the rule of the sympathetic activity with the aim to suggest that it may be considered an important tool in ASD evaluation. The results of this case confirm our hypothesis even if further studies needed.

  10. A low-voltage complementary metal-oxide semiconductor adapter circuit suitable for input rail-to-rail operation

    Science.gov (United States)

    Tadić, Nikša; Zogović, Milena; Banjević, Mirjana; Zimmermann, Horst

    2010-11-01

    In this article, a low-voltage complementary metal-oxide semiconductor (CMOS) input signal adapter (ISA) suitable for input rail-to-rail operation of various types of analogue basic building blocks is presented. The adapter acts as a pre-stage with infinite input resistance and linear transfer characteristics. Its input signal is translated into the region fitting the operating range of the following stage. The generality of the proposed method is proven through the application of the ISA in different types of analogue basic building blocks designed in 0.5 μm CMOS technology. They are the following: below-negative-rail-to-above-positive-rail voltage-controlled transconductor, quasi rail-to-rail voltage-controlled resistor (VCR), rail-to-rail operational amplifier (OA) and quasi rail-to-rail second generation current conveyor. The proposed negative resistance quasi rail-to-rail VCR and rail-to-rail OA have been used in a Sallen and Key band-pass filter. All of these analogue basic building blocks and their applications in the form of the Sallen and Key band-pass filter operate from a single supply of 1.5 V. Simulation results confirm the predictions of the analysis performed.

  11. Adaptation of anaerobic cultures of E scherichia coli  K‐12 in response to environmental trimethylamine‐N‐oxide

    Science.gov (United States)

    Denby, Katie J.; Rolfe, Matthew D.; Crick, Ellen; Sanguinetti, Guido; Poole, Robert K.

    2015-01-01

    Summary Systematic analyses of transcriptional and metabolic changes occurring when E scherichia coli  K‐12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine‐N‐oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re‐programming was mediated by 20 TFs, including the transient inactivation of the two‐component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell‐free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E . coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively. PMID:25471524

  12. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1

    Directory of Open Access Journals (Sweden)

    Dan He

    2018-05-01

    Full Text Available Disruption of endothelial monolayer integrity is the primary instigating factor for many cardiovascular diseases. High density lipoprotein (HDL oxidized by heme enzyme myeloperoxidase (MPO is dysfunctional in promoting endothelial repair. Apolipoprotein A-1 mimetic 4F with its pleiotropic benefits has been proven effective in many in vivo models. In this study we investigated whether 4F promotes endothelial repair and restores the impaired function of oxidized HDL (Cl/NO2-HDL in promoting re-endothelialization. We demonstrate that 4F and Cl/NO2-HDL act on scavenger receptor type I (SR-B1 using human aorta endothelial cells (HAEC and SR-B1 (-/- mouse aortic endothelial cells. Wound healing, transwell migration, lamellipodia formation and single cell migration assay experiments show that 4F treatment is associated with a recovery of endothelial cell migration and associated with significantly increased endothelial nitric oxide synthase (eNOS activity, Akt phosphorylation and SR-B1 expression. 4F increases NO generation and diminishes oxidative stress. In vivo, 4F can stimulate cell proliferation and re-endothelialization in the carotid artery after treatment with Cl/NO2-HDL in a carotid artery electric injury model but fails to do so in SR-B1(-/- mice. These findings demonstrate that 4F promotes endothelial cell migration and has a potential therapeutic benefit against early endothelial injury in cardiovascular diseases.

  13. Tanshinone I alleviates motor and cognitive impairments via suppressing oxidative stress in the neonatal rats after hypoxic-ischemic brain damage.

    Science.gov (United States)

    Dai, Chunfang; Liu, Yannan; Dong, Zhifang

    2017-11-14

    Neonatal hypoxia-ischemia is one of the main reasons that cause neuronal damage and neonatal death. Several studies have shown that tanshinone I (TsI), one of the major ingredients of Danshen, exerts potential neuroprotective effect in adult mice exposed to permanent left cerebral ischemia. However, it is unclear whether administration of TsI has neuroprotective effect on neonatal hypoxic-ischemic brain damage (HIBD), and if so, the potential mechanisms also remain unclear. Here, we reported that treatment with TsI (5 mg/kg, i.p.) significantly alleviated the deficits of myodynamia and motor functions as well as the spatial learning and memory in the rat model of HIBD. These behavioral changes were accompanied by a significant decrease in the number of neuronal loss in the CA1 area of hippocampus. Moreover, ELISA assay showed that TsI significantly increased the production of antioxidants including total antioxidant capacity (T-AOC), glutathione (GSH), total superoxide dismutase (T-SOD) and catalase (CAT), and reduced the production of pro-oxidants including hydrogen peroxide (H 2 O 2 ), total nitric oxide synthase (T-NOS) and inducible nitric oxide synthase (iNOS). Taken together, these results indicate that TsI presents potential neuroprotection against neuronal damage via exerting significantly antioxidative activity and against pro-oxidant challenge, thereby ameliorating hypoxia-ischemia-induced motor and cognitive impairments in the neonatal rats, suggesting that TsI may be a potential therapeutic agent against HIBD.

  14. In vivo oxidative stress alters thiol redox status of peroxiredoxin 1 and 6 and impairs rat sperm quality

    Science.gov (United States)

    Liu, Yannan; O’Flaherty, Cristian

    2017-01-01

    Oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and antioxidant activity is a major culprit of male infertility. Peroxiredoxins (PRDXs) are major antioxidant enzymes of mammalian spermatozoa and are thiol oxidized and inactivated by ROS in a dose-dependent manner. Their deficiency and/or inactivation have been associated with men infertility. The aim of this study was to elucidate the impact of oxidative stress, generated by the in vivo tert-butyl hydroperoxide (tert-BHP) treatment on rat epididymal spermatozoa during their maturation process. Adult Sprague-Dawley males were treated with μmoles tert-BHP/kg or saline (control) per day intraperitoneal for 15 days. Lipid peroxidation (2-thibarbituric acid reactive substances assay), total amount and thiol oxidation of PRDXs along with the total amount of superoxide dismutase (SOD), motility and DNA oxidation (8-hydroxy-deoxyguanosine) were determined in epididymal spermatozoa. Total amount of PRDXs and catalase and thiol oxidation of PRDXs were determined in caput and cauda epididymis. While animals were not affected by treatment, their epididymal spermatozoa have decreased motility, increased levels of DNA oxidation and lipid peroxidation along with increased PRDXs (and not SOD) amounts. Moreover, sperm PRDXs were highly thiol oxidized. There was a differential regulation in the expression of PRDX1 and PRDX6 in the epididymis that suggests a segment-specific role for PRDXs. In conclusion, PRDXs are increased in epididymal spermatozoa in an attempt to fight against the oxidative stress generated by tert-BHP in the epididymis. These findings highlight the role of PRDXs in the protection of sperm function and DNA integrity during epididymal maturation. PMID:26823067

  15. Old age and the associated impairment of bones' adaptation to loading are associated with transcriptomic changes in cellular metabolism, cell-matrix interactions and the cell cycle.

    Science.gov (United States)

    Galea, Gabriel L; Meakin, Lee B; Harris, Marie A; Delisser, Peter J; Lanyon, Lance E; Harris, Stephen E; Price, Joanna S

    2017-01-30

    In old animals, bone's ability to adapt its mass and architecture to functional load-bearing requirements is diminished, resulting in bone loss characteristic of osteoporosis. Here we investigate transcriptomic changes associated with this impaired adaptive response. Young adult (19-week-old) and aged (19-month-old) female mice were subjected to unilateral axial tibial loading and their cortical shells harvested for microarray analysis between 1h and 24h following loading (36 mice per age group, 6 mice per loading group at 6 time points). In non-loaded aged bones, down-regulated genes are enriched for MAPK, Wnt and cell cycle components, including E2F1. E2F1 is the transcription factor most closely associated with genes down-regulated by ageing and is down-regulated at the protein level in osteocytes. Genes up-regulated in aged bone are enriched for carbohydrate metabolism, TNFα and TGFβ superfamily components. Loading stimulates rapid and sustained transcriptional responses in both age groups. However, genes related to proliferation are predominantly up-regulated in the young and down-regulated in the aged following loading, whereas those implicated in bioenergetics are down-regulated in the young and up-regulated in the aged. Networks of inter-related transcription factors regulated by E2F1 are loading-responsive in both age groups. Loading regulates genes involved in similar signalling cascades in both age groups, but these responses are more sustained in the young than aged. From this we conclude that cells in aged bone retain the capability to sense and transduce loading-related stimuli, but their ability to translate acute responses into functionally relevant outcomes is diminished. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. The effects of captopril on lipopolysaccharide induced learning and memory impairments and the brain cytokine levels and oxidative damage in rats.

    Science.gov (United States)

    Abareshi, Azam; Hosseini, Mahmoud; Beheshti, Farimah; Norouzi, Fatemeh; Khazaei, Majid; Sadeghnia, Hamid Reza; Boskabady, Mohammad Hossein; Shafei, Mohammad Naser; Anaeigoudari, Akbar

    2016-12-15

    Renin-angiotensin system has a role in inflammation and also involves in learning and memory. In the present study, the effects of captopril on lipopolysaccharide (LPS) induced learning and memory impairments, hippocampal cytokine levels and brain tissues oxidative damage was investigated. The rats were divided and treated : [1] saline (Control), [2] LPS (1mg/kg), [3-5] 10, 50 or 100mg/kg captopril 30min before LPS. The treatment was started since six days before the behavioral experiments and continued during the behavioral tests (LPS injection two h before each behavioral experiment). Administration of LPS prolonged the escape latency and traveled path to find the platform in Morris water maze (MWM) test (Pcaptopril improved performances of the rats in MWM (Pcaptopril (Pcaptopril (Pcaptopril improved the LPS-induced learning and memory impairments in rats which were accompanied with attenuating hippocampal cytokine levels and improving the brain tissues oxidative damage criteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Neuroprotective effect of Manasamitra vatakam against aluminium induced cognitive impairment and oxidative damage in the cortex and hippocampus of rat brain.

    Science.gov (United States)

    Thirunavukkarasu, Sathiravada Veerasamy; Venkataraman, Subramanium; Raja, Sundararajan; Upadhyay, Lokesh

    2012-01-01

    Manasamitra vatakam (MMV) has long been used as a traditional medicine in India for the treatment of psychosomatic diseases, anxiety neurosis, and stress. The present study was designed to examine the neuroprotective effect of MMV against aluminum (Al)-induced memory impairment and oxidative damage in rats. Neurotoxicity was induced by the administration of Al [100 mg/kg body weight (b.w.) per oral (p.o.)/day] to Wistar albino rats for 90 days. Al administration induced neurotoxicity as well as oxidative stress by affecting the active avoidance and memory impairment, as well as altering antioxidants, such as HSP70 protein, superoxide dismutase, catalase, reduced glutathione, glutathione peroxidase, and acetylcholinesterase. It was observed that the administration of MMV (100 mg/kg b.w./p.o./day) along with AlCl(3) improves memory performance and antioxidant activity against Al-induced neurotoxicity in rats. In conclusion, these data suggest that MMV can prevent brain damage from Al-induced neurotoxicity in rats and thus can be used as a neuroprotective agent.

  18. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available BACKGROUND: To investigate if microRNAs (miRNAs play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+ current. RESULTS: H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2, with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. CONCLUSIONS: Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  19. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Science.gov (United States)

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  20. Saponins from Panax japonicus attenuate D-galactose-induced cognitive impairment through its anti-oxidative and anti-apoptotic effects in rats.

    Science.gov (United States)

    Wang, Ting; Di, Guojie; Yang, Li; Dun, Yaoyan; Sun, Zhiwei; Wan, Jingzhi; Peng, Ben; Liu, Chaoqi; Xiong, Guangrun; Zhang, Changcheng; Yuan, Ding

    2015-09-01

    To investigate the neuroprotective effects of saponins from Panax japonicus (SPJ) on D-galactose (D-gal)-induced brain ageing, and further explore the underlying mechanisms. SPJ were analysed using high-pressure liquid chromatography. Male Wistar rats weighing 200 ± 20 g were randomly divided into four groups: control group (saline), D-gal-treated group (400 mg/kg, subcutaneously), D-gal + SPJ groups (50, 100 and 200 mg/kg, orally) and vitamin E group (100 mg/kg). Rats were injected corresponding drugs once daily for 8 weeks. Neuroprotective effects of SPJ were evaluated by Morris water maze, histopathological observations, biochemical assays, western blot analysis and quantitative real-time polymerase chain reaction (PCR) analysis in vivo as well as reactive oxygen species (ROS) measurement and apoptosis assay in vitro. Our present study showed that D-gal had a neurotoxic effect in rats and in SH-SY5Y cells due to oxidative stress induction, including decreased total anti-oxidant capacity, superoxide dismutase (SOD) and glutathione peroxidase activity, ultimately leading to spatial learning and memory impairment in rats and ROS accumulation in SH-SY5Y cells. SPJ improved spatial learning and memory deficits, attenuated hippocampus histopathological injury and restored impaired anti-oxidative as well as anti-apoptotic capacities in D-gal-induced ageing rats. In addition, SPJ remarkably decreased lipofuscin levels, increased hippocampus nuclear factor erythroid 2-related factor 2 (Nrf2) and silent mating type information regulation 2 homologue (SIRT1) protein levels and anti-oxidant genes expression such as manganese superoxide dismutase (Mn-SOD), heme oxygenase (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1) and cysteine ligase catalytic (GCLC) in D-gal-induced brain ageing. Our data suggested that D-gal induced multiple molecular and functional changes in brain similar to natural ageing process. SPJ protected brain from D-gal-induced neuronal

  1. Low-Dose Ionizing Radiation Affects Mesenchymal Stem Cells via Extracellular Oxidized Cell-Free DNA: A Possible Mediator of Bystander Effect and Adaptive Response

    Directory of Open Access Journals (Sweden)

    V. A. Sergeeva

    2017-01-01

    Full Text Available We have hypothesized that the adaptive response to low doses of ionizing radiation (IR is mediated by oxidized cell-free DNA (cfDNA fragments. Here, we summarize our experimental evidence for this model. Studies involving measurements of ROS, expression of the NOX (superoxide radical production, induction of apoptosis and DNA double-strand breaks, antiapoptotic gene expression and cell cycle inhibition confirm this hypothesis. We have demonstrated that treatment of mesenchymal stem cells (MSCs with low doses of IR (10 cGy leads to cell death of part of cell population and release of oxidized cfDNA. cfDNA has the ability to penetrate into the cytoplasm of other cells. Oxidized cfDNA, like low doses of IR, induces oxidative stress, ROS production, ROS-induced oxidative modifications of nuclear DNA, DNA breaks, arrest of the cell cycle, activation of DNA reparation and antioxidant response, and inhibition of apoptosis. The MSCs pretreated with low dose of irradiation or oxidized cfDNA were equally effective in induction of adaptive response to challenge further dose of radiation. Our studies suggest that oxidized cfDNA is a signaling molecule in the stress signaling that mediates radiation-induced bystander effects and that it is an important component of the development of radioadaptive responses to low doses of IR.

  2. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle

    OpenAIRE

    Malkus Kristen A; Tsika Elpida; Ischiropoulos Harry

    2009-01-01

    Abstract While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with o...

  3. Oxidative stress impairs cGMP-dependent protein kinase activation and vasodilator-stimulated phosphoprotein serine-phosphorylation.

    Science.gov (United States)

    Banday, Anees A; Lokhandwala, Mustafa F

    2018-02-09

    Reactive oxygen species induce vascular dysfunction and hypertension by directly interacting with nitric oxide (NO) which leads to NO inactivation. In addition to a decrease in NO bioavailability, there is evidence that oxidative stress can also modulate NO signaling during hypertension. Here, we investigated the effect of oxidative stress on NO signaling molecules cGMP-dependent protein kinase (PKG) and vasodilator-stimulated phosphoprotein (VASP) which are known to mediate vasodilatory actions of NO. Male Sprague Dawley (SD) rats were provided with tap water (control), 30 mM L-buthionine sulfoximine (BSO, a pro-oxidant), 1 mM tempol (T, an antioxidant) and BSO + T for 3 wks. BSO-treated rats exhibited high blood pressure and oxidative stress. Incubation of mesenteric arterial rings with NO donors caused concentration-dependent relaxation in control rats. However, the response to NO donors was significantly lower in BSO-treated rats with a marked decrease in pD2. In control rats, NO donors activated mesenteric PKG, increased VASP phosphorylation and its interaction with transient receptor potential channels 4 (TRPC4) and inhibited store-operated Ca 2+ influx. NO failed to activate these signaling molecules in mesenteric arteries from BSO-treated rats. Supplementation of BSO-treated rats with tempol reduced oxidative stress and blood pressure and normalized the NO signaling. These data suggest that oxidative stress can reduce NO-mediated PKG activation and VASP-TRPC4 interaction which leads to failure of NO to reduce Ca 2+ influx in smooth muscle cells. The increase in intracellular Ca 2+ contributes to sustained vasoconstriction and subsequent hypertension. Antioxidant supplementation decreases oxidative stress, normalizes NO signaling and reduces blood pressure.

  4. Protective effect of taurine against potassium bromate-induced hemoglobin oxidation, oxidative stress, and impairment of antioxidant defense system in blood.

    Science.gov (United States)

    Ahmad, Mir Kaisar; Mahmood, Riaz

    2016-03-01

    Potassium bromate (KBrO3 ) is widely used as a food-additive and is a major water disinfection by-product. KBrO3 causes severe toxicity in humans and experimental animals. Bromate is considered a probable human carcinogen and a complete carcinogen in animals. We have investigated the potential role of taurine in protecting against KBrO3 -induced oxidative stress in rat blood. Animals were given taurine for 5 days prior to KBrO3 and then sacrificed. Blood was collected and used to prepare hemolysates and plasma, which were then used for the analysis of several biochemical parameters. Administration of single oral dose of KBrO3 alone induced hepato- and nephro-toxicity as evident by elevated marker levels in plasma. Lipid peroxidation and protein oxidation were increased both in plasma and erythrocytes, suggesting the induction of oxidative stress. KBrO3 increased methemoglobin, nitric oxide, and hydrogen peroxide levels. It also altered the activities of the major antioxidant enzymes and lowered the antioxidant power of blood. Administration of taurine, prior to treatment with KBrO3 , resulted in significant attenuation in all these parameters but the administration of taurine alone had no effect. These results show that taurine is effective in mitigating the oxidative insult induced in rat blood by KBrO3 . © 2014 Wiley Periodicals, Inc.

  5. Chronic nitric oxide deprivation induces an adaptive antioxidant status in human endothelial cells.

    Science.gov (United States)

    Cattaneo, Maria Grazia; Cappellini, Elisa; Ragni, Maurizio; Tacchini, Lorenza; Scaccabarozzi, Diletta; Nisoli, Enzo; Vicentini, Lucia Maria

    2013-11-01

    In a previous work, we showed an increased cell motility due to the accumulation and transcriptional activation of the Hypoxia Inducible Factor-1α (HIF-1α) and a reduced mitochondrial energy production in an in vitro model of endothelial dysfunction (ED) represented by human endothelial cells (ECs) chronically deprived of nitric oxide (NO) by L-NAME treatment. In the present study, in the attempt to unravel the pathway(s) linking NO deficiency to HIF-1α accumulation and activation, we focused our attention on Reactive Oxygen Species (ROS). We found that ROS were partially involved in HIF-1α stabilization, but not in the pro-migratory phenotype. Regarding mitochondrial dysfunction, it did not require neither ROS generation nor HIF-1α activity, and was not due to autophagy. Very interestingly, while acute treatment with L-NAME induced a transient increase in ROS formation, chronic NO deprivation by long term L-NAME exposure drastically reduced cellular ROS content giving rise to an antioxidant environment characterized by an increase in superoxide dismutase-2 (SOD-2) expression and activity, and by nuclear accumulation of the transcription factor NF-E2-related factor-2 (Nrf2). These results might have important implications for our understanding of the consequences of NO deprivation in endothelium behavior and in the onset of cardiovascular diseases. © 2013.

  6. Vascular aging: chronic oxidative stress and impairment of redox signaling-consequences for vascular homeostasis and disease.

    Science.gov (United States)

    Bachschmid, Markus M; Schildknecht, Stefan; Matsui, Reiko; Zee, Rebecca; Haeussler, Dagmar; Cohen, Richard A; Pimental, David; Loo, Bernd van der

    2013-02-01

    Characteristic morphological and molecular alterations such as vessel wall thickening and reduction of nitric oxide occur in the aging vasculature leading to the gradual loss of vascular homeostasis. Consequently, the risk of developing acute and chronic cardiovascular diseases increases with age. Current research of the underlying molecular mechanisms of endothelial function demonstrates a duality of reactive oxygen and nitrogen species in contributing to vascular homeostasis or leading to detrimental effects when formed in excess. Furthermore, changes in function and redox status of vascular smooth muscle cells contribute to age-related vascular remodeling. The age-dependent increase in free radical formation causes deterioration of the nitric oxide signaling cascade, alters and activates prostaglandin metabolism, and promotes novel oxidative posttranslational protein modifications that interfere with vascular and cell signaling pathways. As a result, vascular dysfunction manifests. Compensatory mechanisms are initially activated to cope with age-induced oxidative stress, but become futile, which results in irreversible oxidative modifications of biological macromolecules. These findings support the 'free radical theory of aging' but also show that reactive oxygen and nitrogen species are essential signaling molecules, regulating vascular homeostasis.

  7. Increased Oxidation as an Additional Mechanism Underlying Reduced Clot Permeability and Impaired Fibrinolysis in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Anna Lados-Krupa

    2015-01-01

    Full Text Available Aims. We sought to investigate whether enhanced oxidation contributes to unfavorable fibrin clot properties in patients with diabetes. Methods. We assessed plasma fibrin clot permeation (Ks, a measure of the pore size in fibrin networks and clot lysis time induced by recombinant tissue plasminogen activator (CLT in 163 consecutive type 2 diabetic patients (92 men and 71 women aged 65 ± 8.8 years with a mean glycated hemoglobin (HbA1c of 6.8%. We also measured oxidative stress markers, including nitrotyrosine, the soluble form of receptor for advanced glycation end products (sRAGE, 8-iso-prostaglandin F2α (8-iso-PGF2α, oxidized low-density lipoprotein (oxLDL, and advanced glycation end products (AGE. Results. There were inverse correlations between Ks and nitrotyrosine, sRAGE, 8-iso-PGF2α, and oxLDL. CLT showed a positive correlation with oxLDL and nitrotyrosine but not with other oxidation markers. All these associations remained significant for Ks after adjustment for fibrinogen, disease duration, and HbA1c (all P<0.05, while oxLDL was the only independent predictor of CLT. Conclusions. Our study shows that enhanced oxidative stress adversely affects plasma fibrin clot properties in type 2 diabetic patients, regardless of disease duration and glycemia control.

  8. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L.

    Science.gov (United States)

    Zhou, Zhao Sheng; Huang, Si Qi; Guo, Kai; Mehta, Surya Kant; Zhang, Peng Chao; Yang, Zhi Min

    2007-01-01

    Alfalfa (Medicago sativa) roots were treated with mercuric ions in a concentration- and time-dependent manner, and lipid peroxidation was studied biochemically as well as histochemically along with other physiological responses. Histochemical staining with Schiff's reagent and Evans blue revealed that the peroxidation of membrane lipids and loss of plasma membrane integrity in Hg-treated roots occurred in the meristem and the elongation zone. The histochemical observations were supported by the quantitative determinations of thiobarbituric acid reactive substances (TBARS). However, under the mercuric ions stress, the alfalfa plants showed no significant alteration of hydrogen peroxide in roots. Analysis of lipoxygenase activity by non-denaturing polyacrylamide gel electrophoresis (PAGE) showed that there were two isoforms in the root of alfalfa plants, but they showed quite different patterns under the Hg exposure. Also, using non-denaturing PAGE, activities of superoxide dismutase (SOD) and peroxidase (POD) were determined in roots after treatment with Hg ions. The total activities of SOD and POD increased in roots after Hg treatment of roots. Activity of ascorbate peroxides (APX) was stimulated at relatively high concentration of Hg (40microM), and after prolonged Hg exposure (20microM, 24h). In contrast, glutathione reductase activity was depressed at higher concentrations of Hg (10-20microM). Treatments of seedlings with 10-40microM Hg decreased the ascorbate and glutathione amounts but increased total non-protein thiols. The above results indicated that Hg exerted its toxic effect on the root growth of alfalfa by induction of oxidative stress.

  9. Effects of Curculigoside on Memory Impairment and Bone Loss via Anti-Oxidative Character in APP/PS1 Mutated Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Lu Zhao

    Full Text Available Alzheimer's disease (AD and osteoporosis are two closely related multifactorial progressively degenerative diseases that predominantly affect aged people. These two diseases share many common risk factors, including old age, being female, smoking, excessive drinking, low estrogen, and vitamin D3 levels. Additionally, oxidative damage and the dysfunction of the antioxidant system play important roles in the pathogenesis of osteoporosis and AD. Aβ not only leads to impaired memory but also plays a crucial role in the demineralization process of bone tissues of older people and women with menopause. Curculigoside can promote calcium deposition and increase the levels of ALP and Runx2 in osteoblasts under oxidative stress via anti-oxidative character. Therefore, we investigated the effects of CUR on the spatial learning and memory by the Morris water maze and brain immunohistochemistry, and bone microstructure and material properties of femurs by micro-computed tomography and mechanical testing in APP/PS1 mutated transgenic mice. Oral administration of CUR can significantly enhance learning performance and ameliorate bone loss in APP/PS1 mutated transgenic mice, and the mechanism may be related to its antioxidant effect. Based on these results, CUR has real potential as a new natural resource for developing medicines or dietary supplements for the prevention and treatment of the two closely linked multifactorial progressive degenerative disorders, AD and osteoporosis.

  10. Ameliorative effects of α-lipoic acid on high-fat diet-induced oxidative stress and glucose uptake impairment of T cells.

    Science.gov (United States)

    Cui, Jue; Huang, Dejian; Zheng, Yi

    2016-10-01

    The incidence of obesity and metabolic disease continues to rise, mainly associated with consumption of a high-fat diet (HFD). Previous studies have indicated that HFD could disturb the immune system, leading to immunodeficiency and inflammation. Several mechanisms have been postulated to account for immunodeficiency associated with HFD, one being oxidative stress. To further investigate the effects of HFD on glucose metabolism and proliferative capability of T cells and the protective effects of α-lipoic acid (LA), male C57BL/6J mice were fed a normal chow (10% fat), an HFD (60% fat), an LA supplement (HFD +0.1%LA), and a N-acetyl-L-cysteine supplement (HFD +0.1% NAC) for 10 weeks. Results showed that 10-week HFD increased intracellular reactive oxygen species (ROS) production, induced oxidative stress state formation, inhibited glucose uptake, decreased ATP concentration, reduced proliferative rate, and dampened IL-2 production of T cells of mice. Administration of LA significantly alleviated these changes induced by HFD. These findings reveal that oxidative stress of T cells caused by HFD may be a key factor leading to glucose metabolism reduction and proliferative capability and function impairment of T cells. LA, as a potent agonist, could promote Nrf2 nuclear translocation and up-regulate expression of Nrf2 target genes (Ho-1 and Prdx1), which can eliminate excess ROS and restore redox balance of cells.

  11. Underlying connections between the redox system imbalance, protein oxidation and impaired quality traits in pale, soft and exudative (PSE) poultry meat.

    Science.gov (United States)

    Carvalho, Rafael H; Ida, Elza I; Madruga, Marta S; Martínez, Sandra L; Shimokomaki, Massami; Estévez, Mario

    2017-01-15

    The connections between the redox imbalance in post-mortem muscle, early protein oxidation and the onset of pale, soft and exudative (PSE) condition in chicken breast are studied. PSE was induced by incubation of post-mortem chicken carcasses at 37°C for 200min. PSE-induced muscle consistently had faster pH decline and lower pH at 200min (5.84 vs. 6.59) and 24h (5.69 vs. 5.96), higher L(∗) (54.4 vs. 57.3), and lower texture and water holding capacity (WHC) than normal meat. The activities of catalase, glutathione peroxidase and superoxide dismutase were significantly lower in PSE-induced samples than in the normal counterparts. PSE was more susceptible to proteolysis and protein oxidation than normal meat during succeeding chilled storage with more intense tryptophan and thiols depletion, higher protein carbonylation and more intense formation of protein cross-links. We provide plausible explanations to support the role of protein oxidation in the impaired quality PSE chicken. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Tiliacora triandra, an Anti-Intoxication Plant, Improves Memory Impairment, Neurodegeneration, Cholinergic Function, and Oxidative Stress in Hippocampus of Ethanol Dependence Rats

    Directory of Open Access Journals (Sweden)

    Nattaporn Phunchago

    2015-01-01

    Full Text Available Oxidative stress plays an important role in brain dysfunctions induced by alcohol. Since less therapeutic agent against cognitive deficit and brain damage induced by chronic alcohol consumption is less available, we aimed to assess the effect of Tiliacora triandra extract, a plant possessing antioxidant activity, on memory impairment, neuron density, cholinergic function, and oxidative stress in hippocampus of alcoholic rats. Male Wistar rats were induced ethanol dependence condition by semivoluntary intake of alcohol for 15 weeks. Alcoholic rats were orally given T. triandra at doses of 100, 200, and 400 mg·kg−1BW for 14 days. Memory assessment was performed every 7 days while neuron density, activities of AChE, SOD, CAT, and GSH-Px and, MDA level in hippocampus were assessed at the end of study. Interestingly, the extract mitigated the increased escape latency, AChE and MDA level. The extract also mitigated the decreased retention time, SOD, CAT, and GSH-Px activities, and neurons density in hippocampus induced by alcohol. These data suggested that the extract improved memory deficit in alcoholic rats partly via the decreased oxidative stress and the suppression of AChE. Therefore, T. triandra is the potential reagent for treating brain dysfunction induced by alcohol. However, further researches are necessary to understand the detail mechanism and possible active ingredient.

  13. The Warburg Hypothesis and the ATP Supply In Cancer Cells Is Oxidative Phosphorylation impaired in malignant neoplasias?

    Science.gov (United States)

    Rodríguez-Enríquez, Sara; Gallardo-Pérez, Juan Carlos; Marín-Hernández, Alvaro; Moreno-Sánchez, Rafael

    2012-06-01

    Since Warburg proposed that cancer cells exhibit increased glycolysis due to apparent mitochondrial damage, numerous researchers have assumed that glycolysis is the predominant ATP supplier for cancer cell energy-dependent processes. However, chemotherapeutic strategies using glycolytic inhibitors have been unsuccessful in arresting tumor proliferation indicating that the original Warburg proposal may not be applicable to all existing neoplasias. This review analyzes recent information on mitochondrial metabolism in several malignant neoplasias emphasizing that, although tumor cells maintain a high glycolytic rate, the principal ATP production may derive from active oxidative phosphorylation. Thus, anti-mitochondrial drug therapy may be an adequate strategy to arrest proliferation of oxidative phosphorylation-dependent neoplasias.

  14. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells

    International Nuclear Information System (INIS)

    Banzet, N.; Richaud, C.; Deveaux, Y.; Kazmaier, M.; Gagnon, J.; Triantaphylides, C.

    1998-01-01

    Changes in gene expression, by application of H2O2, O2.- generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2.- generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I-IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential

  15. Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis1[W

    Science.gov (United States)

    Lozano-Juste, Jorge; León, José

    2010-01-01

    Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. Despite its reported regulatory functions, it remains unclear how NO is synthesized in plants. We have generated a triple nia1nia2noa1-2 mutant that is impaired in nitrate reductase (NIA/NR)- and Nitric Oxide-Associated1 (AtNOA1)-mediated NO biosynthetic pathways. NO content in roots of nia1nia2 and noa1-2 plants was lower than in wild-type plants and below the detection limit in nia1nia2noa1-2 plants. NIA/NR- and AtNOA1-mediated biosynthesis of NO were thus active and responsible for most of the NO production in Arabidopsis (Arabidopsis thaliana). The nia1nia2noa1-2 plants displayed reduced size, fertility, and seed germination potential but increased dormancy and resistance to water deficit. The increasing deficiency in NO of nia1nia2, noa1-2, and nia1nia2noa1-2 plants correlated with increased seed dormancy, hypersensitivity to abscisic acid (ABA) in seed germination and establishment, as well as dehydration resistance. In nia1nia2noa1-2 plants, enhanced drought tolerance was due to a very efficient stomata closure and inhibition of opening by ABA, thus uncoupling NO from ABA-triggered responses in NO-deficient guard cells. The NO-deficient mutants in NIA/NR- and AtNOA1-mediated pathways in combination with the triple mutant will be useful tools to functionally characterize the role of NO and the contribution of both biosynthetic pathways in regulating plant development and defense. PMID:20007448

  16. Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Jaworski, Slawomir; Kutwin, Marta

    2017-01-01

    The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug...... that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment....

  17. Distinct transthyretin oxidation isoform profile in spinal fluid from patients with Alzheimer’s disease and mild cognitive impairment

    DEFF Research Database (Denmark)

    Poulsen, Keld; Bahl, Justyna Mc; Simonsen, Anja H

    2014-01-01

    )), and normal pressure hydrocephalus (NPH, n = 15), as well as healthy controls (HC, n = 7). Fractions of three specific oxidative modifications (S-cysteinylation, S-cysteinylglycinylation, and S-glutathionylation) were quantitated relative to the total TTR protein. Results were correlated with diagnostic...

  18. Effect of piracetam and vitamin E on phosphamidon-induced impairment of memory and oxidative stress in rats.

    Science.gov (United States)

    Kosta, Prabhat; Mehta, Ashish K; Sharma, Amit K; Khanna, Naresh; Mediratta, Pramod K; Mundhada, Dharmendra R; Suke, Sanvidhan

    2013-01-01

    Organophosphate pesticides, such as phosphamidon (PHOS), have been shown to adversely affect memory and induce oxidative stress after both acute and chronic exposure. The present study was therefore designed to investigate the effects of piracetam (PIR) and vitamin E on PHOS-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of malondialdehyde (MDA) and nonprotein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and a prolongation of TL in the PHOS (1.74 mg/kg/day per oral; p.o.)-treated group at weeks 6 and 8, as compared to the control group. Administration of PIR (600 mg/kg/day p.o.) or vitamin E (125 mg/kg/day p.o.) for 2 weeks antagonized the effect of PHOS on SDL as well as TL. PHOS per se produced a significant increase in brain MDA levels and a decrease in brain NP-SH levels, whereas administration of PIR (600 mg/kg/day p.o.) or vitamin E (125 mg/kg/day p.o.) attenuated these effects. Thus, the results of the study showed that both PIR and vitamin E attenuated the cognitive dysfunction and oxidative stress induced by PHOS in the rat brain.

  19. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene

    2008-01-01

    Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence...... these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  20. Dietary fat proportionately enhances oxidative stress and glucose intolerance followed by impaired expression of the genes associated with mitochondrial biogenesis.

    Science.gov (United States)

    Das, Nabanita; Mandala, Ashok; Bhattacharjee, Sudarshan; Mukherjee, Debasri; Bandyopadhyay, Debasish; Roy, Sib Sankar

    2017-04-19

    Consumption of food that surpasses the metabolic necessity of the body leads to an epidemic condition termed obesity, which causes several metabolic disorders including oxidative damage. Dietary intervention can enlighten the mechanisms and therapeutics associated with these metabolic disorders. The reported studies related to diet include fat of different kinds and from different sources, however they lack dose response aspects. Our study highlighted the importance of dietary fat modification in modulating oxidative stress-induced glucose intolerance. Animals were maintained on a diet with a varied content of fat (30%/45%/60%) for 12 weeks and the 'withdrawal' group was fed a standard diet for another 10 weeks. The diet containing 60 energy% of fat displayed glucose intolerance, high ALT, low GSH levels and tissue-specific modulation of the prooxidant/antioxidant enzymatic activities in the liver/muscles. Prolonged sustenance of the 60 energy% fat containing diet-fed rats on standard diet led to the alteration of antioxidant activities, reversing the oxidative damage. Notably, the 'withdrawal' group displayed an organ-specific response towards dietary modification where the recovery of the antioxidant activities was observed to be much more pronounced in the liver as compared to the muscle. Further, we identified the differential expression of liver/muscle-specific genes associated with oxidative stress and mitochondrial biogenesis in response to the differing fat content. These genes can serve as markers for HFD-induced metabolic complications involving the liver/muscle. Altogether, our study has highlighted the novel area where obesity-induced oxidative stress linked alterations expressed diet and organ specific responses that are recovered by altering the dietary regimen. Future investigation of dietary modulation will open nascent avenues for developing therapeutic modalities addressing obesity-related metabolic complications.

  1. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    Science.gov (United States)

    Yi, Zhiqian; Xu, Maonian; Magnusdottir, Manuela; Zhang, Yuetuan; Brynjolfsson, Sigurdur; Fu, Weiqi

    2015-01-01

    Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress. PMID:26426027

  2. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    Directory of Open Access Journals (Sweden)

    Zhiqian Yi

    2015-09-01

    Full Text Available Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.

  3. Effect of impaired fatty acid oxidation on myocardial kinetics of 11C- and 123I-labelled fatty acids

    International Nuclear Information System (INIS)

    Lerch, R.

    1986-01-01

    Positron emission tomography with palmitate 11 C and single photon imaging with terminally radioiodinated fatty acid analogues (FFA 123 I) were evaluated for the noninvasive assessment of regional myocardial fatty acid metabolism during ischaemia. Decreased uptake of tracer and delayed clearance of activity in the ischaemic myocardium were reported for both 11 C- and 123 I-labelled compounds. However, since during ischaemia both myocardial blood flow and oxidative metabolism are reduced concomitantly, either factor can be responsible for the changes observed. Experimental preparations in which fatty acid metabolism can be modified independently of flow are helpful for the characterization of the relationship between metabolism and myocardial kinetics of labelled fatty acids. Results obtained during flow-independent inhibition of fatty acid oxidation include the following observations: - In dogs with controlled coronary perfusion the rate of clearance of palmitate 11 C-activity is decreased during diminished delivery of oxygen, regardless of whether myocardial perfusion is concomitantly reduced or not. - In isolated rabbit hearts perfused at normal flow, the extraction of FFA 123 I is decreased during hypoxia. - During pharmacological inhibition of fatty acid oxidation the deiodination of FFA 123 I is markedly reduced in rat hearts in vivo and in vitro. (orig.)

  4. Activity-Based Protein Profiling Reveals Mitochondrial Oxidative Enzyme Impairment and Restoration in Diet-Induced Obese Mice

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Natalie C.; Angel, Thomas E.; Lewis, Michael P.; Pederson, Leeanna M.; Chauvigne-Hines, Lacie M.; Wiedner, Susan D.; Zink, Erika M.; Smith, Richard D.; Wright, Aaron T.

    2012-10-24

    High-fat diet (HFD) induced obesity and concomitant development of insulin resistance (IR) and type 2 diabetes mellitus have been linked to mitochondrial dysfunction. However, it is not clear whether mitochondrial dysfunction is a direct effect of a HFD or if the mitochondrial function is reduced with increased HFD duration. We hypothesized that the function of mitochondrial oxidative and lipid metabolism functions in skeletal muscle mitochondria for HFD mice are similar or elevated relative to standard diet (SD) mice, thereby IR is neither cause nor consequence of mitochondrial dysfunction. We applied a chemical probe approach to identify functionally reactive ATPases and nucleotide-binding proteins in mitochondria isolated from skeletal muscle of C57Bl/6J mice fed HFD or SD chow for 2-, 8-, or 16-weeks; feeding time points known to induce IR. A total of 293 probe-labeled proteins were identified by mass spectrometry-based proteomics, of which 54 differed in abundance between HFD and SD mice. We found proteins associated with the TCA cycle, oxidative phosphorylation (OXPHOS), and lipid metabolism were altered in function when comparing SD to HFD fed mice at 2-weeks, however by 16-weeks HFD mice had TCA cycle, β-oxidation, and respiratory chain function at levels similar to or higher than SD mice.

  5. Near infrared spectroscopy (NIRS as a new non-invasive tool to detect oxidative skeletal muscle impairment in children survived to acute lymphoblastic leukaemia.

    Directory of Open Access Journals (Sweden)

    Francesca Lanfranconi

    Full Text Available BACKGROUND: Separating out the effects of cancer and treatment between central and peripheral components of the O2 delivery chain should be of interest to clinicians for longitudinal evaluation of potential functional impairment in order to set appropriate individually tailored training/rehabilitation programmes. We propose a non-invasive method (NIRS, near infrared spectroscopy to be used in routine clinical practice to evaluate a potential impairment of skeletal muscle oxidative capacity during exercise in children previously diagnosed with acute lymphoblastic leukaemia (ALL. The purpose of this study was to evaluate the capacity of skeletal muscle to extract O2 in 10 children diagnosed with ALL, 1 year after the end of malignancy treatment, compared to a control group matched for gender and age (mean±SD = 7.8±1.5 and 7.3±1.4 years, respectively. METHODS AND FINDINGS: Participants underwent an incremental exercise test on a treadmill until exhaustion. Oxygen uptake ([Formula: see text], heart rate (HR, and tissue oxygenation status (Δ[HHb] of the vastus lateralis muscle evaluated by NIRS, were measured. The results showed that, in children with ALL, a significant linear regression was found by plotting [Formula: see text] vs Δ[HHb] both measured at peak of exercise. In children with ALL, the slope of the HR vs [Formula: see text] linear response (during sub-maximal and peak work rates was negatively correlated with the peak value of Δ[HHb]. CONCLUSIONS: The present study proves that the NIRS technique allows us to identify large inter-individual differences in levels of impairment in muscle O2 extraction in children with ALL. The outcome of these findings is variable and may reflect either muscle atrophy due to lack of use or, in the most severe cases, an undiagnosed myopathy.

  6. The effects of perindopril on cognitive impairment induced by d-galactose and aluminum trichloride via inhibition of acetylcholinesterase activity and oxidative stress.

    Science.gov (United States)

    Yang, Wei-Na; Han, Hua; Hu, Xiao-Dan; Feng, Gai-Feng; Qian, Yi-Hua

    2013-12-01

    Preclinical and clinical studies indicate involvement of renin angiotensin system (RAS) in memory functions. However, exact role of RAS in cognition is still ambiguous. The present study investigated the effects of perindopril on dementia of Alzheimer's type induced by d-galactose (d-gal) and aluminum trichloride (AlCl3). Perindopril, an angiotensin converting enzyme inhibitor, was administered intragastrically (0.5mg/kg/day) for 60days after mice were given d-gal (150mg/kg/day) and AlCl3 (10mg/kg/day) intraperitoneally for 90days. Then, memory function was evaluated by Morris water maze test. The biochemical studies were conducted in cerebral cortex and hippocampus of mouse brain after the behavioral studies. d-Gal and AlCl3 caused significant memory impairment along with significant elevation of acetylcholinesterase (AChE) activity in cerebral cortex and hippocampus. Further, a significant reduction of superoxide dismutases (SOD) and glutathione peroxidase (GSH-Px) activities, and elevation of malondialdehyde (MDA) level in cerebral cortex and hippocampus were observed. Perindopril not only improved cognitive impairment but also restored the elevation of AChE activity induced by d-gal and AlCl3. In addition, perindopril significantly increased SOD and GSH-Px activities, reduced MDA level in cerebral cortex and hippocampus. Taken together, the above findings indicate that perindopril improves learning and memorizing probably by restoring cholinergic function and attenuating oxidative damage. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Subclinical mastitis in goats is associated with upregulation of nitric oxide-derived oxidative stress that causes reduction of milk antioxidative properties and impairment of its quality.

    Science.gov (United States)

    Silanikove, Nissim; Merin, Uzi; Shapiro, Fira; Leitner, Gabriel

    2014-01-01

    The aim of this study was to verify the existence of a nitric oxide (NO) cycle in goat milk and to study how changes in it affect milk composition during subclinical mastitis. Fifteen lactating dairy goats in which one udder-half was free from bacterial infection and the contra-lateral one was naturally infected with various species of coagulase-negative staphylococci were used. In comparison to uninfected glands, subclinical mastitis was associated with a decrease in milk yield, lactose concentration, and curd yield and an increase in nitrite and nitrate concentrations and with measurements reflecting increased formation of NO-derived free-radical nitrogen dioxide. The occurrence of NO cycling in goat milk was largely confirmed. The increase in the NO-derived stress during subclinical infection was not associated with significant increase in oxidatively modified substances, 3-nitrotyrosine, and carbonyls on proteins, but with increased levels of peroxides on fat. However, the relatively modest nitrosative stress in subclinically infected glands was associated with significant reduction in total antioxidant capacity and vitamin C levels in milk. We concluded that subclinical mastitis in goats caused by coagulase-negative staphylococci imposes negative changes in milk yield, milk quality for cheese production, and negatively affects the nutritional value of milk as food. Thus, subclinical mastitis in goats should be considered as a serious economic burden both by farmers and by the dairy industry. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Jumping the gun: Smoking constituent BaP causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Sobinoff, A.P.; Pye, V. [Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW2308 (Australia); Nixon, B.; Roman, S.D. [Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW2308 (Australia); ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Callaghan, NSW2308 (Australia); McLaughlin, E.A., E-mail: eileen.mclaughlin@newcastle.edu.au [Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW2308 (Australia); ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Callaghan, NSW2308 (Australia)

    2012-04-01

    Benzo(a)pyrene (BaP) is an ovotoxic constituent of cigarette smoke associated with pre-mature ovarian failure and decreased rates of conception in IVF patients. Although the overall effect of BaP on female fertility has been documented, the exact molecular mechanisms behind its ovotoxicity remain elusive. In this study we examined the effects of BaP exposure on the ovarian transcriptome, and observed the effects of in vivo exposure on oocyte dysfunction. Microarray analysis of BaP cultured neonatal ovaries revealed a complex mechanism of ovotoxicity involving a small cohort of genes associated with follicular growth, cell cycle progression, and cell death. Histomorphological and immunohistochemical analysis supported these results, with BaP exposure causing increased primordial follicle activation and developing follicle atresia in vitro and in vivo. Functional analysis of oocytes obtained from adult Swiss mice treated neonatally revealed significantly increased levels of mitochondrial ROS/lipid peroxidation, and severely reduced sperm-egg binding and fusion in both low (1.5 mg/kg/daily) and high (3 mg/kg/daily) dose treatments. Our results reveal a complex mechanism of BaP induced ovotoxicity involving developing follicle atresia and accelerated primordial follicle activation, and suggest short term neonatal BaP exposure causes mitochondrial leakage resulting in reduced oolemma fluidity and impaired fertilisation in adulthood. This study highlights BaP as a key compound which may be partially responsible for the documented effects of cigarette smoke on follicular development and sub-fertility. -- Highlights: ► BaP exposure up-regulates canonical pathways linked with follicular growth/atresia. ► BaP causes primordial follicle activation and developing follicle atresia. ► BaP causes oocyte mitochondrial ROS and lipid peroxidation, impairing fertilisation. ► Short term neonatal BaP exposure compromises adult oocyte quality.

  9. Jumping the gun: Smoking constituent BaP causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress

    International Nuclear Information System (INIS)

    Sobinoff, A.P.; Pye, V.; Nixon, B.; Roman, S.D.; McLaughlin, E.A.

    2012-01-01

    Benzo(a)pyrene (BaP) is an ovotoxic constituent of cigarette smoke associated with pre-mature ovarian failure and decreased rates of conception in IVF patients. Although the overall effect of BaP on female fertility has been documented, the exact molecular mechanisms behind its ovotoxicity remain elusive. In this study we examined the effects of BaP exposure on the ovarian transcriptome, and observed the effects of in vivo exposure on oocyte dysfunction. Microarray analysis of BaP cultured neonatal ovaries revealed a complex mechanism of ovotoxicity involving a small cohort of genes associated with follicular growth, cell cycle progression, and cell death. Histomorphological and immunohistochemical analysis supported these results, with BaP exposure causing increased primordial follicle activation and developing follicle atresia in vitro and in vivo. Functional analysis of oocytes obtained from adult Swiss mice treated neonatally revealed significantly increased levels of mitochondrial ROS/lipid peroxidation, and severely reduced sperm-egg binding and fusion in both low (1.5 mg/kg/daily) and high (3 mg/kg/daily) dose treatments. Our results reveal a complex mechanism of BaP induced ovotoxicity involving developing follicle atresia and accelerated primordial follicle activation, and suggest short term neonatal BaP exposure causes mitochondrial leakage resulting in reduced oolemma fluidity and impaired fertilisation in adulthood. This study highlights BaP as a key compound which may be partially responsible for the documented effects of cigarette smoke on follicular development and sub-fertility. -- Highlights: ► BaP exposure up-regulates canonical pathways linked with follicular growth/atresia. ► BaP causes primordial follicle activation and developing follicle atresia. ► BaP causes oocyte mitochondrial ROS and lipid peroxidation, impairing fertilisation. ► Short term neonatal BaP exposure compromises adult oocyte quality.

  10. 60-Day chronic exposure to low concentrations of HgCl2 impairs sperm quality: hormonal imbalance and oxidative stress as potential routes for reproductive dysfunction in rats.

    Directory of Open Access Journals (Sweden)

    Caroline S Martinez

    Full Text Available Mercury is a toxic and bio-accumulative heavy metal of global concern. While good deals of research have been conducted on the toxic effects of mercury, little is known about the mechanisms involved in the pathogenesis of male reproductive dysfunction induced by mercury. Therefore, the purpose of this study was to assess the effects and underlying mechanisms of chronic mercury exposure at low levels on male reproductive system of rats. Three-month-old male Wistar rats were divided into two groups and treated for 60 days with saline (i.m., Control and HgCl2 (i.m. 1st dose: 4.6 µg/kg, subsequent doses 0.07 µg/kg/day. We analyzed sperm parameters, hormonal levels and biomarkers of oxidative stress in testis, epididymis, prostate and vas deferens. Mercury treatment decreased daily sperm production, count and motility and increased head and tail morphologic abnormalities. Moreover, mercury treatment decreased luteinizing hormone levels, increased lipid peroxidation on testis and decreased antioxidant enzymes activities (superoxide dismutase and catalase on reproductive organs. Our data demonstrate that 60-day chronic exposure to low concentrations of HgCl2 impairs sperm quality and promotes hormonal imbalance. The raised oxidative stress seems to be a potential mechanism involved on male reproductive toxicity by mercury.

  11. 60-Day chronic exposure to low concentrations of HgCl2 impairs sperm quality: hormonal imbalance and oxidative stress as potential routes for reproductive dysfunction in rats.

    Science.gov (United States)

    Martinez, Caroline S; Torres, João Guilherme D; Peçanha, Franck M; Anselmo-Franci, Janete A; Vassallo, Dalton V; Salaices, Mercedes; Alonso, María J; Wiggers, Giulia A

    2014-01-01

    Mercury is a toxic and bio-accumulative heavy metal of global concern. While good deals of research have been conducted on the toxic effects of mercury, little is known about the mechanisms involved in the pathogenesis of male reproductive dysfunction induced by mercury. Therefore, the purpose of this study was to assess the effects and underlying mechanisms of chronic mercury exposure at low levels on male reproductive system of rats. Three-month-old male Wistar rats were divided into two groups and treated for 60 days with saline (i.m., Control) and HgCl2 (i.m. 1st dose: 4.6 µg/kg, subsequent doses 0.07 µg/kg/day). We analyzed sperm parameters, hormonal levels and biomarkers of oxidative stress in testis, epididymis, prostate and vas deferens. Mercury treatment decreased daily sperm production, count and motility and increased head and tail morphologic abnormalities. Moreover, mercury treatment decreased luteinizing hormone levels, increased lipid peroxidation on testis and decreased antioxidant enzymes activities (superoxide dismutase and catalase) on reproductive organs. Our data demonstrate that 60-day chronic exposure to low concentrations of HgCl2 impairs sperm quality and promotes hormonal imbalance. The raised oxidative stress seems to be a potential mechanism involved on male reproductive toxicity by mercury.

  12. Electroacupuncture ameliorates spatial learning and memory impairment via attenuating NOX2-related oxidative stress in a rat model of Alzheimer's disease induced by Aβ1-42.

    Science.gov (United States)

    Wu, G; Li, L; Li, H-M; Zeng, Y; Wu, W-C

    2017-04-29

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive deterioration of cognition and memory, in which oxidative stress has been played a crucial role in the pathology of AD. Electroacupuncture (EA) is a widely used therapy based on traditional acupuncture combined with modern electrotherapy in Asia. The present study aimed to determine the effects of EA treatment on spatial learning and memory impairment, and to elucidate the status of NOX2-related oxidative stress in a rat model of Alzheimer's disease induced by Beta-amyloid1-42 (Aβ1-42). Fifty-six adult female Sprague-Dawley (SD) rats were randomly divided into four groups: sham, sham+EA, AD and AD+EA. The rats in Sham+EA and AD+EA groups were respectively administrated EA treatment at Baihui and yongquan acupoints, once a day for 30 min, lasting for 28 days. The spatial learning and memory functions were assessed by Morris water maze (MWM) test. The activities of total antioxidant capacity (T-AOC), reactive oxygen species (ROS), malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OH-dG) were evaluated. Moreover, the neuronal injury was detected by Nissl staining. Meanwhile, the NeuN expression was examined in the hippocampus, the expression levels of Nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase2(NOX2) was detected by immunofluorescence staining and western blot. The results showed that EA treatment significantly improved spatial learning and memory impairment in rats induced by Aβ1-42. Concomitantly, EA treatment markedly restored T-AOC and attenuated the abnormal increase in levels of ROS, MDA and 8-OH-dG in the hippocampus of the AD rats. More notably, EA treatment also effectively ameliorated neuronal injury and counteracted the aberrant increase of NOX2 levels in the hippocampus of AD rats. Our findings suggested that EA is a potential strategy for the treatment of AD, and the possible mechanism is associated with the alleviation of neuronal injury

  13. Chlorophytum borivilianum (Safed Musli) root extract prevents impairment in characteristics and elevation of oxidative stress in sperm of streptozotocin-induced adult male diabetic Wistar rats.

    Science.gov (United States)

    Giribabu, Nelli; Kumar, Kilari Eswar; Rekha, Somesula Swapna; Muniandy, Sekaran; Salleh, Naguib

    2014-08-08

    We hypothesized that C. borivilianum root, known to improve male reproductive performance, prevents impairment in characteristics, morphology and elevation of oxidative stress in sperm of diabetics. We therefore investigated the effect of aqueous root extract of C. borivilianum on these parameters in diabetic rat model. C. borivilianum root aqueous extract (250 and 500 mg/kg/day) or glibenclamide (600 μg/kg/day) were administered to streptozotocin (STZ)-induced diabetic male rats for 28 consecutive days. At the end of treatment, animals were sacrificed and sperm were collected. Sperm count and percentages of forward motility, viability, hypoosmotic swelling (HOS) tail-coiled and abnormal sperm were evaluated. Sperm lipid peroxidation product (LPO), hydrogen peroxide (H2O2) and nitric oxide (NO) levels, total antioxidant capacity (TAC), activity levels of endogenous antioxidant enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx), epididymal sperm density, serum fasting blood glucose (FBG) and HbA1c levels were measured. The expression of sperm caspase-3 was assessed. Meanwhile, in-vitro free radical scavenging activity of C. borivilianum root extract was determined and the root extract was analyzed for the presence of bioactive compounds by FTIR spectroscopy. C. borivilianum root aqueous extract prevents the decrease in sperm count, percentages of forward motility, viability, HOS and the increase in abnormal sperm percentage and caspase-3 level in diabetic rats. Sperm LPO, H2O2 and NO levels, FBG and HbA1c were lower while TAC, SOD, CAT, GPx and epididymal sperm density were higher in diabetic rats receiving C. borivilianum root extract treatment. C. borivilianum root exhibited strong in-vitro free radical scavenging activity which may be due to the phenolic compound. C. borivilianum root extract prevents impairment in sperm characteristics and morphology via preventing elevation of oxidative stress, apoptosis and free radicals levels of

  14. Impairment of Akt activity by CYP2E1 mediated oxidative stress is involved in chronic ethanol-induced fatty liver

    Directory of Open Access Journals (Sweden)

    Tao Zeng

    2018-04-01

    Full Text Available Protein kinase B (PKB/Akt plays important roles in the regulation of lipid homeostasis, and impairment of Akt activity has been demonstrated to be involved in the development of non-alcoholic fatty liver disease (NAFLD. Previous studies suggest that cytochrome P4502E1 (CYP2E1 plays causal roles in the pathogenesis of alcoholic fatty liver (AFL. We hypothesized that Akt activity might be impaired due to CYP2E1-induced oxidative stress in chronic ethanol-induced hepatic steatosis. In this study, we found that chronic ethanol-induced hepatic steatosis was accompanied with reduced phosphorylation of Akt at Thr308 in mice liver. Chronic ethanol exposure had no effects on the protein levels of phosphatidylinositol 3 kinase (PI3K and phosphatase and tensin homologue deleted on chromosome ten (PTEN, and led to a slight decrease of phosphoinositide-dependent protein kinase 1 (PDK-1 protein level. Ethanol exposure resulted in increased levels of malondialdehyde (MDA and 4-hydroxynonenal (4-HNE-Akt adducts, which was significantly inhibited by chlormethiazole (CMZ, an efficient CYP2E1 inhibitor. Interestingly, N-acetyl-L-cysteine (NAC significantly attenuated chronic ethanol-induced hepatic fat accumulation and the decline of Akt phosphorylation at Thr308. In the in vitro studies, Akt phosphorylation was suppressed in CYP2E1-expressing HepG2 (CYP2E1-HepG2 cells compared with the negative control HepG2 (NC-HepG2 cells, and 4-HNE treatment led to significant decrease of Akt phosphorylation at Thr308 in wild type HepG2 cells. Lastly, pharmacological activation of Akt by insulin-like growth factor-1 (IGF-1 significantly alleviated chronic ethanol-induced fatty liver in mice. Collectively, these results indicate that CYP2E1-induced oxidative stress may be responsible for ethanol-induced suppression of Akt phosphorylation and pharmacological modulation of Akt in liver may be an effective strategy for the treatment of ethanol-induced fatty liver. Keywords

  15. Insights into the Feelings, Thoughts, and Behaviors of Children with Visual Impairments: A Focus Group Study Prior to Adapting a Cognitive Behavior Therapy-Based Anxiety Intervention

    Science.gov (United States)

    Visagie, Lisa; Loxton, Helene; Stallard, Paul; Silverman, Wendy K.

    2017-01-01

    Introduction: Anxiety is the most common psychological problem reported among children with visual impairments. Although cognitive behavior therapy interventions have proven successful in treating childhood anxiety, it is unclear whether they are suitable and accessible for children who have visual impairments. This study aimed to determine if and…

  16. Metabolite profiles reveal energy failure and impaired beta-oxidation in liver of mice with complex III deficiency due to a BCS1L mutation.

    Directory of Open Access Journals (Sweden)

    Heike Kotarsky

    Full Text Available BACKGROUND & AIMS: Liver is a target organ in many mitochondrial disorders, especially if the complex III assembly factor BCS1L is mutated. To reveal disease mechanism due to such mutations, we have produced a transgenic mouse model with c.232A>G mutation in Bcs1l, the causative mutation for GRACILE syndrome. The homozygous mice develop mitochondrial hepatopathy with steatosis and fibrosis after weaning. Our aim was to assess cellular mechanisms for disease onset and progression using metabolomics. METHODS: With mass spectrometry we analyzed metabolite patterns in liver samples obtained from homozygotes and littermate controls of three ages. As oxidative stress might be a mechanism for mitochondrial hepatopathy, we also assessed H(2O(2 production and expression of antioxidants. RESULTS: Homozygotes had a similar metabolic profile at 14 days of age as controls, with the exception of slightly decreased AMP. At 24 days, when hepatocytes display first histopathological signs, increases in succinate, fumarate and AMP were found associated with impaired glucose turnover and beta-oxidation. At end stage disease after 30 days, these changes were pronounced with decreased carbohydrates, high levels of acylcarnitines and amino acids, and elevated biogenic amines, especially putrescine. Signs of oxidative stress were present in end-stage disease. CONCLUSIONS: The findings suggest an early Krebs cycle defect with increases of its intermediates, which might play a role in disease onset. During disease progression, carbohydrate and fatty acid metabolism deteriorate leading to a starvation-like condition. The mouse model is valuable for further investigations on mechanisms in mitochondrial hepatopathy and for interventions.

  17. Genome-guided analysis of physiological capacities of Tepidanaerobacter acetatoxydans provides insights into environmental adaptations and syntrophic acetate oxidation.

    Directory of Open Access Journals (Sweden)

    Bettina Müller

    Full Text Available This paper describes the genome-based analysis of Tepidanaerobacter acetatoxydans strain Re1, a syntrophic acetate-oxidising bacterium (SAOB. Principal issues such as environmental adaptations, metabolic capacities, and energy conserving systems have been investigated and the potential consequences for syntrophic acetate oxidation discussed. Briefly, in pure culture, T. acetatoxydans grows with different organic compounds and produces acetate as the main product. In a syntrophic consortium with a hydrogenotrophic methanogen, it can also reverse its metabolism and instead convert acetate to formate/H2 and CO2. It can only proceed if the product formed is continuously removed. This process generates a very small amount of energy that is scarcely enough for growth, which makes this particular syntrophy of special interest. As a crucial member of the biogas-producing community in ammonium-rich engineered AD processes, genomic features conferring ammonium resistance, bacterial defense, oxygen and temperature tolerance were found, as well as attributes related to biofilm formation and flocculation. It is likely that T. acetatoxydans can form an electrochemical gradient by putative electron-bifurcating Rnf complex and [Fe-Fe] hydrogenases, as observed in other acetogens. However, genomic deficiencies related to acetogenic metabolism and anaerobic respiration were discovered, such as the lack of formate dehydrogenase and F1F0 ATP synthase. This has potential consequences for the metabolic pathways used under SAO and non-SAO conditions. The two complete sets of bacteriophage genomes, which were found to be encoded in the genome, are also worthy of mention.

  18. Early adaptive response of the retina to a pro-diabetogenic diet: Impairment of cone response and gene expression changes in high-fructose fed rats.

    Science.gov (United States)

    Thierry, Magalie; Pasquis, Bruno; Buteau, Bénédicte; Fourgeux, Cynthia; Dembele, Doulaye; Leclere, Laurent; Gambert-Nicot, Ségolène; Acar, Niyazi; Bron, Alain M; Creuzot-Garcher, Catherine P; Bretillon, Lionel

    2015-06-01

    The lack of plasticity of neurons to respond to dietary changes, such as high fat and high fructose diets, by modulating gene and protein expression has been associated with functional and behavioral impairments that can have detrimental consequences. The inhibition of high fat-induced rewiring of hypothalamic neurons induced obesity. Feeding rodents with high fructose is a recognized and widely used model to trigger obesity and metabolic syndrome. However the adaptive response of the retina to short term feeding with high fructose is poorly documented. We therefore aimed to characterize both the functional and gene expression changes in the neurosensory retina of Brown Norway rats fed during 3 and 8 days with a 60%-rich fructose diet (n = 16 per diet and per time point). Glucose, insulin, leptin, triacylglycerols, total cholesterol, HDL-cholesterol, LDL-cholesterol and fructosamine were quantified in plasma (n = 8 in each group). Functionality of the inner retina was studied using scotopic single flash electroretinography (n = 8 in each group) and the individual response of rod and cone photoreceptors was determined using 8.02 Hz Flicker electroretinography (n = 8 in each group). Analysis of gene expression in the neurosensory retina was performed by Affymetrix genechips, and confirmed by RT-qPCR (n = 6 in each group). Elevated glycemia (+13%), insulinemia (+83%), and leptinemia (+172%) was observed after 8 days of fructose feeding. The cone photoreceptor response was altered at day 8 in high fructose fed rats (Δ = 0.5 log unit of light stimulus intensity). Affymetrix analysis of gene expression highlighted significant modulation of the pathways of eIF2 signaling and endoplasmic reticulum stress, regulation of eIF4 and p70S6K signaling, as well as mTOR signaling and mitochondrial dysfunction. RT-qPCR analysis confirmed the down regulation of Crystallins, Npy, Nid1 and Optc genes after 3 days of fructose feeding, and up regulation of End2. Meanwhile, a trend

  19. Acupuncture reduces memory impairment and oxidative stress and enhances cholinergic function in an animal model of alcoholism.

    Science.gov (United States)

    Phunchago, Nattaporn; Wattanathorn, Jintanaporn; Chaisiwamongkol, Kowit; Muchimapura, Supaporn; Thukham-Mee, Wipawee

    2015-02-01

    Currently, the therapeutic strategy against memory deficit induced by alcoholism is not satisfactory and is expensive. Therefore, an effective, low-cost strategy is required. On the basis of the memory-enhancing effect of stimulation of the HT7 acupoint, we aimed to determine whether acupuncture at the HT7 acupoint can reduce alcoholism-induced memory impairment. The possible underlying mechanism was also explored. Alcoholism was induced in male Wistar rats weighing 180-220 g. The alcoholic rats received either acupuncture at HT7 or sham acupuncture for 1 minute bilaterally once daily for 14 days. Their spatial memory was assessed after 1 day, 7 days, and 14 days of treatment. At the end of the study, the malondialdehyde level and the activities of catalase, superoxide dismutase, glutathione peroxidase, and acetylcholinesterase enzymes in the hippocampus were determined using colorimetric assays. The results showed that acupuncture at HT7 significantly decreased the acetylcholinesterase activity and the malondialdehyde level, but increased the activities of catalase, superoxide dismutase, and glutathione peroxidase in the hippocampus. These results suggest that acupuncture at HT7 can effectively reduce the alcoholism-induced memory deficit. However, further studies concerning the detailed relationships between the location of the HT7 acupoint and the changes in the observed parameters are required. Copyright © 2015. Published by Elsevier B.V.

  20. Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion.

    Science.gov (United States)

    Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Grodzik, Marta; Strojny, Barbara; Kurantowicz, Natalia; Zdunek, Krzysztof; Chodun, Rafał; Chwalibog, André; Sawosz, Ewa

    2017-01-01

    The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug delivery. The objective of this research was to assess changes in the adhesion, migration, and invasiveness of two glioblastoma cell lines, U87 and U118, after ND, NG, and nGO treatment. All treatments affected the cell surface structure, adhesion-dependent EGFR/AKT/mTOR, and β-catenin signaling pathways, decreasing the migration and invasiveness of both glioblastoma cell lines. The examined nanoparticles did not show strong toxicity but effectively deregulated cell migration. ND was effectively taken up by cells, whereas nGO and NG strongly interacted with the cell surface. These results indicate that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment.

  1. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels.

    Science.gov (United States)

    Balaban, Hasan; Nazıroğlu, Mustafa; Demirci, Kadir; Övey, İshak Suat

    2017-05-01

    Inhibition of Ca 2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca 2+ -permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca 2+ concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced

  2. Effect of black mulberry (Morus nigra) extract treatment on cognitive impairment and oxidative stress status of D-galactose-induced aging mice.

    Science.gov (United States)

    Turgut, Nergiz Hacer; Mert, Derya Guliz; Kara, Haki; Egilmez, Hatice Reyhan; Arslanbas, Emre; Tepe, Bektas; Gungor, Huseyin; Yilmaz, Nese; Tuncel, Necati Baris

    2016-01-01

    Morus nigra L. (Moraceae) has various uses in traditional medicine. However, the effect of M. nigra on cognitive impairment has not been investigated yet. The objective of this study is to determine the phenolic acid content and DNA damage protection potential of M. nigra leaf extract and to investigate the extract effect on cognitive impairment and oxidative stress in aging mice. Phenolic acid content was determined by quantitative chromatographic analysis. DNA damage protection potential was evaluated on pBR322 plasmid DNA. Thirty-two Balb-C mice were randomly divided into four groups (control, d-galactose, d-galactose + M. nigra 50, and d-galactose + M. nigra 100). Mice were administered d-galactose (100 mg/kg, subcutaneous) and M. nigra (50 or 100 mg/kg, orally) daily for 8 weeks. Behavioral responses were evaluated with Morris water maze. Activities of antioxidant enzymes and levels of malondialdehyde (MDA) were assayed in serum, brain, and liver. In extract, vanillic (632.093 μg/g) and chlorogenic acids (555.0 μg/g) were determined. The extract between 0.02 and 0.05 mg/mL effectively protected all DNA bands against the hazardous effect of UV and H2O2. Morus nigra significantly improved learning dysfunctions (p nigra has the potential in improving cognitive deficits in mice and that M. nigra may be useful to suppress aging, partially due to its scavenging activity of free radicals and high antioxidant capacity.

  3. An additive factor analysis of the effect of sub-anaesthetic doses of nitrous oxide on information processing: evidence for an impairment of the motor adjustment stage.

    Science.gov (United States)

    Courtière, Alain; Hardouin, Jeannine; Vidal, Franck; Possamaï, Camille-Aimé; Hasbroucq, Thierry

    2003-02-01

    Nitrous oxide (N(2)O) inhalation, at subanaesthetic concentrations, impairs choice reaction time (RT). However, the functional locus of this effect remains to be ascertained. In the present study, this issue was investigated by applying the additive factor logic to the RTs of rats performing a visuo-motor task. The task consisted of either a left-side or a right-side body displacement to a visual stimulus displayed in either the left or right hemispace. The experimental design involved the manipulation of two task factors (stimulus luminance and foreperiod duration) the effects of which are additive on RT. Inhaled N(2)O (from 0% to 60%) was varied as the third factor of the design. N(2)O prolonged RT in a dose-dependent manner and this effect was additive with that of stimulus luminance, whilst it interacted with that of foreperiod duration. Moreover, at low concentrations (10-20%), N(2)O abolished the effect of foreperiod, possibly through a disturbance of time estimation processes, whereas at higher concentrations (30-40%) N(2)O enhanced the effect of foreperiod, probably by slowing down motor processes. Movement time (MT) was decreased by N(2)O at 20-40%. The present data provide evidence that N(2)O impairs information processing by altering at least the stage of motor adjustment. In addition, N(2)O spares the sensory processes implemented during the stimulus preprocessing stage. A subsidiary result is that at some concentrations, N(2)O displays opposite effects on reaction time and movement time. These results demonstrate that the additive factor method constitutes a powerful new tool for studying the pharmacology of information processing in animal models.

  4. Pregnancy induces molecular alterations reflecting impaired insulin control over glucose oxidative pathways that only in women with a family history of Type 2 diabetes last beyond pregnancy.

    Science.gov (United States)

    Piccinini, M; Mostert, M; Seardo, M A; Bussolino, S; Alberto, G; Lupino, E; Ramondetti, C; Buccinnà, B; Rinaudo, M T

    2009-01-01

    In circulating lymphomonocytes (CLM) of patients with Type 2 diabetes (DM2) pyruvate dehydrogenase (PDH), the major determinant of glucose oxidative breakdown, is affected by a cohort of alterations reflecting impaired insulin stimulated glucose utilization. The cohort is also expressed, although incompletely, in 40% of healthy young subjects with a DM2-family history (FH). Pregnancy restrains glucose utilization in maternal peripheral tissues to satisfy fetal requirements. Here we explore whether pregnant women develop the PDH alterations and, if so, whether there are differences between women with and without FH (FH+, FH-). Ten FH+ and 10 FH- were evaluated during pregnancy (12-14, 24-26, and 37-39 weeks) and 1 yr after (follow-up) for fasting plasma glucose and insulin as well as body mass index (BMI), and for the PDH alterations. Twenty FH- and 20 FH+ non-pregnant women served as controls. All FH+ and FH- controls exhibited normal clinical parameters and 8 FH+ had an incomplete cohort of PDH alterations. In FH- and FH+ pregnant women at 12-14 weeks clinical parameters were normal; from 24-26 weeks, with unvaried glucose, insulin and BMI rose more in FH- and only in the latter recovered the 12-14 weeks values at follow-up. In all FH-, the cohort of PDH alterations was incomplete at 24-26 weeks, complete at 37-39 weeks, and absent at follow-up but complete from 12-14 weeks including follow-up in all FH+. In FH-, the cohort is an acquired trait restricted to pregnancy signaling transiently reduced insulin-stimulated glucose utilization; in FH+, instead, it unveils the existence of an inherited DM2-related background these women all have, that is awakened by pregnancy and as such lastingly impairs insulin-stimulated glucose utilization.

  5. Sulforaphane improves oxidative status without attenuating the inflammatory response or cardiac impairment induced by ischemia-reperfusion in rats.

    Science.gov (United States)

    Bonetto, Jéssica Hellen Poletto; Fernandes, Rafael Oliveira; Seolin, Bruna Gazzi de Lima; Müller, Dalvana Daneliza; Teixeira, Rayane Brinck; Araujo, Alex Sander; Vassallo, Dalton; Schenkel, Paulo Cavalheiro; Belló-Klein, Adriane

    2016-05-01

    Sulforaphane, a natural isothiocyanate, demonstrates cardioprotection associated with its capacity to stimulate endogenous antioxidants and to inhibit inflammation. The aim of this study was to investigate whether sulforaphane is capable of attenuating oxidative stress and inflammatory responses through the TLR4/MyD88/NFκB pathway, and thereby could modulate post-ischemic ventricular function in isolated rat hearts submitted to ischemia and reperfusion. Male Wistar rats received sulforaphane (10 mg·kg(-1)·day(-1)) or vehicle i.p. for 3 days. Global ischemia was performed using isolated hearts, 24 h after the last injection, by interruption of the perfusion flow. The protocol included a 20 min pre-ischemic period followed by 20 min of ischemia and a 20 min reperfusion. Although no changes in mechanical function were observed, sulforaphane induced a significant increase in superoxide dismutase and heme oxygenase-1 expression (both 66%) and significantly reduced reactive oxygen species levels (7%). No differences were observed for catalase and glutathione peroxidase expression or their activities, nor for thioredoxin reductase, glutaredoxin reductase and glutathione-S-transferase. No differences were found in lipid peroxidation or TLR4, MyD88, and NF-κB expression. In conclusion, although sulforaphane was able to stimulate endogenous antioxidants modestly, this result did not impact inflammatory signaling or cardiac function of hearts submitted to ischemia and reperfusion.

  6. Subtle reproductive impairment through nitric oxide-mediated mechanisms in sea urchins from an area affected by harmful algal blooms

    Science.gov (United States)

    Migliaccio, Oriana; Castellano, Immacolata; di Cioccio, Davide; Tedeschi, Gabriella; Negri, Armando; Cirino, Paola; Romano, Giovanna; Zingone, Adriana; Palumbo, Anna

    2016-05-01

    The health of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea, is menaced by several pressures in coastal environments. Here, we aimed at assessing the reproductive ability of apparently healthy P. lividus population in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata. Wide-ranging analyses were performed in animals collected prior to and during the bloom, as well as at several times thereafter, during the reproductive season. Adults showed a low fertilization rate, along with high nitric oxide (NO) levels in the gonads and the nitration of the major yolk protein toposome, which is an important player in sea urchin development. Serious developmental anomalies were observed in the progeny, which persist several months after the bloom. NO levels were high in the different developmental stages, which also showed variations in the transcription of several genes that were found to be directly or indirectly modulated by NO. These results highlight subtle but important reproductive flaws transmitted from the female gonads to the offspring with the NO involvement. Despite a recovery along time after the bloom, insidious damages can be envisaged in the local sea urchin population, with possible reverberation on the whole benthic system.

  7. The total triterpenoid saponins of Xanthoceras sorbifolia improve learning and memory impairments through against oxidative stress and synaptic damage.

    Science.gov (United States)

    Ji, Xue-Fei; Chi, Tian-Yan; Liu, Peng; Li, Lu-Yi; Xu, Ji-Kai; Xu, Qian; Zou, Li-Bo; Meng, Da-Li

    2017-02-15

    X. sorbifolia is a widely cultivated ecologicalcrop in the north of China which is used to produce biodiesel fuel. It also possesses special medicinal value and has attracted keen interests of researchers to explore its bioactivity. To extract the total triterpenoid saponins from the husk of X. sorbifolia (TSX) and investigate its effects on Alzheimer's disease (AD). TSX was prepared via modern extraction techniques. Its effects on two AD animal models, as well as the preliminary mechanism were investigated comprehensively. The behavioral experiments including Y maze test, Morris water maze test and passive avoidance test were performed to observe the learning and memory abilities of the animals. ELISA assays, transmission electron microscope observation and Western blotting were employed in mechanism study. TSX, the main composition of X. sorbifolia, accounted for 88.77% in the plant material. It could significantly increase the spontaneous alternation in Y maze test (F (6, 65)=3.209, Pmemory. The preliminary mechanism might associate with its protection effects against oxidative stress damage, cholinergic system deficiency and synaptic damage. TSX are perfectly suitable for AD patients as medicine or functional food, which would be a new candidate to treat AD. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Long-term perturbation of muscle iron homeostasis following hindlimb suspension in old rats is associated with high levels of oxidative stress and impaired recovery from atrophy

    Science.gov (United States)

    Xu, Jinze; Hwang, Judy C.Y.; Lees, Hazel A.; Wohlgemuth, Stephanie E.; Knutson, Mitchell D.; Judge, Andrew R.; Dupont-Versteegden, Esther E.; Marzetti, Emanuele; Leeuwenburgh, Christiaan

    2015-01-01

    In the present study, we investigated the effects of 7 and 14 days of re-loading following 14-day muscle unweighting (hindlimb suspension, HS) on iron transport, non-heme iron levels and oxidative damage in the gastrocnemius muscle of young (6 months) and old (32 months) male Fischer 344×Brown Norway rats. Our results demonstrated that old rats had lower muscle mass, higher levels of total non-heme iron and oxidative damage in skeletal muscle in comparison with young rats. Non-heme iron concentrations and total non-heme iron amounts were 3.4- and 2.3-fold higher in aged rats as compared with their young counterparts, respectively. Seven and 14 days of re-loading was associated with higher muscle weights in young animals as compared with age-matched HS rats, but there was no difference in muscle weights among aged HS, 7 and 14 days of re-loading rats, indicating that aged rats may have a lower adaptability to muscle disuse and a lower capacity to recover from muscle atrophy. Protein levels of cellular iron transporters, such as divalent metal transport-1 (DMT1), transferrin receptor-1 (TfR1), Zip14, and ferroportin (FPN), and their mRNA abundance were determined. TfR1 protein and mRNA levels were significantly lower in aged muscle. Seven and 14 days of re-loading were associated with higher TfR1 mRNA and protein levels in young animals in comparison with their age-matched HS counterparts, but there was no difference between cohorts in aged animals, suggesting adaptive responses in the old to cope with iron deregulation. The extremely low expression of FPN in skeletal muscle might lead to inefficient iron export in the presence of iron overload and play a critical role in age-related iron accumulation in skeletal muscle. Moreover, oxidative stress was much greater in the muscles of the older animals measured as 4-hydroxy-2-nonhenal (HNE)-modified proteins and 8-oxo-7,8-dihydroguanosine levels. These markers remained fairly constant with either HS or re-loading in

  9. Reduction of death rate due to acute myocardial infarction in subjects with cancers through systemic restoration of impaired nitric oxide.

    Directory of Open Access Journals (Sweden)

    Rajeshwary Ghosh

    Full Text Available INTRODUCTION: Excessive aggregation of platelets at the site of plaque rupture on the coronary artery led to the formation of thrombus which is reported to precipitate acute myocardial infarction (AMI. Nitric oxide (NO has been reported to inhibit platelet aggregation and induce thrombolysis through the in situ formation of plasmin. As the plasma NO level in AMI patients from two different ethnic groups was reduced to 0 µM (median compared to 4.0 µM (median in normal controls, the effect of restoration of the NO level to normal ranges on the rate of death due to AMI was determined. METHODS AND RESULTS: The restoration of plasma NO level was achieved by a sticking small cotton pad (10×25 mm containing 0.28 mmol sodium nitroprusside (SNP in 0.9% NaCl to the abdominal skin of the participants using non-toxic adhesive tape which was reported to normalize the plasma NO level. The participants (8,283 were volunteers in an independent study who had different kinds of cancers and did not wish to use any conventional therapy for their condition but opted to receive SNP "pad" for their condition for 3 years. The use of SNP "pad" which normalized (≈4.0 µM the plasma NO level that in consequence reduced the death rate due to AMI, among the participants, was found to be significantly reduced compared to the death due to AMI in normal population. CONCLUSION: Our data suggested that the use of SNP "pad" significantly reduced the death due to AMI. TRIAL REGISTRATION: www.ctri.nic.in CTRI/2013/12/004236.

  10. Impaired vascular function in sepsis-surviving rats mediated by oxidative stress and Rho-Kinase pathway

    Directory of Open Access Journals (Sweden)

    Priscila de Souza

    2016-12-01

    Full Text Available We investigated long-lasting changes in endothelial and vascular function in adult rat survivors of severe sepsis induced by cecal ligation and puncture (CLP model. For this, male Wistar rats (200–350 g had their cecum punctured once (non-transfixing hole with a 14-gauge needle. Performed in this way, a mortality rate around 30% was achieved in the first 72 h. The survivors, together with age-matched control rats (not subjected to CLP, were maintained in our holding room for 60 days (S60 group and had the descending thoracic aorta processed for functional, histological, biochemical or molecular analyses. Endothelium-intact aortic rings obtained from sepsis-surviving S60 group displayed increased angiotensin II-induced contraction, accompanied by decreased activity of the endogenous superoxide dismutase, augmented reactive oxygen species generation, and increased levels of tyrosine nitration compared with vessels from control group. The superoxide scavengers superoxide dismutase and tempol, and the antioxidant apocynin, were able to avoid this enhanced contractility to angiotensin II in aortic rings from the S60 group. In addition, aortic rings from the S60 group presented reduced sensitivity to Y-27632, a Rho-kinase (ROCK inhibitor. Immunoblot analyses revealed augmented RhoA and ROCK II, and high levels of phosphorylation of myosin phosphatase target subunit 1 in vessels from S60 rats. In conclusion, aortic rings from sepsis-surviving rats display endothelial dysfunction mediated by the increased production of reactive oxygen species, which in turn reduces the bioavailability of nitric oxide and increases the formation of peroxynitrite, and enhances RhoA-ROCK-mediated calcium sensitization, leading to augmented contractile responses to angiotensin II. Notably, this is the first study demonstrating long-term dysfunction in the vasculature of sepsis-surviving rats, which take place or remain beyond the acute septic insult.

  11. Bioaccumulation, stress, and swimming impairment in Daphnia magna exposed to multiwalled carbon nanotubes, graphene, and graphene oxide.

    Science.gov (United States)

    Cano, Amanda M; Maul, Jonathan D; Saed, Mohammad; Shah, Smit A; Green, Micah J; Cañas-Carrell, Jaclyn E

    2017-08-01

    The use of carbon-based nanomaterials (CNMs) such as multiwalled carbon nanotubes (MWCNTs), graphene, and graphene oxide (GO) is increasing across many applications because of their unique and versatile properties. These CNMs may enter the aquatic environment through many pathways, creating the potential for organism exposure. The present study addresses the bioaccumulation and toxicity seen in Daphnia magna exposed to CNMs dispersed in sodium dodecyl benzene sulfonate (SDBS). In study I, D. magna were exposed to varying outer diameters of MWCNTs for 24 h in moderately hard or hard freshwater. Bioaccumulation of MWCNT was found in all treatments, with the highest concentrations (0.53 ± 0.27 μg/g) in D. magna exposed in hard freshwater (p magna exposed to CNMs in moderately hard and hard freshwater. In study II, D. magna were exposed to CNMs for 72 h in moderately hard freshwater to assess swimming velocity and generation of reactive oxygen species (ROS) detected by dichlorofluorescein fluorescence. An overall decrease was seen in D. magna swimming velocity after exposure to CNMs. The generation of ROS was significantly higher (1.54 ± 0.38 dichlorofluorescein mM/mg dry wt) in D. magna exposed to MWCNTs of smaller outer diameters than in controls after 72 h (p < 0.05). These results suggest that further investigation of CNM toxicity and behavior in the aquatic environment is needed. Environ Toxicol Chem 2017;36:2199-2204. © 2017 SETAC. © 2017 SETAC.

  12. Reduction of brain mitochondrial β-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration.

    Directory of Open Access Journals (Sweden)

    James Haorah

    Full Text Available Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1 and cPT2 levels. The mitochondrial outer (cPT1 and inner (cPT2 membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function can cause a negative impact on ATP production (complex V function. Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2 prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10 was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.

  13. Visual Impairment

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ... with the brain, making vision impossible. What Is Visual Impairment? Many people have some type of visual ...

  14. Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer's disease.

    Science.gov (United States)

    Hritcu, Lucian; Noumedem, Jaurès A; Cioanca, Oana; Hancianu, Monica; Kuete, Victor; Mihasan, Marius

    2014-04-01

    The present study analyzed the possible memory-enhancing and antioxidant proprieties of the methanolic extract of Piper nigrum L. fruits (50 and 100 mg/kg, orally, for 21 days) in amyloid beta(1-42) rat model of Alzheimer's disease. The memory-enhancing effects of the plant extract were studied by means of in vivo (Y-maze and radial arm-maze tasks) approaches. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase-, catalase-, glutathione peroxidase-specific activities and the total content of reduced glutathione, malondialdehyde, and protein carbonyl levels. The amyloid beta(1-42)-treated rats exhibited the following: decrease of spontaneous alternations percentage within Y-maze task and increase of working memory and reference memory errors within radial arm-maze task. Administration of the plant extract significantly improved memory performance and exhibited antioxidant potential. Our results suggest that the plant extract ameliorates amyloid beta(1-42)-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.

  15. Adaptation of a thermo assay balance to the study of oxidation by water vapor and / or oxygen at high temperatures

    International Nuclear Information System (INIS)

    Uller, L.; Santarini, G.; Dixmier, J.; Coriou, H.

    1981-01-01

    The construction of an apparatus which allows the continuous follow-up of oxidation in the presence of steam, with different addition of O 2 is described. This apparatus permits to abserve the initial kinetics of oxidation of the stainless steel type 18-10 in mixtures steam/oxygen. (A.R.) [pt

  16. Fus1 KO mouse as a model of oxidative stress-mediated sporadic Alzheimer’s disease: circadian disruption and long-term spatial and olfactory memory impairments.

    Directory of Open Access Journals (Sweden)

    Guillermo Coronas-Samano

    2016-11-01

    Full Text Available Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4-5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1, disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK, autophagy (decreased levels of LC3-II, PKC (decreased levels of RACK1 and calcium signaling (decreased levels of Calb2 in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus, in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term, olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie, spatial memory (learning impairments on finding the platform in the Morris water maze and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation, association memory (passive avoidance or in species-typical behavior (nest building and no increased anxiety (open field, light-dark box or depression/anhedonia (sucrose preference at this relatively young age. These

  17. A potential role for Akt/FOXO signalling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle.

    Science.gov (United States)

    Crossland, Hannah; Constantin-Teodosiu, Dumitru; Gardiner, Sheila M; Constantin, Despina; Greenhaff, Paul L

    2008-11-15

    Sepsis causes muscle atrophy and insulin resistance, but the underlying mechanisms are unclear. Therefore, the present study examined the effects of lipopolysaccharide (LPS)-induced endotoxaemia on the expression of Akt, Forkhead Box O (FOXO) and its downstream targets, to identify any associations between changes in FOXO-dependent processes influencing muscle atrophy and insulin resistance during sepsis. Chronically instrumented male Sprague-Dawley rats received a continuous intravenous infusion of LPS (15 microg kg(-1) h(-1)) or saline for 24 h at 0.4 ml h(-1). Animals were terminally anaesthetized and the extensor digitorum longus muscles from both hindlimbs were removed and snap-frozen. Measurements were made of mRNA and protein expression of selected signalling molecules associated with pathways regulating protein synthesis and degradation and carbohydrate metabolism. LPS infusion induced increases in muscle tumour necrosis factor-alpha (8.9-fold, P < 0.001) and interleukin-6 (8.4-fold, P < 0.01), paralleled by reduced insulin receptor substrate-1 mRNA expression (-0.7-fold, P < 0.01), and decreased Akt1 protein and cytosolic FOXO1 and FOXO3 phosphorylation. These changes were accompanied by significant increases in muscle atrophy F-box mRNA (5.5-fold, P < 0.001) and protein (2-fold, P < 0.05) expression, and pyruvate dehydrogenase kinase 4 mRNA (15-fold, P < 0.001) and protein (1.6-fold, P < 0.05) expression. There was a 29% reduction in the muscle protein: DNA ratio, a 56% reduction in pyruvate dehydrogenase complex (PDC) activity (P < 0.05), and increased glycogen degradation and lactate accumulation. The findings of this study suggest a potential role for Akt/FOXO in the simultaneous impairment of carbohydrate oxidation, at the level of PDC, and up-regulation of muscle protein degradation, in LPS-induced endotoxaemia.

  18. Chronic predation risk reduces escape speed by increasing oxidative damage: a deadly cost of an adaptive antipredator response.

    Directory of Open Access Journals (Sweden)

    Lizanne Janssens

    Full Text Available Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels. The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage.

  19. Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptations to hypoxia: A comparative approach

    DEFF Research Database (Denmark)

    Fago, Angela; Jensen, Frank Bo; Tota, Bruno

    2012-01-01

    Hydrogen sulfide (H2S), nitric oxide (NO) and nitrite (NO2-) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular...

  20. Postprandial oxidative losses of free and protein-bound amino acids in the diet: interactions and adaptation

    NARCIS (Netherlands)

    Nolles, J.A.; Verreijen, A.M.; Koopmanschap, R.E.; Verstegen, M.W.A.; Schreurs, V.V.A.M.

    2009-01-01

    Postprandial oxidation of dietary free amino acids or egg white protein was studied using the [13CO2] breath test in rats, as well as in humans. Thirty-eight male rats were assigned to four dietary test groups. Two diets only differed in their protein fraction. Diet I contained 21% egg white

  1. Progesterone impairs cell respiration and suppresses a compensatory increase in glucose transport in isolated rat skeletal muscle: a non-genomic mechanism contributing to metabolic adaptation to late pregnancy?

    Science.gov (United States)

    Gras, F; Brunmair, B; Quarré, L; Szöcs, Z; Waldhäusl, W; Fürnsinn, C

    2007-12-01

    The aim of the study was to gain better insight into the mechanisms responsible for impaired glucose metabolism during late pregnancy. We explored the direct effects of progesterone on glucose metabolism of skeletal muscle. Specimens of skeletal muscle from untreated rats were incubated with progesterone and rates of substrate fluxes through the various pathways of glucose metabolism were analysed. Progesterone dose-dependently reduced the rates of glucose and pyruvate oxidation (insulin-stimulated rates after 5 h of exposure to 1 and 10 mumol/l progesterone: glucose oxidation, -6 +/- 4%, NS, and -39 +/- 4%, p respiration, e.g. by the specific inhibitor rotenone, is known to trigger a compensatory increase in glucose transport, but this response was blunted in the case of progesterone (change of glucose transport in response to 10 mumol/l progesterone vs 60 nmol/l rotenone, both causing a reduction in glucose oxidation by -39%: progesterone, +14 +/- 8% vs rotenone, +84 +/- 23%, p respiration and at the same time suppresses a compensatory increase in glucose transport, causing cellular carbohydrate deficiency in isolated rat skeletal muscle. This effect is mediated by a direct, rapid and non-genomic mechanism and could contribute to pregnancy-associated changes in glucose homeostasis.

  2. Neuronal-like differentiated SH-SY5Y cells adaptation to a mild and transient H2 O2 -induced oxidative stress.

    Science.gov (United States)

    Akki, Rachid; Siracusa, Rosalba; Morabito, Rossana; Remigante, Alessia; Campolo, Michela; Errami, Mohammed; La Spada, Giuseppina; Cuzzocrea, Salvatore; Marino, Angela

    2018-03-01

    Preconditioning (PC) is a cell adaptive response to oxidative stress and, with regard to neurons, can be considered as a neuroprotective strategy. The aim of the present study was to verify how neuronal-like differentiated SH-SY5Y cells adapt to a mild and transient H 2 O 2 -induced oxidative stress and, hence, whether may be considered as more sensitive cell model to study PC pathways. A first screening allowed to define H 2 O 2 concentrations for PC (10μM-50μM), applied before damage(100μM H 2 O 2 ). Cell viability measured 24 hours after 100μM H 2 O 2 -induced damage was ameliorated by 24-hour pre-exposure to low-concentration H 2 O 2 (10μM-30μM) with cell size as well restored. Markers for apoptosis (Bcl-2 and Bad), inflammation (iNOS), and redox system (MnSOD) were also determined, showing that, in cells pre-exposed to 10μM H 2 O 2 and then submitted to 100μM H 2 O 2 , Bcl-2 levels were higher, Bad and iNOS levels were lower than those observed in damaged cells, and MnSOD levels were unchanged. Such findings show that (1) neuronal-like differentiated SH-SY5Y cells are a suitable model to investigate PC response and more sensitive to the effect of a mild and transient H 2 O 2 -induced oxidative stress with respect to other neuronal cells; (2) 10μM H 2 O 2 -induced PC is mediated by apoptotic and inflammatory pathways, unlike antioxidant system; (3) such neuroprotective strategy and underlying signals proven in neuronal-like differentiated SH-SY5Y cells may contribute to understand in vivo PC mechanisms and to define a window for pharmacological intervention, namely, related to ischemic brain damage. Neuronal-like differentiated SH-SY5Y cells are a suitable model to investigate PC, an endogenous neuroprotective response to a mild and transient H 2 O 2 -induced oxidative stress, elicited by 24-hour exposure to very low H 2 O 2 concentrations and mediated by both apoptotic and inflammatory pathways. This model reflects in vivo PC mechanisms occurring

  3. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress.

    Science.gov (United States)

    Chauhan, Neeraj; Inglis, Diane; Roman, Elvira; Pla, Jesus; Li, Dongmei; Calera, Jose A; Calderone, Richard

    2003-10-01

    Ssk1p of Candida albicans is a putative response regulator protein of the Hog1 two-component signal transduction system. In Saccharomyces cerevisiae, the phosphorylation state of Ssk1p determines whether genes that promote the adaptation of cells to osmotic stress are activated. We have previously shown that C. albicans SSK1 does not complement the ssk1 mutant of S. cerevisiae and that the ssk1 mutant of C. albicans is not sensitive to sorbitol. In this study, we show that the C. albicans ssk1 mutant is sensitive to several oxidants, including hydrogen peroxide, t-butyl hydroperoxide, menadione, and potassium superoxide when each is incorporated in yeast extract-peptone-dextrose (YPD) agar medium. We used DNA microarrays to identify genes whose regulation is affected by the ssk1 mutation. RNA from mutant cells (strain CSSK21) grown in YPD medium for 3 h at 30 degrees C was reverse transcribed and then compared with similarly prepared RNA from wild-type cells (CAF2). We observed seven genes from mutant cells that were consistently up regulated (three-fold or greater compared to CAF2). In S. cerevisiae, three (AHP1, HSP12, and PYC2) of the seven genes that were up regulated provide cells with an adaptation function in response to oxidative stress; another gene (GPH1) is regulated under stress conditions by Hog1p. Three other genes that are up regulated encode a cell surface protein (FLO1), a mannosyl transferase (MNN4-4), and a putative two-component histidine kinase (CHK1) that regulates cell wall biosynthesis in C. albicans. Of the down-regulated genes, ALS1 is a known cell adhesin in C. albicans. Verification of the microarray data was obtained by reverse transcription-PCR for HSP12, AHP1, CHK1, PYC2, GPH1, ALS1, MNN4-4, and FLO1. To further determine the function of Ssk1p in the Hog1p signal transduction pathway in C. albicans, we used Western blot analysis to measure phosphorylation of Hog1p in the ssk1 mutant of C. albicans when grown under either osmotic or

  4. Visual impairment workshop for sighted students

    OpenAIRE

    Habjan, Iva

    2015-01-01

    The education process based on the inclusion concept enables primary school education close to home to children with visual impairment. Before admission of visual impairment pupil, the school environment and didactic materials are adapted and teachers are provided with additional training. The preparation of sighted peers is often ignored, who form erroneous ideas through observing the adaptations and activities of a visual impairment peer, or adopt prejudices and stereotypical beliefs from ...

  5. Diabetic beta-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses.

    Directory of Open Access Journals (Sweden)

    Grégory Lacraz

    Full Text Available BACKGROUND: Oxidative stress (OS, through excessive and/or chronic reactive oxygen species (ROS, is a mediator of diabetes-related damages in various tissues including pancreatic beta-cells. Here, we have evaluated islet OS status and beta-cell response to ROS using the GK/Par rat as a model of type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS: Localization of OS markers was performed on whole pancreases. Using islets isolated from 7-day-old or 2.5-month-old male GK/Par and Wistar control rats, 1 gene expression was analyzed by qRT-PCR; 2 insulin secretion rate was measured; 3 ROS accumulation and mitochondrial polarization were assessed by fluorescence methods; 4 antioxidant contents were quantified by HPLC. After diabetes onset, OS markers targeted mostly peri-islet vascular and inflammatory areas, and not islet cells. GK/Par islets revealed in fact protected against OS, because they maintained basal ROS accumulation similar or even lower than Wistar islets. Remarkably, GK/Par insulin secretion also exhibited strong resistance to the toxic effect of exogenous H(2O(2 or endogenous ROS exposure. Such adaptation was associated to both high glutathione content and overexpression (mRNA and/or protein levels of a large set of genes encoding antioxidant proteins as well as UCP2. Finally, we showed that such a phenotype was not innate but spontaneously acquired after diabetes onset, as the result of an adaptive response to the diabetic environment. CONCLUSIONS: The GK/Par model illustrates the effectiveness of adaptive response to OS by beta-cells to achieve self-tolerance. It remains to be determined to what extend such islet antioxidant defenses upregulation might contribute to GK/Par beta-cell secretory dysfunction.

  6. Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice.

    Science.gov (United States)

    McArdle, F; Spiers, S; Aldemir, H; Vasilaki, A; Beaver, A; Iwanejko, L; McArdle, A; Jackson, M J

    2004-11-15

    Adaptations of skeletal muscle following exercise are accompanied by changes in gene expression, which can result in protection against subsequent potentially damaging exercise. One cellular signal activating these adaptations may be an increased production of reactive oxygen and nitrogen species (ROS). The aim of this study was to examine the effect of a short period of non-damaging contractions on the subsequent susceptibility of muscle to contraction-induced damage and to examine the changes in gene expression that occur following the initial contraction protocol. Comparisons with changes in gene expression in cultured myotubes following treatment with a non-damaging concentration of hydrogen peroxide (H(2)O(2)) were used to identify redox-sensitive genes whose expression may be modified by the increased ROS production during contractions. Hindlimb muscles of mice were subjected to a preconditioning, non-damaging isometric contraction protocol in vivo. After 4 or 12 h, extensor digitorum longus (EDL) and soleus muscles were removed and subjected to a (normally) damaging contraction protocol in vitro. Muscles were also analysed for changes in gene expression induced by the preconditioning protocol using cDNA expression techniques. In a parallel study, C(2)C(12) myotubes were treated with a non-damaging concentration (100 microM) of H(2)O(2) and, at 4 and 12 h following treatment, myotubes were treated with a damaging concentration of H(2)O(2) (2 mM). Myotubes were analysed for changes in gene expression at 4 h following treatment with 100 microM H(2)O(2) alone. Data demonstrate that a prior period of non-damaging contractile activity resulted in significant protection of EDL and soleus muscles against a normally damaging contraction protocol 4 h later. This protection was associated with significant changes in gene expression. Prior treatment of myotubes with a non-damaging concentration of H(2)O(2) also resulted in significant protection against a damaging

  7. Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptations to hypoxia: A comparative approach.

    Science.gov (United States)

    Fago, Angela; Jensen, Frank B; Tota, Bruno; Feelisch, Martin; Olson, Kenneth R; Helbo, Signe; Lefevre, Sjannie; Mancardi, Daniele; Palumbo, Anna; Sandvik, Guro K; Skovgaard, Nini

    2012-05-01

    Hydrogen sulfide (H(2)S), nitric oxide (NO) and nitrite (NO(2)(-)) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular tone, cellular metabolic function and cytoprotection. This report summarizes current advances on the mechanisms by which these signaling pathways act and may have evolved in animals with different tolerance to hypoxia, as presented and discussed during the scientific sessions of the annual meeting of the Society for Experimental Biology in 2011 in Glasgow. It also highlights the need and potential for a comparative approach of study and collaborative effort to identify potential link(s) between the signaling pathways involving NO, nitrite and H(2)S in the whole-body responses to hypoxia. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats.

    Science.gov (United States)

    Kletkiewicz, H; Rogalska, J; Nowakowska, A; Wozniak, A; Mila-Kierzenkowska, C; Caputa, M

    2016-04-01

    It is well known that decrease in body temperature provides protection to newborns subjected to anoxia/ischemia. We hypothesized that the normal body temperature of 33°C in neonatal rats (4°C below normal body temperature in adults) is in fact a preadaptation to protect CNS from anoxia and further reductions as well as elevations in temperature may be counterproductive. Our experiments aimed to examine the effect of changes in body temperature on oxidative stress development in newborn rats exposed to anoxia. Two-day-old Wistar rats were divided into 4 temperature groups: i. hypothermic at body temperature of 31°C, ii. maintaining physiological neonatal body temperature of 33°C, iii. forced to maintain hyperthermic temperature of 37°C, and i.v. forced to maintain hyperthermic temperature of 39°C. The temperature was controlled starting 15 minutes before and afterword during 10 minutes of anoxia as well as for 2 hours post-anoxia. Cerebral concentrations of lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) and the activities of antioxidant enzymes had been determined post mortem: immediately after anoxia was finished and 3, 7, and 14 days later. There were no post-anoxic changes in the concentration of MDA, CD and in antioxidant enzymes activity in newborn rats kept at their physiological body temperature of 33°C. In contrast, perinatal anoxia at body temperature elevated to 37°C or 39°C as well as under hypothermic conditions (31°C) intensified post-anoxic oxidative stress and depleted the antioxidant pool. Overall, these findings suggest that elevated body temperature (hyperthermia or fever), as well as exceeding cooling beyond the physiological level of body temperature of newborn rats, may extend perinatal anoxia-induced brain lesions. Our findings provide new insights into the role of body temperature in anoxic insult in vivo.

  9. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea.

    Science.gov (United States)

    Yang, Qianqian; Yin, Dafang; Yin, Yanni; Cao, Yi; Ma, Zhonghua

    2015-04-01

    The high-osmolarity glycerol pathway plays an important role in the responses of fungi to various environmental stresses. Saccharomyces cerevisiae Skn7 is a response regulator in the high-osmolarity glycerol pathway, which regulates the oxidative stress response, cell cycle and cell wall biosynthesis. In this study, we characterized an Skn7 orthologue BcSkn7 in Botrytis cinerea. BcSKN7 can partly restore the growth defects of S. cerevisiae SKN7 mutant and vice versa. The BcSKN7 mutant (ΔBcSkn7-1) revealed increased sensitivity to ionic osmotic and oxidative stresses and to ergosterol biosynthesis inhibitors. In addition, ΔBcSkn7-1 was also impaired dramatically in conidiation and sclerotial formation. Western blot analysis showed that BcSkn7 positively regulated the phosphorylation of BcSak1 (the orthologue of S. cerevisiae Hog1) under osmotic stress, indicating that BcSkn7 is associated with the high-osmolarity glycerol pathway in B. cinerea. In contrast with BcSak1, BcSkn7 is not involved in the regulation of B. cinerea virulence. All of the phenotypic defects of ΔBcSkn7-1 are restored by genetic complementation of the mutant with the wild-type BcSKN7. The results of this study indicate that BcSkn7 plays an important role in the regulation of vegetative differentiation and in the response to various stresses in B. cinerea. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  10. The 2013 SFRBM discovery award: selected discoveries from the butterfield laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment.

    Science.gov (United States)

    Butterfield, D Allan

    2014-09-01

    This retrospective review on discoveries of the roles of oxidative stress in brain of subjects with Alzheimer disease (AD) and animal models thereof as well as brain from animal models of chemotherapy-induced cognitive impairment (CICI) results from the author receiving the 2013 Discovery Award from the Society for Free Radical Biology and Medicine. The paper reviews our laboratory's discovery of protein oxidation and lipid peroxidation in AD brain regions rich in amyloid β-peptide (Aβ) but not in Aβ-poor cerebellum; redox proteomics as a means to identify oxidatively modified brain proteins in AD and its earlier forms that are consistent with the pathology, biochemistry, and clinical presentation of these disorders; how Aβ in in vivo, ex vivo, and in vitro studies can lead to oxidative modification of key proteins that also are oxidatively modified in AD brain; the role of the single methionine residue of Aβ(1-42) in these processes; and some of the potential mechanisms in the pathogenesis and progression of AD. CICI affects a significant fraction of the 14 million American cancer survivors, and due to diminished cognitive function, reduced quality of life of the persons with CICI (called "chemobrain" by patients) often results. A proposed mechanism for CICI employed the prototypical ROS-generating and non-blood brain barrier (BBB)-penetrating chemotherapeutic agent doxorubicin (Dox, also called adriamycin, ADR). Because of the quinone moiety within the structure of Dox, this agent undergoes redox cycling to produce superoxide free radical peripherally. This, in turn, leads to oxidative modification of the key plasma protein, apolipoprotein A1 (ApoA1). Oxidized ApoA1 leads to elevated peripheral TNFα, a proinflammatory cytokine that crosses the BBB to induce oxidative stress in brain parenchyma that affects negatively brain mitochondria. This subsequently leads to apoptotic cell death resulting in CICI. This review outlines aspects of CICI consistent with

  11. The 2013 Discovery Award from the Society for Free Radical Biology and Medicine: Selected Discoveries from the Butterfield Laboratory of Oxidative Stress and Its Sequelae in Brain in Cognitive Disorders Exemplified by Alzheimer Disease and Chemotherapy Induced Cognitive Impairment

    Science.gov (United States)

    Butterfield, D. Allan

    2014-01-01

    This retrospective review on discoveries of the roles of oxidative stress in brain of subjects with Alzheimer disease (AD) and animal models thereof as well as brain from animal models of chemotherapy induced cognitive impairment (CICI) results from the author receiving the 2013 Discovery Award from the Society for Free Radical Biology and Medicine. The paper reviews our laboratory's discovery of: protein oxidation and lipid peroxidation in AD brain regions rich in amyloid β-peptide (Aβ) but not in Aβ-poor cerebellum; redox proteomics as a means to identify oxidatively modified brain proteins in AD and its earlier forms that are consistent with the pathology, biochemistry, and clinical presentation of these disorders; how Aβ in in vivo, ex vivo, and in vitro studies can lead to oxidative modification of key proteins that also are oxidatively modified in AD brain; the role of the single methionine residue of Aβ(1-42) in these processes; and some of the potential mechanisms in the pathogenesis and progression of AD. CICI affects a significant fraction of the 14 million American cancer survivors, and due to diminished cognitive function, reduced quality of life of the persons with CICI (called “chemobrain” by patients) often results. A proposed mechanism for CICI employed the prototypical ROS-generating and non-blood brain barrier (BBB)-penetrating chemotherapeutic agent doxorubicin (Dox, also called adriamycin, ADR). Because of the quinone moiety within the structure of Dox, this agent undergoes redox cycling to produce superoxide free radical peripherally. This, in turn, leads to oxidative modification of the key plasma protein, Apolipoprotein A1 (ApoA1). Oxidized ApoA1 leads to elevated peripheral TNFα, a pro-inflammatory cytokine that crosses the BBB to induce oxidative stress in brain parenchyma that affects negatively brain mitochondria. This subsequently leads to apoptotic cell death resulting in CICI. This review outlines aspects of CICI consistent

  12. Loss of the Arabidopsis thaliana P₄-ATPase ALA3 reduces adaptability to temperature stresses and impairs vegetative, pollen, and ovule development.

    Directory of Open Access Journals (Sweden)

    Stephen C McDowell

    Full Text Available Members of the P4 subfamily of P-type ATPases are thought to help create asymmetry in lipid bilayers by flipping specific lipids between the leaflets of a membrane. This asymmetry is believed to be central to the formation of vesicles in the secretory and endocytic pathways. In Arabidopsis thaliana, a P4-ATPase associated with the trans-Golgi network (ALA3 was previously reported to be important for vegetative growth and reproductive success. Here we show that multiple phenotypes for ala3 knockouts are sensitive to growth conditions. For example, ala3 rosette size was observed to be dependent upon both temperature and soil, and varied between 40% and 80% that of wild-type under different conditions. We also demonstrate that ala3 mutants have reduced fecundity resulting from a combination of decreased ovule production and pollen tube growth defects. In-vitro pollen tube growth assays showed that ala3 pollen germinated ∼2 h slower than wild-type and had approximately 2-fold reductions in both maximal growth rate and overall length. In genetic crosses under conditions of hot days and cold nights, pollen fitness was reduced by at least 90-fold; from ∼18% transmission efficiency (unstressed to less than 0.2% (stressed. Together, these results support a model in which ALA3 functions to modify endomembranes in multiple cell types, enabling structural changes, or signaling functions that are critical in plants for normal development and adaptation to varied growth environments.

  13. Berberine induces oxidative DNA damage and impairs homologous recombination repair in ovarian cancer cells to confer increased sensitivity to PARP inhibition.

    Science.gov (United States)

    Hou, Dong; Xu, Guangwei; Zhang, Caibo; Li, Boxuan; Qin, Junchao; Hao, Xiaohe; Liu, Qiao; Zhang, Xiyu; Liu, Jinsong; Wei, Jianjun; Gong, Yaoqin; Liu, Zhaojian; Shao, Changshun

    2017-10-05

    Many cancer drugs exert their therapeutic effect by inducing oxidative stress in the cancer cells. Oxidative stress compromises cell survival by inflicting lesions in macromolecules like DNA. Cancer cells rely on enhanced antioxidant metabolism and increased DNA repair function to survive oxidative assault. PARP1, a protein that senses DNA-strand breaks and orchestrates their repair, has an important role in the repair of oxidative DNA damage. Berberine, an alkaloid compound present in many herbal plants, is capable of inducing oxidative DNA damage and downregulating homologous recombination repair (HRR) in cancer cells. In this study, we demonstrated that berberine and PARP inhibitor niraparib have a synthetic lethal effect on ovarian cancer cells. Oxidative DNA damage was greatly induced by berberine in ovarian cancer cells. In addition, the level of RAD51 and the capacity of HRR were also reduced by berberine. Correspondingly, PARP became hyperactivated in response to berberine treatment. Cancer cells treated with berberine and niraparib in combination exhibited greatly increased apoptosis and remarkably reduced tumor growth in vivo. Together, the results indicate that by inducing oxidative DNA damage and downregulating HRR in cancer cells berberine is able to further sensitize cancer cells to PARP inhibition. Our findings demonstrate a potential therapeutic value of combined application of berberine and PARP inhibitors in ovarian cancer treatment.

  14. Adaptação de escalas de silhuetas bidimensionais e tridimensionais para o deficiente visual Adaptation of two and three dimensional silhouette scales for the visually impaired

    Directory of Open Access Journals (Sweden)

    Fabiane Frota da Rocha Morgado

    2011-04-01

    Full Text Available O objetivo deste estudo foi descrever o processo de adaptação da Escala de Silhuetas Bidimensionais (ESB e de criação da Escala de Silhuetas Tridimensionais (EST. Para isso uma pesquisa de cunho qualitativo realizado em três etapas: na primeira, foi solicitada a autorização do prof. Stunkard para a utilização de seu instrumento como parâmetro para a confecção das Escalas. Na segunda, foi confeccionada a ESB e na terceira, a EST. Estas Escalas foram elaboradas considerando os critérios técnicos da Divisão de Pesquisa e Produção de Material Especializado do Instituto Benjamin Constant - RJ. Os resultados indicaram que a ESB foi confeccionada em linguagem grafo-tátil em alto relevo e é composta por nove bonecos masculinos e nove femininos, com diferentes formas corporais, texturizados com lixa de parede e linha. Os bonecos possuem 8,5 cm de altura. A EST foi composta por nove bonecos masculinos e nove femininos, com diferentes pesos e formas corporais. Os modelos foram confeccionados através de processo artesanal e constituídos de gesso pedra. Os bonecos do gênero masculino possuem altura de 15,5 cm e os do gênero feminino, 13,5 cm. Conclui-se que as informações contidas na descrição detalhada dos processos de confecção da ESB e EST podem ser um referencial para adaptações futuras e melhoradas de outras Escalas de figuras humanas, desenvolvidas a partir deste primeiro referencial.The objective of this study was to describe the process of adaptation of the Two Dimencional Silhouette Scale (2DSS and the development of a Three Dimensional Silhouette Scale (3DSS. To that end, a qualitative study was conducted in three stages: In the first one, the creator of the tool, Mr. Stunkard was contacted for permission to use his instrument as a parameter for the development of the scales. In the second and third ones, the 2DSS and the 3DSS were developed, respectively. These scales were developed considering the technical criteria

  15. Identification of the SLAM Adapter Molecule EAT-2 as a Lupus-Susceptibility Gene That Acts through Impaired Negative Regulation of Dendritic Cell Signaling.

    Science.gov (United States)

    Talaei, Nafiseh; Yu, Tao; Manion, Kieran; Bremner, Rod; Wither, Joan E

    2015-11-15

    We showed previously that C57BL/6 congenic mice with an introgressed homozygous 70 cM (125.6 Mb) to 100 cM (179.8 Mb) interval on c1 from the lupus-prone New Zealand Black (NZB) mouse develop high titers of antinuclear Abs and severe glomerulonephritis. Using subcongenic mice, we found that a genetic locus in the 88-96 cM region was associated with altered dendritic cell (DC) function and synergized with T cell functional defects to promote expansion of pathogenic proinflammatory T cell subsets. In this article, we show that the promoter region of the NZB gene encoding the SLAM signaling pathway adapter molecule EWS-activated transcript 2 (EAT-2) is polymorphic, which results in an ∼ 70% reduction in EAT-2 in DC. Silencing of the EAT-2 gene in DC that lacked this polymorphism led to increased production of IL-12 and enhanced differentiation of T cells to a Th1 phenotype in T cell-DC cocultures, reproducing the phenotype observed for DC from congenic mice with the NZB c1 70-100 cM interval. SLAM signaling was shown to inhibit production of IL-12 by CD40L-activated DCs. Consistent with a role for EAT-2 in this inhibition, knockdown of EAT-2 resulted in increased production of IL-12 by CD40-stimulated DC. Assessment of downstream signaling following CD40 cross-linking in the presence or absence of SLAM cross-linking revealed that SLAM coengagement blocked activation of p38 MAPK and JNK signaling pathways in DC, which was reversed in DC with the NZB EAT-2 allele. We conclude that EAT-2 negatively regulates cytokine production in DC downstream of SLAM engagement and that a genetic polymorphism that disturbs this process promotes the development of lupus. Copyright © 2015 by The American Association of Immunologists, Inc.

  16. Cafeteria diet overfeeding in young male rats impairs the adaptive response to fed/fasted conditions and increases adiposity independent of body weight.

    Science.gov (United States)

    Castro, H; Pomar, C A; Picó, C; Sánchez, J; Palou, A

    2015-03-01

    We analyzed the effects of a short exposure to a cafeteria diet during early infancy in rats on their metabolic response to fed/fasting conditions in key tissues involved in energy homeostasis. Ten-day-old male pups were fed a control or a cafeteria diet for 12 days and then killed under ad libitum feeding conditions or 12 h fasting. The expression of key genes related to energy metabolism in liver, retroperitoneal white adipose tissue (WAT) and hypothalamus were analyzed. Despite no differences in body weight, cafeteria-fed animals had almost double the fat mass of control rats. They also showed higher food intake, higher leptinemia and altered hypothalamic expression of Neuropetide Y, suggesting a dysfunction in the control of food intake. Unlike controls, cafeteria-fed animals did not decrease WAT expression of Pparg, sterol regulatory element binding transcription factor 1 or Cidea under fasting conditions, and displayed lower Pnpla2 expression than controls. In liver, compared with controls, cafeteria animals presented: (i) lower expression of genes related with fatty acid uptake and lipogenesis under ad libitum-fed conditions; (ii) higher expression of fatty acid oxidation-related genes and glucokinase under fasting conditions; (iii) greater expression of leptin and insulin receptors; and higher protein levels of insulin receptor and the pAMPK/AMPK ratio. A short period of exposure to a cafeteria diet in early infancy in rat pups is enough to disturb the metabolic response to fed/fasting conditions in key tissues involved in energy homeostasis, particularly in WAT, and hence induces an exacerbated body fat accumulation and increased metabolic risk, with no apparent effects on body weight.

  17. Priming of hypoxia-inducible factor by neuronal nitric oxide synthase is essential for adaptive responses to severe anemia.

    Science.gov (United States)

    Tsui, Albert K Y; Marsden, Philip A; Mazer, C David; Adamson, S Lee; Henkelman, R Mark; Ho, J J David; Wilson, David F; Heximer, Scott P; Connelly, Kim A; Bolz, Steffen-Sebastian; Lidington, Darcy; El-Beheiry, Mostafa H; Dattani, Neil D; Chen, Kevin M; Hare, Gregory M T

    2011-10-18

    Cells sense and respond to changes in oxygen concentration through gene regulatory processes that are fundamental to survival. Surprisingly, little is known about how anemia affects hypoxia signaling. Because nitric oxide synthases (NOSs) figure prominently in the cellular responses to acute hypoxia, we defined the effects of NOS deficiency in acute anemia. In contrast to endothelial NOS or inducible NOS deficiency, neuronal NOS (nNOS)(-/-) mice demonstrated increased mortality during anemia. Unlike wild-type (WT) animals, anemia did not increase cardiac output (CO) or reduce systemic vascular resistance (SVR) in nNOS(-/-) mice. At the cellular level, anemia increased expression of HIF-1α protein and HIF-responsive mRNA levels (EPO, VEGF, GLUT1, PDK1) in the brain of WT, but not nNOS(-/-) mice, despite comparable reductions in tissue PO(2). Paradoxically, nNOS(-/-) mice survived longer during hypoxia, retained the ability to regulate CO and SVR, and increased brain HIF-α protein levels and HIF-responsive mRNA transcripts. Real-time imaging of transgenic animals expressing a reporter HIF-α(ODD)-luciferase chimeric protein confirmed that nNOS was essential for anemia-mediated increases in HIF-α protein stability in vivo. S-nitrosylation effects the functional interaction between HIF and pVHL. We found that anemia led to nNOS-dependent S-nitrosylation of pVHL in vivo and, of interest, led to decreased expression of GSNO reductase. These findings identify nNOS effects on the HIF/pVHL signaling pathway as critically important in the physiological responses to anemia in vivo and provide essential mechanistic insight into the differences between anemia and hypoxia.

  18. Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males

    Directory of Open Access Journals (Sweden)

    Kamal Azizbeigi

    2014-06-01

    Full Text Available The aim of this study was to compare the effect of endurance training (ET, resistance training (RT, and concurrent training (CT on circulating antioxidant capacity and oxidative stress. For this purpose, 30 men aged 21.7 ± 2.4 years were assigned to the following three training groups: ET, which included continuous running with incremental intensity that was increased up to 80% of maximal heart rate (n = 10; RT, which included a beginning load of 50% of one repetition maximum (1RM that was increased up to 80% of 1RM (n = 10; and CT, which included ET and RT programs every other day during the week (n = 10. Activities of superoxide dismutase (SOD and glutathione peroxidase (GPx in erythrocytes and total antioxidant capacity (TAC and malondialdehyde (MDA level in plasma were measured. The results showed that SOD significantly increased by 21.85% (p = 0.020, 9.54% (p = 0.032, and 14.55% (p = 0.038 in the ET, RT, and CT groups, respectively. Furthermore, the activity of erythrocyte GPx significantly increased in the ET (p = 0.018 and CT (p = 0.042 groups. The TAC increased significantly in the ET (p = 0.040 and CT (p = 0.049 groups compared with the pretest values. The MDA level significantly decreased in the ET group by 32.7% (p = 0.028, by 32% in the RT group (p = 0.025, and by 29.1% (p = 0.047 in the CT group. However, there was no significant difference in the interaction of time and group between variables of SOD and GPx enzymes and TAC of plasma and MDA in the ET, RT, and CT groups (p < 0.05. It can be concluded that all three training types induced the same changes in redox state (increased SOD activity and reduction in MDA levels, but at different rates.

  19. Educational Media Production Project for the Hearing Impaired: Update '83.

    Science.gov (United States)

    Propp, George

    1983-01-01

    The paper reviews the production activities of the Educational Media Production Project for the Hearing Impaired, a project designed to adapt existing or develop new instructional materials for the hearing impaired. (Author/CL)

  20. Progressive adaptation of hepatic ketogenesis in mice fed a high-fat diet.

    Science.gov (United States)

    Sunny, Nishanth E; Satapati, Santhosh; Fu, Xiaorong; He, TianTeng; Mehdibeigi, Roshi; Spring-Robinson, Chandra; Duarte, Joao; Potthoff, Matthew J; Browning, Jeffrey D; Burgess, Shawn C

    2010-06-01

    Hepatic ketogenesis provides a vital systemic fuel during fasting because ketone bodies are oxidized by most peripheral tissues and, unlike glucose, can be synthesized from fatty acids via mitochondrial beta-oxidation. Since dysfunctional mitochondrial fat oxidation may be a cofactor in insulin-resistant tissue, the objective of this study was to determine whether diet-induced insulin resistance in mice results in impaired in vivo hepatic fat oxidation secondary to defects in ketogenesis. Ketone turnover (micromol/min) in the conscious and unrestrained mouse was responsive to induction and diminution of hepatic fat oxidation, as indicated by an eightfold rise during the fed (0.50+/-0.1)-to-fasted (3.8+/-0.2) transition and a dramatic blunting of fasting ketone turnover in PPARalpha(-/-) mice (1.0+/-0.1). C57BL/6 mice made obese and insulin resistant by high-fat feeding for 8 wk had normal expression of genes that regulate hepatic fat oxidation, whereas 16 wk on the diet induced expression of these genes and stimulated the function of hepatic mitochondrial fat oxidation, as indicated by a 40% induction of fasting ketogenesis and a twofold rise in short-chain acylcarnitines. Together, these findings indicate a progressive adaptation of hepatic ketogenesis during high-fat feeding, resulting in increased hepatic fat oxidation after 16 wk of a high-fat diet. We conclude that mitochondrial fat oxidation is stimulated rather than impaired during the initiation of hepatic insulin resistance in mice.

  1. Pomegranate extract decreases oxidative stress and alleviates mitochondrial impairment by activating AMPK-Nrf2 in hypothalamic paraventricular nucleus of spontaneously hypertensive rats.

    Science.gov (United States)

    Sun, Wenyan; Yan, Chunhong; Frost, Bess; Wang, Xin; Hou, Chen; Zeng, Mengqi; Gao, Hongli; Kang, Yuming; Liu, Jiankang

    2016-10-07

    High blood pressure, or "hypertension," is associated with high levels of oxidative stress in the paraventricular nucleus of the hypothalamus. While pomegranate extract is a known antioxidant that is thought to have antihypertensive effects, the mechanism whereby pomegranate extract lowers blood pressure and the tissue that mediates its antihypertensive effects are currently unknown. We have used a spontaneously hypertensive rat model to investigate the antihypertensive properties of pomegranate extract. We found that chronic treatment of hypertensive rats with pomegranate extract significantly reduced blood pressure and cardiac hypertrophy. Furthermore, pomegranate extract reduced oxidative stress, increased the antioxidant defense system, and decreased inflammation in the paraventricular nucleus of hypertensive rats. We determined that pomegranate extract reduced mitochondrial superoxide anion levels and increased mitochondrial function in the paraventricular nucleus of hypertensive rats by promoting mitochondrial biogenesis and improving mitochondrial dynamics and clearance. We went on to identify the AMPK-nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) pathway as a mechanism whereby pomegranate extract reduces oxidative stress in the paraventricular nucleus to relieve hypertension. Our findings demonstrate that pomegranate extract alleviates hypertension by reducing oxidative stress and improving mitochondrial function in the paraventricular nucleus, and reveal multiple novel targets for therapeutic treatment of hypertension.

  2. Effects of acupuncture on declined cerebral blood flow, impaired mitochondrial respiratory function and oxidative stress in multi-infarct dementia rats.

    Science.gov (United States)

    Zhang, Xuezhu; Wu, Bangqi; Nie, Kun; Jia, Yujie; Yu, Jianchun

    2014-01-01

    Brain energy disorders and oxidative stress due to chronic hypoperfusion were considered to be the major risk factors in the pathogenesis of dementia. In previous studies, we have demonstrated that acupuncture treatment improved cognitive function of VaD patients and multi-infarct dementia (MID) rats. Acupuncture therapy also increased the activities of glycometabolic enzymes in the brain. But it is not clear whether acupuncture treatment compensates neuronal energy deficit after cerebral ischemic through enhancing the activities of glucose metabolic enzymes and preserving mitochondrial function, and whether acupuncture neuroprotective effect is associated with activations of mitochondrial antioxidative defense system. So, the effect of acupuncture therapy on cognitive function, cerebral blood flow (CBF), mitochondrial respiratory function and oxidative stress in the brain of MID rats was investigated in this study. The results showed that acupuncture treatment significantly improved cognitive abilities and increased regional CBF of MID rats. Acupuncture elevated the activities of total SOD, CuZnSOD and MnSOD, decreased the level of malondialdehyde (MDA) and superoxide anion, regulated the ratio of reduced glutathione (GSH) and oxidized glutathione (GSSG) in mitochondria, and raised the level of the respiratory control index (RCI) and P/O ratio and the activities of mitochondrial respiratory enzymes of MID rats. These results indicated that acupuncture treatment improved cognitive function of MID rats; and this improvement might be due to increased CBF, which ameliorated mitochondrial dysfunction induced by ischemia and endogenous oxidative stress system of brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Sulforaphane Protects against High Cholesterol-Induced Mitochondrial Bioenergetics Impairments, Inflammation, and Oxidative Stress and Preserves Pancreaticβ-Cells Function.

    Science.gov (United States)

    Carrasco-Pozo, Catalina; Tan, Kah Ni; Gotteland, Martin; Borges, Karin

    2017-01-01

    Cholesterol plays an important role in inducing pancreatic β -cell dysfunction, leading to an impaired insulin secretory response to glucose. This study aimed to determine the protective effects of sulforaphane, a natural isothiocyanate Nrf2-inducer, against cholesterol-induced pancreatic β -cells dysfunction, through molecular and cellular mechanisms involving mitochondrial bioenergetics. Sulforaphane prevented cholesterol-induced alterations in the coupling efficiency of mitochondrial respiration, improving ATP turnover and spare capacity, and averted the impairment of the electron flow at complexes I, II, and IV. Sulforaphane also attenuated the cholesterol-induced activation of the NF κ B pathway, normalizing the expression of pro- and anti-inflammatory cytokines. In addition, it also inhibited the decrease in sirtuin 1 expression and greatly increased Pgc-1α expression in Min6 cells. Sulforaphane increased the expression of antioxidant enzymes downstream of the Nrf2 pathway and prevented lipid peroxidation induced by cholesterol. The antioxidant and anti-inflammatory properties of sulforaphane and its ability to protect and improve mitochondrial bioenergetic function contribute to its protective action against cholesterol-induced pancreatic β -cell dysfunction. Our data provide a scientifically tested foundation upon which sulforaphane can be developed as nutraceutical to preserve β -cell function and eventually control hyperglycemia.

  4. Sulforaphane Protects against High Cholesterol-Induced Mitochondrial Bioenergetics Impairments, Inflammation, and Oxidative Stress and Preserves Pancreatic β-Cells Function

    Directory of Open Access Journals (Sweden)

    Catalina Carrasco-Pozo

    2017-01-01

    Full Text Available Cholesterol plays an important role in inducing pancreatic β-cell dysfunction, leading to an impaired insulin secretory response to glucose. This study aimed to determine the protective effects of sulforaphane, a natural isothiocyanate Nrf2-inducer, against cholesterol-induced pancreatic β-cells dysfunction, through molecular and cellular mechanisms involving mitochondrial bioenergetics. Sulforaphane prevented cholesterol-induced alterations in the coupling efficiency of mitochondrial respiration, improving ATP turnover and spare capacity, and averted the impairment of the electron flow at complexes I, II, and IV. Sulforaphane also attenuated the cholesterol-induced activation of the NFκB pathway, normalizing the expression of pro- and anti-inflammatory cytokines. In addition, it also inhibited the decrease in sirtuin 1 expression and greatly increased Pgc-1α expression in Min6 cells. Sulforaphane increased the expression of antioxidant enzymes downstream of the Nrf2 pathway and prevented lipid peroxidation induced by cholesterol. The antioxidant and anti-inflammatory properties of sulforaphane and its ability to protect and improve mitochondrial bioenergetic function contribute to its protective action against cholesterol-induced pancreatic β-cell dysfunction. Our data provide a scientifically tested foundation upon which sulforaphane can be developed as nutraceutical to preserve β-cell function and eventually control hyperglycemia.

  5. Mitigation of acrylamide-induced behavioral deficits, oxidative impairments and neurotoxicity by oral supplements of geraniol (a monoterpene) in a rat model.

    Science.gov (United States)

    Prasad, Sathya N; Muralidhara

    2014-11-05

    In the recent past, several phytoconstituents are being explored for their potential neuromodulatory effects in neurological diseases. Repeated exposure of acrylamide (ACR) leads to varying degree of neuronal damage in experimental animals and humans. In view of this, the present study investigated the efficacy of geraniol (GE, a natural monoterpene) to mitigate acrylamide (ACR)-induced oxidative stress, mitochondrial dysfunction and neurotoxicity in a rat model and compared its efficacy to that of curcumin (CU, a spice active principle with multiple biological activities). ACR administration (50mg/kg bw, i.p. 3times/week) for 4weeks to growing rats caused typical symptoms of neuropathy. ACR rats provided with daily oral supplements of phytoconstituents (GE: 100mg/kg bw/d; CU: 50mg/kg bw/d, 4weeks) exhibited marked improvement in behavioral tests. Both phytoconstituents markedly attenuated ACR-induced oxidative stress as evidenced by the diminished levels of reactive oxygen species, malondialdehyde and nitric oxide and restored the reduced glutathione levels in sciatic nerve (SN) and brain regions (cortex - Ct, cerebellum - Cb). Further, both phytoconstituents effectively diminished ACR-induced elevation in cytosolic calcium levels in SN and Cb. Furthermore, diminution in the levels of oxidative markers in the mitochondria was associated with elevation in the activities of antioxidant enzymes. While ACR mediated elevation in the acetylcholinesterase activity was reduced by both actives, the depletion in dopamine levels was restored only by CU in brain regions. Taken together our findings for the first time demonstrate that the neuromodulatory propensity of GE is indeed comparable to that of CU and may be exploited as a therapeutic adjuvant in the management of varied human neuropathy conditions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Assessment of thyroid endocrine system impairment and oxidative stress mediated by cobalt ferrite (CoFe2 O4 ) nanoparticles in zebrafish larvae.

    Science.gov (United States)

    Ahmad, Farooq; Liu, Xiaoyi; Zhou, Ying; Yao, Hongzhou; Zhao, Fangfang; Ling, Zhaoxing; Xu, Chao

    2016-12-01

    Fascinating super paramagnetic uniqueness of iron oxide particles at nano-scale level make them extremely useful in the state of the art therapies, equipments, and techniques. Cobalt ferrite (CoFe 2 O 4 ) magnetic nanoparticles (MNPs) are extensively used in nano-based medicine and electronics, results in extensive discharge and accumulation into the environment. However, very limited information is available for their endocrine disrupting potential in aquatic organisms. In this study, the thyroid endocrine disrupting ability of CoFe 2 O 4 NPs in Zebrafish larvae for 168-h post fertilization (hpf) was evaluated. The results showed the elevated amounts of T4 and T3 hormones by malformation of hypothalamus pituitary axis in zebrafish larvae. These elevated levels of whole body THs leads to delayed hatching, head and eye malformation, arrested development, and alterations in metabolism. The influence of THs disruption on ROS production and change in activities of catalase (CAT), mu-glutathione s-transferase (mu-GST), and acid phosphatase (AP) were also studied. The production of significantly higher amounts of in vivo generation of ROS leads to membrane damage and oxidative stress. Presences of NPs and NPs agglomerates/aggregates were also the contributing factors in mechanical damaging the membranes and physiological structure of thyroid axis. The increased activities of CAT, mu-GST, and AP confirmed the increased oxidative stress, possible DNA, and metabolic alterations, respectively. The excessive production of in vivo ROS leads to severe apoptosis in head, eye, and heart region confirming that malformation leads to malfunctioning of hypothalamus pituitary axis. ROS-induced oxidative DNA damage by formation of 8-OHdG DNA adducts elaborates the genotoxicity potential of CoFe 2 O 4 NPs. This study will help us to better understand the risk and assessment of endocrine disrupting potential of nanoparticles. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2068

  7. ERβ-dependent neuroglobin up-regulation impairs 17β-estradiol-induced apoptosis in DLD-1 colon cancer cells upon oxidative stress injury.

    Science.gov (United States)

    Fiocchetti, Marco; Camilli, Giulia; Acconcia, Filippo; Leone, Stefano; Ascenzi, Paolo; Marino, Maria

    2015-05-01

    Besides other mechanism(s) 17β-estradiol (E2) facilitates neuronal survival by increasing, via estrogen receptor β (ERβ), the levels of neuroglobin (NGB) an anti-apoptotic protein. In contrast, E2 could exert protective effects in cancer cells by activating apoptosis when the ERβ level prevails on that of ERα as in colon cancer cell lines. These apparently contrasting results raise the possibility that E2-induced NGB up-regulation could regulate the ERβ activities shunning this receptor subtype to trigger an apoptotic cascade in neurons but not in non-neuronal cells. Here, human colorectal adenocarcinoma cell line (DLD-1) that only expresses ERβ and HeLa cells transiently transfected with ERβ encoding vector has been used to verify this hypothesis. In addition, neuroblastoma SK-N-BE cells were used as positive control. Surprisingly, E2 also induced NGB up-regulation, in a dose- and time-dependent manner, in DLD-1 cells. The ERβ-mediated activation of p38/MAPK was necessary for this E2 effect. E2 induced NGB re-allocation in mitochondria where, subsequently to an oxidative stress injury (i.e., 100μM H2O2), NGB interacted with cytochrome c preventing its release into the cytosol and the activation of an apoptotic cascade. As a whole, these results demonstrate that E2-induced NGB up-regulation could act as an oxidative stress sensor, which does not oppose to the pro-apoptotic E2 effect in ERβ-containing colon cancer cells unless a rise of oxidative stress occurs. These results support the concept that oxidative stress plays a critical role in E2-induced carcinogenesis and further open an important scenario to develop novel therapeutic strategies that target NGB against E2-related cancers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Chronic Cigarette Smoking Impairs Erectile Function through Increased Oxidative Stress and Apoptosis, Decreased nNOS, Endothelial and Smooth Muscle Contents in a Rat Model.

    Directory of Open Access Journals (Sweden)

    Yun-Ching Huang

    Full Text Available Cigarette use is an independent risk factor for the development of erectile dysfunction (ED. While the association between chronic smoking and ED is well established, the fundamental mechanism(s of cigarette-related ED are incompletely understood, partly due to no reliable animal model of smoking-induced ED. The present study was designed to validate an in vivo rat model of chronic cigarette-induced ED. Forty 12-week old male Sprague-Dawley rats were divided into 4 groups. Ten rats served as control group and were exposed only to room air. The remaining 30 rats were passively exposed to cigarette smoke (CS for 4 weeks (n = 10, 12 weeks (n = 10, and 24 weeks (n = 10. At the 24-week time point all rats were assessed with intracavernous pressure (ICP during cavernous nerve electrostimulation. Blood and urine were collected to measure serum testosterone and oxidative stress, respectively. Corporal tissue was assessed by Western blot for neuronal nitric oxide synthase (nNOS. Penile tissues were subjected to immunohistochemistry for endothelial, smooth muscle, and apoptotic content. Mean arterial pressure (MAP was significantly higher in 24-week cigarette exposed animals compared to the control animals. Mean ICP/MAP ratio and cavernosal smooth muscle/endothelial contents were significantly lower in the 12- and 24-week rats compared to control animals. Oxidative stress was significantly higher in the 24-week cigarette exposed group compared to control animals. Mean nNOS expression was significantly lower, and apoptotic index significantly higher, in CS-exposed animals compared to control animals. These findings indicate that the rat model exposure to CS increases apoptosis and oxidative stress and decreases nNOS, endothelial and smooth muscle contents, and ICP in a dose dependent fashion. The rat model is a useful tool for further study of the molecular and cellular mechanisms of CS-related ED.

  9. Roles of Amyloid β-Peptide-Associated Oxidative Stress and Brain Protein Modifications in the Pathogenesis of Alzheimer's Disease and Mild Cognitive Impairment

    OpenAIRE

    Butterfield, D. Allan; Reed, Tanea; Newman, Shelley F.; Sultana, Rukhsana

    2007-01-01

    Oxidative stress has been implicated to play a crucial role in the pathogenesis of a number of diseases, including neurodegenerative disorders, cancer, and ischemia just to name a few. Alzheimer's disease (AD) is an age-related neurodegenerative disorder that is recognized as the most common form of dementia. AD is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid β-peptide (Aβ), and ...

  10. Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment.

    Directory of Open Access Journals (Sweden)

    Petra Maria Hermann

    2014-12-01

    Full Text Available TThe aging brain can undergo a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (peroxidation of membrane lipids and activation of phospholipase A2 (PLA2 enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the Biology of cognitive aging we (1 portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and (2 recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.

  11. Staphylococcus aureus Adapts to Oxidative Stress by Producing H2O2-Resistant Small-Colony Variants via the SOS Response

    Science.gov (United States)

    Painter, Kimberley L.; Strange, Elizabeth; Bamford, Kathleen B.; Armstrong-James, Darius

    2015-01-01

    The development of chronic and recurrent Staphylococcus aureus infections is associated with the emergence of slow-growing mutants known as small-colony variants (SCVs), which are highly tolerant of antibiotics and can survive inside host cells. However, the host and bacterial factors which underpin SCV emergence during infection are poorly understood. Here, we demonstrate that exposure of S. aureus to sublethal concentrations of H2O2 leads to a specific, dose-dependent increase in the population frequency of gentamicin-resistant SCVs. Time course analyses revealed that H2O2 exposure caused bacteriostasis in wild-type cells during which time SCVs appeared spontaneously within the S. aureus population. This occurred via a mutagenic DNA repair pathway that included DNA double-strand break repair proteins RexAB, recombinase A, and polymerase V. In addition to triggering SCV emergence by increasing the mutation rate, H2O2 also selected for the SCV phenotype, leading to increased phenotypic stability and further enhancing the size of the SCV subpopulation by reducing the rate of SCV reversion to the wild type. Subsequent analyses revealed that SCVs were significantly more resistant to the toxic effects of H2O2 than wild-type bacteria. With the exception of heme auxotrophs, gentamicin-resistant SCVs displayed greater catalase activity than wild-type bacteria, which contributed to their resistance to H2O2. Taken together, these data reveal a mechanism by which S. aureus adapts to oxidative stress via the production of a subpopulation of H2O2-resistant SCVs with enhanced catalase production. PMID:25690100

  12. 12 weeks' aerobic and resistance training without dietary intervention did not influence oxidative stress but aerobic training decreased atherogenic index in middle-aged men with impaired glucose regulation.

    Science.gov (United States)

    Venojärvi, Mika; Korkmaz, Ayhan; Wasenius, Niko; Manderoos, Sirpa; Heinonen, Olli J; Lindholm, Harri; Aunola, Sirkka; Eriksson, Johan G; Atalay, Mustafa

    2013-11-01

    Our aim was to determine whether 12 weeks' aerobic Nordic walking (NW) or resistance exercise training (RT) without diet-induced weight loss could decrease oxidative stress and atherogenic index of plasma (AIP), prevalence of metabolic syndrome (MetS) and MetS score in middle-aged men with impaired glucose regulation (IGR) (n=144. 54.5 ± 6.5 years). In addition, we compared effects of intervention between overweight and obese subgroups. Prevalence of MetS and AIP index decreased only in NW group and MetS score in both NW and RT groups but not in control group. The changes in AIP index correlated inversely with changes in plasma antioxidant capacity. The change in AIP index remained a significant independent predictor of the changes in MetS score after the model was adjusted for age, BMI and volume of exercise (MET h/week) in NW group. There were no changes in the other measured markers of oxidative stress and related cytokines (e.g. osteopontin and osteoprotegerin) in any of the groups. Nordic walking decreased prevalence of MetS and MetS score. Improved lipid profile remained a predictor of decreased MetS score only in NW group and it seems that Nordic walking has more beneficial effects on cardiovascular disease risks than RT training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. MiR-17-5p Impairs Trafficking of H-ERG K+ Channel Protein by Targeting Multiple ER Stress-Related Chaperones during Chronic Oxidative Stress

    OpenAIRE

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    BACKGROUND: To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Lucifer...

  14. Falcarindiol impairs the expression of inducible nitric oxide synthase by abrogating the activation of IKK and JAK in rat primary astrocytes

    OpenAIRE

    Shiao, Young-Ji; Lin, Yun-Lian; Sun, Ya-Hui; Chi, Chih-Wen; Chen, Chieh-Fu; Wang, Chuen-Neu

    2004-01-01

    The effects of falcarindiol on the expression of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide/interferon-γ (LPS/IFN-γ) in rat primary astrocytes were investigated. The molecular mechanisms underlying falcarindiol that confers its effect on iNOS expression were also elucidated.Falcarindiol abrogated the LPS/IFN-γ-mediated induction of iNOS by about 80%. Falcarindiol attenuated the induction of iNOS in a concentration-dependent manner.The inhibitory effect of falcarindio...

  15. chy1, an Arabidopsis mutant with impaired beta-oxidation, is defective in a peroxisomal beta-hydroxyisobutyryl-CoA hydrolase.

    Science.gov (United States)

    Zolman, B K; Monroe-Augustus, M; Thompson, B; Hawes, J W; Krukenberg, K A; Matsuda, S P; Bartel, B

    2001-08-17

    The Arabidopsis chy1 mutant is resistant to indole-3-butyric acid, a naturally occurring form of the plant hormone auxin. Because the mutant also has defects in peroxisomal beta-oxidation, this resistance presumably results from a reduced conversion of indole-3-butyric acid to indole-3-acetic acid. We have cloned CHY1, which appears to encode a peroxisomal protein 43% identical to a mammalian valine catabolic enzyme that hydrolyzes beta-hydroxyisobutyryl-CoA. We demonstrated that a human beta-hydroxyisobutyryl-CoA hydrolase functionally complements chy1 when redirected from the mitochondria to the peroxisomes. We expressed CHY1 as a glutathione S-transferase (GST) fusion protein and demonstrated that purified GST-CHY1 hydrolyzes beta-hydroxyisobutyryl-CoA. Mutagenesis studies showed that a glutamate that is catalytically essential in homologous enoyl-CoA hydratases was also essential in CHY1. Mutating a residue that is differentially conserved between hydrolases and hydratases established that this position is relevant to the catalytic distinction between the enzyme classes. It is likely that CHY1 acts in peroxisomal valine catabolism and that accumulation of a toxic intermediate, methacrylyl-CoA, causes the altered beta-oxidation phenotypes of the chy1 mutant. Our results support the hypothesis that the energy-intensive sequence unique to valine catabolism, where an intermediate CoA ester is hydrolyzed and a new CoA ester is formed two steps later, avoids methacrylyl-CoA accumulation.

  16. Adaptive Processes in Hearing

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Christensen-Dalsgaard, Jakob; Tranebjærg, Lisbeth

    2018-01-01

    induced by hearing impairment and the compensation provided by hearing devices. These devices themselves are now able to adapt to the listener’s individual environment, attentional state, and behavior. These topics related to auditory adaptation, in the broad sense of the term, were central to the 6th......Our auditory environment is constantly changing and evolving over time, requiring us to rapidly adapt to a complex dynamic sensory input. This adaptive ability of our auditory system can be observed at different levels, from individual cell responses to complex neural mechanisms and behavior...... International Symposium on Auditory and Audiological Research held in Nyborg, Denmark, in August 2017. The symposium addressed adaptive processes in hearing from different angles, together with a wide variety of other auditory and audiological topics. The papers in this special issue result from some...

  17. Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study.

    Science.gov (United States)

    Hattingen, Elke; Jurcoane, Alina; Bähr, Oliver; Rieger, Johannes; Magerkurth, Jörg; Anti, Sandra; Steinbach, Joachim P; Pilatus, Ulrich

    2011-12-01

    Bevacizumab shows unprecedented rates of response in recurrent glioblastomas (GBM), but the detailed mechanisms are still unclear. We employed in vivo magnetic resonance spectroscopic imaging (MRSI) and quantitative magnetic resonance imaging to investigate whether bevacizumab alters oxygen and energy metabolism and whether this effect has antitumoral activity in recurrent GBM. (31)P and (1)H MRSI, apparent diffusion coefficient (ADC), and high-resolution T2 and T2' mapping (indirect marker of oxygen extraction) were investigated in 16 patients with recurrent GBM at 3 Tesla before and 1.5-2 months after initiation of therapy with bevacizumab. Changes of metabolite concentrations and of the quantitative values in the tumor and normal appearing brain tissue were calculated. The Wilcoxon signed-ranks test was used to evaluate differences for tumor/edema versus control as well as changes before versus after commencement of therapy. Survival analyses were performed for significant parameters. Tumor T2', pH, ADC, and T2 decreased significantly in patients responding to bevacizumab therapy (n = 10). Patients with at least 25% T2' decrease during treatment showed longer progression-free and overall survival durations. Levels of high-energy metabolites were lower at baseline; these persisted under therapy. Glycerophosphoethanolamine as catabolic phospholipid metabolite increased in responders. The MRSI data support the hypothesis that bevacizumab induces relative tumor hypoxia (T2' decrease) and affects energy homeostasis in recurrent GBM, suggesting that bevacizumab impairs vascular function. The antiangiogenic effect of bevacizumab is predictive of better outcome and seems to induce antitumoral activity in the responding GBMs.

  18. Triclosan (TCS) and Triclocarban (TCC) cause lifespan reduction and reproductive impairment through oxidative stress-mediated expression of the defensome in the monogonont rotifer (Brachionus koreanus).

    Science.gov (United States)

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Un-Ki; Kim, Il-Chan; Yim, Joung Han; Lee, Jae-Seong

    2016-01-01

    Triclosan (TCS) and Triclocarban (TCC) are used as antimicrobial agents and have been widely dispersed and detected in the marine environment. However, the toxicities of TCS and TCC have been poorly investigated in marine invertebrates. In this study, the effects of TCS and TCC on mortality, population growth, lifespan, and fecundity were examined in the monogonont rotifer (Brachionus koreanus) using cellular ROS levels, GST enzymatic activity, and gene expression of defensomes. The median lethal concentration (LC50) of TCS (393.1μg/L) and TCC (388.1μg/L) was also determined in the same species. In TCS- and TCC-exposed B. koreanus, growth retardation and reduced fecundity were observed and were shown to have a potentially deleterious effect on the life cycle of B. koreanus. In addition, time-dependent increases in ROS content (%) and GST enzymatic activity were shown in response to TCS and TCC exposure. Additionally, transcript levels of detoxification proteins (e.g., CYPs), antioxidant proteins (e.g., GST-sigma, Cu/ZnSOD, CAT), and heat shock proteins (Hsps) were modulated in response to TCS and TCC exposure over a 24h period. Our results indicate that TCS and TCC induce oxidative stress and transcriptional regulation of detoxification, antioxidant, and heat shock proteins, resulting in changes in lifespan and fecundity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Enhanced role of elaidic acid on acrylamide-induced oxidative stress in epididymis and epididymal sperm that contributed to the impairment of spermatogenesis in mice.

    Science.gov (United States)

    Zhang, Jian-xin; Yue, W B; Ren, Y S; Zhang, C X

    2010-09-01

    Acrylamide (ACR) and trans fatty acids (TFA) could be found co-existent in many foods processed by high temperature. Our study investigated effect of elaidic acid (ELA), the predominant TFA, on deficits of spermatogenesis induced by ACR. Results showed that ELA enhanced the decreases of spermatogonia along with mature sperms after treatment of ACR, and that spermatozoa quality was significantly reduced by addition of ELA to mice treated with ACR. Moreover, ELA play an enhancing role in ACR-induced up-regulating of malondialdehyde (MDA) level in epididymal sperm and cauda epididymides, also up-regulating of protein carbonyls (PCOs) level in cauda epididymides. Meanwhile, ELA play an enhancing role in ACR-induced reducing of activity of superoxide dismutases (SOD) in epididymal sperm, corpus and cauda epididymides, also the reducing of activity of glutathione peroxidase (GPx) in cauda epididymides. These data suggest that ELA enhances ACR-induced oxidative stress in the epididymis and epididymal sperm of mice and has subsequent effect on spermatogenesis in mice testis.

  20. Acompanhamento da adaptação de próteses auditivas em crianças surdas Evaluating the adaptation of hearing aids for hearing impaired children

    Directory of Open Access Journals (Sweden)

    Bianca Pinheiro Lanzetta

    2010-06-01

    Full Text Available OBJETIVOS: descrever as características audiológicas e sociais de crianças surdas e avaliar a incidência de retornos para acompanhamento no Programa de Saúde Auditiva. MÉTODOS: foram analisados os prontuários de crianças que receberam as próteses auditivas pelo Programa de Saúde Auditiva, em Vila Velha - Espírito Santo. A população estudada foi constituída por 50 crianças, na faixa etária de zero a oito anos, de ambos os sexos, com diagnóstico de perda auditiva sensorioneural de grau leve a profundo. O protocolo de pesquisa foi preenchido a partir dos dados de prontuários para a obtenção das informações desejadas. RESULTADOS: a solicitação de retorno pelo Serviço Social propiciou o comparecimento de quase da metade da população (44%; os demais achados foram indicativos da associação entre o retorno para acompanhamento e a rotina escolar. CONCLUSÕES: o referido programa atinge predominantemente famílias com rendimento mensal entre um e dois salários mínimos; o diagnóstico da surdez ocorre entre dois e três anos de idade cronológica neste estudo; a época da primeira adaptação de próteses auditivas, aos seis anos de idade, é bastante tardia; o contato com os pais, por meio do Serviço Social, viabiliza o acompanhamento proposto, influenciado positivamente também pela rotina escolar.PURPOSE: to describe the compliance and attitudes of hearing-impaired children towards the treatment and support offered by the Hearing Health Program, a public health endeavor, and assessing patients’ returns for follow-ups. METHODS: participants consisted of fifty children aged from 0 to 8 years, with a diagnosis of mild to severe sensorineural hearing loss. The children received the hearing aids from the Hearing Health Program, in Vila Velha, in the state of Espírito Santo, Brazil. The research protocol was completed using both medical records and a socio-economical profile survey of the affected children, including the

  1. Impaired lung diffusing capacity for nitric oxide and alveolar-capillary membrane conductance results in oxygen desaturation during exercise in patients with cystic fibrosis.

    Science.gov (United States)

    Wheatley, Courtney M; Foxx-Lupo, William T; Cassuto, Nicholas A; Wong, Eric C; Daines, Cori L; Morgan, Wayne J; Snyder, Eric M

    2011-01-01

    Exercise has been shown to be beneficial for patients with cystic fibrosis (CF), but for some CF patients there is a risk of desaturation, although the predicting factors are not conclusive or reliable. We sought to determine the relationship between the diffusion capacity of the lungs for nitric oxide and carbon monoxide (DLNO and DLCO) and the components of DLCO: alveolar-capillary membrane conductance (D(M)), and pulmonary capillary blood volume (V(C)) on peripheral oxygen saturation (SaO(2)) at rest and during exercise in CF. 17 mild/moderate CF patients and 17 healthy subjects were recruited (age=26±7 vs. 23±8 years, ht=169±8 vs. 166±8 cm, wt=65±9 vs. 59±8 kg, BMI=23±3 vs. 22±3 kg/m(2), VO(2PEAK)=101±36 vs. 55±25%pred., FEV(1)=92±22 vs. 68±25%pred., for healthy and CF, respectively, mean±SD, VO(2PEAK) and FEV(1) pincremental cycle ergometry to exhaustion with continuous monitoring of SaO(2) and measures of DLNO, DLCO, D(M) and V(C) at each stage. CF patients had a lower SaO(2) at rest and peak exercise (rest=98±1 vs. 96±1%, peak=97±2 vs. 93±5%, for healthy and CF, respectively, pconductance in CF which may contribute to a drop in SaO(2) and that resting DLNO can account for a large portion of the variability in SaO(2). Copyright © 2010 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  2. Falcarindiol impairs the expression of inducible nitric oxide synthase by abrogating the activation of IKK and JAK in rat primary astrocytes.

    Science.gov (United States)

    Shiao, Young-Ji; Lin, Yun-Lian; Sun, Ya-Hui; Chi, Chih-Wen; Chen, Chieh-Fu; Wang, Chuen-Neu

    2005-01-01

    The effects of falcarindiol on the expression of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide/interferon-gamma (LPS/IFN-gamma) in rat primary astrocytes were investigated. The molecular mechanisms underlying falcarindiol that confers its effect on iNOS expression were also elucidated. Falcarindiol abrogated the LPS/IFN-gamma-mediated induction of iNOS by about 80%. Falcarindiol attenuated the induction of iNOS in a concentration-dependent manner. The inhibitory effect of falcarindiol on iNOS induction was attributable to decrease in the protein content and the mRNA level of iNOS. Treatment with 50 microM of falcarindiol for 30 min decreased LPS/IFN-gamma-induced nuclear factor-kappaB (NF-kappaB) activation by 32%. Treatment with 50 microM of falcarindiol for 60 min diminished the LPS/IFN-gamma-mediated activation of IkappaB kinase-alpha (IKK-alpha) and IKK-beta by 28.2 and 29.7%, respectively. Falcarindiol modulated the nuclear translocation of signal transducer and activator of transcription 1 (Stat1) in a time-dependent manner. Falcarindiol (50 microM) decreased the tyrosine phosphorylation of janus kinase 1 (JAK1) by 84.8% at 5 min. Falcarindiol also abrogated the tyrosine phoshorylation of JAK2 by 82.3% at 10 min.The present study demonstrates that falcarindiol attenuated the activation of IKK and JAK contributing to the blockade of activation of NF-kappaB and Stat1, thereby leading to the suppression of iNOS expression.

  3. Visual impairment in the hearing impaired students

    OpenAIRE

    Gogate Parikshit; Rishikeshi Nikhil; Mehata Reshma; Ranade Satish; Kharat Jitesh; Deshpande Madan

    2009-01-01

    Background : Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. Aim : To detect and treat visual impairment, if any, in hearing-impaired children. Setting and Design : Observational, clinical case series of hearing-impaired children in schools providing special education. Materials and Methods : Hearing-impaired children in selected schools underwent detailed vis...

  4. Dysfunction of Rapid Neural Adaptation in Dyslexia.

    Science.gov (United States)

    Perrachione, Tyler K; Del Tufo, Stephanie N; Winter, Rebecca; Murtagh, Jack; Cyr, Abigail; Chang, Patricia; Halverson, Kelly; Ghosh, Satrajit S; Christodoulou, Joanna A; Gabrieli, John D E

    2016-12-21

    Identification of specific neurophysiological dysfunctions resulting in selective reading difficulty (dyslexia) has remained elusive. In addition to impaired reading development, individuals with dyslexia frequently exhibit behavioral deficits in perceptual adaptation. Here, we assessed neurophysiological adaptation to stimulus repetition in adults and children with dyslexia for a wide variety of stimuli, spoken words, written words, visual objects, and faces. For every stimulus type, individuals with dyslexia exhibited significantly diminished neural adaptation compared to controls in stimulus-specific cortical areas. Better reading skills in adults and children with dyslexia were associated with greater repetition-induced neural adaptation. These results highlight a dysfunction of rapid neural adaptation as a core neurophysiological difference in dyslexia that may underlie impaired reading development. Reduced neurophysiological adaptation may relate to prior reports of reduced behavioral adaptation in dyslexia and may reveal a difference in brain functions that ultimately results in a specific reading impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Prediction of oxidation parameters of purified Kilka fish oil including gallic acid and methyl gallate by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network.

    Science.gov (United States)

    Asnaashari, Maryam; Farhoosh, Reza; Farahmandfar, Reza

    2016-10-01

    As a result of concerns regarding possible health hazards of synthetic antioxidants, gallic acid and methyl gallate may be introduced as natural antioxidants to improve oxidative stability of marine oil. Since conventional modelling could not predict the oxidative parameters precisely, artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS) modelling with three inputs, including type of antioxidant (gallic acid and methyl gallate), temperature (35, 45 and 55 °C) and concentration (0, 200, 400, 800 and 1600 mg L(-1) ) and four outputs containing induction period (IP), slope of initial stage of oxidation curve (k1 ) and slope of propagation stage of oxidation curve (k2 ) and peroxide value at the IP (PVIP ) were performed to predict the oxidation parameters of Kilka oil triacylglycerols and were compared to multiple linear regression (MLR). The results showed ANFIS was the best model with high coefficient of determination (R(2)  = 0.99, 0.99, 0.92 and 0.77 for IP, k1 , k2 and PVIP , respectively). So, the RMSE and MAE values for IP were 7.49 and 4.92 in ANFIS model. However, they were to be 15.95 and 10.88 and 34.14 and 3.60 for the best MLP structure and MLR, respectively. So, MLR showed the minimum accuracy among the constructed models. Sensitivity analysis based on the ANFIS model suggested a high sensitivity of oxidation parameters, particularly the induction period on concentrations of gallic acid and methyl gallate due to their high antioxidant activity to retard oil oxidation and enhanced Kilka oil shelf life. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    Directory of Open Access Journals (Sweden)

    D. T. Yates

    2012-01-01

    Full Text Available Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR, skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

  7. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    Science.gov (United States)

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  8. Specific Language Impairment

    Science.gov (United States)

    ... Home » Health Info » Voice, Speech, and Language Specific Language Impairment On this page: What is specific language ... percent of children in kindergarten. What is specific language impairment? Specific language impairment (SLI) is a language ...

  9. Cortical Visual Impairment

    Science.gov (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased ...

  10. All Vision Impairment

    Science.gov (United States)

    ... Prevalence Rates for Vision Impairment by Age and Race/Ethnicity Table for 2010 U.S. Age-Specific Prevalence ... Ethnicity 2010 Prevalence Rates of Vision Impairment by Race Table for 2010 Prevalence Rates of Vision Impairment ...

  11. Dynamics of nitrification and denitrification in root- oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Libochant, J.A.; Blom, C.W.P.M.; Laanbroek, H.J.

    1996-01-01

    Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria. The oxygen-releasing, aerenchymatous emergent macrophyte Glyceria maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and

  12. Dynamics of nitrification and denitrification in root- oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Libochant, J.A.; Blom, C.W.P.M.; Laanbroek, H.J.

    1996-01-01

    Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria, The oxygen- releasing, aerenchymatous emergent macrophyte Glycerin maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and

  13. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates

    Directory of Open Access Journals (Sweden)

    Rawlings Douglas E

    2005-05-01

    Full Text Available Abstract Microorganisms are used in large-scale heap or tank aeration processes for the commercial extraction of a variety of metals from their ores or concentrates. These include copper, cobalt, gold and, in the past, uranium. The metal solubilization processes are considered to be largely chemical with the microorganisms providing the chemicals and the space (exopolysaccharide layer where the mineral dissolution reactions occur. Temperatures at which these processes are carried out can vary from ambient to 80°C and the types of organisms present depends to a large extent on the process temperature used. Irrespective of the operation temperature, biomining microbes have several characteristics in common. One shared characteristic is their ability to produce the ferric iron and sulfuric acid required to degrade the mineral and facilitate metal recovery. Other characteristics are their ability to grow autotrophically, their acid-tolerance and their inherent metal resistance or ability to acquire metal resistance. Although the microorganisms that drive the process have the above properties in common, biomining microbes usually occur in consortia in which cross-feeding may occur such that a combination of microbes including some with heterotrophic tendencies may contribute to the efficiency of the process. The remarkable adaptability of these organisms is assisted by several of the processes being continuous-flow systems that enable the continual selection of microorganisms that are more efficient at mineral degradation. Adaptability is also assisted by the processes being open and non-sterile thereby permitting new organisms to enter. This openness allows for the possibility of new genes that improve cell fitness to be selected from the horizontal gene pool. Characteristics that biomining microorganisms have in common and examples of their remarkable adaptability are described.

  14. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  15. Sox17 regulates liver lipid metabolism and adaptation to fasting.

    Directory of Open Access Journals (Sweden)

    Samuel Rommelaere

    Full Text Available Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation. Mutagenized mice were screened for low serum Vanin-1 expression. Functional interactions with PPARalpha were investigated by combining transcriptomic, biochemical and metabolic approaches. We characterized a new mutant mouse in which hepatic and serum expression of Vanin-1 is depressed. This mouse carries a mutation in the HMG domain of the Sox17 transcription factor. Mutant mice display a metabolic phenotype featuring lipid abnormalities and inefficient adaptation to fasting. Upon fasting, a fraction of the PPARα-driven transcriptional program is no longer induced and associated with impaired fatty acid oxidation. The transcriptional phenotype is partially observed in heterozygous Sox17+/- mice. In mutant mice, the fasting phenotype but not all transcriptomic signature is rescued by the administration of the PPARalpha agonist fenofibrate. These results identify a novel role for Sox17 in adult liver as a modulator of the metabolic adaptation to fasting.

  16. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  17. Classification and adaptive behavior prediction of children with autism spectrum disorder based upon multivariate data analysis of markers of oxidative stress and DNA methylation.

    Science.gov (United States)

    Howsmon, Daniel P; Kruger, Uwe; Melnyk, Stepan; James, S Jill; Hahn, Juergen

    2017-03-01

    The number of diagnosed cases of Autism Spectrum Disorders (ASD) has increased dramatically over the last four decades; however, there is still considerable debate regarding the underlying pathophysiology of ASD. This lack of biological knowledge restricts diagnoses to be made based on behavioral observations and psychometric tools. However, physiological measurements should support these behavioral diagnoses in the future in order to enable earlier and more accurate diagnoses. Stepping towards this goal of incorporating biochemical data into ASD diagnosis, this paper analyzes measurements of metabolite concentrations of the folate-dependent one-carbon metabolism and transulfuration pathways taken from blood samples of 83 participants with ASD and 76 age-matched neurotypical peers. Fisher Discriminant Analysis enables multivariate classification of the participants as on the spectrum or neurotypical which results in 96.1% of all neurotypical participants being correctly identified as such while still correctly identifying 97.6% of the ASD cohort. Furthermore, kernel partial least squares is used to predict adaptive behavior, as measured by the Vineland Adaptive Behavior Composite score, where measurement of five metabolites of the pathways was sufficient to predict the Vineland score with an R2 of 0.45 after cross-validation. This level of accuracy for classification as well as severity prediction far exceeds any other approach in this field and is a strong indicator that the metabolites under consideration are strongly correlated with an ASD diagnosis but also that the statistical analysis used here offers tremendous potential for extracting important information from complex biochemical data sets.

  18. Anti-oxidative stress regulator NF-E2-related factor 2 mediates the adaptive induction of antioxidant and detoxifying enzymes by lipid peroxidation metabolite 4-hydroxynonenal

    Directory of Open Access Journals (Sweden)

    Huang Ying

    2012-11-01

    Full Text Available Abstract Background NF-E2-related factor 2 (NRF2 regulates a battery of antioxidative and phase II drug metabolizing/detoxifying genes through binding to the antioxidant response elements (ARE. NRF2-ARE signaling plays a central role in protecting cells from a wide spectrum of reactive toxic species including reactive oxygen/nitrogen species (RONS. 4-hydroxylnonenal (4-HNE is a major end product from lipid peroxidation of omega-6 polyunsaturated fatty acids (PUFA induced by oxidative stress, and it is highly reactive to nucleophilic sites in DNA and proteins, causing cytotoxicity and genotoxicity. In this study, we examined the role of NRF2 in regulating the 4-HNE induced gene expression of antioxidant and detoxifying enzymes. Results When HeLa cells were treated with 4-HNE, NRF2 rapidly transloated into the nucleus, as determined by the distribution of NRF2 tagged with the enhanced green fluorescent protein (EGFP and increased NRF2 protein in the nuclear fraction. Transcriptional activity of ARE-luciferase was significantly induced by 0.01-10 μM of 4-HNE in a dose-dependent manner, and the induction could be blocked by pretreatment with glutathione (GSH. 4-HNE induced transcriptional expression of glutathione S-transferase (GST A4, aldoketone reductase (AKR 1C1 and heme oxygenase-1 (HO-1, and the induction was attenuated by knocking down NRF2 using small interfering RNA. Conclusions NRF2 is critical in mediating 4-HNE induced expression of antioxidant and detoxifying genes. This may account for one of the major cellular defense mechanisms against reactive metabolites of lipids peroxidation induced by oxidative stress and protect cells from cytotoxicity.

  19. Visual impairment in the hearing impaired students.

    Science.gov (United States)

    Gogate, Parikshit; Rishikeshi, Nikhil; Mehata, Reshma; Ranade, Satish; Kharat, Jitesh; Deshpande, Madan

    2009-01-01

    Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. To detect and treat visual impairment, if any, in hearing-impaired children. Observational, clinical case series of hearing-impaired children in schools providing special education. Hearing-impaired children in selected schools underwent detailed visual acuity testing, refraction, external ocular examination and fundoscopy. Ocular motility testing was also performed. Teachers were sensitized and trained to help in the assessment of visual acuity using Snellen's E charts. Refractive errors and squint were treated as per standard practice. Excel software was used for data entry and SSPS for analysis. The study involved 901 hearing-impaired students between four and 21 years of age, from 14 special education schools. A quarter of them (216/901, 24%) had ocular problems. Refractive errors were the most common morbidity 167(18.5%), but only 10 children were using appropriate spectacle correction at presentation. Fifty children had visual acuity less than 20/80 at presentation; after providing refractive correction, this number reduced to three children, all of whom were provided low-vision aids. Other common conditions included strabismus in 12 (1.3%) children, and retinal pigmentary dystrophy in five (0.6%) children. Ocular problems are common in hearing-impaired children. Screening for ocular problems should be made mandatory in hearing-impaired children, as they use their visual sense to compensate for the poor auditory sense.

  20. Rehabilitation Services for Older People with Visual Impairments.

    Science.gov (United States)

    Ryan, Kim Marie

    2002-01-01

    This article investigates the needs of the visually impaired over age 65 population and suggests rehabilitation services that could remedy the implications of age-related visual impairment. These include service-delivery programs that include peer support groups and one-on-one instruction, adaptive communication strategies, and orientation and…

  1. Temporal Structure of Adaptation to Disability.

    Science.gov (United States)

    Livneh, Hanoch; Antonak, Richard F.

    1991-01-01

    Used cross-sectional design to collect data on phases of adaptation to disability as measured by the Reactions to Impairment and Disability Inventory among 112 inpatients and 92 outpatients at rehabilitation facilities. Results generally support the existence of a psychosocial adaptation process to physical disability. Incongruities between the…

  2. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment.

    Science.gov (United States)

    Vasconcelos, Andrea R; Yshii, Lidia M; Viel, Tania A; Buck, Hudson S; Mattson, Mark P; Scavone, Cristoforo; Kawamoto, Elisa M

    2014-05-06

    Systemic bacterial infections often result in enduring cognitive impairment and are a risk factor for dementia. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that intermittent fasting (IF) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of IF on the cognitive sequelae of systemic and brain inflammation is unknown. Rats on IF for 30 days received 1 mg/kg of lipopolysaccharide (LPS) or saline intravenously. Half of the rats were subjected to behavioral tests and the other half were euthanized two hours after LPS administration and the hippocampus was dissected and frozen for analyses. Here, we report that IF ameliorates cognitive deficits in a rat model of sepsis by a mechanism involving NF-κB activation, suppression of the expression of pro-inflammatory cytokines, and enhancement of neurotrophic support. Treatment of rats with LPS resulted in deficits in cognitive performance in the Barnes maze and inhibitory avoidance tests, without changing locomotor activity, that were ameliorated in rats that had been maintained on the IF diet. IF also resulted in reduced levels of mRNAs encoding the LPS receptor TLR4 and inducible nitric oxide synthase (iNOS) in the hippocampus. Moreover, IF prevented LPS-induced elevation of IL-1α, IL-1β and TNF-α levels, and prevented the LPS-induced reduction of BDNF levels in the hippocampus. IF also significantly attenuated LPS-induced elevations of serum IL-1β, IFN-γ, RANTES, TNF-α and IL-6 levels. Taken together, our results suggest that IF induces adaptive responses in the brain and periphery that can suppress inflammation and preserve cognitive function in an animal model of systemic bacterial infection.

  3. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... the investigations of lighting scenarios carried out in two test installations: White Cube and White Box. The test installations are discussed as large-scale experiential instruments. In these test installations we examine what could potentially occur when light using LED technology is integrated and distributed...

  4. Mild Cognitive Impairment (MCI)

    Science.gov (United States)

    Mild cognitive impairment (MCI) Overview Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It can involve ...

  5. Mild Cognitive Impairment (MCI)

    Science.gov (United States)

    Mild cognitive impairment (MCI) Overview Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It ...

  6. ADAPT Dataset

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Diagnostics and Prognostics Testbed (ADAPT) Project Lead: Scott Poll Subject Fault diagnosis in electrical power systems Description The Advanced...

  7. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence.

    Science.gov (United States)

    Słaba, Mirosława; Gajewska, Ewa; Bernat, Przemysław; Fornalska, Magdalena; Długoński, Jerzy

    2013-05-01

    The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.

  8. Dealing with Stress: Defective Metabolic Adaptation in Chronic Obstructive Pulmonary Disease Pathogenesis.

    Science.gov (United States)

    Michaeloudes, Charalambos; Bhavsar, Pankaj K; Mumby, Sharon; Chung, Kian Fan; Adcock, Ian M

    2017-11-01

    The mitochondrion is the main site of energy production and a hub of key signaling pathways. It is also central in stress-adaptive response due to its dynamic morphology and ability to interact with other organelles. In response to stress, mitochondria fuse into networks to increase bioenergetic efficiency and protect against oxidative damage. Mitochondrial damage triggers segregation of damaged mitochondria from the mitochondrial network through fission and their proteolytic degradation by mitophagy. Post-translational modifications of the mitochondrial proteome and nuclear cross-talk lead to reprogramming of metabolic gene expression to maintain energy production and redox balance. Chronic obstructive pulmonary disease (COPD) is caused by chronic exposure to oxidative stress arising from inhaled irritants, such as cigarette smoke. Impaired mitochondrial structure and function, due to oxidative stress-induced damage, may play a key role in causing COPD. Deregulated metabolic adaptation may contribute to the development and persistence of mitochondrial dysfunction in COPD. We discuss the evidence for deregulated metabolic adaptation and highlight important areas for investigation that will allow the identification of molecular targets for protecting the COPD lung from the effects of dysfunctional mitochondria.

  9. Adaptation Stories

    International Development Research Centre (IDRC) Digital Library (Canada)

    By Reg'

    formed a real foundation for endogenous, and, therefore, sustainable, strategies for adaptation to climate change. The stories reinforce what we already knew: that successful adaptation must come from the people who are living on the front lines, facing the many problems caused by climate change and climate variation.

  10. Anaerobic Oxidation of Hydrocarbon Contaminants in Marine and Estuarine Sediments

    National Research Council Canada - National Science Library

    Lovley, Derek

    1999-01-01

    .... Pristine harbor sediments did not have a significant potential for anaerobic PAH oxidation, but could be adapted for PAH oxidation by exposure to PAhs or inoculation with PAH-oxidizing microrganisms...

  11. Memory Impairment in Children with Language Impairment

    Science.gov (United States)

    Baird, Gillian; Dworzynski, Katharina; Slonims, Vicky; Simonoff, Emily

    2010-01-01

    Aim: The aim of this study was to assess whether any memory impairment co-occurring with language impairment is global, affecting both verbal and visual domains, or domain specific. Method: Visual and verbal memory, learning, and processing speed were assessed in children aged 6 years to 16 years 11 months (mean 9y 9m, SD 2y 6mo) with current,…

  12. Visual impairment in the hearing impaired students

    Directory of Open Access Journals (Sweden)

    Gogate Parikshit

    2009-01-01

    Full Text Available Background : Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. Aim : To detect and treat visual impairment, if any, in hearing-impaired children. Setting and Design : Observational, clinical case series of hearing-impaired children in schools providing special education. Materials and Methods : Hearing-impaired children in selected schools underwent detailed visual acuity testing, refraction, external ocular examination and fundoscopy. Ocular motility testing was also performed. Teachers were sensitized and trained to help in the assessment of visual acuity using Snellen′s E charts. Refractive errors and squint were treated as per standard practice. Statistical Analysis : Excel software was used for data entry and SSPS for analysis. Results : The study involved 901 hearing-impaired students between four and 21 years of age, from 14 special education schools. A quarter of them (216/901, 24% had ocular problems. Refractive errors were the most common morbidity 167(18.5%, but only 10 children were using appropriate spectacle correction at presentation. Fifty children had visual acuity less than 20/80 at presentation; after providing refractive correction, this number reduced to three children, all of whom were provided low-vision aids. Other common conditions included strabismus in 12 (1.3% children, and retinal pigmentary dystrophy in five (0.6% children. Conclusion : Ocular problems are common in hearing-impaired children. Screening for ocular problems should be made mandatory in hearing-impaired children, as they use their visual sense to compensate for the poor auditory sense.

  13. Unripe Musa paradisiacal fruit diet ameliorates impaired glucose ...

    African Journals Online (AJOL)

    Excess iron impairs glucose regulatory mechanisms through an increase in oxidative stress. Unripe Musa paradisiaca fruit (UMP) diets have been reported to alleviate diabetes and exert antioxidant effects. In this study, some glucose regulatory indices were investigated in Wistar rats with iron-induced oxidative stress and ...

  14. Personality Testing with Visually Impaired Adults in Applied Occupational Settings: A Review of the Literature.

    Science.gov (United States)

    Reid, Juliet

    2000-01-01

    This article describes controversies over the use of personality tests with adults with visual impairments in applied occupational testing. It reviews studies of personality profiles of sighted individuals and individuals with visual impairments and studies in which the content of items has been adapted for adults who are visually impaired.…

  15. Toothbrush Adaptations.

    Science.gov (United States)

    Exceptional Parent, 1987

    1987-01-01

    Suggestions are presented for helping disabled individuals learn to use or adapt toothbrushes for proper dental care. A directory lists dental health instructional materials available from various organizations. (CB)

  16. Ambiguous Adaptation

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Lyngsie, Jacob

    2017-01-01

    intense relational mechanisms provide an effective means for contingency adaptation and therefore reduce the probability of premature termination. However, in situations where relationships are already governed by longer duration contracts, we argue that investments in relational mechanism create...

  17. Ambiguous Adaptation

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Lyngsie, Jacob

    We investigate why some exchange relationships terminate prematurely. We argue that investments in informal governance structures induce premature termination in relationships already governed by formal contracts. The formalized adaptive behavior of formal governance structures and the flexible...... and reciprocal adaptation of informal governance structure create ambiguity in situations of contingencies, which, subsequently, increases the likelihood of premature relationship termination. Using a large sample of exchange relationships in the global service provider industry, we find support for a hypothesis...

  18. Strategic Adaptation

    DEFF Research Database (Denmark)

    Andersen, Torben Juul

    2015-01-01

    This article provides an overview of theoretical contributions that have influenced the discourse around strategic adaptation including contingency perspectives, strategic fit reasoning, decision structure, information processing, corporate entrepreneurship, and strategy process. The related...... concepts of strategic renewal, dynamic managerial capabilities, dynamic capabilities, and strategic response capabilities are discussed and contextualized against strategic responsiveness. The insights derived from this article are used to outline the contours of a dynamic process of strategic adaptation...

  19. Adaptive ethnography

    DEFF Research Database (Denmark)

    Berth, Mette

    2005-01-01

    This paper focuses on the use of an adaptive ethnography when studying such phenomena as young people's use of mobile media in a learning perspective. Mobile media such as PDAs and mobile phones have a number of affordances which make them potential tools for learning. However, before we begin...... formal and informal learning contexts. The paper also proposes several adaptive methodological techniques for studying young people's interaction with mobiles....

  20. Hypertension and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Su-hang SHANG

    2015-08-01

    Full Text Available As a leading risk factor for stroke, hypertension is also an important risk factor for cognitive impairment. Midlife hypertension doubles the risk of dementia later in life and accelerates the progression of dementia, but the correlation between late-life blood pressure and cognitive impairment is still unclear. Beside blood pressure, the effect of pulse pressure, blood pressure variability and circadian rhythm of blood pressure on cognition is currently attracting more and more attention. Hypertension induces alterations in cerebrovascular structure and functions, which lead to brain lesions including cerebral atrophy, stroke, lacunar infarcts, diffuse white matter damage, microinfarct and microhemorrhage, resuling in cognitive impairment. Hypertension also impairs the metabolism and transfer of amyloid-β protein (Aβ, thus accelerates cognitive impairment. Individualized therapy, focusing on characteristics of hypertensive patients, may be a good choice for prevention and treatment of cognitive impairment. DOI: 10.3969/j.issn.1672-6731.2015.08.004

  1. Impaired myogenic tone in mesenteric arteries from overweight rats

    Directory of Open Access Journals (Sweden)

    Sweazea Karen L

    2012-03-01

    Full Text Available Abstract Background Rats fed high fat (HFD or high sucrose (HSD diets develop increased adiposity as well as impaired vasodilatory responsiveness stemming from oxidative stress. Moreover, HFD rats become hypertensive compared to either control (Chow or HSD fed rats, suggesting elevated vascular tone. We hypothesized that rats with increased adiposity and oxidative stress demonstrate augmented pressure-induced vasoconstriction (i.e. myogenic tone that could account for the hypertensive state. Methods Male Sprague-Dawley rats were fed Chow, HFD or HSD for 6 weeks. The effects of oxidative stress and endogenous nitric oxide on myogenic responses were examined in small mesenteric arteries by exposing the arteries to incremental intraluminal pressure steps in the presence of antioxidants or an inhibitor of nitric oxide synthase, LNNA (100 μM. Results Contrary to the hypothesis, rats fed either HSD or HFD had significantly impaired myogenic responses despite similar vascular morphology and passive diameter responses to increasing pressures. Vascular smooth muscle (VSM calcium levels were normal in HFD arteries suggesting that diminished calcium sensitivity was responsible for the impaired myogenic response. In contrast, VSM calcium levels were reduced in HSD arteries but were increased with pre-exposure of arteries to the antioxidants tiron (10 mM and catalase (1200 U/mL, also resulting in enhanced myogenic tone. These findings show that oxidative stress impairs myogenic tone in arteries from HSD rats by decreasing VSM calcium. Similarly, VSM calcium responses were increased in arteries from HFD rats following treatment with tiron and catalase, but this did not result in improved myogenic tone. Nitric oxide is involved in the impaired myogenic response in HFD, but not HSD, rats since inhibition with LNNA resulted in maximal myogenic responses at lower intraluminal pressures and VSM calcium levels, further implicating reduced calcium sensitivity in

  2. Is adaptation. Truly an adaptation? Is adaptation. Truly an adaptation?

    Directory of Open Access Journals (Sweden)

    Thais Flores Nogueira Diniz

    2008-04-01

    Full Text Available The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition, joined with the study of recycling, remaking, and every form of retelling. The film deals with the attempt by the scriptwriter Charles Kaufman, cast by Nicholas Cage, to adapt/translate a non-fictional book to the cinema, but ends up with a kind of film which is by no means what it intended to be: a film of action in the model of Hollywood productions. During the process of creation, Charles and his twin brother, Donald, undergo a series of adventures involving some real persons from the world of film, the author and the protagonist of the book, all of them turning into fictional characters in the film. In the film, adaptation then signifies something different from itstraditional meaning. The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition

  3. eIF2α phosphorylation bypasses premature senescence caused by oxidative stress and pro-oxidant antitumor therapies.

    Science.gov (United States)

    Rajesh, Kamindla; Papadakis, Andreas I; Kazimierczak, Urszula; Peidis, Philippos; Wang, Shuo; Ferbeyre, Gerardo; Kaufman, Randal J; Koromilas, Antonis E

    2013-12-01

    Eukaryotic cells respond to various forms of stress by blocking mRNA translation initiation via the phosphorylation of the alpha (α) subunit of eIF2 at serine 51 (S51) (eIFαP). An important role of eIF2αP is the regulation of redox homeostasis and adaptation of cells to oxidative stress. Herein, we demonstrate that eIF2αP guards cells from intracellular reactive oxygen species (ROS) via the inhibition of senescence. Specifically, genetic inactivation of either eIF2αP or eIF2α kinase PERK in primary mouse or human fibroblasts leads to proliferative defects associated with increased DNA damage, G2/M accumulation and induction of premature senescence. Impaired proliferation of either PERK or eIF2αP-deficient primary cells is caused by increased ROS and restored by anti-oxidant treatment. Contrary to primary cells, impaired eIF2αP in immortalized mouse fibroblasts or human tumor cells provides tolerance to elevated intracellular ROS levels. However, eIF2αP-deficient human tumor cells are highly susceptible to extrinsic ROS generated by the pro-oxidant drug doxorubicin by undergoing premature senescence. Our work demonstrates that eIF2αP determines cell destiny through its capacity to control senescence in response to oxidative stress. Also, inhibition of eIF2αP may be a suitable means to increase the anti-tumor effects of pro-oxidant drugs through the induction of senescence.

  4. Criteria for driver impairment

    NARCIS (Netherlands)

    Brookhuis, K.A.; De Waard, D.; Fairclough, S.H

    2003-01-01

    Most traffic accidents can be attributed to driver impairment, e.g. inattention, fatigue, intoxication, etc. It is now technically feasible to monitor and diagnose driver behaviour with respect to impairment with the aid of a limited number of in-vehicle sensors. However, a valid framework for the

  5. Strategic Adaptation

    DEFF Research Database (Denmark)

    Andersen, Torben Juul

    2015-01-01

    concepts of strategic renewal, dynamic managerial capabilities, dynamic capabilities, and strategic response capabilities are discussed and contextualized against strategic responsiveness. The insights derived from this article are used to outline the contours of a dynamic process of strategic adaptation......This article provides an overview of theoretical contributions that have influenced the discourse around strategic adaptation including contingency perspectives, strategic fit reasoning, decision structure, information processing, corporate entrepreneurship, and strategy process. The related....... This model incorporates elements of central strategizing, autonomous entrepreneurial behavior, interactive information processing, and open communication systems that enhance the organization's ability to observe exogenous changes and respond effectively to them....

  6. Adaptive test

    DEFF Research Database (Denmark)

    Kjeldsen, Lars Peter; Eriksen, Mette Rose

    2010-01-01

    Artikelen er en evaluering af de adaptive tests, som blev indført i folkeskolen. Artiklen sætter særligt fokus på evaluering i folkeskolen, herunder bidrager den med vejledning til evaluering, evalueringsværktøjer og fagspecifkt evalueringsmateriale.......Artikelen er en evaluering af de adaptive tests, som blev indført i folkeskolen. Artiklen sætter særligt fokus på evaluering i folkeskolen, herunder bidrager den med vejledning til evaluering, evalueringsværktøjer og fagspecifkt evalueringsmateriale....

  7. THE COMPONENTS OF ADAPTIVE LEARNING ENVIRONMENT FOR COMPUTER-ORIENTED LESSONS

    OpenAIRE

    K. Kosova

    2012-01-01

    The issues of adaptive computer-oriented learning environment for visual impaired children are discussed in this article. The author proposes techniques for making of adaptive environment components. These components depend of individual characteristics of pupils.

  8. Adaptation to direction statistics modulates perceptual discrimination.

    Science.gov (United States)

    Price, Nicholas S C; Prescott, Danielle L

    2012-06-22

    Perception depends on the relative activity of populations of sensory neurons with a range of tunings and response gains. Each neuron's tuning and gain are malleable and can be modified by sustained exposure to an adapting stimulus. Here, we used a combination of human psychophysical testing and models of neuronal population decoding to assess how rapid adaptation to moving stimuli might change neuronal tuning and thereby modulate direction perception. Using a novel motion stimulus in which the direction changed every 10 ms, we demonstrated that 1,500 ms of adaptation to a distribution of directions was capable of modifying human psychophysical direction discrimination performance. Consistent with previous reports, we found perceptual repulsion following adaptation to a single direction. Notably, compared with a uniform adaptation condition in which all motion directions were equiprobable, discrimination was impaired after adaptation to a stimulus comprising only directions ± 30-60° from the discrimination boundary and enhanced after adaptation to the complementary range of directions. Thus, stimulus distributions can be selectively chosen to either impair or improve discrimination performance through adaptation. A neuronal population decoding model incorporating adaptation-induced repulsive shifts in direction tuning curves can account for most aspects of our psychophysical data; however, changes in neuronal gain are sufficient to account for all aspects of our psychophysical data.

  9. Is adaptation. Truly an adaptation?

    Directory of Open Access Journals (Sweden)

    Thais Flores Nogueira Diniz

    2006-04-01

    Full Text Available The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition, joined with the study of recycling, remaking, and every form of retelling. The film deals with the attempt by the scriptwriter Charles Kaufman, cast by Nicholas Cage, to adapt/translate a non-fictional book to the cinema, but ends up with a kind of film which is by no means what it intended to be: a film of action in the model of Hollywood productions. During the process of creation, Charles and his twin brother, Donald, undergo a series of adventures involving some real persons from the world of film, the author and the protagonist of the book, all of them turning into fictional characters in the film. In the film, adaptation then signifies something different from itstraditional meaning.

  10. Adaptation is...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC

    vital sector is under threat. While it is far from the only development challenge facing local farmers, extreme variations in the climate of West Africa in the past several decades have dealt the region a bad hand. Drought and flood now follow each other in succession. Adaptation is... “The floods spoiled our harvests and we.

  11. Ambiguous Adaptation

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Lyngsie, Jacob

    and reciprocal adaptation of informal governance structure create ambiguity in situations of contingencies, which, subsequently, increases the likelihood of premature relationship termination. Using a large sample of exchange relationships in the global service provider industry, we find support for a hypothesis...

  12. Adaptation Insights

    International Development Research Centre (IDRC) Digital Library (Canada)

    be given greater access to relevant information to help them adapt their farming practices and socio- economic strategies to climate change? To address this challenge, the project “InfoClim,” led by Senegal's. Ecological Monitoring Centre. (CSE) with support from the. CCAA program, aims at improving the access of farmers ...

  13. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Kongshaug, Jesper; Søndergaard, Karin

    2015-01-01

    differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  14. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  15. Congenital hearing impairment

    International Nuclear Information System (INIS)

    Robson, Caroline D.

    2006-01-01

    Establishing the etiology of congenital hearing impairment can significantly improve treatment for certain causes of hearing loss and facilitates genetic counseling. High-resolution CT and MRI have contributed to the evaluation and management of hearing impairment. In addition, with the identification of innumerable genetic loci and genetic defects involved in hearing loss, genetic testing has emerged as an invaluable tool in the assessment of hearing impairment. Some of the common forms of congenital hearing loss are reviewed and their imaging features illustrated. (orig.)

  16. Impairment in Non-Word Repetition: A Marker for Language Impairment or Reading Impairment?

    Science.gov (United States)

    Baird, Gillian; Slonims, Vicky; Simonoff, Emily; Dworzynski, Katharina

    2011-01-01

    Aim: A deficit in non-word repetition (NWR), a measure of short-term phonological memory proposed as a marker for language impairment, is found not only in language impairment but also in reading impairment. We evaluated the strength of association between language impairment and reading impairment in children with current, past, and no language…

  17. Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency.

    Science.gov (United States)

    Geric, Ivana; Tyurina, Yulia Y; Krysko, Olga; Krysko, Dmitri V; De Schryver, Evelyn; Kagan, Valerian E; Van Veldhoven, Paul P; Baes, Myriam; Verheijden, Simon

    2018-03-01

    Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal β-oxidation during macrophage activation. In this study, we show that peroxisomal β-oxidation is strongly decreased in classically activated bone-marrow-derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal β-oxidation in macrophages, we used Mfp2 -/- BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal β-oxidation in Mfp2 -/- BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very-long-chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2 -/- macrophages led to decreased inflammatory activation of Mfp2 -/- BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2 -/- macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal β-oxidation is involved in fine-tuning the phenotype of macrophages, probably by influencing the dynamic lipid profile during macrophage polarization. © 2017 John Wiley & Sons Ltd.

  18. Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses.

    Science.gov (United States)

    Nawrocka, Daria; Kornicka, Katarzyna; Śmieszek, Agnieszka; Marycz, Krzysztof

    2017-08-03

    Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)-the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs' and IECs' morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome.

  19. Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses

    Science.gov (United States)

    Nawrocka, Daria; Kornicka, Katarzyna; Śmieszek, Agnieszka

    2017-01-01

    Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)—the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs’ and IECs’ morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome. PMID:28771165

  20. Impairments to Vision

    Science.gov (United States)

    ... an external Non-Government web site. Impairments to Vision Normal Vision Diabetic Retinopathy Age-related Macular Degeneration In this ... pictures, fixate on the nose to simulate the vision loss. In diabetic retinopathy, the blood vessels in ...

  1. Stormwater Impaired Watersheds

    Data.gov (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  2. Adaptation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul

    2011-11-15

    Efforts to help the world's poor will face crises in coming decades as climate change radically alters conditions. Action Research for Community Adapation in Bangladesh (ARCAB) is an action-research programme on responding to climate change impacts through community-based adaptation. Set in Bangladesh at 20 sites that are vulnerable to floods, droughts, cyclones and sea level rise, ARCAB will follow impacts and adaptation as they evolve over half a century or more. National and international 'research partners', collaborating with ten NGO 'action partners' with global reach, seek knowledge and solutions applicable worldwide. After a year setting up ARCAB, we share lessons on the programme's design and move into our first research cycle.

  3. Adaptive sampler

    Science.gov (United States)

    Watson, B.L.; Aeby, I.

    1980-08-26

    An adaptive data compression device for compressing data is described. The device has a frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  4. Adaptive positioner

    International Nuclear Information System (INIS)

    Labrador Pavon, I.

    1993-01-01

    This paper describes the circuits and programs in assembly language, developed to control the two DC motors that give mobility to a mechanical arm with two degrees of freedom. As a whole, the system is based in a adaptable regulator designed around a 8 bit microprocessor that, starting from a mode of regulation based in the successive approximation method, evolve to another mode through which, only one approximation is sufficient to get the right position of each motor. (Author) 6 refs

  5. Adaptable positioner

    International Nuclear Information System (INIS)

    Labrador Pavon, I.

    1993-01-01

    This paper describes the circuits and programs in assembly language, developed to control the two DC motors that give mobility to a mechanical arm with two degrees of freedom. As a whole, the system is based in a adaptable regulator designed around a 8 bit microprocessor that, starting from a mode of regulation based in the successive approximation method, evolve to another mode through which, only one approximation is sufficient to get the right position of each motor. (Author) 22 fig. 6 ref

  6. ADAPTATION EVALUATION

    Directory of Open Access Journals (Sweden)

    Björn PETERS, M.Sc.

    2001-01-01

    Full Text Available Twenty subjects with lower limb disabilities participated in a simulator study. The purpose of the study was to investigate how an Adaptive Cruise Control (ACC system together with two different hand controls for accelerator and brake influenced workload, comfort and driving behaviour and to further develop a method to evaluate vehicle adaptations for drivers with disabilities. The installed ACC system could maintain a constant speed selected and set by the driver and it also adapted speed in order to keep a safe distance to a leading vehicle. Furthermore, it included a stop-and-go function. Two common types of hand controls for accelerator and brake were used. The hand controls were different both with respect to function, single or dual levers, and position, on the steering column or between the front seats. The subjects were all experienced drivers of adapted cars equipped with hand controls. All subjects drove 100km at two occasions, with and without the ACC system available but with the same hand control. Subjective workload was found to be significantly lower and performance better for the ACC condition. The difference in speed variation between manual and ACC supported driving increased with the distance driven which seems to support the previous finding. The subjects thought they could control both speed and distance to leading vehicles better while the ACC was available. ACC driving did not influence reaction time, speed level, lateral position or variation in lateral position. Headway during car following situations was shorter for the ACC condition compared to manual driving. The ACC was well received, trusted and wanted. It was concluded that the ACC system substantially decreased workload, increased comfort and did not influence safety negatively. The only difference found between the two types of hand controls was that drivers using the dual lever system had less variation in lateral position. The applied evaluation method proved

  7. Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity

    International Nuclear Information System (INIS)

    Summermatter, Serge; Troxler, Heinz; Santos, Gesa; Handschin, Christoph

    2011-01-01

    Highlights: → PGC-1α enhances muscle oxidative capacity. → PGC-1α promotes concomitantly positive and negative regulators of lipid oxidation. → Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. → Balanced oxidation prevents detrimental acylcarnitine and ROS generation. → Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1α on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1α in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1α induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1α enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1α boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1α coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1α does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1α mimic the beneficial effects of endurance training on muscle metabolism in this context.

  8. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Summermatter, Serge [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Troxler, Heinz [Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University Children' s Hospital, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich (Switzerland); Santos, Gesa [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland)

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training

  9. Nitric oxide and superoxide: interference with hypoxic signaling.

    Science.gov (United States)

    Brüne, Bernhard; Zhou, Jie

    2007-07-15

    Sensing and responding to changes in oxygen partial pressure assures that the cellular oxygen supply is tightly controlled in order to balance the risks of oxidative damage vs. oxygen deficiency. The hypoxia inducible factor (HIF) regulatory system is controlled by prolyl hydroxylases (PHDs), the von Hippel Lindau protein (pVHL), and the 26S proteasome and transduces changes in oxygenation to adequate intracellular adaptive responses. A functional HIF response requires stabilization of the alpha-subunit, e.g. HIF-1alpha, during hypoxia and dimerization with HIF-1beta, to drive target gene activation. Intriguingly, high concentrations of nitric oxide (NO) stabilize HIF-1alpha and thus mimic a hypoxic response under normoxia. Mechanistically, NO blocks PHD activity and attenuates proline hydroxylation of HIF-1alpha. This causes dissociation of pVHL from HIF-1alpha and, consequently, HIF-1alpha accumulates because proteasomal destruction is impaired. However, during hypoxia low concentrations of NO facilitate destruction of HIF-1alpha and thus reverse HIF signaling. Under these conditions, NO impairs respiration and avoids oxygen gradients that limit PHD activity. An additional layer of complexity comprises the interaction of NO with O(2)(-). Signaling qualities attributed to NO are antagonized by compensatory flux rates of O(2)(-) and vice versa to adjust levels of HIF-1alpha under normoxia and hypoxia. The liaison of NO and hypoxia is versatile and ranges from courting to matrimony and divorce.

  10. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation

    OpenAIRE

    Celi, Pietro; Gabai, Gianfranco

    2015-01-01

    This review examines the role that oxidative stress (OS), and protein oxidation in particular, plays in nutrition, metabolism, and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functi...

  11. Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation

    OpenAIRE

    Pietro eCeli; Pietro eCeli; Gianfranco eGabai

    2015-01-01

    This review examines the role that oxidative stress, and protein oxidation in particular, plays in nutrition, metabolism and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functional m...

  12. Yoga-teaching protocol adapted for children with visual impairment

    Directory of Open Access Journals (Sweden)

    Soubhagyalaxmi Mohanty

    2016-01-01

    Conclusions: Specially designed protocol may pave the way to impart yoga in an exciting and comfortable way to children with VI. More studies are needed to further investigate the effectiveness of this new yoga protocol in similar settings.

  13. Adaptive Memory: Animacy Enhances Free Recall but Impairs Cued Recall

    Science.gov (United States)

    Popp, Earl Y.; Serra, Michael J.

    2016-01-01

    Recent research suggests that human memory systems evolved to remember animate things better than inanimate things. In the present experiments, we examined whether these effects occur for both free recall and cued recall. In Experiment 1, we directly compared the effect of animacy on free recall and cued recall. Participants studied lists of…

  14. Graceful degradation of cooperative adaptive cruise control

    NARCIS (Netherlands)

    Ploeg, J.; Semsar-Kazerooni, E.; Lijster, G.; Wouw, N. van de; Nijmeijer, H.

    2015-01-01

    Cooperative adaptive cruise control (CACC) employs wireless intervehicle communication, in addition to onboard sensors, to obtain string-stable vehicle-following behavior at small intervehicle distances. As a consequence, however, CACC is vulnerable to communication impairments such as latency and

  15. Trainable Mentally Impaired/Severely Multiply Impaired/Autistic Impaired/Severely Mentally Impaired. Product Evaluation Report 1989-1990.

    Science.gov (United States)

    Claus, Richard N.; And Others

    The evaluation report describes special education services provided to trainable mentally impaired (TMI), autistic impaired (AI), severely multiply impaired (SXI), and severely mentally impaired (SMI) students at and through the Melvin G. Millet Learning Center (Bridgeport, Michigan). The eight program components are described individually and…

  16. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  17. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Peng [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Sun, Guifan [School of Public Health, China Medical University, Shenyang 110001 (China); Andersen, Melvin E. [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States)

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  18. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    International Nuclear Information System (INIS)

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-01-01

    Highlights: → In 3T3-L1 adipocytes iAs 3+ decreases insulin-stimulated glucose uptake. → iAs 3+ attenuates insulin-induced phosphorylation of AKT S473. → iAs 3+ activates the cellular adaptive oxidative stress response. → iAs 3+ impairs insulin-stimulated ROS signaling. → iAs 3+ decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 μM) inorganic arsenite (iAs 3+ ) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs 3+ exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs 3+ exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4 expression may also be involved in arsenic-induced insulin resistance in

  19. Vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    N.V. Vakhnina

    2014-01-01

    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  20. Reduced host cell invasiveness and oxidative stress tolerance in double and triple csp gene family deletion mutants of Listeria monocytogenes.

    Science.gov (United States)

    Loepfe, Chantal; Raimann, Eveline; Stephan, Roger; Tasara, Taurai

    2010-07-01

    The cold shock protein (Csp) family comprises small, highly conserved proteins that bind nucleic acids to modulate various bacterial gene expressions. In addition to cold adaptation functions, this group of proteins is thought to facilitate various cellular processes to promote normal growth and stress adaptation responses. Three proteins making up the Listeria monocytogenes Csp family (CspA, CspB, and CspD) promote both cold and osmotic stress adaptation functions in this bacterium. The contribution of these three Csps in the host cell invasion processes of L. monocytogenes was investigated based on human Caco-2 and murine macrophage in vitro cell infection models. The DeltacspB, DeltacspD, DeltacspAB, DeltacspAD, DeltacspBD, and DeltacspABD strains were all significantly impaired in Caco-2 cell invasion compared with the wild-type strain, whereas in the murine macrophage infection assay only, the double (DeltacspBD) and triple (DeltacspABD) csp mutants were also significantly impaired in cell invasion compared with the wild-type strain. The DeltacspBD and DeltacspABD mutants displayed the most severely impaired invasion phenotypes. The invasion ability of these two mutant strains was also further analyzed using cold-stress-exposed organisms. In both cell infection models a significant reduction in invasiveness was observed after cold stress exposure of Listeria organisms. The negative impact of cold stress on subsequent cell invasion ability was, however, more severe in cold-sensitive csp mutants (DeltacspBD and DeltacspABD) compared with the wild type. The impaired macrophage invasion and intracellular growth of DeltacspBD and DeltacspABD also led us to examine oxidative stress resistance capacity in these two mutant strains. Both strains also displayed higher oxidative stress sensitivity relative to the wild-type strain. Our data indicate that besides cold and osmotic stress adaptation roles, Csp family proteins also promote efficient host cell invasion and

  1. 2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism.

    Science.gov (United States)

    Shahin, Saba; Banerjee, Somanshu; Singh, Surya Pal; Chaturvedi, Chandra Mohini

    2015-12-01

    A close association between microwave (MW) radiation exposure and neurobehavioral disorders has been postulated but the direct effects of MW radiation on central nervous system still remains contradictory. This study was performed to understand the effect of short (15 days) and long-term (30 and 60 days) low-level MW radiation exposure on hippocampus with special reference to spatial learning and memory and its underlying mechanism in Swiss strain male mice, Mus musculus. Twelve-weeks old mice were exposed to 2.45 GHz MW radiation (continuous-wave [CW] with overall average power density of 0.0248 mW/cm(2) and overall average whole body specific absorption rate value of 0.0146 W/Kg) for 2 h/day over a period of 15, 30, and 60 days). Spatial learning and memory was monitored by Morris Water Maze. We have checked the alterations in hippocampal oxidative/nitrosative stress, neuronal morphology, and expression of pro-apoptotic proteins (p53 and Bax), inactive executioner Caspase- (pro-Caspase-3), and uncleaved Poly (ADP-ribose) polymerase-1 in the hippocampal subfield neuronal and nonneuronal cells (DG, CA1, CA2, and CA3). We observed that, short-term as well as long-term 2.45 GHz MW radiation exposure increases the oxidative/nitrosative stress leading to enhanced apoptosis in hippocampal subfield neuronal and nonneuronal cells. Present findings also suggest that learning and spatial memory deficit which increases with the increased duration of MW exposure (15 stress induced p53-dependent/independent activation of hippocampal neuronal and nonneuronal apoptosis associated with spatial memory loss. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine.

    Science.gov (United States)

    Osselaere, Ann; Santos, Regiane; Hautekiet, Veerle; De Backer, Patrick; Chiers, Koen; Ducatelle, Richard; Croubels, Siska

    2013-01-01

    Broiler chickens are rather resistant to deoxynivalenol and thus, clinical signs are rarely seen. However, effects of subclinical concentrations of deoxynivalenol on both the intestine and the liver are less frequently studied at the molecular level. During our study, we investigated the effects of three weeks of feeding deoxynivalenol on the gut wall morphology, intestinal barrier function and inflammation in broiler chickens. In addition, oxidative stress was evaluated in both the liver and intestine. Besides, the effect of a clay-based mycotoxin adsorbing agent on these different aspects was also studied. Our results show that feeding deoxynivalenol affects the gut wall morphology both in duodenum and jejenum of broiler chickens. A qRT-PCR analysis revealed that deoxynivalenol acts in a very specific way on the intestinal barrier, since only an up-regulation in mRNA expression of claudin 5 in jejunum was observed, while no effects were seen on claudin 1, zona occludens 1 and 2. Addition of an adsorbing agent resulted in an up-regulation of all the investigated genes coding for the intestinal barrier in the ileum. Up-regulation of Toll-like receptor 4 and two markers of oxidative stress (heme-oxigenase or HMOX and xanthine oxidoreductase or XOR) were mainly seen in the jejunum and to a lesser extent in the ileum in response to deoxynivalenol, while in combination with an adsorbing agent main effect was seen in the ileum. These results suggest that an adsorbing agent may lead to higher concentrations of deoxynivalenol in the more distal parts of the small intestine. In the liver, XOR was up-regulated due to DON exposure. HMOX and HIF-1α (hypoxia-inducible factor 1α) were down-regulated due to feeding DON but also due to feeding the adsorbing agent alone or in combination with DON.

  3. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine.

    Directory of Open Access Journals (Sweden)

    Ann Osselaere

    Full Text Available Broiler chickens are rather resistant to deoxynivalenol and thus, clinical signs are rarely seen. However, effects of subclinical concentrations of deoxynivalenol on both the intestine and the liver are less frequently studied at the molecular level. During our study, we investigated the effects of three weeks of feeding deoxynivalenol on the gut wall morphology, intestinal barrier function and inflammation in broiler chickens. In addition, oxidative stress was evaluated in both the liver and intestine. Besides, the effect of a clay-based mycotoxin adsorbing agent on these different aspects was also studied. Our results show that feeding deoxynivalenol affects the gut wall morphology both in duodenum and jejenum of broiler chickens. A qRT-PCR analysis revealed that deoxynivalenol acts in a very specific way on the intestinal barrier, since only an up-regulation in mRNA expression of claudin 5 in jejunum was observed, while no effects were seen on claudin 1, zona occludens 1 and 2. Addition of an adsorbing agent resulted in an up-regulation of all the investigated genes coding for the intestinal barrier in the ileum. Up-regulation of Toll-like receptor 4 and two markers of oxidative stress (heme-oxigenase or HMOX and xanthine oxidoreductase or XOR were mainly seen in the jejunum and to a lesser extent in the ileum in response to deoxynivalenol, while in combination with an adsorbing agent main effect was seen in the ileum. These results suggest that an adsorbing agent may lead to higher concentrations of deoxynivalenol in the more distal parts of the small intestine. In the liver, XOR was up-regulated due to DON exposure. HMOX and HIF-1α (hypoxia-inducible factor 1α were down-regulated due to feeding DON but also due to feeding the adsorbing agent alone or in combination with DON.

  4. Social communication impairments: pragmatics.

    Science.gov (United States)

    Russell, Robert L

    2007-06-01

    Social communication or pragmatic impairments are characterized and illustrated as involving inappropriate or ineffective use of language and gesture in social contexts. Three clinical vignettes illustrate different pragmatic impairments and the wealth of diagnostic information that can be garnered from observation of a child's social communication behavior. Definitions of, and developmental milestones in, domains of pragmatic competence are provided. Several screening instruments are suggested for use in assessing pragmatic competence within the time-frame of a pediatric examination. Frequent comorbid psychiatric conditions are described and a sample of current neurobiologic research is briefly summarized.

  5. Adaptive management

    DEFF Research Database (Denmark)

    Rist, Lucy; Campbell, Bruce Morgan; Frost, Peter

    2013-01-01

    a management framework, as well as of identified challenges and pathologies, are needed. Further discussion and systematic assessment of the approach is required, together with greater attention to its definition and description, enabling the assessment of new approaches to managing uncertainty, and AM itself.......Adaptive management (AM) emerged in the literature in the mid-1970s in response both to a realization of the extent of uncertainty involved in management, and a frustration with attempts to use modelling to integrate knowledge and make predictions. The term has since become increasingly widely used...... in scientific articles, policy documents and management plans, but both understanding and application of the concept is mixed. This paper reviews recent literature from conservation and natural resource management journals to assess diversity in how the term is used, highlight ambiguities and consider how...

  6. Personality Assessment of Early Visually Impaired Persons Using the CPI and the MMPI.

    Science.gov (United States)

    Adrian, Robert J.; And Others

    1982-01-01

    Variant California Pyschological Inventory and Minnesota Multiphasic Personality Inventory scale scores may not necessarily reflect psychopathology, but rather may be indicative of the unique adaptive processes of persons who experienced early visual impairment. (Author)

  7. Medications and impaired driving.

    Science.gov (United States)

    Hetland, Amanda; Carr, David B

    2014-04-01

    To describe the association of specific medication classes with driving outcomes and provide clinical recommendations. The MEDLINE and EMBASE databases were searched for articles published from January 1973 to June 2013 on classes of medications associated with driving impairment. The search included outcome terms such as automobile driving, motor vehicle crash, driving simulator, and road tests. Only English-language articles that contained findings from observational or interventional designs with ≥ 10 participants were included in this review. Cross-sectional studies, case series, and case reports were excluded. Driving is an important task and activity for the majority of adults. Some commonly prescribed medications have been associated with driving impairment measured by road performance, driving simulation, and/or motor vehicle crashes. This review of 30 studies identified findings with barbiturates, benzodiazepines, hypnotics, antidepressants, opioid and nonsteroidal analgesics, anticonvulsants, antipsychotics, antiparkinsonian agents, skeletal muscle relaxants, antihistamines, anticholinergic medications, and hypoglycemic agents. Additional studies of medication impact on sedation, sleep latency, and psychomotor function, as well as the role of alcohol, are also discussed. Psychotropic agents and those with central nervous system side effects were associated with measures of impaired driving performance. It is difficult to determine if such associations are actually a result of medication use or the medical diagnosis itself. Regardless, clinicians should be aware of the increased risk of impaired driving with specific classes of medications, educate their patients, and/or consider safer alternatives.

  8. 45 CFR 1308.17 - Eligibility criteria: Other impairments.

    Science.gov (United States)

    2010-10-01

    ... development, or adaptive development, and who by reason thereof need special education and related services... classified as deaf-blind, whose concomitant hearing and visual impairments cause such severe communication... combination, cause such severe educational problems that they cannot be accommodated in special education...

  9. Social Studies for the Visually Impaired Child. MAVIS Sourcebook 4.

    Science.gov (United States)

    Singleton, Laurel R.

    Suggestions are made in this sourcebook for adapting teaching strategies and curriculum materials in social studies to accomodate the needs of the visually impaired (VI) student. It is presented in eight chapters. Chapter one explains why elementary grade social studies, with its emphasis on visual media, presents difficulties for VI children.…

  10. Functional Problems of the Visually Impaired: A Research Approach.

    Science.gov (United States)

    Bikson, Thomas H.; Bikson, Tora K.

    Capabilities and limitations of 251 severely visually impaired persons (senior high school age or older) were assessed on a range of visual environmental adaptation problems to learn how they are organized and influenced. Factor analyses indicated that problems can be grouped on the basis of eight functional domains, among which an independent…

  11. Science Instruction for Students with Visual Impairments. ERIC Digest.

    Science.gov (United States)

    Kumar, David D.; Ramasamy, Rangasamy; Stefanich, Greg P.

    This digest presents instructional strategies to accommodate visually impaired students in science classrooms and provides classroom examples for physical science, chemistry, and biology courses. The article concludes that prospective science teachers must become skilled in using resource materials and adaptive technologies that facilitate the…

  12. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers.

    Science.gov (United States)

    Burke, Louise M; Ross, Megan L; Garvican-Lewis, Laura A; Welvaert, Marijke; Heikura, Ida A; Forbes, Sara G; Mirtschin, Joanne G; Cato, Louise E; Strobel, Nicki; Sharma, Avish P; Hawley, John A

    2017-05-01

    Three weeks of intensified training and mild energy deficit in elite race walkers increases peak aerobic capacity independent of dietary support. Adaptation to a ketogenic low carbohydrate, high fat (LCHF) diet markedly increases rates of whole-body fat oxidation during exercise in race walkers over a range of exercise intensities. The increased rates of fat oxidation result in reduced economy (increased oxygen demand for a given speed) at velocities that translate to real-life race performance in elite race walkers. In contrast to training with diets providing chronic or periodised high carbohydrate availability, adaptation to an LCHF diet impairs performance in elite endurance athletes despite a significant improvement in peak aerobic capacity. We investigated the effects of adaptation to a ketogenic low carbohydrate (CHO), high fat diet (LCHF) during 3 weeks of intensified training on metabolism and performance of world-class endurance athletes. We controlled three isoenergetic diets in elite race walkers: high CHO availability (g kg -1  day -1 : 8.6 CHO, 2.1 protein, 1.2 fat) consumed before, during and after training (HCHO, n = 9); identical macronutrient intake, periodised within or between days to alternate between low and high CHO availability (PCHO, n = 10); LCHF (diets providing chronic or periodised high-CHO availability, and despite a significant improvement in V̇O2 peak , adaptation to the topical LCHF diet negated performance benefits in elite endurance athletes, in part due to reduced exercise economy. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  13. Erratum: Unripe Musa paradisiaca Fruit Diet Ameliorates Impaired ...

    African Journals Online (AJOL)

    In the article “Unripe Musa paradisiaca Fruit Diet Ameliorates Impaired Glucose Regulation Caused by Iron-Induced Oxidative Stress” by Ige A.O, Oyekunle A.O, Olaoye M. O and Adewoye E.O which appeared on pages 301-308 of the September 2017 issue, it has been observed that the name of the second author was ...

  14. The New DSM-5 Impairment Criterion: A Challenge to Early Autism Spectrum Disorder Diagnosis?

    Science.gov (United States)

    Zander, Eric; Bölte, Sven

    2015-01-01

    The possible effect of the DSM-5 impairment criterion on diagnosing autism spectrum disorder (ASD) in young children was examined in 127 children aged 20-47 months with a DSM-IV-TR clinical consensus diagnosis of ASD. The composite score of the Vineland Adaptive Behavior Scales (VABS) served as a proxy for the DSM-5 impairment criterion. When…

  15. Oxidation as an important factor of protein damage: Implications for ...

    Indian Academy of Sciences (India)

    ... site-specific metal-catalysed protein oxidation), oxidation-dependent generation of protein hydroperoxides, carbonyl derivatives and protein–protein cross-linkages. Non-enzymatic glycoxidation (also known as Maillard reaction) as an important factor of protein damage, consequences of oxidative protein impairment and ...

  16. Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling

    Directory of Open Access Journals (Sweden)

    Manuel A. Fernández-Rojo

    2013-07-01

    Full Text Available Caveolae and caveolin-1 (CAV1 have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1−/− mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1−/− mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1 hepatic lipid homeostasis and (2 nuclear hormone receptor (PPARα, FXRα, and SHP and bile acid signaling.

  17. Impaired Consciousness in Epilepsy

    Science.gov (United States)

    Blumenfeld, Hal

    2013-01-01

    Consciousness is essential to normal human life. In epileptic seizures consciousness is often transiently lost making it impossible for the individual to experience or respond. This has huge consequences for safety, productivity, emotional health and quality of life. To prevent impaired consciousness in epilepsy it is necessary to understand the mechanisms leading to brain dysfunction during seizures. Normally the “consciousness system”—a specialized set of cortical-subcortical structures—maintains alertness, attention and awareness. Recent advances in neuroimaging, electrophysiology and prospective behavioral testing have shed new light on how epileptic seizures disrupt the consciousness system. Diverse seizure types including absence, generalized tonic-clonic and complex partial seizures converge on the same set of anatomical structures through different mechanisms to disrupt consciousness. Understanding these mechanisms may lead to improved treatment strategies to prevent impaired consciousness and improve quality of life in people with epilepsy. PMID:22898735

  18. Association of Oxidative Stress with Psychiatric Disorders.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Castro-Gomes, Vitor; Mohammadzai, Imdadullah; da Rocha, Joao Batista Teixeira; Landeira-Fernandez, J

    2016-01-01

    When concentrations of both reactive oxygen species and reactive nitrogen species exceed the antioxidative capability of an organism, the cells undergo oxidative impairment. Impairments in membrane integrity and lipid and protein oxidation, protein mutilation, DNA damage, and neuronal dysfunction are some of the fundamental consequences of oxidative stress. The purpose of this work was to review the associations between oxidative stress and psychological disorders. The search terms were the following: "oxidative stress and affective disorders," "free radicals and neurodegenerative disorders," "oxidative stress and psychological disorders," "oxidative stress, free radicals, and psychiatric disorders," and "association of oxidative stress." These search terms were used in conjunction with each of the diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders and World Health Organization's International Statistical Classification of Diseases and Related Health Problems. Genetic, pharmacological, biochemical, and preclinical therapeutic studies, case reports, and clinical trials were selected to explore the molecular aspects of psychological disorders that are associated with oxidative stress. We identified a broad spectrum of 83 degenerative syndromes and psychiatric disorders that were associated with oxidative stress. The multi-dimensional information identified herein supports the role of oxidative stress in various psychiatric disorders. We discuss the results from the perspective of developing novel therapeutic interventions.

  19. Age-Related Sensory Impairments and Risk of Cognitive Impairment

    Science.gov (United States)

    Fischer, Mary E; Cruickshanks, Karen J.; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara EK; Klein, Ronald; Tweed, Ted S.

    2016-01-01

    Background/Objectives To evaluate the associations of sensory impairments with the 10-year risk of cognitive impairment. Previous work has primarily focused on the relationship between a single sensory system and cognition. Design The Epidemiology of Hearing Loss Study (EHLS) is a longitudinal, population-based study of aging in the Beaver Dam, WI community. Baseline examinations were conducted in 1993 and follow-up exams have been conducted every 5 years. Setting General community Participants EHLS members without cognitive impairment at EHLS-2 (1998–2000). There were 1,884 participants (mean age = 66.7 years) with complete EHLS-2 sensory data and follow-up information. Measurements Cognitive impairment was a Mini-Mental State Examination score of impairment was a pure-tone average of hearing thresholds (0.5, 1, 2 and 4 kHz) of > 25 decibel Hearing Level in either ear. Visual impairment was Pelli-Robson contrast sensitivity of impairment was a San Diego Odor Identification Test score of impairment were independently associated with cognitive impairment risk [Hearing: Hazard Ratio (HR) = 1.90, 95% Confidence Interval (C.I.) = 1.11, 3.26; Vision: HR = 2.05, 95% C.I. = 1.24, 3.38; Olfaction: HR = 3.92, 95% C.I. = 2.45, 6.26]. However, 85% with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. Conclusion The relationship between sensory impairment and cognitive impairment was not unique to one sensory system suggesting sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. PMID:27611845

  20. Age-Related Sensory Impairments and Risk of Cognitive Impairment.

    Science.gov (United States)

    Fischer, Mary E; Cruickshanks, Karen J; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara E K; Klein, Ronald; Tweed, Ted S

    2016-10-01

    To evaluate the associations between sensory impairments and 10-year risk of cognitive impairment. The Epidemiology of Hearing Loss Study (EHLS), a longitudinal, population-based study of aging in the Beaver Dam, Wisconsin community. Baseline examinations were conducted in 1993 and follow-up examinations have been conducted every 5 years. General community. EHLS members without cognitive impairment at EHLS-2 (1998-2000). There were 1,884 participants (mean age 66.7) with complete EHLS-2 sensory data and follow-up information. Cognitive impairment was defined as a Mini-Mental State Examination score of dementia or Alzheimer's disease. Hearing impairment was a pure-tone average of hearing thresholds (0.5, 1, 2, 4 kHz) of >25 dB hearing level in either ear, visual impairment was a Pelli-Robson contrast sensitivity of impairment was a San Diego Odor Identification Test score of impairment were independently associated with cognitive impairment risk (hearing: hazard ratio (HR) = 1.90, 95% confidence interval (CI) = 1.11-3.26; vision: HR = 2.05, 95% CI = 1.24-3.38; olfaction: HR = 3.92, 95% CI = 2.45-6.26)). Nevertheless, 85% of participants with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. The relationship between sensory impairment and cognitive impairment was not unique to one sensory system, suggesting that sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  1. Voice impairment and menopause.

    Science.gov (United States)

    Schneider, Berit; van Trotsenburg, Michael; Hanke, Gunda; Bigenzahn, Wolfgang; Huber, Johannes

    2004-01-01

    Menopause rating scales still do not regard voice impairment as a genuine climacteric symptom, although voice changes are frequently reported. The purpose of this study was both to register and differentiate voice alterations and disorders in menopausal women. A total of 107 women between 37 and 71 years of age who were rated as postmenopausal according to their hormonal status answered a questionnaire on voice changes and vocal discomfort. Of this group, 49 women mentioned voices changes, and 35 of those women associated these changes with subjective discomfort, whereas 58 women mentioned neither voice changes nor discomfort. Sixteen of the women who mentioned voice changes and eight who did not participated in a comprehensive investigation, which included completion of the Klimax questionnaire, a head and neck examination, videostroboscopy, perceptual evaluation of voice sound, voice range profile measurements, and voice dysfunction index determination. Voice changes during menopause might be a common problem seen in clinical practice. Therefore, an additional systematic registration of voice impairment in future menopause rating scales should be considered if further studies confirm our findings of a high prevalence of voice complaints associated with menopause. Severe menopausal voice impairments, even without other climacteric symptoms, should be regarded as an indication for phoniatric examination.

  2. Early-Emerging Social Adaptive Skills in Toddlers with Autism Spectrum Disorders: An Item Analysis

    Science.gov (United States)

    Ventola, Pamela; Saulnier, Celine A.; Steinberg, Elizabeth; Chawarska, Katarzyna; Klin, Ami

    2014-01-01

    Individuals with ASD have significant impairments in adaptive skills, particularly adaptive socialization skills. The present study examined the extent to which 20 items from the Vineland Adaptive Behavior Scales-Socialization Domain differentiated between ASD and developmentally delayed (DD) groups. Participants included 108 toddlers with ASD or…

  3. Ethylene Oxide

    Science.gov (United States)

    Learn about ethylene oxide, which can raise your risk of lymphoma and leukemia. Exposure may occur through industrial emissions, tobacco smoke, and the use of products sterilized with ethylene oxide, such as certain medical products or cosmetics.

  4. Protein oxidation and ageing

    DEFF Research Database (Denmark)

    Linton, S; Davies, Michael Jonathan; Dean, R T

    2001-01-01

    of redox-active metal ions that could catalyse oxidant formation. As a result of this decrease in antioxidant defences, and increased rate of ROS formation, it is possible that the impact of ROS increases with age. ROS are known to oxidise biological macromolecules, with proteins an important target....... If the argument that the impact of ROS increases with age is true, then proteins would be expected to accumulate oxidised materials with age, and the rate of such accumulation should increase with time, reflecting impaired inefficiency of homeostasis. Here we review the evidence for the accumulation of oxidised......, or modified, extra- and intra-cellular proteins in vivo....

  5. Supporting Adaptive and Adaptable Hypermedia Presentation Semantics

    NARCIS (Netherlands)

    D.C.A. Bulterman (Dick); L. Rutledge (Lloyd); L. Hardman (Lynda); J.R. van Ossenbruggen (Jacco)

    1999-01-01

    textabstractHaving the content of a presentation adapt to the needs, resources and prior activities of a user can be an important benefit of electronic documents. While part of this adaptation is related to the encodings of individual data streams, much of the adaptation can/should be guided by the

  6. Family adaptation to cerebral palsy in adolescents

    DEFF Research Database (Denmark)

    Guyard, Audrey; Michelsen, Susan I; Arnaud, Catherine

    2017-01-01

    BACKGROUND AND AIM: Factors promoting family adaptation to child's disability are poorly studied together. The aim of the study was to describe the family adaptation to disability and to identify determinants associated with using a global theoretical model. MATERIALS AND METHODS: 286 families...... system: facing disability, it tries to recover its balance with available resources and its perception of the situation. Literature highlights potential stressors and protecting factors that could affect the disabled child's family adaptation but few papers study a global model including most...... of these factors. This study validated a global theoretical model of family adaptation to disability at adolescence. It identified behaviour disorders and motor impairment level as main stressors, family functioning as the largest protecting factors, and equipment and financial support as non significant...

  7. Inhibition of c-Jun-N-terminal kinase increases cardiac peroxisome proliferator-activated receptor alpha expression and fatty acid oxidation and prevents lipopolysaccharide-induced heart dysfunction.

    Science.gov (United States)

    Drosatos, Konstantinos; Drosatos-Tampakaki, Zoi; Khan, Raffay; Homma, Shunichi; Schulze, P Christian; Zannis, Vassilis I; Goldberg, Ira J

    2011-10-21

    Septic shock results from bacterial infection and is associated with multi-organ failure, high mortality, and cardiac dysfunction. Sepsis causes both myocardial inflammation and energy depletion. We hypothesized that reduced cardiac energy production is a primary cause of ventricular dysfunction in sepsis. The JNK pathway is activated in sepsis and has also been implicated in impaired fatty acid oxidation in several tissues. Therefore, we tested whether JNK activation inhibits cardiac fatty acid oxidation and whether blocking JNK would restore fatty acid oxidation during LPS treatment. LPS treatment of C57BL/6 mice and adenovirus-mediated activation of the JNK pathway in cardiomyocytes inhibited peroxisome proliferator-activated receptor α expression and fatty acid oxidation. Surprisingly, none of the adaptive responses that have been described in other types of heart failure, such as increased glucose utilization, reduced αMHC:βMHC ratio or induction of certain microRNAs, occurred in LPS-treated mice. Treatment of C57BL/6 mice with a general JNK inhibitor (SP600125) increased fatty acid oxidation in mice and a cardiomyocyte-derived cell line. JNK inhibition also prevented LPS-mediated reduction in fatty acid oxidation and cardiac dysfunction. Inflammation was not alleviated in LPS-treated mice that received the JNK inhibitor. We conclude that activation of JNK signaling reduces fatty acid oxidation and prevents the peroxisome proliferator-activated receptor α down-regulation that occurs with LPS.

  8. Cognitive impairment and pragmatics.

    Science.gov (United States)

    Gutiérrez-Rexach, Javier; Schatz, Sara

    2016-01-01

    One of the most important ingredients of felicitous conversation exchanges is the adequate expression of illocutionary force and the achievement of perlocutionary effects, which can be considered essential to the functioning of pragmatic competence. The breakdown of illocutionary and perlocutionary functions is one of the most prominent external features of cognitive impairment in Alzheimer's Disease, with devastating psychological and social consequences for patients, their family and caregivers. The study of pragmatic functions is essential for a proper understanding of the linguistic and communicative aspects of Alzheimer's disease.

  9. Cerebrovascular reserve capacity is impaired in patients with sickle cell disease

    NARCIS (Netherlands)

    Nur, Erfan; Kim, Yu-Sok; Truijen, Jasper; van Beers, Eduard J.; Davis, Shyrin C. A. T.; Brandjes, Dees P.; Biemond, Bart J.; van Lieshout, Johannes J.

    2009-01-01

    Sickle cell disease (SCD) is associated with a high incidence of ischemic stroke. SCD is characterized by hemolytic anemia, resulting in reduced nitric oxide-bioavailability, and by impaired cerebrovascular hemodynamics. Cerebrovascular CO2 responsiveness is nitric oxide dependent and has been