WorldWideScience

Sample records for adaptation biological

  1. Biological clockwork underlying adaptive rhythmic movements

    Science.gov (United States)

    Iwasaki, Tetsuya; Chen, Jun; Friesen, W. Otto

    2014-01-01

    Owing to the complexity of neuronal circuits, precise mathematical descriptions of brain functions remain an elusive ambition. A more modest focus of many neuroscientists, central pattern generators, are more tractable neuronal circuits specialized to generate rhythmic movements, including locomotion. The relative simplicity and well-defined motor functions of these circuits provide an opportunity for uncovering fundamental principles of neuronal information processing. Here we present the culmination of mathematical analysis that captures the adaptive behaviors emerging from interactions between a central pattern generator, the body, and the physical environment during locomotion. The biologically realistic model describes the undulatory motions of swimming leeches with quantitative accuracy and, without further parameter tuning, predicts the sweeping changes in oscillation patterns of leeches undulating in air or swimming in high-viscosity fluid. The study demonstrates that central pattern generators are capable of adapting oscillations to the environment through sensory feedback, but without guidance from the brain. PMID:24395788

  2. Adaptable data management for systems biology investigations

    Directory of Open Access Journals (Sweden)

    Burdick David

    2009-03-01

    Full Text Available Abstract Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry. We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community.

  3. Biological invasions, ecological resilience and adaptive governance.

    Science.gov (United States)

    Chaffin, Brian C; Garmestani, Ahjond S; Angeler, David G; Herrmann, Dustin L; Stow, Craig A; Nyström, Magnus; Sendzimir, Jan; Hopton, Matthew E; Kolasa, Jurek; Allen, Craig R

    2016-12-01

    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services.

  4. Biological invasions, ecological resilience and adaptive governance

    Science.gov (United States)

    Chaffin, Brian C.; Garmestani, Ahjond S.; Angeler, David G.; Herrmann, Dustin L.; Stow, Craig A.; Nystrom, Magnus; Sendzimir, Jan; Hopton, Matthew E.; Kolasa, Jurek; Allen, Craig R.

    2016-01-01

    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services.

  5. Engineering Design of an Adaptive Leg Prosthesis Using Biological Principles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Dentel, Andy; Invarsdottir, Thorunn

    2010-01-01

    The biomimetic design process is explored through a design case: An adaptive leg prosthesis. The aim is to investigate if the biomimetic design process can be carried out with a minimum of biological knowledge and without using advanced design methods. In the design case biomimetic design...... was successfully carried out using library search resulting in 14 biological analogies for the design problem 'shape adaption'. It is proposed that search results are handled using special cards describing the biological phenomena and the functional principles....

  6. Multidimensional Computerized Adaptive Testing for Indonesia Junior High School Biology

    Science.gov (United States)

    Kuo, Bor-Chen; Daud, Muslem; Yang, Chih-Wei

    2015-01-01

    This paper describes a curriculum-based multidimensional computerized adaptive test that was developed for Indonesia junior high school Biology. In adherence to the Indonesian curriculum of different Biology dimensions, 300 items was constructed, and then tested to 2238 students. A multidimensional random coefficients multinomial logit model was…

  7. Multidimensional Computerized Adaptive Testing for Indonesia Junior High School Biology

    Science.gov (United States)

    Kuo, Bor-Chen; Daud, Muslem; Yang, Chih-Wei

    2015-01-01

    This paper describes a curriculum-based multidimensional computerized adaptive test that was developed for Indonesia junior high school Biology. In adherence to the Indonesian curriculum of different Biology dimensions, 300 items was constructed, and then tested to 2238 students. A multidimensional random coefficients multinomial logit model was…

  8. Engineering Design of an Adaptive Leg Prosthesis Using Biological Principles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Dentel, Andy; Invarsdottir, Thorunn

    2010-01-01

    The biomimetic design process is explored through a design case: An adaptive leg prosthesis. The aim is to investigate if the biomimetic design process can be carried out with a minimum of biological knowledge and without using advanced design methods. In the design case biomimetic design was suc...... was successfully carried out using library search resulting in 14 biological analogies for the design problem 'shape adaption'. It is proposed that search results are handled using special cards describing the biological phenomena and the functional principles....

  9. Development as adaptation: a paradigm for gravitational and space biology

    Science.gov (United States)

    Alberts, Jeffrey R.; Ronca, April E.

    2005-01-01

    Adaptation is a central precept of biology; it provides a framework for identifying functional significance. We equate mammalian development with adaptation, by viewing the developmental sequence as a series of adaptations to a stereotyped sequence of habitats. In this way development is adaptation. The Norway rat is used as a mammalian model, and the sequence of habitats that is used to define its adaptive-developmental sequence is (a) the uterus, (b) the mother's body, (c) the huddle, and (d) the coterie of pups as they gain independence. Then, within this framework and in relation to each of the habitats, we consider problems of organismal responses to altered gravitational forces (micro-g to hyper-g), especially those encountered during space flight and centrifugation. This approach enables a clearer identification of simple "effects" and active "responses" with respect to gravity. It focuses our attention on functional systems and brings to the fore the manner in which experience shapes somatic adaptation. We argue that this basic developmental approach is not only central to basic issues in gravitational biology, but that it provides a natural tool for understanding the underlying processes that are vital to astronaut health and well-being during long duration flights that will involve adaptation to space flight conditions and eventual re-adaptation to Earth's gravity.

  10. Adaptation hypothesis of biological effectiveness of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kudritsky, Yu.K.; Georgievsky, A.B.; Karpov, V.I.

    1993-12-31

    The adoptation hypothesis of biological effectiveness of ionizing radiations is based on the recognition of the invariability of general biological laws for radiobiology and on the comprehension of life evolution regularities and axiomatic principles of environment and biota unity. The ionizing radiation factor is essential for life which could not exist beyond the radiation field. The possibility of future development of the adaptation hypothesis serves as a basis for it`s transformation into the theoretical foundation of radiobiology. This report discusses the aspects of the adaptation theory.

  11. Restrictions on biological adaptation in language evolution.

    Science.gov (United States)

    Chater, Nick; Reali, Florencia; Christiansen, Morten H

    2009-01-27

    Language acquisition and processing are governed by genetic constraints. A crucial unresolved question is how far these genetic constraints have coevolved with language, perhaps resulting in a highly specialized and species-specific language "module," and how much language acquisition and processing redeploy preexisting cognitive machinery. In the present work, we explored the circumstances under which genes encoding language-specific properties could have coevolved with language itself. We present a theoretical model, implemented in computer simulations, of key aspects of the interaction of genes and language. Our results show that genes for language could have coevolved only with highly stable aspects of the linguistic environment; a rapidly changing linguistic environment does not provide a stable target for natural selection. Thus, a biological endowment could not coevolve with properties of language that began as learned cultural conventions, because cultural conventions change much more rapidly than genes. We argue that this rules out the possibility that arbitrary properties of language, including abstract syntactic principles governing phrase structure, case marking, and agreement, have been built into a "language module" by natural selection. The genetic basis of human language acquisition and processing did not coevolve with language, but primarily predates the emergence of language. As suggested by Darwin, the fit between language and its underlying mechanisms arose because language has evolved to fit the human brain, rather than the reverse.

  12. Biological Bases for Radiation Adaptive Responses in the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby R. [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Lin, Yong [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Wilder, Julie [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Belinsky, Steven [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States)

    2015-03-01

    Our main research objective was to determine the biological bases for low-dose, radiation-induced adaptive responses in the lung and use the knowledge gained to produce an improved risk model for radiation-induced lung cancer that accounts for activated natural protection, genetic influences, and the role of epigenetic regulation (epiregulation). Currently, low-dose radiation risk assessment is based on the linear-no-threshold hypothesis which now is known to be unsupported by a large volume of data.

  13. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  14. Studying of Phenomenon of Biological Adaptation to Heavy Water

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2014-12-01

    Full Text Available Biological influence of deuterium on cells of various taxonomic groups of prokaryotic and eucaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates (methylotrophic bacteria Brevibacterium methylicum, chemoheterotrophic bacteria Bacillus subtilis, photo-organotrophic halobacteria Halobacterium halobium, and green micro algae Chlorella vulgaris was investigated at the growth on media with heavy water (2H2O. For investigated microorganisms are submitted the data on growth and adaptation on the growth media containing as sources of deuterated substrates 2H2O, [2H]methanol and hydrolisates of deutero-biomass of methylotrophic bacteria B. methylicum, obtained after multistage adaptation to 2H2O. The qualitative and quantitative composition of intra- and endocellular amino acids, proteins, carbohydrates and fatty acids in conditions of adaptation to 2H2O is investigated. It is shown, that the effects observed at adaptation to 2H2O, possess a complex multifactorial character and connected to cytological, morphological and physiological changes – the magnitude of the lag- period, time of cellular generation, output of biomass, a parity ratio of synthesized amino acids, proteins, carbohydrates and lipids, and also with an evolutionary level of the organization of the investigated object and the pathways of assimilation of carbon substrates as well.

  15. Adoption: biological and social processes linked to adaptation.

    Science.gov (United States)

    Grotevant, Harold D; McDermott, Jennifer M

    2014-01-01

    Children join adoptive families through domestic adoption from the public child welfare system, infant adoption through private agencies, and international adoption. Each pathway presents distinctive developmental opportunities and challenges. Adopted children are at higher risk than the general population for problems with adaptation, especially externalizing, internalizing, and attention problems. This review moves beyond the field's emphasis on adoptee-nonadoptee differences to highlight biological and social processes that affect adaptation of adoptees across time. The experience of stress, whether prenatal, postnatal/preadoption, or during the adoption transition, can have significant impacts on the developing neuroendocrine system. These effects can contribute to problems with physical growth, brain development, and sleep, activating cascading effects on social, emotional, and cognitive development. Family processes involving contact between adoptive and birth family members, co-parenting in gay and lesbian adoptive families, and racial socialization in transracially adoptive families affect social development of adopted children into adulthood.

  16. Adaptive neural coding: from biological to behavioral decision-making.

    Science.gov (United States)

    Louie, Kenway; Glimcher, Paul W; Webb, Ryan

    2015-10-01

    Empirical decision-making in diverse species deviates from the predictions of normative choice theory, but why such suboptimal behavior occurs is unknown. Here, we propose that deviations from optimality arise from biological decision mechanisms that have evolved to maximize choice performance within intrinsic biophysical constraints. Sensory processing utilizes specific computations such as divisive normalization to maximize information coding in constrained neural circuits, and recent evidence suggests that analogous computations operate in decision-related brain areas. These adaptive computations implement a relative value code that may explain the characteristic context-dependent nature of behavioral violations of classical normative theory. Examining decision-making at the computational level thus provides a crucial link between the architecture of biological decision circuits and the form of empirical choice behavior.

  17. Toward university modeling instruction--biology: adapting curricular frameworks from physics to biology.

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-06-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence.

  18. Obesity: a disease or a biological adaptation? An update.

    Science.gov (United States)

    Chaput, J-P; Doucet, E; Tremblay, A

    2012-08-01

    Obesity is characterized by the accumulation of excess body fat and can be conceptualized as the physical manifestation of chronic energy excess. An important challenge of today's world is that our so-called obesogenic environment is conducive to the consumption of energy and unfavourable to the expenditure of energy. The modern, computer-dependent, sleep-deprived, physically inactive humans live chronically stressed in a society of food abundance. From a physiological standpoint, the excess weight gain observed in prone individuals is perceived as a normal consequence to a changed environment rather than a pathological process. In other words, weight gain is a sign of our contemporary way of living or a 'collateral damage' in the physiological struggle against modernity. Additionally, substantial body fat loss can complicate appetite control, decrease energy expenditure to a greater extent than predicted, increase the proneness to hypoglycaemia and its related risk towards depressive symptoms, increase the plasma and tissue levels of persistent organic pollutants that promote hormone disruption and metabolic complications, all of which are adaptations that can increase the risk of weight regain. In contrast, body fat gain generally provides the opposite adaptations, emphasizing that obesity may realistically be perceived as an a priori biological adaptation for most individuals. Accordingly, prevention and treatment strategies for obesity should ideally target the main drivers or root causes of body fat gain in order to be able to improve the health of the population. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  19. Evolutionary Developmental Biology and Human Language Evolution: Constraints on Adaptation.

    Science.gov (United States)

    Fitch, W Tecumseh

    2012-12-01

    A tension has long existed between those biologists who emphasize the importance of adaptation by natural selection and those who highlight the role of phylogenetic and developmental constraints on organismal form and function. This contrast has been particularly noticeable in recent debates concerning the evolution of human language. Darwin himself acknowledged the existence and importance of both of these, and a long line of biologists have followed him in seeing, in the concept of "descent with modification", a framework naturally able to incorporate both adaptation and constraint. Today, the integrated perspective of modern evolutionary developmental biology ("evo-devo") allows a more subtle and pluralistic approach to these traditional questions, and has provided several examples where the traditional notion of "constraint" can be cashed out in specific, mechanistic terms. This integrated viewpoint is particularly relevant to the evolution of the multiple mechanisms underlying human language, because of the short time available for novel aspects of these mechanisms to evolve and be optimized. Comparative data indicate that many cognitive aspects of human language predate humans, suggesting that pre-adaptation and exaptation have played important roles in language evolution. Thus, substantial components of what many linguists call "Universal Grammar" predate language itself. However, at least some of these older mechanisms have been combined in ways that generate true novelty. I suggest that we can insightfully exploit major steps forward in our understanding of evolution and development, to gain a richer understanding of the principles that underlie human language evolution.

  20. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    Science.gov (United States)

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website.

  1. Floral thermogenesis: An adaptive strategy of pollination biology in Magnoliaceae.

    Science.gov (United States)

    Wang, Ruohan; Zhang, Zhixiang

    2015-01-01

    Floral thermogenesis plays a crucial role in pollination biology, especially in plant-pollinator interactions. We have recently explored how thermogenesis is related to pollinator activity and odour release in Magnolia sprengeri. By analyzing flower temperatures, emission of volatiles, and insect visitation, we found that floral blends released during pistillate and staminate stages were similar and coincided with sap beetle visitation. Thus, odour mimicry of staminate-stage flowers may occur during the pistillate stage and may be an adaptive strategy of Magnolia species to attract pollinators during both stages, ensuring successful pollination. In addition to the biological significance of floral thermogenesis in Magnolia species, we explored the underlying regulatory mechanisms via profiling miRNA expression in M. denudata flowers during thermogenic and non-thermogenic stages. We identified 17 miRNAs that may play regulatory roles in floral thermogenesis. Functional annotation of their target genes indicated that these miRNAs regulate floral thermogenesis by influencing cellular respiration and light reactions. These findings increase our understanding of plant-pollinator interactions and the regulatory mechanisms in thermogenic plants.

  2. Metabolic adaptation of a human pathogen during chronic infections - a systems biology approach

    DEFF Research Database (Denmark)

    Thøgersen, Juliane Charlotte

    by classical molecular biology approaches where genes and reactions typically are investigated in a one to one relationship. This thesis is an example of how mathematical approaches and modeling can facilitate new biologi-­‐ cal understanding and provide new surprising ideas to important biological processes....... modeling to uncover how human pathogens adapt to the human host. Pseudomonas aeruginosa infections in cystic fibrosis patients are used as a model system for under-­‐ standing these adaptation processes. The exploratory systems biology approach facilitates identification of important phenotypes...

  3. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired...... by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural...... learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex signal...

  4. Causes and consequences of failed adaptation to biological invasions: the role of ecological constraints.

    Science.gov (United States)

    Lau, Jennifer A; terHorst, Casey P

    2015-05-01

    Biological invasions are a major challenge to native communities and have the potential to exert strong selection on native populations. As a result, native taxa may adapt to the presence of invaders through increased competitive ability, increased antipredator defences or altered morphologies that may limit encounters with toxic prey. Yet, in some cases, species may fail to adapt to biological invasions. Many challenges to adaptation arise because biological invasions occur in complex species-rich communities in spatially and temporally variable environments. Here, we review these 'ecological' constraints on adaptation, focusing on the complications that arise from the need to simultaneously adapt to multiple biotic agents and from temporal and spatial variation in both selection and demography. Throughout, we illustrate cases where these constraints might be especially important in native populations faced with biological invasions. Our goal was to highlight additional complexities empiricists should consider when studying adaptation to biological invasions and to begin to identify conditions when adaptation may fail to be an effective response to invasion. © 2015 John Wiley & Sons Ltd.

  5. Simulation and Experiment of Extinction or Adaptation of Biological Species after Temperature Changes

    Science.gov (United States)

    Stauffer, D.; Arndt, H.

    Can unicellular organisms survive a drastic temperature change, and adapt to it after many generations? In simulations of the Penna model of biological aging, both extinction and adaptation were found for asexual and sexual reproduction as well as for parasex. These model investigations are the basis for the design of evolution experiments with heterotrophic flagellates.

  6. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    Directory of Open Access Journals (Sweden)

    Dennis eGoldschmidt

    2014-01-01

    Full Text Available Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS and a late, reflex signal (unconditioned stimulus, UCS, both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment.

  7. Teaching Mathematical Biology in High School Using Adapted Primary Literature

    Science.gov (United States)

    Norris, Stephen P.; Stelnicki, Nathan; de Vries, Gerda

    2012-08-01

    The study compared the effect of two adaptations of a scientific article on students' comprehension and use of scientific inquiry skills. One adaptation preserved as much as possible the canonical form of the original article (APL, Adapted Primary Literature) and the other was written in a more narrative mode typical of secondary literature (SL). Both adaptations contained the same content. Two hundred and eleven senior high school students in a Western Canadian school district participated. The numbers of males and females were approximately equal, and all students were registered in an introductory calculus course. All students were given a 90 min class by their teachers that introduced them to the basic mathematical concepts needed to read the articles. Students were randomly assigned to read either the APL or the SL and afterwards to complete a questionnaire, which was common to both groups. Major findings showed that the SL students better understood the article, that the APL students thought more critically about the article, that females understood the article better than males, and that students' attitudes towards reading the articles, regardless of group, were positively associated with their comprehension and use of inquiry skills. The results coincide in important ways with those of similar studies in Israel, and show that asking students to read text that resembles scientific writing increases their use of critical thinking skills when reading.

  8. Insights Into Quantitative Biology: analysis of cellular adaptation

    OpenAIRE

    Agoni, Valentina

    2013-01-01

    In the last years many powerful techniques have emerged to measure protein interactions as well as gene expression. Many progresses have been done since the introduction of these techniques but not toward quantitative analysis of data. In this paper we show how to study cellular adaptation and how to detect cellular subpopulations. Moreover we go deeper in analyzing signal transduction pathways dynamics.

  9. Adaptive neural-based fuzzy modeling for biological systems.

    Science.gov (United States)

    Wu, Shinq-Jen; Wu, Cheng-Tao; Chang, Jyh-Yeong

    2013-04-01

    The inverse problem of identifying dynamic biological networks from their time-course response data set is a cornerstone of systems biology. Hill and Michaelis-Menten model, which is a forward approach, provides local kinetic information. However, repeated modifications and a large amount of experimental data are necessary for the parameter identification. S-system model, which is composed of highly nonlinear differential equations, provides the direct identification of an interactive network. However, the identification of skeletal-network structure is challenging. Moreover, biological systems are always subject to uncertainty and noise. Are there suitable candidates with the potential to deal with noise-contaminated data sets? Fuzzy set theory is developed for handing uncertainty, imprecision and complexity in the real world; for example, we say "driving speed is high" wherein speed is a fuzzy variable and high is a fuzzy set, which uses the membership function to indicate the degree of a element belonging to the set (words in Italics to denote fuzzy variables or fuzzy sets). Neural network possesses good robustness and learning capability. In this study we hybrid these two together into a neural-fuzzy modeling technique. A biological system is formulated to a multi-input-multi-output (MIMO) Takagi-Sugeno (T-S) fuzzy system, which is composed of rule-based linear subsystems. Two kinds of smooth membership functions (MFs), Gaussian and Bell-shaped MFs, are used. The performance of the proposed method is tested with three biological systems.

  10. Programmable Adaptive Spectral Imagers for Mission-Specific Application in Chemical/Biological Sensing

    Science.gov (United States)

    2006-01-01

    detection of chemical/biological agents. Extensive research into both passive remote chemical/biological sensors and active laser- based ( LIDAR ... photodetector (Fig. 1). Fig. 1. Adaptive spectrograph concept: light from a standoff spectral scene is dispersed, dynamically encoded with...the purpose. Data acquisition and processing software was developed for the control of the DMA, capturing data from the photodetectors , and for

  11. Adaptive leg coordination with a biologically inspired neurocontroller

    Science.gov (United States)

    Braught, Grant; Thomopoulos, Stelios C.

    1996-10-01

    Natural selection is responsible for the creation of robust and adaptive control systems. Nature's control systems are created only from primitive building blocks. Using insect neurophysiology as a guide, a neural architecture for leg coordination in a hexapod robot has been developed. Reflex chains and sensory feedback mechanisms from various insects and crustacea form the basis of a pattern generator for intra-leg coordination. The pattern generator contains neural oscillators which learn from sensory feedback to produce stepping patterns. Using sensory feedback as the source of learning information allows the pattern generator to adapt to changes in the leg dynamics due to internal or external causes. A coupling between six of the single leg pattern generators is used to produce the inter-leg coordination necessary to establish stable gaits.

  12. Toluene: biological waste-gas treatment, toxicity and microbial adaptation.

    NARCIS (Netherlands)

    Weber, F.J.

    1995-01-01

    Due to the increasing stringent legislation concerning the emission of volatile organic compounds, there is nowadays a growing interest to apply biological waste-gas treatment techniques for the removal of higher concentrations of specific contaminants from waste gases. Fluctuations in the contamina

  13. Toluene : biological waste-gas treatment, toxicity and microbial adaptation

    NARCIS (Netherlands)

    Weber, F.J.

    1995-01-01

    Due to the increasing stringent legislation concerning the emission of volatile organic compounds, there is nowadays a growing interest to apply biological waste-gas treatment techniques for the removal of higher concentrations of specific contaminants from waste gases. Fluctuations in the

  14. Evolutionary biology in silico: explorations of adaptation in artificial populations

    OpenAIRE

    Woodberry, Owen Grant

    2017-01-01

    The complexity, detail and diversity of life has intrigued and excited both scientist and layperson alike. How such intricate design, as that commonly found in biological life, could have come about is the subject of millennia of thought. Charles Darwin’s (1859) theory of evolution (co-discovered by Alfred Wallace) proposes a simple mechanism of change across generations, and provides a testable explanation of such design. Although united on the validity of evolution, scientists remain divide...

  15. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by th...... transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment....

  16. Biological and Theoretical Studies of Adaptive Networks: The Conditioned Response.

    Science.gov (United States)

    1992-06-30

    Eichenbaum , H. and Butter, C.M., The role of frontalcortex-reticular interactions in performance and extinction of Recordings of multiple-unit activity in...such a way that they are appropriate to the ’task demands’ imposed by training parameters (Levey and Martin , 1968). The main evidence for this adaptive...8217 Science 237, 1445-1452. 12. Levey, A. B. and Martin , I. (1968) ’Shape of the conditioned eyelid response,’ Psychological Review 75, 398-408. 13. Millenson

  17. 75 FR 8968 - Draft Guidance for Industry on Adaptive Design Clinical Trials for Drugs and Biologics; Availability

    Science.gov (United States)

    2010-02-26

    ... current thinking on adaptive design clinical trials for drugs and biologics. It does not create or confer... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Adaptive Design Clinical... entitled ``Adaptive Design Clinical Trials for Drugs and Biologics.'' The draft guidance provides...

  18. Synthetic Biology of Phenotypic Adaptation in Vertebrates: The Next Frontier

    Science.gov (United States)

    Yokoyama, Shozo

    2013-01-01

    For over the last 2 decades, positively selected amino acid sites have been inferred almost exclusively by showing that the number of nonsynonymous substitutions per nonsynonymous site (dn) is greater than that of synonymous substitutions per synonymous site (ds). However, virtually none of these statistical results have been experimentally tested and remain as hypotheses. To perform such experimental tests, we must connect genotype and phenotype and relate the phenotypic changes to the environmental and behavioral changes of the organism. The genotype–phenotype relationship can be established only by synthesizing and manipulating “proper” ancestral phenotypes, whereas the actual functions of adaptive mutations can be learned by studying their chemical roles in phenotypic changes. PMID:23603936

  19. Adapting to Biology: Maintaining Container-Closure System Compatibility with the Therapeutic Biologic Revolution.

    Science.gov (United States)

    Degrazio, Dominick

    Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to the dimension of evolving therapeutic biologics. Important concerns associated with this changeover are becoming forefront, as challenges develop of varying complexity uncommon with the synthesis and production of traditional drugs. Therefore, alternative measures must be established that aim to preserve the efficacy and functionality of a biologic that might not be implemented for small molecules. Conserving protein stability is relative to perpetuating a net equilibrium of both intrinsic and extrinsic factors. Key to sustaining this balance is the ability of container-closure systems to maintain their compatibility with the ever-changing dynamics of therapeutic biologics. Failure to recognize and adjust the material properties of packaging components to support compatibility with therapeutic biologics can compromise patient safety, drug productivity, and biological stability. This review will examine the differences between small-molecule drugs and therapeutic biologics, lay a basic foundation for understanding the stability of therapeutic biologics, and demonstrate potential sources of container-closure systems' incompatibilities with therapeutic biologics at a mechanistic level.

  20. Principles of biological adaptation of microorganisms to the change of environmental factors in artificial ecosystems

    Science.gov (United States)

    Somova, L. A.; Pisman, T. I.

    Studying the matter transformations and biotic cycling in artificial ecosystems (AES), we need to know the principles of biological adaptation of active organisms to the change of environment. Microorganisms in AES of water purification are the most active transform and consumers of organic substances of wastes. Utilization of organic substances is directly connected with the energy fluxes used by AES. According to energy criteria, the energy fluxes used by biological system have trends to maximum values under stable conditions. Nonutilized substrate concentration decreases in result of biological adaptations. After sharp change of environmental factors, for example, after sharp increase of flow rate of organic substances, the biological system is not able to react quickly. The concentration of nonutilized substrate increases and the energy flux used by biological system decreases. The structure of microbial community also changes, having the decrease of biological diversity. Later, as a result of biological adaptation, the ecological and evolution processes bring to decreasing the concentration of nonutilized substrate and to energy fluxes increasing. To compare with natural ecosystems, AES allow to follow and to study these processes quickly and quantitatively.

  1. Marriage patterns in a Mesoamerican peasant community are biologically adaptive.

    Science.gov (United States)

    Little, Bertis B; Malina, Robert M

    2010-12-01

    Differential investment in offspring by parental and progeny gender has been discussed and periodically analyzed for the past 80 years as an evolutionary adaptive strategy. Parental investment theory suggests that parents in poor condition have offspring in poor condition. Conversely, parents in good condition give rise to offspring in good condition. As formalized in the Trivers-Willard hypothesis (TWH), investment in daughters will be greater under poor conditions while sons receive greater parental investment under good conditions. Condition is ultimately equated to offspring reproductive fitness, with parents apparently using a strategy to maximize their genetic contribution to future generations. Analyses of sex ratio have been used to support parental investment theory and in many instances, though not all, results provide support for TWH. In the present investigation, economic strategies were analyzed in the context of offspring sex ratio and survival to reproductive age in a Zapotec-speaking community in the Valley of Oaxaca, southern Mexico. Growth status of children, adult stature, and agricultural resources were analyzed as proxies for parental and progeny condition in present and prior generations. Traditional marriage practice in Mesoamerican peasant communities is patrilocal postnuptial residence with investments largely favoring sons. The alternative, practiced by ∼25% of parents, is matrilocal postnuptial residence which is an investment favoring daughters. Results indicated that sex ratio of offspring survival to reproductive age was related to economic strategy and differed significantly between the patrilocal and matrilocal strategies. Variance in sex ratio was affected by condition of parents and significant differences in survival to reproductive age were strongly associated with economic strategy. While the results strongly support TWH, further studies in traditional anthropological populations are needed.

  2. How do precision medicine and system biology response to human body's complex adaptability?

    Science.gov (United States)

    Yuan, Bing

    2016-12-01

    In the field of life sciences, although system biology and "precision medicine" introduce some complex scientifific methods and techniques, it is still based on the "analysis-reconstruction" of reductionist theory as a whole. Adaptability of complex system increase system behaviour uncertainty as well as the difficulties of precise identifification and control. It also put systems biology research into trouble. To grasp the behaviour and characteristics of organism fundamentally, systems biology has to abandon the "analysis-reconstruction" concept. In accordance with the guidelines of complexity science, systems biology should build organism model from holistic level, just like the Chinese medicine did in dealing with human body and disease. When we study the living body from the holistic level, we will fifind the adaptability of complex system is not the obstacle that increases the diffificulty of problem solving. It is the "exceptional", "right-hand man" that helping us to deal with the complexity of life more effectively.

  3. Highly Adaptable but Not Invulnerable: Necessary and Facilitating Conditions for Research in Evolutionary Developmental Biology

    NARCIS (Netherlands)

    Laudel, Grit; Benninghoff, Martin; Lettkemann, Eric; Håkansson, Elias; Whitley, Richard; Gläser, Jochen

    2014-01-01

    Evolutionary developmental biology is a highly variable scientific innovation because researchers can adapt their involvement in the innovation to the opportunities provided by their environment. On the basis of comparative case studies in four countries, we link epistemic properties of research tas

  4. Biological versus electronic adaptive coloration: how can one inform the other?

    Science.gov (United States)

    Kreit, Eric; Mäthger, Lydia M; Hanlon, Roger T; Dennis, Patrick B; Naik, Rajesh R; Forsythe, Eric; Heikenfeld, Jason

    2013-01-06

    Adaptive reflective surfaces have been a challenge for both electronic paper (e-paper) and biological organisms. Multiple colours, contrast, polarization, reflectance, diffusivity and texture must all be controlled simultaneously without optical losses in order to fully replicate the appearance of natural surfaces and vividly communicate information. This review merges the frontiers of knowledge for both biological adaptive coloration, with a focus on cephalopods, and synthetic reflective e-paper within a consistent framework of scientific metrics. Currently, the highest performance approach for both nature and technology uses colourant transposition. Three outcomes are envisioned from this review: reflective display engineers may gain new insights from millions of years of natural selection and evolution; biologists will benefit from understanding the types of mechanisms, characterization and metrics used in synthetic reflective e-paper; all scientists will gain a clearer picture of the long-term prospects for capabilities such as adaptive concealment and signaling.

  5. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  6. Principles of biological adaptation of organisms in artificial ecosystems to changes of environmental factors

    Science.gov (United States)

    Somova, L. A.; Pechurkin, N. S.; Pisman, T. I.

    Studying material transformations and biotic cycling in artificial ecosystems (AES), we need to know the principles of biological adaptation of active organisms to change in the environment. Microorganisms in AES for water purification are the most active transforming organisms and consumers of the organic substances contained in wastes. Utilization of organic substances is directly connected with the energy fluxes used by AES. According to energy criteria, the energy fluxes used by a biological system tend to reach maximum values under stable conditions. Unutilized substrate concentration decreases as a result of biological adaptations. After a dramatic change in environmental factors, for example, after a sharp increase in the flow rate of organic substances, the biological system is not able to react quickly. The concentration of unutilized substrate increases and the energy flux used by the biological system decreases. The structure of the microbial community also changes, with a decrease in biological diversity. The efficiency of energy use by simple terrestrial ecosystems depends on the energetic intensity and interactions between plants and rhizospheric microorganisms.

  7. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues.

    Science.gov (United States)

    Ji, Na; Milkie, Daniel E; Betzig, Eric

    2010-02-01

    Biological specimens are rife with optical inhomogeneities that seriously degrade imaging performance under all but the most ideal conditions. Measuring and then correcting for these inhomogeneities is the province of adaptive optics. Here we introduce an approach to adaptive optics in microscopy wherein the rear pupil of an objective lens is segmented into subregions, and light is directed individually to each subregion to measure, by image shift, the deflection faced by each group of rays as they emerge from the objective and travel through the specimen toward the focus. Applying our method to two-photon microscopy, we could recover near-diffraction-limited performance from a variety of biological and nonbiological samples exhibiting aberrations large or small and smoothly varying or abruptly changing. In particular, results from fixed mouse cortical slices illustrate our ability to improve signal and resolution to depths of 400 microm.

  8. Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective.

    Science.gov (United States)

    Iida, Fumiya; Nurzaman, Surya G

    2016-08-01

    Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception.

  9. Thematic review series: Adipocyte Biology. Adipose tissue function and plasticity orchestrate nutritional adaptation

    OpenAIRE

    Sethi, Jaswinder K.; Vidal-Puig, Antonio J

    2007-01-01

    This review focuses on adipose tissue biology and introduces the concept of adipose tissue plasticity and expandability as key determinants of obesity-associated metabolic dysregulation. This concept is fundamental to our understanding of adipose tissue as a dynamic organ at the center of nutritional adaptation. Here, we summarize the current knowledge of the mechanisms by which adipose tissue can affect peripheral energy homeostasis, particularly in the context of overnutrition. Two mechanis...

  10. Nonlinear Effects of Nanoparticles: Biological Variability From Hormetic Doses, Small Particle Sizes, and Dynamic Adaptive Interactions

    OpenAIRE

    Bell, Iris R.; Ives, John A.; Wayne B. Jonas

    2013-01-01

    Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1–100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the “same” material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). B...

  11. Salinity fluctuation influencing biological adaptation: growth dynamics and Na(+) /K(+) -ATPase activity in a euryhaline bacterium.

    Science.gov (United States)

    Yang, Hao; Meng, Yang; Song, Youxin; Tan, Yalin; Warren, Alan; Li, Jiqiu; Lin, Xiaofeng

    2017-07-01

    Although salinity fluctuation is a prominent characteristic of many coastal ecosystems, its effects on biological adaptation have not yet been fully recognized. To test the salinity fluctuations on biological adaptation, population growth dynamics and Na(+) /K(+) -ATPase activity were investigated in the euryhaline bacterium Idiomarina sp. DYB, which was acclimated at different salinity exposure levels, exposure times, and shifts in direction of salinity. Results showed: (1) bacterial population growth dynamics and Na(+) /K(+) -ATPase activity changed significantly in response to salinity fluctuation; (2) patterns of variation in bacterial growth dynamics were related to exposure times, levels of salinity, and shifts in direction of salinity change; (3) significant tradeoffs were detected between growth rate (r) and carrying capacity (K) on the one hand, and Na(+) /K(+) -ATPase activity on the other; and (4) beneficial acclimation was confirmed in Idiomarina sp. DYB. In brief, this study demonstrated that salinity fluctuation can change the population growth dynamics, Na(+) /K(+) -ATPase activity, and tradeoffs between r, K, and Na(+) /K(+) -ATPase activity, thus facilitating bacterial adaption in a changing environment. These findings provide constructive information for determining biological response patterns to environmental change. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An adapted F-test for homogeneity of variability in follow-on biological products.

    Science.gov (United States)

    Yang, Jun; Zhang, Nan; Chow, Shein-Chung; Chi, Eric

    2013-02-10

    In recent years, follow-on biological products (biosimilars) have received much attention from both the biotechnology industry and the regulatory agencies, especially after the passage of the 2010 healthcare reform bill. Unlike the traditional small-molecule drug products, the development of biological products is not only more complicated but also sensitive to small changes (both mean and variation) in procedure/environment during the manufacturing process because of some fundamental differences between drug products and biological products. A small change will have an impact on the quality of the product and consequently the treatment effect. Thus, in addition to the assessment of biosimilarity in average, it was suggested that biosimilarity in variability between biological products should be assessed. In this article, we propose an adapted F-test for homogeneity of variances to assess biosimilarity in variability. We study the performance and concordance of the proposed adapted F-test and compare it with probability-based method by extensive Monte Carlo simulations.

  13. Physical constraints on biological integral control design for homeostasis and sensory adaptation.

    Science.gov (United States)

    Ang, Jordan; McMillen, David R

    2013-01-22

    Synthetic biology includes an effort to use design-based approaches to create novel controllers, biological systems aimed at regulating the output of other biological processes. The design of such controllers can be guided by results from control theory, including the strategy of integral feedback control, which is central to regulation, sensory adaptation, and long-term robustness. Realization of integral control in a synthetic network is an attractive prospect, but the nature of biochemical networks can make the implementation of even basic control structures challenging. Here we present a study of the general challenges and important constraints that will arise in efforts to engineer biological integral feedback controllers or to analyze existing natural systems. Constraints arise from the need to identify target output values that the combined process-plus-controller system can reach, and to ensure that the controller implements a good approximation of integral feedback control. These constraints depend on mild assumptions about the shape of input-output relationships in the biological components, and thus will apply to a variety of biochemical systems. We summarize our results as a set of variable constraints intended to provide guidance for the design or analysis of a working biological integral feedback controller.

  14. Physical Constraints on Biological Integral Control Design for Homeostasis and Sensory Adaptation

    Science.gov (United States)

    Ang, Jordan; McMillen, David R.

    2013-01-01

    Synthetic biology includes an effort to use design-based approaches to create novel controllers, biological systems aimed at regulating the output of other biological processes. The design of such controllers can be guided by results from control theory, including the strategy of integral feedback control, which is central to regulation, sensory adaptation, and long-term robustness. Realization of integral control in a synthetic network is an attractive prospect, but the nature of biochemical networks can make the implementation of even basic control structures challenging. Here we present a study of the general challenges and important constraints that will arise in efforts to engineer biological integral feedback controllers or to analyze existing natural systems. Constraints arise from the need to identify target output values that the combined process-plus-controller system can reach, and to ensure that the controller implements a good approximation of integral feedback control. These constraints depend on mild assumptions about the shape of input-output relationships in the biological components, and thus will apply to a variety of biochemical systems. We summarize our results as a set of variable constraints intended to provide guidance for the design or analysis of a working biological integral feedback controller. PMID:23442873

  15. The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Grainne Holleran

    2017-09-01

    Full Text Available Inflammatory bowel disease (IBD is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date.

  16. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  17. Biological control of crystal texture: A widespread strategy for adapting crystal properties to function

    Energy Technology Data Exchange (ETDEWEB)

    Berman, A.; Leiserowitz, L.; Weiner, S.; Addadi, L. (Weizmann Inst. of Science, Rehovot (Israel)); Hanson, J.; Koetzle, T.F. (Brookhaven National Lab., Upton, NY (United States))

    1993-02-05

    Textures of calcite crystals from a variety of mineralized tissues belong to organisms from four phyla were examined with high-resolution synchrotron x-ray radiation. Significant differences in coherence length and angular spread were observed between taxonomic groups. Crystals from polycrystalline skeletal ensembles were more perfect than those that function as single-crystal elements. Different anistropic effects on crystal texture were observed for sea urchin and mollusk calcite crystals, whereas none was found for the foraminifer, Patellina, and the control calcite crystals. These results show that the manipulation of crystal texture in different organisms is under biological control and that crystal textures in some tissues are adapted to function. A better understanding of this apparently widespread biological phenomenon may provide new insights for improving synthetic crystal-containing materials. 18 refs., 3 figs., 1 tab.

  18. Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hoeben, Bianca A. W.; Bussink, Johan; Kaanders, Johannes H. A. M. [Dept. of Radiation Oncology, Radboud Univ. Nijmegen Medical Centre, Nijmegen (Netherlands)], e-mail: b.hoeben@rther.umcn.nl; Oyen, Wim J. G. [Dept. of Nuclear Medicine, Radboud Univ. Nijmegen Medical Centre, Nijmegen (Netherlands); Troost, Esther G. C. [Maastro Clinic, GROW School for Oncology and Developmental Biology, Maastricht Univ. Medical Centre, Maastricht (Netherlands)

    2013-10-15

    Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer 18F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms.

  19. Biological adaptations for functional features of language in the face of cultural evolution.

    Science.gov (United States)

    Christiansen, Morten H; Reali, Florencia; Chater, Nick

    2011-04-01

    Although there may be no true language universals, it is nonetheless possible to discern several family resemblance patterns across the languages of the world. Recent work on the cultural evolution of language indicates the source of these patterns is unlikely to be an innate universal grammar evolved through biological adaptations for arbitrary linguistic features. Instead, it has been suggested that the patterns of resemblance emerge because language has been shaped by the brain, with individual languages representing different but partially overlapping solutions to the same set of nonlinguistic constraints. Here, we use computational simulations to investigate whether biological adaptation for functional features of language, deriving from cognitive and communicative constraints, may nonetheless be possible alongside rapid cultural evolution. Specifically, we focus on the Baldwin effect as an evolutionary mechanism by which previously learned linguistic features might become innate through natural selection across many generations of language users. The results indicate that cultural evolution of language does not necessarily prevent functional features of language from becoming genetically fixed, thus potentially providing a particularly informative source of constraints on cross-linguistic resemblance patterns.

  20. Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer.

    Science.gov (United States)

    Hoeben, Bianca A W; Bussink, Johan; Troost, Esther G C; Oyen, Wim J G; Kaanders, Johannes H A M

    2013-10-01

    Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer (18)F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms.

  1. ADAPT: building conceptual models of the physical and biological processes across permafrost landscapes

    Science.gov (United States)

    Allard, M.; Vincent, W. F.; Lemay, M.

    2012-12-01

    Fundamental and applied permafrost research is called upon in Canada in support of environmental protection, economic development and for contributing to the international efforts in understanding climatic and ecological feedbacks of permafrost thawing under a warming climate. The five year "Arctic Development and Adaptation to Permafrost in Transition" program (ADAPT) funded by NSERC brings together 14 scientists from 10 Canadian universities and involves numerous collaborators from academia, territorial and provincial governments, Inuit communities and industry. The geographical coverage of the program encompasses all of the permafrost regions of Canada. Field research at a series of sites across the country is being coordinated. A common protocol for measuring ground thermal and moisture regime, characterizing terrain conditions (vegetation, topography, surface water regime and soil organic matter contents) is being applied in order to provide inputs for designing a general model to provide an understanding of transfers of energy and matter in permafrost terrain, and the implications for biological and human systems. The ADAPT mission is to produce an 'Integrated Permafrost Systems Science' framework that will be used to help generate sustainable development and adaptation strategies for the North in the context of rapid socio-economic and climate change. ADAPT has three major objectives: to examine how changing precipitation and warming temperatures affect permafrost geosystems and ecosystems, specifically by testing hypotheses concerning the influence of the snowpack, the effects of water as a conveyor of heat, sediments, and carbon in warming permafrost terrain and the processes of permafrost decay; to interact directly with Inuit communities, the public sector and the private sector for development and adaptation to changes in permafrost environments; and to train the new generation of experts and scientists in this critical domain of research in Canada

  2. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    Science.gov (United States)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  3. Neural adaptation in pSTS correlates with perceptual aftereffects to biological motion and with autistic traits.

    Science.gov (United States)

    Thurman, Steven M; van Boxtel, Jeroen J A; Monti, Martin M; Chiang, Jeffrey N; Lu, Hongjing

    2016-08-01

    The adaptive nature of biological motion perception has been documented in behavioral studies, with research showing that prolonged viewing of an action can bias judgments of subsequent actions towards the opposite of its attributes. However, the neural mechanisms underlying action adaptation aftereffects remain unknown. We examined adaptation-induced changes in brain responses to an ambiguous action after adapting to walking or running actions within two bilateral regions of interest: 1) human middle temporal area (hMT+), a lower-level motion-sensitive region of cortex, and 2) posterior superior temporal sulcus (pSTS), a higher-level action-selective area. We found a significant correlation between neural adaptation strength in right pSTS and perceptual aftereffects to biological motion measured behaviorally, but not in hMT+. The magnitude of neural adaptation in right pSTS was also strongly correlated with individual differences in the degree of autistic traits. Participants with more autistic traits exhibited less adaptation-induced modulations of brain responses in right pSTS and correspondingly weaker perceptual aftereffects. These results suggest a direct link between perceptual aftereffects and adaptation of neural populations in right pSTS after prolonged viewing of a biological motion stimulus, and highlight the potential importance of this brain region for understanding differences in social-cognitive processing along the autistic spectrum.

  4. Symmetry adapted cluster-configuration interaction calculation of the photoelectron spectra of famous biological active steroids

    Science.gov (United States)

    Abyar, Fatemeh; Farrokhpour, Hossein

    2014-11-01

    The photoelectron spectra of some famous steroids, important in biology, were calculated in the gas phase. The selected steroids were 5α-androstane-3,11,17-trione, 4-androstane-3,11,17-trione, cortisol, cortisone, corticosterone, dexamethasone, estradiol and cholesterol. The calculations were performed employing symmetry-adapted cluster/configuration interaction (SAC-CI) method using the 6-311++G(2df,pd) basis set. The population ratios of conformers of each steroid were calculated and used for simulating the photoelectron spectrum of steroid. It was found that more than one conformer contribute to the photoelectron spectra of some steroids. To confirm the calculated photoelectron spectra, they compared with their corresponding experimental spectra. There were no experimental gas phase Hesbnd I photoelectron spectra for some of the steroids of this work in the literature and their calculated spectra can show a part of intrinsic characteristics of this molecules in the gas phase. The canonical molecular orbitals involved in the ionization of each steroid were calculated at the HF/6-311++g(d,p) level of theory. The spectral bands of each steroid were assigned by natural bonding orbital (NBO) calculations. Knowing the electronic structures of steroids helps us to understand their biological activities and find which sites of steroid become active when a modification is performing under a biological pathway.

  5. Ecological-biological Aspects of Stipa krylovii Roshev Adaptation at the Initial Stages of Ontogenesis

    Directory of Open Access Journals (Sweden)

    N.S. Chistyakova

    2016-08-01

    Full Text Available Xerophytic cereal Stipa krylovii Roshev is interesting as a relic with extensive capabilities to adapt to severe climatic conditions of Eastern Zabaikal’ye, which allows it to occupy a vast areal. The species under study is characterized by distinctive ecological-biological peculiarities, which are underpinned by not only distribution, but historical establishment of the species. The primary goal of the research was to study ecological-biological peculiarities of adaptation of wild cereal Stipa krylovii to the habitat in Eastern Zabaikal’ye. According to the observations, Stipa krylovii is characterized by late development rate coinciding with the period of optimal heat and moisture availability. Seed embryos have a well-developed scutellum, distinct structures and well differentiated embryo axis. The studies identified no lateral or secondary roots in the cereal. In nature, seeds of S. krylovii are characterized by profound organic peace period, which persists in the course of sprouting under optimal conditions. Peace period of S. krylovii caryopses is likely to be due to the presence of sprouting inhibitors and is overcome in moist autumn period. Seed viability was determined under various soil moisture parameters up to its complete water capacity; the impact of moisture content on seed sprouting rate was studied. The results of the tests on caryopses sprouting with various moisture content demonstrated that at minimum moisture content (10% S. krylovii forms epidermal hairs on coleorhiza; 30% of soil water content is enough for growth activation, viability and sprouting rate of this cereal, which is due to its xerophytic nature. This morphological peculiarity is likely to ensure in nature sprouting of these species in early spring, when soil contain minimum water. Intensity of the initial growth was determined by a number of parameters: rate of change in linear growth of trunk and root parts of the embryo, growth of dry substance of

  6. Recovery Management in All Optical Networks Using Biologically-Inspired Complex Adaptive System

    Directory of Open Access Journals (Sweden)

    Inadyuti Dutt

    2013-01-01

    Full Text Available All-Optical Networks have the ability to display varied advantages like performance efficiency, throughput etc but their efficiency depends on their survivability as they are attack prone. These attacks can be categorised as active or passive because they try to access information within the network or alter the information in the network. The attack once detected has to be recovered by formulating back-up or alternative paths. The proposed heuristic uses biologically inspired Complex Adaptive System, inspired by Natural Immune System. The study shows that natural immune system exhibit unique behaviour of detecting foreign bodies in our body and removing them on their first occurrences. This phenomenon is being utilised in the proposed heuristic for recovery management in All-optical Network

  7. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation.

    Science.gov (United States)

    Sethi, Jaswinder K; Vidal-Puig, Antonio J

    2007-06-01

    This review focuses on adipose tissue biology and introduces the concept of adipose tissue plasticity and expandability as key determinants of obesity-associated metabolic dysregulation. This concept is fundamental to our understanding of adipose tissue as a dynamic organ at the center of nutritional adaptation. Here, we summarize the current knowledge of the mechanisms by which adipose tissue can affect peripheral energy homeostasis, particularly in the context of overnutrition. Two mechanisms emerge that provide a molecular understanding for obesity-associated insulin resistance. These are a) the dysregulation of adipose tissue expandability and b) the abnormal production of adipokines. This knowledge has the potential to pave the way for novel therapeutic concepts and strategies for managing and/or correcting complications associated with obesity and the metabolic syndrome.

  8. Biologically Inspired Design Principles for Scalable, Robust, Adaptive, Decentralized Search and Automated Response (RADAR)

    CERN Document Server

    Moses, Melanie

    2010-01-01

    Distributed search problems are ubiquitous in Artificial Life (ALife). Many distributed search problems require identifying a rare and previously unseen event and producing a rapid response. This challenge amounts to finding and removing an unknown needle in a very large haystack. Traditional computational search models are unlikely to find, nonetheless, appropriately respond to, novel events, particularly given data distributed across multiple platforms in a variety of formats and sources with variable and unknown reliability. Biological systems have evolved solutions to distributed search and response under uncertainty. Immune systems and ant colonies efficiently scale up massively parallel search with automated response in highly dynamic environments, and both do so using distributed coordination without centralized control. These properties are relevant to ALife, where distributed, autonomous, robust and adaptive control is needed to design robot swarms, mobile computing networks, computer security system...

  9. Floral biology of two Vanilloideae (Orchidaceae) primarily adapted to pollination by euglossine bees.

    Science.gov (United States)

    Pansarin, E R; Pansarin, L M

    2014-11-01

    Vanilloideae comprises 15 genera distributed worldwide, among which are Vanilla and Epistephium (tribe Vanilleae). Based on field and laboratory investigations, the pollination biology of V. dubia and E. sclerophyllum was analysed. The former was surveyed in a semi-deciduous mesophytic forest at the biological reserve of Serra do Japi and in a marshy forest at the city of Pradópolis, southeastern Brazil. The latter was examined in rocky outcrop vegetation in the Chapada Diamantina, northeastern Brazil. In the studied populations, the tubular flowers of V. dubia and E. sclerophyllum were pollinated by bees. Pollen was deposited on either their scutellum (V. dubia) or scutum (E. sclerophyllum). The mentum region of V. dubia is dry, whereas that of E. sclerophyllum presents a small quantity of dilute nectar. Flowers of E. sclerophyllum are scentless, while those of V. dubia are odoriferous. Although V. dubia is self-compatible, it needs a pollinator to produce fruit. In contrast, E. sclerophyllum sets fruit through spontaneous self-pollination, but biotic pollination also occurs. Both species are primarily adapted to pollination by euglossine bees. Pollination by Euglossina seems to have occurred at least twice during the evolution of Vanilleae. Furthermore, shifts between rewarding and reward-free flowers and between autogamous and allogamous species have been reported among vanillas. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    Science.gov (United States)

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  11. Non-Western Students' Causal Reasoning about Biologically Adaptive Changes in Humans, Other Animals and Plants: Instructional and Curricular Implications

    Science.gov (United States)

    Mbajiorgu, Ngozika; Anidu, Innocent

    2017-01-01

    Senior secondary school students (N = 360), 14- to 18-year-olds, from the Igbo culture of eastern Nigeria responded to a questionnaire requiring them to give causal explanations of biologically adaptive changes in humans, other animals and plants. A student subsample (n = 36) was, subsequently, selected for in-depth interviews. Significant…

  12. Explanations for adaptations, just-so stories, and limitations on evidence in evolutionary biology.

    Science.gov (United States)

    Smith, Richard J

    2016-11-01

    Explanations of the historical origin of specific individual traits are a key part of the research program in paleontology and evolutionary biology. Why did bipedalism evolve in the human lineage? Why did some dinosaurs and related species have head crests? Why did viviparity evolve in some reptiles? Why did the common ancestor of primates evolve stereoscopic vision, grasping hands and feet, nails instead of claws, and large brains? These are difficult questions. To varying degrees, an explanation must grapple with (1) judgments about changes in fitness that might follow from a change in morphology - without actually observing behavior or measuring reproductive success, (2) the relationship between genes and traits, (3) limitations on doing relevant experiments, (4) the interpretation of causes that are almost certainly contingent, multifactorial, interactive, hierarchical, nonlinear, emergent, and probabilistic rather than deterministic, (5) limited information about variation and ontogeny, (6) a dataset based on the random fortunes of the historical record, including only partial hard-tissue morphology and no soft-tissue morphology, (7) an equally partial and problematic (for example, time-averaged) record of the environment, (8) the compression of all data into a geological time scale that is likely to miss biologically important events or fluctuations, (9) dependence on a process that can only be inferred ("form and even behavior may leave fossil traces, but forces like natural selection do not", (1:130) ) and finally, (10) the assumption of the "adaptationist programme"(2) that the trait in question is in fact an adaptation rather than a consequence of genetic drift, correlated evolution, pleiotropy, exaptation, or other mechanisms.

  13. Toward systems biology in brown algae to explore acclimation and adaptation to the shore environment.

    Science.gov (United States)

    Tonon, Thierry; Eveillard, Damien; Prigent, Sylvain; Bourdon, Jérémie; Potin, Philippe; Boyen, Catherine; Siegel, Anne

    2011-12-01

    Brown algae belong to a phylogenetic lineage distantly related to land plants and animals. They are almost exclusively found in the intertidal zone, a harsh and frequently changing environment where organisms are submitted to marine and terrestrial constraints. In relation with their unique evolutionary history and their habitat, they feature several peculiarities, including at the level of their primary and secondary metabolism. The establishment of Ectocarpus siliculosus as a model organism for brown algae has represented a framework in which several omics techniques have been developed, in particular, to study the response of these organisms to abiotic stresses. With the recent publication of medium to high throughput profiling data, it is now possible to envision integrating observations at the cellular scale to apply systems biology approaches. As a first step, we propose a protocol focusing on integrating heterogeneous knowledge gained on brown algal metabolism. The resulting abstraction of the system will then help understanding how brown algae cope with changes in abiotic parameters within their unique habitat, and to decipher some of the mechanisms underlying their (1) acclimation and (2) adaptation, respectively consequences of (1) the behavior or (2) the topology of the system resulting from the integrative approach.

  14. [Formation of biological and sociopsychological adaptation in weak-eyed and weak-eared children living in boarding schools].

    Science.gov (United States)

    Kvashennikova, E A; Ivzhenko, E V

    2009-01-01

    The investigation was undertaken to study the specific features of formation of biological and sociopsychological adaptation in primary boarding school children with poor vision and poor hearing, by examining their physical development and the functioning of major organs and systems of the body, as well as the level of schooling uneasiness (anxiety) in the pupils. The studies established that the educational environmental factors of specialized boarding schools had a considerable complex influence on the pupils' body, by reducing school performance and adaptability, and lower reserve capacities, which is likely to result in worse health and progression of the existing hearing and visual disturbances.

  15. Assessment of students’ health condition by indicators of adaptation potential, biological age and bio-energetic reserves of organism

    Directory of Open Access Journals (Sweden)

    Martyniuk O.V.

    2015-06-01

    Full Text Available Purpose: to assess students’ health condition by indicators of adaptation potential, biological age and express-assessment. Material: in the research 47 first and second year girl students participated, who belonged to main health group. Results: we distributed the girl students into three groups: 14.89% of them were included in group with “safe” health condition; 34.04% - in group of “third state”; 51.06% were related to group with “ dangerous” health condition. We established that dangerous level was characterized by energy potential of below middle and low level. It is accompanied by accelerated processes of organism’s age destructions and tension of regulation mechanisms. Conclusions: the received results permit to further develop and generalize the data of students’ health’s assessment by indicators of adaptation potentials, biological age and physical health’s condition.

  16. Cell-biological mechanisms regulating antigen presentation : Signaling towards adaptive immunity

    NARCIS (Netherlands)

    Compeer, E.B.

    2015-01-01

    We, humans, are exposed daily to millions of potential pathogens, through contact, inhalation, or ingestion. Our ability to avoid infection depends on our immune system, which consists of two distinct, yet interrelated and interacting subsystems: the innate and adaptive immune system. The adaptive i

  17. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation.

    Directory of Open Access Journals (Sweden)

    John Parkinson

    Full Text Available BACKGROUND: The cestode Echinococcus granulosus--the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide--is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages. METHODOLOGY/PRINCIPAL FINDINGS: We generated ~10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces, and pepsin/H(+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep that could either be active molecular species or represent precursors of small RNAs (like piRNAs; (ii an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development. CONCLUSIONS/SIGNIFICANCE: This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the

  18. Advances in herring biology: from simple to complex, coping with plasticity and adaptability

    OpenAIRE

    Geffen, Audrey J.

    2009-01-01

    At least two centuries of investigations on herring have been absorbed by scientific journals, and applied and fundamental research has produced groundbreaking concepts in fisheries, population biology, and marine ecology. By the 1970s, a firm understanding of herring biology formed the basis for more sophisticated research. At that point, herring populations had been delineated, and their migration patterns described. The reproduction and early stage biology were characterized in ways that c...

  19. Biological versus Electronic Adaptive Coloration: How Can One Inform the Other?

    Science.gov (United States)

    2012-01-01

    squid, cuttlefish and octopus ) is the most renowned for rapid adaptive coloration used for a variety of communication and camouflage tasks, we review...of the earliestwritings regard- ing adaptive coloration were by Aristotle [1], who wrote extensively about octopus tuneable coloration. Through- out...an -m ad e octopus Amazon Kindle (E ink) Kent displays ChLC films cephalopod skin pigment granules primary infoldings and pouches radial muscle fibres

  20. [The hyperiricosuria as an indicator of derangement of biologic functions of endoecology and adaptation, biologic reactions of excretion, inflammation and arterial tension].

    Science.gov (United States)

    Titov, V N; Oshchepkova, E V; Dmitriev, V A; Gushchina, O V; Shiriaeva, Iu K; Iashin, A Ia

    2012-04-01

    --initiator of inflammation. The uric acid in the form of ion-capturers of active forms of oxygen is involved into in the formation of syndrome of compensatory anti-inflammatory defense. It may be assumed that simultaneously with post-secretory reabsorption of ions of urates in proximal tubules of nephron occurs intensification of philogenetically late post-secretory reabsorption of ions of sodium and activation of of biologic reaction of hydrodynamic and hydraulic pressure in local pool of intravascular medium i.e. arterial tension. The uric acid simultaneously participates in realization of biologic function of endoecology and adaptation, biologic reactions of excretion, inflammation and arterial tension.

  1. Adaptation of the Biolog Phenotype MicroArrayTM Technology to Profile the Obligate Anaerobe Geobacter metallireducens

    OpenAIRE

    Joyner, Dominique

    2010-01-01

    The Biolog OmniLog? Phenotype MicroArray (PM) plate technology was successfully adapted to generate a select phenotypic profile of the strict anaerobe Geobacter metallireducens (G.m.). The profile generated for G.m. provides insight into the chemical sensitivity of the organism as well as some of its metabolic capabilities when grown with a basal medium containing acetate and Fe(III). The PM technology was developed for aerobic organisms. The reduction of a tetrazolium dye by the test organis...

  2. Mechanisms of cell protection by adaptation to chronic and acute hypoxia: molecular biology and clinical practice.

    Science.gov (United States)

    Corbucci, G G; Marchi, A; Lettieri, B; Luongo, C

    2005-11-01

    Several experimental and clinical studies have shown that specific biochemical and molecular pathways are involved in the myocardial and skeletal muscle cell tolerance to acute and/or chronic hypoxic injury. A number of different factors were proposed to play a role in the preservation of tissue viability, but to a few of them a pivotal role in the adaptive mechanisms to hypoxic stimuli could be ascribed. Starting from the observation that mitochondrial electron transport chain (ETC) enzymic complexes are the targets of oxygen reduced availability, most of data are compatible with a mechanism of enzymic adaptation in which the nitric oxide (NO) generation plays the major role. If the partial and reversible NO-induced inhibition of ETC enzymic complexes represents the most rapid and prominent adaptive mechanism in counteracting the damaging effects of hypoxia, the sarcolemmal and mitochondrial K+(ATP) channels activation results to be closely involved in cytoprotection. This process is depending on protein kinase C (PKC) isoform activation triggered by reactive oxygen species (ROS) generation, adenosine triphosphate (ATP) depletion and Ca++ overload. It is well known that all these factors are present in hypoxia-induced oxidative damage and mitochondrial Ca++ altered pools represent powerful stimuli in the damaging processes. The activation of mitochondrial K+(ATP) channels leads to a significant reduction of Ca++ influx and attenuation of mitochondrial Ca++ overload. Closely linked to these adaptive changes signal transduction pathways are involved in the nuclear DNA damage and repair mechanisms. On this context, an essential role is played by the hypoxia-induced factor-1alpha (HIF-1alpha) in terms of key transcription factor involved in oxygen-dependent gene regulation. The knowledge of the biochemical and molecular sequences involved in these adaptive processes call for a re-evaluation of the therapeutic approach to hypoxia-induced pathologies. On this light

  3. Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus.

    Science.gov (United States)

    Ferguson, K A; Njap, F; Nicola, W; Skinner, F K; Campbell, S A

    2015-12-01

    Determining the biological details and mechanisms that are essential for the generation of population rhythms in the mammalian brain is a challenging problem. This problem cannot be addressed either by experimental or computational studies in isolation. Here we show that computational models that are carefully linked with experiment provide insight into this problem. Using the experimental context of a whole hippocampus preparation in vitro that spontaneously expresses theta frequency (3-12 Hz) population bursts in the CA1 region, we create excitatory network models to examine whether cellular adaptation bursting mechanisms could critically contribute to the generation of this rhythm. We use biologically-based cellular models of CA1 pyramidal cells and network sizes and connectivities that correspond to the experimental context. By expanding our mean field analyses to networks with heterogeneity and non all-to-all coupling, we allow closer correspondence with experiment, and use these analyses to greatly extend the range of parameter values that are explored. We find that our model excitatory networks can produce theta frequency population bursts in a robust fashion.Thus, even though our networks are limited by not including inhibition at present, our results indicate that cellular adaptation in pyramidal cells could be an important aspect for the occurrence of theta frequency population bursting in the hippocampus. These models serve as a starting framework for the inclusion of inhibitory cells and for the consideration of additional experimental features not captured in our present network models.

  4. Human biological research since 2006 at the Christian-Albrechts-University in Kiel--aging, chronobiology, and high altitude adaptation.

    Science.gov (United States)

    Dittmar, Manuela

    2014-01-01

    This article reviews the research at the Department of Human Biology at the Christian-Albrechts-University in Kiel since 2006. The research focuses on the investigation of recent human populations with respect to aging, chronobiology, and adaptation to high altitude. The research areas are outlined presenting findings, ongoing projects and future directions. Aging research examines biological changes in humans considering that aging is a multidimensional process. Changes in body composition, resting energy metabolism, oxidative stress, and sleep have been examined. The applicability of specific research methods to older people has been tested. Chronobiological research concentrates on investigating circadian rhythms of humans. The emphasis lies on the sleep-wake rhythm, body temperature rhythms, hormonal rhythms (cortisol and melatonin) and the circadian expression of so-called clock genes which are involved in the generation of circadian rhythms. Association studies examine the relationship between defined chronobiological phenotypes and clock gene polymorphisms. Genetic aspects are as well investigated within the third research area on the adaptation of native populations to life at high altitude in the South American Andes. Both candidate gene analysis and epigenetic parameters are investigated. Future research will concentrate on the aging of the circadian system.

  5. Biological Inspired Direct Adaptive Guidance and Control for Autonomous Flight Systems

    Science.gov (United States)

    2007-11-02

    improvements for existing algorithms. " Continue the phase I effort to develop and demonstrate an architecture for direct adaptive guidance including...e.g., 1 x I x 2 cm) autonomous, cooperative agents from the point of view of power (e.g., 1 mW for a year), bionics , and navigation/guidance. Although...guidance solution (such as PN) to correct for evasive target maneuvering. One such architecture that appears to be suitable for surmounting this difficulty

  6. [An increase in efficiency of adaptations and a weakening of organism protective reactions in the process of biological evolution].

    Science.gov (United States)

    Ivanov, K P

    2014-01-01

    The main direction of evolution of living organisms is development of the central nervous system and sense organ, an increase of energy exchange development of homoiothermia, development of the more and more complex forms of behavior, an increase in energy expenditure in connection with an increase of the organism activity, and development of adaptation to the habitat. Such fundamental processes were subjected and have been subjected to numerous studies and discussions. However, in different animals there exist different species peculiarities of evolution of physiological functions, from which finally formed are fundamental evolutionary processes. We studied some of these specific processes by dividing them into two categories. The first category is "Increase of efficiency of adaptation" in development of biological evolution. By this term we mean development of amazing by perfection specific physiological mechanisms of adaptive character. The second category is "Weakening of protective organism reactions". By this we understand disturbance of protective mechanisms of the organism immune system, discoordination of movement of leukocytes along microvessels, the absence of efficient collateral circulation in brain and in heart, etc.

  7. Biological adaptation to misfits of immediately loaded fixed prostheses following computer-guided surgery.

    Science.gov (United States)

    Puterman, Israel; Kan, Joseph Y K; Rungcharassaeng, Kitichai; Oyama, Kotaro; Morimoto, Taichiro; Lozada, Jaime

    2012-04-01

    In this clinical report, following computer-guided (3D Procera Software Planning Program, Nobel Biocare, Yorba Linda, CA) placement and immediate provisionalization of 12 dental implants (NobelSpeedy™ Replace, Nobel Biocare), misfits of the prefabricated screw-retained interim prostheses were noted at several implant-abutment junctions. Nevertheless, adaptation of the misfits was observed 10 days later, after the loosened screws were tightened. While a high mean marginal bone loss of 2.1 mm (range: 1.4 to 3.5 mm) was noted, all implants remained osseointegrated at 3-year follow-up.

  8. The biology of developmental plasticity and the Predictive Adaptive Response hypothesis.

    Science.gov (United States)

    Bateson, Patrick; Gluckman, Peter; Hanson, Mark

    2014-06-01

    Many forms of developmental plasticity have been observed and these are usually beneficial to the organism. The Predictive Adaptive Response (PAR) hypothesis refers to a form of developmental plasticity in which cues received in early life influence the development of a phenotype that is normally adapted to the environmental conditions of later life. When the predicted and actual environments differ, the mismatch between the individual's phenotype and the conditions in which it finds itself can have adverse consequences for Darwinian fitness and, later, for health. Numerous examples exist of the long-term effects of cues indicating a threatening environment affecting the subsequent phenotype of the individual organism. Other examples consist of the long-term effects of variations in environment within a normal range, particularly in the individual's nutritional environment. In mammals the cues to developing offspring are often provided by the mother's plane of nutrition, her body composition or stress levels. This hypothetical effect in humans is thought to be important by some scientists and controversial by others. In resolving the conflict, distinctions should be drawn between PARs induced by normative variations in the developmental environment and the ill effects on development of extremes in environment such as a very poor or very rich nutritional environment. Tests to distinguish between different developmental processes impacting on adult characteristics are proposed. Many of the mechanisms underlying developmental plasticity involve molecular epigenetic processes, and their elucidation in the context of PARs and more widely has implications for the revision of classical evolutionary theory.

  9. Reduced Cardiorespiratory Fitness after Stroke: Biological Consequences and Exercise-Induced Adaptations

    Directory of Open Access Journals (Sweden)

    Sandra A. Billinger

    2012-01-01

    Full Text Available Evidence from several studies consistently shows decline in cardiorespiratory (CR fitness and physical function after disabling stroke. The broader implications of such a decline to general health may be partially understood through negative poststroke physiologic adaptations such as unilateral muscle fiber type shifts, impaired hemodynamic function, and decrements in systemic metabolic status. These physiologic changes also interrelate with reductions in activities of daily living (ADLs, community ambulation, and exercise tolerance, causing a perpetual cycle of worsening disability and deteriorating health. Fortunately, initial evidence suggests that stroke participants retain the capacity to adapt physiologically to an exercise training stimulus. However, despite this evidence, exercise as a therapeutic intervention continues to be clinically underutilized in the general stroke population. Far more research is needed to fully comprehend the consequences of and remedies for CR fitness impairments after stroke. The purpose of this brief review is to describe some of what is currently known about the physiological consequences of CR fitness decline after stroke. Additionally, there is an overview of the evidence supporting exercise interventions for improving CR fitness, and associated aspects of general health in this population.

  10. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption.

    Science.gov (United States)

    Hu, Quanjun; Ma, Tao; Wang, Kun; Xu, Ting; Liu, Jianquan; Qiu, Qiang

    2012-11-07

    The yak (Bos grunniens) is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. The Yak Genome Database (YGD) is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. A new yak genome database (YGD) has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  11. Adaptive imaging cytometry to estimate parameters of gene networks models in systems and synthetic biology.

    Directory of Open Access Journals (Sweden)

    David A Ball

    Full Text Available The use of microfluidics in live cell imaging allows the acquisition of dense time-series from individual cells that can be perturbed through computer-controlled changes of growth medium. Systems and synthetic biologists frequently perform gene expression studies that require changes in growth conditions to characterize the stability of switches, the transfer function of a genetic device, or the oscillations of gene networks. It is rarely possible to know a priori at what times the various changes should be made, and the success of the experiment is unknown until all of the image processing is completed well after the completion of the experiment. This results in wasted time and resources, due to the need to repeat the experiment to fine-tune the imaging parameters. To overcome this limitation, we have developed an adaptive imaging platform called GenoSIGHT that processes images as they are recorded, and uses the resulting data to make real-time adjustments to experimental conditions. We have validated this closed-loop control of the experiment using galactose-inducible expression of the yellow fluorescent protein Venus in Saccharomyces cerevisiae. We show that adaptive imaging improves the reproducibility of gene expression data resulting in more accurate estimates of gene network parameters while increasing productivity ten-fold.

  12. Adaptive imaging cytometry to estimate parameters of gene networks models in systems and synthetic biology.

    Science.gov (United States)

    Ball, David A; Lux, Matthew W; Adames, Neil R; Peccoud, Jean

    2014-01-01

    The use of microfluidics in live cell imaging allows the acquisition of dense time-series from individual cells that can be perturbed through computer-controlled changes of growth medium. Systems and synthetic biologists frequently perform gene expression studies that require changes in growth conditions to characterize the stability of switches, the transfer function of a genetic device, or the oscillations of gene networks. It is rarely possible to know a priori at what times the various changes should be made, and the success of the experiment is unknown until all of the image processing is completed well after the completion of the experiment. This results in wasted time and resources, due to the need to repeat the experiment to fine-tune the imaging parameters. To overcome this limitation, we have developed an adaptive imaging platform called GenoSIGHT that processes images as they are recorded, and uses the resulting data to make real-time adjustments to experimental conditions. We have validated this closed-loop control of the experiment using galactose-inducible expression of the yellow fluorescent protein Venus in Saccharomyces cerevisiae. We show that adaptive imaging improves the reproducibility of gene expression data resulting in more accurate estimates of gene network parameters while increasing productivity ten-fold.

  13. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption

    Directory of Open Access Journals (Sweden)

    Hu Quanjun

    2012-11-01

    Full Text Available Abstract Background The yak (Bos grunniens is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. Description The Yak Genome Database (YGD is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. Conclusions A new yak genome database (YGD has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  14. BIOLOGICAL ADHESIVES. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement.

    Science.gov (United States)

    Maier, Greg P; Rapp, Michael V; Waite, J Herbert; Israelachvili, Jacob N; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (E(ad) ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a "one-two punch," whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides.

  15. Convergent evolution of the adaptive immune response in jawed vertebrates and cyclostomes: An evolutionary biology approach based study.

    Science.gov (United States)

    Morales Poole, Jose Ricardo; Paganini, Julien; Pontarotti, Pierre

    2017-10-01

    Two different adaptive immune systems (AIS) are present in the two phyla of vertebrates (jawed vertebrates and cyclostomes). The jawed vertebrate system is based on IG/TCR/RAG/MHC while the cyclostome system is based on VLRCs and AID-like enzymes both systems using homologous Cell types (B-cell and B-cell Like, T-cell and T-cell like). We will present our current view of the evolution of these two AISs and present alternative hypotheses that could explain the apparent convergent evolution of the two systems. We will also discuss why comparative immunology analyses should be based on evolutionary biology approaches and not on the scale of progress one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biologically adapted radiotherapy and evaluation of non-uniform dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soevik, Aaste

    2007-07-01

    Radiation therapy plays an integral part in cancer management. Over the last decade, the fraction of patients in the Nordic countries receiving radiation therapy at some stage in their disease has increased by around 50%, and approximately half of the treatments arc given with curative intent. While only 20% of patients with primary tumors receive radiation therapy as the only form of treatment, curative radiation therapy given in combination with other treatment modalities has been shown to be of benefit for the majority of the most common cancers. The future requirements for radiation therapy are expected to increase along with the increase in cancer incidence. The aim of curing the patient is not always achieved, due to distant metastasis and/or lack of locoregional control. Locoregional failure occurs when the delivered tumor dose fails to eradicate the cancer cells, and can result from a radioresistant subpopulation of tumor cells. As the tumor dose is limited by the probability of inducing normal tissue complications, novel treatment strategies are needed to improve locoregional tumor control. Over the recent years, there has been an increasing interest in complex treatment delivery strategies in radiation therapy. Intensity modulated radiation therapy (IMRT) can be used to provide a distribution of radiation dose that conforms closely to irregularly shaped tumors, while sparing the surrounding normal tissues. However, IMRT can also be used to deliver non-uniform dose distributions, based on patient specific biological information, i.e. biologically conformal radiation therapy (BCRT). Functional and molecular imaging can be used to demonstrate both the distribution of and the extent of heterogeneity in parameters that influence tumor radiation sensitivity. Non-invasive images of radiobiological parameters form the basis of biologically conformal radiation therapy and are needed to create individually optimized radiation therapy plans. Recent advances in the

  17. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  18. Application of Symmetry Adapted Function Method for Three-Dimensional Reconstruction of Octahedral Biological Macromolecules

    Directory of Open Access Journals (Sweden)

    Songjun Zeng

    2010-01-01

    Full Text Available A method for three-dimensional (3D reconstruction of macromolecule assembles, that is, octahedral symmetrical adapted functions (OSAFs method, was introduced in this paper and a series of formulations for reconstruction by OSAF method were derived. To verify the feasibility and advantages of the method, two octahedral symmetrical macromolecules, that is, heat shock protein Degp24 and the Red-cell L Ferritin, were utilized as examples to implement reconstruction by the OSAF method. The schedule for simulation was designed as follows: 2000 random orientated projections of single particles with predefined Euler angles and centers of origins were generated, then different levels of noises that is signal-to-noise ratio (S/N =0.1,0.5, and 0.8 were added. The structures reconstructed by the OSAF method were in good agreement with the standard models and the relative errors of the structures reconstructed by the OSAF method to standard structures were very little even for high level noise. The facts mentioned above account for that the OSAF method is feasible and efficient approach to reconstruct structures of macromolecules and have ability to suppress the influence of noise.

  19. Biological and structural characterization of a host-adapting amino acid in influenza virus.

    Directory of Open Access Journals (Sweden)

    Shinya Yamada

    2010-08-01

    Full Text Available Two amino acids (lysine at position 627 or asparagine at position 701 in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals.

  20. An adaptive multi-level simulation algorithm for stochastic biological systems.

    Science.gov (United States)

    Lester, C; Yates, C A; Giles, M B; Baker, R E

    2015-01-14

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, "Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics," SIAM Multiscale Model. Simul. 10(1), 146-179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the

  1. An adaptive multi-level simulation algorithm for stochastic biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E. [Mathematical Institute, Woodstock Road, Oxford OX2 6GG (United Kingdom); Yates, C. A. [Department of Mathematical Sciences, University of Bath, Bath BA2 7AY (United Kingdom)

    2015-01-14

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the

  2. Biologically inspired information theory: Adaptation through construction of external reality models by living systems.

    Science.gov (United States)

    Nakajima, Toshiyuki

    2015-12-01

    Higher animals act in the world using their external reality models to cope with the uncertain environment. Organisms that have not developed such information-processing organs may also have external reality models built in the form of their biochemical, physiological, and behavioral structures, acquired by natural selection through successful models constructed internally. Organisms subject to illusions would fail to survive in the material universe. How can organisms, or living systems in general, determine the external reality from within? This paper starts with a phenomenological model, in which the self constitutes a reality model developed through the mental processing of phenomena. Then, the it-from-bit concept is formalized using a simple mathematical model. For this formalization, my previous work on an algorithmic process is employed to constitute symbols referring to the external reality, called the inverse causality, with additional improvements to the previous work. Finally, as an extension of this model, the cognizers system model is employed to describe the self as one of many material entities in a world, each of which acts as a subject by responding to the surrounding entities. This model is used to propose a conceptual framework of information theory that can deal with both the qualitative (semantic) and quantitative aspects of the information involved in biological processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Engineering entrainment and adaptation in limit cycle systems : From biological inspiration to applications in robotics.

    Science.gov (United States)

    Buchli, Jonas; Righetti, Ludovic; Ijspeert, Auke Jan

    2006-12-01

    Periodic behavior is key to life and is observed in multiple instances and at multiple time scales in our metabolism, our natural environment, and our engineered environment. A natural way of modeling or generating periodic behavior is done by using oscillators, i.e., dynamical systems that exhibit limit cycle behavior. While there is extensive literature on methods to analyze such dynamical systems, much less work has been done on methods to synthesize an oscillator to exhibit some specific desired characteristics. The goal of this article is twofold: (1) to provide a framework for characterizing and designing oscillators and (2) to review how classes of well-known oscillators can be understood and related to this framework. The basis of the framework is to characterize oscillators in terms of their fundamental temporal and spatial behavior and in terms of properties that these two behaviors can be designed to exhibit. This focus on fundamental properties is important because it allows us to systematically compare a large variety of oscillators that might at first sight appear very different from each other. We identify several specifications that are useful for design, such as frequency-locking behavior, phase-locking behavior, and specific output signal shape. We also identify two classes of design methods by which these specifications can be met, namely offline methods and online methods. By relating these specifications to our framework and by presenting several examples of how oscillators have been designed in the literature, this article provides a useful methodology and toolbox for designing oscillators for a wide range of purposes. In particular, the focus on synthesis of limit cycle dynamical systems should be useful both for engineering and for computational modeling of physical or biological phenomena.

  4. Adaptation of the Biolog Phenotype MicroArrayTM Technology to Profile the Obligate Anaerobe Geobacter metallireducens

    Energy Technology Data Exchange (ETDEWEB)

    Joyner, Dominique; Fortney, Julian; Chakraborty, Romy; Hazen, Terry

    2010-05-17

    The Biolog OmniLog? Phenotype MicroArray (PM) plate technology was successfully adapted to generate a select phenotypic profile of the strict anaerobe Geobacter metallireducens (G.m.). The profile generated for G.m. provides insight into the chemical sensitivity of the organism as well as some of its metabolic capabilities when grown with a basal medium containing acetate and Fe(III). The PM technology was developed for aerobic organisms. The reduction of a tetrazolium dye by the test organism represents metabolic activity on the array which is detected and measured by the OmniLog(R) system. We have previously adapted the technology for the anaerobic sulfate reducing bacterium Desulfovibrio vulgaris. In this work, we have taken the technology a step further by adapting it for the iron reducing obligate anaerobe Geobacter metallireducens. In an osmotic stress microarray it was determined that the organism has higher sensitivity to impermeable solutes 3-6percent KCl and 2-5percent NaNO3 that result in osmotic stress by osmosis to the cell than to permeable non-ionic solutes represented by 5-20percent ethylene glycol and 2-3percent urea. The osmotic stress microarray also includes an array of osmoprotectants and precursor molecules that were screened to identify substrates that would provide osmotic protection to NaCl stress. None of the substrates tested conferred resistance to elevated concentrations of salt. Verification studies in which G.m. was grown in defined medium amended with 100mM NaCl (MIC) and the common osmoprotectants betaine, glycine and proline supported the PM findings. Further verification was done by analysis of transcriptomic profiles of G.m. grown under 100mM NaCl stress that revealed up-regulation of genes related to degradation rather than accumulation of the above-mentioned osmoprotectants. The phenotypic profile, supported by additional analysis indicates that the accumulation of these osmoprotectants as a response to salt stress does not

  5. NURSING CARE APPROCH MODEL (NCAM–PAKAR ON THE INCREASING OF COGNITIF AND BIOLOGICAL ADAPTATION RESPONSES PATIENT WITH HIV INFECTION

    Directory of Open Access Journals (Sweden)

    Nursalam Nursalam

    2017-04-01

    Full Text Available Introduction: PAKAR model that focused on coping strategy and social support (nurse, family and patients lead to positive coping mechanism through the learning process. The purpose of the study was to examine the effect of PAKAR toward adaptive response on PWH infection. PNI and nursing sciences from Roy paradigm were used in this study. Method: Quasy-experimental pre-post-test non randomized control group design is used in this study. Forty (40 PWH infections in Intermediate Department Care for Infection Disease (UPIPI Dr. Soetomo hospital in Surabaya were selected and non-randomized assignment divided into 2 groups of 20, experiment and control group. In vitro- test were used to measure biological response change: cortical, CD4, IFNγ, and Anti-HIV. Psychological, social, and spiritual response were measured and observed by using questionnaires, in depth interview and Focus Group Discussion. A Multivariate analysis was used to evaluate the data of biological response and non-parametric test: Wilcoxon and Mann Whitney were used to measure cognitive response. Result: Result showed that there were significantly differences on cognitive response between PAKAR and Standard, namely; spiritual response on be patient, social response on emotional stable, and acceptance response on anger and bargaining. In addition, biological response were significantly differences between the groups with F = 0.497 and p = 0.000. The cortical and Anti-HIV variables were the pattern contribution between the groups, with 77.5%. The increase the number of CD4 was found to be the dominance factor that was correlated toward the positive of cognitive response caused by PAKAR. Discussion: PAKAR model that focused on coping strategy and utilizing social support lead to treat cognitive response PWH infection. The model is based on nursing science theory (Roy and Hall combined with psychoneuroimmunology paradigm that is able to induce immune response modulation, especially the

  6. West Nile Virus: Using Adapted Primary Literature in Mathematical Biology to Teach Scientific and Mathematical Reasoning in High School

    Science.gov (United States)

    Norris, Stephen P.; Macnab, John S.; Wonham, Marjorie; de Vries, Gerda

    2009-01-01

    This paper promotes the use of adapted primary literature as a curriculum and instruction innovation for use in high school. Adapted primary literature is useful for promoting an understanding of scientific and mathematical reasoning and argument and for introducing modern science into the schools. We describe a prototype adapted from a published…

  7. West Nile Virus: Using Adapted Primary Literature in Mathematical Biology to Teach Scientific and Mathematical Reasoning in High School

    Science.gov (United States)

    Norris, Stephen P.; Macnab, John S.; Wonham, Marjorie; de Vries, Gerda

    2009-01-01

    This paper promotes the use of adapted primary literature as a curriculum and instruction innovation for use in high school. Adapted primary literature is useful for promoting an understanding of scientific and mathematical reasoning and argument and for introducing modern science into the schools. We describe a prototype adapted from a published…

  8. [Biological adaptation and immune status of preschool children with visual function disorders in conditions of preschool educational institutions of compensating type].

    Science.gov (United States)

    Bannikova, L P; Koksharov, A V

    2013-01-01

    For implementation of a comprehensive approach in the elaboration of preventive and corrective measures in children with impaired visual function in conditions of preschool educational institutions of compensating type there were studied adaptation reserves of their organism, as well as indices of immune status. Biological adaptation was studied with the help ofcardiointervalography in 111 children aged 6-7years. With the use of ELISA 88 children were examined in terms of IgA, IgM, IgG, slgA in saliva.

  9. Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy.

    Science.gov (United States)

    Penas, David R; González, Patricia; Egea, Jose A; Doallo, Ramón; Banga, Julio R

    2017-01-21

    The development of large-scale kinetic models is one of the current key issues in computational systems biology and bioinformatics. Here we consider the problem of parameter estimation in nonlinear dynamic models. Global optimization methods can be used to solve this type of problems but the associated computational cost is very large. Moreover, many of these methods need the tuning of a number of adjustable search parameters, requiring a number of initial exploratory runs and therefore further increasing the computation times. Here we present a novel parallel method, self-adaptive cooperative enhanced scatter search (saCeSS), to accelerate the solution of this class of problems. The method is based on the scatter search optimization metaheuristic and incorporates several key new mechanisms: (i) asynchronous cooperation between parallel processes, (ii) coarse and fine-grained parallelism, and (iii) self-tuning strategies. The performance and robustness of saCeSS is illustrated by solving a set of challenging parameter estimation problems, including medium and large-scale kinetic models of the bacterium E. coli, bakerés yeast S. cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells, and a generic signal transduction network. The results consistently show that saCeSS is a robust and efficient method, allowing very significant reduction of computation times with respect to several previous state of the art methods (from days to minutes, in several cases) even when only a small number of processors is used. The new parallel cooperative method presented here allows the solution of medium and large scale parameter estimation problems in reasonable computation times and with small hardware requirements. Further, the method includes self-tuning mechanisms which facilitate its use by non-experts. We believe that this new method can play a key role in the development of large-scale and even whole-cell dynamic models.

  10. Adaption of Ulva pertusa to multiple-contamination of heavy metals and nutrients: Biological mechanism of outbreak of Ulva sp. green tide.

    Science.gov (United States)

    Ge, Changzi; Yu, Xiru; Kan, Manman; Qu, Chunfeng

    2017-08-18

    The multiple-contamination of heavy metals and nutrients worsens increasingly and Ulva sp. green tide occurs almost simultaneously. To reveal the biological mechanism for outbreak of the green tide, Ulva pertusa was exposed to seven-day-multiple-contamination. The relation between pH variation (VpH), Chl a content, ratio of (Chl a content)/(Chl b content) (Rchla/chlb), SOD activity of U. pertusa (ASOD) and contamination concentration is [Formula: see text] (pcontamination concentrations of seawaters where Ulva sp. green tide occurred and the contamination concentrations set in the present work, U. pertusa can adapt to multiple-contaminations in these waters. Thus, the adaption to multiple-contamination may be one biological mechanism for the outbreak of Ulva sp. green tide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. [Biological adaptation of children of preschool age with retardation of mental development (RMD) in conditions of pre-school correctional educational institutions].

    Science.gov (United States)

    Bannikova, L P; Sebirzyanov, M D

    2013-01-01

    The present study was devoted to the investigation of biological adaptation of children aged 6-7 years with retardation of mental development (RMD) in pre-school correctional educational institutions. Under supervision there were 69 children, out of them 34 RMD cases and 35 children in whom mental development corresponds to age-control group--35 persons. The increase in sympatico-adrenergic effects and centralized heart rhythm control was revealed in children of both groups under comparison, but in RMD cases these effects were more pronounced. Adaptation reserves in RMD children appeared to be lower than in children in whom mental development corresponds to the age. Gender differences of adaptive reserves in children have been established

  12. Bergmann's Rule, Adaptation, and Thermoregulation in Arctic Animals: Conflicting Perspectives from Physiology, Evolutionary Biology, and Physical Anthropology After World War II.

    Science.gov (United States)

    Hagen, Joel B

    2017-05-01

    Bergmann's rule and Allen's rule played important roles in mid-twentieth century discussions of adaptation, variation, and geographical distribution. Although inherited from the nineteenth-century natural history tradition these rules gained significance during the consolidation of the modern synthesis as evolutionary theorists focused attention on populations as units of evolution. For systematists, the rules provided a compelling rationale for identifying geographical races or subspecies, a function that was also picked up by some physical anthropologists. More generally, the rules provided strong evidence for adaptation by natural selection. Supporters of the rules tacitly, or often explicitly, assumed that the clines described by the rules reflected adaptations for thermoregulation. This assumption was challenged by the physiologists Laurence Irving and Per Scholander based on their arctic research conducted after World War II. Their critique spurred a controversy played out in a series of articles in Evolution, in Ernst Mayr's Animal Species and Evolution, and in the writings of other prominent evolutionary biologists and physical anthropologists. Considering this episode highlights the complexity and ambiguity of important biological concepts such as adaptation, homeostasis, and self-regulation. It also demonstrates how different disciplinary orientations and styles of scientific research influenced evolutionary explanations, and the consequent difficulties of constructing a truly synthetic evolutionary biology in the decades immediately following World War II.

  13. A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi

    Directory of Open Access Journals (Sweden)

    You Tao

    2012-05-01

    Full Text Available Abstract Background Saccharomyces cerevisiae senses hyperosmotic conditions via the HOG signaling network that activates the stress-activated protein kinase, Hog1, and modulates metabolic fluxes and gene expression to generate appropriate adaptive responses. The integral control mechanism by which Hog1 modulates glycerol production remains uncharacterized. An additional Hog1-independent mechanism retains intracellular glycerol for adaptation. Candida albicans also adapts to hyperosmolarity via a HOG signaling network. However, it remains unknown whether Hog1 exerts integral or proportional control over glycerol production in C. albicans. Results We combined modeling and experimental approaches to study osmotic stress responses in S. cerevisiae and C. albicans. We propose a simple ordinary differential equation (ODE model that highlights the integral control that Hog1 exerts over glycerol biosynthesis in these species. If integral control arises from a separation of time scales (i.e. rapid HOG activation of glycerol production capacity which decays slowly under hyperosmotic conditions, then the model predicts that glycerol production rates elevate upon adaptation to a first stress and this makes the cell adapts faster to a second hyperosmotic stress. It appears as if the cell is able to remember the stress history that is longer than the timescale of signal transduction. This is termed the long-term stress memory. Our experimental data verify this. Like S. cerevisiae, C. albicans mimimizes glycerol efflux during adaptation to hyperosmolarity. Also, transient activation of intermediate kinases in the HOG pathway results in a short-term memory in the signaling pathway. This determines the amplitude of Hog1 phosphorylation under a periodic sequence of stress and non-stressed intervals. Our model suggests that the long-term memory also affects the way a cell responds to periodic stress conditions. Hence, during osmohomeostasis, short-term memory is

  14. [Clinico-biochemical aspects of human adaptation in central Antarctica as applied to the problems of space biology and medicine].

    Science.gov (United States)

    Kurbanov, V V; Khmel'kov, V P; Krupina, T N; Kuznetscv, A G; Kuz'min, M P

    1977-01-01

    The paper presents the results of clinical, physiological and biochemical examination of 27 polar explorer--members of the 17th Soviet Antartic Expedition at the Vostok station. It gives data on the morbidity rate and describes the development of the asthenic-neurotic syndrome. On the basis of studies of catecholamines and serotonin, the role of the sympatho-adrenal system in the human adaptation to the harsh environments of the Central Antarctica has been shown.

  15. Effect of adapting cellulose degrading microorganisms to 25°C providing energy sources for biological sulphate removal

    CSIR Research Space (South Africa)

    Greben, HA

    2008-11-01

    Full Text Available the acidity of AMD is ongoing. The study presented here showed that high sulphate removal efficiencies were achieved applying the biological treatment technology, thereby using the degradation products of grass-cellulose as the carbon and energy sources...

  16. An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X.

    Science.gov (United States)

    Maffei, Giovanni; Santos-Pata, Diogo; Marcos, Encarni; Sánchez-Fibla, Marti; Verschure, Paul F M J

    2015-12-01

    Animals successfully forage within new environments by learning, simulating and adapting to their surroundings. The functions behind such goal-oriented behavior can be decomposed into 5 top-level objectives: 'how', 'why', 'what', 'where', 'when' (H4W). The paradigms of classical and operant conditioning describe some of the behavioral aspects found in foraging. However, it remains unclear how the organization of their underlying neural principles account for these complex behaviors. We address this problem from the perspective of the Distributed Adaptive Control theory of mind and brain (DAC) that interprets these two paradigms as expressing properties of core functional subsystems of a layered architecture. In particular, we propose DAC-X, a novel cognitive architecture that unifies the theoretical principles of DAC with biologically constrained computational models of several areas of the mammalian brain. DAC-X supports complex foraging strategies through the progressive acquisition, retention and expression of task-dependent information and associated shaping of action, from exploration to goal-oriented deliberation. We benchmark DAC-X using a robot-based hoarding task including the main perceptual and cognitive aspects of animal foraging. We show that efficient goal-oriented behavior results from the interaction of parallel learning mechanisms accounting for motor adaptation, spatial encoding and decision-making. Together, our results suggest that the H4W problem can be solved by DAC-X building on the insights from the study of classical and operant conditioning. Finally, we discuss the advantages and limitations of the proposed biologically constrained and embodied approach towards the study of cognition and the relation of DAC-X to other cognitive architectures.

  17. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus

    DEFF Research Database (Denmark)

    de Vries, Ronald P.; Riley, Robert; Wiebenga, Ad

    2017-01-01

    Background:  The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight...... here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi....

  18. A Feedfordward Adaptive Controller to Reduce the Imaging Time of Large-Sized Biological Samples with a SPM-Based Multiprobe Station

    Directory of Open Access Journals (Sweden)

    Manel Puig-Vidal

    2012-01-01

    Full Text Available The time required to image large samples is an important limiting factor in SPM-based systems. In multiprobe setups, especially when working with biological samples, this drawback can make impossible to conduct certain experiments. In this work, we present a feedfordward controller based on bang-bang and adaptive controls. The controls are based in the difference between the maximum speeds that can be used for imaging depending on the flatness of the sample zone. Topographic images of Escherichia coli bacteria samples were acquired using the implemented controllers. Results show that to go faster in the flat zones, rather than using a constant scanning speed for the whole image, speeds up the imaging process of large samples by up to a 4x factor.

  19. Distinct rhythmic locomotor patterns can be generated by a simple adaptive neural circuit: biology, simulation, and VLSI implementation.

    Science.gov (United States)

    Ryckebusch, S; Wehr, M; Laurent, G

    1994-12-01

    Rhythmic motor patterns can be induced in leg motor neurons of isolated locust thoracic ganglia by bath application of pilocarpine. We observed that the relative phases of levators and depressors differed in the three thoracic ganglia. Assuming that the central pattern generating circuits underlying these three segmental rhythms are probably very similar, we developed a simple model circuit that can produce any one of the three activity patterns and characteristic phase relationships by modifying a single synaptic weight. We show results of a computer simulation of this circuit using the neuronal simulator NeuraLOG/Spike. We built and tested an analog VLSI circuit implementation of this model circuit that exhibits the same range of "behaviors" as the computer simulation. This multidisciplinary strategy will be useful to explore the dynamics of central pattern generating networks coupled to physical actuators, and ultimately should allow the design of biologically realistic walking robots.

  20. On expedient properties of common biological score functions for multi-modality, adaptive and 4D dose optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sobotta, B; Alber, M [Section for Biomedical Physics, Radioonkologische Uniklinik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Soehn, M [Department of Radiation Oncology, University Hospital Grosshadern, LMU Muenchen, 81377 Muenchen (Germany); Shaw, W, E-mail: benjamin.sobotta@med.uni-tuebingen.de [Department of Medical Physics, Faculty of Health Sciences, University of the Free State, PO Box 339, Bloemfontein 9300 (South Africa)

    2011-05-21

    Frequently, radiotherapy treatments are comprised of several dose distributions computed or optimized in different patient geometries. Therefore, the need arises to compute the comprehensive biological effect or physical figure of merit of the combined dose of a number of distinct geometry instances. For that purpose the dose is typically accumulated in a reference geometry through deformation fields obtained from deformable image registration. However, it is difficult to establish precise voxel-by-voxel relationships between different anatomical images in many cases. In this work, the mathematical properties of commonly used score functions are exploited to derive an upper boundary for the maximum effect for normal tissue and a lower boundary for the minimum effect for the target of accumulated doses on multiple geometry instances. (note)

  1. On expedient properties of common biological score functions for multi-modality, adaptive and 4D dose optimization.

    Science.gov (United States)

    Sobotta, B; Söhn, M; Shaw, W; Alber, M

    2011-05-21

    Frequently, radiotherapy treatments are comprised of several dose distributions computed or optimized in different patient geometries. Therefore, the need arises to compute the comprehensive biological effect or physical figure of merit of the combined dose of a number of distinct geometry instances. For that purpose the dose is typically accumulated in a reference geometry through deformation fields obtained from deformable image registration. However, it is difficult to establish precise voxel-by-voxel relationships between different anatomical images in many cases. In this work, the mathematical properties of commonly used score functions are exploited to derive an upper boundary for the maximum effect for normal tissue and a lower boundary for the minimum effect for the target of accumulated doses on multiple geometry instances.

  2. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    Directory of Open Access Journals (Sweden)

    M. Hummel

    2014-04-01

    Full Text Available Fungal spores as a prominent type of primary biological aerosol particles (PBAP have been incorporated into the COSMO-ART regional atmospheric model, using and comparing three different emission parameterizations. Two literature-based emission rates derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization was adapted to field measurements of fluorescent biological aerosol particles (FBAP from four locations across Northern Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies have suggested the majority of FBAP in several locations are dominated by fungal spores. Thus, we suggest that simulated fungal spore concentrations obtained from the emission parameterizations can be compared to the sum of total FBAP concentrations. A comparison reveals that parameterized estimates of fungal spore concentrations based on literature numbers underestimate measured FBAP concentrations. In agreement with measurement data, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Measured FBAP and simulated fungal spore concentrations also correlate similarly with simulated temperature and humidity. These meteorological variables, together with leaf area index, were chosen to drive the new emission parameterization discussed here. Using the new emission parameterization on a model domain covering Western Europe, fungal spores in the lowest model layer comprise a fraction of 15% of the total aerosol mass over land and reach average number concentrations of 26 L−1. The results confirm that fungal spores and biological particles

  3. Testing biological hypotheses with embodied robots: adaptations, accidents, and by-products in the evolution of vertebrates

    Directory of Open Access Journals (Sweden)

    Sonia F Roberts

    2014-11-01

    Full Text Available Evolutionary robotics allows biologists to test hypotheses about extinct animals. We modeled some of the first vertebrates, jawless fishes, in order to study the evolution of the trait after which vertebrates are named: vertebrae. We tested the hypothesis that vertebrae are an adaptation for enhanced feeding and fleeing performance. We created a population of autonomous embodied robots, Preyro, in which the number of vertebrae, N, were free to evolve. In addition, two other traits, the span of the caudal fin, b, and the predator detection threshold, ζ, a proxy for the lateral line sensory system, were also allowed to evolve. These three traits were chosen because they evolved early in vertebrates, are all potentially important in feeding and fleeing, and vary in form among species. Preyro took on individual identities in a given generation as defined by the population’s six diploid genotypes, Gi. Each Gi was a 3-tuple, with each element an integer specifying N, b, and, ζ. The small size of the population allowed for genetic drift to operate in concert with random mutation and mating; the presence of these mechanisms of chance provided an opportunity for N to evolve by accident. The presence of three evolvable traits provided an opportunity for direct selection on b and/or ζ to evolve N as a by-product linked trait correlation. In selection trials, different Gi embodied in Preyro attempted to feed at a light source and then flee to avoid a predator robot in pursuit. The fitness of each Gi was calculated from five different types of performance: speed, acceleration, distance to the light, distance to the predator, and the number of predator escapes initiated. In each generation, we measured the selection differential, the selection gradient, the strength of chance, and the indirect correlation selection gradient. These metrics allowed us to understand the relative contributions of the three mechanisms: direct selection, chance, and indirect

  4. Complete genome sequence of Mycoplasma suis and insights into its biology and adaption to an erythrocyte niche.

    Directory of Open Access Journals (Sweden)

    Ana M S Guimaraes

    Full Text Available Mycoplasma suis, the causative agent of porcine infectious anemia, has never been cultured in vitro and mechanisms by which it causes disease are poorly understood. Thus, the objective herein was to use whole genome sequencing and analysis of M. suis to define pathogenicity mechanisms and biochemical pathways. M. suis was harvested from the blood of an experimentally infected pig. Following DNA extraction and construction of a paired end library, whole-genome sequencing was performed using GS-FLX (454 and Titanium chemistry. Reads on paired-end constructs were assembled using GS De Novo Assembler and gaps closed by primer walking; assembly was validated by PFGE. Glimmer and Manatee Annotation Engine were used to predict and annotate protein-coding sequences (CDS. The M. suis genome consists of a single, 742,431 bp chromosome with low G+C content of 31.1%. A total of 844 CDS, 3 single copies, unlinked rRNA genes and 32 tRNAs were identified. Gene homologies and GC skew graph show that M. suis has a typical Mollicutes oriC. The predicted metabolic pathway is concise, showing evidence of adaptation to blood environment. M. suis is a glycolytic species, obtaining energy through sugars fermentation and ATP-synthase. The pentose-phosphate pathway, metabolism of cofactors and vitamins, pyruvate dehydrogenase and NAD(+ kinase are missing. Thus, ribose, NADH, NADPH and coenzyme A are possibly essential for its growth. M. suis can generate purines from hypoxanthine, which is secreted by RBCs, and cytidine nucleotides from uracil. Toxins orthologs were not identified. We suggest that M. suis may cause disease by scavenging and competing for host' nutrients, leading to decreased life-span of RBCs. In summary, genome analysis shows that M. suis is dependent on host cell metabolism and this characteristic is likely to be linked to its pathogenicity. The prediction of essential nutrients will aid the development of in vitro cultivation systems.

  5. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species.

    Science.gov (United States)

    Papanicolaou, Alexie; Schetelig, Marc F; Arensburger, Peter; Atkinson, Peter W; Benoit, Joshua B; Bourtzis, Kostas; Castañera, Pedro; Cavanaugh, John P; Chao, Hsu; Childers, Christopher; Curril, Ingrid; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Dugan, Shannon; Friedrich, Markus; Gasperi, Giuliano; Geib, Scott; Georgakilas, Georgios; Gibbs, Richard A; Giers, Sarah D; Gomulski, Ludvik M; González-Guzmán, Miguel; Guillem-Amat, Ana; Han, Yi; Hatzigeorgiou, Artemis G; Hernández-Crespo, Pedro; Hughes, Daniel S T; Jones, Jeffery W; Karagkouni, Dimitra; Koskinioti, Panagiota; Lee, Sandra L; Malacrida, Anna R; Manni, Mosè; Mathiopoulos, Kostas; Meccariello, Angela; Murali, Shwetha C; Murphy, Terence D; Muzny, Donna M; Oberhofer, Georg; Ortego, Félix; Paraskevopoulou, Maria D; Poelchau, Monica; Qu, Jiaxin; Reczko, Martin; Robertson, Hugh M; Rosendale, Andrew J; Rosselot, Andrew E; Saccone, Giuseppe; Salvemini, Marco; Savini, Grazia; Schreiner, Patrick; Scolari, Francesca; Siciliano, Paolo; Sim, Sheina B; Tsiamis, George; Ureña, Enric; Vlachos, Ioannis S; Werren, John H; Wimmer, Ernst A; Worley, Kim C; Zacharopoulou, Antigone; Richards, Stephen; Handler, Alfred M

    2016-09-22

    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.

  6. Transcription Adaptation during In Vitro Adipogenesis and Osteogenesis of Porcine Mesenchymal Stem Cells: Dynamics of Pathways, Biological Processes, Up-Stream Regulators, and Gene Networks.

    Science.gov (United States)

    Bionaz, Massimo; Monaco, Elisa; Wheeler, Matthew B

    2015-01-01

    The importance of mesenchymal stem cells (MSC) for bone regeneration is growing. Among MSC the bone marrow-derived stem cells (BMSC) are considered the gold standard in tissue engineering and regenerative medicine; however, the adipose-derived stem cells (ASC) have very similar properties and some advantages to be considered a good alternative to BMSC. The molecular mechanisms driving adipogenesis are relatively well-known but mechanisms driving osteogenesis are poorly known, particularly in pig. In the present study we have used transcriptome analysis to unravel pathways and biological functions driving in vitro adipogenesis and osteogenesis in BMSC and ASC. The analysis was performed using the novel Dynamic Impact Approach and functional enrichment analysis. In addition, a k-mean cluster analysis in association with enrichment analysis, networks reconstruction, and transcription factors overlapping analysis were performed in order to uncover the coordination of biological functions underlining differentiations. Analysis indicated a larger and more coordinated transcriptomic adaptation during adipogenesis compared to osteogenesis, with a larger induction of metabolism, particularly lipid synthesis (mostly triglycerides), and a larger use of amino acids for synthesis of feed-forward adipogenic compounds, larger cell signaling, lower cell-to-cell interactions, particularly for the cytoskeleton organization and cell junctions, and lower cell proliferation. The coordination of adipogenesis was mostly driven by Peroxisome Proliferator-activated Receptors together with other known adipogenic transcription factors. Only a few pathways and functions were more induced during osteogenesis compared to adipogenesis and some were more inhibited during osteogenesis, such as cholesterol and protein synthesis. Up-stream transcription factor analysis indicated activation of several lipid-related transcription regulators (e.g., PPARs and CEBPα) during adipogenesis but osteogenesis

  7. Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity.

    Directory of Open Access Journals (Sweden)

    Arko Dasgupta

    2015-05-01

    Full Text Available Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD is a critical player in the process of photoadaptation, the attenuation of light-induced responses and the ability to maintain photosensitivity in response to changing light intensities. Detailed in vitro analysis of the photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed residues around the site of photo-adduct formation that influence the stability of the adduct state (light state, that is, altering the photocycle length. We have examined the biological significance of VVD photocycle length to photoadaptation and report that a double substitution mutant (vvdI74VI85V, previously shown to have a very fast light to dark state reversion in vitro, shows significantly reduced interaction with the White Collar Complex (WCC resulting in a substantial photoadaptation defect. This reduced interaction impacts photoreceptor transcription factor WHITE COLLAR-1 (WC-1 protein stability when N. crassa is exposed to light: The fast-reverting mutant VVD is unable to form a dynamic VVD-WCC pool of the size required for photoadaptation as assayed both by attenuation of gene expression and the ability to respond to increasing light intensity. Additionally, transcription of the clock gene frequency (frq is sensitive to changing light intensity in a wild-type strain but not in the fast photo-reversion mutant indicating that the establishment of this dynamic VVD-WCC pool is essential in general photobiology and circadian biology. Thus, VVD photocycle length appears sculpted to establish a VVD-WCC reservoir of sufficient size to sustain photoadaptation while maintaining sensitivity to changing light intensity. The great diversity

  8. Transcription Adaptation during In Vitro Adipogenesis and Osteogenesis of Porcine Mesenchymal Stem Cells: Dynamics of Pathways, Biological Processes, Up-Stream Regulators, and Gene Networks.

    Directory of Open Access Journals (Sweden)

    Massimo Bionaz

    Full Text Available The importance of mesenchymal stem cells (MSC for bone regeneration is growing. Among MSC the bone marrow-derived stem cells (BMSC are considered the gold standard in tissue engineering and regenerative medicine; however, the adipose-derived stem cells (ASC have very similar properties and some advantages to be considered a good alternative to BMSC. The molecular mechanisms driving adipogenesis are relatively well-known but mechanisms driving osteogenesis are poorly known, particularly in pig. In the present study we have used transcriptome analysis to unravel pathways and biological functions driving in vitro adipogenesis and osteogenesis in BMSC and ASC. The analysis was performed using the novel Dynamic Impact Approach and functional enrichment analysis. In addition, a k-mean cluster analysis in association with enrichment analysis, networks reconstruction, and transcription factors overlapping analysis were performed in order to uncover the coordination of biological functions underlining differentiations. Analysis indicated a larger and more coordinated transcriptomic adaptation during adipogenesis compared to osteogenesis, with a larger induction of metabolism, particularly lipid synthesis (mostly triglycerides, and a larger use of amino acids for synthesis of feed-forward adipogenic compounds, larger cell signaling, lower cell-to-cell interactions, particularly for the cytoskeleton organization and cell junctions, and lower cell proliferation. The coordination of adipogenesis was mostly driven by Peroxisome Proliferator-activated Receptors together with other known adipogenic transcription factors. Only a few pathways and functions were more induced during osteogenesis compared to adipogenesis and some were more inhibited during osteogenesis, such as cholesterol and protein synthesis. Up-stream transcription factor analysis indicated activation of several lipid-related transcription regulators (e.g., PPARs and CEBPα during adipogenesis

  9. THE USE OF BIOLOGICALLY ACTIVE SUBSTANCES FOR INCREASING THE ADAPTIVE CAPACITY OF THE STEVIA PLANT CULTIVATION IN CONDITIONS OF CENTRAL CISCAUCASIA

    Directory of Open Access Journals (Sweden)

    Krivenko A. A.

    2013-11-01

    Full Text Available This article considers a possibility of increasing adaptive potential of stevia - native substitute of sugar impacting with influence of processing BAS of green apical sprigs used for receiving seedlings

  10. Marine Biology: Self-Directed Study Units for Grades K-3 and 4-8, Gifted. Easily Adapted for Regular Classroom Use. Zephyr Learning Project.

    Science.gov (United States)

    Tanner, Joey

    Originally designed for the gifted student, these reproducible marine biology units emphasize the use of higher order thinking skills and are appropriate for use in any classroom. Interdisciplinary in content, the units provide a broad view of marine biology. Included are two complete units, one created for the upper elementary gifted student and…

  11. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    Science.gov (United States)

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  12. The purpose of adaptation.

    Science.gov (United States)

    Gardner, Andy

    2017-10-06

    A central feature of Darwin's theory of natural selection is that it explains the purpose of biological adaptation. Here, I: emphasize the scientific importance of understanding what adaptations are for, in terms of facilitating the derivation of empirically testable predictions; discuss the population genetical basis for Darwin's theory of the purpose of adaptation, with reference to Fisher's 'fundamental theorem of natural selection'; and show that a deeper understanding of the purpose of adaptation is achieved in the context of social evolution, with reference to inclusive fitness and superorganisms.

  13. 动物对温度适应的分子生物学研究进展%Research Progress on Molecular Biology of Animal in Adaptation to the Temperature

    Institute of Scientific and Technical Information of China (English)

    王国强

    2011-01-01

    The animal protects own one driving way to ambient temperature's adaptation, displays in the duplication and the expression pattern change of the cell and presents the new gene open and the new protein factor synthesis. The gene level, the protein level, the cell membrane level and so on three aspects has carried on the summary about the research survey of animal which adapts to the ambient temperature, and discussed the molecular biology mechanism as well as in evolution significance which animal adapts to the ambient temperature.%动物对环境温度的适应,会使自身的细胞内转录和表达模式发成变化,以适合环境的变化,此时它会出现新的基因开放和新蛋白因子的合成,这总的来说是动物对自身的一种保护方式.本文从基因水平、蛋白质水平、细胞膜水平等三个方面综述了动物对环境温度适应的研究概况,并讨论了动物对环境温度适应的分子生物学机制以及在进化中的意义.

  14. [Biological evolution and specialization].

    Science.gov (United States)

    Luo, Weizhen; Wang, Deli

    2003-12-01

    There were some disputes about the concept and mechanism of biological evolution. This paper tried to give more explanations on the key concepts. The biological adaptability was distinguished into two different concepts: biological evolution and specialization. The former was defined as the process of biologically gradual evolvement, and the latter was considered as the process of species formation at horizontal development. Moreover, a new conceptual framework was applied to the popular biological theories known by people, and the previous research results or discoveries were explained over again.

  15. Adaptation to High Altitude Hypoxia Environment in Tibetans: A Priliminary Review of the Biological Anthropology of Tibetan%藏族的高原适应——西藏藏族生物人类学研究回顾

    Institute of Scientific and Technical Information of China (English)

    席焕久

    2013-01-01

    藏族生活在具有世界屋脊之称的青藏高原,特殊的生态环境和特殊的文化背景造就了藏族特殊的适应高原缺氧机制,引起了国内外学者的广泛关注和浓厚的研究兴趣.本文根据国内外数据库的文献并结合我们的研究工作,从高原适应的角度回顾了30多年藏族人类学研究.回顾显示,藏族由于长期生活在高原缺氧的环境中,不仅形态和机能发生了适应性变化,而且体成分也表现出相应的变化,体现了形态、机能和体成分的统一.这些变化是长期进化形成的,与安第斯山人等有明显不同,就是在同一高原生活的西藏、青海、四川、甘肃和云南的藏族乃至尼泊尔和印度藏族的体质也表现出地域差异,这些差异的产生是多种因素所致,两个关键性的基因是导致两大高原人口高原适应机制不同的最主要的原因.%Tibetans live in a special ecological environment,the Tibetan Plateau,called the Roof of the World.They have a unique culture and special adaptive machanisms to high altitude hypoxia,which caused widespread global attention and scholarly interest.We reviewed 30 years of Tibetan biological anthropology studies,specifically plateau hypoxia adaptation.The review showed that Tibetans have adaptive variations in their body morphology and function,but also in their body composition.These adaptive changes in Tibetans had evolved for a long time and were significantly different from those of Andens,even living in the same of the Tibetan Plateau.Tibetans in Tibet,Qinghai,Sichuan,Gansu and Yunnan provinces of China,including Tibetans in Nepal and India also showed regional differences in the above biological aspects.Changes in Tibetan adaptations to hypoxia were caused by a number of factors,in addition to two key genes for hypoxia adaptation.

  16. Biological and molecular analysis of the pathogenic variant C3 of potato spindle tuber viroid (PSTVd) evolved during adaptation to chamomile (Matricaria chamomilla).

    Science.gov (United States)

    Matoušek, Jaroslav; Stehlík, Jan; Procházková, Jitka; Orctová, Lidmila; Wullenweber, Julia; Füssy, Zoltan; Kováčik, Josef; Duraisamy, Ganesh S; Ziegler, Angelika; Schubert, Jörg; Steger, Gerhard

    2012-07-01

    Viroid-caused pathogenesis is a specific process dependent on viroid and host genotype(s), and may involve viroid-specific small RNAs (vsRNAs). We describe a new PSTVd variant C3, evolved through sequence adaptation to the host chamomile (Matricaria chamomilla) after biolistic inoculation with PSTVd-KF440-2, which causes extraordinary strong ('lethal') symptoms. The deletion of a single adenine A in the oligoA stretch of the pathogenicity (P) domain appears characteristic of PSTVd-C3. The pathogenicity and the vsRNA pool of PSTVd-C3 were compared to those of lethal variant PSTVd-AS1, from which PSTVd-C3 differs by five mutations located in the P domain. Both lethal viroid variants showed higher stability and lower variation in analyzed vsRNA pools than the mild PSTVd-QFA. PSTVd-C3 and -AS1 caused similar symptoms on chamomile, tomato, and Nicotiana benthamiana, and exhibited similar but species-specific distributions of selected vsRNAs as quantified using TaqMan probes. Both lethal PSTVd variants block biosynthesis of lignin in roots of cultured chamomile and tomato. Four 'expression markers' (TCP3, CIPK, VSF-1, and VPE) were selected from a tomato EST library to quantify their expression upon viroid infection; these markers were strongly downregulated in tomato leaf blades infected by PSTVd-C3- and -AS1 but not by PSTVd-QFA.

  17. Biological Form is Sufficient to Create a Biological Motion Sex Aftereffect.

    Science.gov (United States)

    Hiris, Eric; Mirenzi, Aaron; Janis, Katie

    2016-10-01

    In a series of five experiments we sought to determine what causes the biological motion sex aftereffect-adaptation of a general representation of the stimulus sex, adaptation to the motion in the stimulus, or adaptation to the form in the stimulus. The experiments showed that (a) adaptation to gendered faces and gendered full body images did not create a biological motion sex aftereffect; (b) adaptation to moving partial biological motion displays containing the most important motion cues for sex discrimination (shoulders and hips or shoulders, hips, and feet) did not create a biological motion sex aftereffect; and (c) adaptation to a static frame or shapes derived from a static frame did create a biological motion sex aftereffect. These results suggest that form information is sufficient to create a biological motion sex aftereffect and suggests that biological motion sex aftereffects may be a result of lower level rather than higher level adaptation in the visual system.

  18. The role of biological activity of hydrohumate, produced from peat, in formation of adaptive response of rats under influence of chronic stress

    Science.gov (United States)

    Lyanna, O. L.; Chorna, V. I.; Stepchenko, L. M.

    2009-04-01

    It is well known that humic compounds are the most distributed in nature among the organic matter. It is believed that humic polyphenol preparations, produced from the peat, represent adaptogenes and immunomodulators. But the total mechanism of their adaptogenic action is still completely unclear. In response to extraordinary irritant action, one of the most sensitive to stress and highly reactive systems of organism, endosomal-lysosomal cellular apparatus takes part. It is believed that humic compounds are able to penetrate through plasmatic membrane and by this way to affect on lysosomal proteases function. Among the wide range of lysosomal proteases, cysteine cathepsin L (EC 3.4.22.15) was in interest due to its powerful endopeptidase activity and widespread localization. Purpose. The aim of the work was to investigate the influence of humic acids on intracellular proteolysis in blood plasma and heart muscle of rats in adaptive-restorative processes developing in rat organisms as a result of chronic stress action. The experiment was held on Wistar's rats (160-200 g weight) which were divided into 4 groups: 1 - the control group; 2 - the animals which were received the hydrohumate with water (10 mg hydrohumate (0,1% solution) per 1 kg of weight) during 3 weeks; 3 - the group of stressed rats (test "forced swimming" for 2 hours); 4 - the stressed rats which received the hydrohumate. The activity of lysosomal cysteine cathepsin L was determined spectrophotometrically by usage 1% azocasein, denaturated by 3 M urea, as substrate. It was obtained that under hydrohumate influence the activity of lysosomal cysteine cathepsin L in rat blood plasma changed on 20% in comparison with control group that is suggested to be caused by leakage of tissue cathepsins from organs and tissues and kidneys' filtration of these cysteine enzymes in urine. In rat heart tissues it was obtained that cathepsin L activity level was on 26,8% higher in rats which were under stress influence in

  19. 红耳滑龟入侵的现状、适应机制及防治%Status,Adaptive Mechanism and Biological Control of the Invasion of Trachemys Scripta Elegans

    Institute of Scientific and Technical Information of China (English)

    孙燕燕; 宋环飞; 张艳茹

    2015-01-01

    外来生物入侵是当今世界范围内一个十分严峻的问题,每年由外来生物入侵造成的经济损失高达数千亿美元,如何防治外来生物入侵已成为生态学家迫切需要解决的问题。本文以红耳滑龟(Trachemys scripta e le g ans )为例,描述其生物学特性及入侵对土著龟和生态系统造成的危害,概述其成为生态入侵种的适应机制研究进展,并结合国内外应对红耳滑龟入侵的防治现状,阐述防治其入侵的可行办法。%Biological invasion by alien species is one of the most serious public problems in this world ,resulting in economic losses that run to hundred billions of dollars per year .How to control biological invasion has become an important challenge for ecologists .This review paper summarizes the biological characteristics of Trachemys scripta elegans ,its impacts on native turtles and ecosystems ,and the research advances in the adaptive mechanism and biological control of the species .By comparing the measures taken at home and abroad ,it proposes several more feasible methods that can be used .

  20. Adaptability of Dengue-Ⅳ virus LD34 strain in KMB17 cells and biological characteristics of adapted strain%Ⅳ型登革病毒中国株LD34在KMB17细胞上的适应性及其生物学特性

    Institute of Scientific and Technical Information of China (English)

    赵玉娇; 龙海亭; 潘玥; 陈俊英; 杨丽娟; 岳耀斐; 孙强明

    2012-01-01

    目的 研究Ⅳ型登革病毒中国株LD34在人胚肺二倍体细胞KMB17上的传代适应性及其生物学特性.方法 将Ⅳ型登革病毒中国株LD34在C6/36细胞上扩增,并采用微量细胞病变法测定病毒的感染性滴度.以2.0 MOI的病毒接种KMB17细胞传代培养,筛选KMB17细胞适应株,并进行培养条件的优化.将Ⅳ型登革病毒中国株LD34 KMB17细胞适应株连续传10代,测定病毒的感染性滴度,免疫荧光法检测病毒的抗原性,RT-PCR法扩增登革病毒的特异性基因.结果 筛选出的Ⅳ型登革病毒中国株LD34在KMB17细胞上的最佳培养条件为病毒接种MOI 0.4,培养基血清浓度5%;其感染KMB17细胞后可产生明显的细胞病变(CPE),连续传10代,病毒滴度达7.75 CCID50/ml;第10代病毒的抗原性呈阳性;第10代病毒能扩增出511 bp的登革病毒特异性基因和393 bp的Ⅳ型登革病毒特异性基因.结论 获得了Ⅳ型登革病毒中国株LD34 KMB17细胞适应株,病毒保持了原始毒株的基本生物学特性,且具有较好的抗原性.%Objective To investigate the adaptability of Dengue-Ⅳ virus LD34 strain, isolated in China, in KMB17 cells and the biological characteristics of adapted strain. Methods Dengue-Ⅳ LD34 strain was propagated in C6/36 cells and determined for infectivity, then inoculated to KMB17 cells at a MOI of 2.0 for subculture, based on which the adapted strain was screened, and the culture condition was optimized. The adapted strain was subcultured in KMB17 cells for 10 passages, then determined for infectious titer by microtitrimetry, and for antigenicity by IFA, from which the specific gene was amplified by RT-PCR. Results The optimal MOI and serum concentration in medium for culture of the screened adapted strain were 0. 4 and 5% respectively. The adapted strain caused obvious CPE of KMB17 cells , and reached a titer of 7. 75 CCID50/ml after subculture for 10 passages. The virus of passage 10 was positive for

  1. The impacts of irrigation with transferred and saline reclaimed water in the soil biological quality of two citrus species: Adaptations to low water availability

    Science.gov (United States)

    Bastida, Felipe; Abadía, Joaquín; García, Carlos; Torres, Irene; Ruiz Navarro, Antonio; José Alarcón, Juan; Nicolás, Emilio

    2017-04-01

    Mediterranean agroecosystems are limited by the availability of water and hence it is fundamental to find new water sources for sustainable agriculture in the face of climate change. Here, the effects of irrigation with water from different sources were analyzed in the soil microbial community and plant status of grapefruit and mandarin trees in a Mediterranean agro-ecosystem located in south-east of Spain. Four irrigation treatments were evaluated: i) water with an average electrical conductivity (EC) of 1.1 dS m-1 from the "Tagus-Segura" water-transfer canal (TW); ii) reclaimed water (EC = 3.21 dS m-1) from a wastewater-treatment-plant (RW); iii) irrigation with TW, except in the second stage of fruit development, when RW was applied (TWc); and iv) irrigation with RW except in the second stage, when TW was used (RWc). Phospholipid fatty acids indicated that microbial biomass was greater under grapefruit than under mandarin. In the case of grapefruit, TW showed a lower bacterial biomass than RW, RWc, and TWc, while RW showed the lowest values in the mandarin soil. In grapefruit soil, β-glucosidase and cellobiohydrolase activities, related to C cycling, were greater in RW and TWc than in TW and RWc. In mandarin soil, the greatest activity of these enzymes was found in TWc. The saline stress induced lower net photosynthesis (A) and stomatal conductance (gs) in plants of RW, RWc and TWc in comparison with TW. The annual use of reclaimed water or the combined irrigation with TWc positively influenced the soil biological quality of a grapefruit agro-ecosystem. Conversely, the mandarin soil community was more sensitive to the annual irrigation with RW.

  2. The physiology mechanisms on drought tolerance and adaptation of biological soil crust moss Bryum argenteum and Didymodon vinealis in Tenger Desert

    Science.gov (United States)

    Zhao, X.; Shi, Y.; Chen, C.; Jia, R.; Li, X.

    2012-04-01

    Bryum argenteum Hedw. and Didymodon vinealis Brid are two dominant moss species in the restored vegetation area in Tenger Desert, which sampled from biological soil crusts and where is an extreme drought regions. We found that they resorted to different osmotic adjustment strategies to mitigate osmotic stress. Under the gradual drought stress, both Bryum argenteum and Didymodon vinealis accumulated K+ and soluble sugar such as sucrose and trehalose. Their glycine betaine contents both decreased, while their proline content had no significant change. With enhanced drought stress, Bryum argenteum's Na+ content was low and decreased significantly, whereas Didymodon vinealis's Na+ content increased sharply and reached to a high level. We found the different of the mechanism of between active oxygen scavenging on Enzymatic and non - enzymatic system in two species moss of Bryum argenteum Hedw and Didymodon vinealis Brid under extreme drought stress. The result showed that two species of Moss of SOD activity gradually enhanced, and they have the material basis for effectively eliminates in vivo of Superoxide free radical. POD in Didymodon nigrescen and CAT in Bryum argeneum are major resistance o oxidative stress effects. The content of GSH rise with the stress also enhanced. The mechanism of finding Bryum argenteum Hedw and Didymodon vinealis Brid tolerance of dehydration ability were focus on different direction, but they are all given positive response to stress and enhance resistance. We investigated the responses of signal transduction substances to gradual drought stress in Didymodon vinealis and Bryum argenteum. The results suggested that: under gradual drought stress, the activities of TP H+-ATPase and PM H+-ATPase of Didymodon vinealis and Bryum argenteum both increased, resulting in their increase of K+ contents and turgor pressures, and triggered biosynthesis of signal transduction substances. ABA had no obvious effect in signal transduction of Bryum argenteum

  3. Contribution of the modulation of intensity and the optimization to deliver a dose adapted to the biological heterogeneities; Apport de la modulation d'intensite et de l'optimisation pour delivrer une dose adaptee aux heterogeneites biologiques

    Energy Technology Data Exchange (ETDEWEB)

    Kubs, F

    2007-10-15

    The recent progress in functional imaging by Positron Emission Tomography (TEP) opens new perspectives in the delineation of target volumes in radiotherapy. The functional data is major; we can intend to adapt the irradiation doses on the tumor activity (TA) and to perform a dose escalation. Our objectives were (i) to characterize the TEP threshold, by quantifying the uncertainties of the target volume contour according to the lesion size and the threshold contour level, (ii) to set up the geometry suited to perform a high-precision irradiation based on the TA, (iii) to estimate the dosimetric impact of this new protocol and (iv) to verify that dosimetry is perfectly distributed. Three original phantoms were specially created to satisfy the constraints met, as well as two virtual phantoms containing 3 dose levels (dose level 3 = TA). Our results showed the importance of the effect threshold-volume on the planning in radiotherapy. To use this irradiation method, the diameter of 1 cm for the third level was able to be reached. A dose escalation of 20 Gy was possible between the second (70 Gy) and the third level (90 Gy). The dosimetric impact estimated on two real cases was suitable - increase of COIN (conformal index) from 0.6 to 0.8 and decrease of NTCP (normal tissue complication probability) of a factor 5 -. In absolute and relative dosimetry, the clinical tolerances were respected. So all the treatment process, going from the diagnosis with the TEP to reveal the TA, to the patient treatment made beforehand on phantom, and going through the ballistic and the dose calculation, was estimated and validated according to our objective to adapt the irradiation to the biological heterogeneities. However such high doses should be carefully estimated before being prescribed clinically and progress is also expected in imaging, because the minimal size which we can irradiate is on the limit of the resolution TEP. (author)

  4. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  5. Adaptation through proportion

    Science.gov (United States)

    Xiong, Liyang; Shi, Wenjia; Tang, Chao

    2016-08-01

    Adaptation is a ubiquitous feature in biological sensory and signaling networks. It has been suggested that adaptive systems may follow certain simple design principles across diverse organisms, cells and pathways. One class of networks that can achieve adaptation utilizes an incoherent feedforward control, in which two parallel signaling branches exert opposite but proportional effects on the output at steady state. In this paper, we generalize this adaptation mechanism by establishing a steady-state proportionality relationship among a subset of nodes in a network. Adaptation can be achieved by using any two nodes in the sub-network to respectively regulate the output node positively and negatively. We focus on enzyme networks and first identify basic regulation motifs consisting of two and three nodes that can be used to build small networks with proportional relationships. Larger proportional networks can then be constructed modularly similar to LEGOs. Our method provides a general framework to construct and analyze a class of proportional and/or adaptation networks with arbitrary size, flexibility and versatile functional features.

  6. ADAPT Dataset

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Diagnostics and Prognostics Testbed (ADAPT) Project Lead: Scott Poll Subject Fault diagnosis in electrical power systems Description The Advanced...

  7. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  8. All biology is computational biology.

    Science.gov (United States)

    Markowetz, Florian

    2017-03-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science.

  9. All biology is computational biology

    Science.gov (United States)

    2017-01-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science. PMID:28278152

  10. Climate adaptation

    Science.gov (United States)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  11. Biological couplings: Function, characteristics and implementation mode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Through rigorous natural selection, biological organisms have evolved exceptional functions highly adaptable to their living environments. Biological organisms can achieve a variety of biological functions efficiently by using the synergic actions of two or more different parts of the body, or the coupling effects of multiple factors, and demonstrate optimal adaptations to the living environment. In this paper, the function, characteristics and types of biological couplings are analyzed, the implementation mechanism and mode of biological coupling functions are revealed from the bionic viewpoint. Finally, the technological prospects of the bionic implementation of biological coupling function are predicted.

  12. How to understand and outwit adaptation

    OpenAIRE

    Hoeller, Oliver; Gong, Delquin; Weiner, Orion D.

    2014-01-01

    Adaptation is the ability of a system to respond and reset itself even in the continuing presence of a stimulus. On one hand, adaptation is a physiological necessity that enables proper neuronal signaling and cell movement. On the other hand, adaptation can be a source of annoyance, as it can make biological systems resistant to experimental perturbations. Here we speculate where adaptation may live in eukaryotic chemotaxis and how it can be encoded in the signaling network. We then discuss t...

  13. BIological Psychology, Exercise, and Stress.

    Science.gov (United States)

    Dishman, Rod K.

    1994-01-01

    Reviews theory and methods used by the field of biological psychology to study stress that have potential for understanding how behavioral and biological adaptations to the stress of exercise are integrated. The overview focuses on anxiety, depression, and physiological responsiveness to nonexercise stressors from the perspective of biological…

  14. BIological Psychology, Exercise, and Stress.

    Science.gov (United States)

    Dishman, Rod K.

    1994-01-01

    Reviews theory and methods used by the field of biological psychology to study stress that have potential for understanding how behavioral and biological adaptations to the stress of exercise are integrated. The overview focuses on anxiety, depression, and physiological responsiveness to nonexercise stressors from the perspective of biological…

  15. Ambiguous Adaptation

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Lyngsie, Jacob

    We investigate why some exchange relationships terminate prematurely. We argue that investments in informal governance structures induce premature termination in relationships already governed by formal contracts. The formalized adaptive behavior of formal governance structures and the flexible a...

  16. Toothbrush Adaptations.

    Science.gov (United States)

    Exceptional Parent, 1987

    1987-01-01

    Suggestions are presented for helping disabled individuals learn to use or adapt toothbrushes for proper dental care. A directory lists dental health instructional materials available from various organizations. (CB)

  17. Hedonic "adaptation"

    OpenAIRE

    2008-01-01

    People live in a world in which they are surrounded by potential disgust elicitors such as ``used'' chairs, air, silverware, and money as well as excretory activities. People function in this world by ignoring most of these, by active avoidance, reframing, or adaptation. The issue is particularly striking for professions, such as morticians, surgeons, or sanitation workers, in which there is frequent contact with major disgust elicitors. In this study, we study the ``adaptation'' process to d...

  18. Strategic Adaptation

    DEFF Research Database (Denmark)

    Andersen, Torben Juul

    2015-01-01

    This article provides an overview of theoretical contributions that have influenced the discourse around strategic adaptation including contingency perspectives, strategic fit reasoning, decision structure, information processing, corporate entrepreneurship, and strategy process. The related...... concepts of strategic renewal, dynamic managerial capabilities, dynamic capabilities, and strategic response capabilities are discussed and contextualized against strategic responsiveness. The insights derived from this article are used to outline the contours of a dynamic process of strategic adaptation...

  19. Is adaptation. Truly an adaptation? Is adaptation. Truly an adaptation?

    Directory of Open Access Journals (Sweden)

    Thais Flores Nogueira Diniz

    2008-04-01

    Full Text Available The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition, joined with the study of recycling, remaking, and every form of retelling. The film deals with the attempt by the scriptwriter Charles Kaufman, cast by Nicholas Cage, to adapt/translate a non-fictional book to the cinema, but ends up with a kind of film which is by no means what it intended to be: a film of action in the model of Hollywood productions. During the process of creation, Charles and his twin brother, Donald, undergo a series of adventures involving some real persons from the world of film, the author and the protagonist of the book, all of them turning into fictional characters in the film. In the film, adaptation then signifies something different from itstraditional meaning. The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition

  20. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  1. Limitations of science and adaptive management

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.

    2001-12-20

    Adaptive management consists in patterning human sustenancewithin the constraints of Earth and biological systems whose behavior isinherently uncertain and difficult to control. For successful adaptivemanagement, a mind-set recognizing the limitations of science isneeded.

  2. Adaptive test

    DEFF Research Database (Denmark)

    Kjeldsen, Lars Peter; Rose, Mette

    2010-01-01

    Artikelen er en evaluering af de adaptive tests, som blev indført i folkeskolen. Artiklen sætter særligt fokus på evaluering i folkeskolen, herunder bidrager den med vejledning til evaluering, evalueringsværktøjer og fagspecifkt evalueringsmateriale.......Artikelen er en evaluering af de adaptive tests, som blev indført i folkeskolen. Artiklen sætter særligt fokus på evaluering i folkeskolen, herunder bidrager den med vejledning til evaluering, evalueringsværktøjer og fagspecifkt evalueringsmateriale....

  3. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  4. Biologi Radiasi

    OpenAIRE

    Milla Yoesfianda

    2008-01-01

    Biologi radiasi adalah ilmu yang mempelajari tentang pengaruh dari ionisasi radiasi dalam tubuh makhluk hidup. Kemungkinan terjadinya efek biologis akibat interaksi radiasi dan jaringan tubuh manusia, berbanding lurus dengan besarnya dosis radiasi yang mengenai jaringan tubuh tersebut. Radiasi dapat mengakibatkan efek baik secara langsung maupun tidak langsung. Efek yang merusak secara biologis dari radiasi ionisasi diklasifikasikan menjadi tiga kategori utama, yaitu efek somatik determin...

  5. [Biological weapons].

    Science.gov (United States)

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage. Georg Thieme Verlag KG Stuttgart * New York.

  6. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  7. Evolutionary Dynamics of Biological Games

    OpenAIRE

    Nowak, M. A.; Sigmund, K.

    2004-01-01

    Darwinian dynamics based on mutation and selection from the core of mathematical models for adaptation and coevolution of biological populations. The evolutionary outcome is often not a fitness-maximizing equilibrium but can include oscillations and chaos. For studying frequency-dependent selection, game-theoretic arguments are more appropriate than optimization algorithms. Replicator and adaptive dynamics describe short-and long-term evolution in phenotype space and have found applications r...

  8. Biological Soft Robotics.

    Science.gov (United States)

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  9. Biological Characteristics of Paragonimus Skrjabini Metacercaria and Adaptation to Host River Crabs%斯氏并殖吸虫囊蚴生物学及宿主适应性研究

    Institute of Scientific and Technical Information of China (English)

    杨树国; 钟萍; 张光玉

    2013-01-01

    Objective To investigate the infection rate of Paragonimus skrjabini encysted metacercaria in river crabs captured in Shiyan city in different months,explore the effects of physical and chemical factors on the hatch of metacercaria,discuss the biology characteristic of Paragonimus skrjabini metacercaria, and observe the adaptation of Paragonimus skrjabini to their hosts. Methods The second intermediate hosts were anatomized and the cysts were counted in different months. The collected cysts were deal with physical and chemical factors so that the optimal conditions of incubation could be determined. The experimental animals were fed with cysts to observe the development of Paragonimus skrjabini in 1 to 4 months later. Results The positive rival crabs could be obtained from April to November. The infection rate of cyst in crab caught in June and April were the top and lowest one respectively. The cysts were sensitive to 45℃ and above temperature water. Hatchability of larvae in gall was higher than NSG and distilled water. The cysts could develop to adult in rat body,but mouse,rabbit and guinea pig showed the different survivability to cyst. Conclusion There is significant difference in the second intermediate host infected by Paragonimus skrjabini in different months. The rats could be experimental definitive host of Paragonimus skrjabini.%目的 调查十堰地区不同月份溪蟹斯氏并殖吸虫囊蚴自然感染率,探讨理化因素对囊蚴孵出的影响,明确囊蚴生物学特性,观察囊蚴对实验动物适应性.方法 定时定点捕获野外溪蟹,解剖不同月份捕获的溪蟹并计数比较其体内囊蚴感染情况,实验观察囊蚴对温度的耐受性,生理盐水、蒸馏水及胆汁孵育囊蚴,判断不同理化条件对肺吸虫后尾蚴孵出的影响.口饲囊蚴,感染后1~4月解剖小白鼠、大鼠、家兔及豚鼠,观察其在实验动物宿主体内的发育.结果 全年阳性溪蟹集中分布于4~11

  10. Evolutionary Dynamics of Biological Games

    Science.gov (United States)

    Nowak, Martin A.; Sigmund, Karl

    2004-02-01

    Darwinian dynamics based on mutation and selection form the core of mathematical models for adaptation and coevolution of biological populations. The evolutionary outcome is often not a fitness-maximizing equilibrium but can include oscillations and chaos. For studying frequency-dependent selection, game-theoretic arguments are more appropriate than optimization algorithms. Replicator and adaptive dynamics describe short- and long-term evolution in phenotype space and have found applications ranging from animal behavior and ecology to speciation, macroevolution, and human language. Evolutionary game theory is an essential component of a mathematical and computational approach to biology.

  11. Adaptation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul

    2011-11-15

    Efforts to help the world's poor will face crises in coming decades as climate change radically alters conditions. Action Research for Community Adapation in Bangladesh (ARCAB) is an action-research programme on responding to climate change impacts through community-based adaptation. Set in Bangladesh at 20 sites that are vulnerable to floods, droughts, cyclones and sea level rise, ARCAB will follow impacts and adaptation as they evolve over half a century or more. National and international 'research partners', collaborating with ten NGO 'action partners' with global reach, seek knowledge and solutions applicable worldwide. After a year setting up ARCAB, we share lessons on the programme's design and move into our first research cycle.

  12. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    to be static, and no longer acts as a kind of spatial constancy maintaining stability and order? Moreover, what new potentials open in lighting design? This book is one of four books that is published in connection with the research project entitled LED Lighting; Interdisciplinary LED Lighting Research...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... the investigations of lighting scenarios carried out in two test installations: White Cube and White Box. The test installations are discussed as large-scale experiential instruments. In these test installations we examine what could potentially occur when light using LED technology is integrated and distributed...

  13. Hedonic "adaptation"

    Directory of Open Access Journals (Sweden)

    Paul Rozin

    2008-02-01

    Full Text Available People live in a world in which they are surrounded by potential disgust elicitors such as ``used'' chairs, air, silverware, and money as well as excretory activities. People function in this world by ignoring most of these, by active avoidance, reframing, or adaptation. The issue is particularly striking for professions, such as morticians, surgeons, or sanitation workers, in which there is frequent contact with major disgust elicitors. In this study, we study the ``adaptation'' process to dead bodies as disgust elicitors, by measuring specific types of disgust sensitivity in medical students before and after they have spent a few months dissecting a cadaver. Using the Disgust Scale, we find a significant reduction in disgust responses to death and body envelope violation elicitors, but no significant change in any other specific type of disgust. There is a clear reduction in discomfort at touching a cold dead body, but not in touching a human body which is still warm after death.

  14. ADAPTATION EVALUATION

    Directory of Open Access Journals (Sweden)

    Björn PETERS, M.Sc.

    2001-01-01

    Full Text Available Twenty subjects with lower limb disabilities participated in a simulator study. The purpose of the study was to investigate how an Adaptive Cruise Control (ACC system together with two different hand controls for accelerator and brake influenced workload, comfort and driving behaviour and to further develop a method to evaluate vehicle adaptations for drivers with disabilities. The installed ACC system could maintain a constant speed selected and set by the driver and it also adapted speed in order to keep a safe distance to a leading vehicle. Furthermore, it included a stop-and-go function. Two common types of hand controls for accelerator and brake were used. The hand controls were different both with respect to function, single or dual levers, and position, on the steering column or between the front seats. The subjects were all experienced drivers of adapted cars equipped with hand controls. All subjects drove 100km at two occasions, with and without the ACC system available but with the same hand control. Subjective workload was found to be significantly lower and performance better for the ACC condition. The difference in speed variation between manual and ACC supported driving increased with the distance driven which seems to support the previous finding. The subjects thought they could control both speed and distance to leading vehicles better while the ACC was available. ACC driving did not influence reaction time, speed level, lateral position or variation in lateral position. Headway during car following situations was shorter for the ACC condition compared to manual driving. The ACC was well received, trusted and wanted. It was concluded that the ACC system substantially decreased workload, increased comfort and did not influence safety negatively. The only difference found between the two types of hand controls was that drivers using the dual lever system had less variation in lateral position. The applied evaluation method proved

  15. Market study: Biological isolation garment

    Science.gov (United States)

    1975-01-01

    The biological isolation garment was originally designed for Apollo astronauts to wear upon their return to earth from the moon to avoid the possibility of their contaminating the environment. The concept has been adapted for medical use to protect certain patients from environmental contamination and the risk of infection. The nature and size of the anticipated market are examined with certain findings and conclusions relative to clinical acceptability and potential commercial viability of the biological isolation garment.

  16. The Impact of Adaptive and Non-targeted Effects in the Biological Responses to Low Dose/Low Fluence Ionizing-Radiation: The Modulating Effect of Linear Energy Transfer

    OpenAIRE

    de Toledo, Sonia M.; Buonanno, Manuela; Li, Min; Asaad, Nesrin; Qin, Yong; Zhang, Jie; Azzam, Edouard I.

    2011-01-01

    A large volume of laboratory and human epidemiological studies have shown that high doses of ionizing radiation engender significant health risks. In contrast, the health risks of low level radiation remain ambiguous and have been the subject of intense debate. To reduce the uncertainty in evaluating these risks, research advances in cellular and molecular biology are being used to characterize the biological effects of low dose radiation exposures and their underlying mechanisms. Radiation t...

  17. Adaptive evolution in ecological communities.

    Directory of Open Access Journals (Sweden)

    Martin M Turcotte

    Full Text Available Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  18. Adaptive evolution in ecological communities.

    Science.gov (United States)

    Turcotte, Martin M; Corrin, Michael S C; Johnson, Marc T J

    2012-01-01

    Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  19. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  20. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  1. Chromatic adaptation of photosynthetic membranes.

    Science.gov (United States)

    Scheuring, Simon; Sturgis, James N

    2005-07-15

    Many biological membranes adapt in response to environmental conditions. We investigated how the composition and architecture of photosynthetic membranes of a bacterium change in response to light, using atomic force microscopy. Despite large modifications in the membrane composition, the local environment of core complexes remained unaltered, whereas specialized paracrystalline light-harvesting antenna domains grew under low-light conditions. Thus, the protein mixture in the membrane shows eutectic behavior and can be mimicked by a simple model. Such structural adaptation ensures efficient photon capture under low-light conditions and prevents photodamage under high-light conditions.

  2. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...... to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as 'systems biology' by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many...

  3. Biological evolution: Some genetic considerations

    African Journals Online (AJOL)

    Mohammad Saad Zaghloul Salem

    2013-12-08

    Dec 8, 2013 ... Abstract Background: The concept of biological evolution has long been accepted as a palatable ... cept of evolution, viz. genetic memory and evolutionary variations, genomic adaptations .... control of structures and functions of biomolecules, living ... construction of new metabolic pathways or acquisition of.

  4. The vulnerability of threatened species: adaptive capability and adaptation opportunity.

    Science.gov (United States)

    Berry, Pam; Ogawa-Onishi, Yuko; McVey, Andrew

    2013-07-01

    Global targets to halt the loss of biodiversity have not been met, and there is now an additional Aichi target for preventing the extinction of known threatened species and improving their conservation status. Climate change increasingly needs to be factored in to these, and thus there is a need to identify the extent to which it could increase species vulnerability. This paper uses the exposure, sensitivity, and adaptive capacity framework to assess the vulnerability of a selection of WWF global priority large mammals and marine species to climate change. However, it divides adaptive capacity into adaptive capability and adaptation opportunity, in order to identify whether adaptation is more constrained by the biology of the species or by its environmental setting. Lack of evidence makes it difficult to apply the framework consistently across the species, but it was found that, particularly for the terrestrial mammals, adaptation opportunities seems to be the greater constraint. This framework and analysis could be used by conservationists and those wishing to enhance the resilience of species to climate change.

  5. The Vulnerability of Threatened Species: Adaptive Capability and Adaptation Opportunity

    Directory of Open Access Journals (Sweden)

    Andrew McVey

    2013-07-01

    Full Text Available Global targets to halt the loss of biodiversity have not been met, and there is now an additional Aichi target for preventing the extinction of known threatened species and improving their conservation status. Climate change increasingly needs to be factored in to these, and thus there is a need to identify the extent to which it could increase species vulnerability. This paper uses the exposure, sensitivity, and adaptive capacity framework to assess the vulnerability of a selection of WWF global priority large mammals and marine species to climate change. However, it divides adaptive capacity into adaptive capability and adaptation opportunity, in order to identify whether adaptation is more constrained by the biology of the species or by its environmental setting. Lack of evidence makes it difficult to apply the framework consistently across the species, but it was found that, particularly for the terrestrial mammals, adaptation opportunities seems to be the greater constraint. This framework and analysis could be used by conservationists and those wishing to enhance the resilience of species to climate change.

  6. Biological Oceanography

    Science.gov (United States)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  7. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  8. Foldit Biology

    Science.gov (United States)

    2015-07-31

    Report 8/1/2013-7/31/2015 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Foldit Biology NOOO 14-13-C-0221 Sb. GRANT NUMBER N/A Sc. PROGRAM ELEMENT...Include area code) Unclassified Unclassified Unclassified (206) 616-2660 Zoran Popović Foldit Biology (Task 1, 2, 3, 4) Final Report...Period Covered by the Report August 1, 2013 – July 31, 2015 Date of Report: July 31, 2015 Project Title: Foldit Biology Contract Number: N00014-13

  9. Adaptive management

    DEFF Research Database (Denmark)

    Rist, Lucy; Campbell, Bruce Morgan; Frost, Peter

    2013-01-01

    in scientific articles, policy documents and management plans, but both understanding and application of the concept is mixed. This paper reviews recent literature from conservation and natural resource management journals to assess diversity in how the term is used, highlight ambiguities and consider how...... the concept might be further assessed. AM is currently being used to describe many different management contexts, scales and locations. Few authors define the term explicitly or describe how it offers a means to improve management outcomes in their specific management context. Many do not adhere to the idea......Adaptive management (AM) emerged in the literature in the mid-1970s in response both to a realization of the extent of uncertainty involved in management, and a frustration with attempts to use modelling to integrate knowledge and make predictions. The term has since become increasingly widely used...

  10. Illuminating Cell Biology

    Science.gov (United States)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  11. Entropy and Selection: Life as an Adaptation for Universe Replication

    OpenAIRE

    Price, Michael E.

    2017-01-01

    Natural selection is the strongest known antientropic process in the universe when operating at the biological level and may also operate at the cosmological level. Consideration of how biological natural selection creates adaptations may illuminate the consequences and significance of cosmological natural selection. An organismal trait is more likely to constitute an adaptation if characterized by more improbable complex order, and such order is the hallmark of biological selection. If the s...

  12. Biology teachers

    African Journals Online (AJOL)

    Mathematics, Science and Biology teachers code switch when they teach. ... (by constantly translating back and forth), and argue for a 'separation approach' ..... for the classroom, only 3 students did not give an answer to this open-ended.

  13. Adaptive Radiation for Lung Cancer

    Science.gov (United States)

    Gomez, Daniel R.; Chang, Joe Y.

    2011-01-01

    The challenges of lung cancer radiotherapy are intra/inter-fraction tumor/organ anatomy/motion changes and the need to spare surrounding critical structures. Evolving radiotherapy technologies, such as four-dimensional (4D) image-based motion management, daily on-board imaging and adaptive radiotherapy based on volumetric images over the course of radiotherapy, have enabled us to deliver higher dose to target while minimizing normal tissue toxicities. The image-guided radiotherapy adapted to changes of motion and anatomy has made the radiotherapy more precise and allowed ablative dose delivered to the target using novel treatment approaches such as intensity-modulated radiation therapy, stereotactic body radiation therapy, and proton therapy in lung cancer, techniques used to be considered very sensitive to motion change. Future clinical trials using real time tracking and biological adaptive radiotherapy based on functional images are proposed. PMID:20814539

  14. Adaptation, aging, and genomic information.

    Science.gov (United States)

    Rose, Michael R

    2009-05-21

    Aging is not simply an accumulation of damage or inappropriate higher-order signaling, though it does secondarily involve both of these subsidiary mechanisms. Rather, aging occurs because of the extensive absence of adaptive genomic information required for survival to, and function at, later adult ages, due to the declining forces of natural selection during adult life. This absence of information then secondarily leads to misallocations and damage at every level of biological organization. But the primary problem is a failure of adaptation at later ages. Contemporary proposals concerning means by which human aging can be ended or cured which are based on simple signaling or damage theories will thus reliably fail. Strategies based on reverse-engineering age-extended adaptation using experimental evolution and genomics offer the prospect of systematically greater success.

  15. Career adaptability profiles and their relationship to adaptivity and adapting

    OpenAIRE

    Hirschi, Andreas; Valero, Domingo

    2015-01-01

    Research on career adaptability predominantly uses variable-centered approaches that focus on the average effects in terms of the predictors and outcomes within a given sample. Extending this research, the present paper used a person-centered approach to determine whether subgroups with distinct adaptability profiles in terms of concern, control, curiosity and confidence can be identified. We also explored the relationship between the various adaptability profiles and adapting (career plannin...

  16. Halophilic adaptation of enzymes.

    Science.gov (United States)

    Madern, D; Ebel, C; Zaccai, G

    2000-04-01

    It is now clear that the understanding of halophilic adaptation at a molecular level requires a strategy of complementary experiments, combining molecular biology, biochemistry, and cellular approaches with physical chemistry and thermodynamics. In this review, after a discussion of the definition and composition of halophilic enzymes, the effects of salt on their activity, solubility, and stability are reviewed. We then describe how thermodynamic observations, such as parameters pertaining to solvent-protein interactions or enzyme-unfolding kinetics, depend strongly on solvent composition and reveal the important role played by water and ion binding to halophilic proteins. The three high-resolution crystal structures now available for halophilic proteins are analyzed in terms of haloadaptation, and finally cellular response to salt stress is discussed briefly.

  17. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  18. Biological Oceanography

    Science.gov (United States)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  19. Global coordination in adaptation to gene rewiring

    OpenAIRE

    Murakami, Yoshie; Matsumoto, Yuki; Tsuru, Saburo; Ying, Bei-Wen; Yomo, Tetsuya

    2015-01-01

    Gene rewiring is a common evolutionary phenomenon in nature that may lead to extinction for living organisms. Recent studies on synthetic biology demonstrate that cells can survive genetic rewiring. This survival (adaptation) is often linked to the stochastic expression of rewired genes with random transcriptional changes. However, the probability of adaptation and the underlying common principles are not clear. We performed a systematic survey of an assortment of gene-rewired Escherichia col...

  20. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  1. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  2. Biology Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  3. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  4. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  5. Adaptively robust filtering with classified adaptive factors

    Institute of Scientific and Technical Information of China (English)

    CUI Xianqiang; YANG Yuanxi

    2006-01-01

    The key problems in applying the adaptively robust filtering to navigation are to establish an equivalent weight matrix for the measurements and a suitable adaptive factor for balancing the contributions of the measurements and the predicted state information to the state parameter estimates. In this paper, an adaptively robust filtering with classified adaptive factors was proposed, based on the principles of the adaptively robust filtering and bi-factor robust estimation for correlated observations. According to the constant velocity model of Kalman filtering, the state parameter vector was divided into two groups, namely position and velocity. The estimator of the adaptively robust filtering with classified adaptive factors was derived, and the calculation expressions of the classified adaptive factors were presented. Test results show that the adaptively robust filtering with classified adaptive factors is not only robust in controlling the measurement outliers and the kinematic state disturbing but also reasonable in balancing the contributions of the predicted position and velocity, respectively, and its filtering accuracy is superior to the adaptively robust filter with single adaptive factor based on the discrepancy of the predicted position or the predicted velocity.

  6. Supporting Adaptive and Adaptable Hypermedia Presentation Semantics

    NARCIS (Netherlands)

    Bulterman, D.C.A.; Rutledge, L.; Hardman, L.; Ossenbruggen, J.R. van

    1999-01-01

    Having the content of a presentation adapt to the needs, resources and prior activities of a user can be an important benefit of electronic documents. While part of this adaptation is related to the encodings of individual data streams, much of the adaptation can/should be guided by the semantics in

  7. Research on Adaptive Variable Structure Control for Bi-ological Model of Red Tide%赤潮生物种群模型的自适应变结构控制器设计

    Institute of Scientific and Technical Information of China (English)

    雷小春

    2016-01-01

    【目的】为进一步改进有害藻和有益藻的消长控制模型,更好控制有害藻的发生,避免其所造成的危害。【方法】假设赤潮有害藻密度可测,有益藻密度不可测,在有害藻和有益藻密度模型正则化的基础上,设计神经网络观测器来估计有益藻对应的变量;然后,设计变结构控制使有害藻浓度减少而有益藻浓度增大,最终达到稳定状态。【结果】仿真分析结果显示,有害藻和有益藻持续在稳定的状态。【结论】变结构控制器的设计合理有效。%Objective]In order to overcome the weakness of traditional treatment methods of red tide(including physical method and chemical method),biological treatment technique was ex-plored,where the relationship among creature competition,biological inhibition and biological predation was evaluated.Introducing beneficial creature in the area of red tide could inhibit the eruption of red-tide algae,and reduce the occurrence of red-tide algae and its damage.[Methods]In the paper,we assumed that the density of harmful algae could be measured whereas the den-sity of beneficial algae could not be measured.Based on the regularization of the density model of harmful algae and beneficial algae,neural network viewer was designed to estimate corre-sponding changes of beneficial algae.Then,a variable structure control was designed to reduce the density of harmful algae and increase that of beneficial algae,and finally to reach a steady state.[Results]Simulation results of an example illustrated the effectiveness of the proposed method.[Conclusion]The designed variable structure control is effective.

  8. Personalized Adaptive Learning

    NARCIS (Netherlands)

    Kravcik, Milos; Specht, Marcus; Naeve, Ambjorn

    2009-01-01

    Kravcik, M., Specht, M., & Naeve, A. (2008). Personalized Adaptive Learning. Presentation of PROLEARN WP1 Personalized Adaptive Learning at the final review meeting. February, 27, 2008, Hannover, Germany.

  9. Biological heart valves.

    Science.gov (United States)

    Ciubotaru, Anatol; Cebotari, Serghei; Tudorache, Igor; Beckmann, Erik; Hilfiker, Andres; Haverich, Axel

    2013-10-01

    Cardiac valvular pathologies are often caused by rheumatic fever in young adults, atherosclerosis in elderly patients, or by congenital malformation of the heart in children, in effect affecting almost all population ages. Almost 300,000 heart valve operations are performed worldwide annually. Tissue valve prostheses have certain advantages over mechanical valves such as biocompatibility, more physiological hemodynamics, and no need for life-long systemic anticoagulation. However, the major disadvantage of biological valves is related to their durability. Nevertheless, during the last decade, the number of patients undergoing biological, rather than mechanical, valve replacement has increased from half to more than three-quarters for biological implants. Continuous improvement in valve fabrication includes development of new models and shapes, novel methods of tissue treatment, and preservation and implantation techniques. These efforts are focused not only on the improvement of morbidity and mortality of the patients but also on the improvement of their quality of life. Heart valve tissue engineering aims to provide durable, "autologous" valve prostheses. These valves demonstrate adaptive growth, which may avoid the need of repeated operations in growing patients.

  10. Mesoscopic biology

    Indian Academy of Sciences (India)

    G V Shivashankar

    2002-02-01

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological systems. In recent years advances in technology have led to the study of some of the design principles of these machines; in particular at the level of an individual molecule. For example, the forces that operate in molecular interactions, the stochasticity involved in these interactions and their spatio-temporal dynamics are beginning to be explored. Understanding such design principles is opening new possibilities in mesoscopic physics with potential applications.

  11. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  12. The meaning of biological information.

    Science.gov (United States)

    Koonin, Eugene V

    2016-03-13

    Biological information encoded in genomes is fundamentally different from and effectively orthogonal to Shannon entropy. The biologically relevant concept of information has to do with 'meaning', i.e. encoding various biological functions with various degree of evolutionary conservation. Apart from direct experimentation, the meaning, or biological information content, can be extracted and quantified from alignments of homologous nucleotide or amino acid sequences but generally not from a single sequence, using appropriately modified information theoretical formulae. For short, information encoded in genomes is defined vertically but not horizontally. Informally but substantially, biological information density seems to be equivalent to 'meaning' of genomic sequences that spans the entire range from sharply defined, universal meaning to effective meaninglessness. Large fractions of genomes, up to 90% in some plants, belong within the domain of fuzzy meaning. The sequences with fuzzy meaning can be recruited for various functions, with the meaning subsequently fixed, and also could perform generic functional roles that do not require sequence conservation. Biological meaning is continuously transferred between the genomes of selfish elements and hosts in the process of their coevolution. Thus, in order to adequately describe genome function and evolution, the concepts of information theory have to be adapted to incorporate the notion of meaning that is central to biology.

  13. Structural Biology Fact Sheet

    Science.gov (United States)

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area ​Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  14. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  15. 浅谈高中生物新教材教学中的不适应性及其对策%Adaptability and countermeasures in the new high school biology teaching

    Institute of Scientific and Technical Information of China (English)

    邱岚

    2015-01-01

    虽然第八次基础教育改革强调以突出学生的素质教育为主,并且对教材也进行了较大规模的改动,但是由于部分教材过度偏重实际应用,给教学工作也造成了一定的困扰和影响,本文就结合实际情况对高中生物新教材教学中的不适应性进行阐述。%Although the eighth elementary education reform stressed to highlight student's quality education is given priority to, and large-scale changes in the textbooks, but due to the excessive emphasis on practical application, some textbooks for teaching also caused some problems and influence, in this paper, combined with actual situation the inadaptability of new teaching material of high school biology teaching.

  16. Development of the biology card sorting task to measure conceptual expertise in biology.

    Science.gov (United States)

    Smith, Julia I; Combs, Elijah D; Nagami, Paul H; Alto, Valerie M; Goh, Henry G; Gourdet, Muryam A A; Hough, Christina M; Nickell, Ashley E; Peer, Adrian G; Coley, John D; Tanner, Kimberly D

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non-biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non-biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise.

  17. Behavioural adaptations of the isopod Tylos granulatus Krauss

    African Journals Online (AJOL)

    Some brief biological observations are necessary for an appreciation of the adaptations of the .... rhythmicity controls all other activities and must be the factor which contributes most to ... Physiological rhythms: The physiology o/Crustacea vol.

  18. Inducible competitors and adaptive diversification

    Directory of Open Access Journals (Sweden)

    Beren W. ROBINSON, David W. PFENNIG

    2013-08-01

    Full Text Available Identifying the causes of diversification is central to evolutionary biology. The ecological theory of adaptive diversification holds that the evolution of phenotypic differences between populations and species––and the formation of new species––stems from divergent natural selection, often arising from competitive interactions. Although increasing evidence suggests that phenotypic plasticity can facilitate this process, it is not generally appreciated that competitively mediated selection often also provides ideal conditions for phenotypic plasticity to evolve in the first place. Here, we discuss how competition plays at least two key roles in adaptive diversification depending on its pattern. First, heterogenous competition initially generates heterogeneity in resource use that favors adaptive plasticity in the form of “inducible competitors”. Second, once such competitively induced plasticity evolves, its capacity to rapidly generate phenotypic variation and expose phenotypes to alternate selective regimes allows populations to respond readily to selection favoring diversification, as may occur when competition generates steady diversifying selection that permanently drives the evolutionary divergence of populations that use different resources. Thus, competition plays two important roles in adaptive diversification––one well-known and the other only now emerging––mediated through its effect on the evolution of phenotypic plasticity [Current Zoology 59 (4: 537–552, 2013].

  19. Inducible competitors and adaptive diversification

    Institute of Scientific and Technical Information of China (English)

    Beren W.ROBINSON; David W.PFENNIG

    2013-01-01

    Identifying the causes of diversification is central to evolutionary biology.The ecological theory of adaptive diversification holds that the evolution of phenotypic differences between populations and species-and the formation of new species-stems from divergent natural selection,often arising from competitive interactions.Although increasing evidence suggests that phenotypic plasticity can facilitate this process,it is not generally appreciated that competitively mediated selection often also provides ideal conditions for phenotypic plasticity to evolve in the first place.Here,we discuss how competition plays at least two key roles in adaptive diversification depending on its pattern.First,heterogenous competition initially generates heterogeneity in resource use that favors adaptive plasticity in the form of"inducible competitors".Second,once such competitively induced plasticity evolves,its capacity to rapidly generate phenotypic variation and expose phenotypes to alternate selective regimes allows populations to respond readily to selection favoring diversification,as may occur when competition generates steady diversifying selection that permanently drives the evolutionary divergence of populations that use different resources.Thus,competition plays two important roles in adaptive diversification--one well-known and the other only now emerging-mediated through its effect on the evolution of phenotypic plasticity.

  20. Biological Databases

    Directory of Open Access Journals (Sweden)

    Kaviena Baskaran

    2013-12-01

    Full Text Available Biology has entered a new era in distributing information based on database and this collection of database become primary in publishing information. This data publishing is done through Internet Gopher where information resources easy and affordable offered by powerful research tools. The more important thing now is the development of high quality and professionally operated electronic data publishing sites. To enhance the service and appropriate editorial and policies for electronic data publishing has been established and editors of article shoulder the responsibility.

  1. Biologic activities of molecular chaperones and pharmacologic chaperone imidazole-containing dipeptide-based compounds: natural skin care help and the ultimate challenge: implication for adaptive responses in the skin.

    Science.gov (United States)

    Babizhayev, Mark A; Nikolayev, Gennady M; Nikolayeva, Juliana G; Yegorov, Yegor E

    2012-03-01

    Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of photoaged skin and pathogenesis of human cutaneous disease. Growing evidence demonstrates the ability of molecular chaperone proteins and of pharmacologic chaperones to decrease the environmental stress and ameliorate the oxidation stress-related and glycation disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for skin diseases and aging. In this review, we examine the evidence suggesting a role for molecular chaperone proteins in the skin and their inducer and protecting agents: pharmacologic chaperone imidazole dipeptide-based agents (carcinine and related compounds) in cosmetics and dermatology. Furthermore, we discuss the use of chaperone therapy for the treatment of skin photoaging diseases and other skin pathologies that have a component of increased glycation and/or free radical-induced oxidation in their genesis. We examine biologic activities of molecular and pharmacologic chaperones, including strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human skin disease. This allows the protein to function and traffic to the appropriate location in the skin, thereby increasing protein activity and cellular function and reducing stress on skin cells. The benefits of imidazole dipeptide antioxidants with transglycating activity (such as carcinine) in skin care are that they help protect and repair cell membrane damage and help retain youthful, younger-looking skin. All skin types will benefit from daily, topical application of pharmacologic chaperone antioxidants, anti-irritants, in combination with water-binding protein agents that work to mimic the structure and function of healthy skin. General strategies are presented addressing ground techniques to improve absorption of usually active chaperone proteins and dipeptide compounds, include

  2. Adaptive Neurotechnology for Making Neural Circuits Functional .

    Science.gov (United States)

    Jung, Ranu

    2008-03-01

    Two of the most important trends in recent technological developments are that technology is increasingly integrated with biological systems and that it is increasingly adaptive in its capabilities. Neuroprosthetic systems that provide lost sensorimotor function after a neural disability offer a platform to investigate this interplay between biological and engineered systems. Adaptive neurotechnology (hardware and software) could be designed to be biomimetic, guided by the physical and programmatic constraints observed in biological systems, and allow for real-time learning, stability, and error correction. An example will present biomimetic neural-network hardware that can be interfaced with the isolated spinal cord of a lower vertebrate to allow phase-locked real-time neural control. Another will present adaptive neural network control algorithms for functional electrical stimulation of the peripheral nervous system to provide desired movements of paralyzed limbs in rodents or people. Ultimately, the frontier lies in being able to utilize the adaptive neurotechnology to promote neuroplasticity in the living system on a long-time scale under co-adaptive conditions.

  3. Hormesis and adaptive cellular control systems

    Science.gov (United States)

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  4. Hormesis and adaptive cellular control systems

    Science.gov (United States)

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  5. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  6. Topics in space gerontology: Effects of altered gravity and the problem of biological age

    Science.gov (United States)

    Economos, A. C.

    1982-01-01

    The use of altered gravity experimentation as a gerontological research tool is examined and a rationale for a systems approach to the adaptation to spaceflight is presented. The dependence of adaptation capacity on biological age is also discussed.

  7. Expressing Adaptation Strategies Using Adaptation Patterns

    Science.gov (United States)

    Zemirline, N.; Bourda, Y.; Reynaud, C.

    2012-01-01

    Today, there is a real challenge to enable personalized access to information. Several systems have been proposed to address this challenge including Adaptive Hypermedia Systems (AHSs). However, the specification of adaptation strategies remains a difficult task for creators of such systems. In this paper, we consider the problem of the definition…

  8. Evolutionary perspectives on learning: conceptual and methodological issues in the study of adaptive specializations.

    Science.gov (United States)

    Krause, Mark A

    2015-07-01

    Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.

  9. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  10. Creating biological nanomaterials using synthetic biology

    Science.gov (United States)

    Rice, MaryJoe K.; Ruder, Warren C.

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  11. NASA Biological Specimen Repository

    Science.gov (United States)

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.

    2010-01-01

    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  12. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  13. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    Martinetz Thomas

    2009-01-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  14. Self-adaptive exploration in evolutionary search

    CERN Document Server

    Toussaint, M

    2001-01-01

    We address a primary question of computational as well as biological research on evolution: How can an exploration strategy adapt in such a way as to exploit the information gained about the problem at hand? We first introduce an integrated formalism of evolutionary search which provides a unified view on different specific approaches. On this basis we discuss the implications of indirect modeling (via a ``genotype-phenotype mapping'') on the exploration strategy. Notions such as modularity, pleiotropy and functional phenotypic complex are discussed as implications. Then, rigorously reflecting the notion of self-adaptability, we introduce a new definition that captures self-adaptability of exploration: different genotypes that map to the same phenotype may represent (also topologically) different exploration strategies; self-adaptability requires a variation of exploration strategies along such a ``neutral space''. By this definition, the concept of neutrality becomes a central concern of this paper. Finally,...

  15. Climate adaptation futures

    National Research Council Canada - National Science Library

    Palutikof, J. P

    2013-01-01

    Adaptation is the poor cousin of the climate change challenge - the glamour of international debate is around global mitigation agreements, while the bottom-up activities of adaptation, carried out...

  16. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  17. Simulating Biological and Non-Biological Motion

    Science.gov (United States)

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  18. Adaptive Rationality, Adaptive Behavior and Institutions

    Directory of Open Access Journals (Sweden)

    Volchik Vyacheslav, V.

    2015-12-01

    Full Text Available The economic literature focused on understanding decision-making and choice processes reveals a vast collection of approaches to human rationality. Theorists’ attention has moved from absolutely rational, utility-maximizing individuals to boundedly rational and adaptive ones. A number of economists have criticized the concepts of adaptive rationality and adaptive behavior. One of the recent trends in the economic literature is to consider humans irrational. This paper offers an approach which examines adaptive behavior in the context of existing institutions and constantly changing institutional environment. It is assumed that adaptive behavior is a process of evolutionary adjustment to fundamental uncertainty. We emphasize the importance of actors’ engagement in trial and error learning, since if they are involved in this process, they obtain experience and are able to adapt to existing and new institutions. The paper aims at identifying relevant institutions, adaptive mechanisms, informal working rules and practices that influence actors’ behavior in the field of Higher Education in Russia (Rostov Region education services market has been taken as an example. The paper emphasizes the application of qualitative interpretative methods (interviews and discourse analysis in examining actors’ behavior.

  19. Adapting Natural Resource Management to Climate Change: The Blue Mountains and Northern Rockies Adaptation Partnerships

    Science.gov (United States)

    Halofsky, J.; Peterson, D. L.

    2014-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and other key stakeholders in the Blue Mountains region of northeastern Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  20. Adapting natural resource management to climate change: The South Central Oregon and Northern Rockies Adaptation Partnerships

    Science.gov (United States)

    Halofsky, J.; Peterson, D. L.

    2015-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and one national park in south central Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  1. Principles of adaptive optics

    CERN Document Server

    Tyson, Robert

    2010-01-01

    History and BackgroundIntroductionHistoryPhysical OpticsTerms in Adaptive OpticsSources of AberrationsAtmospheric TurbulenceThermal BloomingNonatmospheric SourcesAdaptive Optics CompensationPhase ConjugationLimitations of Phase ConjugationArtificial Guide StarsLasers for Guide StarsCombining the LimitationsLinear AnalysisPartial Phase ConjugationAdaptive Optics SystemsAdaptive Optics Imaging SystemsBeam Propagation Syst

  2. Adaptation to climate change

    NARCIS (Netherlands)

    Carmin, J.; Tierney, K.; Chu, E.; Hunter, L.M.; Roberts, J.T.; Shi, L.; Dunlap, R.E.; Brulle, R.J.

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the financ

  3. Adaptation to climate change

    NARCIS (Netherlands)

    Carmin, J.; Tierney, K.; Chu, E.; Hunter, L.M.; Roberts, J.T.; Shi, L.; Dunlap, R.E.; Brulle, R.J.

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the

  4. Adaptive microwave impedance memory effect in a ferromagnetic insulator

    Science.gov (United States)

    Lee, Hanju; Friedman, Barry; Lee, Kiejin

    2016-12-01

    Adaptive electronics, which are often referred to as memristive systems as they often rely on a memristor (memory resistor), are an emerging technology inspired by adaptive biological systems. Dissipative systems may provide a proper platform to implement an adaptive system due to its inherent adaptive property that parameters describing the system are optimized to maximize the entropy production for a given environment. Here, we report that a non-volatile and reversible adaptive microwave impedance memory device can be realized through the adaptive property of the dissipative structure of the driven ferromagnetic system. Like the memristive device, the microwave impedance of the device is modulated as a function of excitation microwave passing through the device. This kind of new device may not only helpful to implement adaptive information processing technologies, but also may be useful to investigate and understand the underlying mechanism of spontaneous formation of complex and ordered structures.

  5. Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation

    DEFF Research Database (Denmark)

    This book constitutes the thoroughly refereed post-conference proceedings of the 10th International Conference on Adaptive Multimedia Retrieval, AMR 2012, held in Copenhagen, Denmark, in October 2012. The 17 revised full papers presented were carefully reviewed and selected from numerous submissi...... submissions. The papers cover topics of state of the art contributions, features and classification, location context, language and semantics, music retrieval, and adaption and HCI....

  6. Resilience through adaptation

    Science.gov (United States)

    van Voorn, George A. K.; Ligtenberg, Arend; Molenaar, Jaap

    2017-01-01

    Adaptation of agents through learning or evolution is an important component of the resilience of Complex Adaptive Systems (CAS). Without adaptation, the flexibility of such systems to cope with outside pressures would be much lower. To study the capabilities of CAS to adapt, social simulations with agent-based models (ABMs) provide a helpful tool. However, the value of ABMs for studying adaptation depends on the availability of methodologies for sensitivity analysis that can quantify resilience and adaptation in ABMs. In this paper we propose a sensitivity analysis methodology that is based on comparing time-dependent probability density functions of output of ABMs with and without agent adaptation. The differences between the probability density functions are quantified by the so-called earth-mover’s distance. We use this sensitivity analysis methodology to quantify the probability of occurrence of critical transitions and other long-term effects of agent adaptation. To test the potential of this new approach, it is used to analyse the resilience of an ABM of adaptive agents competing for a common-pool resource. Adaptation is shown to contribute positively to the resilience of this ABM. If adaptation proceeds sufficiently fast, it may delay or avert the collapse of this system. PMID:28196372

  7. [Individual adaptation strategies].

    Science.gov (United States)

    Aldasheva, A A

    2014-01-01

    The article looks at the relation between adaptation strategy and individual style of activity based on the doctrine of human adaptation of V.I. Medvedev that enables opening up characteristics of professional activity in diverse environments. It illustrates a role and the relation between physiological and psychological mechanisms, which can vary, depending on individual adaptation strategies of a person. Theoretical and practical studies based on activity paradigm allow us to look at the basic principles of human interaction with the environment from a new perspective. Based on the law on the conceptual model of adaptation proposed by V.I. Medvedev, the article illustrates that humans are active figures in adaptation situations, modeling their own adaption strategies, using different individual styles manifested in the programs of adaptive behaviour.

  8. Modeling Co-evolution of Speech and Biology.

    Science.gov (United States)

    de Boer, Bart

    2016-04-01

    Two computer simulations are investigated that model interaction of cultural evolution of language and biological evolution of adaptations to language. Both are agent-based models in which a population of agents imitates each other using realistic vowels. The agents evolve under selective pressure for good imitation. In one model, the evolution of the vocal tract is modeled; in the other, a cognitive mechanism for perceiving speech accurately is modeled. In both cases, biological adaptations to using and learning speech evolve, even though the system of speech sounds itself changes at a more rapid time scale than biological evolution. However, the fact that the available acoustic space is used maximally (a self-organized result of cultural evolution) is constant, and therefore biological evolution does have a stable target. This work shows that when cultural and biological traits are continuous, their co-evolution may lead to cognitive adaptations that are strong enough to detect empirically.

  9. Modular microfluidic system for biological sample preparation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  10. Adaptive functional evolution of leptin in cold-adaptive pika family

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Aresearch team led by Prof.ZHAO Xinquan with the CAS Northwest Institute of Plateau Biology has put forward the viewpoint for the first time that adaptive functional evolution may occur in the leptin protein of the pika (Ochotona) family, a typical coldadaptive mammal.

  11. Economy of Adaptation to High Altitude

    Institute of Scientific and Technical Information of China (English)

    Jean-Paul Richalet

    2004-01-01

    @@ The international meeting that will be held in Xining and Lhasa in August 2004 will be a wonderful occasion to share facts and concepts dealing with adaptation to high altitude. Life at high altitude is a challenge for thousands of animal species and millions of humans residing or visiting high altitude regions of the world. To try to understand the physiological mechanisms involved in the adaptation processes to high altitude hypoxia, it is convenient to start by defining what is "extreme" from a biological point of view.

  12. Cell biology perspectives in phage biology.

    Science.gov (United States)

    Ansaldi, Mireille

    2012-01-01

    Cellular biology has long been restricted to large cellular organisms. However, as the resolution of microscopic methods increased, it became possible to study smaller cells, in particular bacterial cells. Bacteriophage biology is one aspect of bacterial cell biology that has recently gained insight from cell biology. Despite their small size, bacteriophages could be successfully labeled and their cycle studied in the host cells. This review aims to put together, although non-extensively, several cell biology studies that recently pushed the elucidation of key mechanisms in phage biology, such as the lysis-lysogeny decision in temperate phages or genome replication and transcription, one step further.

  13. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  14. Evolutionary Transcriptomics and Proteomics: Insight into Plant Adaptation.

    Science.gov (United States)

    Voelckel, Claudia; Gruenheit, Nicole; Lockhart, Peter

    2017-06-01

    Comparative transcriptomics and proteomics (T&P) have brought biological insight into development, gene function, and physiological stress responses. However, RNA-seq and high-throughput proteomics remain underutilised in studies of plant adaptation. These methodologies have created discovery tools with the potential to significantly advance our understanding of adaptive diversification. We outline experimental recommendations for their application. We discuss analysis models and approaches that accelerate the identification of adaptive gene sets and integrate transcriptome, proteome, phenotypic, and environmental data. Finally, we encourage widespread uptake and future developments in T&P that will advance our understanding of evolution and adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Active materials for adaptive architectural envelopes based on plant adaptation principles

    Directory of Open Access Journals (Sweden)

    Marlen Lopez

    2015-06-01

    Full Text Available In this paper, the authors present research into adaptive architectural envelopes that adapt to environmental changes using active materials, as a result of application of biomimetic principles from plants to architecture. Buildings use large amounts of energy in order to maintain their internal comfort, because conventional buildings are designed to provide a static design solution. Most of the current solutions for facades are not designed for optimum adaptation to contextual issues and needs, while biological solutions to adaptation are often complex, multi-functional and highly responsive. We focus on plant adaptations to the environment, as, due to their immobility, they have developed special means of protection against weather changing conditions. Furthermore, recent developments in new technologies are allowing the possibility to transfer these plant adaptation strategies to technical implementation. These technologies include: multi-material 3D printing, advances in materials science and new capabilities in simulation software. Unlike traditional mechanical activation used for dynamic systems in kinetic facades, adaptive architectural envelopes require no complex electronics, sensors, or actuators. The paper proposes a research of the relationship that can be developed between active materials and environmental issues in order to propose innovative and low-tech design strategies to achieve living envelopes according to plant adaptation principles.  

  16. Evolving political science. Biological adaptation, rational action, and symbolism.

    Science.gov (United States)

    Tingley, Dustin

    2006-01-01

    Political science, as a discipline, has been reluctant to adopt theories and methodologies developed in fields studying human behavior from an evolutionary standpoint. I ask whether evolutionary concepts are reconcilable with standard political-science theories and whether those concepts help solve puzzles to which these theories classically are applied. I find that evolutionary concepts readily and simultaneously accommodate theories of rational choice, symbolism, interpretation, and acculturation. Moreover, phenomena perennially hard to explain in standard political science become clearer when human interactions are understood in light of natural selection and evolutionary psychology. These phenomena include the political and economic effects of emotion, status, personal attractiveness, and variations in information-processing and decision-making under uncertainty; exemplary is the use of "focal points" in multiple-equilibrium games. I conclude with an overview of recent research by, and ongoing debates among, scholars analyzing politics in evolutionarily sophisticated terms.

  17. Biological Investigations of Adaptive Networks. Neuronal Control of Conditioned Responding.

    Science.gov (United States)

    1984-05-20

    extraocular muscles in the rabbit nictitating membrane response: a reexamination. To appear in Behavioural Brain Research , 1984/85. Other articles...our original findings. A report of his work is in press in the journal Behavioural Brain Research . % - *FILMED 4-85 DTIC -t -6 N. *N 1

  18. Biological Investigations of Adaptive Networks: Neuronal Control of Conditioned Responding.

    Science.gov (United States)

    1986-07-01

    published descriptions will appear in Behavioural Brain Research , Proceedings of the Cognitive Science Society meetings of 1986. A preliminary report of...interstimulus intervals. Behavioural Brain Research . In press..... ... ... .. ............ .....- .. 11. Desmond, J.E. & Moore, J.W. Dorsolateral pontine

  19. Biological and Theoretical Studies of Adaptive Networks: The Conditioned Response

    Science.gov (United States)

    1991-06-28

    stimulation of the red nucleus produces EPSPs in contralateral AAN neurons at mono- synaptic latencies 26 Holstege and Tan "’ report that with...Consistent with these anatomical data. intermediate facial nucleus neurons respond with EPSPs at monosynaptic latencies to red nucleus stimulation...responses. SpoV cells could project to red nucleus intrinsic inhibitory intemneurons. If these interneurons fired in 276 response to movement

  20. Technology transfer for adaptation

    Science.gov (United States)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  1. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  2. Constraint, pathology, and adaptation: how can we tell them apart?

    Science.gov (United States)

    Ellison, Peter T; Jasienska, Grazyna

    2007-01-01

    Adaptation is a central concept of modern evolutionary biology, but remains a difficult one nevertheless. Definitions of adaptation are often confounded with definitions of natural selection, rendering them somewhat circular and difficult to operationalize. Williams introduced a definition that avoids such tautology and a strategy for testing adaptive claims against chance as an alternative explanation for design complexity. Gould and Lewontin ([1979]: Proc R Soc Lond B Biol Sci 205:581-598) challenged this strategy for pitting adaptation against a straw alternative, and argued that constraint is often the cause of design complexity. The field of Darwinian medicine has underscored the fact that adaptation can also be difficult to discriminate from pathology, which can also produce design complexity. We suggest that an updated version of Williams' strategy is to consider any claim of adaptation against constraint and pathology as alternatives. We use an example drawn from the intersection of human reproductive ecology and developmental biology to illustrate how this updated strategy can be applied. Where we can generate distinct predictions for the three alternative hypotheses, constraint, pathology, and adaptation, we have a better situation in which to evaluate adaptive claims with a real possibility of falsification. We view this strategy as an improvement over Williams' original suggestion, but not as a definitive strategy. Further advances, however, will likely also be based on a sound understanding of the concept of adaptation and the identification of the strongest competing alternatives to it.

  3. Adaptation and Influence

    DEFF Research Database (Denmark)

    Paster, Thomas

    , and (d) the relationship of entrepreneurs and corporations to political institutions and public policies is primarily adaptive, rather than causative. The paper proposes a two-dimensional typology of business-politics relations that combines the Schumpeterian focus on adaptation with the Marxian focus...... on influence. These two dimensions - adaptation and influence - result in four ideal types: business-dominated social compromise, imposed social compromise, business dominance, and political confrontation. Examples from German welfare state history illustrate these four types. The paper suggests...

  4. Adaptive Pairing Reversible Watermarking.

    Science.gov (United States)

    Dragoi, Ioan-Catalin; Coltuc, Dinu

    2016-05-01

    This letter revisits the pairwise reversible watermarking scheme of Ou et al., 2013. An adaptive pixel pairing that considers only pixels with similar prediction errors is introduced. This adaptive approach provides an increased number of pixel pairs where both pixels are embedded and decreases the number of shifted pixels. The adaptive pairwise reversible watermarking outperforms the state-of-the-art low embedding bit-rate schemes proposed so far.

  5. Adaptive immunity programmes in breast cancer.

    Science.gov (United States)

    Varn, Frederick S; Mullins, David W; Arias-Pulido, Hugo; Fiering, Steven; Cheng, Chao

    2017-01-01

    The role of the immune system in shaping cancer development and patient prognosis has recently become an area of intense focus in industry and academia. Harnessing the adaptive arm of the immune system for tumour eradication has shown great promise in a variety of tumour types. Differences between tissues, however, necessitate a greater understanding of the adaptive immunity programmes that are active within each tumour type. In breast cancer, adaptive immune programmes play diverse roles depending on the cellular infiltration found in each tumour. Cytotoxic T lymphocytes and T helper type 1 cells can induce tumour eradication, whereas regulatory T cells and T helper type 2 cells are known to be involved in tumour-promoting immunosuppressive responses. Complicating these matters, heterogeneous expression of hormone receptors and growth factors in different tumours leads to disparate, patient-specific adaptive immune responses. Despite this non-conformity in adaptive immune behaviours, encouraging basic and clinical results have been observed that suggest a role for immunotherapeutic approaches in breast cancer. Here, we review the literature pertaining to the adaptive immune response in breast cancer, summarize the primary findings relating to the breast tumour's biology, and discuss potential clinical immunotherapies.

  6. Systems biology approaches in aging research.

    Science.gov (United States)

    Chauhan, Anuradha; Liebal, Ulf W; Vera, Julio; Baltrusch, Simone; Junghanß, Christian; Tiedge, Markus; Fuellen, Georg; Wolkenhauer, Olaf; Köhling, Rüdiger

    2015-01-01

    Aging is a systemic process which progressively manifests itself at multiple levels of structural and functional organization from molecular reactions and cell-cell interactions in tissues to the physiology of an entire organ. There is ever increasing data on biomedical relevant network interactions for the aging process at different scales of time and space. To connect the aging process at different structural, temporal and spatial scales, extensive systems biological approaches need to be deployed. Systems biological approaches can not only systematically handle the large-scale datasets (like high-throughput data) and the complexity of interactions (feedback loops, cross talk), but also can delve into nonlinear behaviors exhibited by several biological processes which are beyond intuitive reasoning. Several public-funded agencies have identified the synergistic role of systems biology in aging research. Using one of the notable public-funded programs (GERONTOSYS), we discuss how systems biological approaches are helping the scientists to find new frontiers in aging research. We elaborate on some systems biological approaches deployed in one of the projects of the consortium (ROSage). The systems biology field in aging research is at its infancy. It is open to adapt existing systems biological methodologies from other research fields and devise new aging-specific systems biological methodologies. 2015 S. Karger AG, Basel.

  7. Modeling of Biological Intelligence for SCM System Optimization

    OpenAIRE

    Shengyong Chen; Yujun Zheng; Carlo Cattani; Wanliang Wang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing c...

  8. Quantifying the adaptive cycle

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  9. Adapt or Become Extinct!

    DEFF Research Database (Denmark)

    Goumas, Georgios; McKee, Sally A.; Själander, Magnus

    2011-01-01

    during the execution of an application can be utilized to adapt the execution context and may lead to performance gains beyond those provided by static information and compile-time adaptation. We consider specialization based on dynamic information like user input, architectural characteristics...... static analysis (either during ahead-of-time or just-in-time) compilation. We extend the notion of information-driven adaptation and outline the architecture of an infrastructure designed to enable information ow and adaptation throughout the life-cycle of an application....

  10. Adaptation and visual salience

    Science.gov (United States)

    McDermott, Kyle C.; Malkoc, Gokhan; Mulligan, Jeffrey B.; Webster, Michael A.

    2011-01-01

    We examined how the salience of color is affected by adaptation to different color distributions. Observers searched for a color target on a dense background of distractors varying along different directions in color space. Prior adaptation to the backgrounds enhanced search on the same background while adaptation to orthogonal background directions slowed detection. Advantages of adaptation were seen for both contrast adaptation (to different color axes) and chromatic adaptation (to different mean chromaticities). Control experiments, including analyses of eye movements during the search, suggest that these aftereffects are unlikely to reflect simple learning or changes in search strategies on familiar backgrounds, and instead result from how adaptation alters the relative salience of the target and background colors. Comparable effects were observed along different axes in the chromatic plane or for axes defined by different combinations of luminance and chromatic contrast, consistent with visual search and adaptation mediated by multiple color mechanisms. Similar effects also occurred for color distributions characteristic of natural environments with strongly selective color gamuts. Our results are consistent with the hypothesis that adaptation may play an important functional role in highlighting the salience of novel stimuli by discounting ambient properties of the visual environment. PMID:21106682

  11. Adaptive Wireless Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless technologies are an increasingly attractive means for spatial data, input, manipulation, and distribution. Mobitrum is proposing an innovative Adaptive...

  12. Gravitational Biology Facility on Space Station: Meeting the needs of space biology

    Science.gov (United States)

    Allen, Katherine; Wade, Charles

    1992-01-01

    The Gravitational Biology Facility (GBF) is a set of generic laboratory equipment needed to conduct research on Space Station Freedom (SSF), focusing on Space Biology Program science (Cell and Developmental Biology and Plant Biology). The GBF will be functional from the earliest utilization flights through the permanent manned phase. Gravitational biology research will also make use of other Life Sciences equipment on the space station as well as existing equipment developed for the space shuttle. The facility equipment will be developed based on requirements derived from experiments proposed by the scientific community to address critical questions in the Space Biology Program. This requires that the facility have the ability to house a wide variety of species, various methods of observation, and numerous methods of sample collection, preservation, and storage. The selection of the equipment will be done by the members of a scientific working group (5 members representing cell biology, 6 developmental biology, and 6 plant biology) who also provide requirements to design engineers to ensure that the equipment will meet scientific needs. All equipment will undergo extensive ground based experimental validation studies by various investigators addressing a variety of experimental questions. Equipment will be designed to be adaptable to other space platforms. The theme of the Gravitational Biology Facility effort is to provide optimal and reliable equipment to answer the critical questions in Space Biology as to the effects of gravity on living systems.

  13. Systems biology of industrial microorganisms.

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    2010-01-01

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  14. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  15. Entropy and Selection: Life as an Adaptation for Universe Replication

    Directory of Open Access Journals (Sweden)

    Michael E. Price

    2017-01-01

    Full Text Available Natural selection is the strongest known antientropic process in the universe when operating at the biological level and may also operate at the cosmological level. Consideration of how biological natural selection creates adaptations may illuminate the consequences and significance of cosmological natural selection. An organismal trait is more likely to constitute an adaptation if characterized by more improbable complex order, and such order is the hallmark of biological selection. If the same is true of traits created by selection in general, then the more improbably ordered something is (i.e., the lower its entropy, the more likely it is to be a biological or cosmological adaptation. By this logic, intelligent life (as the least-entropic known entity is more likely than black holes or anything else to be an adaptation designed by cosmological natural selection. This view contrasts with Smolin’s suggestion that black holes are an adaptation designed by cosmological natural selection and that life is the by-product of selection for black holes. Selection may be the main or only ultimate antientropic process in the universe/multiverse; that is, much or all observed order may ultimately be the product or by-product of biological and cosmological selection.

  16. Biological warfare agents.

    Science.gov (United States)

    Pohanka, Miroslav; Kuca, Kamil

    2010-01-01

    Biological warfare agents are a group of pathogens and toxins of biological origin that can be potentially misused for military or criminal purposes. The present review attempts to summarize necessary knowledge about biological warfare agents. The historical aspects, examples of applications of these agents such as anthrax letters, biological weapons impact, a summary of biological warfare agents and epidemiology of infections are described. The last section tries to estimate future trends in research on biological warfare agents.

  17. Stable swarming using adaptive long-range interactions

    Science.gov (United States)

    Gorbonos, Dan; Gov, Nir S.

    2017-04-01

    Sensory mechanisms in biology, from cells to humans, have the property of adaptivity, whereby the response produced by the sensor is adapted to the overall amplitude of the signal, reducing the sensitivity in the presence of strong stimulus, while increasing it when it is weak. This property is inherently energy consuming and a manifestation of the nonequilibrium nature of living organisms. We explore here how adaptivity affects the effective forces that organisms feel due to others in the context of a uniform swarm, in both two and three dimensions. The interactions between the individuals are taken to be attractive and long-range and of power-law form. We find that the effects of adaptivity inside the swarm are dramatic, where the effective forces decrease (or remain constant) with increasing swarm density. Linear stability analysis demonstrates how this property prevents collapse (Jeans instability), when the forces are adaptive. Adaptivity therefore endows swarms with a natural mechanism for self-stabilization.

  18. Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation

    DEFF Research Database (Denmark)

    This book constitutes the thoroughly refereed post-conference proceedings of the 10th International Conference on Adaptive Multimedia Retrieval, AMR 2012, held in Copenhagen, Denmark, in October 2012. The 17 revised full papers presented were carefully reviewed and selected from numerous submissi...

  19. Thermodynamics of adaptive molecular resolution

    Science.gov (United States)

    Delgado-Buscalioni, R.

    2016-11-01

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U(1)-U(0). The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al., J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as `real' thermodynamic variables. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  20. Fundamentals of adaptive signal processing

    CERN Document Server

    Uncini, Aurelio

    2015-01-01

    This book is an accessible guide to adaptive signal processing methods that equips the reader with advanced theoretical and practical tools for the study and development of circuit structures and provides robust algorithms relevant to a wide variety of application scenarios. Examples include multimodal and multimedia communications, the biological and biomedical fields, economic models, environmental sciences, acoustics, telecommunications, remote sensing, monitoring, and, in general, the modeling and prediction of complex physical phenomena. The reader will learn not only how to design and implement the algorithms but also how to evaluate their performance for specific applications utilizing the tools provided. While using a simple mathematical language, the employed approach is very rigorous. The text will be of value both for research purposes and for courses of study.

  1. Messy biology and the origins of evolutionary innovations.

    Science.gov (United States)

    Tawfik, Dan S

    2010-10-01

    Biological messiness relates to infidelity, heterogeneity, stochastic noise and variation--both genetic and phenotypic--at all levels, from single proteins to organisms. Messiness comes from the complexity and evolutionary history of biological systems and from the high cost of accuracy. For better or for worse, messiness is inherent to biology. It also provides the raw material for physiological and evolutionary adaptations to new challenges.

  2. Adaptive Wavelet Transforms

    Energy Technology Data Exchange (ETDEWEB)

    Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  3. [Postvagotomy adaptation syndrome].

    Science.gov (United States)

    Shapovalov, V A

    1998-01-01

    It was established in experiment, that the changes of the natural resistance of organism indexes and of the peritoneal cavity cytology has compensatory-adaptational character while the denervation-adaptational syndrome occurrence and progress, which may be assessed as eustress. Vagotomy and operative trauma cause qualitatively different reactions of an organism.

  4. Management for adaptation

    Science.gov (United States)

    John Innes; Linda A. Joyce; Seppo Kellomaki; Bastiaan Louman; Aynslie Ogden; John Parrotta; Ian Thompson; Matthew Ayres; Chin Ong; Heru Santoso; Brent Sohngen; Anita Wreford

    2009-01-01

    This chapter develops a framework to explore examples of adaptation options that could be used to ensure that the ecosystem services provided by forests are maintained under future climates. The services are divided into broad areas within which managers can identify specific management goals for individual forests or landscapes. Adaptation options exist for the major...

  5. Behavioral Adaptation and Acceptance

    NARCIS (Netherlands)

    Martens, M.H.; Jenssen, G.D.

    2012-01-01

    One purpose of Intelligent Vehicles is to improve road safety, throughput, and emissions. However, the predicted effects are not always as large as aimed for. Part of this is due to indirect behavioral changes of drivers, also called behavioral adaptation. Behavioral adaptation (BA) refers to

  6. Appraising Adaptive Management

    Directory of Open Access Journals (Sweden)

    Kai N. Lee

    1999-12-01

    Full Text Available Adaptive management is appraised as a policy implementation approach by examining its conceptual, technical, equity, and practical strengths and limitations. Three conclusions are drawn: (1 Adaptive management has been more influential, so far, as an idea than as a practical means of gaining insight into the behavior of ecosystems utilized and inhabited by humans. (2 Adaptive management should be used only after disputing parties have agreed to an agenda of questions to be answered using the adaptive approach; this is not how the approach has been used. (3 Efficient, effective social learning, of the kind facilitated by adaptive management, is likely to be of strategic importance in governing ecosystems as humanity searches for a sustainable economy.

  7. Adaptive noise cancellation

    CERN Document Server

    Akram, N

    1999-01-01

    In this report we describe the concept of adaptive noise canceling, an alternative method of estimating signals corrupted by additive noise of interference. The method uses 'primary' input containing the corrupted signal and a 'reference' input containing noise correlated in some unknown way with the primary noise, the reference input is adaptively filtered and subtracted from the primary input to obtain the signal estimate. Adaptive filtering before subtraction allows the treatment of inputs that are deterministic or stochastic, stationary or time variable. When the reference input is free of signal and certain other conditions are met then noise in the primary input can be essentially eliminated without signal distortion. It is further shown that the adaptive filter also acts as notch filter. Simulated results illustrate the usefulness of the adaptive noise canceling technique.

  8. Financing climate change adaptation.

    Science.gov (United States)

    Bouwer, Laurens M; Aerts, Jeroen C J H

    2006-03-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources. We present an overview of financial resources and propose the employment of a two-track approach: one track that attempts to secure climate change adaptation funding under the UNFCCC; and a second track that improves mainstreaming of climate risk management in development efforts. Developed countries would need to demonstrate much greater commitment to the funding of adaptation measures if the UNFCCC were to cover a substantial part of the costs. The mainstreaming of climate change adaptation could follow a risk management path, particularly in relation to disaster risk reduction. 'Climate-proofing' of development projects that currently do not consider climate and weather risks could improve their sustainability.

  9. User-Centered Evaluation of Adaptive and Adaptable Systems

    NARCIS (Netherlands)

    Velsen, van Lex; Geest, van der Thea M.; Klaassen, Rob F.

    2009-01-01

    Adaptive and adaptable systems provide tailored output to various users in various contexts. While adaptive systems base their output on implicit inferences, adaptable systems use explicitly provided information. Since the presentation or output of these systems is adapted, standard user-centered ev

  10. Exaptation, adaptation, and evolutionary psychology.

    Science.gov (United States)

    Schulz, Armin

    2013-01-01

    One of the most well known methodological criticisms of evolutionary psychology is Gould's claim that the program pays too much attention to adaptations, and not enough to exaptations. Almost as well known is the standard rebuttal of that criticism: namely, that the study of exaptations in fact depends on the study of adaptations. However, as I try to show in this paper, it is premature to think that this is where this debate ends. First, the notion of exaptation that is commonly used in this debate is different from the one that Gould and Vrba originally defined. Noting this is particularly important, since, second, the standard reply to Gould's criticism only works if the criticism is framed in terms of the former notion of exaptation, and not the latter. However, third, this ultimately does not change the outcome of the debate much, as evolutionary psychologists can respond to the revamped criticism of their program by claiming that the original notion of exaptation is theoretically and empirically uninteresting. By discussing these issues further, I also seek to determine, more generally, which ways of approaching the adaptationism debate in evolutionary biology are useful, and which not.

  11. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  12. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  13. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs.

  14. A first attempt to bring computational biology into advanced high school biology classrooms.

    Directory of Open Access Journals (Sweden)

    Suzanne Renick Gallagher

    2011-10-01

    Full Text Available Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  15. A first attempt to bring computational biology into advanced high school biology classrooms.

    Science.gov (United States)

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  16. [Biological mutualism, concepts and models].

    Science.gov (United States)

    Perru, Olivier

    2011-01-01

    Mutualism is a biological association for a mutual benefit between two different species. In this paper, firstly, we examine the history and signification of mutualism in relation to symbiosis. Then, we consider the link between concepts and models of mutualism. Models of mutualism depend on different concepts we use: If mutualism is situated at populations' level, it will be expressed by Lotka-Volterra models, concerning exclusively populations' size. If mutualism is considered as a resources' exchange or a biological market increasing the fitness of these organisms, it will be described at an individual level by a cost-benefit model. Our analysis will be limited to the history and epistemology of Lotka-Volterra models and we hypothesize that these models are adapted at first to translate dynamic evolutions of mutualism. They render stability or variations of size and assume that there are clear distinctions and a state of equilibrium between populations of different species. Italian mathematician Vito Volterra demonstrated that biological associations consist in a constant relation between some species. In 1931 and 1935, Volterra described the general form of antagonistic or mutualistic biological associations by the same differential equations. We recognize that these equations have been more used to model competition or prey-predator interactions, but a simple sign change allows describing mutualism. The epistemological problem is the following: Volterra's equations help us to conceptualize a global phenomenon. However, mutualistic interactions may have stronger effects away from equilibrium and these effects may be better understood at individual level. We conclude that, between 1985 and 2000, some researchers carried on working and converting Lotka-Volterra models but this description appeared as insufficient. So, other researchers adopted an economical viewpoint, considering mutualism as a biological market.

  17. Synthetic Biology-The Synthesis of Biology.

    Science.gov (United States)

    Ausländer, Simon; Ausländer, David; Fussenegger, Martin

    2017-06-01

    Synthetic biology concerns the engineering of man-made living biomachines from standardized components that can perform predefined functions in a (self-)controlled manner. Different research strategies and interdisciplinary efforts are pursued to implement engineering principles to biology. The "top-down" strategy exploits nature's incredible diversity of existing, natural parts to construct synthetic compositions of genetic, metabolic, or signaling networks with predictable and controllable properties. This mainly application-driven approach results in living factories that produce drugs, biofuels, biomaterials, and fine chemicals, and results in living pills that are based on engineered cells with the capacity to autonomously detect and treat disease states in vivo. In contrast, the "bottom-up" strategy seeks to be independent of existing living systems by designing biological systems from scratch and synthesizing artificial biological entities not found in nature. This more knowledge-driven approach investigates the reconstruction of minimal biological systems that are capable of performing basic biological phenomena, such as self-organization, self-replication, and self-sustainability. Moreover, the syntheses of artificial biological units, such as synthetic nucleotides or amino acids, and their implementation into polymers inside living cells currently set the boundaries between natural and artificial biological systems. In particular, the in vitro design, synthesis, and transfer of complete genomes into host cells point to the future of synthetic biology: the creation of designer cells with tailored desirable properties for biomedicine and biotechnology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hormesis: a fundamental concept in biology

    Science.gov (United States)

    Calabrese, Edward J.

    2014-01-01

    This paper assesses the hormesis dose response concept, including its historical foundations, frequency, generality, quantitative features, mechanistic basis and biomedical, pharmaceutical and environmental health implications. The hormetic dose response is highly generalizable, being independent of biology model (i.e. common from plants to humans), level of biological organization (i.e. cell, organ and organism), endpoint, inducing agent and mechanism, providing the first general and quantitative description of plasticity. The hormetic dose response describes the limits to which integrative endpoints (e.g. cell proliferation, cell migration, growth patterns, tissue repair, aging processes, complex behaviors such as anxiety, learning, memory, and stress, preconditioning responses, and numerous adaptive responses) can be modulated (i.e., enhanced or diminished) by pharmaceutical, chemical and physical means. Thus, the hormesis concept is a fundamental concept in biology with a wide range of biological implications and biomedical applications.

  19. Hormesis: a fundamental concept in biology

    Directory of Open Access Journals (Sweden)

    Edward J. Calabrese

    2014-04-01

    Full Text Available This paper assesses the hormesis dose response concept, including its historical foundations, frequency, generality, quantitative features, mechanistic basis and biomedical, pharmaceutical and environmental health implications. The hormetic dose response is highly generalizable, being independent of biology model (i.e. common from plants to humans, level of biological organization (i.e. cell, organ and organism, endpoint, inducing agent and mechanism, providing the first general and quantitative description of plasticity. The hormetic dose response describes the limits to which integrative endpoints (e.g. cell proliferation, cell migration, growth patterns, tissue repair, aging processes, complex behaviors such as anxiety, learning, memory, and stress, preconditioning responses, and numerous adaptive responses can be modulated (i.e., enhanced or diminished by pharmaceutical, chemical and physical means. Thus, the hormesis concept is a fundamental concept in biology with a wide range of biological implications and biomedical applications.

  20. Studying cell biology in the skin

    Science.gov (United States)

    Morrow, Angel; Lechler, Terry

    2015-01-01

    Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists. PMID:26564861

  1. Nonequilibrium Enhances Adaptation Efficiency of Stochastic Biochemical Systems.

    Directory of Open Access Journals (Sweden)

    Chen Jia

    Full Text Available Adaptation is a crucial biological function possessed by many sensory systems. Early work has shown that some influential equilibrium models can achieve accurate adaptation. However, recent studies indicate that there are close relationships between adaptation and nonequilibrium. In this paper, we provide an explanation of these two seemingly contradictory results based on Markov models with relatively simple networks. We show that as the nonequilibrium driving becomes stronger, the system under consideration will undergo a phase transition along a fixed direction: from non-adaptation to simple adaptation then to oscillatory adaptation, while the transition in the opposite direction is forbidden. This indicates that although adaptation may be observed in equilibrium systems, it tends to occur in systems far away from equilibrium. In addition, we find that nonequilibrium will improve the performance of adaptation by enhancing the adaptation efficiency. All these results provide a deeper insight into the connection between adaptation and nonequilibrium. Finally, we use a more complicated network model of bacterial chemotaxis to validate the main results of this paper.

  2. Nonequilibrium Enhances Adaptation Efficiency of Stochastic Biochemical Systems

    Science.gov (United States)

    Jia, Chen; Qian, Minping

    2016-01-01

    Adaptation is a crucial biological function possessed by many sensory systems. Early work has shown that some influential equilibrium models can achieve accurate adaptation. However, recent studies indicate that there are close relationships between adaptation and nonequilibrium. In this paper, we provide an explanation of these two seemingly contradictory results based on Markov models with relatively simple networks. We show that as the nonequilibrium driving becomes stronger, the system under consideration will undergo a phase transition along a fixed direction: from non-adaptation to simple adaptation then to oscillatory adaptation, while the transition in the opposite direction is forbidden. This indicates that although adaptation may be observed in equilibrium systems, it tends to occur in systems far away from equilibrium. In addition, we find that nonequilibrium will improve the performance of adaptation by enhancing the adaptation efficiency. All these results provide a deeper insight into the connection between adaptation and nonequilibrium. Finally, we use a more complicated network model of bacterial chemotaxis to validate the main results of this paper. PMID:27195482

  3. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; Elebeoba E. May; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  4. Introduction to adaptive arrays

    CERN Document Server

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  5. Adaptive Vertex Fitting

    CERN Document Server

    Frühwirth, R; Vanlaer, Pascal

    2007-01-01

    Vertex fitting frequently has to deal with both mis-associated tracks and mis-measured track errors. A robust, adaptive method is presented that is able to cope with contaminated data. The method is formulated as an iterative re-weighted Kalman filter. Annealing is introduced to avoid local minima in the optimization. For the initialization of the adaptive filter a robust algorithm is presented that turns out to perform well in a wide range of applications. The tuning of the annealing schedule and of the cut-off parameter is described, using simulated data from the CMS experiment. Finally, the adaptive property of the method is illustrated in two examples.

  6. [Adaptive optics for ophthalmology].

    Science.gov (United States)

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy.

  7. Adaptation investments and homeownership

    DEFF Research Database (Denmark)

    Hansen, Jørgen Drud; Skak, Morten

    2008-01-01

    by adapting the home through a supplementary investment. Ownership offers low costs of adaptation, but has high contract costs compared with renting. Consumers simultaneously choose housing demand and tenure, and because of the different cost structure only consumers with strong preferences for individual...... adaptation of the home choose ownership. This article analyses the consumer's optimization. The model provides an explanation for the observation that homeowners typically live in larger dwelling units than tenants. It also provides an explanation for a high price of housing services tending to reduce...

  8. Adaptation investments and homeownership

    DEFF Research Database (Denmark)

    Hansen, Jørgen Drud; Skak, Morten

    2008-01-01

    This article develops a model where ownership improves efficiency of the housing market as it enhances the utility of housing consumption for some consumers. The model is based on an extended Hotelling-Lancaster utility approach in which the ideal variant of housing is obtainable only by adapting...... the home through a supplementary investment. Ownership offers low costs of adaptation, but has high contract costs compared with renting. Consumers simultaneously decide housing demand and tenure, and because of the different cost structure only consumers with strong preferences for individual adaptation...

  9. Adaptive network countermeasures.

    Energy Technology Data Exchange (ETDEWEB)

    McClelland-Bane, Randy; Van Randwyk, Jamie A.; Carathimas, Anthony G.; Thomas, Eric D.

    2003-10-01

    This report describes the results of a two-year LDRD funded by the Differentiating Technologies investment area. The project investigated the use of countermeasures in protecting computer networks as well as how current countermeasures could be changed in order to adapt with both evolving networks and evolving attackers. The work involved collaboration between Sandia employees and students in the Sandia - California Center for Cyber Defenders (CCD) program. We include an explanation of the need for adaptive countermeasures, a description of the architecture we designed to provide adaptive countermeasures, and evaluations of the system.

  10. Non-specific Adaptive Reactions of Athletes: Evaluation and Correction

    Directory of Open Access Journals (Sweden)

    K. N. Naumova

    2015-12-01

    Full Text Available This work studies changes in non-specific adaptive reactions (NSAR of athletes who practice Wushu and Qigong and take Kladorod, a biological product made from plant material. The results of our study demonstrate the effectiveness of Kladorod as a remedy to enhance adaptive capacity with the possibility of application for training of athletes without any restrictions within the criteria of doping control.

  11. Homeoviscous adaptation and the regulation of membrane lipids

    DEFF Research Database (Denmark)

    Ernst, Robert; Ejsing, Christer S; Antonny, Bruno

    2016-01-01

    Biological membranes are complex and dynamic assemblies of lipids and proteins. Poikilothermic organisms including bacteria, fungi, reptiles, and fish do not control their body temperature and must adapt their membrane lipid composition in order to maintain membrane fluidity in the cold. This ada......Biological membranes are complex and dynamic assemblies of lipids and proteins. Poikilothermic organisms including bacteria, fungi, reptiles, and fish do not control their body temperature and must adapt their membrane lipid composition in order to maintain membrane fluidity in the cold...

  12. A biologically inspired MANET architecture

    Science.gov (United States)

    Kershenbaum, Aaron; Pappas, Vasileios; Lee, Kang-Won; Lio, Pietro; Sadler, Brian; Verma, Dinesh

    2008-04-01

    Mobile Ad-Hoc Networks (MANETs), that do not rely on pre-existing infrastructure and that can adapt rapidly to changes in their environment, are coming into increasingly wide use in military applications. At the same time, the large computing power and memory available today even for small, mobile devices, allows us to build extremely large, sophisticated and complex networks. Such networks, however, and the software controlling them are potentially vulnerable to catastrophic failures because of their size and complexity. Biological networks have many of these same characteristics and are potentially subject to the same problems. But in successful organisms, these biological networks do in fact function well so that the organism can survive. In this paper, we present a MANET architecture developed based on a feature, called homeostasis, widely observed in biological networks but not ordinarily seen in computer networks. This feature allows the network to switch to an alternate mode of operation under stress or attack and then return to the original mode of operation after the problem has been resolved. We explore the potential benefits such an architecture has, principally in terms of the ability to survive radical changes in its environment using an illustrative example.

  13. A roadmap for island biology

    DEFF Research Database (Denmark)

    Patino, Jairo; Whittaker, Robert J.; Borges, Paulo A.V.

    2017-01-01

    Aims: The 50th anniversary of the publication of the seminal book, The Theory of Island Biogeography, by Robert H. MacArthur and Edward O. Wilson, is a timely moment to review and identify key research foci that could advance island biology. Here, we take a collaborative horizon-scanning approach...... from biogeography, community ecology and evolution to global change, this horizon scan may help to foster the formation of interdisciplinary research networks, enhancing joint efforts to better understand the past, present and future of island biotas....... to identify 50 fundamental questions for the continued development of the field. Location: Worldwide. Methods: We adapted a well-established methodology of horizon scanning to identify priority research questions in island biology, and initiated it during the Island Biology 2016 conference held in the Azores....... Results: Questions were structured around four broad and partially overlapping island topics, including: (Macro)Ecology and Biogeography, (Macro)Evolution, Community Ecology, and Conservation and Management. These topics were then subdivided according to the following subject areas: global diversity...

  14. Exploring Adaptive Program Behavior

    DEFF Research Database (Denmark)

    Bonnichsen, Lars Frydendal; Probst, Christian W.

    Modern computer systems are increasingly complex, with ever changing bottlenecks. This makes it difficult to ensure consistent performance when porting software, or even running it. Adaptivity, ie, switching between program variations, and dynamic recompilation have been suggested as solutions. B...

  15. The genomics of adaptation.

    Science.gov (United States)

    Radwan, Jacek; Babik, Wiesław

    2012-12-22

    The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation.

  16. Adapt or Die

    DEFF Research Database (Denmark)

    Brody, Joshua Eric; Larsen, Kasper Green

    2015-01-01

    In this paper, we study the role non-adaptivity plays in maintaining dynamic data structures. Roughly speaking, a data structure is non-adaptive if the memory locations it reads and/or writes when processing a query or update depend only on the query or update and not on the contents of previously...... read cells. We study such non-adaptive data structures in the cell probe model. This model is one of the least restrictive lower bound models and in particular, cell probe lower bounds apply to data structures developed in the popular word-RAM model. Unfortunately, this generality comes at a high cost......: the highest lower bound proved for any data structure problem is only polylogarithmic. Our main result is to demonstrate that one can in fact obtain polynomial cell probe lower bounds for non-adaptive data structures. To shed more light on the seemingly inherent polylogarithmic lower bound barrier, we study...

  17. Adaptive digital filters

    CERN Document Server

    Kovačević, Branko; Milosavljević, Milan

    2013-01-01

    Adaptive Digital Filters” presents an important discipline applied to the domain of speech processing. The book first makes the reader acquainted with the basic terms of filtering and adaptive filtering, before introducing the field of advanced modern algorithms, some of which are contributed by the authors themselves. Working in the field of adaptive signal processing requires the use of complex mathematical tools. The book offers a detailed presentation of the mathematical models that is clear and consistent, an approach that allows everyone with a college level of mathematics knowledge to successfully follow the mathematical derivations and descriptions of algorithms.   The algorithms are presented in flow charts, which facilitates their practical implementation. The book presents many experimental results and treats the aspects of practical application of adaptive filtering in real systems, making it a valuable resource for both undergraduate and graduate students, and for all others interested in m...

  18. Adaptive Architectural Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Kirkegaard, Poul Henning

    2010-01-01

    different shape alternatives. The adaptive structure is a proposal for a responsive building envelope which is an idea of a first level operational framework for present and future investigations towards performance based responsive architectures through a set of responsive typologies. A mock- up concept......Recent years have seen an increasing variety of applications of adaptive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability....... The general scopes of this paper are to develop a new adaptive kinetic architectural structure, particularly a reconfigurable architectural structure which can transform body shape from planar geometries to hyper-surfaces using different control strategies, i.e. a transformation into more than one or two...

  19. The Adaptive Organization

    DEFF Research Database (Denmark)

    Andersen, Torben Juul; Hallin, Carina Antonia

    2016-01-01

    Contemporary organizations operate under turbulent business conditions and must adapt their strategies to ongoing changes. This article argues that sustainable organizational performance is achieved when top management directs and coordinates interactive processes anchored in emerging organizatio......Contemporary organizations operate under turbulent business conditions and must adapt their strategies to ongoing changes. This article argues that sustainable organizational performance is achieved when top management directs and coordinates interactive processes anchored in emerging...... experiential insights from the fast response processes can be aggregated systematically from frontline employees and fed into the slow process of reasoning. When the fast and slow processes interact they form a dynamic system that adapts organizational activities to the changing conditions which identifies...... the adaptive organization....

  20. Asimovian Adaptive Agents

    CERN Document Server

    Gordon, D F

    2011-01-01

    The goal of this research is to develop agents that are adaptive and predictable and timely. At first blush, these three requirements seem contradictory. For example, adaptation risks introducing undesirable side effects, thereby making agents' behavior less predictable. Furthermore, although formal verification can assist in ensuring behavioral predictability, it is known to be time-consuming. Our solution to the challenge of satisfying all three requirements is the following. Agents have finite-state automaton plans, which are adapted online via evolutionary learning (perturbation) operators. To ensure that critical behavioral constraints are always satisfied, agents' plans are first formally verified. They are then reverified after every adaptation. If reverification concludes that constraints are violated, the plans are repaired. The main objective of this paper is to improve the efficiency of reverification after learning, so that agents have a sufficiently rapid response time. We present two solutions: ...

  1. Biologically inspired self-organizing networks

    Institute of Scientific and Technical Information of China (English)

    Naoki WAKAMIYA; Kenji LEIBNITZ; Masayuki MURATA

    2009-01-01

    Information networks are becoming more and more complex to accommodate a continuously increasing amount of traffic and networked devices, as well as having to cope with a growing diversity of operating environments and applications. Therefore, it is foreseeable that future information networks will frequently face unexpected problems, some of which could lead to the complete collapse of a network. To tackle this problem, recent attempts have been made to design novel network architectures which achieve a high level of scalability, adaptability, and robustness by taking inspiration from self-organizing biological systems. The objective of this paper is to discuss biologically inspired networking technologies.

  2. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  3. From equivalence to adaptation

    Directory of Open Access Journals (Sweden)

    Paulina Borowczyk

    2009-01-01

    Full Text Available The aim of this paper is to illustrate in which cases the translators use the adaptation when they are confronted with a term related to sociocultural aspects. We will discuss the notions of equivalence and adaptation and their limits in the translation. Some samples from Arte TV news and from the American film Shrek translated into Polish, German and French will be provided as a support for this article.

  4. Frustratingly Easy Domain Adaptation

    CERN Document Server

    Daumé, Hal

    2009-01-01

    We describe an approach to domain adaptation that is appropriate exactly in the case when one has enough ``target'' data to do slightly better than just using only ``source'' data. Our approach is incredibly simple, easy to implement as a preprocessing step (10 lines of Perl!) and outperforms state-of-the-art approaches on a range of datasets. Moreover, it is trivially extended to a multi-domain adaptation problem, where one has data from a variety of different domains.

  5. Network and adaptive sampling

    CERN Document Server

    Chaudhuri, Arijit

    2014-01-01

    Combining the two statistical techniques of network sampling and adaptive sampling, this book illustrates the advantages of using them in tandem to effectively capture sparsely located elements in unknown pockets. It shows how network sampling is a reliable guide in capturing inaccessible entities through linked auxiliaries. The text also explores how adaptive sampling is strengthened in information content through subsidiary sampling with devices to mitigate unmanageable expanding sample sizes. Empirical data illustrates the applicability of both methods.

  6. Adaptable DC offset correction

    Science.gov (United States)

    Golusky, John M. (Inventor); Muldoon, Kelly P. (Inventor)

    2009-01-01

    Methods and systems for adaptable DC offset correction are provided. An exemplary adaptable DC offset correction system evaluates an incoming baseband signal to determine an appropriate DC offset removal scheme; removes a DC offset from the incoming baseband signal based on the appropriate DC offset scheme in response to the evaluated incoming baseband signal; and outputs a reduced DC baseband signal in response to the DC offset removed from the incoming baseband signal.

  7. Adapting to the Environment

    Science.gov (United States)

    Auclair, Joy

    2014-01-01

    This author wanted to begin her 10-grade biology course with an authentic inquiry that included a review of equipment use, investigation methods, and critical thinking skills. She also wanted to engage students in the practice of science while teaching biological core ideas and crosscutting concepts. She was at a loss as to what that inquiry might…

  8. Technologies for climate change adaptation. Agriculture sector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. (ed.) (UNEP Risoe Centre, Roskilde (Denmark)); Clements, R.; Quezada, A.; Torres, J. (Practical Action Latin America, Lima (Peru)); Haggar, J. (Univ. of Greenwich, London (United Kingdom))

    2011-08-15

    This guidebook presents a selection of technologies for climate change adaptation in the agriculture sector. A set of 22 adaptation technologies are showcased. These are based primarily on the principles of agroecology, but also include scientific technologies of climate and biological sciences complemented by important sociological and institutional capacity building processes that are required for climate change to function. The technologies cover: 1) Planning for climate change and variability. 2) Sustainable water use and management. 3) Soil management. 4) Sustainable crop management. 5) Sustainable livestock management. 6) Sustainable farming systems. 7) Capacity building and stakeholder organisation. Technologies that tend to homogenise the natural environment and agricultural production have low possibilities of success in environmental stress conditions that are likely to result from climate change. On the other hand, technologies that allow for, and promote diversity are more likely to provide a strategy which strengthens agricultural production in the face of uncertain future climate change scenarios. The 22 technologies showcased in this guidebook have been selected because they facilitate the conservation and restoration of diversity while also providing opportunities for increasing agricultural productivity. Many of these technologies are not new to agricultural production practices, but they are implemented based on the assessment of current and possible future impacts of climate change in a particular location. agroecology is an approach that encompasses concepts of sustainable production and biodiversity promotion and therefore provides a useful framework for identifying and selecting appropriate adaptation technologies for the agriculture sector. The guidebook provides a systematic analysis of the most relevant information available on climate change adaptation technologies in the agriculture sector. It has been compiled based on a literature

  9. Adaptive context exploitation

    Science.gov (United States)

    Steinberg, Alan N.; Bowman, Christopher L.

    2013-05-01

    This paper presents concepts and an implementation scheme to improve information exploitation processes and products by adaptive discovery and processing of contextual information. Context is used in data fusion - and in inferencing in general - to provide expectations and to constrain processing. It also is used to infer or refine desired information ("problem variables") on the basis of other available information ("context variables"). Contextual exploitation becomes critical in several classes of inferencing problems in which traditional information sources do not provide sufficient resolution between entity states or when such states are poorly or incompletely modeled. An adaptive evidence-accrual inference method - adapted from developments in target recognition and scene understanding - is presented; whereby context variables are selected on the basis of (a) their utility in refining explicit problem variables, (b) the probability of evaluating these variables to within a given accuracy, given candidate system actions (data collection, mining or processing), and (c) the cost of such actions. The Joint Directors of Laboratories (JDL) Data Fusion Model, with its extension to dual Resource Management functions, has been adapted to accommodate adaptive information exploitation, to include adaptive context exploitation. The interplay of Data Fusion and Resource Management (DF&RM) functionality in exploiting contextual information is illustrated in terms of the dual-node DF&RM architecture. An important advance is in the integration of data mining methods for data search/discovery and for abductive model refinement.

  10. Investigating the Use of Inquiry & Web-Based Activities with Inclusive Biology Learners

    Science.gov (United States)

    Bodzin, Alec M.; Waller, Patricia L.; Edwards, Lana; Darlene Kale, Santoro

    2007-01-01

    A Web-integrated biology program is used to explore how to best assist inclusive high school students to learn biology with inquiry-based activities. Classroom adaptations and instructional strategies teachers may use to assist in promoting biology learning with inclusive learners are discussed.

  11. Vestigial Biological Structures: A Classroom-Applicable Test of Creationist Hypotheses

    Science.gov (United States)

    Senter, Phil; Ambrocio, Zenis; Andrade, Julia B.; Foust, Katanya K.; Gaston, Jasmine E.; Lewis, Ryshonda P.; Liniewski, Rachel M.; Ragin, Bobby A.; Robinson, Khanna L.; Stanley, Shane G.

    2015-01-01

    Lists of vestigial biological structures in biology textbooks are so short that some young-Earth creationist authors claim that scientists have lost confidence in the existence of vestigial structures and can no longer identify any verifiable ones. We tested these hypotheses with a method that is easily adapted to biology classes. We used online…

  12. Vestigial Biological Structures: A Classroom-Applicable Test of Creationist Hypotheses

    Science.gov (United States)

    Senter, Phil; Ambrocio, Zenis; Andrade, Julia B.; Foust, Katanya K.; Gaston, Jasmine E.; Lewis, Ryshonda P.; Liniewski, Rachel M.; Ragin, Bobby A.; Robinson, Khanna L.; Stanley, Shane G.

    2015-01-01

    Lists of vestigial biological structures in biology textbooks are so short that some young-Earth creationist authors claim that scientists have lost confidence in the existence of vestigial structures and can no longer identify any verifiable ones. We tested these hypotheses with a method that is easily adapted to biology classes. We used online…

  13. Wideband bioimpedance meter with the adaptive selection of frequency grid

    OpenAIRE

    V. S. Mosiychuk; G. V. Timoshenko; O. B. Sharpan

    2014-01-01

    Introduction. For the diagnosis of functional state and structure of biological objects with weakly expressed irregularities it is important quickly and accurately to determine the amplitude- and phase-frequency characteristics. Therefore, the purpose of the article is a representation of the results of the development of biological objects high-speed impedance meter with the ability to select adaptive grid measuring frequencies in the extended band. Structure of the impedance meter. Develope...

  14. Adaptive Synchronization of Memristor-based Chaotic Neural Systems

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu

    2014-11-01

    Full Text Available Chaotic neural networks consisting of a great number of chaotic neurons are able to reproduce the rich dynamics observed in biological nervous systems. In recent years, the memristor has attracted much interest in the efficient implementation of artificial synapses and neurons. This work addresses adaptive synchronization of a class of memristor-based neural chaotic systems using a novel adaptive backstepping approach. A systematic design procedure is presented. Simulation results have demonstrated the effectiveness of the proposed adaptive synchronization method and its potential in practical application of memristive chaotic oscillators in secure communication.

  15. A dynamical theory of speciation on holey adaptive landscapes

    CERN Document Server

    Gavrilets, S

    1998-01-01

    The metaphor of holey adaptive landscapes provides a pictorial representation of the process of speciation as a consequence of genetic divergence. In this metaphor, biological populations diverge along connected clusters of well-fit genotypes in a multidimensional adaptive landscape and become reproductively isolated species when they come to be on opposite sides of a ``hole'' in the adaptive landscape. No crossing of any adaptive valleys is required. I formulate and study a series of simple models describing the dynamics of speciation on holey adaptive landscapes driven by mutation and random genetic drift. Unlike most previous models that concentrate only on some stages of speciation, the models studied here describe the complete process of speciation from initiation until completion. The evolutionary factors included are selection (reproductive isolation), random genetic drift, mutation, recombination, and migration. In these models, pre- and post-mating reproductive isolation is a consequence of cumulativ...

  16. Beyond borders: the need for strategic global adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Ian

    2008-12-15

    The 'adaptation is local' mantra is no longer valid. Climate impacts are pervasive, inevitably crossing geographic and political boundaries. And they will be severe. Some top scientists now say we should prepare for a rise in global mean surface temperature of 4°C – even though most impact and adaptation research is based on 2°C. What will this mean for adaptation? We need to move far beyond measures like National Adaptation Plans of Action. The ramifications of this new scenario are much more than physical and biological: there are significant socioeconomic and geopolitical implications on a par with those of mitigation. Adaptation must be understood, negotiated and financed in that light.

  17. Adaptation to elevated CO2 in different biodiversity contexts

    Science.gov (United States)

    Kleynhans, Elizabeth J.; Otto, Sarah P.; Reich, Peter B.; Vellend, Mark

    2016-01-01

    In the absence of migration, species persistence depends on adaption to a changing environment, but whether and how adaptation to global change is altered by community diversity is not understood. Community diversity may prevent, enhance or alter how species adapt to changing conditions by influencing population sizes, genetic diversity and/or the fitness landscape experienced by focal species. We tested the impact of community diversity on adaptation by performing a reciprocal transplant experiment on grasses that evolved for 14 years under ambient and elevated CO2, in communities of low or high species richness. Using biomass as a fitness proxy, we find evidence for local adaptation to elevated CO2, but only for plants assayed in a community of similar diversity to the one experienced during the period of selection. Our results indicate that the biological community shapes the very nature of the fitness landscape within which species evolve in response to elevated CO2. PMID:27510545

  18. Stochastic Physics, Complex Systems and Biology

    CERN Document Server

    Qian, Hong

    2012-01-01

    In complex systems, the interplay between nonlinear and stochastic dynamics gives rise to an evolution process in Darwinian sense with punctuated equilibrium, random "mutations" and "adaptations". The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Epigenetic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a framework.

  19. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes.

    Science.gov (United States)

    Christie, Joshua R; Beekman, Madeleine

    2017-03-01

    Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes-specifically their organization into host cells and their uniparental (maternal) inheritance-enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller's ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes-despite their asexual mode of reproduction-can readily undergo adaptive evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. On Adaptive vs. Non-adaptive Security of Multiparty Protocols

    DEFF Research Database (Denmark)

    Canetti, Ran; Damgård, Ivan Bjerre; Dziembowski, Stefan

    2001-01-01

    to the definition of Canetti, for honest-but-curious adversaries, adaptive security is equivalent to non-adaptive security when the number of parties is logarithmic, and is strictly stronger than non-adaptive security when the number of parties is super-logarithmic. For Byzantine adversaries, adaptive security...

  1. On the adaptive significance of circadian clocks for their owners.

    Science.gov (United States)

    Vaze, Koustubh M; Sharma, Vijay Kumar

    2013-05-01

    Circadian rhythms are believed to be an evolutionary adaptation to daily environmental cycles resulting from Earth's rotation about its axis. A trait evolved through a process of natural selection is considered as adaptation; therefore, rigorous demonstration of adaptation requires evidence suggesting evolution of a trait by natural selection. Like any other adaptive trait, circadian rhythms are believed to be advantageous to living beings through some perceived function. Circadian rhythms are thought to confer advantage to their owners through scheduling of biological functions at appropriate time of daily environmental cycle (extrinsic advantage), coordination of internal physiology (intrinsic advantage), and through their role in responses to seasonal changes. So far, the adaptive value of circadian rhythms has been tested in several studies and evidence indeed suggests that they confer advantage to their owners. In this review, we have discussed the background for development of the framework currently used to test the hypothesis of adaptive significance of circadian rhythms. Critical examination of evidence reveals that there are several lacunae in our understanding of circadian rhythms as adaptation. Although it is well known that demonstrating a given trait as adaptation (or setting the necessary criteria) is not a trivial task, here we recommend some of the basic criteria and suggest the nature of evidence required to comprehensively understand circadian rhythms as adaptation. Thus, we hope to create some awareness that may benefit future studies in this direction.

  2. Self-organization, embodiment, and biologically inspired robotics.

    Science.gov (United States)

    Pfeifer, Rolf; Lungarella, Max; Iida, Fumiya

    2007-11-16

    Robotics researchers increasingly agree that ideas from biology and self-organization can strongly benefit the design of autonomous robots. Biological organisms have evolved to perform and survive in a world characterized by rapid changes, high uncertainty, indefinite richness, and limited availability of information. Industrial robots, in contrast, operate in highly controlled environments with no or very little uncertainty. Although many challenges remain, concepts from biologically inspired (bio-inspired) robotics will eventually enable researchers to engineer machines for the real world that possess at least some of the desirable properties of biological organisms, such as adaptivity, robustness, versatility, and agility.

  3. Methods for isolation and viability assessment of biological organisms

    Science.gov (United States)

    Letant, Sonia Edith; Baker, Sarah Elyse; Bond, Tiziana; Chang, Allan Shih-Ping

    2015-02-03

    Isolation of biological or chemical organisms can be accomplished using a surface enhanced Raman scattering (SERS) system. The SERS system can be a single or a stacked plurality of photonic crystal membranes with noble-metal lined through pores for flowing analyte potentially containing the biological or chemical organisms. The through pores can be adapted to trap individual biological or chemical organisms and emit SERS spectra, which can then be detected by a detector and further analyzed for viability of the biological or chemical organism.

  4. Biology is simple.

    Science.gov (United States)

    Newman, Tim

    2015-12-30

    This paper explores the potential for simplicity to reveal new biological understanding. Borrowing selectively from physics thinking, and contrasting with Crick's reductionist philosophy, the author argues that greater emphasis on simplicity is necessary to advance biology and its applications.

  5. Resetting Biological Clocks

    Science.gov (United States)

    Winfree, Arthur T.

    1975-01-01

    Reports on experiments conducted on two biological clocks, in organisms in the plant and animal kingdoms, which indicate that biological oscillation can be arrested by a single stimulus of a definite strength delivered at the proper time. (GS)

  6. Biology of Blood

    Science.gov (United States)

    ... here for the Professional Version Home Blood Disorders Biology of Blood Overview of Blood Resources In This ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  7. Advances in Biological Science.

    Science.gov (United States)

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  8. Resetting Biological Clocks

    Science.gov (United States)

    Winfree, Arthur T.

    1975-01-01

    Reports on experiments conducted on two biological clocks, in organisms in the plant and animal kingdoms, which indicate that biological oscillation can be arrested by a single stimulus of a definite strength delivered at the proper time. (GS)

  9. 我国狂犬病流行毒株JX08-45适应细胞培养后的生物学特性%Biological characteristics of cell culture-adapted rabies virus isolate JX08-45

    Institute of Scientific and Technical Information of China (English)

    刘晔; 房丽君; 赵敬慧; 张守峰; 张菲; 扈荣良

    2012-01-01

    目的 鉴定我国狂犬病流行毒株JX08-45适应细胞培养后(命名为JX08-45CC株)的生物学特性.方法 通过全基因组序列分析比对、小鼠脑内和外周攻毒试验和免疫原性试验,分别对JX08-45CC株的基因组特点、毒力和免疫原性进行鉴定.结果 JX08-45CC株的基因组序列与JX08-45株比对,共出现16个核苷酸突变点和7个氨基酸突变点,其中6个氨基酸变异发生在G蛋白(333位精氨酸未改变)编码区,L蛋白仅有1个氨基酸突变;在G蛋白氨基酸变异中,4个突变序列在其他细胞适应毒株CVS-11、CTN-1、Nishigahara、SAG2、Flury-LEP和SRV9中也普遍存在.JX08-45CC株培养滴度≥107TCID50/ml时,脑内接种小鼠的致死率为100%,滴度为102~106 TCID50/ml时,脑内接种小鼠的致死率为20%~80%;滴度为105 ~ 108 TCID50/ml时,外周肌肉接种小鼠,致死率为10% ~ 70%;脑内和外周攻毒小鼠的潜伏期均为7~9 d,并于发病后24 ~ 48 h死亡.JX08-45CC株与狂犬病病毒CVS-11、ERA、SRV9和Flury-LEP株的中和抗体滴度差异均无统计学意义(P>0.05).结论 已对JX08-45CC株的基因组序列、毒力和免疫原性等生物学特性进行了鉴定,为开发具有我国自主知识产权的兽用狂犬病灭活疫苗候选株奠定了基础.%Objective To determine the biological characteristics of cell culture-adapted JX08-45 epidemic in China, renamed as JX08-45CC. Methods The genetic characteristics, virulence and immunogenicity of strain JX08-45CC were analyzed by whole genome sequencing, intracerebral and peripheral challenge tests in mice as well as immunogenicity test. Results As compared with that of strain JX08-45, a total of 16 nucleotide mutation sites and 7 amino acid mutation sites were observed in the genome sequence of strain JX08-45CC, of which 6 amino acid mutations appeared in G protein (the arginine at site 333 showed no change) while one in L protein. Four of the 6 amino acid mutations in the

  10. Learning in Adaptive Management: Insights from Published Practice

    Directory of Open Access Journals (Sweden)

    Christo Fabricius

    2014-03-01

    Full Text Available Adaptive management is often advocated as a solution to understanding and managing complexity in social-ecological systems. Given the centrality of learning in adaptive management, it remains unclear how learning in adaptive management is understood to occur, who learns, what they learn about, and how they learn. We conducted a systematic review using the Thomson Reuters Web of Science, and searched specifically for examples of the practical implementation of adaptive management between 2011 and 2013, i.e., excluding articles that suggested frameworks, models, or recommendations for future action. This provided a subset of 22 papers that were analyzed using five elements: the aims of adaptive management as stated in each paper; the reported achievements of adaptive management; what was learned; who learned; and how they learned. Our results indicate that, although most published adaptive management initiatives aimed at improvements in biological conservation or ecosystem management, scholars of adaptive management tend to report on learning more about governance and about learning, than about ecosystems or biological conservation. Whereas almost all the papers (91% listed improvements in biological conservation and ecosystem management as aims, 59% reported these as achievements. Whereas only 27% listed improved governance as an aim, 73% mentioned this as an achievement. Conservation scientists and academics reporting on adaptive management tend to learn among themselves, and very seldom (18% with external stakeholders. Adaptive ecosystem management is dominated by direct assessment and single-loop learning aimed at improving existing practices (86%, with about 50% engaged in double-loop learning and a similar number in deutero-learning (learning about learning. Some adaptive managers (36% combined double-and single-loop learning and the majority of these (6/8 reported on conservation achievements. A possible explanation for these findings is

  11. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  12. Adaptation and risk management

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Benjamin L [ORNL

    2011-01-01

    Adaptation assessment methods are compatible with the international risk management standard ISO:31000. Risk management approaches are increasingly being recommended for adaptation assessments at both national and local levels. Two orientations to assessments can commonly be identified: top-down and bottom-up, and prescriptive and diagnostic. Combinations of these orientations favor different types of assessments. The choice of orientation can be related to uncertainties in prediction and taking action, in the type of adaptation and in the degree of system stress. Adopting multiple viewpoints is to be encouraged, especially in complex situations. The bulk of current guidance material is consistent with top-down and predictive approaches, thus is most suitable for risk scoping and identification. Abroad range ofmaterial fromwithin and beyond the climate change literature can be used to select methods to be used in assessing and implementing adaptation. The framing of risk, correct formulation of the questions being investigated and assessment methodology are critical aspects of the scoping phase. Only when these issues have been addressed should be issue of specific methods and tools be addressed. The reorientation of adaptation from an assessment focused solely on anthropogenic climate change to broader issues of vulnerability/resilience, sustainable development and disaster risk, especially through a risk management framework, can draw from existing policy and management understanding in communities, professions and agencies, incorporating existing agendas, knowledge, risks, and issues they already face.

  13. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  14. BIOLOGICAL FOUNDATIONS OF LANGUAGE.

    Science.gov (United States)

    LENNEBERG, ERIC H.

    THE RELATIONSHIP BETWEEN BIOLOGY AND LANGUAGE IS EXPLORED IN THIS VOLUME. THE AUTHOR BELIEVES THAT "LANGUAGE IS THE MANIFESTATION OF SPECIES-SPECIFIC COGNITIVE PROPENSITIES. IT IS THE CONSEQUENCE OF THE BIOLOGICAL PECULIARITIES THAT MAKE A HUMAN TYPE OF COGNITION POSSIBLE." IN ATTEMPTING TO "REINSTATE THE CONCEPT OF THE BIOLOGICAL BASIS OF…

  15. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  16. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  17. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  18. Adaptation, plant evolution, and the fossil record

    Science.gov (United States)

    Knoll, A. H.; Niklas, K. J.

    1987-01-01

    The importance of adaptation in determining patterns of evolution has become an important focus of debate in evolutionary biology. As it pertains to paleobotany, the issue is whether or not adaptive evolution mediated by natural selection is sufficient to explain the stratigraphic distributions of taxa and character states observed in the plant fossil record. One means of addressing this question is the functional evaluation of stratigraphic series of plant organs set in the context of paleoenvironmental change and temporal patterns of floral composition within environments. For certain organ systems, quantitative estimates of biophysical performance can be made on the basis of structures preserved in the fossil record. Performance estimates for plants separated in time or space can be compared directly. Implicit in different hypotheses of the forces that shape the evolutionary record (e.g. adaptation, mass extinction, rapid environmental change, chance) are predictions about stratigraphic and paleoenvironmental trends in the efficacy of functional performance. Existing data suggest that following the evolution of a significant structural innovation, adaptation for improved functional performance can be a major determinant of evolutionary changes in plants; however, there are structural and development limits to functional improvement, and once these are reached, the structure in question may no longer figure strongly in selection until and unless a new innovation evolves. The Silurian-Devonian paleobotanical record is consistent with the hypothesis that the succession of lowland floodplain dominants preserved in the fossil record of this interval was determined principally by the repeated evolution of new taxa that rose to ecological importance because of competitive advantages conferred by improved biophysical performance. This does not seem to be equally true for Carboniferous-Jurassic dominants of swamp and lowland floodplain environments. In these cases

  19. AdapterRemoval v2

    DEFF Research Database (Denmark)

    Schubert, Mikkel; Lindgreen, Stinus; Orlando, Ludovic Antoine Alexandre

    2016-01-01

    -threading support, (ii) the ability to handle datasets containing reads or read-pairs with different adapters or adapter pairs, (iii) simultaneous demultiplexing and adapter trimming, (iv) the ability to reconstruct adapter sequences from paired-end reads for poorly documented data sets, and (v) native gzip...

  20. Advances in Adaptive Control Methods

    Science.gov (United States)

    Nguyen, Nhan

    2009-01-01

    This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.

  1. Synthetic Biology: Putting Synthesis into Biology

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  2. Synthetic biology: putting synthesis into biology.

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2011-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself--encompassing many branches of science and across many scales of application. New DNA synthesis and assembly techniques have made routine customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery--a self-replicating organism--is being pursued at this moment. The aim of this article is to dissect and organize these various components of synthetic biology into a coherent picture.

  3. Pollinator adaptation and the evolution of floral nectar sugar composition.

    Science.gov (United States)

    Abrahamczyk, S; Kessler, M; Hanley, D; Karger, D N; Müller, M P J; Knauer, A C; Keller, F; Schwerdtfeger, M; Humphreys, A M

    2017-01-01

    A long-standing debate concerns whether nectar sugar composition evolves as an adaptation to pollinator dietary requirements or whether it is 'phylogenetically constrained'. Here, we use a modelling approach to evaluate the hypothesis that nectar sucrose proportion (NSP) is an adaptation to pollinators. We analyse ~ 2100 species of asterids, spanning several plant families and pollinator groups (PGs), and show that the hypothesis of adaptation cannot be rejected: NSP evolves towards two optimal values, high NSP for specialist-pollinated and low NSP for generalist-pollinated plants. However, the inferred adaptive process is weak, suggesting that adaptation to PG only provides a partial explanation for how nectar evolves. Additional factors are therefore needed to fully explain nectar evolution, and we suggest that future studies might incorporate floral shape and size and the abiotic environment into the analytical framework. Further, we show that NSP and PG evolution are correlated - in a manner dictated by pollinator behaviour. This contrasts with the view that a plant necessarily has to adapt its nectar composition to ensure pollination but rather suggests that pollinators adapt their foraging behaviour or dietary requirements to the nectar sugar composition presented by the plants. Finally, we document unexpectedly sucrose-poor nectar in some specialized nectarivorous bird-pollinated plants from the Old World, which might represent an overlooked form of pollinator deception. Thus, our broad study provides several new insights into how nectar evolves and we conclude by discussing why maintaining the conceptual dichotomy between adaptation and constraint might be unhelpful for advancing this field. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  4. Engineering Adaptive Web Applications

    DEFF Research Database (Denmark)

    Dolog, Peter

    2007-01-01

    suit the user profile the most. This paper summarizes the domain engineering framework for such adaptive web applications. The framework provides guidelines to develop adaptive web applications as members of a family. It suggests how to utilize the design artifacts as knowledge which can be used......Information and services on the web are accessible for everyone. Users of the web differ in their background, culture, political and social environment, interests and so on. Ambient intelligence was envisioned as a concept for systems which are able to adapt to user actions and needs....... With the growing amount of information and services, the web applications become natural candidates to adopt the concepts of ambient intelligence. Such applications can deal with divers user intentions and actions based on the user profile and can suggest the combination of information content and services which...

  5. Experimental adaptive process tomography

    Science.gov (United States)

    Pogorelov, I. A.; Struchalin, G. I.; Straupe, S. S.; Radchenko, I. V.; Kravtsov, K. S.; Kulik, S. P.

    2017-01-01

    Adaptive measurements were recently shown to significantly improve the performance of quantum state tomography. Utilizing information about the system for the online choice of optimal measurements allows one to reach the ultimate bounds of precision for state reconstruction. In this article we generalize an adaptive Bayesian approach to the case of process tomography and experimentally show its superiority in the task of learning unknown quantum operations. Our experiments with photonic polarization qubits cover all types of single-qubit channels. We also discuss instrumental errors and the criteria for evaluation of the ultimate achievable precision in an experiment. It turns out that adaptive tomography provides a lower noise floor in the presence of strong technical noise.

  6. The Adaptability of Teams

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Boer, Harry

    2006-01-01

    In this paper, data from a longitudinal case study in an organization attempting to adapt its internal work processes to changes in its external context are presented, analyzed and discussed. Specifically, functionally structured work teams in one department of a Danish production facility were...... on the proper alignment between the structuring of the work processes and characteristics of the external context (Lawrence & Lorsch, 1967) – it provides a unique opportunity to explore the adaptation process in practice. The paper contributes to the development of contingency theory by lending support...... to the premise that “fit” between an organization’s external context and its internal structure may enhance performance, but also to the suggestion that the adaptation process may be asymmetric (Moon et al., 2004). Further, the paper contributes to practice by highlighting both the opportunities and risks...

  7. Adaptable Embedded Systems

    CERN Document Server

    Lisbôa, Carlos; Carro, Luigi

    2013-01-01

    As embedded systems become more complex, designers face a number of challenges at different levels: they need to boost performance, while keeping energy consumption as low as possible, they need to reuse existent software code, and at the same time they need to take advantage of the extra logic available in the chip, represented by multiple processors working together.  This book describes several strategies to achieve such different and interrelated goals, by the use of adaptability. Coverage includes reconfigurable systems, dynamic optimization techniques such as binary translation and trace reuse, new memory architectures including homogeneous and heterogeneous multiprocessor systems, communication issues and NOCs, fault tolerance against fabrication defects and soft errors, and finally, how one can combine several of these techniques together to achieve higher levels of performance and adaptability.  The discussion also includes how to employ specialized software to improve this new adaptive system, and...

  8. Adaptive Alternating Minimization Algorithms

    CERN Document Server

    Niesen, Urs; Wornell, Gregory

    2007-01-01

    The classical alternating minimization (or projection) algorithm has been successful in the context of solving optimization problems over two variables or equivalently of finding a point in the intersection of two sets. The iterative nature and simplicity of the algorithm has led to its application to many areas such as signal processing, information theory, control, and finance. A general set of sufficient conditions for the convergence and correctness of the algorithm is quite well-known when the underlying problem parameters are fixed. In many practical situations, however, the underlying problem parameters are changing over time, and the use of an adaptive algorithm is more appropriate. In this paper, we study such an adaptive version of the alternating minimization algorithm. As a main result of this paper, we provide a general set of sufficient conditions for the convergence and correctness of the adaptive algorithm. Perhaps surprisingly, these conditions seem to be the minimal ones one would expect in ...

  9. Adaptation investments and homeownership

    DEFF Research Database (Denmark)

    Hansen, Jørgen Drud; Skak, Morten

    2008-01-01

    This article develops a model where ownership improves the efficiency of the housing market as it enhances the utility of housing consumption for some consumers. The model is based on an extended Hotelling-Lancaster utility approach in which the ideal variant of housing is obtainable only...... by adapting the home through a supplementary investment. Ownership offers low costs of adaptation, but has high contract costs compared with renting. Consumers simultaneously choose housing demand and tenure, and because of the different cost structure only consumers with strong preferences for individual...... adaptation of the home choose ownership. This article analyses the consumer's optimization. The model provides an explanation for the observation that homeowners typically live in larger dwelling units than tenants. It also provides an explanation for a high price of housing services tending to reduce...

  10. Adaptive response modelling

    Science.gov (United States)

    Campa, Alessandro; Esposito, Giuseppe; Belli, Mauro

    Cellular response to radiation is often modified by a previous delivery of a small "priming" dose: a smaller amount of damage, defined by the end point being investigated, is observed, and for this reason the effect is called adaptive response. An improved understanding of this effect is essential (as much as for the case of the bystander effect) for a reliable radiation risk assessment when low dose irradiations are involved. Experiments on adaptive response have shown that there are a number of factors that strongly influence the occurrence (and the level) of the adaptation. In particular, priming doses and dose rates have to fall in defined ranges; the same is true for the time interval between the delivery of the small priming dose and the irradiation with the main, larger, dose (called in this case challenging dose). Different hypotheses can be formulated on the main mechanism(s) determining the adaptive response: an increased efficiency of DNA repair, an increased level of antioxidant enzymes, an alteration of cell cycle progression, a chromatin conformation change. An experimental clearcut evidence going definitely in the direction of one of these explanations is not yet available. Modelling can be done at different levels. Simple models, relating the amount of damage, through elementary differential equations, to the dose and dose rate experienced by the cell, are relatively easy to handle, and they can be modified to account for the priming irradiation. However, this can hardly be of decisive help in the explanation of the mechanisms, since each parameter of these models often incorporates in an effective way several cellular processes related to the response to radiation. In this presentation we show our attempts to describe adaptive response with models that explicitly contain, as a dynamical variable, the inducible adaptive agent. At a price of a more difficult treatment, this approach is probably more prone to give support to the experimental studies

  11. Synthetic biology and its alternatives. Descartes, Kant and the idea of engineering biological machines.

    Science.gov (United States)

    Kogge, Werner; Richter, Michael

    2013-06-01

    The engineering-based approach of synthetic biology is characterized by an assumption that 'engineering by design' enables the construction of 'living machines'. These 'machines', as biological machines, are expected to display certain properties of life, such as adapting to changing environments and acting in a situated way. This paper proposes that a tension exists between the expectations placed on biological artefacts and the notion of producing such systems by means of engineering; this tension makes it seem implausible that biological systems, especially those with properties characteristic of living beings, can in fact be produced using the specific methods of engineering. We do not claim that engineering techniques have nothing to contribute to the biotechnological construction of biological artefacts. However, drawing on Descartes's and Kant's thinking on the relationship between the organism and the machine, we show that it is considerably more plausible to assume that distinctively biological artefacts emerge within a paradigm different from the paradigm of the Cartesian machine that underlies the engineering approach. We close by calling for increased attention to be paid to approaches within molecular biology and chemistry that rest on conceptions different from those of synthetic biology's engineering paradigm.

  12. Hypercell: A bio-inspired information design framework for real-time adaptive spatial components

    NARCIS (Netherlands)

    Biloria, N.M.; Chang, J.R.

    2012-01-01

    Contemporary explorations within the evolutionary computational domain have been heavily instrumental in exploring biological processes of adaptation, growth and mutation. On the other hand a plethora of designers owing to the increasing sophistication in computer aided design software are equally

  13. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  14. Adaptive Learning Management System

    Directory of Open Access Journals (Sweden)

    Violeta Moisa

    2013-06-01

    Full Text Available This article is an introduction to a new model for an adaptive Learning Management System. It presents the current e-learning standards and describes the elements that can be used to create the system: the sequencing control modes, sequencing rules, navigation controls, learning records and learning record stores. The model is based on artificial intelligent algorithms that analyze the data captured for each user and creates an adaptive navigation path through the learning content of the system, allowing each user to experience the content in different ways

  15. Postnatal Cardiovascular Adaptation

    Directory of Open Access Journals (Sweden)

    Ferda Ozlu

    2016-06-01

    Full Text Available Fetus depends on placental circulation in utero. A successful transition from intrauterin to extrauterine life depends on succesful physiological changes during labor. During delivery, fetus transfers from a liquid environment where oxygen comes via umbilical vein to air environement where oxygenation is supported via air breathing. Endocrinological changes are important for fetus to adapt to extrauterine life. In addition to these, cord clemping plays a crucial role in postnatal adaptation. Establishment of neonatal postnatal life and succesful overcome, the fetal cardiovascular transition period are important to stay on. [Archives Medical Review Journal 2016; 25(2.000: 181-190

  16. Engineering Adaptive Applications

    DEFF Research Database (Denmark)

    Dolog, Peter

    . The different requirements might be satisfied by different variants of features maintained and provided by Web applications. An adaptive Web application can be seen as a family of Web applications where application instances are those generated for particular user based on his characteristics relevant...... for a domain.In this book, we propose a new domain engineering framework which extends a development process of Web applications with techniques required when designing such adaptive customizable Web applications. The framework is provided with design abstractions which deal separately with information served...

  17. Intestinal mucosal adaptation

    Institute of Scientific and Technical Information of China (English)

    Laurie Drozdowski; Alan BR Thomson

    2006-01-01

    Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndrome, which occurs when the functional gut mass is reduced below the level necessary for adequate nutrient and water absorption. This condition may be congenital, or may be acquired as a result of a massive resection of the small bowel. Following resection, the intestine is capable of adaptation in response to enteral nutrients as well as other trophic stimuli. Identifying factors that may enhance the process of intestinal adaptation is an exciting area of research with important potential clinical applications.

  18. Adaptive cockroach swarm algorithm

    Science.gov (United States)

    Obagbuwa, Ibidun C.; Abidoye, Ademola P.

    2017-07-01

    An adaptive cockroach swarm optimization (ACSO) algorithm is proposed in this paper to strengthen the existing cockroach swarm optimization (CSO) algorithm. The ruthless component of CSO algorithm is modified by the employment of blend crossover predator-prey evolution method which helps algorithm prevent any possible population collapse, maintain population diversity and create adaptive search in each iteration. The performance of the proposed algorithm on 16 global optimization benchmark function problems was evaluated and compared with the existing CSO, cuckoo search, differential evolution, particle swarm optimization and artificial bee colony algorithms.

  19. STUDYING COMPLEX ADAPTIVE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    John H. Holland

    2006-01-01

    Complex adaptive systems (cas) - systems that involve many components that adapt or learn as they interact - are at the heart of important contemporary problems. The study of cas poses unique challenges: Some of our most powerful mathematical tools, particularly methods involving fixed points, attractors, and the like, are of limited help in understanding the development of cas. This paper suggests ways to modify research methods and tools, with an emphasis on the role of computer-based models, to increase our understanding of cas.

  20. Computational systems chemical biology.

    Science.gov (United States)

    Oprea, Tudor I; May, Elebeoba E; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology (SCB) (Nat Chem Biol 3: 447-450, 2007).The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules, and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology/systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology, and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology.

  1. Parental precaution: neurobiological means and adaptive ends.

    Science.gov (United States)

    Hahn-Holbrook, Jennifer; Holbrook, Colin; Haselton, Martie G

    2011-03-01

    Humans invest precious reproductive resources in just a few offspring, who remain vulnerable for an extended period of their lifetimes relative to other primates. Therefore, it is likely that humans evolved a rich precautionary psychology that assists in the formidable task of protecting offspring. In this review, we integrate precautionary behaviors during pregnancy and postpartum with the adaptive functions they may serve and what is known of their biological mediators, particularly brain systems motivating security and attachment. We highlight the role of reproductive hormones in (i) priming parental affiliation with young to incentivize offspring protection, (ii) focusing parental attention on cues of potential threat, and (iii) facilitating maternal defense against potentially dangerous conspecifics and predators. Throughout, we center discussion on adaptive responses to threats of disease, accident and assault as common causes of child mortality in the ancestral past.

  2. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  3. A case study of evolutionary computation of biochemical adaptation

    Science.gov (United States)

    François, Paul; Siggia, Eric D.

    2008-06-01

    Simulations of evolution have a long history, but their relation to biology is questioned because of the perceived contingency of evolution. Here we provide an example of a biological process, adaptation, where simulations are argued to approach closer to biology. Adaptation is a common feature of sensory systems, and a plausible component of other biochemical networks because it rescales upstream signals to facilitate downstream processing. We create random gene networks numerically, by linking genes with interactions that model transcription, phosphorylation and protein-protein association. We define a fitness function for adaptation in terms of two functional metrics, and show that any reasonable combination of them will yield the same adaptive networks after repeated rounds of mutation and selection. Convergence to these networks is driven by positive selection and thus fast. There is always a path in parameter space of continuously improving fitness that leads to perfect adaptation, implying that the actual mutation rates we use in the simulation do not bias the results. Our results imply a kinetic view of evolution, i.e., it favors gene networks that can be learned quickly from the random examples supplied by mutation. This formulation allows for deductive predictions of the networks realized in nature.

  4. [Biologically active metabolites of the marine actinobacteria].

    Science.gov (United States)

    Sobolevskaia, M P; Kuznetsova, T A

    2010-01-01

    This review systematically data on the chemical structure and biological activity of metabolites of obligate and facultative marine actinobacteria, published from 2000 to 2007. We discuss some structural features of the five groups of metabolites related to macrolides and compounds containing lactone, quinone and diketopiperazine residues, cyclic peptides, alkaloids, and compounds of mixed biosynthesis. Survey shows a large chemical diversity of metabolites actinobacteria isolated from marine environment. It is shown that, along with metabolites, identical to previously isolated from terrestrial actinobacteria, marine actinobacteria synthesize unknown compounds not found in other natural sources, including micro organisms. Perhaps the biosynthesis of new chemotypes bioactive compounds in marine actinobacteria is one manifestation of chemical adaptation of microorganisms to environmental conditions at sea. Review stresses the importance of the chemical study of metabolites of marine actinobacteria. These studies are aimed at obtaining new data on marine microorganisms producers of biologically active compounds and chemical structure and biological activity of new low-molecular bioregulators of natural origin.

  5. The challenges and scope of theoretical biology.

    Science.gov (United States)

    Krakauer, David C; Collins, James P; Erwin, Douglas; Flack, Jessica C; Fontana, Walter; Laubichler, Manfred D; Prohaska, Sonja J; West, Geoffrey B; Stadler, Peter F

    2011-05-07

    Scientific theories seek to provide simple explanations for significant empirical regularities based on fundamental physical and mechanistic constraints. Biological theories have rarely reached a level of generality and predictive power comparable to physical theories. This discrepancy is explained through a combination of frozen accidents, environmental heterogeneity, and widespread non-linearities observed in adaptive processes. At the same time, model building has proven to be very successful when it comes to explaining and predicting the behavior of particular biological systems. In this respect biology resembles alternative model-rich frameworks, such as economics and engineering. In this paper we explore the prospects for general theories in biology, and suggest that these take inspiration not only from physics, but also from the information sciences. Future theoretical biology is likely to represent a hybrid of parsimonious reasoning and algorithmic or rule-based explanation. An open question is whether these new frameworks will remain transparent to human reason. In this context, we discuss the role of machine learning in the early stages of scientific discovery. We argue that evolutionary history is not only a source of uncertainty, but also provides the basis, through conserved traits, for very general explanations for biological regularities, and the prospect of unified theories of life.

  6. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    Science.gov (United States)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  7. The use of information theory in evolutionary biology.

    Science.gov (United States)

    Adami, Christoph

    2012-05-01

    Information is a key concept in evolutionary biology. Information stored in a biological organism's genome is used to generate the organism and to maintain and control it. Information is also that which evolves. When a population adapts to a local environment, information about this environment is fixed in a representative genome. However, when an environment changes, information can be lost. At the same time, information is processed by animal brains to survive in complex environments, and the capacity for information processing also evolves. Here, I review applications of information theory to the evolution of proteins and to the evolution of information processing in simulated agents that adapt to perform a complex task.

  8. The governance of adaptation

    NARCIS (Netherlands)

    Huitema, Dave; Adger, William Neil; Berkhout, Frans; Massey, Eric; Mazmanian, Daniel; Munaretto, Stefania; Plummer, Ryan; Termeer, Katrien

    2016-01-01

    The governance of climate adaptation involves the collective efforts of multiple societal actors to address problems, or to reap the benefits, associated with impacts of climate change. Governing involves the creation of institutions, rules and organizations, and the selection of normative princi

  9. Engineering Adaptive Applications

    DEFF Research Database (Denmark)

    Dolog, Peter

    for a domain.In this book, we propose a new domain engineering framework which extends a development process of Web applications with techniques required when designing such adaptive customizable Web applications. The framework is provided with design abstractions which deal separately with information served...

  10. Career Adaptability in Childhood

    Science.gov (United States)

    Hartung, Paul J.; Porfeli, Erik J.; Vondracek, Fred W.

    2008-01-01

    Childhood marks the dawn of vocational development, involving developmental tasks, transitions, and change. Children must acquire the rudiments of career adaptability to envision a future, make educational and vocational decisions, explore self and occupations, and problem solve. The authors situate child vocational development within human life…

  11. Compiler Assisted Runtime Adaptation

    NARCIS (Netherlands)

    Sima, V.M.

    2012-01-01

    In this dissertation, we address the problem of runtime adaptation of the application to its execution environment. A typical example is changing theprocessing element on which a computation is executed, considering the available processing elements in the system. This is done based on the informati

  12. Compiler Assisted Runtime Adaptation

    NARCIS (Netherlands)

    Sima, V.M.

    2012-01-01

    In this dissertation, we address the problem of runtime adaptation of the application to its execution environment. A typical example is changing theprocessing element on which a computation is executed, considering the available processing elements in the system. This is done based on the

  13. Vineland Adaptive Behavior Scales.

    Science.gov (United States)

    Icabone, Dona G.

    1999-01-01

    This article describes the Vineland Adaptive Behavior Scales, a general assessment of personal and social sufficiency of individuals from birth through adulthood to determine areas of strength and weakness. The instrument assesses communication, daily living skills, socialization, and motor skills. Its administration, standardization, reliability,…

  14. Cooperative adaptive cruise control

    NARCIS (Netherlands)

    Naus, G.J.L.; Molengraft, R. van de; Ploeg, J.

    2009-01-01

    Adaptive Cruise Control (ACC) enables automatic following of a preceding vehicle, based on measurements of the inter-vehicle distance xr,i and the relative velocity ˙ xr,i. Commonly, a radar is used for these measurements, see Figure 1. Decreasing the inter-vehicle distance to a small value of only

  15. Adaptive urban development

    NARCIS (Netherlands)

    Dr. ing Rutger de Graaf

    2012-01-01

    Adaptive urban development is the design, construction and continuing evolution of urban areas to anticipate and react to changes in the environment and society. These changes include both processes within the city itself and external developments. It is expected that until 2100 a total of 5 billion

  16. Adaptive metric kernel regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    2000-01-01

    regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  17. Adaptive Metric Kernel Regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...

  18. Adaptive Fault Tolerance

    Science.gov (United States)

    1994-05-01

    center ( MOCl ) and one workstation processor (WS1) in the Adaptive Fault Tolerance 22 command center (CCE). The remaining data processing routines (GDI...78243-7063 NRAIR232 ATTN: DANIEL W. ATKINSON 9800 SAVAGE RD FT MEADE MD 20755-6000 TRUSTED INFORMATION SYSTEMS, INC. ATTN: WILLIAM C. BARKER 3060

  19. Adapting Bulls to Florida

    Science.gov (United States)

    The adaptation of bulls used for natural breeding purposes to the Gulf Coast region of the United States including all of Florida is an important topic. Nearly 40% of the U.S. cow/calf population resides in the Gulf Coast and Southeast. Thus, as A.I. is relatively rare, the number of bulls used for ...

  20. Adaptive MGS Phase Retrieval

    Science.gov (United States)

    Basinger, Scott A.; Bikkannavar, Siddarayappa; Cohen, David; Green, Joseph J.; Lou, John; Ohara, Catherine; Redding, David; Shi, Fang

    2008-01-01

    Adaptive MGS Phase Retrieval software uses the Modified Gerchberg-Saxton (MGS) algorithm, an image-based sensing method that can turn any focal plane science instrument into a wavefront sensor, avoiding the need to use external metrology equipment. Knowledge of the wavefront enables intelligent control of active optical systems.

  1. The governance of adaptation

    NARCIS (Netherlands)

    Huitema, Dave; Adger, William Neil; Berkhout, Frans; Massey, Eric; Mazmanian, Daniel; Munaretto, Stefania; Plummer, Ryan; Termeer, Katrien

    2016-01-01

    The governance of climate adaptation involves the collective efforts of multiple societal actors to address problems, or to reap the benefits, associated with impacts of climate change. Governing involves the creation of institutions, rules and organizations, and the selection of normative

  2. Adaptive municipal electronic forms

    NARCIS (Netherlands)

    Kuiper, Pieter; Dijk, van Betsy; Bondarouk, Tanya; Ruël, Huub; Guiderdoni-Jourdain, Karine; Oiry, Ewan

    2009-01-01

    Adaptation of electronic forms (e-forms) seems to be a step forward to reduce the burden for people who fill in forms. Municipalities more and more offer e-forms online that can be used by citizens to request a municipal product or service or by municipal employees to place a request on behalf of a

  3. An adaptation model for trabecular bone at different mechanical levels

    Directory of Open Access Journals (Sweden)

    Lv Linwei

    2010-07-01

    Full Text Available Abstract Background Bone has the ability to adapt to mechanical usage or other biophysical stimuli in terms of its mass and architecture, indicating that a certain mechanism exists for monitoring mechanical usage and controlling the bone's adaptation behaviors. There are four zones describing different bone adaptation behaviors: the disuse, adaptation, overload, and pathologic overload zones. In different zones, the changes of bone mass, as calculated by the difference between the amount of bone formed and what is resorbed, should be different. Methods An adaptation model for the trabecular bone at different mechanical levels was presented in this study based on a number of experimental observations and numerical algorithms in the literature. In the proposed model, the amount of bone formation and the probability of bone remodeling activation were proposed in accordance with the mechanical levels. Seven numerical simulation cases under different mechanical conditions were analyzed as examples by incorporating the adaptation model presented in this paper with the finite element method. Results The proposed bone adaptation model describes the well-known bone adaptation behaviors in different zones. The bone mass and architecture of the bone tissue within the adaptation zone almost remained unchanged. Although the probability of osteoclastic activation is enhanced in the overload zone, the potential of osteoblasts to form bones compensate for the osteoclastic resorption, eventually strengthening the bones. In the disuse zone, the disuse-mode remodeling removes bone tissue in disuse zone. Conclusions The study seeks to provide better understanding of the relationships between bone morphology and the mechanical, as well as biological environments. Furthermore, this paper provides a computational model and methodology for the numerical simulation of changes of bone structural morphology that are caused by changes of mechanical and biological

  4. Adaptation of Dekkera bruxellensis to lignocellulose-based substrate.

    Science.gov (United States)

    Tiukova, Ievgeniia A; de Barros Pita, Will; Sundell, David; Haddad Momeni, Majid; Horn, Svein Jarle; Ståhlberg, Jerry; de Morais, Marcos Antonio; Passoth, Volkmar

    2014-01-01

    Adaptation of Dekkera bruxellensis to lignocellulose hydrolysate was investigated. Cells of D. bruxellensis were grown for 72 and 192 H in batch and continuous culture, respectively (adapted cells). Cultivations in semisynthetic medium were run as controls (nonadapted cells). To test the adaptation, cells from these cultures were reinoculated in the lignocellulose medium, and growth and ethanol production characteristics were monitored. Cells adapted to lignocellulose hydrolysate had a shorter lag phase, grew faster, and produced a higher ethanol concentration as compared with nonadapted cells. A stability test showed that after cultivation in rich medium, cells partially lost the adapted phenotype but still showed faster growth and higher ethanol production as compared with nonadapted cells. Because alcohol dehydrogenase genes have been described to be involved in the adaptation to furfural in Saccharomyces cerevisiae, an analogous mechanism of adaptation to lignocelluloses hydrolysate of D. bruxellensis was hypothesized. However, gene expression analysis showed that genes homologous to S. cerevisiae ADH1 were not involved in the adaptation to lignocelluloses hydrolysate in D. bruxellensis. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  5. Adapting bioinformatics curricula for big data.

    Science.gov (United States)

    Greene, Anna C; Giffin, Kristine A; Greene, Casey S; Moore, Jason H

    2016-01-01

    Modern technologies are capable of generating enormous amounts of data that measure complex biological systems. Computational biologists and bioinformatics scientists are increasingly being asked to use these data to reveal key systems-level properties. We review the extent to which curricula are changing in the era of big data. We identify key competencies that scientists dealing with big data are expected to possess across fields, and we use this information to propose courses to meet these growing needs. While bioinformatics programs have traditionally trained students in data-intensive science, we identify areas of particular biological, computational and statistical emphasis important for this era that can be incorporated into existing curricula. For each area, we propose a course structured around these topics, which can be adapted in whole or in parts into existing curricula. In summary, specific challenges associated with big data provide an important opportunity to update existing curricula, but we do not foresee a wholesale redesign of bioinformatics training programs.

  6. Standard biological parts knowledgebase.

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  7. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki

    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org. The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org. SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  8. Selection, adaptation, and predictive information in changing environments

    Science.gov (United States)

    Feltgen, Quentin; Nemenman, Ilya

    2014-03-01

    Adaptation by means of natural selection is a key concept in evolutionary biology. Individuals better matched to the surrounding environment outcompete the others. This increases the fraction of the better adapted individuals in the population, and hence increases its collective fitness. Adaptation is also prominent on the physiological scale in neuroscience and cell biology. There each individual infers properties of the environment and changes to become individually better, improving the overall population as well. Traditionally, these two notions of adaption have been considered distinct. Here we argue that both types of adaptation result in the same population growth in a broad class of analytically tractable population dynamics models in temporally changing environments. In particular, both types of adaptation lead to subextensive corrections to the population growth rates. These corrections are nearly universal and are equal to the predictive information in the environment time series, which is also the characterization of the time series complexity. This work has been supported by the James S. McDonnell Foundation.

  9. Multimodel inference and adaptive management

    Science.gov (United States)

    Rehme, S.E.; Powell, L.A.; Allen, C.R.

    2011-01-01

    Ecology is an inherently complex science coping with correlated variables, nonlinear interactions and multiple scales of pattern and process, making it difficult for experiments to result in clear, strong inference. Natural resource managers, policy makers, and stakeholders rely on science to provide timely and accurate management recommendations. However, the time necessary to untangle the complexities of interactions within ecosystems is often far greater than the time available to make management decisions. One method of coping with this problem is multimodel inference. Multimodel inference assesses uncertainty by calculating likelihoods among multiple competing hypotheses, but multimodel inference results are often equivocal. Despite this, there may be pressure for ecologists to provide management recommendations regardless of the strength of their study’s inference. We reviewed papers in the Journal of Wildlife Management (JWM) and the journal Conservation Biology (CB) to quantify the prevalence of multimodel inference approaches, the resulting inference (weak versus strong), and how authors dealt with the uncertainty. Thirty-eight percent and 14%, respectively, of articles in the JWM and CB used multimodel inference approaches. Strong inference was rarely observed, with only 7% of JWM and 20% of CB articles resulting in strong inference. We found the majority of weak inference papers in both journals (59%) gave specific management recommendations. Model selection uncertainty was ignored in most recommendations for management. We suggest that adaptive management is an ideal method to resolve uncertainty when research results in weak inference.

  10. Transformational adaptation when incremental adaptations to climate change are insufficient.

    Science.gov (United States)

    Kates, Robert W; Travis, William R; Wilbanks, Thomas J

    2012-05-08

    All human-environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations.

  11. Biological restorations: Option of reincarnation for severely mutilated teeth

    Directory of Open Access Journals (Sweden)

    Kulvinder Kaur Wadhwani

    2013-01-01

    Full Text Available Objective: Esthetic and functional rehabilitation of severely mutilated fractured central incisors teeth using homogenous biological fragment bonding. Materials and Methods: Freshly extracted maxillary central incisors were treated endodontically and post spaces were prepared. Intra-radicular biological post core were fabricated from the sectioned roots of extracted canines. Cementation of biological post core in prepared space was done after clinical and radiological confirmation. Subsequent esthetic rehabilitation was done using adaptation of biological crown which was prepared from morphologically similar extracted maxillary central incisor. Results: The association between biological crowns and post core offers excellent esthetic, functional, and psychosocial results, which justifies the use of this technique to achieve the morphofunctional recovery of extensively damaged teeth. Conclusion: The biological restorations are an alternative technique for reconstruction of extensively damaged teeth that provides highly functional and esthetic outcomes.

  12. The adaptation of nutrient oxidation to nutrient intake on a high-fat diet.

    NARCIS (Netherlands)

    Schrauwen, P.; van Marken Lichtenbelt, W.D.; Saris, W.H.M.; Westerterp, K.R.

    1997-01-01

    Department of Human Biology, Maastricht University, The Netherlands. Intervention studies have shown that the adaptation of fat oxidation to fat intake, when changing the dietary fat content, is not abrupt. This study was conducted to measure the time course of adaptation of oxidation rates to incre

  13. The adaptation of nutrient oxidation to nutrient intake on a high-fat diet.

    NARCIS (Netherlands)

    Schrauwen, P.; van Marken Lichtenbelt, W.D.; Saris, W.H.M.; Westerterp, K.R.

    1997-01-01

    Department of Human Biology, Maastricht University, The Netherlands. Intervention studies have shown that the adaptation of fat oxidation to fat intake, when changing the dietary fat content, is not abrupt. This study was conducted to measure the time course of adaptation of oxidation rates to incre

  14. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants.

  15. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  16. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  17. Adaptation: Needs, Financing and Institutions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Richard J.T.; Kartha, Sivan; Persson, Aasa; Watkiss, Paul; Ackerman, Frank; Downing, Thomas E.; Kjellen, Bo; Schipper, Lisa (Stockholm Environment Institute, Stockholm (SE))

    2008-07-01

    Regardless of the efforts put into mitigation, some impacts of climate change are already unavoidable. Adaptation to climate change has therefore become a key component of domestic climate policy, along with mitigation. Adaptation has also become key to the success of global climate policy. Without an agreement on supporting adaptation in developing countries, there will be no agreement on mitigation. Strong mitigation efforts make it more likely that adaptation will be effective and affordable. The world cannot rely on adaptation alone: it would eventually lead to a level of climate change to which adaptation is no longer feasible. Government action is needed to create an enabling environment for adaptation. This includes removing existing financial, legal, institutional and knowledge barriers to adaptation, and strengthening the capacity of people and organisations to adapt. The success of adaptation relies on the success of development, and vice versa. Poverty reduction, good governance, education, environmental protection, health and gender equality all contribute to adaptive capacity. Substantially more money is needed to support adaptation in developing countries. Current levels of funding will soon have to be scaled up by two orders of magnitude (from US$ hundreds of million to US$ tens of billion per year). An agreement on adaptation in Copenhagen in 2009 will need to include concrete steps towards a strengthened knowledge base for adaptation, substantially more funding for developing countries, and enhanced adaptation planning and implementation at the national level. Recommendations: Developed countries should accept a transparent, principle-based allocation of responsibility for adaptation funding, resulting in adequate, new and additional money to support adaptation programmes in developing countries. Levies on carbon market transactions and auctioning emission permits are two existing mechanisms of generating new and additional funds consistent with

  18. A framework for evolutionary systems biology

    Directory of Open Access Journals (Sweden)

    Loewe Laurence

    2009-02-01

    Full Text Available Abstract Background Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Results Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. Conclusion EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.

  19. Towards Adaptable and Adaptive Policy-Free Middleware

    CERN Document Server

    Dearle, Alan; Norcross, Stuart; Macdonald, Angus; Bigwood, Greg

    2010-01-01

    We believe that to fully support adaptive distributed applications, middleware must itself be adaptable, adaptive and policy-free. In this paper we present a new language-independent adaptable and adaptive policy framework suitable for integration in a wide variety of middleware systems. This framework facilitates the construction of adaptive distributed applications. The framework addresses adaptability through its ability to represent a wide range of specific middleware policies. Adaptiveness is supported by a rich contextual model, through which an application programmer may control precisely how policies should be selected for any particular interaction with the middleware. A contextual pattern mechanism facilitates the succinct expression of both coarse- and fine-grain policy contexts. Policies may be specified and altered dynamically, and may themselves take account of dynamic conditions. The framework contains no hard-wired policies; instead, all policies can be configured.

  20. Biological detector and method

    Energy Technology Data Exchange (ETDEWEB)

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  1. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  2. Chemical Biology is.....

    OpenAIRE

    2007-01-01

    Chemical Biology is a relatively new field, and as such is not yet simply or succinctly defined. It includes such a wide range of fundamental problems that this commentary could only include just a few snapshots of potential areas of interest. Overarching themes and selected recent successes and ideas in chemical biology are described to illustrate broadly the scope of the field, but should not be taken as exhaustive. The Chemical Biology Section of Chemistry Central Journal is pleased to rec...

  3. Biological Individuality of Man

    Science.gov (United States)

    1974-12-01

    RECIPIENT’S CAT * LOO NUMBER Biological Individuality of Man 5 TlrPE OF REPORT a PERIOD COVERED Technical « PERFORMING ORO REPORT...Variability 13 A. Background , 13 B. Slatistictl Approaches to Biological Variability 13 C. Genetic Aspects of Biological Variability . 14 III...ioiological determinants of individuality. Only recently, have genetic infaienccs been investigated and the potentialities for future control of bio

  4. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  5. The biological aspects of physiological anthropology with reference to its five keywords.

    Science.gov (United States)

    Iwanaga, Koichi

    2005-05-01

    The methodology of physiological anthropology has been defined in the capacity of an independent academic field by five keywords: environmental adaptability, technological adaptability, physiological polymorphism, whole-body coordination and functional potentiality, clearly suggesting the direction of approach to human beings in the field of physiological anthropology. Recently, these keywords have attracted a great deal of attention from physiological anthropologists in Japan. Physiological anthropology is based on a biological framework. From the viewpoint of biology, it is essential to discuss the biological function of human behavior. In this brief conceptual manuscript, the biological aspects of physiological anthropology are discussed in relation to the five keywords.

  6. Systems Biology of Metabolism.

    Science.gov (United States)

    Nielsen, Jens

    2017-06-20

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.

  7. Polythiophenes in biological applications.

    Science.gov (United States)

    Sista, Prakash; Ghosh, Koushik; Martinez, Jennifer S; Rocha, Reginaldo C

    2014-01-01

    Polythiophene and its derivatives have shown tremendous potential for interfacing electrically conducting polymers with biological applications. These semiconducting organic polymers are relatively soft, conduct electrons and ions, have low cytotoxicity, and can undergo facile chemical modifications. In addition, the reduction in electrical impedance of electrodes coated with polythiophenes may prove to be invaluable for a stable and permanent connection between devices and biological tissues. This review article focuses on the synthesis and some key applications of polythiophenes in multidisciplinary areas at the interface with biology. These polymers have shown tremendous potential in biological applications such as diagnostics, therapy, drug delivery, imaging, implant devices and artificial organs.

  8. Chemical space and biology.

    Science.gov (United States)

    Dobson, Christopher M

    2004-12-16

    Chemical space--which encompasses all possible small organic molecules, including those present in biological systems--is vast. So vast, in fact, that so far only a tiny fraction of it has been explored. Nevertheless, these explorations have greatly enhanced our understanding of biology, and have led to the development of many of today's drugs. The discovery of new bioactive molecules, facilitated by a deeper understanding of the nature of the regions of chemical space that are relevant to biology, will advance our knowledge of biological processes and lead to new strategies to treat disease.

  9. Macrothermodynamics of Biological Evolution:

    Science.gov (United States)

    Gladyshev, Georgi P.

    The author sets forth general considerations pertaining to the thermodynamic theory of biological evolution and the aging of living organisms. It becomes much easier to comprehend the phenomenon of life scrutinizing the formation of structural hierarchies of biological matter applying different temporal scales. These scales are 'identified' by nature itself, and this is reflected in the law of temporal hierarchies. The author discusses some misunderstandings in thermodynamics and evolutionary biology. A simple physicochemical model of biological evolution and the development of living beings is proposed. The considered theory makes it possible to use physicochemical evaluations to develop effective anti-aging diets.

  10. Capabilities for Strategic Adaptation

    DEFF Research Database (Denmark)

    Distel, Andreas Philipp

    This dissertation explores capabilities that enable firms to strategically adapt to environmental changes and preserve competitiveness over time – often referred to as dynamic capabilities. While dynamic capabilities being a popular research domain, too little is known about what these capabilities...... empirical studies through the dynamic capabilities lens and develops propositions for future research. The second paper is an empirical study on the origins of firm-level absorptive capacity; it explores how organization-level antecedents, through their impact on individual-level antecedents, influence...... firms’ ability to absorb and leverage new knowledge. The third paper is an empirical study which conceptualizes top managers’ resource cognition as a managerial capability underlying firms’ resource adaptation; it empirically examines the performance implications of this capability and organizational...

  11. Designing Adaptive Web Applications

    DEFF Research Database (Denmark)

    Dolog, Peter

    2008-01-01

    Learning system to study a discipline. In business to business interaction, different requirements and parameters of exchanged business requests might be served by different services from third parties. Such applications require certain intelligence and a slightly different approach to design. Adpative web...... adaptation to the changed parameters of environments, user or context. Adaptation can be seen as an orthogonal concern or viewpoint in a design process. In this paper I will discuss design abstractions which are employed in current design methods for web applications. I will exemplify the use......The unique characteristic of web applications is that they are supposed to be used by much bigger and diverse set of users and stakeholders. An example application area is e-Learning or business to business interaction. In eLearning environment, various users with different background use the e...

  12. Adapt or Die

    DEFF Research Database (Denmark)

    Brody, Joshua Eric; Larsen, Kasper Green

    2015-01-01

    read cells. We study such non-adaptive data structures in the cell probe model. This model is one of the least restrictive lower bound models and in particular, cell probe lower bounds apply to data structures developed in the popular word-RAM model. Unfortunately, this generality comes at a high cost...... several different notions of non-adaptivity and identify key properties that must be dealt with if we are to prove polynomial lower bounds without restrictions on the data structures. Finally, our results also unveil an interesting connection between data structures and depth-2 circuits. This allows us...... to translate conjectured hard data structure problems into good candidates for high circuit lower bounds; in particular, in the area of linear circuits for linear operators. Building on lower bound proofs for data structures in slightly more restrictive models, we also present a number of properties of linear...

  13. Adaptive Large Neighbourhood Search

    DEFF Research Database (Denmark)

    Røpke, Stefan

    Large neighborhood search is a metaheuristic that has gained popularity in recent years. The heuristic repeatedly moves from solution to solution by first partially destroying the solution and then repairing it. The best solution observed during this search is presented as the final solution....... This tutorial introduces the large neighborhood search metaheuristic and the variant adaptive large neighborhood search that dynamically tunes parameters of the heuristic while it is running. Both heuristics belong to a broader class of heuristics that are searching a solution space using very large...... neighborhoods. The tutorial also present applications of the adaptive large neighborhood search, mostly related to vehicle routing problems for which the heuristic has been extremely successful. We discuss how the heuristic can be parallelized and thereby take advantage of modern desktop computers...

  14. Adaptive method of lines

    CERN Document Server

    Saucez, Ph

    2001-01-01

    The general Method of Lines (MOL) procedure provides a flexible format for the solution of all the major classes of partial differential equations (PDEs) and is particularly well suited to evolutionary, nonlinear wave PDEs. Despite its utility, however, there are relatively few texts that explore it at a more advanced level and reflect the method''s current state of development.Written by distinguished researchers in the field, Adaptive Method of Lines reflects the diversity of techniques and applications related to the MOL. Most of its chapters focus on a particular application but also provide a discussion of underlying philosophy and technique. Particular attention is paid to the concept of both temporal and spatial adaptivity in solving time-dependent PDEs. Many important ideas and methods are introduced, including moving grids and grid refinement, static and dynamic gridding, the equidistribution principle and the concept of a monitor function, the minimization of a functional, and the moving finite elem...

  15. Adaptive Algebraic Multigrid Methods

    Energy Technology Data Exchange (ETDEWEB)

    Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J

    2004-04-09

    Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.

  16. Adapted Active Appearance Models

    Directory of Open Access Journals (Sweden)

    Renaud Séguier

    2009-01-01

    Full Text Available Active Appearance Models (AAMs are able to align efficiently known faces under duress, when face pose and illumination are controlled. We propose Adapted Active Appearance Models to align unknown faces in unknown poses and illuminations. Our proposal is based on the one hand on a specific transformation of the active model texture in an oriented map, which changes the AAM normalization process; on the other hand on the research made in a set of different precomputed models related to the most adapted AAM for an unknown face. Tests on public and private databases show the interest of our approach. It becomes possible to align unknown faces in real-time situations, in which light and pose are not controlled.

  17. Adaptive semantics visualization

    CERN Document Server

    Nazemi, Kawa

    2016-01-01

    This book introduces a novel approach for intelligent visualizations that adapts the different visual variables and data processing to human’s behavior and given tasks. Thereby a number of new algorithms and methods are introduced to satisfy the human need of information and knowledge and enable a usable and attractive way of information acquisition. Each method and algorithm is illustrated in a replicable way to enable the reproduction of the entire “SemaVis” system or parts of it. The introduced evaluation is scientifically well-designed and performed with more than enough participants to validate the benefits of the methods. Beside the introduced new approaches and algorithms, readers may find a sophisticated literature review in Information Visualization and Visual Analytics, Semantics and information extraction, and intelligent and adaptive systems. This book is based on an awarded and distinguished doctoral thesis in computer science.

  18. An Adaptive Robot Game

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Svenstrup, Mikael; Dalgaard, Lars

    2010-01-01

    The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal...... is to improve the mental and physical state of the user by playing a physical game with the robot. Ideally, a robot game should be simple to learn but difficult to master, providing an appropriate degree of challenge for players with different skills. In order to achieve that, the robot should be able to adapt...... to the behavior of the interacting person. This paper presents a simple ball game between a single player and a mobile robot platform. The algorithm has been validated using simulation and real world experiments....

  19. Adaptive manifold learning.

    Science.gov (United States)

    Zhang, Zhenyue; Wang, Jing; Zha, Hongyuan

    2012-02-01

    Manifold learning algorithms seek to find a low-dimensional parameterization of high-dimensional data. They heavily rely on the notion of what can be considered as local, how accurately the manifold can be approximated locally, and, last but not least, how the local structures can be patched together to produce the global parameterization. In this paper, we develop algorithms that address two key issues in manifold learning: 1) the adaptive selection of the local neighborhood sizes when imposing a connectivity structure on the given set of high-dimensional data points and 2) the adaptive bias reduction in the local low-dimensional embedding by accounting for the variations in the curvature of the manifold as well as its interplay with the sampling density of the data set. We demonstrate the effectiveness of our methods for improving the performance of manifold learning algorithms using both synthetic and real-world data sets.

  20. Unconsciously triggered conflict adaptation.

    Directory of Open Access Journals (Sweden)

    Simon van Gaal

    Full Text Available In conflict tasks such as the Stroop, the Eriksen flanker or the Simon task, it is generally observed that the detection of conflict in the current trial reduces the impact of conflicting information in the subsequent trial; a phenomenon termed conflict adaptation. This higher-order cognitive control function has been assumed to be restricted to cases where conflict is experienced consciously. In the present experiment we manipulated the awareness of conflict-inducing stimuli in a metacontrast masking paradigm to directly test this assumption. Conflicting response tendencies were elicited either consciously (through primes that were weakly masked or unconsciously (strongly masked primes. We demonstrate trial-by-trial conflict adaptation effects after conscious as well as unconscious conflict, which could not be explained by direct stimulus/response repetitions. These findings show that unconscious information can have a longer-lasting influence on our behavior than previously thought and further stretch the functional boundaries of unconscious cognition.

  1. The Adaptability of Teams

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Boer, Harry

    2006-01-01

    In this paper, data from a longitudinal case study in an organization attempting to adapt its internal work processes to changes in its external context are presented, analyzed and discussed. Specifically, functionally structured work teams in one department of a Danish production facility were...... restructured and redesigned to increase flexibility in order to better meet the demands of an increasingly turbulent external context. As the change processes occurring within this facility follow the basis prescriptions of contingency theory – i.e., that effective operational performance is dependent...... to the premise that “fit” between an organization’s external context and its internal structure may enhance performance, but also to the suggestion that the adaptation process may be asymmetric (Moon et al., 2004). Further, the paper contributes to practice by highlighting both the opportunities and risks...

  2. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    Science.gov (United States)

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-09-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  3. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    Science.gov (United States)

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  4. Adaptive positioner; Posicionador adaptativo

    Energy Technology Data Exchange (ETDEWEB)

    Labrador Pavon, I.

    1993-07-01

    This paper describes the circuits and programs in assembly language, developed to control the two DC motors that give mobility to a mechanical arm with two degrees of freedom. As a whole, the system is based in a adaptable regulator designed around a 8 bit microprocessor that, starting from a mode of regulation based in the successive approximation method, evolve to another mode through which, only one approximation is sufficient to get the right position of each motor. (Author) 6 refs.

  5. Stylistic Adaptation in Translation

    Institute of Scientific and Technical Information of China (English)

    孙芳

    2011-01-01

    <正>A translation criteria universally accepted is faithfulness, which can be examined from different dimensions of content, form and style.Among these three dimensions,faithfulness in content and form is easier to be noted,while the faithfulness in style is harder to judge.This paper will mainly focus on the study of stylistic features for the purpose of language providing methods to achieve stylistic adaptation in translation.

  6. Robust Adaptive Control.

    Science.gov (United States)

    1985-09-19

    13.2 3.6. 14.0. 1.8. 11111.52 *.6 L 3 n1 i erated ~~~m nc. AFOSR-TR- 798 s AD-A 161 349 ROBUST ADAPTIVE CONTROL * FINAL REPORT PREPARED BY: R~ OBERT L... Centre Block Computes the Norm of the [1I] Solo, V., "Time Series Recursions and Stochastc Regressors. The Rematning Elemerts Imple- Approximation

  7. Adaptive Biomedical Innovation.

    Science.gov (United States)

    Honig, P K; Hirsch, G

    2016-12-01

    Adaptive Biomedical Innovation (ABI) is a multistakeholder approach to product and process innovation aimed at accelerating the delivery of clinical value to patients and society. ABI offers the opportunity to transcend the fragmentation and linearity of decision-making in our current model and create a common collaborative framework that optimizes the benefit and access of new medicines for patients as well as creating a more sustainable innovation ecosystem.

  8. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  9. Invited article: Adaptability

    Directory of Open Access Journals (Sweden)

    Olivia Parr Rud

    2011-01-01

    Full Text Available For the last several decades, organizations have dealt with economic shifts using change management. Based on the new science, there are two major flaws with this approach. First, the word change implies an event with an ending. Second, it implies that change can be managed. In a world of economic volatility, this approach is no longer viable. The continuous climate of uncertainty and volatility demands another view, one that supports adaptability and resilience.

  10. Reconfigurable environmentally adaptive computing

    Science.gov (United States)

    Coxe, Robin L. (Inventor); Galica, Gary E. (Inventor)

    2008-01-01

    Described are methods and apparatus, including computer program products, for reconfigurable environmentally adaptive computing technology. An environmental signal representative of an external environmental condition is received. A processing configuration is automatically selected, based on the environmental signal, from a plurality of processing configurations. A reconfigurable processing element is reconfigured to operate according to the selected processing configuration. In some examples, the environmental condition is detected and the environmental signal is generated based on the detected condition.

  11. Adaptation to High Altitude

    OpenAIRE

    1984-01-01

    Hypoxia is inconsequential for physiologically fit persons below an effective altitude of 2640 metres. At higher altitudes, the adaptation is brought about by four main factors, viz., hyperventilation, increased diffusion of oxygen across alveolar membrane, erythrocythemia and maintenance of body hydration. Carbon dioxide sensitivity is markedly elevated at high altitude, both in sojourners and acclimatized low-landers. The greater pulmonary diffusing capacity observed in high altitude native...

  12. Adaptable positioner; Posicionador adaptativo

    Energy Technology Data Exchange (ETDEWEB)

    Labrador Pavon, I.

    1993-12-31

    This paper describes the circuits and programs in assembly language, developed to control the two DC motors that give mobility to a mechanical arm with two degrees of freedom. As a whole, the system is based in a adaptable regulator designed around a 8 bit microprocessor that, starting from a mode of regulation based in the successive approximation method, evolve to another mode through which, only one approximation is sufficient to get the right position of each motor. (Author) 22 fig. 6 ref.

  13. Improved Adaptive Fingerprint Binarization

    OpenAIRE

    Bartunek, Josef Ström; Nilsson, Mikael; Nordberg, Jörgen; Claesson, Ingvar

    2008-01-01

    In this paper improvements to a previous work are presented. Removing the redundant artifacts in the fingerprint mask is introduced enhancing the final result. The proposed method is entirely adaptive process adjusting to each fingerprint without any further supervision of the user. Hence, the algorithm is insensitive to the characteristics of the fingerprint sensor and the various physical appearances of the fingerprints. Further, a detailed description of fingerprint mask generation not ful...

  14. Skeletal adaptations to bipedalism

    OpenAIRE

    Vasiljević Perica; Žabar Andrea; Aleksić Milena

    2014-01-01

    Bipedalism is the main characteristic of humans. During evolutin bipedalism emerged probably as an adaptation to a changing environment. Major changes in skeletal system included femur, pelvis, skull and spine. The significance of bipedal locomotion: Bipedalism freed the forelimbs for carrying objects, creation and usage of tools. In the upright position animals have a broader view of the environment and the early detection of predators is crucial for survival. Bipedal locomotion makes larger...

  15. Adaptive Signal Processing Testbed

    Science.gov (United States)

    Parliament, Hugh A.

    1991-09-01

    The design and implementation of a system for the acquisition, processing, and analysis of signal data is described. The initial application for the system is the development and analysis of algorithms for excision of interfering tones from direct sequence spread spectrum communication systems. The system is called the Adaptive Signal Processing Testbed (ASPT) and is an integrated hardware and software system built around the TMS320C30 chip. The hardware consists of a radio frequency data source, digital receiver, and an adaptive signal processor implemented on a Sun workstation. The software components of the ASPT consists of a number of packages including the Sun driver package; UNIX programs that support software development on the TMS320C30 boards; UNIX programs that provide the control, user interaction, and display capabilities for the data acquisition, processing, and analysis components of the ASPT; and programs that perform the ASPT functions including data acquisition, despreading, and adaptive filtering. The performance of the ASPT system is evaluated by comparing actual data rates against their desired values. A number of system limitations are identified and recommendations are made for improvements.

  16. Adaptive colouration in amphibians.

    Science.gov (United States)

    Rudh, Andreas; Qvarnström, Anna

    2013-01-01

    Amphibians, i.e. salamanders, frogs and caecilians show a wide range of bright colours in combination with contrasting patterns. There is variation among species, populations and also within species and populations. Furthermore, individuals often change colours during developmental stages or in response to environmental factors. This extraordinary variation means that there are excellent opportunities to test hypotheses of the adaptive significance of colours using amphibian species as models. We review the present view of functions of colouration in amphibians with the main focus on relatively unexplored topics. Variation in colouration has been found to play a role in thermoregulation, UV protection, predator avoidance and sexual signalling. However, many proposed cases of adaptive functions of colouration in amphibians remain virtually scientifically unexplored and surprisingly few genes influencing pigmentation or patterning have been detected. We would like to especially encourage more studies that take advantage of recent developments in measurement of visual properties of several possible signalling receivers (e.g. predators, competitors or mates). Future investigations on interactions between behaviour, ecology and vision have the potential to challenge our current view of the adaptive function of colouration in amphibians.

  17. Adaptation to High Altitude

    Directory of Open Access Journals (Sweden)

    H. S. Nayar

    1984-10-01

    Full Text Available Hypoxia is inconsequential for physiologically fit persons below an effective altitude of 2640 metres. At higher altitudes, the adaptation is brought about by four main factors, viz., hyperventilation, increased diffusion of oxygen across alveolar membrane, erythrocythemia and maintenance of body hydration. Carbon dioxide sensitivity is markedly elevated at high altitude, both in sojourners and acclimatized low-landers. The greater pulmonary diffusing capacity observed in high altitude natives is well documented. RBC count, haemoglobin and haematocrit increase whereas arterial oxyhaemoglobin saturation percentage decreases at high altitude. Diuretics (Furosemide have no role in adaptation to high altitude and adequate body hydration must be maintained.The ultimate adaptive mechanisms occur at tissue level which facilitate the diffusion of oxygen from blood to tissue and its utilization. The work capacity decreases at high altitude and a relationship between load carried and speed of marching has been determined at various altitudes. Although altitude has an adverse effect on process of cold acclimatization, yet it is possible to induce cold acclimatization by exposing subjects to a temperature of 0° to -5°C for a period of three hours daily for three weeks. The caloric requirements increase at high altitudes and are 4,286 K Cal and 4,380 K Cal at 13000 feet (3950 m and 17000 feet (5170 m, respectively.

  18. Adaptive Structural Mode Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M4 Engineering proposes the development of an adaptive structural mode control system. The adaptive control system will begin from a "baseline" dynamic model of the...

  19. Paradigms for adaptive statistical information designs: practical experiences and strategies.

    Science.gov (United States)

    Wang, Sue-Jane; Hung, H M James; O'Neill, Robert

    2012-11-10

    In the last decade or so, interest in adaptive design clinical trials has gradually been directed towards their use in regulatory submissions by pharmaceutical drug sponsors to evaluate investigational new drugs. Methodological advances of adaptive designs are abundant in the statistical literature since the 1970s. The adaptive design paradigm has been enthusiastically perceived to increase the efficiency and to be more cost-effective than the fixed design paradigm for drug development. Much interest in adaptive designs is in those studies with two-stages, where stage 1 is exploratory and stage 2 depends upon stage 1 results, but where the data of both stages will be combined to yield statistical evidence for use as that of a pivotal registration trial. It was not until the recent release of the US Food and Drug Administration Draft Guidance for Industry on Adaptive Design Clinical Trials for Drugs and Biologics (2010) that the boundaries of flexibility for adaptive designs were specifically considered for regulatory purposes, including what are exploratory goals, and what are the goals of adequate and well-controlled (A&WC) trials (2002). The guidance carefully described these distinctions in an attempt to minimize the confusion between the goals of preliminary learning phases of drug development, which are inherently substantially uncertain, and the definitive inference-based phases of drug development. In this paper, in addition to discussing some aspects of adaptive designs in a confirmatory study setting, we underscore the value of adaptive designs when used in exploratory trials to improve planning of subsequent A&WC trials. One type of adaptation that is receiving attention is the re-estimation of the sample size during the course of the trial. We refer to this type of adaptation as an adaptive statistical information design. Specifically, a case example is used to illustrate how challenging it is to plan a confirmatory adaptive statistical information

  20. Advanced Adaptive Optics Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  1. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...... adaptation needed. Issues that must be addressed in case a strategic approach is not developed, as the building sector is continuously investing in measures to adapt to climate change as impacts emerge are described....

  2. Studying cell biology in the skin.

    Science.gov (United States)

    Morrow, Angel; Lechler, Terry

    2015-11-15

    Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists. © 2015 Morrow and Lechler. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Adaptive resolution simulation of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Praprotnik, Matej [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, D-55128 Mainz (Germany); Matysiak, Silvina [Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Delle Site, Luigi [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, D-55128 Mainz (Germany); Kremer, Kurt [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, D-55128 Mainz (Germany); Clementi, Cecilia [Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 7700 (United States)

    2007-07-25

    Water plays a central role in biological systems and processes, and is equally relevant in a large range of industrial and technological applications. Being the most important natural solvent, its presence uniquely influences biological function as well as technical processes. Because of their importance, aqueous solutions are among the most experimentally and theoretically studied systems. However, many questions still remain open. Both experiments and theoretical models are usually restricted to specific cases. In particular all-atom simulations of biomolecules and materials in water are computationally very expensive and often not possible, mainly due to the computational effort to obtain water-water interactions in regions not relevant for the problem under consideration. In this paper we present a coarse-grained model that can reproduce the behaviour of liquid water at a standard temperature and pressure remarkably well. The model is then used in a multiscale simulation of liquid water, where a spatially adaptive molecular resolution procedure allows one to change from a coarse-grained to an all-atom representation on-the-fly. We show that this approach leads to the correct description of essential thermodynamic and structural properties of liquid water. Our adaptive multiscale scheme allows for significantly greater extensive simulations than existing approaches by taking explicit water into account only in the regions where the atomistic details are physically relevant. (fast track communication)

  4. Modeling biological rhythms in failure time data

    Directory of Open Access Journals (Sweden)

    Myles James D

    2006-11-01

    Full Text Available Abstract Background The human body exhibits a variety of biological rhythms. There are patterns that correspond, among others, to the daily wake/sleep cycle, a yearly seasonal cycle and, in women, the menstrual cycle. Sine/cosine functions are often used to model biological patterns for continuous data, but this model is not appropriate for analysis of biological rhythms in failure time data. Methods We adapt the cosinor method to the proportional hazards model and present a method to provide an estimate and confidence interval of the time when the minimum hazard is achieved. We then apply this model to data taken from a clinical trial of adjuvant of pre-menopausal breast cancer patients. Results The application of this technique to the breast cancer data revealed that the optimal day for pre-resection incisional or excisional biopsy of 28-day cycle (i. e. the day associated with the lowest recurrence rate is day 8 with 95% confidence interval of 4–12 days. We found that older age, fewer positive nodes, smaller tumor size, and experimental treatment were predictive of longer relapse-free survival. Conclusion In this paper we have described a method for modeling failure time data with an underlying biological rhythm. The advantage of adapting a cosinor model to proportional hazards model is its ability to model right censored data. We have presented a method to provide an estimate and confidence interval of the day in the menstrual cycle where the minimum hazard is achieved. This method is not limited to breast cancer data, and may be applied to any biological rhythms linked to right censored data.

  5. [Perspective on gravitational biology of amphibians].

    Science.gov (United States)

    Yamashita, Masamichi; Naitoh, Tomio; Wassersug, Richard J

    2002-12-01

    We review here the scientific significance of the use of amphibians for research in gravitational biology. Since amphibian eggs are quite large, yet develop rapidly and externally, it is easy to observe their development. Consequently amphibians were the first vertebrates to have their early developmental processes investigated in space. Though several deviations from normal embryonic development occur when amphibians are raised in microgravity, their developmental program is robust enough to return the organisms to an ostensibly normal morphology by the time they hatch. Evolutionally, amphibians were the first vertebrate animal to come out of the water and onto land. Subsequently they diversified and have adaptively radiated to various habitats. They now inhabit aquatic, terrestrial, arboreal and fossorial niches. This diversity can be used to help study the biological effects of gravity at the organismal level, where macroscopic phenomena are associated with gravitational loading. By choosing different amphibian models and using a comparative approach one can effectively identify the action of gravity on biological systems, and the adaptation that vertebrates have made to this loading. Advances in cellular and molecular biology provide powerful tools for the study in many fields, including gravitational biology, and amphibians have proven to be good models for studies at those levels as well. The low metabolic rates of amphibians make them convenient organisms to work with (compared to birds and mammals) in the difficult and confined spaces on orbiting research platforms. We include here a review of what is known about and the potential for further behavioral and physiological researches in space using amphibians.

  6. Biology Library Workbook.

    Science.gov (United States)

    Miller, Constance; And Others

    A library skills workbook provides college biology students with an introduction to biological library resources. Divided into two sections, the first contains explanations of the various steps in the library research process. The second consists of exercises keyed to the explanatory chapters of the first section. (RAA)

  7. Psoriasis : implications of biologics

    NARCIS (Netherlands)

    Lecluse, L.L.A.

    2010-01-01

    Since the end of 2004 several specific immunomodulating therapies: ‘biologic response modifiers’ or ‘biologics’ have been registered for moderate to severe psoriasis in Europe. This thesis is considering the implications of the introduction of the biologics for psoriasis patients, focusing on safety

  8. Homosexuality, biology, and ideology.

    Science.gov (United States)

    Haumann, G

    1995-01-01

    This paper critically examines the complex relationships and interdependencies between biological theories on homosexuality and sociosexual ideologies. It challenges the privileged status of biology as the ultimate authority on homosexuality. This status is based on the belief that biology is a value-free science. On the contrary, this essay shows how unacknowledged assumptions and culturally bound patterns of thinking about sexuality taint biological research. Sociosexual ideologies are defined as principles that organize the ways we express our sexualities and the way we theorize about them in biology. The following ideologies are identified: (1) sexuality-as-heterosexuality, (2) sexuality-as-reproduction, (3) sexual dualism (male vs. female), and (4) the view the homosexuality is a sexual inversion. The process by which these ideologies are incorporated into biology is two-fold: (1) as a projective act from society onto nature and (2) as a reflective act from nature back into society. It is further argued that biological knowledge of homosexuality resulting from that process can be used for diverse political interests. Finally, it is proposed that since biological theories on homosexuality are inseparable from the context of their paradigmatic origin, it is possible that new theories could be derived from new ideologies.

  9. Biological Macromolecule Crystallization Database

    Science.gov (United States)

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  10. Experimenting with Mathematical Biology

    Science.gov (United States)

    Sanft, Rebecca; Walter, Anne

    2016-01-01

    St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…

  11. Introduction to systems biology

    NARCIS (Netherlands)

    Bruggeman, F.J.; Hornberg, J.J.; Boogerd, F.C.; Westerhoff, H.V.; Boogerd, F.C.; Bruggeman, F.J.; Hofmeyr, J.H.S.; Westerhoff, H.V.

    2007-01-01

    The developments in the molecular biosciences have made possible a shift to combined molecular and system-level approaches to biological research under the name of Systems Biology. It integrates many types of molecular knowledge, which can best be achieved by the synergistic use of models and experi

  12. Adaptation in Tourist Publicity Translation

    Institute of Scientific and Technical Information of China (English)

    谭娟

    2013-01-01

    This paper attempts to provide a preliminary study of adaptation adopted in the translation of tourist publicity and ex-plore the main reasons behind the adaptive techniques on the basis of functionalist theories of translation. It is found that cultural blanks, different linguistic conventions and also the intended functions of tourist publicity may all contribute to adaptation in translation.

  13. Efficient adaptive fuzzy control scheme

    NARCIS (Netherlands)

    Papp, Z.; Driessen, B.J.F.

    1995-01-01

    The paper presents an adaptive nonlinear (state-) feedback control structure, where the nonlinearities are implemented as smooth fuzzy mappings defined as rule sets. The fine tuning and adaption of the controller is realized by an indirect adaptive scheme, which modifies the parameters of the fuzzy

  14. Adaptation : A Partially Automated Approach

    NARCIS (Netherlands)

    Manjing, Tham; Bukhsh, F.A.; Weigand, H.

    2014-01-01

    This paper showcases the possibility of creating an adaptive auditing system. Adaptation in an audit environment need human intervention at some point. Based on a case study this paper focuses on automation of adaptation process. It is divided into solution design and validation parts. The artifact

  15. Evolutionary dynamics of metabolic adaptation

    NARCIS (Netherlands)

    van Hoek, M.J.A.

    2008-01-01

    In this thesis we study how organisms adapt their metabolism to a changing environment. Metabolic adaptation occurs at different timescales. Organisms adapt their metabolism via metabolic regulation, which happens in the order of minutes to hours and via evolution, which takes many generations. Here

  16. How Harmful are Adaptation Restrictions

    NARCIS (Netherlands)

    Bruin, de K.C.; Dellink, R.B.

    2009-01-01

    The dominant assumption in economic models of climate policy remains that adaptation will be implemented in an optimal manner. There are, however, several reasons why optimal levels of adaptation may not be attainable. This paper investigates the effects of suboptimal levels of adaptation, i.e.

  17. Evolutionary dynamics of metabolic adaptation

    NARCIS (Netherlands)

    van Hoek, M.J.A.

    2008-01-01

    In this thesis we study how organisms adapt their metabolism to a changing environment. Metabolic adaptation occurs at different timescales. Organisms adapt their metabolism via metabolic regulation, which happens in the order of minutes to hours and via evolution, which takes many generations. Here

  18. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled......, and mechanical biological stabilization (MBS), which first composts the waste for drying prior to extraction of a large RDF fraction. Only a small fraction is landfilled. The latter technology is also referred to as biodrying. Within each of the two main technologies, a range of variations is available depending...

  19. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  20. Frontiers in mathematical biology

    CERN Document Server

    1994-01-01

    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  1. Biologically inspired neural network controller for an infrared tracking system

    Science.gov (United States)

    Frigo, Janette R.; Tilden, Mark W.

    1999-01-01

    Many biological system exhibit capable, adaptive behavior with a minimal nervous system such as those found in lower invertebrates. Scientists and engineers are studying biological system because these models may have real-world applications. the analog neural controller, herein, is loosely modeled after minimal biological nervous systems. The system consists of the controller and pair of sensor mounted on an actuator. It is implemented with an electrical oscillator network, two IR sensor and a dc motor, used as an actuator for the system. The system tracks an IR target source. The pointing accuracy of this neural network controller is estimated through experimental measurements and a numerical model of the system.

  2. The rate of molecular adaptation in a changing environment.

    Science.gov (United States)

    Lourenço, João M; Glémin, Sylvain; Galtier, Nicolas

    2013-06-01

    It is currently unclear whether the amino acid substitutions that occur during protein evolution are primarily driven by adaptation, or reflect the random accumulation of neutral changes. When estimated from genomic data, the proportion of adaptive amino acid substitutions, called α, was found to vary greatly across species, from nearly zero in humans to above 0.5 in Drosophila. These variations have been interpreted as reflecting differences in effective population size, adaptation being supposedly more efficient in large populations. Here, we investigate the influence of effective population size and other biological parameters on the rate of adaptive evolution by simulating the evolution of a coding sequence under Fisher's geometric formalism. We explicitly model recurrent environmental changes and the subsequent adaptive walks, followed by periods of stasis during which purifying selection dominates. We show that, under a variety of conditions, the effective population size has only a moderate influence on α, and an even weaker influence on the per generation rate of selective sweeps, modifying the prevalent view in current literature. The rate of environmental change and, interestingly, the dimensionality of the phenotypic space (organismal complexity) affect the adaptive rate more deeply than does the effective population size. We discuss the reasons why verbal arguments have been misleading on that subject and revisit the empirical evidence. Our results question the relevance of the "α" parameter as an indicator of the efficiency of molecular adaptation.

  3. Reversible phenotypic plasticity with continuous adaptation.

    Science.gov (United States)

    Pfab, Ferdinand; Gabriel, Wilfried; Utz, Margarete

    2016-01-01

    We introduce a novel model for continuous reversible phenotypic plasticity. The model includes a one-dimensional environmental gradient, and we describe performance of an organism as a function of the environmental state by a Gaussian tolerance curve. Organisms are assumed to adapt their tolerance curve after a change of the environmental state. We present a general framework for calculating the genotype fitness if such adaptations happen in a continuous manner and apply the model to a periodically changing environment. Significant differences of our model with previous models for plasticity are the continuity of adaptation, the presence of intermediate phenotypes, that the duration of transformations depends on their extent, fewer restrictions on the distribution of the environment, and a higher robustness with respect to assumptions about environmental fluctuations. Further, we show that continuous reversible plasticity is beneficial mainly when environmental changes occur slow enough so that fully developed phenotypes can be exhibited. Finally we discuss how the model framework can be generalized to a wide variety of biological scenarios from areas that include population dynamics, evolution of environmental tolerance and physiology.

  4. Adaptation Strategies for Global Environmental Change

    Science.gov (United States)

    Ojima, D. S.; Corell, R.

    2007-12-01

    The global environmental challenges society faces today are unheralded due to the pace at which human activities are affecting the earth system. The rates of energy consumption, nitrogen use and production, and water use increases each year leading to greater global environmental changes affecting warming of the earth system and loss of ecosystem services. The challenge we face today as a society is the manner and speed at which we can adapt to these changes affecting the ecosystem services we depend upon. Innovative strategies are needed to develop the adaptive management tools to integrate the sectors and science necessary to deal with the complexity of effects. Developing strategies to better guide decision making related to climate change trends into changing weather patterns at meaningful temporal and spatial scales are needed, observations and prognostic analyses of climate related triggers of threshold events in ecosystem dynamics, and transfer of knowledge between science, technology, and decision makers. These strategies need to better integrate science (physical, biological, and social knowledge), engineering, policy, and economics interests to create a framework to develop strategies for adaptation and mitigation to global change and to create bridges with institutions and organizations that deal with these issues as a governmental agency or private sector enterprise.

  5. OPEN PROBLEM: Some nonlinear challenges in biology

    Science.gov (United States)

    Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Croquette, Vincent; Bensimon, David

    2008-08-01

    Driven by a deluge of data, biology is undergoing a transition to a more quantitative science. Making sense of the data, building new models, asking the right questions and designing smart experiments to answer them are becoming ever more relevant. In this endeavour, nonlinear approaches can play a fundamental role. The biochemical reactions that underlie life are very often nonlinear. The functional features exhibited by biological systems at all levels (from the activity of an enzyme to the organization of a colony of ants, via the development of an organism or a functional module like the one responsible for chemotaxis in bacteria) are dynamically robust. They are often unaffected by order of magnitude variations in the dynamical parameters, in the number or concentrations of actors (molecules, cells, organisms) or external inputs (food, temperature, pH, etc). This type of structural robustness is also a common feature of nonlinear systems, exemplified by the fundamental role played by dynamical fixed points and attractors and by the use of generic equations (logistic map, Fisher-Kolmogorov equation, the Stefan problem, etc.) in the study of a plethora of nonlinear phenomena. However, biological systems differ from these examples in two important ways: the intrinsic stochasticity arising from the often very small number of actors and the role played by evolution. On an evolutionary time scale, nothing in biology is frozen. The systems observed today have evolved from solutions adopted in the past and they will have to adapt in response to future conditions. The evolvability of biological system uniquely characterizes them and is central to biology. As the great biologist T Dobzhansky once wrote: 'nothing in biology makes sense except in the light of evolution'.

  6. Cellular and molecular aspects of plant adaptation to microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  7. Outdoor Biology Instructional Strategies Trial Edition. Set III.

    Science.gov (United States)

    Fairwell, Kay, Ed.; And Others

    The predominant focus of the 24 Outdoor Biology Instructional Strategies (OBIS) Trial Edition Set III activities is on animal behavior, and the adaptations and diversity of both plants and animals. Night time activities, games, investigation, experimentation, and crafts are used to study ants, birds, clams, water snails, water striders, spiders,…

  8. Responses to Low Doses of Ionizing Radiation in Biological Systems

    OpenAIRE

    Feinendegen, Ludwig E.; Pollycove, Myron; Sondhaus, Charles A.

    2004-01-01

    Biological tissues operate through cells that act together within signaling networks. These assure coordinated cell function in the face of constant exposure to an array of potentially toxic agents, externally from the environment and endogenously from metabolism. Living tissues are indeed complex adaptive systems.

  9. Relational Analysis of High School Students' Cognitive Self-Regulated Learning Strategies and Conceptions of Learning Biology

    Science.gov (United States)

    Sadi, Özlem

    2017-01-01

    The purpose of this study was to analyze the relation between students' cognitive learning strategies and conceptions of learning biology. The two scales, "Cognitive Learning Strategies" and "Conceptions of Learning Biology", were revised and adapted to biology in order to measure the students' learning strategies and…

  10. Adaptive filtering prediction and control

    CERN Document Server

    Goodwin, Graham C

    2009-01-01

    Preface1. Introduction to Adaptive TechniquesPart 1. Deterministic Systems2. Models for Deterministic Dynamical Systems3. Parameter Estimation for Deterministic Systems4. Deterministic Adaptive Prediction5. Control of Linear Deterministic Systems6. Adaptive Control of Linear Deterministic SystemsPart 2. Stochastic Systems7. Optimal Filtering and Prediction8. Parameter Estimation for Stochastic Dynamic Systems9. Adaptive Filtering and Prediction10. Control of Stochastic Systems11. Adaptive Control of Stochastic SystemsAppendicesA. A Brief Review of Some Results from Systems TheoryB. A Summary o

  11. Adaptability Responding Effectively to Change

    CERN Document Server

    (CCL), Center for Creative Leadership; Calarco, Allan

    2011-01-01

    In today's business world, the complexity and pace of change can be daunting. Adaptability has become recognized as a necessary skill for leaders to develop to be effective in this environment. Even so, leaders rarely know what they can do to become more adaptable and foster adaptability in others. This guidebook contributes to a greater understanding of adaptability and the cognitive, emotional, and dispositional flexibility it requires. Leaders will learn how to develop their adaptability and to become more effective for themselves, the people they lead, and their organizations.

  12. How protein materials balance strength, robustness, and adaptability

    Science.gov (United States)

    Buehler, Markus J.; Yung, Yu Ching

    2010-01-01

    Proteins form the basis of a wide range of biological materials such as hair, skin, bone, spider silk, or cells, which play an important role in providing key functions to biological systems. The focus of this article is to discuss how protein materials are capable of balancing multiple, seemingly incompatible properties such as strength, robustness, and adaptability. To illustrate this, we review bottom-up materiomics studies focused on the mechanical behavior of protein materials at multiple scales, from nano to macro. We focus on alpha-helix based intermediate filament proteins as a model system to explain why the utilization of hierarchical structural features is vital to their ability to combine strength, robustness, and adaptability. Experimental studies demonstrating the activation of angiogenesis, the growth of new blood vessels, are presented as an example of how adaptability of structure in biological tissue is achieved through changes in gene expression that result in an altered material structure. We analyze the concepts in light of the universality and diversity of the structural makeup of protein materials and discuss the findings in the context of potential fundamental evolutionary principles that control their nanoscale structure. We conclude with a discussion of multiscale science in biology and de novo materials design. PMID:20676305

  13. Adaptive visual attention model

    OpenAIRE

    Hügli, Heinz; Bur, Alexandre

    2009-01-01

    Visual attention, defined as the ability of a biological or artificial vision system to rapidly detect potentially relevant parts of a visual scene, provides a general purpose solution for low level feature detection in a vision architecture. Well considered for its universal detection behaviour, the general model of visual attention is suited for any environment but inferior to dedicated feature detectors in more specific environments. The goal of the development presented in this paper is t...

  14. Managing biological diversity

    Science.gov (United States)

    Samson, Fred B.; Knopf, Fritz L.

    1993-01-01

    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by

  15. Holographic Adaptive Optics

    Science.gov (United States)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be achieved in an extremely compact and lightweight package making it perfectly suited to applications such as UAV surveillance imagery and free space optical communications systems. Lastly, since the correction is made on a modal basis instead of zonal, it is virtually

  16. Biological and Chemical Security

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defense Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.

  17. Adaptation in Collaborative Governance Regimes

    Science.gov (United States)

    Emerson, Kirk; Gerlak, Andrea K.

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  18. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    of matched filters (one for each veloc- ity component of interest) and filtering the blood process over slow-time and averaging over depth to find the PSD. The methods are tested using various experiments and simulations. First, controlled flow-rig experiments with steady laminar flow are carried out....... Simulations in Field II for pul- sating flow resembling the femoral artery are also analyzed. The simulations are followed by in vivo measurement on the common carotid artery. In all simulations and experiments it was concluded that the adaptive methods display superior per- formance for short observation...

  19. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies....... They are the result of acooperation between Søren Molin, professor in the group, and his brother, JanMolin, professor at Department of Organization and Industrial Sociology atCopenhagen Business School. The cooperation arises from the recognition that bothmicrobial ecology and sociology/organization theory works...

  20. Adaptive CT scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, Stephen E.

    2016-11-22

    Apparatus, systems, and methods that provide an X-ray interrogation system having a plurality of stationary X-ray point sources arranged to substantially encircle an area or space to be interrogated. A plurality of stationary detectors are arranged to substantially encircle the area or space to be interrogated, A controller is adapted to control the stationary X-ray point sources to emit X-rays one at a time, and to control the stationary detectors to detect the X-rays emitted by the stationary X-ray point sources.