WorldWideScience

Sample records for acyltransferases

  1. Glycerophosphate/Acylglycerophosphate Acyltransferases

    Directory of Open Access Journals (Sweden)

    Atsushi Yamashita

    2014-11-01

    Full Text Available Acyl-CoA:glycerol-3-phosphate acyltransferase (GPAT and acyl-CoA: 1-acyl-glycerol-3-phosphate acyltransferase (AGPAT are involved in the de novo synthesis of triacylglycerol (TAG and glycerophospholipids. Many enzymes belonging to the GPAT/AGPAT family have recently been identified and their physiological or pathophysiological roles have been proposed. The roles of GPAT/AGPAT in the synthesis of TAG and obesity-related diseases were revealed through the identification of causative genes of these diseases or analyses of genetically manipulated animals. Recent studies have suggested that some isoforms of GPAT/AGPAT family enzymes are involved in the fatty acid remodeling of phospholipids. The enzymology of GPAT/AGPAT and their physiological/ pathological roles in the metabolism of glycerolipids have been described and discussed in this review.

  2. Sequence analysis of diacylglycerol acyltransferases

    Science.gov (United States)

    Diacylglycerol acyltransferases (DGATs) catalyze the final step of triacylglycerol (TAG) biosynthesis in eukaryotes. DGATs esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA. Plants and animals deficient in DGATs accumulate less TAG and over-expression of DGATs increases TAG. DGAT knock...

  3. Genomics of the human carnitine acyltransferase genes

    NARCIS (Netherlands)

    van der Leij, FR; Huijkman, NCA; Boomsma, C; Kuipers, JRG; Bartelds, B

    2000-01-01

    Five genes in the human genome are known to encode different active forms of related carnitine acyltransferases: CPT1A for liver-type carnitine palmitoyltransferase I, CPT1B for muscle-type carnitine palmitoyltransferase I, CPT2 for carnitine palmitoyltransferase II, CROT for carnitine octanoyltrans

  4. Structural Basis for the Acyltransferase Activity of Lecithin: Retinol Acyltransferase-like Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Golczak, Marcin; Kiser, Philip D.; Sears, Avery E.; Lodowski, David T.; Blaner, William S.; Palczewski, Krzysztof (Case Western); (Columbia)

    2012-10-10

    Lecithin:retinol acyltransferase-like proteins, also referred to as HRAS-like tumor suppressors, comprise a vertebrate subfamily of papain-like or NlpC/P60 thiol proteases that function as phospholipid-metabolizing enzymes. HRAS-like tumor suppressor 3, a representative member of this group, plays a key role in regulating triglyceride accumulation and energy expenditure in adipocytes and therefore constitutes a novel pharmacological target for treatment of metabolic disorders causing obesity. Here, we delineate a catalytic mechanism common to lecithin:retinol acyltransferase-like proteins and provide evidence for their alternative robust lipid-dependent acyltransferase enzymatic activity. We also determined high resolution crystal structures of HRAS-like tumor suppressor 2 and 3 to gain insight into their active site architecture. Based on this structural analysis, two conformational states of the catalytic Cys-113 were identified that differ in reactivity and thus could define the catalytic properties of these two proteins. Finally, these structures provide a model for the topology of these enzymes and allow identification of the protein-lipid bilayer interface. This study contributes to the enzymatic and structural understanding of HRAS-like tumor suppressor enzymes.

  5. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    Science.gov (United States)

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

  6. Biosynthesis of phosphatidylcholine by human lysophosphatidylcholine acyltransferase 1.

    Science.gov (United States)

    Harayama, Takeshi; Shindou, Hideo; Shimizu, Takao

    2009-09-01

    Pulmonary surfactant is a complex of phospholipids and proteins lining the alveolar walls of the lung. It reduces surface tension in the alveoli, and is critical for normal respiration. Pulmonary surfactant phospholipids consist mainly of phosphatidylcholine (PC) and phosphatidylglycerol (PG). Although the phospholipid composition of pulmonary surfactant is well known, the enzyme(s) involved in its biosynthesis have remained obscure. We previously reported the cloning of murine lysophosphatidylcholine acyltransferase 1 (mLPCAT1) as a potential biosynthetic enzyme of pulmonary surfactant phospholipids. mLPCAT1 exhibits lysophosphatidylcholine acyltransferase (LPCAT) and lysophosphatidylglycerol acyltransferase (LPGAT) activities, generating PC and PG, respectively. However, the enzymatic activity of human LPCAT1 (hLPCAT1) remains controversial. We report here that hLPCAT1 possesses LPCAT and LPGAT activities. The activity of hLPCAT1 was inhibited by N-ethylmaleimide, indicating the importance of some cysteine residue(s) for the catalysis. We found a conserved cysteine (Cys(211)) in hLPCAT1 that is crucial for its activity. Evolutionary analyses of the close homologs of LPCAT1 suggest that it appeared before the evolution of teleosts and indicate that LPCAT1 may have evolved along with the lung to facilitate respiration. hLPCAT1 mRNA is highly expressed in the human lung. We propose that hLPCAT1 is the biosynthetic enzyme of pulmonary surfactant phospholipids. PMID:19383981

  7. Overexpression of Peanut Diacylglycerol Acyltransferase 2 in Escherichia coli

    OpenAIRE

    Zhenying Peng; Lan Li; Lianqun Yang; Bin Zhang; Gao Chen; Yuping Bi

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar 'Luhua 14' using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide s...

  8. Alterations in plasma lecithin : cholesterol acyltransferase and myeloperoxidase in acute myocardial infarction: Implications for cardiac outcome

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; Tietge, Uwe J. F.; Kwakernaak, Arjan J.; Dikkeschei, Bert D.; Perton, Frank; Tio, Rene A.

    2014-01-01

    Background: The cholesterol esterifying enzyme, lecithin: cholesterol acyltransferase (LCAT), plays a key role in HDL maturation and remodeling. Myeloperoxidase (MPO) may compromise LCAT enzymatic activity. We tested the extent to which plasma LCAT activity is altered in acute myocardial infarction

  9. A look at diacylglycerol acyltransferases (DGATs) in algae.

    Science.gov (United States)

    Chen, Jit Ern; Smith, Alison G

    2012-11-30

    Triacylglycerols (TAGs) from algae are considered to be a potentially viable source of biodiesel and thereby renewable energy, but at the moment very little is known about the biosynthetic pathway in these organisms. Here we compare what is currently known in eukaryotic algal species, in particular the characteristics of algal diacylglycerol acyltransferase (DGAT), the last enzyme of de novo TAG biosynthesis. Several studies in plants and mammals have shown that there are two DGAT isoforms, DGAT1 and DGAT2, which catalyse the same reaction but have no clear sequence similarities. Instead, they have differences in functionality and spatial and temporal expression patterns. Bioinformatic searches of sequenced algal genomes reveal that most algae have multiple copies of putative DGAT2s, whereas other eukaryotes have single genes. Investigating whether these putative isoforms are indeed functional and whether they confer significantly different phenotypes to algal cells will be vital for future efforts to genetically modify algae for biofuel production.

  10. A Vernonia Diacylglycerol Acyltransferase Can Increase Renewable Oil Production.

    Science.gov (United States)

    Hatanaka, Tomoko; Serson, William; Li, Runzhi; Armstrong, Paul; Yu, Keshun; Pfeiffer, Todd; Li, Xi-Le; Hildebrand, David

    2016-09-28

    Increasing the production of plant oils such as soybean oil as a renewable resource for food and fuel is valuable. Successful breeding for higher oil levels in soybean, however, usually results in reduced protein, a second valuable seed component. This study shows that by manipulating a highly active acyl-CoA:diacylglycerol acyltransferase (DGAT) the hydrocarbon flux to oil in oilseeds can be increased without reducing the protein component. Compared to other plant DGATs, a DGAT from Vernonia galamensis (VgDGAT1A) produces much higher oil synthesis and accumulation activity in yeast, insect cells, and soybean. Soybean lines expressing VgDGAT1A show a 4% increase in oil content without reductions in seed protein contents or yield per unit land area. Incorporation of this trait into 50% of soybeans worldwide could result in an increase of 850 million kg oil/year without new land use or inputs and be worth ∼U.S.$1 billion/year at 2012 production and market prices.

  11. Ghrelin O-acyltransferase (GOAT) and energy metabolism.

    Science.gov (United States)

    Li, Ziru; Mulholland, Michael; Zhang, Weizhen

    2016-03-01

    Ghrelin O-acyltransferase (GOAT), a member of MBOATs family, is essential for octanoylation of ghrelin, which is required for active ghrelin to bind with and activate its receptor. GOAT is expressed mainly in the stomach, pancreas and hypothalamus. Levels of GOAT are altered by energy status. GOAT contains 11 transmembrane helices and one reentrant loop. Its invariant residue His-338 and conserved Asn-307 are located in the endoplasmic reticulum lumen and cytosol respectively. GOAT contributes to the regulation of food intake and energy expenditure, as well as glucose and lipids homeostasis. Deletion of GOAT blocks the acylation of ghrelin leading to subsequent impairment in energy homeostasis and survival when mice are challenged with high energy diet or severe caloric restriction. GO-CoA-Tat, a peptide GOAT inhibitor, attenuates acyl-ghrelin production and prevents weight gain induced by a medium-chain triglycerides-rich high fat diet. Further, GO-CoA-Tat increases glucose- induced insulin secretion. Overall, inhibition of GOAT is a novel strategy for treatment of obesity and related metabolic disorders. PMID:26732975

  12. Draft Genome Sequence of an Endophytic Actinoplanes Species, Encoding Uncommon trans-Acyltransferase Polyketide Synthases

    Science.gov (United States)

    Centeno-Leija, Sara; Vinuesa, Pablo; Rodríguez-Peña, Karol; Trenado-Uribe, Miriam; Cárdenas-Conejo, Yair; Serrano-Posada, Hugo; Rodríguez-Sanoja, Romina

    2016-01-01

    Actinoplanes is an endophytic actinobacterium isolated from the medicinal plant Amphipterygium adstringens. The strain draft genome sequence reveals a gene cluster involved in the biosynthesis of a hybrid trans-acyltransferase (AT) polyketide, an unconventional bioactive metabolite never reported before in the genus Actinoplanes. PMID:27013046

  13. Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues

    Science.gov (United States)

    Diacylglycerol acyltransferases (DGAT) are responsible for the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes, including DGAT1 and DGAT2 of tung tre...

  14. Overexpression of Peanut Diacylglycerol Acyltransferase 2 in Escherichia coli

    Science.gov (United States)

    Yang, Lianqun; Zhang, Bin; Chen, Gao; Bi, Yuping

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar ‘Luhua 14’ using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli Rosetta (DE3). Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b) were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a–GST, or AhDGAT2b–GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a–GST and AhDGAT2b–GST proteins increased the sizes of the host cells by 2.4–2.5 times that of the controls (post-IPTG induction). The total fatty acid (FA) levels of the AhDGAT2a–GST and AhDGAT2a–GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for

  15. Overexpression of peanut diacylglycerol acyltransferase 2 in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Zhenying Peng

    Full Text Available Diacylglycerol acyltransferase (DGAT is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2 genes were cloned from the peanut cultivar 'Luhua 14' using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST fusion proteins in Escherichia coli Rosetta (DE3. Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a-GST, or AhDGAT2b-GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a-GST and AhDGAT2b-GST proteins increased the sizes of the host cells by 2.4-2.5 times that of the controls (post-IPTG induction. The total fatty acid (FA levels of the AhDGAT2a-GST and AhDGAT2a-GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for

  16. Functional roles of three cutin biosynthetic acyltransferases in cytokinin responses and skotomorphogenesis.

    Directory of Open Access Journals (Sweden)

    Lei Wu

    Full Text Available Cytokinins (CKs regulate plant development and growth via a two-component signaling pathway. By forward genetic screening, we isolated an Arabidopsis mutant named grow fast on cytokinins 1 (gfc1, whose seedlings grew larger aerial parts on MS medium with CK. gfc1 is allelic to a previously reported cutin mutant defective in cuticular ridges (dcr. GFC1/DCR encodes a soluble BAHD acyltransferase (a name based on the first four enzymes characterized in this family: Benzylalcohol O-acetyltransferase, Anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase and Deacetylvindoline 4-O-acetyltransferase with diacylglycerol acyltransferase (DGAT activity in vitro and is necessary for normal cuticle formation on epidermis in vivo. Here we show that gfc1 was a CK-insensitive mutant, as revealed by its low regeneration frequency in vitro and resistance to CK in adventitious root formation and dark-grown hypocotyl inhibition assays. In addition, gfc1 had de-etiolated phenotypes in darkness and was therefore defective in skotomorphogenesis. The background expression levels of most type-A Arabidopsis Response Regulator (ARR genes were higher in the gfc1 mutant. The gfc1-associated phenotypes were also observed in the cutin-deficient glycerol-3-phosphate acyltransferase 4/8 (gpat4/8 double mutant [defective in glycerol-3-phosphate (G3P acyltransferase enzymes GPAT4 and GPAT8, which redundantly catalyze the acylation of G3P by hydroxyl fatty acid (OH-FA], but not in the cutin-deficient mutant cytochrome p450, family 86, subfamily A, polypeptide 2/aberrant induction of type three 1 (cyp86A2/att1, which affects the biosynthesis of some OH-FAs. Our results indicate that some acyltransferases associated with cutin formation are involved in CK responses and skotomorphogenesis in Arabidopsis.

  17. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells

    OpenAIRE

    Chen, Xueni; Hyatt, Brian A.; Mucenski, Michael L; Mason, Robert J; Shannon, John M.

    2006-01-01

    Pulmonary surfactant is a complex of lipids and proteins produced and secreted by alveolar type II cells that provides the low surface tension at the air–liquid interface. The phospholipid most responsible for providing the low surface tension in the lung is dipalmitoylphosphatidylcholine. Dipalmitoylphosphatidylcholine is synthesized in large part by phosphatidylcholine (PC) remodeling, and a lysophosphatidylcholine (lysoPC) acyltransferase is thought to play a critical role in its synthesis...

  18. The rv1184c Locus Encodes Chp2, an Acyltransferase in Mycobacterium tuberculosis Polyacyltrehalose Lipid Biosynthesis

    OpenAIRE

    Touchette, Megan H.; Holsclaw, Cynthia M.; Mary L Previti; Solomon, Viven C.; Leary, Julie A.; Bertozzi, Carolyn R.; Seeliger, Jessica C.

    2014-01-01

    Trehalose glycolipids are found in many bacteria in the suborder Corynebacterineae, but methyl-branched acyltrehaloses are exclusive to virulent species such as the human pathogen Mycobacterium tuberculosis. In M. tuberculosis, the acyltransferase PapA3 catalyzes the formation of diacyltrehalose (DAT), but the enzymes responsible for downstream reactions leading to the final product, polyacyltrehalose (PAT), have not been identified. The PAT biosynthetic gene locus is similar to that of anoth...

  19. Rimonabant is a dual inhibitor of acyl CoA:cholesterol acyltransferases 1 and 2

    OpenAIRE

    Netherland, Courtney; Thewke, Douglas P.

    2010-01-01

    Acyl-coenzymeA:cholesterol acyltransferase (ACAT) catalyzes the intracellular synthesis of cholesteryl esters (CE). Both ACAT isoforms, ACAT1 and ACAT2, play key roles in the pathophysiology of atherosclerosis and ACAT inhibition retards atherosclerosis in animal models. Rimonabant, a type 1 cannabinoid receptor (CB1) antagonist, produces anti-atherosclerotic effects in humans and animals by mechanisms which are not completely understood. Rimonabant is structurally similar to two other cannab...

  20. Molecular characterisation of a recombinant bovine glycine N-acyltransferase / Christoffel Petrus Stephanus Badenhorst

    OpenAIRE

    Badenhorst, Christoffel Petrus Stephanus

    2010-01-01

    Conjugation of glycine to organic acids is an important detoxification mechanism. Metabolites of aspirin and industrial solvents, benzoic acid found in plant material and many endogenous metabolites are detoxified by conjugation to glycine. The enzyme responsible for glycine conjugation, glycine N-acyltransferase (GL YAT), is investigated in this study. The enzyme is also important for the management of organic acidemias which are inherited metabolic diseases. However, not all ...

  1. Differential distribution of ghrelin-O-acyltransferase (GOAT) immunoreactive cells in the mouse and rat gastric oxyntic mucosa

    OpenAIRE

    Stengel, Andreas; Goebel, Miriam; Wang, Lixin; Taché, Yvette; Sachs, George; Lambrecht, Nils W. G.

    2010-01-01

    The enzyme that acylates ghrelin was recently identified in mice as the fourth member of the membrane-bound O-acyltransferases superfamily (MBOAT4) and named ghrelin-O-acyltransferase (GOAT). Only one report showed GOAT mRNA expression in ghrelin-expressing cells of the mouse stomach. We investigated the distribution of GOAT protein in peripheral tissues and co-expression with endocrine markers in the gastric mucosa using a custom-made anti-GOAT antibody. Tissues were collected from male Spra...

  2. Involvement of an octose ketoreductase and two acyltransferases in the biosynthesis of paulomycins

    Science.gov (United States)

    Li, Jine; Wang, Min; Ding, Yong; Tang, Yue; Zhang, Zhiguo; Chen, Yihua

    2016-02-01

    C-4 hydroxyethyl branched octoses have been observed in polysaccharides of several genera of gram negative bacteria and in various antibiotics produced by gram positive bacteria. The C-4 hydroxyethyl branch was proposed to be converted from C-4 acetyl branch by an uncharacterized ketoreduction step. Paulomycins (PAUs) are glycosylated antibiotics with potent inhibitory activity against gram positive bacteria and are structurally defined by its unique C-4‧ hydroxyethyl branched paulomycose moiety. A novel aldo-keto-reductase, Pau7 was characterized as the enzyme catalyzing the stereospecific ketoreduction of 7‧-keto of PAU E (1) to give the C-4‧ hydroxyethyl branched paulomycose moiety of PAU F (2). An acyltransferase Pau6 further decorates the C-4‧ hydroxyethyl branch of paulomycose moiety of 2 by attaching various fatty acyl chains to 7‧-OH to generate diverse PAUs. In addition, another acyltransferase Pau24 was proposed to be responsible for the 13-O-acetylation of PAUs.

  3. Attenuation of hedgehog acyltransferase-catalyzed sonic Hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells

    DEFF Research Database (Denmark)

    Konitsiotis, Antonios D; Chang, Shu-Chun; Jovanović, Biljana;

    2014-01-01

    Overexpression of Hedgehog family proteins contributes to the aetiology of many cancers. To be highly active, Hedgehog proteins must be palmitoylated at their N-terminus by the MBOAT family multispanning membrane enzyme Hedgehog acyltransferase (Hhat). In a pancreatic ductal adenocarcinoma (PDAC)...

  4. Deficiency of acyl-CoA: Dihydroxyacetone phosphate acyltransferase in patients with Zellweger (cerebro-hepato-renal) syndrome

    NARCIS (Netherlands)

    Bosch, H. van den; Schutgens, R.B.H.; Romeyn, G.J.; Wanders, R.J.A.; Schrakamp, G.; Heymans, H.S.A.

    1984-01-01

    We have recently reported on plasmalogen deficiency in tissues and fibroblasts from patients with Zellweger syndrome. In this paper we have analyzed the activity of the first enzyme in the pathway leading to plasmalogen biosynthesis, i.e. acyl-CoA: dihydroxyacetone phosphate acyltransferase in liver

  5. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast

    DEFF Research Database (Denmark)

    Benghezal, Mohammed; Roubaty, Carole; Veepuri, Vijayanath;

    2007-01-01

    does not eliminate all microsomal 1-acylglycerol-3-phosphate O-acyltransferase activity, suggesting that an additional enzyme may exist. Here we show that SLC4 (Yor175c), a gene of hitherto unknown function, encodes a second 1-acyl-sn-glycerol-3-phosphate acyltransferase. SLC4 harbors a membrane......-bound O-acyltransferase motif and down-regulation of SLC4 strongly reduces 1-acyl-sn-glycerol-3-phosphate acyltransferase activity in microsomes from slc1Delta cells. The simultaneous deletion of SLC1 and SLC4 is lethal. Mass spectrometric analysis of lipids from slc1Delta and slc4Delta cells demonstrates...... that in vivo Slc1p and Slc4p generate almost the same glycerophospholipid profile. Microsomes from slc1Delta and slc4Delta cells incubated with [14C]oleoyl-coenzyme A in the absence of lysophosphatidic acid and without CTP still incorporate the label into glycerophospholipids, indicating that Slc1p and...

  6. The last step in cocaine biosynthesis is catalyzed by a BAHD acyltransferase.

    Science.gov (United States)

    Schmidt, Gregor Wolfgang; Jirschitzka, Jan; Porta, Tiffany; Reichelt, Michael; Luck, Katrin; Torre, José Carlos Pardo; Dolke, Franziska; Varesio, Emmanuel; Hopfgartner, Gérard; Gershenzon, Jonathan; D'Auria, John Charles

    2015-01-01

    The esterification of methylecgonine (2-carbomethoxy-3β-tropine) with benzoic acid is the final step in the biosynthetic pathway leading to the production of cocaine in Erythoxylum coca. Here we report the identification of a member of the BAHD family of plant acyltransferases as cocaine synthase. The enzyme is capable of producing both cocaine and cinnamoylcocaine via the activated benzoyl- or cinnamoyl-Coenzyme A thioesters, respectively. Cocaine synthase activity is highest in young developing leaves, especially in the palisade parenchyma and spongy mesophyll. These data correlate well with the tissue distribution pattern of cocaine as visualized with antibodies. Matrix-assisted laser-desorption ionization mass spectral imaging revealed that cocaine and cinnamoylcocaine are differently distributed on the upper versus lower leaf surfaces. Our findings provide further evidence that tropane alkaloid biosynthesis in the Erythroxylaceae occurs in the above-ground portions of the plant in contrast with the Solanaceae, in which tropane alkaloid biosynthesis occurs in the roots.

  7. Diacylglycerol acyltransferase-1 (DGAT1 inhibition perturbs postprandial gut hormone release.

    Directory of Open Access Journals (Sweden)

    Hua V Lin

    Full Text Available Diacylglycerol acyltransferase-1 (DGAT1 is a potential therapeutic target for treatment of obesity and related metabolic diseases. However, the degree of DGAT1 inhibition required for metabolic benefits is unclear. Here we show that partial DGAT1 deficiency in mice suppressed postprandial triglyceridemia, led to elevations in glucagon-like peptide-1 (GLP-1 and peptide YY (PYY only following meals with very high lipid content, and did not protect from diet-induced obesity. Maximal DGAT1 inhibition led to enhanced GLP-1 and PYY secretion following meals with physiologically relevant lipid content. Finally, combination of DGAT1 inhibition with dipeptidyl-peptidase-4 (DPP-4 inhibition led to further enhancements in active GLP-1 in mice and dogs. The current study suggests that targeting DGAT1 to enhance postprandial gut hormone secretion requires maximal inhibition, and suggests combination with DPP-4i as a potential strategy to develop DGAT1 inhibitors for treatment of metabolic diseases.

  8. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase

    Science.gov (United States)

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A.; Tesmer, John J. G.

    2015-03-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome.

  9. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato.

    Science.gov (United States)

    Sui, Na; Li, Meng; Zhao, Shi-Jie; Li, Feng; Liang, Hui; Meng, Qing-Wei

    2007-10-01

    A tomato (Lycopersicon esculentum Mill.) glycerol-3-phosphate acyltransferase gene (LeGPAT) was isolated. The deduced amino acid sequence revealed that LeGPAT contained four acyltransferase domains, showing high identities with GPAT in other plant species. A GFP fusion protein of LeGPAT was targeted to chloroplast in cowpea mesophyll protoplast. RNA gel blot showed that the mRNA accumulation of LeGPAT in the wild type (WT) was induced by chilling temperature. Higher expression levels were observed when tomato leaves were exposed to 4 degrees C for 4 h. RNA gel and western blot analysis confirmed that the sense gene LeGPAT was transferred into the tomato genome and overexpressed under the control of 35S-CaMV. Although tomato is classified as a chilling-sensitive plant, LeGPAT exhibited selectivity to 18:1 over 16:0. Overexpression of LeGPAT increased total activity of LeGPAT and cis-unsaturated fatty acids in PG in thylakoid membrane. Chilling treatment induced less ion leakage from the transgenic plants than from the WT. The photosynthetic rate and the maximal photochemical efficiency of PS II (Fv/Fm) in transgenic plants decreased more slowly during chilling stress and recovered faster than in WT under optimal conditions. The oxidizable P700 in both WT and transgenic plants decreased obviously at chilling temperature under low irradiance, but the oxidizable P700 recovered faster in transgenic plants than in the WT. These results indicate that overexpression of LeGPAT increased the levels of PG cis-unsaturated fatty acids in thylakoid membrane, which was beneficial for the recovery of chilling-induced PS I photoinhibition in tomato.

  10. Characterization of a Novel Intestinal Glycerol-3-phosphate Acyltransferase Pathway and Its Role in Lipid Homeostasis.

    Science.gov (United States)

    Khatun, Irani; Clark, Ronald W; Vera, Nicholas B; Kou, Kou; Erion, Derek M; Coskran, Timothy; Bobrowski, Walter F; Okerberg, Carlin; Goodwin, Bryan

    2016-02-01

    Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3(-/-)) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3(-/-) mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3(-/-) mice. Gpat3(-/-) enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3(-/-) mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism.

  11. Identification and characterization of a gene encoding a putative lysophosphatidyl acyltransferase from Arachis hypogaea

    Indian Academy of Sciences (India)

    Si-Long Chen; Jia-Quan Huang; Lei Yong; Yue-Ting Zhang; Xiao-Ping Ren; Yu-Ning Chen; Hui-Fang Jiang; Li-Ying Yan; Yu-Rong Li; Bo-Shou Liao

    2012-12-01

    Lysophosphatidyl acyltransferase (LPAT) is the important enzyme responsible for the acylation of lysophosphatidic acid (LPA), leading to the generation of phosphatidic acid (PA) in plant. Its encoding gene is an essential candidate for oil crops to improve oil composition and increase seed oil content through genetic engineering. In this study, a full-length AhLPAT4 gene was isolated via cDNA library screening and rapid amplification of cDNA ends (RACE); our data demonstrated that AhLPAT4 had 1631 nucleotides, encoding a putative 43.8 kDa protein with 383 amino acid residues. The deduced protein included a conserved acyltransferase domain and four motifs (I–IV) with putative LPA and acyl-CoA catalytic and binding sites. Bioinformatic analysis indicated that AhLPAT4 contained four transmembrane domains (TMDs), localized to the endoplasmic reticulum (ER) membrane; detailed analysis indicated that motif I and motifs II–III in AhLPAT4 were separated by the third TMD, which located on cytosolic and ER luminal side respectively, and hydrophobic residues on the surface of AhLPAT4 protein fold to form a hydrophobic tunnel to accommodate the acyl chain. Subcellular localization analysis confirmed that AhLPAT4 was a cytoplasm protein. Phylogenetic analysis revealed that AhLPAT4 had a high homology (63.7–78.3%) with putative LPAT4 proteins from Glycine max, Arabidopsis thaliana and Ricinus communis. AhLPAT4 was ubiquitously expressed in diverse tissues except in flower, which is almost undetectable. The expression analysis in different developmental stages in peanut seeds indicated that AhLPAT4 did not coincide with oil accumulation.

  12. Identification of conserved regions and residues within Hedgehog acyltransferase critical for palmitoylation of Sonic Hedgehog.

    Directory of Open Access Journals (Sweden)

    John A Buglino

    Full Text Available BACKGROUND: Sonic hedgehog (Shh is a palmitoylated protein that plays key roles in mammalian development and human cancers. Palmitoylation of Shh is required for effective long and short range Shh-mediated signaling. Attachment of palmitate to Shh is catalyzed by Hedgehog acyltransferase (Hhat, a member of the membrane bound O-acyl transferase (MBOAT family of multipass membrane proteins. The extremely hydrophobic composition of MBOAT proteins has limited their biochemical characterization. Except for mutagenesis of two conserved residues, there has been no structure-function analysis of Hhat, and the regions of the protein required for Shh palmitoylation are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we undertake a systematic approach to identify residues within Hhat that are required for protein stability and/or enzymatic activity. We also identify a second, novel MBOAT homology region (residues 196-234 that is required for Hhat activity. In total, ten deletion mutants and eleven point mutants were generated and analyzed. Truncations at the N- and C-termini of Hhat yielded inactive proteins with reduced stability. Four Hhat mutants with deletions within predicted loop regions and five point mutants retained stability but lost palmitoylation activity. We purified two point mutants, W378A and H379A, with defective Hhat activity. Kinetic analyses revealed alterations in apparent K(m and V(max for Shh and/or palmitoyl CoA, changes that likely explain the catalytic defects observed for these mutants. CONCLUSIONS/SIGNIFICANCE: This study has pinpointed specific regions and multiple residues that regulate Hhat stability and catalysis. Our findings should be applicable to other MBOAT proteins that mediate lipid modification of Wnt proteins and ghrelin, and should serve as a model for understanding how secreted morphogens are modified by palmitoyl acyltransferases.

  13. Characterization of a Novel Intestinal Glycerol-3-phosphate Acyltransferase Pathway and Its Role in Lipid Homeostasis.

    Science.gov (United States)

    Khatun, Irani; Clark, Ronald W; Vera, Nicholas B; Kou, Kou; Erion, Derek M; Coskran, Timothy; Bobrowski, Walter F; Okerberg, Carlin; Goodwin, Bryan

    2016-02-01

    Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3(-/-)) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3(-/-) mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3(-/-) mice. Gpat3(-/-) enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3(-/-) mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism. PMID:26644473

  14. Molecular characterization of a lysophosphatidylcholine acyltransferase gene belonging to the MBOAT family in Ricinus communis L.

    Science.gov (United States)

    Arroyo-Caro, José María; Chileh, Tarik; Alonso, Diego López; García-Maroto, Federico

    2013-07-01

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT, EC 2.3.1.23) catalyzes acylation of lysophosphatidylcholine (lysoPtdCho) to produce phosphatidylcholine (PtdCho), the main phospholipid in cellular membranes. This reaction is a key component of the acyl-editing process, involving recycling of the fatty acids (FA) mainly at the sn-2 position of PtdCho. Growing evidences indicate that the LPCAT reaction controls the direct entry of newly synthesized FA into PtdCho and, at least in some plant species, it has an important impact on the synthesis and composition of triacylglycerols. Here we describe the molecular characterization of the single LPCAT gene found in the genome of Ricinus communis (RcLPCAT) that is homologous to LPCAT genes of the MBOAT family previously described in Arabidopsis and Brassica. RcLPCAT is ubiquitously expressed in all organs of the castor plant. Biochemical properties have been studied by heterologous expression of RcLPCAT in the ale1 yeast mutant, defective in lysophospholipid acyltransferase activity. RcLPCAT preferentially acylates lysoPtdCho against other lysophospholipids (lysoPL) and does not discriminates the acyl chain in the acceptor, displaying a strong activity with alkyl lysoPL. Regarding the acyl-CoA donor, RcLPCAT uses monounsaturated fatty acid thioesters, such as oleoyl-CoA (18:1-CoA), as preferred donors, while it has a low activity with saturated fatty acids and shows a poor utilization of ricinoleoyl-CoA (18:1-OH-CoA). These characteristics are discussed in terms of a possible role of RcLPCAT in regulating the entry of FA into PtdCho and the exclusion from the membranes of the hydroxylated FA.

  15. Cloning and identification of the human LPAAT-zeta gene, a novel member of the lysophosphatidic acid acyltransferase family.

    Science.gov (United States)

    Li, Dan; Yu, Long; Wu, Hai; Shan, Yuxi; Guo, Jinhu; Dang, Yongjun; Wei, Youheng; Zhao, Shouyuan

    2003-01-01

    Lysophosphatidic acid (LPA) is a naturally occurring component of phospholipid and plays a critical role in the regulation of many physiological and pathophysiological processes including cell growth, survival, and pro-angiogenesis. LPA is converted to phosphatidic acid by the action of lysophosphatidic acid acyltransferase (LPAAT). Five members of the LPAAT gene family have been detected in humans to date. Here, we report the identification of a novel LPAAT member, which is designated as LPAAT-zeta. LPAAT-zeta was predicted to encode a protein consisting of 456 amino acid residues with a signal peptide sequence and the acyltransferase domain. Northern blot analysis showed that LPAAT-zeta was ubiquitously expressed in all 16 human tissues examined, with levels in the skeletal muscle, heart, and testis being relatively high and in the lung being relatively low. The human LPAAT-zeta gene consisted of 13 exons and is positioned at chromosome 8p11.21. PMID:12938015

  16. Sex and depot differences in ex vivo adipose tissue fatty acid storage and glycerol-3-phosphate acyltransferase activity

    OpenAIRE

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra; Jensen, Michael D.

    2015-01-01

    Adipose tissue fatty acid storage varies according to sex, adipose tissue depot, and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We examined whether differences in adipose tissue glycerol-3-phosphate acyltransferase (GPAT) might play a role in these variations. We optimized an enzyme activity assay for total GPAT and GPAT1 activity in human adipose tissue and measured GPAT activity. Omental and subcutaneous adipose tissue was collected from...

  17. Retinyl Ester Formation by Lecithin:Retinol Acyltransferase Is a Key Regulator of Retinoid Homeostasis in Mouse Embryogenesis* s

    OpenAIRE

    Kim, Youn-Kyung; Wassef, Lesley; Hamberger, Leora; Piantedosi, Roseann; Palczewski, Krzysztof; Blaner, William S.; Quadro, Loredana

    2007-01-01

    The developing mammalian embryo is entirely dependent on the maternal circulation for its supply of retinoids (vitamin A and its metabolites). The mechanisms through which mammalian developing tissues maintain adequate retinoid levels in the face of suboptimal or excessive maternal dietary vitamin A intake have not been established. We investigated the role of retinyl ester formation catalyzed by lecithin:retinol acyltransferase (LRAT) in regulating retinoid homeostasis during embryogenesis. ...

  18. Overexpression of LolCDE Allows Deletion of the Escherichia coli Gene Encoding Apolipoprotein N-Acyltransferase

    OpenAIRE

    Narita, Shin-ichiro; Tokuda, Hajime

    2011-01-01

    Bacterial lipoproteins represent a subset of membrane-associated proteins that are covalently modified with lipids at the N-terminal cysteine. The final step of lipoprotein modification, N-acylation of apolipoproteins, is mediated by apolipoprotein N-acyltransferase (Lnt). Examinations with reconstituted proteoliposomes and a conditional mutant previously indicated that N-acylation of lipoproteins is required for their efficient release from the inner membrane catalyzed by LolA and LolCDE, th...

  19. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification.

    Science.gov (United States)

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T; Ruggles, Kelly V; DeGiorgis, Joseph A; Kohlwein, Sepp D; Schon, Eric A; Sturley, Stephen L

    2015-11-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.

  20. The Last Step in Cocaine Biosynthesis Is Catalyzed by a BAHD Acyltransferase[OPEN

    Science.gov (United States)

    Schmidt, Gregor Wolfgang; Porta, Tiffany; Reichelt, Michael; Luck, Katrin; Torre, José Carlos Pardo; Dolke, Franziska; Varesio, Emmanuel; Hopfgartner, Gérard; Gershenzon, Jonathan

    2015-01-01

    The esterification of methylecgonine (2-carbomethoxy-3β-tropine) with benzoic acid is the final step in the biosynthetic pathway leading to the production of cocaine in Erythoxylum coca. Here we report the identification of a member of the BAHD family of plant acyltransferases as cocaine synthase. The enzyme is capable of producing both cocaine and cinnamoylcocaine via the activated benzoyl- or cinnamoyl-Coenzyme A thioesters, respectively. Cocaine synthase activity is highest in young developing leaves, especially in the palisade parenchyma and spongy mesophyll. These data correlate well with the tissue distribution pattern of cocaine as visualized with antibodies. Matrix-assisted laser-desorption ionization mass spectral imaging revealed that cocaine and cinnamoylcocaine are differently distributed on the upper versus lower leaf surfaces. Our findings provide further evidence that tropane alkaloid biosynthesis in the Erythroxylaceae occurs in the above-ground portions of the plant in contrast with the Solanaceae, in which tropane alkaloid biosynthesis occurs in the roots. PMID:25406120

  1. The last step in cocaine biosynthesis is catalyzed by a BAHD acyltransferase.

    Science.gov (United States)

    Schmidt, Gregor Wolfgang; Jirschitzka, Jan; Porta, Tiffany; Reichelt, Michael; Luck, Katrin; Torre, José Carlos Pardo; Dolke, Franziska; Varesio, Emmanuel; Hopfgartner, Gérard; Gershenzon, Jonathan; D'Auria, John Charles

    2015-01-01

    The esterification of methylecgonine (2-carbomethoxy-3β-tropine) with benzoic acid is the final step in the biosynthetic pathway leading to the production of cocaine in Erythoxylum coca. Here we report the identification of a member of the BAHD family of plant acyltransferases as cocaine synthase. The enzyme is capable of producing both cocaine and cinnamoylcocaine via the activated benzoyl- or cinnamoyl-Coenzyme A thioesters, respectively. Cocaine synthase activity is highest in young developing leaves, especially in the palisade parenchyma and spongy mesophyll. These data correlate well with the tissue distribution pattern of cocaine as visualized with antibodies. Matrix-assisted laser-desorption ionization mass spectral imaging revealed that cocaine and cinnamoylcocaine are differently distributed on the upper versus lower leaf surfaces. Our findings provide further evidence that tropane alkaloid biosynthesis in the Erythroxylaceae occurs in the above-ground portions of the plant in contrast with the Solanaceae, in which tropane alkaloid biosynthesis occurs in the roots. PMID:25406120

  2. A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica.

    Science.gov (United States)

    Li, Da-Wei; Cen, Shi-Ying; Liu, Yu-Hong; Balamurugan, Srinivasan; Zheng, Xin-Yan; Alimujiang, Adili; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2016-07-10

    Oleaginous microalgae have received a considerable attention as potential biofuel feedstock. However, lack of industry-suitable strain with lipid rich biomass limits its commercial applications. Targeted engineering of lipogenic pathways represents a promising strategy to enhance the efficacy of microalgal oil production. In this study, a type 2 diacylglycerol acyltransferase (DGAT), a rate-limiting enzyme in triacylglycerol (TAG) biosynthesis, was identified and overexpressed in heterokont oleaginous microalga Nannochloropsis oceanica for the first time. Overexpression of DGAT2 in Nannochloropsis increased the relative transcript abundance by 3.48-fold in engineered microalgae cells. TAG biosynthesis was subsequently accelerated by DGAT2 overexpression and neutral lipid content was significantly elevated by 69% in engineered microalgae. The fatty acid profile determined by GC-MS revealed that fatty acid composition was altered in engineered microalgae. Saturated fatty acids and polyunsaturated fatty acids were found to be increased whereas monounsaturated fatty acids content decreased. Furthermore, DGAT2 overexpression did not show negative impact on algal growth parameters. The present investigation showed that the identified DGAT2 would be a potential candidate for enhancing TAG biosynthesis and might facilitate the development of promising oleaginous strains with industrial potential. PMID:27164260

  3. Click chemistry armed enzyme-linked immunosorbent assay to measure palmitoylation by hedgehog acyltransferase.

    Science.gov (United States)

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D; Thinon, Emmanuelle; Rodgers, Ursula R; Owens, Raymond J; Magee, Anthony I; Tate, Edward W

    2015-12-01

    Hedgehog signaling is critical for correct embryogenesis and tissue development. However, on maturation, signaling is also found to be aberrantly activated in many cancers. Palmitoylation of the secreted signaling protein sonic hedgehog (Shh) by the enzyme hedgehog acyltransferase (Hhat) is required for functional signaling. To quantify this important posttranslational modification, many in vitro Shh palmitoylation assays employ radiolabeled fatty acids, which have limitations in terms of cost and safety. Here we present a click chemistry armed enzyme-linked immunosorbent assay (click-ELISA) for assessment of Hhat activity through acylation of biotinylated Shh peptide with an alkyne-tagged palmitoyl-CoA (coenzyme A) analogue. Click chemistry functionalization of the alkyne tag with azido-FLAG peptide allows analysis through an ELISA protocol and colorimetric readout. This assay format identified the detergent n-dodecyl β-d-maltopyranoside as an improved solubilizing agent for Hhat activity. Quantification of the potency of RU-SKI small molecule Hhat inhibitors by click-ELISA indicated IC50 values in the low- or sub-micromolar range. A stopped assay format was also employed that allows measurement of Hhat kinetic parameters where saturating substrate concentrations exceed the binding capacity of the streptavidin-coated plate. Therefore, click-ELISA represents a nonradioactive method for assessing protein palmitoylation in vitro that is readily expandable to other classes of protein lipidation.

  4. Homeostasis of Brassinosteroids Regulated by DRL1, a Putative Acyltransferase in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Wenjiao Zhu; Haijiao Wang; Shozo Fujioka; Tao Zhou; Hailong Tian; Weisheng Tian; Xuelu Wang

    2013-01-01

    Brassinosteroids (BRs) play essential roles in regulating various aspects of plant growth and development and in responding to diverse environmental cues,and their metabolism is an important way to regulate their homeostasis in plants.Here,we identified a dominant mutant,dwarf and round leaf-1 (drll-D),which exhibits weak BR-deficient or BR-insensitive mutant phenotypes,including short and round leaves,prolonged senescence,dwarfed shape,and altered expression levels of the BR-responsive genes.Hypocotyl length and root inhibition assays suggest that the drll-D mutant responds to BRs normally,but has decreased BR signaling outputs.The endogenous levels of several BRs,including typhasterol (TY),6-deoxotyphasterol (6-deoxoTY),and 6-deoxocastasterone (6-deoxoCS),are significantly lower in the drll-D mutant than in the wild-type.The DRL1 gene encodes an acyltransferase and is widely expressed in leaves,roots,flowers,and siliques.Plants without DRL1 and its homologs are larger with an enhanced BR signaling.The expression of DRL1 was induced by eBL and inhibited by ABA.DRL1 is involved in the BR metabolism likely by catalyzing the BR conjugation through esterification,which plays important roles in regulating the BR homeostasis and responding to abiotic stresses in Arabidopsis.

  5. Rimonabant is a dual inhibitor of acyl CoA:cholesterol acyltransferases 1 and 2.

    Science.gov (United States)

    Netherland, Courtney; Thewke, Douglas P

    2010-08-01

    Acyl coenzyme A:cholesterol acyltransferase (ACAT) catalyzes the intracellular synthesis of cholesteryl esters (CE). Both ACAT isoforms, ACAT1 and ACAT2, play key roles in the pathophysiology of atherosclerosis and ACAT inhibition retards atherosclerosis in animal models. Rimonabant, a type 1 cannabinoid receptor (CB1) antagonist, produces anti-atherosclerotic effects in humans and animals by mechanisms which are not completely understood. Rimonabant is structurally similar to two other cannabinoid receptor antagonists, AM251 and SR144528, recently identified as potent inhibitors of ACAT. Therefore, we examined the effects of Rimonabant on ACAT using both in vivo cell-based assays and in vitro cell-free assays. Rimonabant dose-dependently reduced ACAT activity in Raw 264.7 macrophages (IC(50)=2.9+/-0.38 microM) and isolated peritoneal macrophages. Rimonabant inhibited ACAT activity in intact CHO-ACAT1 and CHO-ACAT2 cells and in cell-free assays with approximately equal efficiency (IC(50)=1.5+/-1.2 microM and 2.2+/-1.1 microM for CHO-ACAT1 and CHO-ACAT2, respectively). Consistent with ACAT inhibition, Rimonabant treatment blocked ACAT-dependent processes in macrophages, oxysterol-induced apoptosis and acetylated-LDL induced foam cell formation. From these results we conclude that Rimonabant is an ACAT1/2 dual inhibitor and suggest that some of the atherosclerotic beneficial effects of Rimonabant are, at least partly, due to inhibition of ACAT. PMID:20609360

  6. AT3 (Acyltransferase Gene Isolated From Capsicum frutescens cv. Cakra Hijau

    Directory of Open Access Journals (Sweden)

    Mohamad Habibi

    2013-05-01

    Full Text Available Chili pepper is widely used and cultivated by Indonesian people. There are three species of chili pepper, i.e.: Capsicum annuum L., Capsicum frutescens L., and Capsicum violaceum HBK. Capsicum frutescens L. has a higher economic value due to its pungency and carotenoid content. C. frutescens has several cultivars, one of those is Capsicum frutescens cv. Cakra Hijau. This cultivar is resistant against pest and disease and has very high pungency. This special character of chili pepper is born by its secondary metabolic, Capsaicin. Moreover, capsaicin also serves as defense mechanism, antiarthritis, analgesic, and anticancer. This study aimed to isolate Acyltransferase (AT3 gene which encoding Capsaicin Synthase (CS enzyme. AT3 gene was isolated through PCR using forward primer 5’-ATG GCT TTT GCA TTA CCA TCA-3’ and reverse primer 5’-CCT TCA CAA TTA TTC GCC CA-3’. Data were analyzed using DNA Baser, BLAST, and ClustalX. This study has successfully isolated 404 bp fragments of AT3 gene. This fragments located at 1918-1434 bp referred to AT3 gene from Capsicum frutescens cv. Shuanla. Isolation of upstream and downstream fragments of AT3 gene from Capsicum frutescens cv. Cakra Hijau is undergoing.

  7. Glycerol-3-phosphate acyltransferase 4 gene is involved in mouse spermatogenesis

    Institute of Scientific and Technical Information of China (English)

    Qingming Qiu; Gang Liu; Weina Li; Qiuwen Shi; Fuxi Zhu; Guangxiu Lu

    2009-01-01

    Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first committed step of de novo triacylglycerol syn-thesis by converting glycerol-3-phosphate to lysopho-sphatidic acid (LPA). LPA is a mitogen that mediates multiple cellular processes including cell proliferation. Four GPAT isoforms have been cloned to date. GPAT4 is strongly expressed in the mouse testis. Reverse tran-scription-polymerase chain reaction (PCR), real-time PCR, and in situ hybridization (ISH) were used to analyze the GPAT4 expression and to localize the expressing cell types in the mouse testis during post-natal development. GPAT4 cDNA was inserted into pcDNA4/His to construct a recombinant vector, which was transfected into a mouse spermatogonial cell line (GC-lspg). GPAT4 was first expressed in mice at 2 weeks postnatally. Expression was abundant from the third week, plateaued at week 5-6 and then maintained at a high level in the adult. ISH revealed that GPAT4 gene was expressed abundantly in spermatocytes and around spermatids during meiosis but not in elongated spermatids during later spermiogenesis. GC-1spg cells showed a marked increase in proliferation after trans-fection with GPAT4; cell cycle analysis showed a decrease in the percentage of cells in the Go/G1 phase and an increase in the S phase. Thus, GPAT4 might play an important role in spermatogenesis, especially in mid-meiosis.

  8. A molecular model for diacylglycerol acyltransferase from Mortierella ramanniana var. angulispora.

    Science.gov (United States)

    Mishra, Sanjay; Dwivedi, Surya Prakash; Dwivedi, Neeraja; Kumar, Ajay; Rawat, Anil; Kamisaka, Yasushi

    2009-06-28

    Acyl CoA diacylglycerol acyltransferase (DGAT, EC 2.3.120) is recognized as a key player of cellular diacylglycerol metabolism. It catalyzes the terminal, yet the committed step in triacylglycerol synthesis using diacylglycerol and fatty acyl CoA as substrates. The protein sequence of diacylglycerol acyltransferse (DGAT) Type 2B in Moretierella ramanniana var. angulispora (Protein_ID = AAK84180.1) was retrieved from GenBank. However, a structure is not yet available for this sequence. The 3D structure of DGAT Type 2B was modeled using a template structure (PDB ID: 1K30) obtained from Protein databank (PDB) identified by searching with position specific iterative BLAST (PSI-BLAST). The template (PDB ID: 1K30) describes the structure of DGAT from Cucurbita moschata. Modeling was performed using Modeller 9v2 and protein model is hence generated. The DGAT type 2B protein model was subsequently docked with six inhibitors (sphingosine; trifluoroperazine; phosphatidic acid; lysophospatidylserine; KCl; 1, 2-diolein) using AutoDock (a molecular docking program). The binding of inhibitors to the protein model of DGAT type 2B is discussed.

  9. Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit.

    Science.gov (United States)

    Lin, Jyun-Liang; Zhu, Jie; Wheeldon, Ian

    2016-05-01

    Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl-CoA with an alcohol by alcohol-O-acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short- and medium-chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf-S.l). Atf1-S.l exhibited broad specificity towards acyl-CoAs with chain length from C4 to C10 and was specific towards 1-pentanol. The AATase screen also revealed new acyl-CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf-C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester-based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels. PMID:26814045

  10. Lecithin-cholesterol acyltransferase in brain: Does oxidative stress influence the 24-hydroxycholesterol esterification?

    Science.gov (United States)

    La Marca, Valeria; Maresca, Bernardetta; Spagnuolo, Maria Stefania; Cigliano, Luisa; Dal Piaz, Fabrizio; Di Iorio, Giuseppe; Abrescia, Paolo

    2016-04-01

    24-Hydroxycholesterol (24OH-C) is esterified by the enzyme lecithin-cholesterol acyltransferase (LCAT) in the cerebrospinal fluid (CSF). We report here that the level of 24OH-C esters was lower in CSF of patients with amyotrophic lateral sclerosis than in healthy subjects (54% vs 68% of total 24OH-C, p=0.0005; n=8). Similarly, the level of 24OH-C esters in plasma was lower in patients than in controls (62% vs 77% of total 24OH-C; p=0.0076). The enzyme amount in CSF, as measured by densitometry of the protein band revealed by immunoblotting, was about 4-fold higher in patients than in controls (p=0.0085). As differences in the concentration of the LCAT stimulator Apolipoprotein E were not found, we hypothesized that the reduced 24OH-C esterification in CSF of patients might depend on oxidative stress. We actually found that oxidative stress reduced LCAT activity in vitro, and 24OH-C effectively stimulated the enzyme secretion from astrocytoma cells in culture. Enhanced LCAT secretion from astrocytes might represent an adaptive response to the increase of non-esterified 24OH-C percentage, aimed to avoid the accumulation of this neurotoxic compound. The low degree of 24OH-C esterification in CSF or plasma might reflect reduced activity of LCAT during neurodegeneration.

  11. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    OpenAIRE

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoro...

  12. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica

    OpenAIRE

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoro...

  13. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol

    Science.gov (United States)

    Aznar-Moreno, Jose; Denolf, Peter; Van Audenhove, Katrien; De Bodt, Stefanie; Engelen, Steven; Fahy, Deirdre; Wallis, James G.; Browse, John

    2015-01-01

    DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world’s most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop. PMID:26195728

  14. Apolipoprotein A-I Helsinki promotes intracellular acyl-CoA cholesterol acyltransferase (ACAT) protein accumulation.

    Science.gov (United States)

    Toledo, Juan D; Garda, Horacio A; Cabaleiro, Laura V; Cuellar, Angela; Pellon-Maison, Magali; Gonzalez-Baro, Maria R; Gonzalez, Marina C

    2013-05-01

    Reverse cholesterol transport is a process of high antiatherogenic relevance in which apolipoprotein AI (apoA-I) plays an important role. The interaction of apoA-I with peripheral cells produces through mechanisms that are still poorly understood the mobilization of intracellular cholesterol depots toward plasma membrane. In macrophages, these mechanisms seem to be related to the modulation of the activity of acyl-CoA cholesterol acyltransferase (ACAT), the enzyme responsible for the intracellular cholesterol ester biosynthesis that is stored in lipid droplets. The activation of ACAT and the accumulation of lipid droplets play a key role in the transformation of macrophages into foam cells, leading to the formation of atheroma or atherosclerotic plaque. ApoA-I Helsinki (or ∆K107) is a natural apoA-I variant with a lysine deletion in the central protein region, carriers of which have increased atherosclerosis risk. We herein show that treatment of cultured RAW macrophages or CHOK1 cells with ∆K107, but not with wild-type apoA-I or a variant containing a similar deletion at the C-terminal region (∆K226), lead to a marked increase (more than 10 times) in the intracellular ACAT1 protein level as detected by western blot analysis. However, we could only detect a slight increase in cholesteryl ester produced by ∆K107 mainly when Chol loading was supplied by low-density lipoprotein (LDL). Although a similar choline-phospholipid efflux is evoked by these apoA-I variants, the change in phosphatidylcholine/sphyngomyelin distribution produced by wild-type apoA-I is not observed with either ∆K107 or ∆K226. PMID:23456478

  15. Lysophosphatidic acid acyltransferase β (LPAATβ promotes the tumor growth of human osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Farbod Rastegar

    Full Text Available BACKGROUND: Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2 in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This

  16. Purification and characterisation of acyl-CoA: glycerol 3-phosphate acyltransferase from oil palm (Elaeis guineensis) tissues.

    Science.gov (United States)

    Manaf, A M; Harwood, J L

    2000-01-01

    Glycerol 3-phosphate acyltransferase (GPAT, EC 2.3.15) catalyses the first step of the Kennedy pathway for acyl lipid formation. This enzyme was studied using high-speed particulate fractions from oil palm (Elaeis guineensis Jacq.) tissue cultures and mesocarp acetone powders. The fractions were incubated with [(14)C]glycerol 3-phosphate and incorporation of radioactivity into Kennedy pathway intermediates studied. Optimal conditions were broadly similar between the two preparations but those from fruit mesocarp clearly contained more active enzymes for the subsequent stages of the Kennedy pathway - as exemplified by the appreciable accumulation of radioactivity in triacylglycerol. Experiments with different acyl-CoA substrates showed that the GPAT in both high-speed particulate preparations had a significant preference for palmitate. Glycerol 3-phosphate acyltransferase was solubilised from both preparations with optimal solubilisation being achieved at 0.5% (w/v) CHAPS concentrations. Solubilised GPATs were purified further using DE52 ion-exchange chromatography and Sephadex G-100 molecular exclusion chromatography. Purifications of up to about 70-fold were achieved. The purified GPATs showed a strong preference for palmitoyl-CoA compared to other acyl-CoA donors, in keeping with the importance of palmitate in palm oil. PMID:10664139

  17. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk

    NARCIS (Netherlands)

    Bovenhuis, H.; Visker, M.H.P.W.; Poulsen, N.A.; Sehested, J.; Valenberg, van H.J.F.; Arendonk, van J.A.M.; Larsen, L.B.; Buitenhuis, A.J.

    2015-01-01

    Several studies have described associations between the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism and routinely collected milk production traits but not much is known about effects of the DGAT1 polymorphism on detailed milk composition. The aim of this study was to estimate ef

  18. Higher high density lipoprotein cholesterol associated with moderate alcohol consumption is not related to altered plasma lecithin : cholesterol acyltransferase and lipid transfer protein activity levels

    NARCIS (Netherlands)

    Riemens, SC; vanTol, A; Hoogenberg, K; vanGent, T; Scheek, LM; Sluiter, WJ; Dullaart, RPF

    1997-01-01

    Lecithin:cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) are important factors involved in HDL metabolism. Altered plasma activity levels of these factors could play a role in the increase in high density lipoprotein (HDL) choles

  19. Synthesis of Penicillium chrysogenum acetyl-CoA : Isopenicillin N acyltransferase in Hansenula polymorpha: First step towards the introduction of a new metabolic pathway

    NARCIS (Netherlands)

    Lutz, Marco V.; Bovenberg, Roel A.L.; Klei, Ida J. van der; Veenhuis, Marten

    2005-01-01

    The enzyme acetyl-CoA:isopenicillin N acyltransferase (IAT) is a peroxisomal enzyme that mediates the final step of penicillin biosynthesis in the filamentous fungi Penicillium chrysogenum and Aspergillus nidulans. However, the precise role of peroxisomes in penicillin biosynthesis is still not clea

  20. Acute and chronic effects of a 24-hour intravenous triglyceride emulsion challenge on plasma lecithin : cholesterol acyltransferase, phospholipid transfer protein, and cholesteryl ester transfer protein activities

    NARCIS (Netherlands)

    Riemens, SC; Van Tol, A; Sluiter, WJ; Dullaart, RPF

    1999-01-01

    Lecithin:cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), and cholesteryl ester transfer protein (CETP) are key factors in remodeling of high density lipoproteins (HDL) and triglyceride-rich lipoproteins. We examined the effect of a large, 24 h intravenous fat load on plasma

  1. Effect of growth hormone replacement therapy on plasma lecithin : cholesterol acyltransferase and lipid transfer protein activities in growth hormone-deficient adults

    NARCIS (Netherlands)

    Beentjes, JAM; van Tol, A; Sluiter, WJ; Dullaart, RPF

    2000-01-01

    The effects of growth hormone (GH) replacement on plasma lecithin:cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP), factors involved in high density lipoprotein (HDL) metabolism, We unknown. We carried out a 6 mouths study in 24

  2. Kinetic mechanism and order of substrate binding for sn-glycerol-3-phosphate acyltransferase from squash (Cucurbita moschata).

    Science.gov (United States)

    Hayman, Matthew W; Fawcett, Tony; Slabas, Antoni R

    2002-03-13

    sn-Glycerol-3-phosphate acyltransferase (G3PAT, EC 2.3.1.15), a component of glycerolipid biosynthesis, is an important enzyme in chilling sensitivity in plants. The three-dimensional structure of the enzyme from squash (Cucurbita moschata), without bound substrate, has been determined [Turnbull et al. (2001) Acta Crystallogr. D 57, 451-453; Turnbull et al. (2001) Structure 9, 347-353]. Here we report the kinetic mechanism of plastidial G3PAT from squash and the order of substrate binding using acyl-acyl carrier protein (acyl-ACP) substrates. The reaction proceeds via a compulsory-ordered ternary complex with acyl-ACP binding before glycerol-3-phosphate. We have also determined that the reaction will proceed with C(4:0)-CoA, C(6:0)-CoA and C(12:0)-ACP substrates, allowing a wider choice of acyl groups for future co-crystallisation studies.

  3. Mutagenesis of squash (Cucurbita moschata) glycerol-3-phosphate acyltransferase (GPAT) to produce an enzyme with altered substrate selectivity.

    Science.gov (United States)

    Hayman, M W; Fawcett, T; Schierer, T F; Simon, J W; Kroon, J T; Gilroy, J S; Rice, D W; Rafferty, J; Turnbull, A P; Sedelnikova, S E; Slabas, A R

    2000-12-01

    In an attempt to rationalize the relationship between structure and substrate selectivity of glycerol-3-phosphate acyltransferase (GPAT, 1AT, EC 2.3.1.15) we have cloned a number of cDNAs into the pET overexpression system using a PCR-based approach. Following assay of the recombinant enzyme we noted that the substrate selectivity of the squash (Cucurbita moschata) enzyme had altered dramatically. This form of GPAT has now been crystallized and its full three-dimensional structure elucidated. Since we now have two forms of the enzyme that display different substrate selectivities this should provide a powerful tool to determine the basis of the selectivity changes. Kinetic and structural analyses are currently being performed to rationalize the changes which have taken place.

  4. Crystallization and preliminary X-ray analysis of the glycerol-3-phosphate 1-acyltransferase from squash (Cucurbita moschata).

    Science.gov (United States)

    Turnbull, A P; Rafferty, J B; Sedelnikova, S E; Slabas, A R; Schierer, T P; Kroon, J T; Nishida, I; Murata, N; Simon, J W; Rice, D W

    2001-03-01

    Glycerol-3-phosphate 1-acyltransferase (E.C. 2.3.1.15; G3PAT) catalyses the incorporation of an acyl group from either acyl-acyl carrier proteins (acylACPs) or acylCoAs into the sn-1 position of glycerol 3-phosphate to yield 1-acylglycerol 3-phosphate. Crystals of squash G3PAT have been obtained by the hanging-drop method of vapour diffusion using PEG 4000 as the precipitant. These crystals are most likely to belong to space group P2(1)2(1)2(1), with approximate unit-cell parameters a = 61.1, b = 65.1, c = 103.3 A, alpha = beta = gamma = 90 degrees and a monomer in the asymmetric unit. X-ray diffraction data to 1.9 A resolution have been collected in-house using a MAR 345 imaging-plate system.

  5. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ.

    Science.gov (United States)

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A; Formiggini, Fabio; Polishchuk, Roman S; Corda, Daniela; Luini, Alberto

    2016-01-01

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself). PMID:27401954

  6. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ.

    Science.gov (United States)

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A; Formiggini, Fabio; Polishchuk, Roman S; Corda, Daniela; Luini, Alberto

    2016-07-12

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself).

  7. A Class of Diacylglycerol Acyltransferase 1 Inhibitors Identified by a Combination of Phenotypic High-throughput Screening, Genomics, and Genetics

    Directory of Open Access Journals (Sweden)

    Kirsten Tschapalda

    2016-06-01

    Full Text Available Excess lipid storage is an epidemic problem in human populations. Thus, the identification of small molecules to treat or prevent lipid storage-related metabolic complications is of great interest. Here we screened >320.000 compounds for their ability to prevent a cellular lipid accumulation phenotype. We used fly cells because the multifarious tools available for this organism should facilitate unraveling the mechanism-of-action of active small molecules. Of the several hundred lipid storage inhibitors identified in the primary screen we concentrated on three structurally diverse and potent compound classes active in cells of multiple species (including human and negligible cytotoxicity. Together with Drosophila in vivo epistasis experiments, RNA-Seq expression profiles suggested that the target of one of the small molecules was diacylglycerol acyltransferase 1 (DGAT1, a key enzyme in the production of triacylglycerols and prominent human drug target. We confirmed this prediction by biochemical and enzymatic activity tests.

  8. Isolation and expression analysis of glycerol-3-phosphate acyltransferase genes from peanuts (Arachis hypogaea L.

    Directory of Open Access Journals (Sweden)

    Chi, X.

    2015-09-01

    Full Text Available sn-Glycerol-3-phosphate acyltransferase (GPAT catalyzes the committed step in the production of glycerolipids. The functions of GPAT genes have been intensively studied in Arabidopsis, but not in peanuts (Arachis hypogaea L.. In this study, six AhGPAT genes were isolated from peanuts. Quantitative real-time RT-PCR analysis indicated that the AhGPAT9 transcript was more abundant in the stems, flowers, and seeds, whereas the transcript abundances of five other genes were higher in the leaves or flowers than in the other tissues examined. During seed development, the transcript levels of AhGPAT9 gradually increased, whereas the transcript levels of the other five genes decreased. In addition, the levels of AhGPAT2 transcript were distinctly enhanced after exposure to all four kinds of stress treatments except for ABA-treated leaves. The transcripts of AhGPAT1, AhGPAT6, AhGPAT8 and AhATS1 increased substantially in roots exposed to salt, drought, and ABA stress. The expressions of AhGPAT6, AhGPAT8, AhGPAT9 and AhATS1 were slightly higher in leaves under certain stress conditions than under normal conditions. The present study provides significant information for modifying oil deposition and improving the abiotic stress resistance of peanuts through molecular breeding.La aciltransferasa sn-glicerol-3-fosfato (ATGP cataliza el comprometido paso de la producción de glicerolípidos. Las funciones de los genes AhATGP se han estudiado intensivamente en Arabidopsis, pero no en cacahuete (Arachis hypogaea L.. En este estudio, seis genes AhATGP se aislaron a partir de cacahuetes. El análisis a tiempo real RT-PCR cuantitativa indicó que la transcripción AhATGP9 fue más abundante en tallos, flores y semillas, mientras que la abundancia de la transcripción de los otros cinco genes fueron mayores en hojas o flores que en los otros tejidos examinados. Durante el desarrollo de la semilla, los niveles de transcripción de AhATGP9 aumentaron gradualmente

  9. Silencing an N-acyltransferase-like involved in lignin biosynthesis in Nicotiana attenuata dramatically alters herbivory-induced phenolamide metabolism.

    Directory of Open Access Journals (Sweden)

    Emmanuel Gaquerel

    Full Text Available In a transcriptomic screen of Manduca sexta-induced N-acyltransferases in leaves of Nicotiana attenuata, we identified an N-acyltransferase gene sharing a high similarity with the tobacco lignin-biosynthetic hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT gene whose expression is controlled by MYB8, a transcription factor that regulates the production of phenylpropanoid polyamine conjugates (phenolamides, PAs. To evaluate the involvement of this HCT-like gene in lignin production as well as the resulting crosstalk with PA metabolism during insect herbivory, we transiently silenced (by VIGs the expression of this gene and performed non-targeted (UHPLC-ESI/TOF-MS metabolomics analyses. In agreement with a conserved function of N. attenuata HCT-like in lignin biogenesis, HCT-silenced plants developed weak, soft stems with greatly reduced lignin contents. Metabolic profiling demonstrated large shifts (up to 12% deregulation in total extracted ions in insect-attacked leaves due to a large diversion of activated coumaric acid units into the production of developmentally and herbivory-induced coumaroyl-containing PAs (N',N''-dicoumaroylspermidine, N',N''-coumaroylputrescine, etc and to minor increases in the most abundant free phenolics (chlorogenic and cryptochlorogenic acids, all without altering the production of well characterized herbivory-responsive caffeoyl- and feruloyl-based putrescine and spermidine PAs. These data are consistent with a strong metabolic tension, exacerbated during herbivory, over the allocation of coumaroyl-CoA units among lignin and unusual coumaroyl-containing PAs, and rule out a role for HCT-LIKE in tuning the herbivory-induced accumulation of other PAs. Additionally, these results are consistent with a role for lignification as an induced anti-herbivore defense.

  10. Phylogenetic analysis of glycerol 3-phosphate acyltransferases in opisthokonts reveals unexpected ancestral complexity and novel modern biosynthetic components.

    Directory of Open Access Journals (Sweden)

    Heather C Smart

    Full Text Available Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT, have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of 'fungal' orthologs in the basal taxa of the holozoa and 'animal' orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens.

  11. Structural and Affinity Determinants in the Interaction between Alcohol Acyltransferase from F. x ananassa and Several Alcohol Substrates: A Computational Study

    OpenAIRE

    Navarro-Retamal, Carlos; Gaete-Eastman, Carlos; Herrera, Raúl; Caballero, Julio; Alzate-Morales, Jans H.

    2016-01-01

    Aroma and flavor are important factors of fruit quality and consumer preference. The specific pattern of aroma is generated during ripening by the accumulation of volatiles compounds, which are mainly esters. Alcohol acyltransferase (AAT) (EC 2.3.1.84) catalyzes the esterification reaction of aliphatic and aromatic alcohols and acyl-CoA into esters in fruits and flowers. In Fragaria x ananassa, there are different volatiles compounds that are obtained from different alcohol precursors, where ...

  12. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor

    OpenAIRE

    Zhang, Chongben; Cooper, Daniel E.; Grevengoed, Trisha J.; Li, Lei O.; Klett, Eric L.; Eaton, James M.; Harris, Thurl E.; Coleman, Rosalind A.

    2014-01-01

    Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4−/− mice were more glucose tolerant and were protected from insulin resistance. Overexpres...

  13. Biodiesel production from crude jatropha oil catalyzed by immobilized lipase/acyltransferase from Candida parapsilosis in aqueous medium.

    Science.gov (United States)

    Rodrigues, Joana; Perrier, Véronique; Lecomte, Jérôme; Dubreucq, Eric; Ferreira-Dias, Suzana

    2016-10-01

    The lipase/acyltransferase from Candida parapsilosis (CpLIP2) immobilized on two synthetic resins (Accurel MP 1000 and Lewatit VP OC 1600) was used as catalyst for the production of biodiesel (fatty acid methyl esters, FAME) by transesterification of jatropha oil with methanol, in a lipid/aqueous system. The oil was dispersed in a buffer solution (pH 6.5) containing methanol in excess (2M in the biphasic system; molar ratio methanol/acyl chains 2:1). Transesterification was carried out at 30°C, under magnetic stirring, using 10% (w/w) of immobilized enzyme in relation to oil. The maximum FAME yields were attained after 8h reaction time: 80.5% and 93.8%, when CpLIP2 immobilized on Accurel MP 1000 or on Lewatit VP OC 1600 were used, respectively. CpLIP2 on both Accurel MP 1000 and Lewatit VP OC 1600 showed high operational stability along 5 consecutive 8h batches. PMID:27474957

  14. Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis.

    Science.gov (United States)

    Miyanaga, Akimasa; Iwasawa, Shohei; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2016-02-16

    Acyltransferases (ATs) are key determinants of building block specificity in polyketide biosynthesis. Despite the importance of protein-protein interactions between AT and acyl carrier protein (ACP) during the acyltransfer reaction, the mechanism of ACP recognition by AT is not understood in detail. Herein, we report the crystal structure of AT VinK, which transfers a dipeptide group between two ACPs, VinL and VinP1LdACP, in vicenistatin biosynthesis. The isolated VinK structure showed a unique substrate-binding pocket for the dipeptide group linked to ACP. To gain greater insight into the mechanism of ACP recognition, we attempted to crystallize the VinK-ACP complexes. Because transient enzyme-ACP complexes are difficult to crystallize, we developed a covalent cross-linking strategy using a bifunctional maleimide reagent to trap the VinK-ACP complexes, allowing the determination of the crystal structure of the VinK-VinL complex. In the complex structure, Arg-153, Met-206, and Arg-299 of VinK interact with the negatively charged helix II region of VinL. The VinK-VinL complex structure allows, to our knowledge, the first visualization of the interaction between AT and ACP and provides detailed mechanistic insights into ACP recognition by AT. PMID:26831085

  15. Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition.

    Science.gov (United States)

    Goulet, Charles; Kamiyoshihara, Yusuke; Lam, Nghi B; Richard, Théo; Taylor, Mark G; Tieman, Denise M; Klee, Harry J

    2015-01-01

    Tomato fruits accumulate a diverse set of volatiles including multiple esters. The content of ester volatiles is relatively low in tomato fruits (Solanum lycopersicum) and far more abundant in the closely related species Solanum pennellii. There are also qualitative variations in ester content between the two species. We have previously shown that high expression of a non-specific esterase is critical for the low overall ester content of S. lycopersicum fruit relative to S. pennellii fruit. Here, we show that qualitative differences in ester composition are the consequence of divergence in enzymatic activity of a ripening-related alcohol acyltransferase (AAT1). The S. pennellii AAT1 is more efficient than the tomato AAT1 for all the alcohols tested. The two enzymes have differences in their substrate preferences that explain the variations observed in the volatiles. The results illustrate how two related species have evolved to precisely adjust their volatile content by modulating the balance of the synthesis and degradation of esters.

  16. Identification of genes coding for putative wax ester synthase/diacylglycerol acyltransferase enzymes in terrestrial and marine environments.

    Science.gov (United States)

    Lanfranconi, Mariana P; Alvarez, Adrián F; Alvarez, Héctor M

    2015-12-01

    Synthesis of neutral lipids such as triacylglycerols (TAG) and wax esters (WE) is catalyzed in bacteria by wax ester synthase/diacylglycerol acyltransferase enzymes (WS/DGAT). We investigated the diversity of genes encoding this enzyme in contrasting natural environments from Patagonia (Argentina). The content of petroleum hydrocarbons in samples collected from oil-producing areas was measured. PCR-based analysis covered WS/DGAT occurrence in marine sediments and soil. No product was obtained in seawater samples. All clones retrieved from marine sediments affiliated with gammaproteobacterial sequences and within them, most phylotypes formed a unique cluster related to putative WS/DGAT belonging to marine OM60 clade. In contrast, soils samples contained phylotypes only related to actinomycetes. Among them, phylotypes affiliated with representatives largely or recently reported as oleaginous bacteria, as well as with others considered as possible lipid-accumulating bacteria based on the analysis of their annotated genomes. Our study shows for the first time that the environment could contain a higher variety of ws/dgat than that reported from bacterial isolates. The results of this study highlight the relevance of the environment in a natural process such as the synthesis and accumulation of neutral lipids. Particularly, both marine sediments and soil may serve as a useful source for novel WS/DGAT with biotechnological interest. PMID:26228353

  17. Small Intestine but Not Liver Lysophosphatidylcholine Acyltransferase 3 (Lpcat3) Deficiency Has a Dominant Effect on Plasma Lipid Metabolism.

    Science.gov (United States)

    Kabir, Inamul; Li, Zhiqiang; Bui, Hai H; Kuo, Ming-Shang; Gao, Guangping; Jiang, Xian-Cheng

    2016-04-01

    Lysophosphatidylcholine acyltransferase 3 (Lpcat3) is involved in phosphatidylcholine remodeling in the small intestine and liver. We investigated lipid metabolism in inducible intestine-specific and liver-specificLpcat3gene knock-out mice. We producedLpcat3-Flox/villin-Cre-ER(T2)mice, which were treated with tamoxifen (at days 1, 3, 5, and 7), to deleteLpcat3specifically in the small intestine. At day 9 after the treatment, we found that Lpcat3 deficiency in enterocytes significantly reduced polyunsaturated phosphatidylcholines in the enterocyte plasma membrane and reduced Niemann-Pick C1-like 1 (NPC1L1), CD36, ATP-binding cassette transporter 1 (ABCA1), and ABCG8 levels on the membrane, thus significantly reducing lipid absorption, cholesterol secretion through apoB-dependent and apoB-independent pathways, and plasma triglyceride, cholesterol, and phospholipid levels, as well as body weight. Moreover, Lpcat3 deficiency does not cause significant lipid accumulation in the small intestine. We also utilized adenovirus-associated virus-Cre to depleteLpcat3in the liver. We found that liver deficiency only reduces plasma triglyceride levels but not other lipid levels. Furthermore, there is no significant lipid accumulation in the liver. Importantly, small intestine Lpcat3 deficiency has a much bigger effect on plasma lipid levels than that of liver deficiency. Thus, inhibition of small intestine Lpcat3 might constitute a novel approach for treating hyperlipidemia.

  18. Overexpression of Sweet Pepper Glycerol-3-Phosphate Acyltransferase Gene Enhanced Thermotolerance of Photosynthetic Apparatus in Transgenic Tobacco

    Institute of Scientific and Technical Information of China (English)

    Kun Yan; Na then; Yan-Yan Qu; Xin-Chun Dong; Qing-Wei Meng; Shi-Jie Zhao

    2008-01-01

    In order to investigate the relationship between the lipid composition in thylakoid membrane and thermostability of pho-tosynthetic apparatus, tobacco transformed with sweet pepper sense glycerol-3-phosphate acyltransferase (GPA T) gene were used to analyze the lipid composition in thylakoid membrane, the net photosynthetic rate and chlorophyll fluorescence parameters under high temperature stress. The results showed that the saturated extent of monogalactosyldiacylglycerol (MGDG), suifoquinovosyldiacylglycerol, digalactosyldiacylglycerol and phosphatidylglycerol in thylakoid membrane of transgenic tobacco T1 lines increased generally. Particularly, the saturated extent in MGDG increased obviously by 16.2% and 12.0% in T1-2 and T1-1, respectively. With stress temperature elevating, the maximum efficiency of photosystem Ⅱ the two lines and wild type tobacco plants decreased gradually, but those parameters decreased much less in transgenic plants. Even though the recovery process appeared differently in the donor and acceptor side of PSII in transgenic tobacco compared with wild-type plants, the entire capability of PSII recovered faster in transgenic tobacco, which was shown in Increase in saturated extent of thylakoid membrane Iipids in transgenic plants enhanced the stability of photosynthetic apparatus under high temperature stress.

  19. Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase

    Directory of Open Access Journals (Sweden)

    Thomas Lanyon-Hogg

    2016-06-01

    Full Text Available In this data article we describe synthetic and characterisation data for four members of the 5-acyl-6,7-dihydrothieno[3,2-c]pyridine (termed “RU-SKI” class of inhibitors of Hedgehog acyltransferase, including associated NMR spectra for final compounds. RU-SKI compounds were selected for synthesis based on their published high potencies against the enzyme target. RU-SKI 41 (9a, RU-SKI 43 (9b, RU-SKI 101 (9c, and RU-SKI 201 (9d were profiled for activity in the related article “Click chemistry armed enzyme linked immunosorbent assay to measure palmitoylation by Hedgehog acyltransferase” (Lanyon-Hogg et al., 2015 [1]. 1H NMR spectral data indicate different amide conformational ratios between the RU-SKI inhibitors, as has been observed in other 5-acyl-6,7-dihydrothieno[3,2-c]pyridines. The synthetic and characterisation data supplied in the current article provide validated access to the class of RU-SKI inhibitors.

  20. Carboxy-terminal mutations of bile acid CoA:N-acyltransferase alter activity and substrate specificity.

    Science.gov (United States)

    Styles, Nathan A; Shonsey, Erin M; Falany, Josie L; Guidry, Amber L; Barnes, Stephen; Falany, Charles N

    2016-07-01

    Bile acid CoA:amino acid N-acyltransferase (BAAT) is the terminal enzyme in the synthesis of bile salts from cholesterol and catalyzes the conjugation of taurine or glycine to bile acid CoA thioesters to form bile acid N-acylamidates. BAAT has a dual localization to the cytosol and peroxisomes, possibly due to an inefficient carboxy-terminal peroxisomal targeting signal (PTS), -serine-glutamine-leucine (-SQL). Mutational analysis was used to define the role of the carboxy terminus in peroxisomal localization and kinetic activity. Amidation activity of BAAT and BAAT lacking the final two amino acids (AAs) (BAAT-S) were similar, whereas the activity of BAAT with a canonical PTS sequence (BAAT-SKL) was increased >2.5-fold. Kinetic analysis of BAAT and BAAT-SKL showed that BAAT-SKL had a lower Km for taurine and glycine as well as a greater Vmax There was no difference in the affinity for cholyl-CoA. In contrast to BAAT, BAAT-SKL forms bile acid N-acylamidates with β-alanine. BAAT-S immunoprecipitated when incubated with peroxisomal biogenesis factor 5 (Pex5) and rabbit anti-Pex5 antibodies; however, deleting the final 12 AAs prevented coimmunoprecipitation with Pex5, indicating the Pex5 interaction involves more than the -SQL sequence. These results indicate that even small changes in the carboxy terminus of BAAT can have significant effects on activity and substrate specificity. PMID:27230263

  1. Phospholipid: diacylglycerol acyltransferase contributes to the conversion of membrane lipids into triacylglycerol in Myrmecia incisa during the nitrogen starvation stress.

    Science.gov (United States)

    Liu, Xiao-Yu; Ouyang, Long-Ling; Zhou, Zhi-Gang

    2016-01-01

    In addition to the Kennedy pathway for de novo biosynthesis, triacylglycerol (TAG), the most important stock for microalgae-based biodiesel production, can be synthesized by phospholipid: diacylglycerol acyltransferase (PDAT) that transfers an acyl group from phospholipids (PLs) to diacylglycerol (DAG). This study presents a novel gene that encodes PDAT from the green microalga Myrmecia incisa Reisigl H4301 (designated MiPDAT ). MiPDAT is localized on the plasma membrane (PM) via the agroinfiltration of tobacco leaves with a green fluorescent protein-fused construct. MiPDAT synthesizes TAG based on functional complementary experiments in the mutant yeast strain H1246 and the membrane lipid phosphatidylcholine (PC) is preferentially used as substrates as revealed by in vitro enzyme activity assay. The gradually increased transcription levels of MiPDAT in M. incisa during the cultivation under nitrogen starvation conditions is proposed to be responsible for the decrease and increase of the PC and TAG levels, respectively, as detected by liquid chromatography-mass spectrometry after 4 d of nitrogen starvation. In addition, the mechanism by which MiPDAT in this microalga uses PC to yield TAG is discussed. Accordingly, it is concluded that this PM-located PDAT contributes to the conversion of membrane lipids into TAG in M. incisa during the nitrogen starvation stress. PMID:27216435

  2. Sterol O-Acyltransferase 2-Driven Cholesterol Esterification Opposes Liver X Receptor-Stimulated Fecal Neutral Sterol Loss.

    Science.gov (United States)

    Warrier, Manya; Zhang, Jun; Bura, Kanwardeep; Kelley, Kathryn; Wilson, Martha D; Rudel, Lawrence L; Brown, J Mark

    2016-02-01

    Statin drugs have proven a successful and relatively safe therapy for the treatment of atherosclerotic cardiovascular disease (CVD). However, even with the substantial low-density lipoprotein (LDL) cholesterol lowering achieved with statin treatment, CVD remains the top cause of death in developed countries. Selective inhibitors of the cholesterol esterifying enzyme sterol-O acyltransferase 2 (SOAT2) hold great promise as effective CVD therapeutics. In mouse models, previous work has demonstrated that either antisense oligonucleotide (ASO) or small molecule inhibitors of SOAT2 can effectively reduce CVD progression, and even promote regression of established CVD. Although it is well known that SOAT2-driven cholesterol esterification can alter both the packaging and retention of atherogenic apoB-containing lipoproteins, here we set out to determine whether SOAT2-driven cholesterol esterification can also impact basal and liver X receptor (LXR)-stimulated fecal neutral sterol loss. These studies demonstrate that SOAT2 is a negative regulator of LXR-stimulated fecal neutral sterol loss in mice. PMID:26729489

  3. Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus.

    Science.gov (United States)

    Payá-Milans, Miriam; Venegas-Calerón, Mónica; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2015-03-01

    The acyl-[acyl carrier protein]:sn-1-glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyzes the first step of glycerolipid assembly within the stroma of the chloroplast. In the present study, the sunflower (Helianthus annuus, L.) stromal GPAT was cloned, sequenced and characterized. We identified a single ORF of 1344base pairs that encoded a GPAT sharing strong sequence homology with the plastidial GPAT from Arabidopsis thaliana (ATS1, At1g32200). Gene expression studies showed that the highest transcript levels occurred in green tissues in which chloroplasts are abundant. The corresponding mature protein was heterologously overexpressed in Escherichia coli for purification and biochemical characterization. In vitro assays using radiolabelled acyl-ACPs and glycerol-3-phosphate as substrates revealed a strong preference for oleic versus palmitic acid, and weak activity towards stearic acid. The positional fatty acid composition of relevant chloroplast phospholipids from sunflower leaves did not reflect the in vitro GPAT specificity, suggesting a more complex scenario with mixed substrates at different concentrations, competition with other acyl-ACP consuming enzymatic reactions, etc. In summary, this study has confirmed the affinity of this enzyme which would partly explain the resistance to cold temperatures observed in sunflower plants. PMID:25618244

  4. Structural and Affinity Determinants in the Interaction between Alcohol Acyltransferase from F. x ananassa and Several Alcohol Substrates: A Computational Study.

    Science.gov (United States)

    Navarro-Retamal, Carlos; Gaete-Eastman, Carlos; Herrera, Raúl; Caballero, Julio; Alzate-Morales, Jans H

    2016-01-01

    Aroma and flavor are important factors of fruit quality and consumer preference. The specific pattern of aroma is generated during ripening by the accumulation of volatiles compounds, which are mainly esters. Alcohol acyltransferase (AAT) (EC 2.3.1.84) catalyzes the esterification reaction of aliphatic and aromatic alcohols and acyl-CoA into esters in fruits and flowers. In Fragaria x ananassa, there are different volatiles compounds that are obtained from different alcohol precursors, where octanol and hexanol are the most abundant during fruit ripening. At present, there is not structural evidence about the mechanism used by the AAT to synthesize esters. Experimental data attribute the kinetic role of this enzyme to 2 amino acidic residues in a highly conserved motif (HXXXD) that is located in the middle of the protein. With the aim to understand the molecular and energetic aspects of volatiles compound production from F. x ananassa, we first studied the binding modes of a series of alcohols, and also different acyl-CoA substrates, in a molecular model of alcohol acyltransferase from Fragaria x ananassa (SAAT) using molecular docking. Afterwards, the dynamical behavior of both substrates, docked within the SAAT binding site, was studied using routine molecular dynamics (MD) simulations. In addition, in order to correlate the experimental and theoretical data obtained in our laboratories, binding free energy calculations were performed; which previous results suggested that octanol, followed by hexanol, presented the best affinity for SAAT. Finally, and concerning the SAAT molecular reaction mechanism, it is suggested from molecular dynamics simulations that the reaction mechanism may proceed through the formation of a ternary complex, in where the Histidine residue at the HXXXD motif deprotonates the alcohol substrates. Then, a nucleophilic attack occurs from alcohol charged oxygen atom to the carbon atom at carbonyl group of the acyl CoA. This mechanism is in

  5. Structural and Affinity Determinants in the Interaction between Alcohol Acyltransferase from F. x ananassa and Several Alcohol Substrates: A Computational Study.

    Science.gov (United States)

    Navarro-Retamal, Carlos; Gaete-Eastman, Carlos; Herrera, Raúl; Caballero, Julio; Alzate-Morales, Jans H

    2016-01-01

    Aroma and flavor are important factors of fruit quality and consumer preference. The specific pattern of aroma is generated during ripening by the accumulation of volatiles compounds, which are mainly esters. Alcohol acyltransferase (AAT) (EC 2.3.1.84) catalyzes the esterification reaction of aliphatic and aromatic alcohols and acyl-CoA into esters in fruits and flowers. In Fragaria x ananassa, there are different volatiles compounds that are obtained from different alcohol precursors, where octanol and hexanol are the most abundant during fruit ripening. At present, there is not structural evidence about the mechanism used by the AAT to synthesize esters. Experimental data attribute the kinetic role of this enzyme to 2 amino acidic residues in a highly conserved motif (HXXXD) that is located in the middle of the protein. With the aim to understand the molecular and energetic aspects of volatiles compound production from F. x ananassa, we first studied the binding modes of a series of alcohols, and also different acyl-CoA substrates, in a molecular model of alcohol acyltransferase from Fragaria x ananassa (SAAT) using molecular docking. Afterwards, the dynamical behavior of both substrates, docked within the SAAT binding site, was studied using routine molecular dynamics (MD) simulations. In addition, in order to correlate the experimental and theoretical data obtained in our laboratories, binding free energy calculations were performed; which previous results suggested that octanol, followed by hexanol, presented the best affinity for SAAT. Finally, and concerning the SAAT molecular reaction mechanism, it is suggested from molecular dynamics simulations that the reaction mechanism may proceed through the formation of a ternary complex, in where the Histidine residue at the HXXXD motif deprotonates the alcohol substrates. Then, a nucleophilic attack occurs from alcohol charged oxygen atom to the carbon atom at carbonyl group of the acyl CoA. This mechanism is in

  6. The D519G Polymorphism of Glyceronephosphate O-Acyltransferase Is a Risk Factor for Familial Porphyria Cutanea Tarda

    Science.gov (United States)

    Farrell, Colin P.; Overbey, Jessica R.; Naik, Hetanshi; Nance, Danielle; McLaren, Gordon D.; McLaren, Christine E.; Zhou, Luming; Desnick, Robert J.; Parker, Charles J.

    2016-01-01

    Both familial and sporadic porphyria cutanea tarda (PCT) are iron dependent diseases. Symptoms of PCT resolve when iron stores are depleted by phlebotomy, and a sequence variant of HFE (C282Y, c.843G>A, rs1800562) that enhances iron aborption by reducing hepcidin expression is a risk factor for PCT. Recently, a polymorphic variant (D519G, c.1556A>G, rs11558492) of glyceronephosphate O-acyltransferase (GNPAT) was shown to be enriched in male patients with type I hereditary hemochromatosis (HFE C282Y homozygotes) who presented with a high iron phenotype, suggesting that GNPAT D519G, like HFE C282Y, is a modifier of iron homeostasis that favors iron absorption. To challenge this hypothesis, we investigated the frequency of GNPAT D519G in patients with both familial and sporadic PCT. Patients were screened for GNPAT D519G and allelic variants of HFE (both C282Y and H63D). Nucleotide sequencing of uroporphyrinogen decarboxylase (URO-D) identified mutant alleles. Patients with low erythrocyte URO-D activity or a damaging URO-D variant were classified as familial PCT (fPCT) and those with wild-type URO-D were classified as sporadic PCT (sPCT). GNPAT D519G was significantly enriched in the fPCT patient population (p = 0.0014) but not in the sPCT population (p = 0.4477). Both HFE C282Y and H63D (c.187C>G, rs1799945) were enriched in both PCT patient populations (p<0.0001) but showed no greater association with fPCT than with sPCT. Conclusion: GNPAT D519G is a risk factor for fPCT, but not for sPCT. PMID:27661980

  7. Cloning, Characterization and Functional Analysis of Two Type 1 Diacylglycerol Acyltransferases (DGAT1s) from Tetraena mongolica

    Institute of Scientific and Technical Information of China (English)

    Minchun Li; Mingming Zhao; Hanying Wu; Wang Wu; Yinong Xu

    2013-01-01

    Two cDNAs encoding putative type 1 acyl-CoA:diacylglycerol acyltransferases (DGAT1,EC 2.3.1.20),were cloned from Tetraena mongolica Maxim.,an extreme xerophyte with high oil content in the stems.The 1,488-bp and 1,485-bp of the open reading frame (ORF) of the two cDNAs,designated as TmDGAT1a and TmDGAT1b,were both predicted to encode proteins of 495 and 494 amino acids,respectively.Southern blot analysis revealed that TmDGAT1a and TmDGAT1b both had low copy numbers in the T.mongolica genome.In addition to ubiquitous expression with different intensity in different tissues,including stems,leaves and roots,TmDGAT1a and TmDGAT1b,were found to be strongly induced by high salinity,drought and osmotic stress,resulting in a remarkable increase of triacylglycerol (TAG) accumulation in T.mongolica plantlets.TmDGAT1a and TmDGAT1b activities were confirmed in the yeast H1246 quadruple mutant (DGA1,LRO1,ARE1,ARE2) by restoring DGAT activity of the mutant host to produce TAG.Overexpression.of TmDGAT1a and TmDGAT1b in soybean hairy roots as well as in T.mongolica calli both resulted in an increase in oil content (ranging from 37% to 108%),accompanied by altered fatty acid profiles.

  8. Brain Mapping of Ghrelin O-Acyltransferase in Goldfish (Carassius Auratus): Novel Roles for the Ghrelinergic System in Fish?

    Science.gov (United States)

    Blanco, Ayelén M; Sánchez-Bretaño, Aída; Delgado, María J; Valenciano, Ana I

    2016-06-01

    Ghrelin O-acyltransferase (GOAT) is the enzyme responsible for acylation of ghrelin, a gut-brain hormone with important roles in many physiological functions in vertebrates. Many aspects of GOAT remain to be elucidated, especially in fish, and particularly its anatomical distribution within the different brain areas has never been reported to date. The present study aimed to characterize the brain mapping of GOAT using RT-qPCR and immunohistochemistry in a teleost, the goldfish (Carassius auratus). Results show that goat transcripts are expressed in different brain areas of the goldfish, with the highest levels in the vagal lobe. Using immunohistochemistry, we also report the presence of GOAT immunoreactive cells in different encephalic areas, including the telencephalon, some hypothalamic nuclei, pineal gland, optic tectum and cerebellum, although they are especially abundant in the hindbrain. Particularly, an important signal is observed in the vagal lobe and some fiber tracts of the brainstem, such as the medial longitudinal fasciculus, Mauthneri fasciculus, secondary gustatory tract and spinothalamic tract. Most of the forebrain areas where GOAT is detected, particularly the hypothalamic nuclei, also express the ghs-r1a ghrelin receptor and other appetite-regulating hormones (e.g., orexin and NPY), supporting the role of ghrelin as a modulator of food intake and energy balance in fish. Present results are the first report on the presence of GOAT in the brain using imaging techniques. The high presence of GOAT in the hindbrain is a novelty, and point to possible new functions for the ghrelinergic system in fish. Anat Rec, 299:748-758, 2016. © 2016 Wiley Periodicals, Inc. PMID:27064922

  9. Cloning and functional analysis of human acyl coenzyme A: Cholesterol acyltransferase1 gene P1 promoter.

    Science.gov (United States)

    Ge, Jing; Cheng, Bei; Qi, Benling; Peng, Wen; Wen, Hui; Bai, Lijuan; Liu, Yun; Zhai, Wei

    2016-07-01

    Acyl-coenzyme A: cholesterol acyltransferase 1 (ACAT1) catalyzes the conversion of free cholesterol (FC) to cholesterol ester. The human ACAT1 gene P1 promoter has been cloned. However, the activity and specificity of the ACAT1 gene P1 promoter in diverse cell types remains unclear. The P1 promoter fragment was digested with KpnI/XhoI from a P1 promoter cloning vector, and was subcloned into the multiple cloning site of the Firefly luciferase vector pGL3‑Enhancer to obtain the construct P1E‑1. According to the analysis of biological information, the P1E‑1 plasmid was used to generate deletions of the ACAT1 gene P1 promoter with varying 5' ends and an identical 3' end at +65 by polymerase chain reaction (PCR). All the 5'‑deletion constructs of the P1 promoter were identified by PCR, restriction enzyme digestion mapping and DNA sequencing. The transcriptional activity of each construct was detected after transient transfection into THP‑1, HepG2, HEK293 and Hela cells using DEAE‑dextran and Lipofectamine 2000 liposome transfection reagent. Results showed that the transcriptional activity of the ACAT1 gene P1 promoter and deletions of P1 promoter in THP‑1 and HepG2 cells was higher than that in HEK293 and HeLa cells. Moreover, the transcriptional activity of P1E‑9 was higher compared with those of other deletions in THP‑1, HepG2, HEK293 and HeLa cells. These findings indicate that the transcriptional activity of the P1 promoter and the effects of deletions vary with different cell lines. Thus, the P1 promoter may drive ACAT1 gene expression with cell‑type specificity. In addition, the core sequence of ACAT1 gene P1 promoter was suggested to be between -125 and +65 bp. PMID:27220725

  10. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis.

    Science.gov (United States)

    Liu, Jin; Han, Danxiang; Yoon, Kangsup; Hu, Qiang; Li, Yantao

    2016-04-01

    Diacylglycerol acyltransferases (DGATs) catalyze a rate-limiting step of triacylglycerol (TAG) biosynthesis in higher plants and yeast. The genome of the green alga Chlamydomonas reinhardtii has multiple genes encoding type 2 DGATs (DGTTs). Here we present detailed functional and biochemical analyses of Chlamydomonas DGTTs. In vitro enzyme analysis using a radiolabel-free assay revealed distinct substrate specificities of three DGTTs: CrDGTT1 preferred polyunsaturated acyl CoAs, CrDGTT2 preferred monounsaturated acyl CoAs, and CrDGTT3 preferred C16 CoAs. When diacylglycerol was used as the substrate, CrDGTT1 preferred C16 over C18 in the sn-2 position of the glycerol backbone, but CrDGTT2 and CrDGTT3 preferred C18 over C16. In vivo knockdown of CrDGTT1, CrDGTT2 or CrDGTT3 resulted in 20-35% decreases in TAG content and a reduction of specific TAG fatty acids, in agreement with the findings of the in vitro assay and fatty acid feeding test. These results demonstrate that CrDGTT1, CrDGTT2 and CrDGTT3 possess distinct specificities toward acyl CoAs and diacylglycerols, and may work in concert spatially and temporally to synthesize diverse TAG species in C. reinhardtii. CrDGTT1 was shown to prefer prokaryotic lipid substrates and probably resides in both the endoplasmic reticulum and chloroplast envelope, indicating its role in prokaryotic and eukaryotic TAG biosynthesis. Based on these findings, we propose a working model for the role of CrDGTT1 in TAG biosynthesis. This work provides insight into TAG biosynthesis in C. reinhardtii, and paves the way for engineering microalgae for production of biofuels and high-value bioproducts. PMID:26919811

  11. Membrane topology of human monoacylglycerol acyltransferase-2 and identification of regions important for its localization to the endoplasmic reticulum.

    Science.gov (United States)

    McFie, Pamela J; Izzard, Sabrina; Vu, Huyen; Jin, Youzhi; Beauchamp, Erwan; Berthiaume, Luc G; Stone, Scot J

    2016-09-01

    Acyl CoA:2-monoacylglycerol acyltransferase (MGAT)-2 has an important role in dietary fat absorption in the intestine. MGAT2 resides in the endoplasmic reticulum and catalyzes the synthesis of diacylglycerol which is then utilized as a substrate for triacylglycerol synthesis. This triacylglycerol is then incorporated into chylomicrons which are released into the circulation. In this study, we determined the membrane topology of human MGAT2. Protease protection experiments showed that the C-terminus is exposed to the cytosol, while the N-terminus is partially buried in the ER membrane. MGAT2, like murine DGAT2, was found to have two transmembrane domains. We also identified a region of MGAT2 associated with the ER membrane that contains the histidine-proline-histidine-glycine sequence present in all DGAT2 family members that is thought to comprise the active site. Proteolysis experiments demonstrated that digestion of total cellular membranes from cells expressing MGAT2 with trypsin abolished MGAT activity, indicating that domains that are important for catalysis face the cytosol. We also explored the role that the five cysteines residues present in MGAT2 have in catalysis. MGAT activity was sensitive to two thiol modifiers, N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid). Furthermore, mutation of four cysteines resulted in a reduction in MGAT activity. However, when the C-terminal cysteine (C334) was mutated, MGAT activity was actually higher than that of wild-type FL-MGAT2. Lastly, we determined that both transmembrane domains of MGAT2 are important for its ER localization, and that MGAT2 is present in mitochondrial-associated membranes.

  12. Membrane topology of human monoacylglycerol acyltransferase-2 and identification of regions important for its localization to the endoplasmic reticulum.

    Science.gov (United States)

    McFie, Pamela J; Izzard, Sabrina; Vu, Huyen; Jin, Youzhi; Beauchamp, Erwan; Berthiaume, Luc G; Stone, Scot J

    2016-09-01

    Acyl CoA:2-monoacylglycerol acyltransferase (MGAT)-2 has an important role in dietary fat absorption in the intestine. MGAT2 resides in the endoplasmic reticulum and catalyzes the synthesis of diacylglycerol which is then utilized as a substrate for triacylglycerol synthesis. This triacylglycerol is then incorporated into chylomicrons which are released into the circulation. In this study, we determined the membrane topology of human MGAT2. Protease protection experiments showed that the C-terminus is exposed to the cytosol, while the N-terminus is partially buried in the ER membrane. MGAT2, like murine DGAT2, was found to have two transmembrane domains. We also identified a region of MGAT2 associated with the ER membrane that contains the histidine-proline-histidine-glycine sequence present in all DGAT2 family members that is thought to comprise the active site. Proteolysis experiments demonstrated that digestion of total cellular membranes from cells expressing MGAT2 with trypsin abolished MGAT activity, indicating that domains that are important for catalysis face the cytosol. We also explored the role that the five cysteines residues present in MGAT2 have in catalysis. MGAT activity was sensitive to two thiol modifiers, N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid). Furthermore, mutation of four cysteines resulted in a reduction in MGAT activity. However, when the C-terminal cysteine (C334) was mutated, MGAT activity was actually higher than that of wild-type FL-MGAT2. Lastly, we determined that both transmembrane domains of MGAT2 are important for its ER localization, and that MGAT2 is present in mitochondrial-associated membranes. PMID:27373844

  13. The Glycerol-3-Phosphate Acyltransferase GPAT6 from Tomato Plays a Central Role in Fruit Cutin Biosynthesis.

    Science.gov (United States)

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Tai, Fabienne Wong Jun; Martin, Laetitia B B; Fich, Eric A; Joubès, Jérôme; Rose, Jocelyn K C; Domergue, Frédéric; Rothan, Christophe

    2016-06-01

    The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis. PMID:27208295

  14. Lysophosphatidic acid activates peroxisome proliferator activated receptor-γ in CHO cells that over-express glycerol 3-phosphate acyltransferase-1.

    Directory of Open Access Journals (Sweden)

    Cliona M Stapleton

    Full Text Available Lysophosphatidic acid (LPA is an agonist for peroxisome proliferator activated receptor-γ (PPARγ. Although glycerol-3-phosphate acyltransferase-1 (GPAT1 esterifies glycerol-3-phosphate to form LPA, an intermediate in the de novo synthesis of glycerolipids, it has been assumed that LPA synthesized by this route does not have a signaling role. The availability of Chinese Hamster Ovary (CHO cells that stably overexpress GPAT1, allowed us to analyze PPARγ activation in the presence of LPA produced as an intracellular intermediate. LPA levels in CHO-GPAT1 cells were 6-fold higher than in wild-type CHO cells, and the mRNA abundance of CD36, a PPARγ target, was 2-fold higher. Transactivation assays showed that PPARγ activity was higher in the cells that overexpressed GPAT1. PPARγ activity was enhanced further in CHO-GPAT1 cells treated with the PPARγ ligand troglitazone. Extracellular LPA, phosphatidic acid (PA or a membrane-permeable diacylglycerol had no effect, showing that PPARγ had been activated by LPA generated intracellularly. Transient transfection of a vector expressing 1-acylglycerol-3-phosphate acyltransferase-2, which converts endogenous LPA to PA, markedly reduced PPARγ activity, as did over-expressing diacylglycerol kinase, which converts DAG to PA, indicating that PA could be a potent inhibitor of PPARγ. These data suggest that LPA synthesized via the glycerol-3-phosphate pathway can activate PPARγ and that intermediates of de novo glycerolipid synthesis regulate gene expression.

  15. Improvement of Neutral Lipid and Polyunsaturated Fatty Acid Biosynthesis by Overexpressing a Type 2 Diacylglycerol Acyltransferase in Marine Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Ying-Fang Niu

    2013-11-01

    Full Text Available Microalgae have been emerging as an important source for the production of bioactive compounds. Marine diatoms can store high amounts of lipid and grow quite quickly. However, the genetic and biochemical characteristics of fatty acid biosynthesis in diatoms remain unclear. Glycerophospholipids are integral as structural and functional components of cellular membranes, as well as precursors of various lipid mediators. In addition, diacylglycerol acyltransferase (DGAT is a key enzyme that catalyzes the last step of triacylglyceride (TAG biosynthesis. However, a comprehensive sequence-structure and functional analysis of DGAT in diatoms is lacking. In this study, an isoform of diacylglycerol acyltransferase type 2 of the marine diatom Phaeodactylum tricornutum was characterized. Surprisingly, DGAT2 overexpression in P. tricornutum stimulated more oil bodies, and the neutral lipid content increased by 35%. The fatty acid composition showed a significant increase in the proportion of polyunsaturated fatty acids; in particular, EPA was increased by 76.2%. Moreover, the growth rate of transgenic microalgae remained similar, thereby maintaining a high biomass. Our results suggest that increased DGAT2 expression could alter fatty acid profile in the diatom, and the results thus represent a valuable strategy for polyunsaturated fatty acid production by genetic manipulation.

  16. Influence of insulin sensitivity and the TaqIB cholesteryl ester transfer protein gene polymorphism on plasma lecithin : Cholesterol acyltransferase and lipid transfer protein activities and their response to hyperinsulinaemia in nondiabetic men.

    NARCIS (Netherlands)

    Riemens, SC; Van Tol, A; Stulp, BK; Dullaart, RPF

    1999-01-01

    Lecithin:cholesteryl acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), and lipoprotein lipases are involved in high density lipoprotein (HDL) metabolism. We evaluated the influence of insulin sensitivity and of the TaqIB CETP gem polymorphism (B

  17. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    Science.gov (United States)

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.

  18. Expression of the Acyl-Coenzyme A: Cholesterol Acyltransferase GFP Fusion Protein in Sf21 Insect Cells

    Science.gov (United States)

    Mahtani, H. K.; Richmond, R. C.; Chang, T. Y.; Chang, C. C. Y.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an important contributor to the pathological expression of plaque leading to artherosclerosis n a major health problem. Adequate knowledge of the structure of this protein will enable pharmaceutical companies to design drugs specific to the enzyme. ACAT is a membrane protein located in the endoplasmic reticulum.t The protein has never been purified to homogeneity.T.Y. Chang's laboratory at Dartmouth College provided a 4-kb cDNA clone (K1) coding for a structural gene of the protein. We have modified the gene sequence and inserted the cDNA into the BioGreen His Baculovirus transfer vector. This was successfully expressed in Sf2l insect cells as a GFP-labeled ACAT protein. The advantage to this ACAT-GFP fusion protein (abbreviated GCAT) is that one can easily monitor its expression as a function of GFP excitation at 395 nm and emission at 509 nm. Moreover, the fusion protein GCAT can be detected on Western blots with the use of commercially available GFP antibodies. Antibodies against ACAT are not readily available. The presence of the 6xHis tag in the transfer vector facilitates purification of the recombinant protein since 6xHis fusion proteins bind with high affinity to Ni-NTA agarose. Obtaining highly pure protein in large quantities is essential for subsequent crystallization. The purified GCAT fusion protein can readily be cleaved into distinct GFP and ACAT proteins in the presence of thrombin. Thrombin digests the 6xHis tag linking the two protein sequences. Preliminary experiments have indicated that both GCAT and ACAT are expressed as functional proteins. The ultimate aim is to obtain large quantities of the ACAT protein in pure and functional form appropriate for protein crystal growth. Determining protein structure is the key to the design and development of effective drugs. X-ray analysis requires large homogeneous crystals that are difficult to obtain in the gravity environment of earth

  19. Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT, a key enzyme in neutral lipid biosynthesis

    Directory of Open Access Journals (Sweden)

    Margis-Pinheiro Marcia

    2011-09-01

    Full Text Available Abstract Background Triacylglycerides (TAGs are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20 is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin. Results We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events. Conclusions In this study, we identified several DGAT1 and DGAT2

  20. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators.

    Science.gov (United States)

    Rogers, Maximillian A; Liu, Jay; Song, Bao-Liang; Li, Bo-Liang; Chang, Catherine C Y; Chang, Ta-Yuan

    2015-07-01

    Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form

  1. Elucidation of a key position for acyltransfer activity in Candida parapsilosis lipase/acyltransferase (CpLIP2) and in Pseudozyma antarctica lipase A (CAL-A) by rational design.

    Science.gov (United States)

    Jan, Anne-Hélène; Subileau, Maeva; Deyrieux, Charlotte; Perrier, Véronique; Dubreucq, Éric

    2016-02-01

    Performing transesterifications in aqueous media is becoming a priority challenge in lipid biotechnology in order to develop more eco-friendly and efficient biocatalytic processes in systems containing both polar and apolar substrates. In this context, our group has explored for several years the high potential of the lipase/acyltransferase CpLIP2 from Candida parapsilosis and of several of its homologs, that catalyze efficiently acyltransfer reactions in lipid/water media with high water activity (aw>0.9). The discovery of a new member of this group, CduLAc from Candida dubliniensis, with a higher acyltransferase activity than CpLIP2, has provided a new insight on structure-function relationships in this group. Indeed, the comparison of sequences and 3D models, especially of CpLIP2 and CduLAc, with those of the phylogenetically related lipase A from Pseudozyma antarctica (CAL-A), allowed elucidating a key structural determinant of the acyltransferase activity: serine S369 in CpLIP2 and its equivalents E370 in CAL-A and A366 in CduLAc. Mutants obtained by rational design at this key position showed significant changes in acyltransfer activity. Whereas mutation S369E resulted in an increase in the hydrolytic activity of CpLIP2, S369A increased alcoholysis. More strikingly, the single E370A mutation in CAL-A drastically increased the acyltransferase activity of this enzyme, giving it the character of a lipase/acyltransferase. Indeed, this single mutation lowered the methanol concentration for which the initial rates of alcoholysis and hydrolysis are equal from 2M in CAL-A down to 0.3M in its mutant, while the exceptional stability of the parental enzyme toward alcohol and temperature was conserved.

  2. The role of lecithin cholesterol acyltransferase and organic substances from coal in the etiology of Balkan endemic nephropathy: A new hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, N.M.; Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Bunnell, J.E.; Feder, G.L.; Kostic, E.N.; Ordodi, V.L. [University of Nis, Nis (Serbia)

    2008-03-15

    Balkan endemic nephropathy (BEN) occurs in Serbia, Bulgaria, Romania, Bosnia and Herzegovina, and Croatia. BEN has been characterized as a chronic, slowly progressive renal disease of unknown etiology. In this study, we examined the influence of soluble organic compounds in drinking water leached from Pliocene lignite from BEN-endemic areas on plasma lecithin-cholesterol acyltransferase (LCAT) activity. We found that changes for all samples were the most prominent for the dilution category containing 90% plasma and 10% of diluting media. Water samples from BEN villages from Serbia and Romania showed higher LCAT inhibiting activity (P = 0.02) and (p = 0.003), respectively, compared to deionised water and non-endemic water. A secondary LCAT deficiency could result from this inhibitory effect of the organic compounds found in endemic water supplies and provide an ethiopathogenic basis for the development of BEN in the susceptible population.

  3. The role of lecithin cholesterol acyltransferase and organic substances from coal in the etiology of Balkan endemic nephropathy: A new hypothesis

    Science.gov (United States)

    Pavlovic, N.M.; Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Bunnell, J.E.; Feder, G.L.; Kostic, E.N.; Ordodi, V.L.

    2008-01-01

    Balkan endemic nephropathy (BEN) occurs in Serbia, Bulgaria, Romania, Bosnia and Herzegovina, and Croatia. BEN has been characterized as a chronic, slowly progressive renal disease of unknown etiology. In this study, we examined the influence of soluble organic compounds in drinking water leached from Pliocene lignite from BEN-endemic areas on plasma lecithin-cholesterol acyltransferase (LCAT) activity. We found that changes for all samples were the most prominent for the dilution category containing 90% plasma and 10% of diluting media. Water samples from BEN villages from Serbia and Romania showed higher LCAT inhibiting activity (p = 0.02) and (p = 0.003), respectively, compared to deionised water and non-endemic water. A secondary LCAT deficiency could result from this inhibitory effect of the organic compounds found in endemic water supplies and provide an ethiopathogenic basis for the development of BEN in the susceptible population. ?? 2007 Elsevier Ltd. All rights reserved.

  4. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    Science.gov (United States)

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics. PMID:26581109

  5. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver.

    Science.gov (United States)

    Xing, Xiaomang; Li, Danyang; Chen, Dilong; Zhou, Liang; Chonan, Ritsu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-10-15

    Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose, insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation.

  6. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    Directory of Open Access Journals (Sweden)

    Laure Aymé

    Full Text Available Diacylglycerol acyltransferases (DGAT are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0. A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1 is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.

  7. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    Science.gov (United States)

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.

  8. The enzyme lecithin-cholesterol acyltransferase esterifies cerebrosterol and limits the toxic effect of this oxysterol on SH-SY5Y cells.

    Science.gov (United States)

    La Marca, Valeria; Spagnuolo, Maria Stefania; Cigliano, Luisa; Marasco, Daniela; Abrescia, Paolo

    2014-07-01

    Cholesterol is mostly removed from the CNS by its conversion to cerebrosterol (24(S)-hydroxycholesterol, 24(S)OH-C), which is transported to the circulation for bile formation in liver. A neurotoxic role of this oxysterol was previously demonstrated in cell culture. Here, we provide evidence that the enzyme lecithin-cholesterol acyltransferase, long known to esterify cholesterol, also produces monoesters of 24(S)OH-C. Proteoliposomes containing apolipoprotein A-I or apolipoprotein E were used to stimulate the enzyme activity and entrap the formed esters. Proteoliposomes with apolipoprotein A-I were found to be more active than those with apolipoprotein E in stimulating the production of oxysteryl esters. Cholesterol and 24(S)OH-C were found to compete for enzyme activity. High levels of haptoglobin, as those circulating during the acute inflammatory phase, inhibited 24(S)OH-C esterification. When highly neurotoxic 24(S)OH-C was treated with enzyme and proteoliposomes before incubation with differentiated SH-SY5Y cells, the neuron survival improved. The esters of 24(S)OH-C, embedded into proteoliposomes by the enzyme and isolated from unesterified 24(S)OH-C by gel filtration chromatography, did not enter the neurons in culture. These results suggest that the enzyme, in the presence of the apolipoproteins, converts 24(S)OH-C into esters restricted to the extracellular environment, thus preventing or limiting oxysterol-induced neurotoxic injuries to neurons in culture. 24-hydroxycholesterol (24(S)OH-C) is neurotoxic. The enzyme lecithin-cholesterol acyltransferase (LCAT) synthesizes monoesters of 24(S)OH-C in reaction mixtures with proteoliposomes containing phospholipids and apolipoprotein A-I or apolipoprotein E. The esters, also produced by incubation of cerebrospinal fluid only with tritiated 24(S)OH-C, are embedded into lipoproteins that do not enter neurons in culture. The enzyme activity limits the toxicity of 24-hydroxycholesterol in neuron culture.

  9. Uses Semi–quantitative and Relative Quantity Methods to Analysis Gene Expression of DGAT1 Gene Responsible for the Olive Diacylglcerol Acyltransferases in 10 Cultivars of Olive (Olea europaea. L)

    OpenAIRE

    Ali Saeed Atiyah AL-Janabi

    2015-01-01

    In this study gene expression for DGAT1 gene was analyzed. Diacylglycerol acyltransferases (DGATs) catalyze the final step of the triacylglycerol (TAG) biosynthesis of the Kennedy pathway. Two major gene families have been shown to encode DGATs, DGAT1 (type-1) and DGAT2 (type-2). Gene expression were analyzed for 10 Olive cultivars (Olea europaea L.) (Khaderi, Qaysi, Manzenillo, Baashiqi, Arabqween, Nabali, Labeeb, Dahkan, Shami and Sorani). Different plant organs as plant materials (mature l...

  10. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Xiaomang; Li, Danyang; Chen, Dilong; Zhou, Liang [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 China (China); Chonan, Ritsu [Koei Kogyo Co., Ltd., Tokyo, 101-0063 Japan (Japan); Yamahara, Johji [Pharmafood Institute, Kyoto, 602-8136 Japan (Japan); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 China (China); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, NSW 2000 Australia (Australia)

    2014-10-15

    Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose, insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation. - Highlights: • We investigated the anti-steatotic effect of mangiferin (MA) in fructose-fed SHR. • MA (15 mg/kg/day for 7 weeks) ameliorated fructose-induced fatty liver in

  11. Rosiglitazone inhibits expression of acyl-coenzyme A:cholesterol acyltransferase-1 in THP-1 macrophages induced by advanced glycation end-products

    Institute of Scientific and Technical Information of China (English)

    Yang Qihong; Xu Qiang; Zhang Hong; Si Liangyi

    2008-01-01

    Objective: To investigate the effects of rosiglitazone, a synthetic ligand of peroxisome proliferators-activated receptor gamma (PPARγ), on the expression of acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) in phorbol myristate acetate (PMA)-pretreated THP-1 cells after the inducement of advanced glycation end products (AGEs). Methods: After THP-1 cells were cultured in the presence of 0.1 umol/L PMA for 72 h to induce phagocytic differentiation, the obtained THP-1 macrophages were treated with rosiglitazone for 4 h at different concentrations (1,5 or 10 μmol/L) and then exposed to AGEs-modified bovine serum albumin (AGEs-BSA) for 24 h at a concentration of 200 mg/L. Reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis were performed to detect the mRNA and protein expressions of ACAT-1 respectively. Results: Administration of AGEs-BSA (200 mg/L) into the THP-1 macrophages resulted in up-regulation of ACAT-1 at mRNA and protein levels when compared with the expressions in macrophages incubated with serum-free RPM11640. Pretreatment of rosiglitazone inhibited significantly the increased expression of ACAT-1 induced by AGEs-BSA in a concentration-dependent manner. Conclusion: PPARγ activation by rosiglitazone down-regulates ACAT-1 expression induced by AGEs in THP-1 macrophages, which might provide a new way for treating atherogenesis in diabetic patients.

  12. Intestine-specific deletion of acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2 protects mice from diet-induced obesity and glucose intolerance.

    Science.gov (United States)

    Nelson, David W; Gao, Yu; Yen, Mei-I; Yen, Chi-Liang Eric

    2014-06-20

    The absorption of dietary fat involves the re-esterification of digested triacylglycerol in the enterocytes, a process catalyzed by acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2. Mice without a functional gene encoding MGAT2 (Mogat2(-/-)) are protected from diet-induced obesity. Surprisingly, these mice absorb normal amounts of dietary fat but increase their energy expenditure. MGAT2 is expressed in tissues besides intestine, including adipose tissue in both mice and humans. To test the hypothesis that intestinal MGAT2 regulates systemic energy balance, we generated and characterized mice deficient in MGAT2 specifically in the small intestine (Mogat2(IKO)). We found that, like Mogat2(-/-) mice, Mogat2(IKO) mice also showed a delay in fat absorption, a decrease in food intake, and a propensity to use fatty acids as fuel when first exposed to a high fat diet. Mogat2(IKO) mice increased energy expenditure although to a lesser degree than Mogat2(-/-) mice and were protected against diet-induced weight gain and associated comorbidities, including hepatic steatosis, hypercholesterolemia, and glucose intolerance. These findings illustrate that intestinal lipid metabolism plays a crucial role in the regulation of systemic energy balance and may be a feasible intervention target. In addition, they suggest that MGAT activity in extraintestinal tissues may also modulate energy metabolism.

  13. Molecular Cloning and Characterization of a Novel Human Glycine-N-acyltransferase Gene GLYATL1, Which Activates Transcriptional Activity of HSE Pathway

    Directory of Open Access Journals (Sweden)

    Long Yu

    2007-05-01

    Full Text Available The glycine-N-acyltransferase (GLYAT is well known to be involved in thedetoxification of endogenous and exogenous xenobiotic acyl-CoA's in mammals.Unfortunately, the knowledge about the gene encoding GLYAT is very limited. Here wereport a novel gene encoding a GLYAT member, designated as GLYATL1, which was1546 base pairs in length and contained an open reading frame (ORF encoding apolypeptide of 302 amino acids. GLYATL1 was a split gene that was consisted of 7 exonsand 6 introns and mapped to chromosome 11q12.1. The expression of GLYATL1 could befound in liver, kidney, pancreas, testis, ovary and stomach among 18 human tissues by RT-PCR analysis. Subcellular localization of myc-tagged GLYATL1 fusion protein revealedthat GLYATL1 was distributed primarily in the cytoplasm of COS-7 cells. Furthermore,through the pathway profiling assay, the GLYATL1 protein was found to activate HSEsignaling pathway in a dose-dependent manner when overexpressed in HEK293T cells.

  14. Effect of Tumor Necrosis Factor-α on Acyl Coenzyme A: Cholesteryl Acyltransferase Activity and ACAT1 Gene Expression in THP-1 Macrophages

    Institute of Scientific and Technical Information of China (English)

    HE Ping; CHENG Bei; WANG Yi; WANG Hongxing

    2007-01-01

    In order to explore the effect and mechanisms of tumor necrosis factor-α (TNF-α) on the activity of the acyl coenzyme A: cholesteryl acyltransferase (ACAT), THP-1 monocytes were cultured and induced to differentiate into macrophages with phorbol ester. TNF-α (60 ng/mL) was added at different time points into the macrophage-containing medium and the ACAT enzyme activity was measured by quantifying the incorporation of [1-14C] oleoyl CoA into cholesteryl esters. The expression of ACAT-1 protein and mRNA was respectively detected by Western blotting and RT-PCR in THP-1 macrophages 24 h after treatment with TNF-α (60 ng/mL). The results indicated that ACAT activity in THP-1 macrophages treated with TNF-α was increased in a time-dependent manner. The expression levels of ACAT-1 protein and mRNA were significantly increased in THP-1 macrophages after treatment with TNF-α (P<0.05). It was suggested that TNF-α could increase the activity of ACAT in THP-1 macrophages by up-regulating the expression of ACAT-1 gene.

  15. The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds.

    Science.gov (United States)

    Arroyo-Caro, José María; Chileh, Tarik; Kazachkov, Michael; Zou, Jitao; Alonso, Diego López; García-Maroto, Federico

    2013-02-01

    The multigene family encoding proteins related to lysophosphatidyl-acyltransferases (LPATs) has been analyzed in the castor plant Ricinus communis. Among them, two genes designated RcLPAT2 and RcLPATB, encoding proteins with LPAT activity and expressed in the developing seed, have been cloned and characterized in some detail. RcLPAT2 groups with well characterized members of the so-called A-class LPATs and it shows a generalized expression pattern in the plant and along seed development. Enzymatic assays of RcLPAT2 indicate a preference for ricinoleoyl-CoA over other fatty acid thioesters when ricinoleoyl-LPA is used as the acyl acceptor, while oleoyl-CoA is the preferred substrate when oleoyl-LPA is employed. RcLPATB groups with B-class LPAT enzymes described as seed specific and selective for unusual fatty acids. However, RcLPATB exhibit a broad specificity on the acyl-CoAs, with saturated fatty acids (12:0-16:0) being the preferred substrates. RcLPATB is upregulated coinciding with seed triacylglycerol accumulation, but its expression is not restricted to the seed. These results are discussed in the light of a possible role for LPAT isoenzymes in the channelling of ricinoleic acid into castor bean triacylglycerol.

  16. Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase.

    Science.gov (United States)

    Amiar, Souad; MacRae, James I; Callahan, Damien L; Dubois, David; van Dooren, Giel G; Shears, Melanie J; Cesbron-Delauw, Marie-France; Maréchal, Eric; McConville, Malcolm J; McFadden, Geoffrey I; Yamaryo-Botté, Yoshiki; Botté, Cyrille Y

    2016-08-01

    Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii. PMID:27490259

  17. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase.

    Science.gov (United States)

    Yu, Kyung Ok; Jung, Ju; Kim, Seung Wook; Park, Chul Hwan; Han, Sung Ok

    2012-01-01

    The high price of petroleum-based diesel fuel has led to the development of alternative fuels, such as ethanol. Saccharomyces cerevisiae was metabolically engineered to utilize glycerol as a substrate for ethanol production. For the synthesis of fatty acid ethyl esters (FAEEs) by engineered S. cerevisiae that utilize glycerol as substrate, heterologous expression of an unspecific acyltransferase from Acinetobacter baylyi with glycerol utilizing genes was established. As a result, the engineered YPH499 (pGcyaDak, pGupWs-DgaTCas) strain produced 0.24 g/L FAEEs using endogenous ethanol produced from glycerol. And this study also demonstrated the possibility of increasing FAEE production by enhancing ethanol production by minimizing the synthesis of glycerol. The overall FAEE production in strain YPH499 fps1Δ gpd2Δ (pGcyaDak, pGupWs-DgaTCas) was 2.1-fold more than in YPH499 (pGcyaDak, pGupWs-DgaTCas), with approximately 0.52 g/L FAEEs produced, while nearly 17 g/L of glycerol was consumed. These results clearly indicated that FAEEs were synthesized in engineered S. cerevisiae by esterifying exogenous fatty acids with endogenously produced ethanol from glycerol. This microbial system acts as a platform in applying metabolic engineering that allows the production of FAEEs from cheap and abundant substrates specifically glycerol through the use of endogenous bioethanol.

  18. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor.

    Science.gov (United States)

    Zhang, Chongben; Cooper, Daniel E; Grevengoed, Trisha J; Li, Lei O; Klett, Eric L; Eaton, James M; Harris, Thurl E; Coleman, Rosalind A

    2014-08-01

    Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance. PMID:24939733

  19. Site-directed mutagenesis from Arg195 to His of a microalgal chloroplastidial glycerol-3-phosphate acyltransferase causes an increase in phospholipid levels in yeast

    Directory of Open Access Journals (Sweden)

    Long-Ling eOuyang

    2016-03-01

    Full Text Available To analyze the contribution of glycerol-3-phosphate acyltransferase (GPAT to the first acylation of glycerol-3-phosphate (G-3-P, the present study focused on a functional analysis of the GPAT gene from Lobosphaera incisa (designated as LiGPAT and the subcellular localization of the encoded protein LiGPAT. A full-length cDNA of LiGPAT consisting of a 1,305-bp ORF, a 1,652-bp 5′-UTR, and a 354-bp 3′-UTR, was cloned. The ORF encoded a 434-amino acid peptide, of which 63 residues at the N-terminus defined a chloroplast transit peptide. LiGPAT was exclusively localized to chloroplasts, which was shown by co-expression of LiGPAT with eGFP in Chlamydomonas reinhardtii and by immunogold labeling in L. incisa. Considering the conservation of His among the G-3-P binding sites from chloroplastidial GPATs and the substitution of His by Arg at position 195 in the LiGPAT mature protein (designated mLiGPAT, we established the heterologous expression of either mLiGPAT or its mutant (Arg195His (sdmLiGPAT in the GPAT-deficient yeast mutant gat1Δ. Lipid profile analyses of these transgenic yeasts not only validated the acylation function of LiGPAT but also indicated that the site-directed mutagenesis from Arg195 to His led to an increase in the phospholipid level in yeast. Semi-quantitative analysis of mLiGPAT and sdmLiGPAT, together with the structural superimposition of their G-3-P binding sites, indicated that the increased enzymatic activity was caused by the enlarged accessible surface of the phosphate group binding pocket when Arg195 was mutated to His. Thus, the potential of genetic manipulation of GPAT to increase the glycerolipid level in L. incisa and other microalgae would be of great interest.

  20. A Salmonella typhimurium-translocated Glycerophospholipid:Cholesterol Acyltransferase Promotes Virulence by Binding to the RhoA Protein Switch Regions

    Energy Technology Data Exchange (ETDEWEB)

    LaRock, Doris L.; Brzovic, Peter S.; Levin, Itay; Blanc, Marie-Pierre; Miller, Samuel I.

    2012-08-24

    Salmonella enterica serovar typhimurium translocates a glycerophospholipid: cholesterol acyltransferase (SseJ) into the host cytosol after its entry into mammalian cells. SseJ is recruited to the cytoplasmic face of the host cell phagosome membrane where it is activated upon binding the small GTPase, RhoA. SseJ is regulated similarly to cognate eukaryotic effectors, as only the GTP-bound form of RhoA family members stimulates enzymatic activity. Using NMR and biochemistry, this work demonstrates that SseJ competes effectively with Rhotekin, ROCK, and PKN1 in binding to a similar RhoA surface. The RhoA surface that binds SseJ includes the regulatory switch regions that control activation of mammalian effectors. These data were used to create RhoA mutants with altered SseJ binding and activation. This structure-function analysis supports a model in which SseJ activation occurs predominantly through binding to residues within switch region II. We further defined the nature of the interaction between SseJ and RhoA by constructing SseJ mutants in the RhoA binding surface. These data indicate that SseJ binding to RhoA is required for recruitment of SseJ to the endosomal network and for full Salmonella virulence for inbred susceptible mice, indicating that regulation of SseJ by small GTPases is an important virulence strategy of this bacterial pathogen. The dependence of a bacterial effector on regulation by a mammalian GTPase defines further how intimately host pathogen interactions have coevolved through similar and divergent evolutionary strategies.

  1. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    International Nuclear Information System (INIS)

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator of mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans

  2. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jung Hwan [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institutes of Health, Cheongwon-gun, Chungbuk 363-951 (Korea, Republic of); Kim, Hyo Jung; Choi, Hyeonjin [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Choi, Yoonjeong; Seok, Jo Woon [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo, E-mail: japol13@yuhs.ac [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2015-05-08

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator of mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans.

  3. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor.

    Science.gov (United States)

    Zhang, Chongben; Cooper, Daniel E; Grevengoed, Trisha J; Li, Lei O; Klett, Eric L; Eaton, James M; Harris, Thurl E; Coleman, Rosalind A

    2014-08-01

    Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance.

  4. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans.

    Science.gov (United States)

    Roesler, Keith; Shen, Bo; Bermudez, Ericka; Li, Changjiang; Hunt, Joanne; Damude, Howard G; Ripp, Kevin G; Everard, John D; Booth, John R; Castaneda, Leandro; Feng, Lizhi; Meyer, Knut

    2016-06-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans.

  5. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk.

    Science.gov (United States)

    Bovenhuis, H; Visker, M H P W; Poulsen, N A; Sehested, J; van Valenberg, H J F; van Arendonk, J A M; Larsen, L B; Buitenhuis, A J

    2016-04-01

    Several studies have described associations between the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism and routinely collected milk production traits but not much is known about effects of the DGAT1 polymorphism on detailed milk composition. The aim of this study was to estimate effects of the DGAT1 polymorphism on milk fatty acid, protein, and mineral composition. We looked for effects that were significant and consistent in Danish Holstein Friesian (HF), Danish Jersey, and Dutch HF as these are likely to be true effects of the DGAT1 K232A polymorphism rather than being effects of linked loci. For fatty acid composition, significant and consistent effects of the DGAT1 polymorphism were detected on C14:0, C16:0, C15:0, C16:1, C18:1 cis-9, conjugated linoleic acid (CLA) cis-9,trans-11, C18:2 cis-9,cis-12, and C18:3 cis-9,cis-12,cis-15 content (percent by weight, wt/wt %). For C16:0, C16:1, and C18:1 cis-9, the DGAT1 polymorphism explained more than 10% of the phenotypic variation. Significant effects on milk protein composition in Dutch HF could not be confirmed in Danish Jersey or Danish HF. For mineral content, significant and consistent effects of the DGAT1 polymorphism on calcium, phosphorus, and zinc were detected. In the Dutch HF population, the contribution of the DGAT1 K232A polymorphism to phenotypic variance was 12.0% for calcium, 8.3% for phosphorus, and 6.1% for zinc. Different from effects on fatty acid composition, effects of the DGAT1 polymorphism on yields of long-chain fatty acids C18:1 cis-9, CLA cis-9,trans-11, C18:2 cis-9,cis-12, and C18:3 cis-9,cis-12,cis-15 were not significant. This indicates that effects of DGAT1 on these fatty acids are indirect, not direct, effects: DGAT1 affects de novo synthesis of fatty acids and, consequently, the contribution of the long-chain fatty acids to total fat is decreased. In addition, effects of the DGAT1 polymorphism on yields of Ca, P, and Zn were not significant, which indicates that effects

  6. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk.

    Science.gov (United States)

    Bovenhuis, H; Visker, M H P W; Poulsen, N A; Sehested, J; van Valenberg, H J F; van Arendonk, J A M; Larsen, L B; Buitenhuis, A J

    2016-04-01

    Several studies have described associations between the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism and routinely collected milk production traits but not much is known about effects of the DGAT1 polymorphism on detailed milk composition. The aim of this study was to estimate effects of the DGAT1 polymorphism on milk fatty acid, protein, and mineral composition. We looked for effects that were significant and consistent in Danish Holstein Friesian (HF), Danish Jersey, and Dutch HF as these are likely to be true effects of the DGAT1 K232A polymorphism rather than being effects of linked loci. For fatty acid composition, significant and consistent effects of the DGAT1 polymorphism were detected on C14:0, C16:0, C15:0, C16:1, C18:1 cis-9, conjugated linoleic acid (CLA) cis-9,trans-11, C18:2 cis-9,cis-12, and C18:3 cis-9,cis-12,cis-15 content (percent by weight, wt/wt %). For C16:0, C16:1, and C18:1 cis-9, the DGAT1 polymorphism explained more than 10% of the phenotypic variation. Significant effects on milk protein composition in Dutch HF could not be confirmed in Danish Jersey or Danish HF. For mineral content, significant and consistent effects of the DGAT1 polymorphism on calcium, phosphorus, and zinc were detected. In the Dutch HF population, the contribution of the DGAT1 K232A polymorphism to phenotypic variance was 12.0% for calcium, 8.3% for phosphorus, and 6.1% for zinc. Different from effects on fatty acid composition, effects of the DGAT1 polymorphism on yields of long-chain fatty acids C18:1 cis-9, CLA cis-9,trans-11, C18:2 cis-9,cis-12, and C18:3 cis-9,cis-12,cis-15 were not significant. This indicates that effects of DGAT1 on these fatty acids are indirect, not direct, effects: DGAT1 affects de novo synthesis of fatty acids and, consequently, the contribution of the long-chain fatty acids to total fat is decreased. In addition, effects of the DGAT1 polymorphism on yields of Ca, P, and Zn were not significant, which indicates that effects

  7. Escherichia coli K-12 Suppressor-free Mutants Lacking Early Glycosyltransferases and Late Acyltransferases: minimal lipopolysaccharide structure and induction of envelope stress response.

    Science.gov (United States)

    Klein, Gracjana; Lindner, Buko; Brabetz, Werner; Brade, Helmut; Raina, Satish

    2009-06-01

    To elucidate the minimal lipopolysaccharide (LPS) structure needed for the viability of Escherichia coli, suppressor-free strains lacking either the 3-deoxy-d-manno-oct-2-ulosonic acid transferase waaA gene or derivatives of the heptosyltransferase I waaC deletion with lack of one or all late acyltransferases (lpxL/M/P) and/or various outer membrane biogenesis factors were constructed. Delta(waaC lpxL lpxM lpxP) and waaA mutants exhibited highly attenuated growth, whereas simultaneous deletion of waaC and surA was lethal. Analyses of LPS of suppressor-free waaA mutants grown at 21 degrees C, besides showing accumulation of free lipid IV(A) precursor, also revealed the presence of its pentaacylated and hexaacylated derivatives, indicating in vivo late acylation can occur without Kdo. In contrast, LPS of Delta(waaC lpxL lpxM lpxP) strains showed primarily Kdo(2)-lipid IV(A), indicating that these minimal LPS structures are sufficient to support growth of E. coli under slow-growth conditions at 21/23 degrees C. These lipid IV(A) derivatives could be modified biosynthetically by phosphoethanolamine, but not by 4-amino-4-deoxy-l-arabinose, indicating export defects of such minimal LPS. DeltawaaA and Delta(waaC lpxL lpxM lpxP) exhibited cell-division defects with a decrease in the levels of FtsZ and OMP-folding factor PpiD. These mutations led to strong constitutive additive induction of envelope responsive CpxR/A and sigma(E) signal transduction pathways. Delta(lpxL lpxM lpxP) mutant, with intact waaC, synthesized tetraacylated lipid A and constitutively incorporated a third Kdo in growth medium inducing synthesis of P-EtN and l-Ara4N. Overexpression of msbA restored growth of Delta(lpxL lpxM lpxP) under fast-growing conditions, but only partially that of the Delta(waaC lpxL lpxM lpxP) mutant. This suppression could be alleviated by overexpression of certain mutant msbA alleles or the single-copy chromosomal MsbA-498V variant in the vicinity of Walker-box II.

  8. Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows.

    Science.gov (United States)

    Banos, G; Woolliams, J A; Woodward, B W; Forbes, A B; Coffey, M P

    2008-08-01

    The impact of 9 single nucleotide polymorphisms (SNP) in the leptin (LEP), leptin receptor (LEPR), growth hormone receptor (GHR), and diacylglycerol acyltransferase (DGAT1) gene loci on daily milk production, feed intake, and feed conversion, and weekly measures of live weight, BCS, and body energy traits was evaluated using genetic and phenotypic data on 571 Holstein cows raised at the Langhill Dairy Cattle Research Center in Scotland. Six SNP were typed on the LEP gene and 1 on each of the other 3 loci. Of the 6 LEP SNP, 3 were in very high linkage disequilibrium, meaning there is little gain in typing all of them in the future. Seven LEP haplotypes were identified by parsimony-based analyses. Random-regression allele-substitution models were used to assess the impact of each SNP allele or haplotype on the traits of interest. Diacylglycerol acyltransferase had a significant effect on milk yield, whereas GHR significantly affected feed intake, feed conversion, and body energy traits. There was also evidence of dominance in allelic effects on milk yield and BCS. The LEP haplotype CCGTTT (corresponding to leptin SNP C207T, C528T, A1457G, C963T, A252T, and C305T, respectively) significantly affected milk yield and feed and dry matter intake. Animals carrying this haplotype produced 3.13 kg more milk daily and consumed 4.64 kg more feed. Furthermore, they tended to preserve more energy than average. Such results may be used to facilitate genetic selection in animal breeding programs.

  9. 花生溶血磷脂酸酰基转移酶基因的克隆与表达分析%Cloning and Expression Analysis of Lysophosphatidic Acid Acyltransferase (LPAT) Encoding Gene in Peanut

    Institute of Scientific and Technical Information of China (English)

    陈四龙; 黄家权; 雷永; 任小平; 文奇根; 陈玉宁; 姜慧芳; 晏立英; 廖伯寿

    2012-01-01

    Lysophosphatidic acid acyltransferase (LPAT) is a key enzyme in biosynthesis pathway of vegetable oil in plant. It is important for oil crops to improve oil quality and increase seed oil content through genetic engineering. We constructed a full-length cDNA library of peanut (Arachis hypogaea) seed via a large number of sequences of expressed sequence tag (EST) and gene functional annotation, a lysophosphatidic acid acyltransferase gene, designated AhLPAT, and its genomic DNA sequence were isolated from peanut. The sequence of AhLPAT cDN A was 1 629 bp, and its genomic sequence was 5 331 bp. Bioinformatic analysis showed that AhLPAT was composed of 11 exons and 10 introns with typical GT-AG characteristic in comparison of its sequences of genomic DNA and cDNA by Splign in NCBI. A peptide of 387 amino acid residues with protein molecular weight of 43.2 kD and isoelectric point (p7) of 9.42 were deduced from AhLPAT. Conserved domains prediction indicated that AhLPAT comprised a typical conserved acyltransferase domain and a conserved lysophospholipid acyltransferases domain. The deduced amino acid had a high identity with the LPAT proteins reported from other species. Amino acid similarities of LPAT protein be tween peanut and Tropaeolum majus, Brassica napus, Crambe hispanica subsp. Abyssinica, Ricinus communis, and Arabidopsis thaliana were 90%, 89%, 89%, 88%, and 87%, respectively. A phylogenetic tree was constructed by the Neighbor-Joining method using MEGA5.0. The phylogenetic tree suggested that AhLPAT and AtLPAT2 derived from Arabidopsis thaliana were grouped into the same class. Both AhLPAT and AtLPAT2 were endoplasmic reticulum type LPATs. The tissue specific expression analysis by using quantitative RT-PCR assays indicated that AhLPAT was ubiquitously expressed in root, stem, leaf, flower, gynophore, seed of peanut with the highest level in gynophore and seed. The expression level reached a peak in the stage from 50 to 60 days after flowering. The

  10. Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals.

    Science.gov (United States)

    Kroon, Johan T M; Wei, Wenxue; Simon, William J; Slabas, Antoni R

    2006-12-01

    Seed oil from castor bean (Ricinus communis) contains high amounts of hydroxy fatty acid rich triacylglycerols (TAGs) that can serve as raw material for production of bio-based products such as nylon, cosmetics, lubricants, foams, and surfactants. Diacylglycerol acyltransferase (DGAT) catalyses the terminal reaction in the acyl-CoA dependent Kennedy pathway of triglyceride biosynthesis. There is still some debate whether there are three or four enzymes in yeast that have DGAT activity and catalyse the synthesis of TAG but of these the DGAT2 homologue Dga1 contributes in a major way to TAG biosynthesis. Here we report on the cloning of a cDNA for DGAT2 from castor bean and prove its biological activity following expression in yeast and enzymatic assays using diricinolein as the acceptor and ricinoleoyl-CoA as the donor. Previous reports of DGAT in castor have focussed on DGAT1 which has little amino acid sequence homology to DGAT2. Expressional studies demonstrate that DGAT2 is 18-fold more highly expressed in seeds than in leaves and shows temporal specific expression during seed development. In contrast, DGAT1 shows little difference in expression in seeds versus leaves. We conclude that in castor bean DGAT2 is more likely to play a major role in seed TAG biosynthesis than DGAT1.

  11. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content.

    Science.gov (United States)

    Winter, Andreas; Krämer, Wolfgang; Werner, Fabian A O; Kollers, Sonja; Kata, Srinivas; Durstewitz, Gregor; Buitkamp, Johannes; Womack, James E; Thaller, Georg; Fries, Ruedi

    2002-07-01

    DGAT1 encodes diacylglycerol O-acyltransferase (EC ), a microsomal enzyme that catalyzes the final step of triglyceride synthesis. It became a functional candidate gene for lactation traits after studies indicated that mice lacking both copies of DGAT1 are completely devoid of milk secretion, most likely because of deficient triglyceride synthesis in the mammary gland. Our mapping studies placed DGAT1 close to the region of a quantitative trait locus (QTL) on bovine chromosome 14 for variation in fat content of milk. Sequencing of DGAT1 from pooled DNA revealed significant frequency shifts at several variable positions between groups of animals with high and low breeding values for milk fat content in different breeds (Holstein-Friesian, Fleckvieh, and Braunvieh). Among the variants was a nonconservative substitution of lysine by alanine (K232A), with the lysine-encoding allele being associated with higher milk fat content. Haplotype analysis indicated the lysine variant to be ancestral. Two animals that were typed heterozygous (Qq) at the QTL based on marker-assisted QTL-genotyping were heterozygous for the K232A substitution, whereas 14 animals that are most likely qq at the QTL were homozygous for the alanine-encoding allele. An independent association study in Fleckvieh animals confirmed the positive effect of the lysine variant on milk fat content. We consider the nonconservative K232A substitution to be directly responsible for the QTL variation, although our genetic studies cannot provide formal proof.

  12. A second gene for acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase in squash, Cucurbita moschata cv. Shirogikuza(*), codes for an oleate-selective isozyme: molecular cloning and protein purification studies.

    Science.gov (United States)

    Nishida, I; Sugiura, M; Enju, A; Nakamura, M

    2000-12-01

    A new isogene for acyl-(acyl-carrier-protein):glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) in squash has been cloned and the gene product was identified as oleate-selective GPAT. Using PCR primers that could hybridise with exons for a previously cloned squash GPAT, we obtained two PCR products of different size: one coded for a previously cloned squash GPAT corresponding to non-selective isoforms AT2 and AT3, and the other for a new isozyme, probably the oleate-selective isoform AT1. Full-length amino acid sequences of respective isozymes were deduced from the nucleotide sequences of genomic genes and cDNAs, which were cloned by a series of PCR-based methods. Thus, we designated the new gene CmATS1;1 and the other one CmATS1;2. Genome blot analysis revealed that the squash genome contained the two isogenes at non-allelic loci. AT1-active fractions were partially purified, and three polypeptide bands were identified as being AT1 polypeptides, which exhibited relative molecular masses of 39.5-40.5 kDa, pI values of 6.75-7.15, and oleate selectivity over palmitate. Partial amino-terminal sequences obtained from two of these bands verified that the new isogene codes for AT1 polypeptides.

  13. PRD125, a potent and selective inhibitor of sterol O-acyltransferase 2 markedly reduces hepatic cholesteryl ester accumulation and improves liver function in lysosomal acid lipase-deficient mice.

    Science.gov (United States)

    Lopez, Adam M; Chuang, Jen-Chieh; Posey, Kenneth S; Ohshiro, Taichi; Tomoda, Hiroshi; Rudel, Lawrence L; Turley, Stephen D

    2015-11-01

    In most organs, the bulk of cholesterol is unesterified, although nearly all possess a varying capability of esterifying cholesterol through the action of either sterol O-acyltransferase (SOAT) 1 or, in the case of hepatocytes and enterocytes, SOAT2. Esterified cholesterol (EC) carried in plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to whether pharmacological inhibition of SOAT2 might reduce tissue EC accretion in CESD. When weaned at 21 days, Lal(-/-) mice, of either gender, had a whole liver cholesterol content that was 12- to 13-fold more than that of matching Lal(+/+) littermates (23 versus 1.8 mg, respectively). In Lal(-/-) males given the selective SOAT2 inhibitor PRD125 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl-1,7,11-trideacetylpyripyropene A in their diet (∼10 mg/day per kg body weight) from 21 to 53 days, whole liver cholesterol content was 48.6 versus 153.7 mg in untreated 53-day-old Lal(-/-) mice. This difference reflected a 59% reduction in hepatic EC concentration (mg/g), combined with a 28% fall in liver mass. The treated mice also showed a 63% reduction in plasma alanine aminotransferase activity, in parallel with decisive falls in hepatic mRNA expression levels for multiple proteins that reflect macrophage presence and inflammation. These data implicate SOAT2 as a potential target in CESD management. PMID:26283692

  14. Acyl-CoA-binding and self-associating properties of a recombinant 13.3 kDa N-terminal fragment of diacylglycerol acyltransferase-1 from oilseed rape

    Directory of Open Access Journals (Sweden)

    Mosimann Steven C

    2006-12-01

    Full Text Available Abstract Background Diacylglycerol acyltransferase (DGAT, EC 2.3.1.20 catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to generate triacylglycerol and CoA. The deduced amino acid sequence of cDNAs encoding DGAT1 from plants and mammals exhibit a hydrophilic N-terminal region followed by a number of potential membrane-spanning segments, which is consistent with the membrane-bound nature of this enzyme family. In order to gain insight into the structure/function properties of DGAT1 from Brassica napus (BnDGAT1, we produced and partially characterized a recombinant polyHis-tagged N-terminal fragment of the enzyme, BnDGAT1(1–116His6, with calculated molecular mass of 13,278 Da. Results BnDGAT1(1–116His6 was highly purified from bacterial lysate and plate-like monoclinic crystals were grown using this preparation. Lipidex-1000 binding assays and gel electrophoresis indicated that BnDGAT1(1–116His6 interacts with long chain acyl-CoA. The enzyme fragment displayed enhanced affinity for erucoyl (22:1cisΔ13-CoA over oleoyl (18:1cisΔ9-CoA, and the binding process displayed positive cooperativity. Gel filtration chromatography and cross-linking studies indicated that BnDGAT1(1–116His6 self-associated to form a tetramer. Polyclonal antibodies raised against a peptide of 15 amino acid residues representing a segment of BnDGAT1(1–116His6 failed to react with protein in microsomal vesicles following treatment with proteinase K, suggesting that the N-terminal fragment of BnDGAT1 was localized to the cytosolic side of the ER. Conclusion Collectively, these results suggest that BnDGAT1 may be allosterically modulated by acyl-CoA through the N-terminal region and that the enzyme self-associates via interactions on the cytosolic side of the ER.

  15. Uses Semi–quantitative and Relative Quantity Methods to Analysis Gene Expression of DGAT1 Gene Responsible for the Olive Diacylglcerol Acyltransferases in 10 Cultivars of Olive (Olea europaea. L

    Directory of Open Access Journals (Sweden)

    Ali Saeed Atiyah AL-Janabi

    2015-03-01

    Full Text Available In this study gene expression for DGAT1 gene was analyzed. Diacylglycerol acyltransferases (DGATs catalyze the final step of the triacylglycerol (TAG biosynthesis of the Kennedy pathway. Two major gene families have been shown to encode DGATs, DGAT1 (type-1 and DGAT2 (type-2. Gene expression were analyzed for 10 Olive cultivars (Olea europaea L. (Khaderi, Qaysi, Manzenillo, Baashiqi, Arabqween, Nabali, Labeeb, Dahkan, Shami and Sorani. Different plant organs as plant materials (mature leaves, mesocarp and seeds for drups used for analysis. Two methods for analysis gene expression were used, first method was called semi – quantitative and second method was called relative – quantitative, used in relative method (Real time PCR and Actine gene as Housekeeping gene. On the other hand chemical analysis was used on fruits like moisture % and oil % of dry and fresh weigh. The results revealed the following: DGAT1 gene expression in leaves, mesocarp and seeds by two methods (semi- quantitative and relative quantity were the convergent results and clear, also if this results compared with chemical analysis shows that the best cultivars were Arabqween, Khaderi, Qaysi and Labeeb. The cultivars Shami and Khaderi then were contain in fruits desirable qualities of olive oil, low moisture and high oil percentages ratios. While Nabali, Manzanello, and Sorani cultivars middle desirable quantity, and Baashiqi and Dahkan cultivars had undesirable because of low oil quantity and high moisture in contain fruits. Some cultivars have low intensity in semi- quantitative and little fold in relative quantity but it have high oil in contain fruits that may be indicate that these cultivars were complete gene expression and begin to accumulation and save oil in tissue. Therefore particular emphasis was given to the temporal regulation of olive DGATs during drupe development. In olive fruit, TAGs are formed and stored in both the mesocarp and the seed .Two drupe

  16. 莱茵衣藻磷脂二脂酰甘油酰基转移酶3在三酰甘油合成中的功能研究%THE ROLE OF PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE IN BIOSYNTHESIS OF TRIACYLGLYCEROL BY CHLAMYDOMONAS REINHARDTII

    Institute of Scientific and Technical Information of China (English)

    邓晓东; 蔡佳佳; 费小雯

    2014-01-01

    Currently, production of biodiesel by microalgae has been regarded as a promising source of renewable en-ergy. However, the understanding of oil biosynthesis mechanisms in micro-algae is limited. Phospholipid:diacylglycerol acyltransferase catalyzes phospholipid and diacylglycerol to produce triglyceride, a key reaction in triglyceride synthe-sis. In this study, we cloned a fragment of Phospholipid:diacylglycerol acyltransferase homologous gene 3 CrPDAT3 in Chlamydomonas, which was then used to construct a CrPDAT3 RNAi interference vector and transferred into Chlamy-domonas. The results showed that the growth rate of transgenic algae strain was declined. At the same time, the oil con-tent was decreased by 14.65%-45.15%, showing that the CrPDAT3 playing an important role in oil biosynthesis.%为研究磷脂二脂酰甘油酰基转移酶(PDAT)在三酰甘油合成中的功能,克隆了莱茵衣藻(Chlamydomonas reinhardtii) PDAT同源基因CrPDAT3干涉片段,通过构建CrPDAT3 RNAi 干涉载体并转化莱茵衣藻,对 CrPDAT3基因有效沉默,结果显示转基因藻株生长减缓,油脂含量下降14.65%-45.15%,说明CrPDAT3对油脂合成起到重要的作用。研究结果对于该基因应用于微藻油脂的遗传改良将起到重要作用。

  17. Cloning and Characterization of Diacylglycerol Acyltransferase Gene (NtDGAT2) from Tobacco (Nicotiana tabacum L.)%烟草二脂酰甘油酰基转移酶基因(NtDGAT2)的克隆与功能分析

    Institute of Scientific and Technical Information of China (English)

    阳天泉; 徐荣华; 刘爱忠

    2013-01-01

    Diacylglycerol acyltransferase (DGAT2), a key enzyme for lipid biosynthesis, plays a critical role in oil accumulation in oilseeds. In this study, using the silico cloning technique combined with RT-PCR method, a novel DGAT2 gene with the length of 999 bp encoding 332 amino acids was isolated from seed cDNAs of tobacco (Nicotiana tabacum), named NtDGAT2 (GenBank No JX843807). The sequence analyses showed that the amino acid sequence of NtDGAT2 with the typical functional motifs of DGAT2 was high similarity to those identified from other species. Based on Real-time quantitative PCR expression analysis, NtDGAT2 was expressed in all tissues such as root, stem, leaf, flower and developing seed; in particular, NtDGAT2 was highly expressed in flowers and developing seeds. Further, the function of NtDGAT2 was confirmed by heterologous transformation and the functional complementary experiments in yeast.%二脂酰甘油酰基转移酶(diacylglycerol acyltransferase,DGAT2)是植物储存油脂生物合成过程中的关键酶,对种子储存油脂累积具有重要的生理作用.本文采用电子克隆与实验相结合的方法,从烟草种子cDNA中克隆到DGAT2基因的开放阅读框序列,命名为NtDGAT2 (GenBank登录号JX843807),其序列长999 bp,编码332个氨基酸.多序列比对和进化分析表明该基因编码蛋白与其他植物DGAT2具有较高相似性和典型的DGAT2结构域.利用Real-time PCR定量表达分析显示Nt-DGA T2在烟草种子、花、茎、叶和根里面都有表达,且在发育中的种子和花的发育过程大量表达.酵母互补实验证实该基因编码蛋白具有DGAT酶活性.

  18. Cloning and Characterization of Phospholipids:Diacylglycerol Acyltransferase (BnPDAT1) cDNA from Brassica napus L.%甘蓝型油菜磷脂二酰甘油酰基转移酶(BnPDAT1)cDNA的克隆和功能鉴定

    Institute of Scientific and Technical Information of China (English)

    谭太龙; 冯韬; 罗海燕; 彭烨; 刘睿洋; 官春云

    2016-01-01

    Phospholipids:diacylglycerol acyltransferase (PDAT1) is a key enzyme in triacylglycerol (TAG) biosynthesis of plants. In this study, three novel PDAT1 coding sequences (CDSs) were isolated from cDNA of Brassica napus L. cv. Xiangyou 15 seeds, which were mapped to the chromosomes A02, A10, and C09, and designated as BnPDAT1-A02,BnPDAT1-A10, and BnPDAT1-C09, respectively. Three BnPDAT1 CDSs were 1998, 2002, and 2005 bp in length and encoded predicted proteins with 665, 666, and 667 amino acid residues, respectively. BnPDAT1 proteins were predicted to be located on the cell membrane and have a typical PDAT1 conserved domain. Multiple sequence alignments and phylogenetic analysis showed that the deduced amino acid sequences of BnPDAT1 were highly homologous to previously reported PDAT1 inBrassica oleracea,Arabidopsis thalian, and Eruca sativa. Furthermore, the catalytic enzyme activity of the cloned BnPDAT1 genes was confirmed by the yeast comple-mentary experiment. The expression level of BnPDAT1s increased gradually in seed development and reached the maximum from 25 to 30 days after flowering. However, three BnPDAT1 copies were also found to be different in expression pattern.%磷脂二酰甘油酰基转移酶(phospholipids:diacylglycerol acyltransferase,PDAT1)是植物三酰甘油(triacylgly-cerol,TAG)合成的关键酶.本文在甘蓝型油菜湘油15号cDNA中克隆到3个PDAT1全长编码序列(coding sequence,CDS),经比对分别定位于A02、A10、C09染色体,分别命名为BnPDAT1-A02、BnPDAT1-A10和BnPDAT1-C09,其序列长分别为1998、2002和2005 bp,各自编码665、666、667个氨基酸.预测BnPDAT1基因编码蛋白定位于细胞质膜,具有典型的PDAT1保守结构域.多序列比对和进化分析表明,BnPDAT1基因编码蛋白与甘蓝、拟南芥、亚麻芥PDAT1蛋白具有较高的同源性.酵母互补实验证实,该基因编码蛋白具有PDAT1酶活性.BnPDAT1基因在湘油15号中的表达现先上升后降低趋势,在开花后25

  19. Seed-Specific Over-Expression of a Diacylglycerol Acyltransferase 1 Gene (VgDGAT1) Increase Seed Oil Accumulation in Camelina sativa%种子特异表达二酰甘油酰基转移酶基因(VgDGAT1)提高亚麻荠种子油脂积累

    Institute of Scientific and Technical Information of China (English)

    苑丽霞; 毛雪; 高昌勇; 张莉; 薛金爱; 杨致荣; 李润植

    2015-01-01

    Camelina sativa is an important non-food industrial oilseed with“low-input, high efifciency and en-environment- friendly”. To enhance seed oil content for meeting an increasing market demand, a cDNA clone (Vg- DGAT1) encoding type 1 diacylglycerol acyltransferase from Vernonia galamensis with the higher DGAT enzymatic activity was introduced into camelina by Agrobacterium-mediated floral dip infiltration. Seed-specific over-expression of VgDGAT1 significantly enhanced the DGAT activity in the transgenic seeds by 30 folds more compared to the wild-type control, resulting in seed oil content increase from 37% (dry weight) in the wild-type seeds up to 46%–51% in the transgenics. However, seed protein level was not significant difference between the transgenic and the wild type, indicating that genetic modification on DGAT can break up the negative genetic linkage of oil and protein contents in seeds. Moreover, the seed-specific high expression of Vg- DGAT1 did not adversely affect seed weight, seed germination and other agronomic traits. Such novel engineered camelina lines with higher seed oil content and no reduction of protein accumulation could be used for breeding new camelina varieties with multiple excellent agronomic traits for commercialization.%亚麻荠(Camelina sativa)是一种“低耗、高效、环保”的非粮型工业油料作物。为提高亚麻荠种子含油量,将来源于一种菊科野生油料植物(Vernonia galamensis)高酶活性的二酰甘油酰基转移酶1 cDNA克隆(VgDGAT1)在发育种子中特异表达。VgDGAT1超表达导致转基因亚麻荠种子中DGAT酶活性提高了30多倍。VgDGAT1高表达的亚麻荠种子含油量从野生型的37%提高到46%~51%,而且蛋白质积累未减少,表明对DGAT酶基因进行遗传修饰可打破种子油和蛋白含量的负相关连锁。此外, VgDGAT1高表达也没有对种子重量和种子萌发等农艺性状造成不良影响。这种高油亚麻荠基因工程新

  20. Biosynthesis of phosphatidylcholine by human lysophosphatidylcholine acyltransferase 11

    OpenAIRE

    Harayama, Takeshi; Shindou, Hideo; Shimizu, Takao

    2009-01-01

    Pulmonary surfactant is a complex of phospholipids and proteins lining the alveolar walls of the lung. It reduces surface tension in the alveoli, and is critical for normal respiration. Pulmonary surfactant phospholipids consist mainly of phosphatidylcholine (PC) and phosphatidylglycerol (PG). Although the phospholipid composition of pulmonary surfactant is well known, the enzyme(s) involved in its biosynthesis have remained obscure. We previously reported the cloning of murine lysophosphatid...

  1. The Role of Lysophospholipid Acyltransferases in the Golgi Complex.

    Science.gov (United States)

    Schmidt, John A

    2016-01-01

    Determining the abundance of phospholipids and neutral lipids in cellular membranes is paramount to understanding their biological functions. Many lipid-modifying enzymes have yet to be characterized due to limitations in substrate-product measurements and purification of membrane-bound enzymes. The method described here uses radiolabeled phospholipid substrates and cell-purified organelles to quantify phospholipid metabolism using thin-layer chromatography. This assay has the benefits of being specific and adaptable for numerous applications and systems. PMID:27632011

  2. A review on lecithin:cholesterol acyltransferase deficiency.

    Science.gov (United States)

    Saeedi, Ramesh; Li, Min; Frohlich, Jiri

    2015-05-01

    Lecithin cholesterol acyl transferase (LCAT) is a plasma enzyme which esterifies cholesterol, and plays a key role in the metabolism of high-density lipoprotein cholesterol (HDL-C). Genetic disorders of LCAT are associated with lipoprotein abnormalities including low levels of HDL-C and presence of lipoprotein X, and clinical features mainly corneal opacities, changes in erythrocyte morphology and renal failure. Recombinant LCAT is being developed for the treatment of patients with LCAT deficiency. PMID:25172171

  3. 正常中国人及内源性高甘油三酯血症患者酰基辅酶A:胆固醇酰基转移酶基因多态性的研究%Analysis of acyl-coenzyme A:cholesterol acyltransferase 1 polymorphism in patients with endogenous hypertriglyceridemia in Chinese population

    Institute of Scientific and Technical Information of China (English)

    李琴; 白怀; 范平; 刘瑞; 刘宇; 刘秉文

    2008-01-01

    目的 研究酰基辅酶A:胆固醇酰基转移酶1(acyl-coenzyme A:cholesterol acyltransferase 1,ACAT1)基因rs1044925多态性是否与正常汉族中国人及内源性高甘油三酯血症(hypertriglyceridemia,HTG)患者血脂及载脂蛋白水平存在关联.方法 应用聚合酶链反应-限制性片段长度多态性分析法,对成都地区372名汉族人(267名正常人和105例内源性高甘油三酯血症患者)ACAT1基因rs1044925多态位点进行分析.结果 中国人ACAT1基因rs1044925多态位点C等位基因频率为0.137,显著低于中部和南部欧洲人的0.354(P<0.05);HTG组和对照组C等位基因频率分别为0.153和0.137,两者之间差异无统计学意义.对照组AA基因型携带者血清低密度脂蛋白胆固醇(low density lipoprotein-cholesterol,LDL-C)和非高密度脂蛋白胆固醇(non-high density lipoprotein cholesterol,nHDL-C)水平均较C等位基因携带者(Ac和CC基因型者)显著升高[(3.25±0.68)mmol/L vs(3.03±0.87)mmol/L,P<0.05;(3.80±0.71)mmol/L vs(3.23±0.82)mmol/L,P<0.05],HTG组AA基因型携带者血清高密度脂蛋白胆固醇(high density lipoprotein-cholesterol,HDL-c)水平较C等位基因携带者显著升高[(1.00±0.28)mmol/L vs(0.87±0.17)mmoL/L,P<0.05].结论 ACAT1 基因rs1044925多态性不仅与正常中国成都地区汉族人血清LDL-C、nHDL-C含量有关,而且还与内源性高甘油三酯血症患者血清HDL-C水平相关联.%Objective To investigate the polymorphism of acyl-coenzyme A:cholesterol acyltransfemse 1(ACAT1)gene and its relationship with endogenous hypertriglyceridemia(HTG)in Chinese population.Methods A total of three hundred and seventy-two subjects(105 endogenous hypertriglyceridemics and 267 healthy controls)from a population of Chinese Han nationality in Chengdu area were studied using PCR-restriction fragment length polymorphism (RFLP).Results The frequency of C allele in normal Chinese at rs1044925 locus was 0.137,which was lower thanthat reported in the

  4. Data in support of substrate flexibility of a mutated acyltransferase domain and implications for polyketide biosynthesis

    Directory of Open Access Journals (Sweden)

    Stephan Klopries

    2015-12-01

    Full Text Available Enzyme-directed mutasynthesis is an emerging strategy for the targeted derivatization of natural products. Here, data on the synthesis of malonic acid derivatives for feeding studies in Saccharopolyspora erythraea , the mutagenesis of DEBS and bioanalytical data on the experimental investigation of studies on the biosynthetic pathway towards erythromycin are presented.

  5. A role for 1-acylglycerol-3-phosphate-O-acyltransferase-1 in myoblast differentiation.

    Science.gov (United States)

    Subauste, Angela R; Elliott, Brandon; Das, Arun K; Burant, Charles F

    2010-01-01

    AGPAT isoforms catalyze the acylation of lysophosphatidic acid (LPA) to form phosphatidic acid (PA). AGPAT2 mutations are associated with defective adipogenesis. Muscle and adipose tissue share common precursor cells. We investigated the role of AGPAT isoforms in skeletal muscle development. We demonstrate that small interference RNA-mediated knockdown of AGPAT1 expression prevents the induction of myogenin, a key transcriptional activator of the myogenic program, and inhibits the expression of myosin heavy chain. This effect is rescued by transfection with AGPAT1 but not AGPAT2. Knockdown of AGPAT2 has no effect. The regulation of myogenesis by AGPAT1 is associated with alterations on actin cytoskeleton. The role of AGPAT1 on actin cytoskeleton is further supported by colocalization of AGPAT1 to areas of active actin polymerization. AGPAT1 overexpression was not associated with an increase in PA levels. Our observations strongly implicate AGPAT1 in the development of skeletal muscle, specifically to terminal differentiation. These findings are linked to the regulation of actin cytoskeleton. PMID:20561744

  6. Engineering industrial oil biosynthesis: cloning and characterization of Kennedy pathway acyltransferases from novel oilseed species

    Science.gov (United States)

    For more than twenty years, various industrial, governmental, and academic laboratories have developed and refined genetic engineering strategies aimed at manipulating lipid metabolism in plants and microbes. The goal of these projects is to produce renewable specialized oils that can effectively c...

  7. AT3 (Acyltransferase) Gene Isolated From Capsicum frutescens cv. Cakra Hijau

    OpenAIRE

    Mohamad Habibi; Andi Madhihah Manggabarani; Eko Sri Sulasmi; Dwi Listyorini

    2013-01-01

    Chili pepper is widely used and cultivated by Indonesian people. There are three species of chili pepper, i.e.: Capsicum annuum L., Capsicum frutescens L., and Capsicum violaceum HBK. Capsicum frutescens L. has a higher economic value due to its pungency and carotenoid content. C. frutescens has several cultivars, one of those is Capsicum frutescens cv. Cakra Hijau. This cultivar is resistant against pest and disease and has very high pungency. This special character of chili pepper is born b...

  8. Increased Penicillin Production in Penicillium chrysogenum Production Strains via Balanced Overexpression of Isopenicillin N Acyltransferase

    NARCIS (Netherlands)

    Weber, Stefan S.; Polli, Fabiola; Boer, Remon; Bovenberg, Roel A. L.; Driessen, Arnold J. M.

    2012-01-01

    Intense classical strain improvement has yielded industrial Penicillium chrysogenum strains that produce high titers of penicillin. These strains contain multiple copies of the penicillin biosynthesis cluster encoding the three key enzymes: delta-(l-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase

  9. Identification and Characterization of Five BAHD Acyltransferases Involved in Hydroxycinnamoyl Ester Metabolism in Chicory

    Science.gov (United States)

    Legrand, Guillaume; Delporte, Marianne; Khelifi, Chahinez; Harant, Adeline; Vuylsteker, Christophe; Mörchen, Monika; Hance, Philippe; Hilbert, Jean-Louis; Gagneul, David

    2016-01-01

    Chicory (Cichorium intybus) accumulates caffeic acid esters with important significance for human health. In this study, we aim at a better understanding of the biochemical pathway of these bioactive compounds. Detailed metabolic analysis reveals that C. intybus predominantly accumulates caftaric and chicoric acids in leaves, whereas isochlorogenic acid (3,5-diCQA) was almost exclusively accumulated in roots. Chlorogenic acid (3-CQA) was equally distributed in all organs. Interestingly, distribution of the four compounds was related to leaf age. Induction with methyljasmonate (MeJA) of root cell suspension cultures results in an increase of 3-CQA and 3,5-diCQA contents. Expressed sequence tag libraries were screened using members of the BAHD family identified in Arabidopsis and tobacco as baits. The full-length cDNAs of five genes were isolated. Predicted amino acid sequence analyses revealed typical features of BAHD family members. Biochemical characterization of the recombinant proteins expressed in Escherichia coli showed that two genes encode HCTs (hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferases, HCT1 and HCT2) whereas, three genes encode HQTs (hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferases, HQT1, HQT2, and HQT3). These results totally agreed with the phylogenetic analysis done with the predicted amino acid sequences. Quantitative real-time polymerase chain reaction analysis of gene expression indicated that HQT3, HCT1, and HCT2 might be more directly associated with CQA accumulation in cell culture in response to MeJA elicitation. Transient expression of HCT1 and HQT1 in tobacco resulted in a higher production of 3-CQA. All together these data confirm the involvement of functionally redundant genes in 3-CQA and related compound synthesis in the Asteraceae family. PMID:27375627

  10. Identification and Characterization of Five BAHD Acyltransferases Involved in Hydroxycinnamoyl Ester Metabolism in Chicory.

    Science.gov (United States)

    Legrand, Guillaume; Delporte, Marianne; Khelifi, Chahinez; Harant, Adeline; Vuylsteker, Christophe; Mörchen, Monika; Hance, Philippe; Hilbert, Jean-Louis; Gagneul, David

    2016-01-01

    Chicory (Cichorium intybus) accumulates caffeic acid esters with important significance for human health. In this study, we aim at a better understanding of the biochemical pathway of these bioactive compounds. Detailed metabolic analysis reveals that C. intybus predominantly accumulates caftaric and chicoric acids in leaves, whereas isochlorogenic acid (3,5-diCQA) was almost exclusively accumulated in roots. Chlorogenic acid (3-CQA) was equally distributed in all organs. Interestingly, distribution of the four compounds was related to leaf age. Induction with methyljasmonate (MeJA) of root cell suspension cultures results in an increase of 3-CQA and 3,5-diCQA contents. Expressed sequence tag libraries were screened using members of the BAHD family identified in Arabidopsis and tobacco as baits. The full-length cDNAs of five genes were isolated. Predicted amino acid sequence analyses revealed typical features of BAHD family members. Biochemical characterization of the recombinant proteins expressed in Escherichia coli showed that two genes encode HCTs (hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferases, HCT1 and HCT2) whereas, three genes encode HQTs (hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferases, HQT1, HQT2, and HQT3). These results totally agreed with the phylogenetic analysis done with the predicted amino acid sequences. Quantitative real-time polymerase chain reaction analysis of gene expression indicated that HQT3, HCT1, and HCT2 might be more directly associated with CQA accumulation in cell culture in response to MeJA elicitation. Transient expression of HCT1 and HQT1 in tobacco resulted in a higher production of 3-CQA. All together these data confirm the involvement of functionally redundant genes in 3-CQA and related compound synthesis in the Asteraceae family. PMID:27375627

  11. Identification and characterization of five BAHD acyltransferases involved in hydroxycinnamoyl ester metabolism in chicory

    Directory of Open Access Journals (Sweden)

    Guillaume eLegrand

    2016-06-01

    Full Text Available Chicory (Cichorium intybus accumulates caffeic acid esters with important significance for human health. In this study, we aim at a better understanding of the biochemical pathway of these bioactive compounds. Detailed metabolic analysis reveals that C. intybus predominantly accumulates caftaric and chicoric acids in leaves, whereas isochlorogenic acid (3,5-diCQA was almost exclusively accumulated in roots. Chlorogenic acid (3-CQA was equally distributed in all organs. Interestingly, distribution of the 4 compounds was related to leaf age. Induction with methyljasmonate (MeJA of root cell suspension cultures results in an increase of 3-CQA and 3,5-diCQA contents. Expressed sequence tag libraries were screened using members of the BAHD family identified in arabidopsis and tobacco as baits. The full-length cDNAs of five genes were isolated. Predicted amino acid sequence analyses revealed typical features of BAHD family members. Biochemical characterization of the recombinant proteins expressed in Escherichia coli showed that 2 genes encode HCTs (hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferases, HCT1 and HCT2 whereas 3 genes encode HQTs (hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferases, HQT1, HQT2 and HQT3. These results totally agreed with the phylogenetic analysis done with the predicted amino acid sequences. Quantitative real-time polymerase chain reaction analysis of gene expression indicated that HQT3, HCT1 and HCT2 might be more directly associated with CQA accumulation in cell culture in response to MeJA elicitation. Transient expression of HCT1 and HQT1 in tobacco resulted in a higher production of 3-CQA. All together these data confirm the involvement of functionally redundant genes in 3-CQA and related compound synthesis in the Asteraceae family.

  12. Reprogramming Acyl Carrier Protein Interactions of an Acyl-CoA Promiscuous trans-Acyltransferase

    DEFF Research Database (Denmark)

    Ye, Zhixia; Musiol-Kroll, Ewa Maria; Weber, Tilmann;

    2014-01-01

    on the ACP surface that contribute to specific recognition by KirCII. This information proved sufficient to modify a noncognate ACP from a different biosynthetic system to be a substrate for KirCII. The findings form a foundation for further understanding the specificity of trans-AT:ACP protein interactions...... and for engineering modular polyketide synthases to produce analogs....

  13. A role for 1-acylglycerol-3-phosphate-O-acyltransferase-1 in myoblast differentiation

    OpenAIRE

    Subauste, Angela R; Elliott, Brandon; Das, Arun K.; Burant, Charles F.

    2010-01-01

    AGPAT isoforms catalyze the acylation of lysophosphatidic acid (LPA) to form phosphatidic acid (PA). AGPAT2 mutations are associated with defective adipogenesis. Muscle and adipose tissue share common precursor cells. We investigated the role of AGPAT isoforms in skeletal muscle development. We demonstrate that small interference RNA-mediated knockdown of AGPAT1 expression prevents the induction of myogenin, a key transcriptional activator of the myogenic program, and inhibits the expression ...

  14. Targeted Expression and Secretion of Human Apoprotein AI,Apoprotein E and Lecithin-choles-terol Acyltransferase from Myogenic Cell

    Institute of Scientific and Technical Information of China (English)

    范乐明; 张慧; 于书真; 陈琪; 魏恩会; 王南; 蔡海江

    2001-01-01

    Objective To investigate the possibility of heterologous expression for apoAI, apoE and LCAT by skeletal muscle cells and secretion into blood and to develop a safe and convenient gene therapy method for atherosclerosis. Methods Viral and nonviral vectors containing apoAI, apoE or LCAT genes were constructed and transfected into myogenic cells in vitro or injected directed into mouse skeletal muscle. The expression efficiencies of these vectors were investigated by ELISA assay for human apoAI and apoE3 and by the proteoliposome method for human LCAT. Genomic DNA was extracted from stable transduced myoblasts and analyzed for the presence of vector sequence by PCR amplifications. Immunocytochemistry assay was also performed to make an intuitionistic detection for the expression of transgene in myoblasts. Results All viral or nonviral vectors constructed in present study expressed the transgenes efficiently in mice skeletal muscles in vivo or cultured myoblasts in vitro. The transgene expression level of cells transfected with AAV-based plasmid vectors were 2-4 times higher then that of cells transfected with conventional plasmid vectors. Additionally, cells transfected with AAV-based bicistronic vector or tricistronic retroviral vector expressed both human apoAI and LCAT simultaneously. The sequences of retroviral or AAV-based plasmid vectors were found to be retained in host cells after transfection when that of conventional plasmid vectors were lost. Furthermore, transduced myoblasts maintained the ability for heterologous expression of human apoAI and LCAT even after differentiation into myotubes. For cells transfected with retroviral vectors, stable transduced clones can be selected by G418 and continued to efficiently express human apoAI and LCAT for 3 months. Conclusion These finds indicated that mice skeletal muscles or cultured myoblasts transduced with viral or non-viral vectors could efficiently express and secret human apoAI, apoE and LCAT. It suggested that the use of nonviral, adenoviral or AAV-based vectors to directly inject into skeletal muscle or the use of polycistronic retroviral to genetically modify myoblasts ex vivo and then implantation back to skeletal muscle to high efficiently and long-term express apoAI, apoE and LCAT in vivo might be a safe and feasible strategy to prevent or reduce the formation of atherosclerotic lesions.

  15. LysoPC acyltransferase/PC transacylase activities in plant plasma membrane and plasma membrane-associated endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Tjellström Henrik

    2007-11-01

    Full Text Available Abstract Background The phospholipids of the plant plasma membrane are synthesized in the endoplasmic reticulum (ER. The majority of these lipids reach the plasma membrane independently of the secretory vesicular pathway. Phospholipid delivery to the mitochondria and chloroplasts of plant cells also bypasses the secretory pathway and here it has been proposed that lysophospholipids are transported at contact sites between specific regions of the ER and the respective organelle, followed by lysophospholipid acylation in the target organelle. To test the hypothesis that a corresponding mechanism operates to transport phospholipids to the plasma membrane outside the secretory pathway, we investigated whether lysolipid acylation occurs also in the plant plasma membrane and whether this membrane, like the chloroplasts and mitochondria, is in close contact with the ER. Results The plant plasma membrane readily incorporated the acyl chain of acyl-CoA into phospholipids. Oleic acid was preferred over palmitic acid as substrate and acyl incorporation occurred predominantly into phosphatidylcholine (PC. Phospholipase A2 stimulated the reaction, as did exogenous lysoPC when administered in above critical micellar concentrations. AgNO3 was inhibitory. The lysophospholipid acylation reaction was higher in a membrane fraction that could be washed off the isolated plasma membranes after repeated freezing and thawing cycles in a medium with lowered pH. This fraction exhibited several ER-like characteristics. When plasma membranes isolated from transgenic Arabidopsis expressing green fluorescent protein in the ER lumen were observed by confocal microscopy, membranes of ER origin were associated with the isolated plasma membranes. Conclusion We conclude that a lysoPC acylation activity is associated with plant plasma membranes and cannot exclude a PC transacylase activity. It is highly plausible that the enzyme(s resides in a fraction of the ER, closely associated with the plasma membrane, or in both. We suggest that this fraction might be the equivalent of the mitochondria associated membrane of ER origin that delivers phospholipids to the mitochondria, and to the recently isolated ER-derived membrane fraction that is in close contact with chloroplasts. The in situ function of the lysoPC acylation/PC transacylase activity is unknown, but involvement in lipid delivery from the ER to the plasma membrane is suggested.

  16. Protein (Cyanobacteria): 176658 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available xymyristoyl) glucosamine N-acyltransferase Cyanobium gracile PCC 6307 MRFSSLLTRIGAVQDGSPRHLAGDPEITGAEALDRAGP...GVVLYEDVQLGEGCEIHANAVLHPGSRLGAGCVIQSQAVIGAEGFGFVPTATGWVKMPQTGRVVLEDGVEVGCGSTIDRPSVGETRIGA

  17. Glucose represses formation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N synthase but not penicillin acyltransferase in Penicillium chrysogenum.

    OpenAIRE

    Revilla, G; Ramos, F R; López-Nieto, M J; Alvarez, E.; Martín, J F

    1986-01-01

    The content of alpha-aminoadipyl-cysteinyl-valine, the first intermediate of the penicillin biosynthetic pathway, decreased when Penicillium chrysogenum was grown in a high concentration of glucose. Glucose repressed the incorporation of [14C]valine into alpha-aminoadipyl-cysteinyl-[14C]valine in vivo. The pool of alpha-aminoadipic acid increased sevenfold in control (lactose-grown) penicillin-producing cultures, coinciding with the phase of rapid penicillin biosynthesis, but this increase wa...

  18. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor

    DEFF Research Database (Denmark)

    Zhang, Chongben; Cooper, Daniel E; Grevengoed, Trisha J;

    2014-01-01

    GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest...... decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs...

  19. High pre-beta1 HDL concentrations and low lecithin: cholesterol acyltransferase activities are strong positive risk markers for ischemic heart disease and independent of HDL-cholesterol

    DEFF Research Database (Denmark)

    Sethi, Amar A; Sampson, Maureen; Warnick, Russell;

    2010-01-01

    We hypothesized that patients with high HDL-cholesterol (HDL-C) and ischemic heart disease (IHD) may have dysfunctional HDL or unrecognized nonconventional risk factors.......We hypothesized that patients with high HDL-cholesterol (HDL-C) and ischemic heart disease (IHD) may have dysfunctional HDL or unrecognized nonconventional risk factors....

  20. Tigecycline resistance in Acinetobacter baumannii mediated by frameshift mutation in plsC, encoding 1-acyl-sn-glycerol-3-phosphate acyltransferase.

    Science.gov (United States)

    Li, X; Liu, L; Ji, J; Chen, Q; Hua, X; Jiang, Y; Feng, Y; Yu, Y

    2015-03-01

    Acinetobacter baumannii is an important pathogen of healthcare-associated infections and shows multidrug resistance. With the increasing application of tigecycline, isolates resistant to this antibiotic are of growing concern clinically. However, the definitive mechanism of tigecycline resistance remains unclear. To explore the mechanism of tigecycline resistance in A. baumannii, a tigecycline-resistant strain was obtained by increasing the concentration of the antimicrobial in liquid culture. Three mutations were identified by the whole genome comparison, including one synonymous substitution in a hypothetical protein and a frameshift mutation in plsC and omp38. The plsC gene was confirmed to cause decreased susceptibility to tigecycline by a complementation experiment and cellular membrane change was detected by flow cytometry. By measuring the relative growth rate, the fitness cost of plsC was estimated to be approximately 8 %. In conclusion, plsC was found to play an important role in tigecycline resistance in A. baumannii. The minor fitness cost of plsC indicates a high risk of the emergence and development of tigecycline resistance in A. baumannii.

  1. Induction of a Novel Class of Diacylglycerol Acyltransferases and Triacylglycerol Accumulation in Mycobacterium tuberculosis as It Goes into a Dormancy-Like State in Culture

    OpenAIRE

    Daniel, Jaiyanth; Deb, Chirajyoti; Dubey, Vinod S.; Sirakova, Tatiana D.; Abomoelak, Bassam; Morbidoni, Hector R.; Kolattukudy, Pappachan E.

    2004-01-01

    Mycobacterium tuberculosis enters the host by inhalation of an infectious aerosol and replicates in the alveolar macrophages until the host's immune defense causes bacteriostasis, which leads the pathogen to go into nonreplicative drug-resistant dormancy. The dormant pathogen can survive for decades till the host's immune system is weakened and active tuberculosis develops. Even though fatty acids are thought to be the major energy source required for the persistence phase, the source of fatt...

  2. Structural and Functional Investigation of FdhC from Acinetobacter nosocomialis: A Sugar N-Acyltransferase Belonging to the GNAT Superfamily.

    Science.gov (United States)

    Salinger, Ari J; Thoden, James B; Holden, Hazel M

    2016-08-16

    Enzymes belonging to the GNAT superfamily are widely distributed in nature where they play key roles in the transfer of acyl groups from acyl-CoAs to primary amine acceptors. The amine acceptors run the gamut from histones to aminoglycoside antibiotics to small molecules such as serotonin. Whereas those family members that function on histones have been extensively studied, the GNAT enzymes that employ nucleotide-linked sugars as their substrates have not been well characterized. Indeed, though the structures of two of these "amino sugar" GNAT enzymes have been determined within the past 10 years, details concerning their active site architectures have been limited because of a lack of bound nucleotide-linked sugar substrates. Here we describe a combined structural and biochemical analysis of FdhC from Acinetobacter nosocomialis O2. On the basis of bioinformatics, it was postulated that FdhC catalyzes the transfer of a 3-hydroxybutanoyl group from 3-hydroxylbutanoyl-CoA to dTDP-3-amino-3,6-dideoxy-d-galactose, to yield an unusual sugar that is ultimately incorporated into the surface polysaccharides of the bacterium. We present data confirming this activity. In addition, the structures of two ternary complexes of FdhC, in the presence of CoA and either 3-hydroxybutanoylamino-3,6-dideoxy-d-galactose or 3-hydroxybutanoylamino-3,6-dideoxy-d-glucose, were solved by X-ray crystallographic analyses to high resolution. Kinetic parameters were determined, and activity assays demonstrated that FdhC can also utilize acetyl-CoA, 3-methylcrotonyl-CoA, or hexanoyl-CoA as acyl donors, albeit at reduced rates. Site-directed mutagenesis experiments were conducted to probe the catalytic mechanism of FdhC. Taken together, the data presented herein provide significantly new molecular insight into those GNAT superfamily members that function on nucleotide-linked amino sugars.

  3. NCBI nr-aa BLAST: CBRC-CBRI-05-0288 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CBRI-05-0288 ref|YP_512974.1| Acyltransferase [Francisella tularensis subsp. h...olarctica] ref|YP_762841.1| acyltransferase [Francisella tularensis subsp. holarctica OSU18] ref|YP_001427626.1| acyltransferase [Fra...ncisella tularensis subsp. holarctica FTA] emb|CAJ78620.1| Acyltransferase [Francis...ella tularensis subsp. holarctica LVS] gb|ABI82204.1| acyltransferase [Francisell...a tularensis subsp. holarctica OSU18] gb|EBA51928.1| acyltransferase [Francisella tularensis subsp. holarcti

  4. NCBI nr-aa BLAST: CBRC-CREM-01-1310 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1310 ref|YP_624641.1| acyltransferase 3 [Burkholderia cenocepacia AU 1...054] ref|YP_837010.1| acyltransferase 3 [Burkholderia cenocepacia HI2424] ref|ZP_01565190.1| acyltransferase 3 [Burkholder...ia cenocepacia MC0-3] gb|ABF79668.1| acyltransferase 3 [Burkholderia cenocepacia AU 1054] gb|A...BK10117.1| acyltransferase 3 [Burkholderia cenocepacia HI2424] gb|EAV56867.1| acyltransferase 3 [Burkholderia cenocepacia MC0-3] YP_624641.1 1e-65 56% ...

  5. NCBI nr-aa BLAST: CBRC-AGAM-02-0079 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-02-0079 ref|XP_525054.2| PREDICTED: hedgehog acyltransferase isoform 6 [P...an troglodytes] ref|XP_001169314.1| PREDICTED: hedgehog acyltransferase isoform 3 [Pan troglodytes] ref|XP_0...01169359.1| PREDICTED: hedgehog acyltransferase isoform 4 [Pan troglodytes] ref|XP_001169380.1| PREDICTED: hedgehog acyltransferase isoform 5 [Pan troglodytes] XP_525054.2 4e-33 25% ...

  6. AcEST: BP916180 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 0GA13|Q0GA13_LAVAN Putative alcohol acyltransferase 2 OS=Lav... 69 9e-11 tr|A4F1S0|A4F1S0_CLITE Putative acyltransferase OS=Clitoria..._CLITE Putative acyltransferase OS=Clitoria ternatea GN=CtAT8 PE=2 SV=1 Length =

  7. Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus : role of lipolytic enzymes, lecithin : cholesterol acyltransferase and lipid transfer proteins

    NARCIS (Netherlands)

    Borggreve, SE; de Vries, R; Dullaart, RPF

    2003-01-01

    Insulin resistance and type 2 diabetes mellitus are generally accompanied by low HDL cholesterol and high plasma triglycerides, which are major cardiovascular risk factors. This review describes abnormalities in HDL metabolism and reverse cholesterol transport, i.e. the transport of cholesterol from

  8. 牛二酰甘油转酰基酶(DGAT1)基因的生物信息学分析%Bioinformatics Analysis of DiacylglycerolAcyltransferase (DGAT1) Gene in Cattle

    Institute of Scientific and Technical Information of China (English)

    乔冬雨; 孙少华; 吴伟伟; 孙志颖

    2012-01-01

    In this paper, we used bioinformatics software to analyze the CDS nucleotide and protein sequences of DGAT1 gene of 24 species including Homo sapiens, Bos Taurus, Ovis aries, Sus scrofa and so on. Meawhile, we also analyzed the genetic diversity ofDGAT1 gene. The results indicated that CDS and protein sequences had plentiful length diversity, DGAT1 gene had TGA stop codon bias, but codon bias was not very significant. A total of 992 polymorphic sites and 26 haplotypes in the 1187bp sequence of 33 DGAT1 genes were found in this study. The phylogenetic tree showed that, for DGAT1 gene, there was an evolutionary divergence existed between vertebrate animals, invertebrates animals, plants and microorganisms, but the evolutionary divergence was not sigifinant within kingdom.%DGAT1基因作为影响奶牛产奶和肉牛肉质性状的主效基因之一,引起了人们越来越多的关注。本文应用生物信息学方法比较了人、牛、猪、绵羊等24个物种的41DGAT1基因编码区(CDS)核苷酸和蛋白质序列,并对该基因的遗传多样性进行了分析。结果表明,DGAT1基因的CDS核苷酸和蛋白质序列长度多样性丰富;具有终止密码子偏爱性,包括牛在内的所有脊椎动物终止密码子都为TGA;在长度为1187bp的33条基因序列中检测到992个多态位点,共生成26种单倍型。从聚类分析图可以看出,脊椎动物、无脊椎动物、植物和微生物的ODCATl基因之间存在着进化分歧,但界内差异较小。

  9. AcEST: BP911445 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ITE Putative acyltransferase OS=Clitoria tern... 145 1e-33 tr|A6Y879|A6Y879_PINRA Hydroxycinnamoyl-CoA:shiki...ranilate hydroxycinnamoyltrans... 138 2e-31 tr|A4F1S2|A4F1S2_CLITE Putative acyltransferase OS=Clitoria...8 DADFGWGRPIFMGPGGIAYEGLAFILPSSAKDGSLSVALGLQPDHMVRFEKMLYEL 433 >tr|A4F1S3|A4F1S3_CLITE Putative acyltransferase OS=Clitoria

  10. NCBI nr-aa BLAST: CBRC-AGAM-04-0117 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-04-0117 ref|YP_761365.1| acyltransferase family protein [Hyphomonas neptun...ium ATCC 15444] gb|ABI76943.1| acyltransferase family protein [Hyphomonas neptunium ATCC 15444] YP_761365.1 1.4 24% ...

  11. NCBI nr-aa BLAST: CBRC-TTRU-01-0794 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-0794 ref|YP_003092290.1| acyltransferase 3 [Pedobacter heparinus DSM 2...366] gb|ACU04228.1| acyltransferase 3 [Pedobacter heparinus DSM 2366] YP_003092290.1 0.11 24% ...

  12. NCBI nr-aa BLAST: CBRC-CREM-01-1302 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1302 ref|NP_933100.1| acyltransferase family protein [Vibrio vulnificus... YJ016] dbj|BAC93071.1| acyltransferase family protein [Vibrio vulnificus YJ016] NP_933100.1 2e-74 48% ...

  13. NCBI nr-aa BLAST: CBRC-LAFR-01-0098 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-0098 ref|ZP_01466199.1| mycarose O-acyltransferase [Stigmatella aurant...iaca DW4/3-1] gb|EAU63042.1| mycarose O-acyltransferase [Stigmatella aurantiaca DW4/3-1] ZP_01466199.1 1.1 34% ...

  14. NCBI nr-aa BLAST: CBRC-LAFR-01-0247 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-0247 ref|ZP_01466199.1| mycarose O-acyltransferase [Stigmatella aurant...iaca DW4/3-1] gb|EAU63042.1| mycarose O-acyltransferase [Stigmatella aurantiaca DW4/3-1] ZP_01466199.1 2.5 34% ...

  15. NCBI nr-aa BLAST: CBRC-LAFR-01-1831 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-1831 ref|ZP_01466199.1| mycarose O-acyltransferase [Stigmatella aurant...iaca DW4/3-1] gb|EAU63042.1| mycarose O-acyltransferase [Stigmatella aurantiaca DW4/3-1] ZP_01466199.1 2.7 35% ...

  16. NCBI nr-aa BLAST: CBRC-MLUC-01-0475 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MLUC-01-0475 ref|ZP_01461366.1| 3-O-acyltransferase [Stigmatella aurantiaca DW...4/3-1] gb|EAU67913.1| 3-O-acyltransferase [Stigmatella aurantiaca DW4/3-1] ZP_01461366.1 0.063 29% ...

  17. NCBI nr-aa BLAST: CBRC-LAFR-01-1192 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-1192 ref|ZP_01466199.1| mycarose O-acyltransferase [Stigmatella aurant...iaca DW4/3-1] gb|EAU63042.1| mycarose O-acyltransferase [Stigmatella aurantiaca DW4/3-1] ZP_01466199.1 2.3 35% ...

  18. NCBI nr-aa BLAST: CBRC-CREM-01-1302 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1302 ref|YP_263931.1| possible acyltransferase family protein [Psychrobacter arctic...us 273-4] gb|AAZ18497.1| possible acyltransferase family protein [Psychrobacter arcticus 273-4] YP_263931.1 1e-80 52% ...

  19. NCBI nr-aa BLAST: CBRC-DNOV-01-0840 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-0840 ref|YP_929162.1| acyltransferase family protein [Shewanella amazon...ensis SB2B] gb|ABM01493.1| acyltransferase family protein [Shewanella amazonensis SB2B] YP_929162.1 7.4 24% ...

  20. NCBI nr-aa BLAST: CBRC-MEUG-01-2127 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MEUG-01-2127 ref|YP_781289.1| acyltransferase 3 [Rhodopseudomonas palustris Bi...sA53] gb|ABJ06309.1| acyltransferase 3 [Rhodopseudomonas palustris BisA53] YP_781289.1 8.4 40% ...

  1. NCBI nr-aa BLAST: CBRC-MEUG-01-2833 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MEUG-01-2833 ref|YP_001931417.1| acyltransferase 3 [Sulfurihydrogenibium sp. Y...O3AOP1] gb|ACD66863.1| acyltransferase 3 [Sulfurihydrogenibium sp. YO3AOP1] YP_001931417.1 0.053 24% ...

  2. NCBI nr-aa BLAST: CBRC-ETEL-01-1527 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ETEL-01-1527 ref|ZP_01733187.1| Putative acyltransferase [Flavobacteria bacter...ium BAL38] gb|EAZ96256.1| Putative acyltransferase [Flavobacteria bacterium BAL38] ZP_01733187.1 2.2 29% ...

  3. NCBI nr-aa BLAST: CBRC-PMAR-01-0774 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PMAR-01-0774 ref|ZP_01733187.1| Putative acyltransferase [Flavobacteria bacter...ium BAL38] gb|EAZ96256.1| Putative acyltransferase [Flavobacteria bacterium BAL38] ZP_01733187.1 5.8 30% ...

  4. NCBI nr-aa BLAST: CBRC-TTRU-01-1149 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-1149 ref|ZP_01733187.1| Putative acyltransferase [Flavobacteria bacter...ium BAL38] gb|EAZ96256.1| Putative acyltransferase [Flavobacteria bacterium BAL38] ZP_01733187.1 0.032 23% ...

  5. NCBI nr-aa BLAST: CBRC-XTRO-01-0530 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-0530 ref|YP_524928.1| apolipoprotein N-acyltransferase [Rhodoferax ferrireduce...ns T118] gb|ABD71397.1| apolipoprotein N-acyltransferase [Rhodoferax ferrireducens DSM 15236] YP_524928.1 1e-143 56% ...

  6. NCBI nr-aa BLAST: CBRC-XTRO-01-0138 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-0138 ref|ZP_00961631.1| apolipoprotein N-acyltransferase [Roseovarius nub...inhibens ISM] gb|EAP74993.1| apolipoprotein N-acyltransferase [Roseovarius nubinhibens ISM] ZP_00961631.1 1e-25 32% ...

  7. NCBI nr-aa BLAST: CBRC-MDOM-08-0105 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-08-0105 ref|YP_002222709.1| apolipoprotein N-acyltransferase, putative [Borrelia recurrent...is A1] gb|ACH94488.1| apolipoprotein N-acyltransferase, putative [Borrelia recurrentis A1] YP_002222709.1 1.2 23% ...

  8. NCBI nr-aa BLAST: CBRC-CREM-01-1310 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1310 ref|YP_001117159.1| acyltransferase 3 [Burkholderia vietnamiensis... G4] gb|ABO57694.1| acyltransferase 3 [Burkholderia vietnamiensis G4] YP_001117159.1 9e-64 54% ...

  9. NCBI nr-aa BLAST: CBRC-OPRI-01-0823 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OPRI-01-0823 ref|YP_002731074.1| apolipoprotein N-acyltransferase [Persephonel...la marina EX-H1] gb|ACO04611.1| apolipoprotein N-acyltransferase [Persephonella marina EX-H1] YP_002731074.1 0.48 26% ...

  10. NCBI nr-aa BLAST: CBRC-ACAR-01-1202 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-1202 ref|YP_001449434.1| putative acyltransferase [Streptococcus gordon...ii str. Challis substr. CH1] gb|ABV10561.1| putative acyltransferase [Streptococcus gordonii str. Challis substr. CH1] YP_001449434.1 1.9 25% ...

  11. NCBI nr-aa BLAST: CBRC-DNOV-01-0289 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-0289 ref|YP_207241.1| putative lipo-oligosaccharide acyltransferase [Neisseria... gonorrhoeae FA 1090] gb|AAW88829.1| putative lipo-oligosaccharide acyltransferase [Neisseria gonorrhoeae FA 1090] YP_207241.1 4.5 21% ...

  12. NCBI nr-aa BLAST: CBRC-LAFR-01-1322 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-1322 ref|ZP_01466199.1| mycarose O-acyltransferase [Stigmatella aurant...iaca DW4/3-1] gb|EAU63042.1| mycarose O-acyltransferase [Stigmatella aurantiaca DW4/3-1] ZP_01466199.1 3.2 35% ...

  13. NCBI nr-aa BLAST: CBRC-LAFR-01-0034 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-0034 ref|ZP_01466199.1| mycarose O-acyltransferase [Stigmatella aurant...iaca DW4/3-1] gb|EAU63042.1| mycarose O-acyltransferase [Stigmatella aurantiaca DW4/3-1] ZP_01466199.1 1.2 35% ...

  14. NCBI nr-aa BLAST: CBRC-LAFR-01-1256 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-1256 ref|ZP_01466199.1| mycarose O-acyltransferase [Stigmatella aurant...iaca DW4/3-1] gb|EAU63042.1| mycarose O-acyltransferase [Stigmatella aurantiaca DW4/3-1] ZP_01466199.1 0.76 35% ...

  15. NCBI nr-aa BLAST: CBRC-LAFR-01-1422 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-1422 ref|ZP_01466199.1| mycarose O-acyltransferase [Stigmatella aurant...iaca DW4/3-1] gb|EAU63042.1| mycarose O-acyltransferase [Stigmatella aurantiaca DW4/3-1] ZP_01466199.1 0.82 36% ...

  16. NCBI nr-aa BLAST: CBRC-LAFR-01-0561 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-0561 ref|ZP_01466199.1| mycarose O-acyltransferase [Stigmatella aurant...iaca DW4/3-1] gb|EAU63042.1| mycarose O-acyltransferase [Stigmatella aurantiaca DW4/3-1] ZP_01466199.1 2.3 36% ...

  17. NCBI nr-aa BLAST: CBRC-XTRO-01-0138 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-0138 ref|ZP_01001284.1| apolipoprotein N-acyltransferase [Oceanicola bats...Q01389.1| apolipoprotein N-acyltransferase [Oceanicola batsensis HTCC2597] gb|ABV95346.1| apolipoprotein N-a

  18. NCBI nr-aa BLAST: CBRC-CREM-01-1310 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1310 ref|YP_442494.1| acyltransferase family protein [Burkholderia thailand...ensis E264] gb|ABC38658.1| acyltransferase family protein [Burkholderia thailandensis E264] YP_442494.1 2e-52 44% ...

  19. AcEST: BP918355 [AcEST

    Lifescience Database Archive (English)

    Full Text Available in OS=Popul... 106 7e-22 tr|A4F1S0|A4F1S0_CLITE Putative acyltransferase OS=Clitoria tern... 103 8e-21 tr|Q8...NRFDGMVYLYQGKSGGRSIDVEISLEAGAMERLEKDKEFV 392 >tr|A4F1S0|A4F1S0_CLITE Putative acyltransferase OS=Clitoria te

  20. NCBI nr-aa BLAST: CBRC-CREM-01-1302 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CREM-01-1302 ref|ZP_01540589.1| acyltransferase 3 [Shewanella woodyi ATCC 5190...8] gb|EAV37091.1| acyltransferase 3 [Shewanella woodyi ATCC 51908] ZP_01540589.1 1e-73 47% ...

  1. AcEST: BP919382 [AcEST

    Lifescience Database Archive (English)

    Full Text Available e-16 tr|A4F1S2|A4F1S2_CLITE Putative acyltransferase OS=Clitoria tern... 87 5e-16 tr|B6D7P1|B6D7P1_TRIPR Shi...kimate O-hydroxycinnamoyltransferase O... 86 1e-15 tr|A4F1S3|A4F1S3_CLITE Putative acyltransferase OS=Clitoria...FGWG+P + +A+ G Sbjct: 372 WARLPIHDADFGWGRPIFMGPGGIAYEG 399 >tr|A4F1S2|A4F1S2_CLITE Putative acyltransferase OS=Clitoria

  2. EFFECT OF ADIPOSITY ON PLASMA-LIPID TRANSFER PROTEIN ACTIVITIES - A POSSIBLE LINK BETWEEN INSULIN-RESISTANCE AND HIGH-DENSITY-LIPOPROTEIN METABOLISM

    NARCIS (Netherlands)

    DULLAART, RPF; SLUITER, WJ; DIKKESCHEI, LD; HOOGENBERG, K; VANTOL, A

    1994-01-01

    The mechanisms responsible for the decreased high density lipoprotein (HDL) cholesterol levels associated with obesity and insulin resistance are not well understood. Lecithin: cholesterol acyltransferase (LCAT) and cholesterol ester transfer protein (CETP) are key factors in the esterification of c

  3. Bovine gene polymorphisms related to fat deposition and meat tenderness

    OpenAIRE

    Fortes, Marina R. S.; Rogério A. Curi; Chardulo, Luis Artur L.; Antonio C. Silveira; Assumpção, Mayra E. O. D.; José Antonio Visintin; Oliveira, Henrique N.

    2009-01-01

    Leptin, thyroglobulin and diacylglycerol O-acyltransferase play important roles in fat metabolism. Fat deposition has an influence on meat quality and consumers' choice. The aim of this study was to determine allele and genotype frequencies of polymorphisms of the bovine genes, which encode leptin (LEP), thyroglobulin (TG) and diacylglycerol O-acyltransferase (DGAT1). A further objective was to establish the effects of these polymorphisms on meat characteristics. We genotyped 147 animals belo...

  4. AcEST: BP914441 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 1 tr|A4F1S0|A4F1S0_CLITE Putative acyltransferase OS=Clitoria tern... 73 1e-11 tr|Q0GA13|Q0GA13_LAVAN Putati...F1S0_CLITE Putative acyltransferase OS=Clitoria ternatea GN=CtAT8 PE=2 SV=1 Length = 445 Score = 72.8 bits (

  5. 缺刻缘绿藻二酰甘油酰基转移酶2(DGAT2)的基因特性与功能鉴定%Characterization and functional identification of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2)gene from the green microalga Myrmecia incisa

    Institute of Scientific and Technical Information of China (English)

    房逢立; 吴洪; 周志刚

    2013-01-01

    酰基-CoA—二酰甘油酰基转移酶(DGAT)是微藻等植物三酰甘油(TAG)合成过程中的关键酶.为了解析缺刻缘绿藻TAG合成代谢的途径,在该藻转录组测序数据库中,通过同源搜索,发现了1个编码DGAT2的cDNA全长序列.该序列长1 997 bp,其中5'-非翻译区(UTR)长44 bp,3 '-UTR长897 bp,开放阅读框(ORF)长1 056 bp,编码1个含有351个氨基酸的蛋白质,预测的分子量为39.43 ku,等电点为9.46.基于缺刻缘绿藻和其他物种相应的DGAT基因编码蛋白序列所构建的Neighbor-Joining(NJ)系统进化树,结果表明该基因与DGAT2聚成一支,显著不同于DGAT1和DGAT3.氨基酸序列比对发现,该基因编码产物含有DGAT2所具有的HPHG这4个氨基酸所组成的高度保守特征序列.因此,将该基因命名为MiDGAT2.将它的cDNA与其DNA序列进行比较后发现,MiDGAT2含有6个内含子,其剪接位点均符合“GT-AG”规则.为进一步了解其功能,利用反转录PCR克隆了该基因的ORF序列,然后将其亚克隆到表达载体pYES2中,成功地构建了重组表达质粒pY-MiDGAT2.通过电穿孔法将该重组质粒转入酿酒酵母TAG合成缺陷株H1246中,经筛选与序列验证得到含有重组质粒pY-MiDGAT2的酵母转化株.酵母转化株在用SC培养基并加入半乳糖诱导表达培养后,其脂类的薄层色谱分析结果表明,所转的MiDGAT2基因能使酵母转化株恢复TAG合成的能力,从而证实了MiDGAT2基因具有DGAT的功能;利用荧光染料Bodipy对酵母细胞的染色结果显示,MiDGAT2基因能使酵母转化株的细胞重现油滴,尽管重建的油滴大小明显比野生型酵母的小.

  6. Determination of a novel diacylglycerol acyltransferase 1 inhibitor, 2-[4-(4-{5-[2-phenyl-5-(trifluoromethyl) oxazole-4-carboxamido]-1H-benzo[d]imidazol-2-yl} phenyl) cyclohexyl] acetic acid (KR-69232) in rat plasma using liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study.

    Science.gov (United States)

    Seo, Hyewon; Choi, Sung Heum; Kwak, Eun-Young; Zheng, Zhi; Kwak, Hyun Jung; Ahn, Jin Hee; Lee, Yong-Moon; Ahn, Sung-Hoon; Bae, Myung Ae; Song, Jin Sook

    2014-03-01

    A liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of KR-69232, a diacyltransferase 1 inhibitor, in rat plasma. KR-69232 in the concentration range of 0.004-4 µg/mL was linear. The intra-and inter-day precision and accuracy were acceptable (KR-69232 was stable under various storage and handling conditions. The method was applied successfully in a pharmacokinetic study of KR-69232 in rats.

  7. AcEST: DK954493 [AcEST

    Lifescience Database Archive (English)

    Full Text Available DEEGRLQI 444 RALV+FYP+AGR +D +GR+Q+ Sbjct: 63 RALVAFYPVAGRLGLDGDGRVQV 85 >tr|A4F1S3|A4F1S3_CLITE Putative acyltransferase OS=Clitoria...toria tern... 50 1e-04 tr|Q6ZBI7|Q6ZBI7_ORYSJ Os08g0543400 protein OS=Oryza sativa ...5 tr|A2YA31|A2YA31_ORYSI Putative uncharacterized protein OS=Oryza... 52 3e-05 tr|A4F1S3|A4F1S3_CLITE Putative acyltransferase OS=Cli

  8. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  9. Loss of NDG-4 extends lifespan and stress resistance in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Brejning, Jeanette; Nørgaard, Steffen; Schøler, Lone Vedel;

    2014-01-01

    NDG-4 is a predicted transmembrane acyltransferase protein that acts in the distribution of lipophilic factors. Consequently, ndg-4 mutants lay eggs with a pale appearance due to lack of yolk, and they are resistant to sterility caused by dietary supplementation with the long-chain omega-6 polyun...

  10. Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids

    Science.gov (United States)

    GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE (GPAT) genes encode enzymes involved in glycerolipid biosynthesis in plants. Ten GPAT homologues have been identified in Arabidopsis thaliana (Arabidopsis). GPATs 4-8 have been shown to be involved in the production of extracellular lipid barrier polyesters. Rece...

  11. Revisiting the gram-negative lipoprotein paradigm

    Science.gov (United States)

    The processing of lipoproteins (lpps) in Gram-negative bacteria is generally considered to be an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein n-acyltransferase. The mature lipoproteins are then sorted...

  12. Sizing up surfactant synthesis.

    Science.gov (United States)

    Han, SeungHye; Mallampalli, Rama K

    2014-08-01

    Phosphatidylcholine is generated through de novo synthesis and remodeling involving a lysophospholipid. In this issue of Cell Metabolism, research from the Shimizu lab (Harayama et al., 2014) demonstrates the highly selective enzymatic behavior of lysophospholipid acyltransferases. The authors present an enzymatic model for phosphatidylcholine molecular species diversification that impacts surfactant formation.

  13. Disease: H00158 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available lism characterized by low HDL-cholesterol level in blood and accumulation of free cholesterol in tissue lead...H00158 Lecithin:cholesterol acyltransferase deficiency; Norum disease; Fish-eye disea...ing to a triad of corneal dystrophy, hemolytic anemia, and proteinuria. Inherited metabolic disea

  14. NCBI nr-aa BLAST: CBRC-VPAC-01-0194 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available yltransferase [Candidatus Hamiltonella defensa 5AT (Acyrthosiphon pisum)] gb|ACQ67332.1| UDP-3-O-(3-hydroxym...yristoyl)-glucosamine N-acyltransferase [Candidatus Hamiltonella defensa 5AT (Acyrthosiphon pisum)] YP_002923480.1 0.58 29% ...

  15. NCBI nr-aa BLAST: CBRC-VPAC-01-0381 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available yltransferase [Candidatus Hamiltonella defensa 5AT (Acyrthosiphon pisum)] gb|ACQ67332.1| UDP-3-O-(3-hydroxym...yristoyl)-glucosamine N-acyltransferase [Candidatus Hamiltonella defensa 5AT (Acyrthosiphon pisum)] YP_002923480.1 0.76 28% ...

  16. A low-saturated-fat, low-cholesterol diet decreases plasma CETP activity and pre beta-HDL formation but does not affect cellular cholesterol efflux to plasma from type 1 diabetic patients

    NARCIS (Netherlands)

    De Vries, R; Beusekamp, BJ; Kerstens, MN; Groen, AK; Van Tol, A; Dullaart, RPF

    2005-01-01

    The aim of this study was to evaluate the effect of a low-saturated-fat, low-cholesterol diet on plasma lipopoproteins, pre beta-high density lipoprotein (HDL) formation, lecithin: cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP)

  17. Studies of association of AGPAT6 variants with type 2 diabetes and related metabolic phenotypes in 12,068 Danes

    DEFF Research Database (Denmark)

    Snogdal, Lena Sønder; Grarup, Niels; Banasik, Karina;

    2013-01-01

    Type 2 diabetes, obesity and insulin resistance are characterized by hypertriglyceridemia and ectopic accumulation of lipids in liver and skeletal muscle. AGPAT6 encodes a novel glycerol-3 phosphate acyltransferase, GPAT4, which catalyzes the first step in the de novo triglyceride synthesis. AGPA......-deficient mice show lower weight and resistance to diet- and genetically induced obesity. Here, we examined whether common or low-frequency variants in AGPAT6 associate with type 2 diabetes or related metabolic traits in a Danish population.......Type 2 diabetes, obesity and insulin resistance are characterized by hypertriglyceridemia and ectopic accumulation of lipids in liver and skeletal muscle. AGPAT6 encodes a novel glycerol-3 phosphate acyltransferase, GPAT4, which catalyzes the first step in the de novo triglyceride synthesis. AGPAT6...

  18. Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation.

    OpenAIRE

    Corr, P B; Creer, M H; Yamada, K.A.; Saffitz, J E; Sobel, B. E.

    1989-01-01

    Hypoxia in isolated myocytes results in accumulation of long-chain acylcarnitines (LCA) in sarcolemma. Inhibition of carnitine acyltransferase I (CAT-I) with sodium 2-[5-(4-chlorophenyl)-pentyl]-oxirane-2-carboxylate (POCA) prevents both the accumulation of LCA in the sarcolemma and the initial electrophysiologic derangements associated with hypoxia. Another amphiphilic metabolite, lysophosphatidylcholine (LPC), accumulates in the ischemic heart in vivo, in part because of inhibition of its c...

  19. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters

    OpenAIRE

    Yuguang Lin; Vermeer, Mario A.; Trautwein, Elke A.

    2010-01-01

    Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawtho...

  20. In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network

    OpenAIRE

    Fan, Pengxiang; Miller, Abigail M.; Schilmiller, Anthony L.; Liu, Xiaoxiao; Ofner, Itai; Jones, A. Daniel; Zamir, Dani; Last, Robert L.

    2015-01-01

    Throughout the course of human history, plant-derived natural products have been used in medicines, in cooking, as pest control agents, and in rituals of cultural importance. Plants produce rapidly diversifying specialized metabolites as protective agents and to mediate interactions with beneficial organisms. In vitro reconstruction of the cultivated tomato insect protective acylsucrose biosynthetic network showed that four acyltransferase enzymes are sufficient to produce the full set of nat...

  1. Host cells and methods for producing isoprenyl alkanoates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  2. Isolation and Identification of Prenylflavonoids from Humulus lupulus

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Shu; ZHOU Ya-Wei; YE Yun-Hua; LI Mei-Lan

    2003-01-01

    @@ The hop plant (Humulus lupulus L. Cannabinaceae ) is cultivated widely through the temperate zones of the world. The female inflorescences of the hop plant (hops) are used in the brewing industry to give bitterness and aroma of beer. In China, hops are used as stomachics, diuretic and tranquilizer. [1] A number of prenylflavonoids have been isolated from hops, [2,3] which caused attention because of their potential anti-cancer properties, [4] endocrine activities, [5] and diacylglycerol acyltransferase inhibition. [6

  3. The effect of sex and DGAT1 gene polymorphism on fat deposition traits in simmental beef cattle

    OpenAIRE

    Karolyi D.; Čubrić-Čurik Vlatka; Salajpal K.; Đikić Marija

    2012-01-01

    This study investigated diacylglycerol O-acyltransferase 1 (DGAT1) gene K232A mutation in Simmental cattle and its effects on fat deposition traits. The sample (n=26) consisted of yearling bulls and beef heifers from an intensive rearing system in Croatia. Carcass fatness was assessed by total dissection method, whereas intramuscular fat (m. longissimus dorsi) content was determined using Soxhlet extraction with hydrolysis. Intramuscular fatty acid composit...

  4. MGAT2 deficiency ameliorates high-fat diet-induced obesity and insulin resistance by inhibiting intestinal fat absorption in mice

    OpenAIRE

    Tsuchida Takuma; Fukuda Sayaka; Aoyama Hisanori; Taniuchi Nobuhiko; Ishihara Tomomi; Ohashi Noriko; Sato Hiroko; Wakimoto Koji; Shiotani Masaharu; Oku Akira

    2012-01-01

    Abstract Background Resynthesis of triglycerides in enterocytes of the small intestine plays a critical role in the absorption of dietary fat. Acyl-CoA:monoacylglycerol acyltransferase-2 (MGAT2) is highly expressed in the small intestine and catalyzes the synthesis of diacylglycerol from monoacylglycerol and acyl-CoA. To determine the physiological importance of MGAT2 in metabolic disorders and lipid metabolism in the small intestine, we constructed and analyzed Mgat2-deficient mice. Results ...

  5. Effects of DGAT1 deficiency on energy and glucose metabolism are independent of adiponectin

    OpenAIRE

    Streeper, Ryan S.; Koliwad, Suneil K.; Villanueva, Claudio J.; Farese, Robert V

    2006-01-01

    Mice lacking acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), an enzyme that catalyzes the terminal step in triacylglycerol synthesis, have enhanced insulin sensitivity and are protected from obesity, a result of increased energy expenditure. In these mice, factors derived from white adipose tissue (WAT) contribute to the systemic changes in metabolism. One such factor, adiponectin, increases fatty acid oxidation and enhances insulin sensitivity. To test the hypothesis that adiponectin is r...

  6. Lipopolysaccharide increases gastric and circulating NUCB2/nesfatin-1 concentrations in rats

    OpenAIRE

    Stengel, Andreas; Goebel-Stengel, Miriam; Jawien, Janusz; Kobelt, Peter; Taché, Yvette; Lambrecht, Nils W. G.

    2011-01-01

    Bacterial lipopolysaccharide (LPS) is an established animal model to study the innate immune response to Gram-negative bacteria mimicking symptoms of infection including reduction of food intake. LPS decreases acyl ghrelin associated with decreased concentrations of circulating ghrelin-O-acyltransferase (GOAT) likely contributing to the anorexigenic effect. We also recently described the prominent expression of the novel anorexigenic hormone, nucleobindin2 (NUCB2)/nesfatin-1 in gastric X/A-li...

  7. Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation–inducible promoter from Chlamydomonas reinhardtii

    OpenAIRE

    Iwai, Masako; Hori, Koichi; Sasaki-Sekimoto, Yuko; Shimojima, Mie; Ohta, Hiroyuki

    2015-01-01

    Microalgae accumulate triacylglycerols (TAGs) under conditions of nutrient stress. Phosphorus (P) starvation induces the accumulation of TAGs, and the cells under P starvation maintain growth through photosynthesis. We recently reported that P starvation–dependent overexpression of type-2 diacylglycerol acyl-CoA acyltransferase (CrDGTT4) from Chlamydomonas reinhardtii using a sulfoquinovosyldiacylglycerol synthase 2 (SQD2) promoter, which has increased activity during P starvation, enhances T...

  8. Revisiting the Gram-Negative Lipoprotein Paradigm

    OpenAIRE

    LoVullo, Eric D.; Wright, Lori F.; Isabella, Vincent; Huntley, Jason F.; Pavelka, Martin S.

    2015-01-01

    The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis str...

  9. Cloning, Sequencing, and Functional Analysis of an Iterative Type I Polyketide Synthase Gene Cluster for Biosynthesis of the Antitumor Chlorinated Polyenone Neocarzilin in “Streptomyces carzinostaticus”

    OpenAIRE

    OTSUKA, Miyuki; Ichinose, Koji; Fujii, Isao; Ebizuka, Yutaka

    2004-01-01

    Neocarzilins (NCZs) are antitumor chlorinated polyenones produced by “Streptomyces carzinostaticus” var. F-41. The gene cluster responsible for the biosynthesis of NCZs was cloned and characterized. DNA sequence analysis of a 33-kb region revealed a cluster of 14 open reading frames (ORFs), three of which (ORF4, ORF5, and ORF6) encode type I polyketide synthase (PKS), which consists of four modules. Unusual features of the modular organization is the lack of an obvious acyltransferase domain ...

  10. Co-existence of classic familial lecithin-cholesterol acyl transferase deficiency and fish eye disease in the same family

    OpenAIRE

    Mahapatra, H. S.; Ramanarayanan, S.; Gupta, A; M Bhardwaj

    2015-01-01

    We report a family with a rare genetic disorder arising out of mutation in the gene that encodes for the enzyme lecithin-cholesterol acyltransferase (LCAT). The proband presented with nephrotic syndrome, hemolytic anemia, cloudy cornea, and dyslipidemia. Kidney biopsy showed certain characteristic features to suggest LCAT deficiency, and the enzyme activity in the serum was undetectable. Mother and younger sister showed corneal opacity and dyslipidemia but no renal or hematological involvemen...

  11. Hepatic cholesteryl ester metabolism in reptiles. A comparative study of three species of Brazilian lizards.

    Science.gov (United States)

    Gillett, M P; Maia, M M

    1984-01-01

    Cholesterol esterase (CEase) and acylcoenzyme A: cholesterol acyltransferase (ACATase) activities were identified in liver cytoplasmatic extracts from Tropidurus torquatos (Iguanidae), Ameiva ameiva (Teiidae) and Hemidactylus mabouia (Gekkonidae). Optimum conditions were established to measure the hydrolytic activity of CEase and esterifying activities of CEase and ACATase. The activities of both enzymes were generally similar in all three species of reptiles, and did not differ greatly from values reported for a variety of mammalian species. PMID:6518764

  12. KirCII- promising tool for polyketide diversification

    DEFF Research Database (Denmark)

    Musiol-Kroll, Ewa Maria; Härtner, Thomas; Kulik, Andreas;

    2014-01-01

    Kirromycin is produced by Streptomyces collinus Tü 365. This compound is synthesized by a large assembly line of type I polyketide synthases and non-ribosomal peptide synthetases (PKS I/NRPS), encoded by the genes kirAI-kirAVI and kirB. The PKSs KirAI-KirAV have no acyltransferase domains integra...... introducing the non-native substrates in an in vivo context. Thus, KirCII represents a promising tool for polyketide diversification....

  13. Effects of ozone on phospholipid synthesis by alveolar type II cells isolated from adult rat lung

    International Nuclear Information System (INIS)

    Isolated alveolar type II cells were exposed to ozone by gas diffusion through the thin Teflon bottom of culture dishes. After exposure, type II cells were further incubated in the presence of labeled substrates to assess the capacity to synthesize surfactant lipids. The incorporation of [Me-14C]choline into both total and disaturated phosphatidylcholines in inhibited to 50% of the control values under conditions that result in a diffusion of 0.4 microgram O3/18 cm2-dish per 2.5 h. The incorporation rates of [1-14C]palmitate, [1-14C]acetate, D[U-14C]glucose, and [1,3-3H]glycerol into phosphatidylcholines are also lower after ozone exposure. Moreover, the synthesis of phosphatidylglycerols and phosphatidylethanolamines from these substrates is also inhibited by exposure of type II cells to ozone. These incorporation studies indicate that the effect of ozone is early in the biosynthetic pathway, probably at the step catalyzed by the enzyme glycerolphosphate acyltransferase. Determination of the activity of this enzyme after the ozone exposure shows that it is decreased, whereas the activity of lysophosphatidylcholine acyltransferase is increased. The activity of choline phosphotransferase also appears to be decreased after exposure of type II cells to ozone, although this enzyme was less susceptible than glycerolphosphate acyltransferase. Studies with the sulfhydryl reagent 5,5'-dithiobis (2-nitrobenzoic acid) indicate a positive correlation between the effect of this compound on enzyme activities in sonicated type II cells and the sensitivity of these enzymes in intact cells to ozone. This suggests that the effect of ozone on the synthesis of surfactant lipids is at least partially exerted via oxidation of the sulfhydryl groups of glycerolphosphate acyltransferase

  14. Produção de biodiesel por catálise enzimática em sistemas descontínuo e contínuo a partir de óleo de cardo

    OpenAIRE

    Bule, Maria João Galvão Morgado

    2014-01-01

    The aim of this study is the biodiesel production from cardoon seed oil (Cynara cardunculus, L.) by enzymatic catalysis in batch and continuous systems. The biodiesel (fatty acid methyl esters - FAME) was obtained by transesterification of the crude cardoon oil with methanol, in a biphasic organic/aqueous system, catalyzed by the lipase/acyltransferase from Candida parapsilosis immobilized in synthetic resins (Accurel MP1000 and Lewatit VP OC 1600). This enzyme, when biphasic media, cat...

  15. Identification and expression analysis of castor bean (Ricinus communis) genes encoding enzymes from the triacylglycerol biosynthesis pathway.

    Science.gov (United States)

    Cagliari, Alexandro; Margis-Pinheiro, Márcia; Loss, Guilherme; Mastroberti, Alexandra Antunes; de Araujo Mariath, Jorge Ernesto; Margis, Rogério

    2010-11-01

    Castor bean (Ricinus communis) oil contains ricinoleic acid-rich triacylglycerols (TAGs). As a result of its physical and chemical properties, castor oil and its derivatives are used for numerous bio-based products. In this study, we survey the Castor Bean Genome Database to report the identification of TAG biosynthesis genes. A set of 26 genes encoding six distinct classes of enzymes involved in TAGs biosynthesis were identified. In silico characterization and sequence analysis allowed the identification of plastidic isoforms of glycerol-3-phosphate acyltransferase and lysophosphatidate acyltransferase enzyme families, involved in the prokaryotic lipid biosynthesis pathway, that form a cluster apart from the cytoplasmic isoforms, involved in the eukaryotic pathway. In addition, two distinct membrane bound diacylglycerol acyltransferase enzymes were identified. Quantitative expression pattern analyses demonstrated variations in gene expressions during castor seed development. A tendency of maximum expression level at the middle of seed development was observed. Our results represent snapshots of global transcriptional activities of genes encompassing six enzyme families involved in castor bean TAG biosynthesis that are present during seed development. These genes represent potential targets for biotechnological approaches to produce nutritionally and industrially desirable oils.

  16. In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network.

    Science.gov (United States)

    Fan, Pengxiang; Miller, Abigail M; Schilmiller, Anthony L; Liu, Xiaoxiao; Ofner, Itai; Jones, A Daniel; Zamir, Dani; Last, Robert L

    2016-01-12

    Plant glandular secreting trichomes are epidermal protuberances that produce structurally diverse specialized metabolites, including medically important compounds. Trichomes of many plants in the nightshade family (Solanaceae) produce O-acylsugars, and in cultivated and wild tomatoes these are mixtures of aliphatic esters of sucrose and glucose of varying structures and quantities documented to contribute to insect defense. We characterized the first two enzymes of acylsucrose biosynthesis in the cultivated tomato Solanum lycopersicum. These are type I/IV trichome-expressed BAHD acyltransferases encoded by Solyc12g006330--or S. lycopersicum acylsucrose acyltransferase 1 (Sl-ASAT1)--and Solyc04g012020 (Sl-ASAT2). These enzymes were used--in concert with two previously identified BAHD acyltransferases--to reconstruct the entire cultivated tomato acylsucrose biosynthetic pathway in vitro using sucrose and acyl-CoA substrates. Comparative genomics and biochemical analysis of ASAT enzymes were combined with in vitro mutagenesis to identify amino acids that influence CoA ester substrate specificity and contribute to differences in types of acylsucroses that accumulate in cultivated and wild tomato species. This work demonstrates the feasibility of the metabolic engineering of these insecticidal metabolites in plants and microbes. PMID:26715757

  17. Polymorphisms in lipogenic genes and milk fatty acid composition in Holstein dairy cattle.

    Science.gov (United States)

    Nafikov, Rafael A; Schoonmaker, Jon P; Korn, Kathleen T; Noack, Kristin; Garrick, Dorian J; Koehler, Kenneth J; Minick-Bormann, Jennifer; Reecy, James M; Spurlock, Diane E; Beitz, Donald C

    2014-12-01

    Changing bovine milk fatty acid (FA) composition through selection can decrease saturated FA (SFA) consumption, improve human health and provide a means for manipulating processing properties of milk. Our study determined associations between milk FA composition and genes from triacylglycerol (TAG) biosynthesis pathway. The GC dinucleotide allele of diacylglycerol O-acyltransferase 1:g.10433-10434AA >GC was associated with lower palmitic acid (16:0) concentration but higher oleic (18:1 cis-9), linoleic (18:2 cis-9, cis-12) acid concentrations, and elongation index. Accordingly, the GC dinucleotide allele was associated with lower milk fat percentage and SFA concentrations but higher monounsaturated FA and polyunsaturated FA (PUFA) concentrations. The glycerol-3-phosphate acyltransferase, mitochondrial haplotypes were associated with higher myristoleic acid (14:1 cis-9) concentration and C14 desaturation index. The 1-acylglycerol-3-phosphate acyltransferase 1 haplotypes were associated with higher PUFA and linoleic acid concentrations. The results of this study provide information for developing genetic tools to modify milk FA composition in dairy cattle.

  18. Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence

    International Nuclear Information System (INIS)

    Pulse-chase experiments with [3H]tetradecanoic acid and ATP showed that the bioluminescence-related 32-kDa acyltransferase from Vibrio harveyi can specifically catalyze the deacylation of a 3H-labeled 18-kDa protein observed in extracts of this bacterium. The 18-kDa protein has been partially purified and its physical and chemical properties strongly indicate that it is fatty acyl-acyl carrier protein (acyl-ACP). Both this V. harveyi [3H]acylprotein and [3H]palmitoyl-ACP from Escherichia coli were substrates in vitro for either the V. harveyi 32-kDa acyltransferase or the analogous enzyme (34K) from Photobacterium phosphoreum. TLC analysis indicated that the hexane-soluble product of the reaction is fatty acid. No significant cleavage of either E. coli or V. harveyi tetradecanoyl-ACP was observed in extracts of these bacteria unless the 32-kDa or 34K acyltransferase was present. Since these enzymes are believed to be responsible for the supply of fatty acids for reduction to form the aldehyde substrate of luciferase, the above results suggest that long-chain acyl-ACP is the source of fatty acids for bioluminescence

  19. Cloning and Characterization of Porcine TSARG7 Gene and Analysis of Its Tissue-Specific Expression

    Institute of Scientific and Technical Information of China (English)

    LI Mei-li; LI Gui-qiang; FANG Wei; WANG Wei; SONG Xiao-guang; LI Er-lin; JIA Chao; XU Yin-xue

    2009-01-01

    TSARG7 is a novel member of the acyltransferase family since its sequence possesses the highly conserved phosphate acyltransferase (PIsC) domain existing in all acyltransferase-like proteins. The porcine TSARG7 had been identified by cloning in silico but had not been confirmed experimentally. The full-length mRNA of porcine TSARG7 gene was sequenced and two splice variants were discovered. The full-length cDNA of TSARG7 variant 1 was 2 513 bp and variant 2 was 2 634 bp. The putative porcine TSARG7 proteins, which were located in the cytoplasm, encoded 458 and 456 amino acids, respectively. Real-time PCR analysis showed that TSARG7 gene was expressed in various tissues, but at different levels. The expression levels of this gene were higher in the skeletal muscle, heart, and testis than that in other tissues, suggesting that the TSARG7 gene played a role in procine skeletal muscle, heart, and testis functions.

  20. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  1. Detailed characterization of the substrate specificity of mouse wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  2. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Directory of Open Access Journals (Sweden)

    Aravind L

    2010-01-01

    Full Text Available Abstract Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA. We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1 the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58, which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber

  3. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Science.gov (United States)

    2010-01-01

    Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA). We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p) that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1) the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58), which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber PMID:20056006

  4. Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice.

    Science.gov (United States)

    Harada, Kenji; Shen, Wen-Jun; Patel, Shailja; Natu, Vanita; Wang, Jining; Osuga, Jun-ichi; Ishibashi, Shun; Kraemer, Fredric B

    2003-12-01

    To elucidate the role of hormone-sensitive lipase (HSL) in diet-induced obesity, HSL-deficient (HSL-/-) and wild-type mice were fed normal chow or high-fat diets. HSL-/- mice were resistant to diet-induced obesity showing higher core body temperatures. Weight and triacylglycerol contents were decreased in white adipose tissue (WAT) but increased in both brown adipose tissue (BAT) and liver of HSL-/- mice. Serum insulin levels in the fed state and tumor necrosis factor-alpha mRNA levels in adipose tissues were higher, whereas serum levels of adipocyte complement-related protein of 30 kDa (ACRP30)/adiponectin and leptin, as well as mRNA levels of ACRP30/adiponectin, leptin, resistin, and adipsin in WAT, were lower in HSL-/- mice than in controls. Expression of transcription factors associated with adipogenesis (peroxisome proliferator-activated receptor-gamma, CAAT/enhancer-binding protein-alpha) and lipogenesis (carbohydrate response element-binding protein, adipocyte determination- and differentiation-dependent factor-1/sterol regulatory element-binding protein-1c), as well as of adipose differentiation markers (adipocyte lipid-binding protein, perilipin, lipoprotein lipase), lipogenic enzymes (glycerol-3-phosphate acyltransferase, acyl-CoA:diacylglycerol acyltransferase-1 and -2, fatty acid synthase, ATP citrate lyase) and insulin signaling proteins (insulin receptor, insulin receptor substrate-1, GLUT4), was suppressed in WAT but not in BAT of HSL-/- mice. In contrast, expression of genes associated with cholesterol metabolism (sterol-regulatory element-binding protein-2, 3-hydroxy-3-methylglutaryl-CoA reductase, acyl-CoA:cholesterol acyltransferase-1) and thermogenesis (uncoupling protein-2) was upregulated in both WAT and BAT of HSL-/- mice. Our results suggest that impaired lipolysis in HSL deficiency affects lipid metabolism through alterations of adipose differentiation and adipose-derived hormone levels.

  5. Human trifunctional protein alpha links cardiolipin remodeling to beta-oxidation.

    Directory of Open Access Journals (Sweden)

    William A Taylor

    Full Text Available Cardiolipin (CL is a mitochondrial membrane phospholipid which plays a key role in apoptosis and supports mitochondrial respiratory chain complexes involved in the generation of ATP. In order to facilitate its role CL must be remodeled with appropriate fatty acids. We previously identified a human monolysocardiolipin acyltransferase activity which remodels CL via acylation of monolysocardiolipin (MLCL to CL and was identical to the alpha subunit of trifunctional protein (αTFP lacking the first 227 amino acids. Full length αTFP is an enzyme that plays a prominent role in mitochondrial β-oxidation, and in this study we assessed the role, if any, which this metabolic enzyme plays in the remodeling of CL. Purified human recombinant αTFP exhibited acyl-CoA acyltransferase activity in the acylation of MLCL to CL with linoleoyl-CoA, oleoyl-CoA and palmitoyl-CoA as substrates. Expression of αTFP increased radioactive linoleate or oleate or palmitate incorporation into CL in HeLa cells. Expression of αTFP in Barth Syndrome lymphoblasts, which exhibit reduced tetralinoleoyl-CL, elevated linoleoyl-CoA acylation of MLCL to CL in vitro, increased mitochondrial respiratory Complex proteins and increased linoleate-containing species of CL. Knock down of αTFP in Barth Syndrome lymphoblasts resulted in greater accumulation of MLCL than those with normal αTFP levels. The results clearly indicate that the human αTFP exhibits MLCL acyltransferase activity for the resynthesis of CL from MLCL and directly links an enzyme of mitochondrial β-oxidation to CL remodeling.

  6. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  7. PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast

    DEFF Research Database (Denmark)

    Le Guédard, Marina; Bessoule, Jean-Jacques; Boyer, Valérie;

    2009-01-01

    sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid as the...... saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol.......In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either...

  8. Candidate gene effects on beef quality

    OpenAIRE

    Ekerljung, Marie

    2012-01-01

    The contribution of five candidate genes to the variation in meat tenderness, pH, colour, marbling and water holding capacity (WHC) was analysed in muscle samples from 243 young bulls of Angus, Charolais, Hereford, Limousin, or Simmental breed, raised in Swedish commercial herds. The animals were genotyped for single nucleotide polymorphisms (SNPs) in the genes encoding calpain 1 (CAPN1:c.947G>C), calpastatin, (CAST:c.155C>T), diacylglycerol O-acyltransferase 1 (DGAT1), leptin (UASMS2C>T) a...

  9. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery.

    OpenAIRE

    Crack, P.; Cocks, T.

    1992-01-01

    1. The effect of an acetly-coA lysolecithin acyltransferase inhibitor, thimerosal, on the release of endothelium-derived relaxing factor (EDRF) was examined in the greyhound isolated coronary artery. 2. Thimerosal (1-10 microM) relaxed fully, ring segments of coronary artery which were contracted with the thromboxane A2-mimetic, U46619 (30 nM). The response was endothelium-dependent, slow in both onset and time to reach maximum. The maximum relaxation to the highest concentration of thimerosa...

  10. A novel variant of the AGPAT2 mutation in generalized congenital lipodystrophy, detected by next generation sequencing

    Directory of Open Access Journals (Sweden)

    Sahana Shetty

    2016-06-01

    Full Text Available Inherited lipodystrophies are rare causes of young onset diabetes characterised by abnormal fat distribution with unique set of clinical features. We present a case of 24 year old lady with young onset diabetes mellitus, acromegaloid features, virilisation, hepatomegaly, hypertriglyceridemia with almost complete absence of subcutaneous and visceral adipose tissue as assessed by DXA scan body composition and MRI abdomen. Based on the clinical presentation, a diagnosis of Berardinelli–Seip generalized lipodystrophy was considered. Genetic analysis using next generation sequencing identified a novel homozygous insertion mutation in 1-acylglycerol-3-phosphate O-acyltransferase 2(AGPAT2 gene which was further confirmed with Sanger sequencing.

  11. Biosynthetic Gene Cluster of Cetoniacytone A, an Unusual Aminocyclitol from the Endosymbiotic Bacterium Actinomyces sp. Lu 9419

    OpenAIRE

    Wu, Xiumei; Flatt, Patricia M.; Xu, Hui; Mahmud, Taifo

    2009-01-01

    A gene cluster responsible for the biosynthesis of the antitumor agent cetoniacytone A was identified in Actinomyces sp. strain Lu 9419, an endosymbiotic bacteria isolated from the intestines of the rose chafer beetle (Cetonia aurata). The nucleotide sequence analysis of the 46 kb DNA region revealed the presence of 31 complete ORFs, including genes predicted to encode a 2-epi-5-epi-valiolone synthase (CetA), a glyoxalase/bleomycin resistance protein (CetB), an acyltransferase (CetD), an FAD-...

  12. American Chemical Society--238th National Meeting & Exposition. Developments in medicinal chemistry: part 2. 16-20 August 2009, Washington DC, USA.

    Science.gov (United States)

    Gater, Deborah; Macauley, Donald

    2009-10-01

    The 238th National Meeting and Exposition of the American Chemical Society, held in Washington DC, included topics covering new compounds and developments in the field of medicinal chemistry. This conference report highlights selected presentations on inhibitors of PARP, a heme oxygenase 1 (HO-1) inhibitor, NS3 protease inhibitors, a corticotrophin-releasing factor 1 (CRF-1) receptor antagonist, a cannabinoid receptor antagonist, diacylglycerol acyltransferase inhibitors, cathepsin and chymase receptor inhibitors, and MAPK inhibitors. Investigational drugs discussed include veliparib (Abbott Laboratories), MK-4827 (Merck & Co Inc), OB-24 (Osta Biotechnologies), BMS-339, BMS-764459, BMS-812204 and BMS-640994 (all Bristol-Myers Squibb Co), and JNJ-10311795 (Johnson & Johnson).

  13. The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1

    OpenAIRE

    Banilas, Georgios; Karampelias, Michael; Makariti, Ifigenia; Kourti, Anna; Hatzopoulos, Polydefkis

    2010-01-01

    Diacylglycerol acyltransferases (DGATs) catalyse the final step of the triacylglycerol (TAG) biosynthesis of the Kennedy pathway. Two major gene families have been shown to encode DGATs, DGAT1 (type-1) and DGAT2 (type-2). Both genes encode membrane-bound proteins, with no sequence homology to each other. In this study, the molecular cloning and characterization of a type-2 DGAT cDNA from olive is presented. Southern blot analysis showed that OeDGAT2 is represented by a single copy in the oliv...

  14. Fatty acid composition of muscle fat and enzymes of storage lipid synthesis in whole muscle from beef cattle.

    Science.gov (United States)

    Kazala, E Chris; Lozeman, Fred J; Mir, Priya S; Aalhus, Jennifer L; Schmutz, Sheila M; Weselake, Randall J

    2006-11-01

    Enhanced intramuscular fat content (i.e., marbling) in beef is a desirable trait, which can result in increased product value. This study was undertaken with the aim of revealing biochemical factors associated with the marbling trait in beef cattle. Samples of longissimus lumborum (LL) and pars costalis diaphragmatis (PCD) were taken from a group of intact crossbred males and females at slaughter, lipids extracted, and the resulting FAME examined for relationships with marbling fat deposition. For LL, significant associations were found between degree of marbling and myristic (14:0, r = 0.55, P muscle were assayed for diacylglycerol acyltransferase (DGAT), lysophosphatidic acid acyltransferase (LPAAT), and phosphatidic acid phosphatase-1 (PAP-1) activity, and the results examined for relationships with degree of intramuscular fat deposition. None of the enzyme activities from PCD displayed an association with marbling fat content, but DGAT specific activity showed significant positive associations with LPAAT (r = 0.54, P muscle tissues provide insight into possible enzyme action associated with the production of specific FA. The increased proportion of oleic acid associated with enhanced lipid content of whole muscle is noteworthy given the known health benefits of this FA. PMID:17263304

  15. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Jauhiainen, Matti; Moser, Markus;

    2008-01-01

    To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold......) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion...... of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0...

  16. Allyl/propenyl phenol synthases from the creosote bush and engineering production of specialty/commodity chemicals, eugenol/isoeugenol, in Escherichia coli.

    Science.gov (United States)

    Kim, Sung-Jin; Vassão, Daniel G; Moinuddin, Syed G A; Bedgar, Diana L; Davin, Laurence B; Lewis, Norman G

    2014-01-01

    The creosote bush (Larrea tridentata) harbors members of the monolignol acyltransferase, allylphenol synthase, and propenylphenol synthase gene families, whose products together are able to catalyze distinct regiospecific conversions of various monolignols into their corresponding allyl- and propenyl-phenols, respectively. In this study, co-expression of a monolignol acyltransferase with either substrate versatile allylphenol or propenylphenol synthases in Escherichia coli established that various monolignol substrates were efficiently converted into their corresponding allyl/propenyl phenols, as well as providing proof of concept for efficacious conversion in a bacterial platform. This capability thus potentially provides an alternate source to these important plant phytochemicals, whether for flavor/fragrance and fine chemicals, or ultimately as commodities, e.g., for renewable energy or other intermediate chemical purposes. Previous reports had indicated that specific and highly conserved amino acid residues 84 (Phe or Val) and 87 (Ile or Tyr) of two highly homologous allyl/propenyl phenol synthases (circa 96% identity) from a Clarkia species mainly dictate their distinct regiospecific catalyzed conversions to afford either allyl- or propenyl-phenols, respectively. However, several other allyl/propenyl phenol synthase homologs isolated by us have established that the two corresponding amino acid 84 and 87 residues are not, in fact, conserved.

  17. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase.

    Directory of Open Access Journals (Sweden)

    Steffen Kawelke

    Full Text Available Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2 and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2 was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity.

  18. Fatty acid composition of muscle fat and enzymes of storage lipid synthesis in whole muscle from beef cattle.

    Science.gov (United States)

    Kazala, E Chris; Lozeman, Fred J; Mir, Priya S; Aalhus, Jennifer L; Schmutz, Sheila M; Weselake, Randall J

    2006-11-01

    Enhanced intramuscular fat content (i.e., marbling) in beef is a desirable trait, which can result in increased product value. This study was undertaken with the aim of revealing biochemical factors associated with the marbling trait in beef cattle. Samples of longissimus lumborum (LL) and pars costalis diaphragmatis (PCD) were taken from a group of intact crossbred males and females at slaughter, lipids extracted, and the resulting FAME examined for relationships with marbling fat deposition. For LL, significant associations were found between degree of marbling and myristic (14:0, r = 0.55, P muscle were assayed for diacylglycerol acyltransferase (DGAT), lysophosphatidic acid acyltransferase (LPAAT), and phosphatidic acid phosphatase-1 (PAP-1) activity, and the results examined for relationships with degree of intramuscular fat deposition. None of the enzyme activities from PCD displayed an association with marbling fat content, but DGAT specific activity showed significant positive associations with LPAAT (r = 0.54, P muscle tissues provide insight into possible enzyme action associated with the production of specific FA. The increased proportion of oleic acid associated with enhanced lipid content of whole muscle is noteworthy given the known health benefits of this FA.

  19. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism.

    Science.gov (United States)

    Yen, Chi-Liang Eric; Nelson, David W; Yen, Mei-I

    2015-03-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation.

  20. The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway

    Directory of Open Access Journals (Sweden)

    Bourgaud Frédéric

    2009-03-01

    Full Text Available Abstract Background The leaves of globe artichoke and cultivated cardoon (Cynara cardunculus L. have significant pharmaceutical properties, which mainly result from their high content of polyphenolic compounds such as monocaffeoylquinic and dicaffeoylquinic acid (DCQ, and a range of flavonoid compounds. Results Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferase (HQT encoding genes have been isolated from both globe artichoke and cultivated cardoon (GenBank accessions DQ915589 and DQ915590, respectively using CODEHOP and PCR-RACE. A phylogenetic analysis revealed that their sequences belong to one of the major acyltransferase groups (anthranilate N-hydroxycinnamoyl/benzoyltransferase. The heterologous expression of globe artichoke HQT in E. coli showed that this enzyme can catalyze the esterification of quinic acid with caffeoyl-CoA or p-coumaroyl-CoA to generate, respectively, chlorogenic acid (CGA and p-coumaroyl quinate. Real time PCR experiments demonstrated an increase in the expression level of HQT in UV-C treated leaves, and established a correlation between the synthesis of phenolic acids and protection against damage due to abiotic stress. The HQT gene, together with a gene encoding hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase (HCT previously isolated from globe artichoke, have been incorporated within the developing globe artichoke linkage maps. Conclusion A novel acyltransferase involved in the biosynthesis of CGA in globe artichoke has been isolated, characterized and mapped. This is a good basis for our effort to understand the genetic basis of phenylpropanoid (PP biosynthesis in C. cardunculus.

  1. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.

    Science.gov (United States)

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Sone, Toshiyuki; Era, Atsuko; Miyagishima, Shin-Ya; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2015-10-01

    Most microalgae produce triacylglycerol (TAG) under stress conditions such as nitrogen depletion, but the underlying molecular mechanism remains unclear. In this study, we focused on the role of target of rapamycin (TOR) in TAG accumulation. TOR is a serine/threonine protein kinase that is highly conserved and plays pivotal roles in nitrogen and other signaling pathways in eukaryotes. We previously constructed a rapamycin-susceptible Cyanidioschyzon merolae, a unicellular red alga, by expressing yeast FKBP12 protein to evaluate the results of TOR inhibition (Imamura et al. in Biochem Biophys Res Commun 439:264-269, 2013). By using this strain, we here report that rapamycin-induced TOR inhibition results in accumulation of cytoplasmic lipid droplets containing TAG. Transcripts for TAG synthesis-related genes, such as glycerol-3-phosphate acyltransferase and acyl-CoA:diacylglycerol acyltransferase (DGAT), were increased by rapamycin treatment. We also found that fatty acid synthase-dependent de novo fatty acid synthesis was required for the accumulation of lipid droplets. Induction of TAG and up-regulation of DGAT gene expression by rapamycin were similarly observed in the unicellular green alga, Chlamydomonas reinhardtii. These results suggest the general involvement of TOR signaling in TAG accumulation in divergent microalgae.

  2. Method to produce acetyldiacylglycerols (ac-TAGs) by expression of an acetyltransferase gene isolated from Euonymus alatus (burning bush)

    Energy Technology Data Exchange (ETDEWEB)

    Durrett, Timothy; Ohlrogge, John; Pollard, Michael

    2016-05-03

    The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.

  3. Crystal Structures of Murine Carnitine Acetyltransferase in Ternary Complexes with Its Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao,Y.; Jogl, G.; Tong, L.

    2006-01-01

    Carnitine acyltransferases catalyze the reversible exchange of acyl groups between coenzyme A (CoA) and carnitine. They have important roles in many cellular processes, especially the oxidation of long-chain fatty acids in the mitochondria for energy production, and are attractive targets for drug discovery against diabetes and obesity. To help define in molecular detail the catalytic mechanism of these enzymes, we report here the high resolution crystal structure of wild-type murine carnitine acetyltransferase (CrAT) in a ternary complex with its substrates acetyl-CoA and carnitine, and the structure of the S554A/M564G double mutant in a ternary complex with the substrates CoA and hexanoylcarnitine. Detailed analyses suggest that these structures may be good mimics for the Michaelis complexes for the forward and reverse reactions of the enzyme, representing the first time that such complexes of CrAT have been studied in molecular detail. The structural information provides significant new insights into the catalytic mechanism of CrAT and possibly carnitine acyltransferases in general.

  4. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John A.; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G.; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young

    2016-04-26

    The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.

  5. DGAT2 Mutation in a Family with Autosomal-Dominant Early-Onset Axonal Charcot-Marie-Tooth Disease.

    Science.gov (United States)

    Hong, Young Bin; Kang, Junghee; Kim, Ji Hyun; Lee, Jinho; Kwak, Geon; Hyun, Young Se; Nam, Soo Hyun; Hong, Hyun Dae; Choi, Yu-Ri; Jung, Sung-Chul; Koo, Heasoo; Lee, Ji Eun; Choi, Byung-Ok; Chung, Ki Wha

    2016-05-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy and is a genetically and clinically heterogeneous disorder. We examined a Korean family in which two individuals had an autosomal-dominant axonal CMT with early-onset, sensory ataxia, tremor, and slow disease progression. Pedigree analysis and exome sequencing identified a de novo missense mutation (p.Y223H) in the diacylglycerol O-acyltransferase 2 (DGAT2) gene. DGAT2 encodes an endoplasmic reticulum-mitochondrial-associated membrane protein, acyl-CoA:diacylglycerol acyltransferase, which catalyzes the final step of the triglyceride (TG) biosynthesis pathway. The patient showed consistently decreased serum TG levels, and overexpression of the mutant DGAT2 significantly inhibited the proliferation of mouse motor neuron cells. Moreover, the variant form of human DGAT2 inhibited the axonal branching in the peripheral nervous system of zebrafish. We suggest that mutation of DGAT2 is the novel underlying cause of an autosomal-dominant axonal CMT2 neuropathy. This study will help provide a better understanding of the pathophysiology of axonal CMT and contribute to the molecular diagnostics of peripheral neuropathies.

  6. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism.

    Science.gov (United States)

    Yen, Chi-Liang Eric; Nelson, David W; Yen, Mei-I

    2015-03-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. PMID:25231105

  7. Deciphering molecular mechanism underlying hypolipidemic activity of echinocystic Acid.

    Science.gov (United States)

    Han, Li; Lai, Peng; Du, Jun-Rong

    2014-01-01

    Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA) and oleanolic acid (OA) at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0) to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, acyl-CoA:cholesterol acyltransferase (ACAT), and diacylglycerol acyltransferase (DGAT) in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139  μ M, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT. PMID:24669228

  8. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  9. Thyroid hormone responsive (THRSP) promotes the synthesis of medium-chain fatty acids in goat mammary epithelial cells.

    Science.gov (United States)

    Yao, D W; Luo, J; He, Q Y; Wu, M; Shi, H B; Wang, H; Wang, M; Xu, H F; Loor, J J

    2016-04-01

    In nonruminants, thyroid hormone responsive (THRSP) is a crucial protein for cellular de novo lipogenesis. However, the role of THRSP in regulating the synthesis of milk fatty acid composition in goat mammary gland remains unknown. In the present study, we compared gene expression of THRSP among different goat tissues. Results revealed that THRSP had the highest expression in subcutaneous fat, and expression was higher during lactation compared with the dry period. Overexpression of THRSP upregulated the expression of fatty acid synthase (FASN), stearoyl-coenzyme A desaturase 1 (SCD1), diacylglycerol acyltransferase 2 (DGAT2), and glycerol-3-phosphate acyltransferase (GPAM) in goat mammary epithelial cells. In contrast, overexpression of THRSP led to downregulation of thrombospondin receptor (CD36) and had no effect on the expression of acetyl-coenzyme A carboxylase α (ACACA) and sterol regulatory element binding transcription factor1 (SREBF1). In addition, overexpressing THRSP in vitro resulted in a significant increase in triacylglycerol (TAG) concentration and the concentrations of C12:0 and C14:0. Taken together, these results highlight an important role of THRSP in regulating lipogenesis in goat mammary epithelial cells. PMID:26851858

  10. Comprehensive Profiling of Proteome Changes Provide Insights of Industrial Penicillium chrysogenum During Pilot and Industrial Penicillin G Fermentation.

    Science.gov (United States)

    Cheng, Jing-Sheng; Zhao, Yan; Qiao, Bin; Lu, Hua; Chen, Yao; Yuan, Ying-Jin

    2016-07-01

    The intracellular proteomes of the Penicillium chrysogenum throughout pilot and industrial processes were investigated by using 2-DE combined with MALDI-TOF-TOF MS, respectively. We detected a total of 223 spots corresponding to 154 proteins and 231 spots corresponding to 157 proteins throughout pilot and industrial processes, respectively. The levels of glyceraldehyde-3-phosphate dehydrogenase increased (5.1- and 2.5-fold) under the pilot process, while its levels were no significant changes under the industrial process at 140 and 170 h when compared with that at 2 h. The levels of isocitrate lyase and fumarate hydratase were increased significantly under the industrial process, while their levels had no obvious changes after 20 h of fermentation throughout the pilot process. These results indicate that there were remarkable differences in carbohydrate metabolism (including glycolysis, gluconeogenesis, pentose phosphate pathway, and tricarboxylic acid cycle) of P. chrysogenum during the pilot and industrial fermentations, which likely result in alterations of the primary metabolism and penicillin biosynthesis. Moreover, the differences in the levels of proteins involved in amino acid metabolisms (including valine, cysteine, and α-aminoadipic acid biosynthesis) indicated that the pilot and industrial processes influenced the supplies of penicillin precursors. Compared with that at 2 h, the maximum levels of superoxide (6.9-fold, at 32 h) and catalase (9-fold, at 80 h) during the industrial process and the maximum levels of superoxide (1.2-fold, at 20 h) and catalase (7.7-fold at 128 h) during the pilot process revealed the significant difference in cell redox homeostasis and stress responses during scale-up fermentation. Particularly, 10 spots corresponding to isopenicillin N synthetase and 4 spots corresponding to isopenicillin N (IPN) acyltransferase in pilot and industrial processes were identified, respectively. The levels of IPN acyltransferase (spots

  11. Comprehensive Profiling of Proteome Changes Provide Insights of Industrial Penicillium chrysogenum During Pilot and Industrial Penicillin G Fermentation.

    Science.gov (United States)

    Cheng, Jing-Sheng; Zhao, Yan; Qiao, Bin; Lu, Hua; Chen, Yao; Yuan, Ying-Jin

    2016-07-01

    The intracellular proteomes of the Penicillium chrysogenum throughout pilot and industrial processes were investigated by using 2-DE combined with MALDI-TOF-TOF MS, respectively. We detected a total of 223 spots corresponding to 154 proteins and 231 spots corresponding to 157 proteins throughout pilot and industrial processes, respectively. The levels of glyceraldehyde-3-phosphate dehydrogenase increased (5.1- and 2.5-fold) under the pilot process, while its levels were no significant changes under the industrial process at 140 and 170 h when compared with that at 2 h. The levels of isocitrate lyase and fumarate hydratase were increased significantly under the industrial process, while their levels had no obvious changes after 20 h of fermentation throughout the pilot process. These results indicate that there were remarkable differences in carbohydrate metabolism (including glycolysis, gluconeogenesis, pentose phosphate pathway, and tricarboxylic acid cycle) of P. chrysogenum during the pilot and industrial fermentations, which likely result in alterations of the primary metabolism and penicillin biosynthesis. Moreover, the differences in the levels of proteins involved in amino acid metabolisms (including valine, cysteine, and α-aminoadipic acid biosynthesis) indicated that the pilot and industrial processes influenced the supplies of penicillin precursors. Compared with that at 2 h, the maximum levels of superoxide (6.9-fold, at 32 h) and catalase (9-fold, at 80 h) during the industrial process and the maximum levels of superoxide (1.2-fold, at 20 h) and catalase (7.7-fold at 128 h) during the pilot process revealed the significant difference in cell redox homeostasis and stress responses during scale-up fermentation. Particularly, 10 spots corresponding to isopenicillin N synthetase and 4 spots corresponding to isopenicillin N (IPN) acyltransferase in pilot and industrial processes were identified, respectively. The levels of IPN acyltransferase (spots

  12. Molecular Cloning of a Novel Mouse Testis-specific Spermatogenic Cell Apoptosis Inhibitor Gene mTSARG7 as a Candidate Oncogene

    Institute of Scientific and Technical Information of China (English)

    Xiao-Jun TAN; Guang-Xiu LU; Xiao-Wei XING; Lu-Yun LI; Zhao-Di WU; Chang-Gao ZHONG; Dong-Song NIE; Jun-Jiang FU; Yang XIANG; Yun DENG

    2005-01-01

    A novel mouse gene, mTSARG7 (GenBank accession No. AY489184), with a full cDNA length of 2279 bp and containing 12 exons and 11 introns, was cloned from a mouse expressed sequence tag (GenBank accession No. BE644543) that was significantly up-regulated in cryptorchidism. The gene was located in mouse chromosome 8A1.3 and encoded a protein containing 403 amino acid residues that was a new member of the acyltransferase family because the sequence contained the highly conserved phosphate acyltransferase (PlsC) domain existing in all acyltransferase-like proteins. The mTSARG7 protein and AU041707protein shared 83.9% identity in 402 amino acid residues. Expression of the mTSARG7 gene was restricted to the mouse testis. The results of the in situ hybridization analysis revealed that the mTSARG7 mRNA was expressed in mouse spermatogonia and spermatocytes. Subcellular localization studies showed that the EGFPtagged mTSARG7 protein was localized in the cytoplasm of GC-1 spg cells. The mTSARG7 mRNA expression was initiated in the mouse testis in the second week after birth, and the expression level increased steadily with spermatogenesis and sexual maturation of the mouse. The results of the heat stress experiment showed that the mTSARG7 mRNA expression gradually decreased as the heating duration increased. The pcDNA3.1 Hygro(-)/mTSARG7 plasmid was constructed and introduced into GC-1 spg cells by liposome transfection. The mTSARG7 can accelerate GC-1 spg cells, causing them to traverse the S-phase and enter the G2-phase, compared with the control group where this did not occur as there was no transfection of mTSARG7. In conclusion, our results suggest that this gene may play an important role in spermatogenesis and the development of cryptorchid testes, and is a testis-specific apoptosis candidate oncogene.

  13. Stearoyl CoA Desaturase Is Required to Produce Active, Lipid-Modified Wnt Proteins

    Directory of Open Access Journals (Sweden)

    Jessica Rios-Esteves

    2013-09-01

    Full Text Available Wnt proteins contain palmitoleic acid, an unusual lipid modification. Production of an active Wnt signal requires the acyltransferase Porcupine and depends on the attachment of palmitoleic acid to Wnt. The source of this monounsaturated fatty acid has not been identified, and it is not known how Porcupine recognizes its substrate and whether desaturation occurs before or after fatty acid transfer to Wnt. Here, we show that stearoyl desaturase (SCD generates a monounsaturated fatty acid substrate that is then transferred by Porcupine to Wnt. Treatment of cells with SCD inhibitors blocked incorporation of palmitate analogs into Wnt3a and Wnt5a and reduced Wnt secretion as well as autocrine and paracrine Wnt signaling. The SCD inhibitor effects were rescued by exogenous addition of monounsaturated fatty acids. We propose that SCD is a key molecular player responsible for Wnt biogenesis and processing and that SCD inhibition provides an alternative mechanism for blocking Wnt pathway activation.

  14. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis.

    Science.gov (United States)

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G; Sørensen, Jens Laurids

    2015-07-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  15. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.

  16. Nitrogen deficiency system is helpful in characterizing regulation mechanisms of ectopic triacylglycerol accumulation in Arabidopsis seedlings.

    Science.gov (United States)

    Yang, Yang; Yu, Xiangchun; Song, Lianfen; An, Chengcai

    2011-12-01

    Triacylglycerol (TAG) is the major storage component accumulated in seed. However the regulatory mechanism of TAG synthesis and accumulation in non-seed tissues remains unknown. Recently, we found that nitrogen (N) deficiency (0.1mM N) caused an inducement of TAG biosynthesis in Arabidopsis seedlings. ABSCISIC ACID INSENSITIVE 4 (ABI4) was essential for the activation of Acyl-CoA:diacylglycerol acyltransferase1(DGAT1) expression during N deficiency in Arabidopsis seedlings. In this addendum, we further discussed the approaches to provide a net increase in total oil production in higher plants by using the low N platform. First, the N-deficient seedlings can be used to determine the key factors that regulate the ectopic expression of key genes in TAG metabolism. Second, the research on the relationship between TAG homeostasis and cell division will be helpful to find the key factors that specifically regulate TAG accumulation under the nutrient-limited condition. PMID:22112453

  17. LCAT, HDL Cholesterol and Ischemic Cardiovascular Disease: A Mendelian Randomization Study of HDL Cholesterol in 54,500 Individuals

    DEFF Research Database (Denmark)

    Haase, Christiane L; Tybjærg-Hansen, Anne; Ali Qayyum, Abbas;

    2012-01-01

    Background:Epidemiologically, high-density lipoprotein (HDL) cholesterol levels associate inversely with risk of ischemic cardiovascular disease. Whether this is a causal relation is unclear.Methods:We studied 10,281 participants in the Copenhagen City Heart Study (CCHS) and 50,523 participants...... in the Copenhagen General Population Study (CGPS), of which 991 and 1,693 participants, respectively, had developed myocardial infarction (MI) by August 2010. Participants in the CCHS were genotyped for all six variants identified by resequencing lecithin-cholesterol acyltransferase in 380 individuals. One variant......, S208T (rs4986970, allele frequency 4%), associated with HDL cholesterol levels in both the CCHS and the CGPS was used to study causality of HDL cholesterol using instrumental variable analysis.Results:Epidemiologically, in the CCHS, a 13% (0.21 mmol/liter) decrease in plasma HDL cholesterol levels...

  18. [Effect of protein-vitamin deficiency on the enzyme activity of lipolysis and the synthesis of cholesterol esters during hypokinesia].

    Science.gov (United States)

    Koshkenbaev, B Kh; Tazhibaev, Sh S; Maksimenko, V B; Sisemalieva, Zh S

    1985-01-01

    Balanced diet during 60-day hypokinesia leads to inhibition of lipoprotein lypase (LPLA) and liver triglyceride lypase (L-TGLA) activity of the rat blood serum. The level of very low density lipoproteins (VLDLP) grows, and suppression of lecithin-cholesteryl-acyltransferase (LCAT) activity is accompanied by reduction of the share of cholesterol derivatives with polyunsaturated fatty acids. Combined effects of protein-vitamin insufficiency and hypokinesia result in parversion of the lipolysis processes, that manifests in prevalence of L-TGLA over LPLA. The levels of VLDLP increase, and growth of LCAT activity is acompanied by the growth of cholesteryl linoleate share and level. Hypokinesia combined with the studied experimental diets was found to lead to increase of the free fatty acid level and to decrease of the blood serum levels of phospholipids and triglycerides.

  19. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    Directory of Open Access Journals (Sweden)

    Mie Bech Lukassen

    2015-07-01

    Full Text Available Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine. Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1, a polyketide synthase (PKS2, a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster.

  20. Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency.

    Science.gov (United States)

    Simonelli, Sara; Tinti, Cristina; Salvini, Laura; Tinti, Laura; Ossoli, Alice; Vitali, Cecilia; Sousa, Vitor; Orsini, Gaetano; Nolli, Maria Luisa; Franceschini, Guido; Calabresi, Laura

    2013-11-01

    Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for cholesterol esterification in plasma. Mutations in the LCAT gene leads to two rare disorders, familial LCAT deficiency and fish-eye disease, both characterized by severe hypoalphalipoproteinemia associated with several lipoprotein abnormalities. No specific treatment is presently available for genetic LCAT deficiency. In the present study, recombinant human LCAT was expressed and tested for its ability to correct the lipoprotein profile in LCAT deficient plasma. The results show that rhLCAT efficiently reduces the amount of unesterified cholesterol (-30%) and promotes the production of plasma cholesteryl esters (+210%) in LCAT deficient plasma. rhLCAT induces a marked increase in HDL-C levels (+89%) and induces the maturation of small preβ-HDL into alpha-migrating particles. Moreover, the abnormal phospholipid-rich particles migrating in the LDL region were converted in normally sized LDL.

  1. Yeast cells lacking all known ceramide synthases continue to make complex sphingolipids and to incorporate ceramides into glycosylphosphatidylinositol (GPI) anchors

    DEFF Research Database (Denmark)

    Vionnet, Christine; Roubaty, Carole; Ejsing, Christer S.;

    2010-01-01

    In yeast, the inositolphosphorylceramides mostly contain C26:0 fatty acids. Inositolphosphorylceramides were considered to be important for viability, since the inositolphosphorylceramide synthase AUR1 is essential. Yet, lcb1 cells, unable to make sphingoid bases and inositolphosphorylceramides, ......, are viable if they harbor SLC1-1, a gain of function mutation in the 1-acyl-glycerol-3-phosphate acyltransferase SLC1. SLC1-1 allows to incorporate C26:0 fatty acids into phosphatidylinositol (PI), thus generating PIii, an abnormal, C26-containing PI, presumably acting as surrogate...... genetic backgrounds but to still make some abnormal uncharacterized inositol-containing sphingolipids. Indeed, we find that 4 quadruple mutants make substantial amounts of unphysiological inositolphosphorylphytosphingosines but that they also still make small amounts of normal inositolphosphorylceramides...

  2. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice.

    Directory of Open Access Journals (Sweden)

    Corey ePowers

    2013-04-01

    Full Text Available The phospholipid, cardiolipin, is essential for maintaining mitochondrial structure and optimal function. Cardiolipin-deficiency in humans, Barth syndrome, is characterized by exercise intolerance, dilated cardiomyopathy, neutropenia and 3-methyl-glutaconic aciduria. The causative gene is the mitochondrial acyl-transferase, tafazzin that is essential for remodeling acyl chains of cardiolipin. We sought to determine metabolic rates in tafazzin-deficient mice during resting and exercise, and investigate the impact of cardiolipin deficiency on mitochondrial respiratory chain activities. Tafazzin knockdown in mice markedly impaired oxygen consumption rates during an exercise, without any significant effect on resting metabolic rates. CL-deficiency resulted in significant reduction of mitochondrial respiratory reserve capacity in neonatal cardiomyocytes that is likely to be caused by diminished activity of complex-III, which requires CL for its assembly and optimal activity. Our results may provide mechanistic insights of Barth syndrome pathogenesis.

  3. Identification and characterization of sebaceous gland atrophy-sparing DGAT1 inhibitors.

    Directory of Open Access Journals (Sweden)

    Eric S Muise

    Full Text Available Inhibition of Diacylglycerol O-acyltransferase 1 (DGAT1 has been a mechanism of interest for metabolic disorders. DGAT1 inhibition has been shown to be a key regulator in an array of metabolic pathways; however, based on the DGAT1 KO mouse phenotype the anticipation is that pharmacological inhibition of DGAT1 could potentially lead to skin related adverse effects. One of the aims in developing small molecule DGAT1 inhibitors that target key metabolic tissues is to avoid activity on skin-localized DGAT1 enzyme. In this report we describe a modeling-based approach to identify molecules with physical properties leading to differential exposure distribution. In addition, we demonstrate histological and RNA based biomarker approaches that can detect sebaceous gland atrophy pre-clinically that could be used as potential biomarkers in a clinical setting.

  4. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    Science.gov (United States)

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G.; Sørensen, Jens Laurids

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  5. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux.

    Science.gov (United States)

    Cahoon, Edgar B; Shockey, Jay M; Dietrich, Charles R; Gidda, Satinder K; Mullen, Robert T; Dyer, John M

    2007-06-01

    Oilseeds provide a unique platform for the production of high-value fatty acids that can replace non-sustainable petroleum and oceanic sources of specialty chemicals and aquaculture feed. However, recent efforts to engineer the seeds of crop and model plant species to produce new types of fatty acids, including hydroxy and conjugated fatty acids for industrial uses and long-chain omega-3 polyunsaturated fatty acids for farmed fish feed, have met with only modest success. The collective results from these studies point to metabolic 'bottlenecks' in the engineered plant seeds that substantially limit the efficient or selective flux of unusual fatty acids between different substrate pools and ultimately into storage triacylglycerol. Evidence is emerging that diacylglycerol acyltransferase 2, which catalyzes the final step in triacylglycerol assembly, is an important contributor to the synthesis of unusual fatty acid-containing oils, and is likely to be a key target for future oilseed metabolic engineering efforts. PMID:17434788

  6. A putative gene cluster from a Lyngbya wollei bloom that encodes paralytic shellfish toxin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Troco K Mihali

    Full Text Available Saxitoxin and its analogs cause the paralytic shellfish-poisoning syndrome, adversely affecting human health and coastal shellfish industries worldwide. Here we report the isolation, sequencing, annotation, and predicted pathway of the saxitoxin biosynthetic gene cluster in the cyanobacterium Lyngbya wollei. The gene cluster spans 36 kb and encodes enzymes for the biosynthesis and export of the toxins. The Lyngbya wollei saxitoxin gene cluster differs from previously identified saxitoxin clusters as it contains genes that are unique to this cluster, whereby the carbamoyltransferase is truncated and replaced by an acyltransferase, explaining the unique toxin profile presented by Lyngbya wollei. These findings will enable the creation of toxin probes, for water monitoring purposes, as well as proof-of-concept for the combinatorial biosynthesis of these natural occurring alkaloids for the production of novel, biologically active compounds.

  7. DIFFERENTIAL EXPRESSION OF GENES INVOLVED IN METABOLISM BETWEEN TUMORIGENITIC HUMAN LEUKEMIA CELL LINES K562 AND K562-n

    Institute of Scientific and Technical Information of China (English)

    吕书晴; 许小平; 夏放; 居小萍; 李瑶; 应康; 毛裕民

    2003-01-01

    Objective: To study the molecular mechanism of different tumorigenicity in nude mice of human leukemia cell lines K562-n and K562. Methods: To analyze the genes differently expressed between K562 and K562-n cells by using cDNA microarray technique. Results: Among the 12800 genes detected, some genes involved in material metabolism and material transport were differently expressed between K562-n and K562 cells. These genes include homo sapiens placenta-specific ATP-binding cassette transporter gene, dihydrodiol dehydrogenase gene, hepatic dihydrodiol dehydrogenase gene, NAD-dependent methylene tetrahydrofolate dehydrogenase cyclohydrolase, lysophosphatidic acid acyltransferase, alpha gene, argininosuccinate lyase gene, mitochondrial isocitrtate dehydrogenase, adhesion protein SQM1 gene, dimethylarginine dimethylamino-hydrolase gene, M1 subunit of ribonucleotide reductase and farnesyl pyrophosphate synthetase gene. Conclusion: The high tumorigenicity of K562-n cells is related to the different expression of some genes concerned with cell metabolism and material transpoert.

  8. Prebeta-migrating high density lipoprotein: quantitation in normal and hyperlipidemic plasma by solid phase radioimmunoassay following electrophoretic transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, B.Y.; Frolich, J.; Fielding, C.J.

    1987-07-01

    A quantitative solid phase immunoassay has been developed for the determination of the mass of electrophoretically separated prebeta apolipoprotein A-I (apoA-I) in human plasma. Conditions have been identified for the quantitative transfer and immunoblotting of the apolipoprotein in the absence of organic solvents or detergents. In normolipidemic plasma, the prebeta-migrating fraction of apoA-I represented 4.2 +/- 1.8% of total apoA-I (61 +/- 26 micrograms of apoA-I per ml of plasma). Significantly higher levels were found in hypercholesterolemia of genetic origin, in primary and secondary hypertriglyceridemia, and in congenital lecithin:cholesterol acyltransferase deficiency. In all cases prebeta-migrating apoA-I consisted in large part of low molecular weight lipoprotein species, compared to the size of the major, alpha-migrating apoA-I fraction.

  9. Detection of 1-O-malylglucose: pelargonidin 3-O-glucose-6''-O-malyltransferase activity in carnation (Dianthus caryophyllus).

    Science.gov (United States)

    Abe, Yutaka; Tera, Masayuki; Sasaki, Nobuhiro; Okamura, Masachika; Umemoto, Naoyuki; Momose, Masaki; Kawahara, Nobuo; Kamakura, Hiroyuki; Goda, Yukihiro; Nagasawa, Kazuo; Ozeki, Yoshihiro

    2008-09-01

    Carnations have anthocyanins acylated with malate. Although anthocyanin acyltransferases have been reported in several plant species, anthocyanin malyltransferase (AMalT) activity in carnation has not been identified. Here, an acyl donor substance of AMalT, 1-O-beta-D-malylglucose, was extracted and partially purified from the petals of carnation. This was synthesized chemically to analyze AMalT activity in a crude extract from carnation. Changes in the AMalT activity showed close correlation to the accumulation of pelargonidin 3-malylglucoside (Pel 3-malGlc) during the development of red petals of carnation, but neither AMalT activity nor Pel 3-malGlc accumulation was detectable in roots, stems and leaves.

  10. Storage lipid biosynthesis in microspore-derived Brassica napus embryos

    International Nuclear Information System (INIS)

    Erucic acid, a fatty acid which is confined to the neutral lipids in developing seed cotyledons or rape, was chosen as a marker to study triacylglycerol (TAG) biosynthesis in a Brassica napus L. cv Reston microspore-derived embryo culture system. Accumulation and changes in acyl composition of TAGs during embryogenesis strongly paralleled that observed during seed development. Homogenates of 29-day cultured embryos were examined for the ability to incorporate erucoyl moieties into storage lipids. In the presence of 14C erucoyl CoA and various acceptors, including glycerol-3-phosphate (G3P), 14C erucic acid was rapidly incorporated into the TAG fraction. However, in contrast to studies with 14C oleoyl CoA, there was no measurable radioactivity in any Kennedy Pathway intermediates or within membrane lipid components. Analysis of the radiolabelled TAG species suggested that erucoyl moieties were incorporated into the sn-3 position by a highly active diacylglyercol acyltransferase

  11. Prebeta-migrating high density lipoprotein: quantitation in normal and hyperlipidemic plasma by solid phase radioimmunoassay following electrophoretic transfer

    International Nuclear Information System (INIS)

    A quantitative solid phase immunoassay has been developed for the determination of the mass of electrophoretically separated prebeta apolipoprotein A-I (apoA-I) in human plasma. Conditions have been identified for the quantitative transfer and immunoblotting of the apolipoprotein in the absence of organic solvents or detergents. In normolipidemic plasma, the prebeta-migrating fraction of apoA-I represented 4.2 +/- 1.8% of total apoA-I (61 +/- 26 micrograms of apoA-I per ml of plasma). Significantly higher levels were found in hypercholesterolemia of genetic origin, in primary and secondary hypertriglyceridemia, and in congenital lecithin:cholesterol acyltransferase deficiency. In all cases prebeta-migrating apoA-I consisted in large part of low molecular weight lipoprotein species, compared to the size of the major, alpha-migrating apoA-I fraction

  12. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    DEFF Research Database (Denmark)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco;

    2014-01-01

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary...... phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic...... domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER...

  13. Systematic analysis of the kalimantacin assembly line NRPS module using an adapted targeted mutagenesis approach.

    Science.gov (United States)

    Uytterhoeven, Birgit; Appermans, Kenny; Song, Lijiang; Masschelein, Joleen; Lathouwers, Thomas; Michiels, Chris W; Lavigne, Rob

    2016-04-01

    Kalimantacin is an antimicrobial compound with strong antistaphylococcal activity that is produced by a hybrid trans-acyltransferase polyketide synthase/nonribosomal peptide synthetase system in Pseudomonas fluorescens BCCM_ID9359. We here present a systematic analysis of the substrate specificity of the glycine-incorporating adenylation domain from the kalimantacin biosynthetic assembly line by a targeted mutagenesis approach. The specificity-conferring code was adapted for use in Pseudomonas and mutated adenylation domain active site sequences were introduced in the kalimantacin gene cluster, using a newly adapted ligation independent cloning method. Antimicrobial activity screens and LC-MS analyses revealed that the production of the kalimantacin analogues in the mutated strains was abolished. These results support the idea that further insight in the specificity of downstream domains in nonribosomal peptide synthetases and polyketide synthases is required to efficiently engineer these strains in vivo. PMID:26666990

  14. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets

    Science.gov (United States)

    Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha

    2016-01-01

    BACKGROUND/OBJECTIVES Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. MATERIALS/METHODS Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. RESULTS Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CONCLUSIONS CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.

  15. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.

    Science.gov (United States)

    Yao, Jiangwei; Dodson, V Joshua; Frank, Matthew W; Rock, Charles O

    2015-09-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  16. Phosphatidylcholine formation by LPCAT1 is regulated by Ca2+ and the redox status of the cell

    Directory of Open Access Journals (Sweden)

    Soupene Eric

    2012-06-01

    Full Text Available Abstract Background Unsaturated fatty acids are susceptible to oxidation and damaged chains are removed from glycerophospholipids by phospholipase A2. De-acylated lipids are then re-acylated by lysophospholipid acyltransferase enzymes such as LPCAT1 which catalyses the formation of phosphatidylcholine (PC from lysoPC and long-chain acyl-CoA. Results Activity of LPCAT1 is inhibited by Ca2+, and a Ca2+-binding motif of the EF-hand type, EFh-1, was identified in the carboxyl-terminal domain of the protein. The residues Asp-392 and Glu-403 define the loop of the hairpin structure formed by EFh-1. Substitution of D392 and E403 to alanine rendered an enzyme insensitive to Ca2+, which established that Ca2+ binding to that region negatively regulates the activity of the acyltransferase amino-terminal domain. Residue Cys-211 of the conserved motif III is not essential for catalysis and not sufficient for sensitivity to treatment by sulfhydryl-modifier agents. Among the several active cysteine-substitution mutants of LPCAT1 generated, we identified one to be resistant to treatment by sulfhydryl-alkylating and sulfhydryl-oxidizer agents. Conclusion Mutant forms of LPCAT1 that are not inhibited by Ca2+ and sulfhydryl-alkylating and –oxidizing agents will provide a better understanding of the physiological function of a mechanism that places the formation of PC, and the disposal of the bioactive species lysoPC, under the control of the redox status and Ca2+ concentration of the cell.

  17. Bovine gene polymorphisms related to fat deposition and meat tenderness.

    Science.gov (United States)

    Fortes, Marina R S; Curi, Rogério A; Chardulo, Luis Artur L; Silveira, Antonio C; Assumpção, Mayra E O D; Visintin, José Antonio; de Oliveira, Henrique N

    2009-01-01

    Leptin, thyroglobulin and diacylglycerol O-acyltransferase play important roles in fat metabolism. Fat deposition has an influence on meat quality and consumers' choice. The aim of this study was to determine allele and genotype frequencies of polymorphisms of the bovine genes, which encode leptin (LEP), thyroglobulin (TG) and diacylglycerol O-acyltransferase (DGAT1). A further objective was to establish the effects of these polymorphisms on meat characteristics. We genotyped 147 animals belonging to the Nelore (Bos indicus), Canchim (5/8 Bos taurus + 3/8 Bos indicus), Rubia Gallega X Nelore (1/2 Bos taurus + 1/2 Bos indicus), Brangus Three-way cross (9/16 Bos taurus + 7/16 Bos indicus) and Braunvieh Three-way cross (3/4 Bos taurus + 1/4 Bos indicus) breeds. Backfat thickness, total lipids, marbling score, ribeye area and shear force were fitted, using the General Linear Model (GLM) procedure of the SAS software. The least square means of genotypes and genetic groups were compared using Tukey's test. Allele frequencies vary among the genetic groups, depending on Bos indicus versus Bos taurus influence. The LEP polymorphism segregates in pure Bos indicus Nelore animals, which is a new finding. The T allele of TG is fixed in Nelore, and DGAT1 segregates in all groups, but the frequency of allele A is lower in Nelore animals. The results showed no association between the genotypes and traits studied, but a genetic group effect on these traits was found. So, the genetic background remains relevant for fat deposition and meat tenderness, but the gene markers developed for Bos taurus may be insufficient for Bos indicus.

  18. Possible mechanism for species difference on the toxicity of pivalic acid between dogs and rats

    International Nuclear Information System (INIS)

    In a high dose toxicity study of pivalic acid (PA), PA caused skeletal muscle disorder in dog, and a significant increase of pivaloyl carnitine (PC) was observed in canine muscle, but not in rat muscle. In order to understand species difference of the toxicity of PA, we compared the in vitro metabolism of PA among dog, rat and rabbit, especially focussing on the carnitine conjugate. Canine muscle showed low, but significant carnitine conjugating activity, while that of rat was negligible. Canine kidney mitochondria had significant activity in the pivaloyl CoA synthesis (7 nmol/mg protein/h), but muscle mitochondria showed only trace activity. Both kidney and muscle mitochondria displayed similar carnitine acyltransferase activity (2-3 nmol/mg protein/h) towards pivaloyl CoA. On the other hand, with respect to the activity of carnitine acyltransferase in the reverse direction using PC as substrate, canine muscle mitochondria showed higher activity than that of kidney mitochondria. This means that PC is not the final stable metabolite, but is converted easily to pivaloyl CoA in canine muscle. These results suggest one of the possible mechanisms for canine selective muscle disorder to be as follows. Only canine muscle can metabolize PA to its carnitine conjugate slowly, but significantly. In canine muscle, PC is not the final stable metabolite; it is easily converted to pivaloyl CoA. As carnitine conjugation is thought to be the only detoxification metabolic route in canine muscle, under certain circumstances such as carnitine deficiency, the risk of exposure with toxic pivaloyl CoA might increase and the CoASH pool in canine muscle might be exhausted, resulting in toxicity in canine muscle

  19. Structural and Biochemical Characterization of the Salicylyl-acyltranferase SsfX3 from a Tetracycline Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Pickens, Lauren B.; Sawaya, Michael R.; Rasool, Huma; Pashkov, Inna; Yeates, Todd O.; Tang, Yi (UCLA)

    2012-03-14

    SsfX3 is a GDSL family acyltransferase that transfers salicylate to the C-4 hydroxyl of a tetracycline intermediate in the penultimate step during biosynthesis of the anticancer natural product SF2575. The C-4 salicylate takes the place of the more common C-4 dimethylamine functionality, making SsfX3 the first acyltransferase identified to act on a tetracycline substrate. The crystal structure of SsfX3 was determined at 2.5 {angstrom}, revealing two distinct domains as follows: an N-terminal {beta}-sandwich domain that resembles a carbohydrate-binding module, and a C-terminal catalytic domain that contains the atypical {alpha}/{beta}-hydrolase fold found in the GDSL hydrolase family of enzymes. The active site lies at one end of a large open binding pocket, which is spatially defined by structural elements from both the N- and C-terminal domains. Mutational analysis in the putative substrate binding pocket identified residues from both domains that are important for binding the acyl donor and acceptor. Furthermore, removal of the N-terminal carbohydrate-binding module-like domain rendered the stand-alone {alpha}/{beta}-hydrolase domain inactive. The additional noncatalytic module is therefore proposed to be required to define the binding pocket and provide sufficient interactions with the spatially extended tetracyclic substrate. SsfX3 was also demonstrated to accept a variety of non-native acyl groups. This relaxed substrate specificity toward the acyl donor allowed the chemoenzymatic biosynthesis of C-4-modified analogs of the immediate precursor to the bioactive SF2575; these were used to assay the structure activity relationships at the C-4 position.

  20. Esterification and hydrolysis of vitamin A in the liver of brook trout (Salvelinus fontinalis) and the influence of a coplanar polychlorinated biphenyl

    Energy Technology Data Exchange (ETDEWEB)

    Ndayibagira, A.; Spear, P.A. [Centre de Recherche TOXEN and Departement des Sciences Biologiques, Universite du Quebec a Montreal, C.P. 8888, succursale Centre Ville Montreal (Canada)

    1999-03-01

    Recent reports of extremely low retinoid stores in fish living in contaminated river systems prompted an initial investigation of the mechanisms of hepatic storage and mobilization in brook trout. Enzyme characterization in microsomes revealed a lecithin:retinol acyltransferase activity (LRAT) optimum in the alkaline range (pH 9.0; V{sub max}=0.6 nmol per mg prot. h{sup -1}; K{sub m}=10.2 {mu}M) which is not known to occur in mammals, in addition to a secondary optimum at pH 6.5 typical of mammals. Acyl CoA:retinol acyltransferase (ARAT) kinetic parameters were quite different to those of mammals. The substrate affinity of trout ARAT (K{sub m}=1.6 {mu}M) was approximately 22-fold greater than that of the rat while maximal velocity (V{sub max}=0.2 nmol per mg prot. h{sup -1}) was 18-fold less. Retinyl ester hydrolase activity (REH) was optimal under acid conditions (pH 4.2; V{sub max}=6.6 nmol per mg prot. h{sup -1}; K{sub m}=0.6 mM), was inhibited by a bile salt analogue and was greater in males than females. This REH was tentatively categorized as a bile salt-independent, acid retinyl ester hydrolase (BSI-AREH). REH was inhibited in a dose-dependent manner following in vivo exposure to a representative environmental contaminant the coplanar polychlorinated biphenyl (PCB), 3,3minutes or feet,4,4minutes or feet-tetrachlorobiphenyl (TCBP). Inhibition may be an indirect effect because enzyme activity was not affected by in vitro exposure of control microsomes. REH inhibition in the brook trout may affect the uptake of retinyl esters (REs) from chylomicron remnants as well as the mobilization of stored REs. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Lipidomic and spatio-temporal imaging of fat by mass spectrometry in mice duodenum during lipid digestion.

    Directory of Open Access Journals (Sweden)

    Alexandre Seyer

    Full Text Available Intestinal absorption of dietary fat is a complex process mediated by enterocytes leading to lipid assembly and secretion of circulating lipoproteins as chylomicrons, vLDL and intestinal HDL (iHDL. Understanding lipid digestion is of importance knowing the correlation between excessive fat absorption and atherosclerosis. By using time-of-flight secondary ion mass spectrometry (TOF-SIMS, we illustrated a spatio-temporal localization of fat in mice duodenum, at different times of digestion after a lipid gavage, for the first time. Fatty acids progressively increased in enterocytes as well as taurocholic acid, secreted by bile and engaged in the entero-hepatic re-absorption cycle. Cytosolic lipid droplets (CLD from enterocytes were originally purified separating chylomicron-like, intermediate droplets and smaller HDL-like. A lipidomic quantification revealed their contents in triglycerides, free and esterified cholesterol, phosphatidylcholine, sphingomyelin and ceramides but also in free fatty acids, mono- and di-acylglycerols. An acyl-transferase activity was identified and the enzyme monoacylglycerol acyl transferase 2 (MGAT2 was immunodetected in all CLD. The largest droplets was also shown to contain the microsomal triglyceride transfer protein (MTTP, the acyl-coenzyme A-cholesterol acyltransferases (ACAT 1 and 2, hormone sensitive lipase (HSL and adipose triglyceride lipase (ATGL. This highlights the fact that during the digestion of fats, enterocyte CLD contain some enzymes involved in the different stages of the metabolism of diet fatty acids and cholesterol, in anticipation of the crucial work of endoplasmic reticulum in the process. The data further underlines the dual role of chylomicrons and iHDL in fat digestion which should help to efficiently complement lipid-lowering therapy.

  2. The effects of sterol structure upon sterol esterification.

    Science.gov (United States)

    Lin, Don S; Steiner, Robert D; Merkens, Louise S; Pappu, Anuradha S; Connor, William E

    2010-01-01

    Cholesterol is esterified in mammals by two enzymes: LCAT (lecithin cholesterol acyltransferase) in plasma and ACAT(1) and ACAT(2) (acyl-CoA cholesterol acyltransferases) in the tissues. We hypothesized that the sterol structure may have significant effects on the outcome of esterification by these enzymes. To test this hypothesis, we analyzed sterol esters in plasma and tissues in patients having non-cholesterol sterols (sitosterolemia and Smith-Lemli-Opitz syndrome). The esterification of a given sterol was defined as the sterol ester percentage of total sterols. The esterification of cholesterol in plasma by LCAT was 67% and in tissues by ACAT was 64%. Esterification of nine sterols (cholesterol, cholestanol, campesterol, stigmasterol, sitosterol, campestanol, sitostanol, 7-dehydrocholesterol and 8-dehydrocholesterol) was examined. The relative esterification (cholesterol being 1.0) of these sterols by the plasma LCAT was 1.00, 0.95, 0.89, 0.40, 0.85, 0.82 and 0.80, 0.69 and 0.82, respectively. The esterification by the tissue ACAT was 1.00, 1.29, 0.75, 0.49, 0.45, 1.21 and 0.74, respectively. The predominant fatty acid of the sterol esters was linoleic acid for LCAT and oleic acid for ACAT. We compared the esterification of two sterols differing by only one functional group (a chemical group attached to sterol nucleus) and were able to quantify the effects of individual functional groups on sterol esterification. The saturation of the A ring of cholesterol increased ester formation by ACAT by 29% and decreased the esterification by LCAT by 5.9%. Esterification by ACAT and LCAT was reduced, respectively, by 25 and 11% by the presence of an additional methyl group on the side chain of cholesterol at the C-24 position. This data supports our hypothesis that the structure of the sterol substrate has a significant effect on its esterification by ACAT or LCAT.

  3. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Science.gov (United States)

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed. PMID:26745266

  4. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Directory of Open Access Journals (Sweden)

    Abdallah Khatib

    Full Text Available Comparative Gene Identification-58 (CGI-58 is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL, the initial enzyme responsible for the triacylglycerol (TAG catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  5. Regulation of phosphatidylcholine biosynthesis in cultured chick embryonic muscle treated with phospholipase C.

    Science.gov (United States)

    Sleight, R; Kent, C

    1980-11-25

    Cultures of embryonic chick muscle cells grown in medium containing phospholipase C from Clostridium perfringens incorporated [3H]choline into lipid at a rate 3- to 5-fold higher than control cultures. To determine the mechanism by which stimulation of phosphatidylcholine synthesis occurred in phospholipase C-treated cells, activities of enzymes and levels of intermediates in the biosynthetic pathway for phosphatidylcholine were examined. Activities of choline kinase, choline phosphotransferase, glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate acyltransferase, acylglycerol-3-phosphate acyltransferase, and phosphatidic acid phosphatase in phospholipase C-treated cells were the same or only slightly higher than in control cells. CTP:phosphocholine cytidylyltransferase, on the other hand, was 3 times as active in homogenates from phospholipase C-treated cells. Levels of phosphocholine decreased and levels of CDP-choline increased in phospholipase C-treated cells, and a calculation of the disequilibrium ratio indicated that the cytidylyltransferase reaction was not at equilibrium. The cytidylyltransferase was, thus, identified as the regulatory enzyme for choline flux in these cells. The cytidylyltransferase was located in both the cytosolic and particulate fractions from cultured muscle cells and a much larger portion of enzyme activity was associated with the particulate fraction in cells treated with phospholipase C. Sonicated preparations of total chick lipids, phosphatidylethanolamine, and phosphatidylserine greatly stimulated the cytosolic cytidylyltransferase activity but had no effect on the particulate enzyme. Neither stimulation of incorporation of [3H]choline into lipid nor activation of the cytidylyltransferase was dependent on protein synthesis. A model for the mechanism of regulation of phosphatidylcholine synthesis in embryonic chick muscle is presented.

  6. Bovine gene polymorphisms related to fat deposition and meat tenderness

    Directory of Open Access Journals (Sweden)

    Marina R.S. Fortes

    2009-01-01

    Full Text Available Leptin, thyroglobulin and diacylglycerol O-acyltransferase play important roles in fat metabolism. Fat deposition has an influence on meat quality and consumers' choice. The aim of this study was to determine allele and genotype frequencies of polymorphisms of the bovine genes, which encode leptin (LEP, thyroglobulin (TG and diacylglycerol O-acyltransferase (DGAT1. A further objective was to establish the effects of these polymorphisms on meat characteristics. We genotyped 147 animals belonging to the Nelore (Bos indicus, Canchim (5/8 Bos taurus + 3/8 Bos indicus, Rubia Gallega X Nelore (1/2 Bos taurus + 1/2 Bos indicus, Brangus Three-way cross (9/16 Bos taurus + 7/16 Bos indicus and Braunvieh Three-way cross (3/4 Bos taurus + 1/4 Bos indicus breeds. Backfat thickness, total lipids, marbling score, ribeye area and shear force were fitted, using the General Linear Model (GLM procedure of the SAS software. The least square means of genotypes and genetic groups were compared using Tukey's test. Allele frequencies vary among the genetic groups, depending on Bos indicus versus Bos taurus influence. The LEP polymorphism segregates in pure Bos indicus Nelore animals, which is a new finding. The T allele of TG is fixed in Nelore, and DGAT1 segregates in all groups, but the frequency of allele A is lower in Nelore animals. The results showed no association between the genotypes and traits studied, but a genetic group effect on these traits was found. So, the genetic background remains relevant for fat deposition and meat tenderness, but the gene markers developed for Bos taurus may be insufficient for Bos indicus.

  7. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Science.gov (United States)

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  8. Bovine gene polymorphisms related to fat deposition and meat tenderness.

    Science.gov (United States)

    Fortes, Marina R S; Curi, Rogério A; Chardulo, Luis Artur L; Silveira, Antonio C; Assumpção, Mayra E O D; Visintin, José Antonio; de Oliveira, Henrique N

    2009-01-01

    Leptin, thyroglobulin and diacylglycerol O-acyltransferase play important roles in fat metabolism. Fat deposition has an influence on meat quality and consumers' choice. The aim of this study was to determine allele and genotype frequencies of polymorphisms of the bovine genes, which encode leptin (LEP), thyroglobulin (TG) and diacylglycerol O-acyltransferase (DGAT1). A further objective was to establish the effects of these polymorphisms on meat characteristics. We genotyped 147 animals belonging to the Nelore (Bos indicus), Canchim (5/8 Bos taurus + 3/8 Bos indicus), Rubia Gallega X Nelore (1/2 Bos taurus + 1/2 Bos indicus), Brangus Three-way cross (9/16 Bos taurus + 7/16 Bos indicus) and Braunvieh Three-way cross (3/4 Bos taurus + 1/4 Bos indicus) breeds. Backfat thickness, total lipids, marbling score, ribeye area and shear force were fitted, using the General Linear Model (GLM) procedure of the SAS software. The least square means of genotypes and genetic groups were compared using Tukey's test. Allele frequencies vary among the genetic groups, depending on Bos indicus versus Bos taurus influence. The LEP polymorphism segregates in pure Bos indicus Nelore animals, which is a new finding. The T allele of TG is fixed in Nelore, and DGAT1 segregates in all groups, but the frequency of allele A is lower in Nelore animals. The results showed no association between the genotypes and traits studied, but a genetic group effect on these traits was found. So, the genetic background remains relevant for fat deposition and meat tenderness, but the gene markers developed for Bos taurus may be insufficient for Bos indicus. PMID:21637649

  9. Arabidopsis PIZZA has the capacity to acylate brassinosteroids.

    Science.gov (United States)

    Schneider, Katja; Breuer, Christian; Kawamura, Ayako; Jikumaru, Yusuke; Hanada, Atsushi; Fujioka, Shozo; Ichikawa, Takanari; Kondou, Youichi; Matsui, Minami; Kamiya, Yuji; Yamaguchi, Shinjiro; Sugimoto, Keiko

    2012-01-01

    Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ), was partly rescued by supplying exogenous brassinolide (BL) and castasterone (CS), indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY) and 6-deoxocastasterone (6-deoxoCS), suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis.

  10. Arabidopsis PIZZA has the capacity to acylate brassinosteroids.

    Directory of Open Access Journals (Sweden)

    Katja Schneider

    Full Text Available Brassinosteroids (BRs affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ, was partly rescued by supplying exogenous brassinolide (BL and castasterone (CS, indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY and 6-deoxocastasterone (6-deoxoCS, suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis.

  11. Diversification and coevolution of the ghrelin/growth hormone secretagogue receptor system in vertebrates.

    Science.gov (United States)

    Tine, Mbaye; Kuhl, Heiner; Teske, Peter R; Tschöp, Matthias H; Jastroch, Martin

    2016-04-01

    The gut hormone ghrelin is involved in numerous metabolic functions, such as the stimulation of growth hormone secretion, gastric motility, and food intake. Ghrelin is modified by ghrelin O-acyltransferase (GOAT) or membrane-bound O-acyltransferase domain-containing 4 (MBOAT4) enabling action through the growth hormone secretagogue receptors (GHS-R). During the course of evolution, initially strong ligand/receptor specificities can be disrupted by genomic changes, potentially modifying physiological roles of the ligand/receptor system. Here, we investigated the coevolution of ghrelin, GOAT, and GHS-R in vertebrates. We combined similarity search, conserved synteny analyses, phylogenetic reconstructions, and protein structure comparisons to reconstruct the evolutionary history of the ghrelin system. Ghrelin remained a single-gene locus in all vertebrate species, and accordingly, a single GHS-R isoform was identified in all tetrapods. Similar patterns of the nonsynonymous (dN) and synonymous (dS) ratio (dN/dS) in the vertebrate lineage strongly suggest coevolution of the ghrelin and GHS-R genes, supporting specific functional interactions and common physiological pathways. The selection profiles do not allow confirmation as to whether ghrelin binds specifically to GOAT, but the ghrelin dN/dS patterns are more similar to those of GOAT compared to MBOAT1 and MBOAT2 isoforms. Four GHS-R isoforms were identified in teleost genomes. This diversification of GHS-R resulted from successive rounds of duplications, some of which remained specific to the teleost lineage. Coevolution signals are lost in teleosts, presumably due to the diversification of GHS-R but not the ghrelin gene. The identification of the GHS-R diversity in teleosts provides a molecular basis for comparative studies on ghrelin's physiological roles and regulation, while the comparative sequence and structure analyses will assist translational medicine to determine structure-function relationships of the

  12. Comparison of glycerolipid biosynthesis in non-green plastids from sycamore (Acer pseudoplatanus) cells and cauliflower (Brassica oleracea) buds.

    Science.gov (United States)

    Alban, C; Joyard, J; Douce, R

    1989-05-01

    The availability of methods to fractionate non-green plastids and to prepare their limiting envelope membranes [Alban, Joyard & Douce (1988) Plant Physiol. 88, 709-717] allowed a detailed analysis of the biosynthesis of lysophosphatidic acid, phosphatidic acid, diacylglycerol and monogalactosyl-diacylglycerol (MGDG) in two different types of non-green starch-containing plastids: plastids isolated from cauliflower buds and amyloplasts isolated from sycamore cells. An enzyme [acyl-ACP (acyl carrier protein):sn-glycerol 3-phosphate acyltransferase) recovered in the soluble fraction of non-green plastids transfers oleic acid from oleoyl-ACP to the sn-1 position of sn-glycerol 3-phosphate to form lysophosphatidic acid. Then a membrane-bound enzyme (acyl-ACP:monoacyl-sn-glycerol 3-phosphate acyltransferase), localized in the envelope membrane, catalyses the acylation of the available sn-2 position of 1-oleoyl-sn-glycerol 3-phosphate by palmitic acid from palmitoyl-ACP. Therefore both the soluble phase and the envelope membranes are necessary for acylation of sn-glycerol 3-phosphate. The major difference between cauliflower (Brassica oleracea) and sycamore (Acer pseudoplatanus) membranes is the very low level of phosphatidate phosphatase activity in sycamore envelope membrane. Therefore, very little diacylglycerol is available for MGDG synthesis in sycamore, compared with cauliflower. These findings are consistent with the similarities and differences described in lipid metabolism of mature chloroplasts from 'C18:3' and 'C16:3' plants (those with MGDG containing C18:3 and C16:3 fatty acids). Sycamore contains only C18 fatty acids in MGDG, and the envelope membranes from sycamore amyloplasts have a low phosphatidate phosphatase activity and therefore the enzymes of the Kornberg-Pricer pathway have a low efficiency of incorporation of sn-glycerol 3-phosphate into MGDG. By contrast, cauliflower contains MGDG with C16:3 fatty acid, and the incorporation of sn-glycerol 3

  13. cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme a:anthocyanidin 3-o-glucoside-6"-o-malonyltransferase from dahlia flowers.

    Science.gov (United States)

    Suzuki, Hirokazu; Nakayama, Toru; Yonekura-Sakakibara, Keiko; Fukui, Yuko; Nakamura, Noriko; Yamaguchi, Masa-Atsu; Tanaka, Yoshikazu; Kusumi, Takaaki; Nishino, Tokuzo

    2002-12-01

    In the flowers of important ornamental Compositae plants, anthocyanins generally carry malonyl group(s) at their 3-glucosyl moiety. In this study, for the first time to our knowledge, we have identified a cDNA coding for this 3-glucoside-specific malonyltransferase for anthocyanins, i.e. malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6"-O-malonyltransferase, from dahlia (Dahlia variabilis) flowers. We isolated a full-length cDNA (Dv3MaT) on the basis of amino acid sequences specifically conserved among anthocyanin acyltransferases of the versatile plant acyltransferase family. Dv3MaT coded for a protein of 460 amino acids. Quantitative real-time PCR analyses of Dv3MaT showed that the transcript was present in accordance with the distribution of 3MaT activities and the anthocyanin accumulation pattern in the dahlia plant. The Dv3MaT cDNA was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity and characterized. The recombinant Dv3MaT catalyzed the regiospecific transfer of the malonyl group from malonyl-coenzyme A (K(m), 18.8 microM) to pelargonidin 3-O-glucoside (K(m), 46.7 microM) to produce pelargonidin 3-O-6"-O-malonylglucoside with a k(cat) value of 7.3 s(-1). The other enzymatic profiles of the recombinant Dv3MaT were closely related to those of native anthocyanin malonyltransferase activity in the extracts of dahlia flowers. Dv3MaT cDNA was introduced into petunia (Petunia hybrida) plants whose red floral color is exclusively provided by cyanidin 3-O-glucoside and 3,5-O-diglucoside. Thirteen transgenic lines of petunia were found to produce malonylated products of these anthocyanins (11-63 mol % of total anthocyanins in the flower). The spectral stability of cyanidin 3-O-6"-O-malonylglucoside at the pHs of intracellular milieus of flowers was significantly higher than that of cyanidin 3-O-glucoside. Moreover, 6"-O-malonylation of cyanidin 3-O-glucoside effectively prevented the anthocyanin from attack of beta

  14. Mining the bitter melon (momordica charantia l. seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes

    Directory of Open Access Journals (Sweden)

    Shipp Matthew J

    2010-11-01

    Full Text Available Abstract Background Seeds of Momordica charantia (bitter melon produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological transfer of conjugated fatty acid production to existing oilseed crops. It is expected that these studies will also provide basic information regarding the metabolism of other high-value novel fatty acids. Results Deep sequencing using 454 technology with non-normalized and normalized cDNA libraries prepared from bitter melon seeds at 18 DAP resulted in the identification of transcripts for the vast majority of known genes involved in fatty acid and triacylglycerol biosynthesis. The non-normalized library provided a transcriptome profile of the early stage in seed development that highlighted the abundance of transcripts for genes encoding seed storage proteins as well as for a number of genes for lipid metabolism-associated polypeptides, including Δ12 oleic acid desaturases and fatty acid conjugases, class 3 lipases, acyl-carrier protein, and acyl-CoA binding protein. Normalization of cDNA by use of a duplex-specific nuclease method not only increased the overall discovery of genes from developing bitter melon seeds, but also resulted in the identification of 345 contigs with homology to 189 known lipid genes in Arabidopsis. These included candidate genes for eleostearic acid metabolism such as diacylglycerol acyltransferase 1 and 2, and a phospholipid:diacylglycerol acyltransferase 1-related enzyme. Transcripts were also identified for a novel FAD2 gene encoding a functional Δ12 oleic acid desaturase with potential implications for eleostearic acid biosynthesis. Conclusions 454 deep sequencing, particularly with normalized cDNA populations, was an effective method for mining of genes associated with eleostearic acid metabolism in

  15. 小肠胆固醇吸收相关蛋白的研究进展%Several proteins involved in absorption of cholesterol in small intestine

    Institute of Scientific and Technical Information of China (English)

    袁敏; 徐东刚

    2015-01-01

    多种蛋白参与了小肠胆固醇的吸收,其中尼曼-匹克C1型类似蛋白1(Niemann-Pick C1 like 1,NPC1L1)主要介导小肠对胆固醇的吸收;小肠吸收的游离胆固醇在酰基辅酶A-胆固醇酰基转移酶2[acyl-coenzyme A(CoA)∶cholesterol acyltransferase 2,ACAT2]的催化下形成胆固醇酯并经淋巴系统进入血液循环,而未被酯化的胆固醇则通过ATP结合盒转运蛋白G5/G8[ATP-binding cassette(ABC) transporters G5/G8,ABCG5/ABCG8]分泌入肠腔,转录因子肝X受体( liver X receptor,LXR)在小肠胆固醇吸收过程中发挥了重要的调节作用。该文主要对小肠胆固醇吸收相关蛋白NPC1 L1、ABCG5/ABCG8、ACAT2和LXR的研究进展进行了综述。%Several proteins are involved in the absorption of cholesterol in small intestine.Niemann-Pick C1 like 1 (NPC1L1) mainly mediates the absorption of cholesterol, and acyl-coenzyme A ( CoA)∶cholesterol acyltransferase 2 (ACAT2) catalyzes the free cholesterol absorpted by intestine into cholesterol ester,while unesterified free cholesterol is secreted into intestinal lumen by ATP-binding cassette(ABC) transporters G5/G8(ABCG5/ABCG8).Transcription factor liver X receptor( LXR) plays an important role in the process of intestinal cholesterol absorption.The research progress in NPC1L1,ABCG5/ABCG8,ACAT2 and LXR is reviewed in this article.

  16. Delta 6- and delta 12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage (Borago officinalis).

    Science.gov (United States)

    Griffiths, G; Stobart, A K; Stymne, S

    1988-06-15

    acyltransferase (EC 2.3.1.20) may show a strong selectivity for gamma-linolenoyl-CoA and hence result in the efficient removal of this fatty acid from the acyl-CoA pool in vivo, leaving negligible substrate for utilization by the sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15). PMID:3421914

  17. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica.

    Science.gov (United States)

    Silverman, Andrew M; Qiao, Kangjian; Xu, Peng; Stephanopoulos, Gregory

    2016-04-01

    Single cell oil (SCO) is an attractive energy source due to scalability, utilization of low-cost renewable feedstocks, and type of product(s) made. Engineering strains capable of producing high lipid titers and yields is crucial to the economic viability of these processes. However, lipid synthesis in cells is a complex phenomenon subject to multiple layers of regulation, making gene target identification a challenging task. In this study, we aimed to identify genes in the oleaginous yeast Yarrowia lipolytica whose overexpression enhances lipid production by this organism. To this end, we examined the effect of the overexpression of a set of 44 native genes on lipid production in Y. lipolytica, including those involved in glycerolipid synthesis, fatty acid synthesis, central carbon metabolism, NADPH generation, regulation, and metabolite transport and characterized each resulting strain's ability to produce lipids growing on both glucose and acetate as a sole carbon source. Our results suggest that a diverse subset of genes was effective at individually influencing lipid production in Y. lipolytica, sometimes in a substrate-dependent manner. The most productive strain on glucose overexpressed the diacylglycerol acyltransferase DGA2 gene, increasing lipid titer, cellular content, and yield by 236, 165, and 246 %, respectively, over our control strain. On acetate, our most productive strain overexpressed the acylglycerol-phosphate acyltransferase SLC1 gene, with a lipid titer, cellular content, and yield increase of 99, 91, and 151 %, respectively, over the control strain. Aside from genes encoding enzymes that directly catalyze the reactions of lipid synthesis, other ways by which lipogenesis was increased in these cells include overexpressing the glycerol-3-phosphate dehydrogenase (GPD1) gene to increase production of glycerol head groups and overexpressing the 6-phosphogluconolactonase (SOL3) gene from the oxidative pentose phosphate pathway to increase NADPH

  18. Endogenous Bioactive Peptides as Potential Biomarkers for Atherosclerotic Coronary Heart Disease

    Directory of Open Access Journals (Sweden)

    Tsutomu Hirano

    2012-04-01

    Full Text Available Cardiovascular disease is the leading cause of death worldwide, with high medical costs and rates of disability. It is therefore important to evaluate the use of cardiovascular biomarkers in the early diagnosis of coronary artery disease (CAD. We have screened a variety of recently identified bioactive peptides candidates in anticipation that they would allow detection of atherosclerotic CAD. Especially, we have focused on novel anti-atherogenic peptides as indicators and negative risk factors for CAD. In vitro, in vivo and clinical studies indicated that human adiponectin, heregulin-β1, glucagon-like peptide-1 (GLP-1, and salusin-α, peptides of 244, 71, 30, and 28 amino acids, respectively, attenuate the development and progression of atherosclerotic lesions by suppressing macrophage foam cell formation via down-regulation of acyl-coenzyme A: cholesterol acyltransferase-1. Circulating levels of these peptides in the blood are significantly decreased in patients with CAD compared to patients without CAD. Receiver operating characteristic analyses showed that salusin-α is a more useful biomarker, with better sensitivity and specificity, compared with the others for detecting CAD. Therefore, salusin-α, heregulin-β1, adiponectin, and/or GLP-1, alone or in various combinations, may be useful as biomarkers for atherosclerotic CAD.

  19. Sex-specific association of ACAT-1 rs1044925 SNP and serum lipid levels in the hypercholesterolemic subjects

    Directory of Open Access Journals (Sweden)

    Wu Dong-Feng

    2012-01-01

    Full Text Available Abstract Background Acyl-CoA:cholesterol acyltransferase (ACAT is a key enzyme in cellular cholesterol homeostasis and in atherosclerosis. The cellular cholesterol efflux correlated with serum high-density lipoprotein cholesterol (HDL-C concentrations has shown to be impaired in hyperlipidemic mice. The present study was carried out to clarify the association of ACAT-1 rs1044925 single nucleotide polymorphism (SNP and serum lipid levels in the hyperlipidemic subjects. Methods A total of 821 unrelated subjects (hyperlipidemia, 476; normolipidemia, 345 aged 15-80 were included in the study. Genotyping of the ACAT-1 rs1044925 SNP was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results There was no significant difference in the genotypic and allelic frequencies of ACAT-1 rs1044925 SNP between the normolipidemic and hyperlipidemic subjects. The levels of total cholesterol (TC, HDL-C and apolipoprotein (Apo AI in hyperlipidemic subjects were different between the AA and AC/CC genotypes in male but not in female (P Conclusions The present study shows that the C allele carriers of ACAT-1 rs1044925 SNP in male hyperlipidemic subjects had higher serum TC, HDL-C and ApoAI levels than the C allele noncarriers. There is a sex (male-specific association of ACAT-1 rs1044925 SNP and serum HDL-C and ApoAI levels in the hypercholesterolemic subjects.

  20. Structural rearrangements of a polyketide synthase module during its catalytic cycle.

    Science.gov (United States)

    Whicher, Jonathan R; Dutta, Somnath; Hansen, Douglas A; Hale, Wendi A; Chemler, Joseph A; Dosey, Annie M; Narayan, Alison R H; Håkansson, Kristina; Sherman, David H; Smith, Janet L; Skiniotis, Georgios

    2014-06-26

    The polyketide synthase (PKS) mega-enzyme assembly line uses a modular architecture to synthesize diverse and bioactive natural products that often constitute the core structures or complete chemical entities for many clinically approved therapeutic agents. The architecture of a full-length PKS module from the pikromycin pathway of Streptomyces venezuelae creates a reaction chamber for the intramodule acyl carrier protein (ACP) domain that carries building blocks and intermediates between acyltransferase, ketosynthase and ketoreductase active sites (see accompanying paper). Here we determine electron cryo-microscopy structures of a full-length pikromycin PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of the ketosynthase, after extension to the β-keto intermediate, and after β-hydroxy product generation. The structures reveal the ACP dynamics for sequential interactions with catalytic domains within the reaction chamber, and for transferring the elongated and processed polyketide substrate to the next module in the PKS pathway. During the enzymatic cycle the ketoreductase domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules, and for the engineering of pathways to generate pharmacologically relevant molecules. PMID:24965656

  1. Stage-Specific Fatty Acid Fluxes Play a Regulatory Role in Glycerolipid Metabolism during Seed Development in Jatropha curcas L.

    Science.gov (United States)

    Chaitanya, Bharatula Sri Krishna; Kumar, Sumit; Kaki, Shiva Shanker; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Prasad, Rachapudi Badari Narayana; Sastry, Pidaparty Seshadri; Reddy, Attipalli Ramachandra

    2015-12-23

    The present study describes the changes in lipid profile as well as fatty acid fluxes during seed development in Jatropha curcas L. Endosperm from 34, 37, and 40 days after anthesis (DAA), incubated with [(14)C]acetate, showed significant synthesis of phosphatidylcholine (PC) at seed maturation. The fatty acid methyl ester profile showed PC from 34 DAA was rich in palmitic acid (16:0), whereas PC from 37 and 40 DAA was rich in oleic acid (18:1n-9). Molecular species analysis of diacylglycerol (DAG) indicated DAG (16:0/18:2n-6) was in abundance at 34 DAA, whereas DAG (18:1n-9/18:2n-6) was significantly high at 40 DAA. Triacylglycerol (TAG) analysis revealed TAG (16:0/18:2n-6/16:0) was abundant at 34 DAA, whereas TAG (18:1n-9/18:2n-6/18:1n-9) formed the majority at 40 DAA. Expression of two types of diacylglycerol acyltransferases varied with seed maturation. These data demonstrate stage-specific distinct pools of PC and DAG synthesis during storage TAG accumulation in Jatropha seed. PMID:26628196

  2. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle.

    Science.gov (United States)

    Thaller, G; Kühn, C; Winter, A; Ewald, G; Bellmann, O; Wegner, J; Zühlke, H; Fries, R

    2003-10-01

    Intramuscular fat content, also assessed as marbling of meat, represents an important beef quality trait. Recent work has mapped a quantitative trait locus (QTL) with an effect on marbling to the centromeric region of bovine chromosome 14, with the gene encoding thyroglobulin (TG) being proposed as a positional and functional candidate gene for this QTL. Recently, the gene encoding diacylglycerol O-acyltransferase (DGAT1), which also has been mapped within the region of the marbling QTL, has been demonstrated to affect the fat content of milk. In the present study, the effects of a 5'-polymorphism of TG and of a lysine/alanine polymorphism of DGAT1 on the fat content of musculus (m.) semitendinosus and m. longissimus dorsi in 55 bovine animals (28 German Holstein and 27 Charolais) has been investigated. Significant effects were found for both candidate genes in both the breeds. These effects seem to be independent of one another because the alleles of the two polymorphisms showed no statistically significant disequilibrium. The DGAT1 effect is mainly on the m. semitendinosus. The TG polymorphism only affects m. longissimus dorsi. However, both intramuscular fat enhancing effects seem to be recessive. The possibility of two linked loci, acting recessively on intramuscular fat content, will require special strategies when selecting for higher marbling scores. PMID:14510671

  3. Altering small and medium alcohol selectivity in the wax ester synthase.

    Science.gov (United States)

    Barney, Brett M; Ohlert, Janet M; Timler, Jacobe G; Lijewski, Amelia M

    2015-11-01

    The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT or wax ester synthase) catalyzes the terminal reaction in the bacterial wax ester biosynthetic pathway, utilizing a range of alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. The wild-type wax ester synthase Maqu_0168 from Marinobacter aquaeolei VT8 exhibits a preference for longer fatty alcohols, while applications with smaller alcohols would yield products with desired biotechnological properties. Small and medium chain length alcohol substrates are much poorer substrates for the native enzyme, which may hinder broad application of the wax ester synthase in many proposed biosynthetic schemes. Developing approaches to improve enzyme activity toward specific smaller alcohol substrates first requires a clear understanding of which amino acids of the primary sequences of these enzymes contribute to substrate specificity in the native enzyme. In this report, we surveyed a range of potential residues and identified the leucine at position 356 and methionine at position 405 in Maqu_0168 as residues that affected selectivity toward small, branched, and aromatic alcohols when substituted with different amino acids. This analysis provides evidence of residues that line the binding site for wax ester synthase, which will aid rational approaches to improve this enzyme with specific substrates.

  4. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism

    Science.gov (United States)

    Sachdev, Vinay; Leopold, Christina; Bauer, Raimund; Patankar, Jay V.; Iqbal, Jahangir; Obrowsky, Sascha; Boverhof, Renze; Doktorova, Marcela; Scheicher, Bernhard; Goeritzer, Madeleine; Kolb, Dagmar; Turnbull, Andrew V.; Zimmer, Andreas; Hoefler, Gerald; Hussain, M. Mahmood; Groen, Albert K.; Kratky, Dagmar

    2016-01-01

    Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1−/−) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1−/− and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia. PMID:27344248

  5. A Modular Bioplatform Based on a Versatile Supramolecular Multienzyme Complex Directly Attached to Graphene.

    Science.gov (United States)

    Alshammari, Abeer; Posner, Mareike G; Upadhyay, Abhishek; Marken, Frank; Bagby, Stefan; Ilie, Adelina

    2016-08-17

    Developing generic strategies for building adaptable or multifunctional bioplatforms is challenging, in particular because protein immobilization onto surfaces often causes loss of protein function and because multifunctionality usually necessitates specific combinations of heterogeneous elements. Here, we introduce a generic, modular bioplatform construction strategy that uses cage-like supramolecular multienzyme complexes as highly adaptable building blocks immobilized directly and noncovalently on graphene. Thermoplasma acidophilum dihydrolipoyl acyltransferase (E2) supramolecular complexes organize as a monolayer or can be controllably transferred onto graphene, preserving their supramolecular form with specific molecular recognition capability and capacity for engineering multifunctionality. This E2-graphene platform can bind enzymes (here, E1, E2's physiological partner) without loss of enzyme function; in this test case, E1 catalytic activity was detected on E2-graphene over 6 orders of magnitude in substrate concentration. The E2-graphene platform can be multiplexed via patterned cotransfer of differently modified E2 complexes. As the E2 complexes are robust and highly customizable, E2-graphene is a platform onto which multiple functionalities can be built.

  6. Kalpaamruthaa ameliorates mitochondrial and metabolic alterations in diabetes mellitus induced cardiovascular damage.

    Science.gov (United States)

    Latha, Raja; Shanthi, Palanivelu; Sachdanandam, Panchanadham

    2014-12-01

    Efficacy of Kalpaamruthaa on the activities of lipid and carbohydrate metabolic enzymes, electron transport chain complexes and mitochondrial ATPases were studied in heart and liver of experimental rats. Cardiovascular damage (CVD) was developed in 8 weeks after type 2 diabetes mellitus induction with high fat diet (2 weeks) and low dose of streptozotocin (2 × 35 mg/kg b.w. i.p. in 24 hr interval). In CVD-induced rats, the activities of total lipase, cholesterol ester hydrolase and cholesterol ester synthetase were increased, while lipoprotein lipase and lecithin-cholesterol acyltransferase activities were decreased. The activities of lipid-metabolizing enzymes were altered by Kalpaamruthaa in CVD-induced rats towards normal. Kalpaamruthaa modulated the activities of glycolytic enzymes (hexokinase, phosphogluco-isomerase, aldolase and glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1, 6-bisphosphatase) and glycogenolytic enzyme (glycogen phosphorylase) along with increased glycogen content in the liver of CVD-induced rats. The activities of isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, α-ketoglutarate dehydrogenase, Complexes and ATPases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) were decreased in CVD-induced rats, which were ameliorated by the treatment with Kalpaamruthaa. This study ascertained the efficacy of Kalpaamruthaa for the treatment of CVD in diabetes through the modulation of metabolizing enzymes and mitochondrial dysfunction.

  7. Lipid characterization of an arachidonic acid-rich oil producing fungus Mortierella alpina

    Institute of Scientific and Technical Information of China (English)

    Wenjia Wu; Jiacheng Yan; Xiaojun Ji; Xin Zhang; Jingsheng Shang; Lina Sun; Lujing Ren; He Huang

    2015-01-01

    Mortierel a alpina has been considered as the most effective producer of arachidonic acid (ARA)-rich oil. It was found that several methods could improve the percentage of ARA in total lipids successful y, as they activated the desaturation system on the endoplasmic reticulum. Additionally, in M. alpina the ARA exists in several forms, such as triacylglycerol (TAG), and diacylglycerol (DAG). These forms are caused by different acyltransferases and they determine the nutrient value of the microbial oil. However, few works revealed de-tailed fatty acid distribution among lipid classes, which to some extent impeded the accurate regulation in ARA accumulation. Herein, this paper gives information on the accumulation process of main lipid classes and the changes of fatty acid composition in these lipids during ARA accumulation period in M. alpina. The result dem-onstrates that TAG was the dominant component of the total lipids, and it is the main form for ARA storage. The ARA enrichment stage occurred during 168–192 h when the amount of total lipids maintained steady. Further analysis indicated that the newly formed ARA-TAG might come from the incorporation and modification of sat-urated and monounsaturated fatty acids in other lipid classes. This work could be helpful for further optimization of ARA-rich TAG production.

  8. Resistance to erucic acid as a selectable marker for peroxisomal activity: isolation of revertants of an infantile Refsum disease cell line.

    Science.gov (United States)

    Bachir Bioukar, E; Straehli, F; Ng, K H; Rolland, M O; Hashimoto, T; Carreau, J P; Deschatrette, J

    1994-01-01

    A system based on the ability of cells to oxidize very long-chain fatty acids (VLCFA) was developed to select in vitro normal human fibroblasts from fibroblasts of patients suffering from peroxisomal disorders with multienzymatic deficiencies: Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum disease (IRD). Cells treated with various concentrations of erucic acid (C22:1 n-9) revealed an enhanced toxicity of this fatty acid for the fibroblasts of patients compared with normal cells. This differential toxicity is correlated with variable accumulations of C22:1 n-9 and the absence of beta-oxidation products in the mutants. Revertants from clonal IRD cell lines were isolated in the selective medium at frequencies ranging from 3 x 10(-7) to 4 x 10(-6) depending on the line. After six weeks of growth in the absence of selective pressure, the variants exhibited a resistance level to C22:1 n-9 identical to that of normal cells. Furthermore, beta-oxidation of VLCFA is re-established in these selected cells as well as dihydroxyacetone phosphate acyltransferase activity. Immunoblot experiments also demonstrated a restored pattern of acyl-CoA oxidase molecular forms. Last, immunofluorescence studies revealed the presence of cytoplasmic structures that were absent in the original IRD cells. Thus, both the deficiencies in metabolic pathways and paucity of the organelle are at least partially corrected in the selected clones.

  9. Hypoxia-inducible factor 2α plays a critical role in the formation of alveoli and surfactant.

    Science.gov (United States)

    Huang, Yadi; Kempen, Marjon Buscop-van; Munck, Anne Boerema-de; Swagemakers, Sigrid; Driegen, Siska; Mahavadi, Poornima; Meijer, Dies; van Ijcken, Wilfred; van der Spek, Peter; Grosveld, Frank; Günther, Andreas; Tibboel, Dick; Rottier, Robbert J

    2012-02-01

    Alveolarization of the developing lung is an important step toward the switch from intrauterine life to breathing oxygen-rich air after birth. The distal airways structurally change to minimize the gas exchange path, and Type II pneumocytes increase the production of surfactants, which are required to reduce surface tension at the air-liquid interface in the alveolus. Hypoxia-inducible factor 2α (Hif2α) is an oxygen-regulated transcription factor expressed in endothelial and Type II cells, and its expression increases toward the end of gestation. We investigated the role of Hif2α in Type II cells by conditionally expressing an oxygen-insensitive mutant of Hif2α in airway epithelial cells during development. Newborn mice expressing the mutant Hif2α were born alive but quickly succumbed to respiratory distress. Subsequent analysis of the lungs revealed dilated alveoli covered with enlarged, aberrant Type II cells and a diminished number of Type I cells. The Type II cells accumulated glycogen in part by increased glucose uptake via the up-regulation of the glucose transporter 1. Furthermore, the cells lacked two crucial enzymes involved in the metabolism of glycogen into surfactant lipids, lysophosphatidylcholine acyltransferase and ATP-binding cassette sub-family A member 3. We conclude that Hif2α is a key regulator in alveolar maturation and the production of phospholipids by Type II cells. PMID:22298531

  10. Decrease in membrane phospholipid unsaturation induces unfolded protein response.

    Science.gov (United States)

    Ariyama, Hiroyuki; Kono, Nozomu; Matsuda, Shinji; Inoue, Takao; Arai, Hiroyuki

    2010-07-16

    Various kinds of fatty acids are distributed in membrane phospholipids in mammalian cells and tissues. The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by diet and by altered activities of lipid-metabolizing enzymes such as fatty acid desaturases. However, little is known about how mammalian cells respond to changes in phospholipid fatty acid composition. In this study we showed that stearoyl-CoA desaturase 1 (SCD1) knockdown increased the amount of saturated fatty acids and decreased that of monounsaturated fatty acids in phospholipids without affecting the amount or the composition of free fatty acid and induced unfolded protein response (UPR), evidenced by increased expression of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) mRNAs and splicing of Xbox-binding protein 1 (XBP1) mRNA. SCD1 knockdown-induced UPR was rescued by various unsaturated fatty acids and was enhanced by saturated fatty acid. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), which incorporates preferentially polyunsaturated fatty acids into phosphatidylcholine, was up-regulated in SCD1 knockdown cells. Knockdown of LPCAT3 synergistically enhanced UPR with SCD1 knockdown. Finally we showed that palmitic acid-induced UPR was significantly enhanced by LPCAT3 knockdown as well as SCD1 knockdown. These results suggest that a decrease in membrane phospholipid unsaturation induces UPR.

  11. The effect of sex and DGAT1 gene polymorphism on fat deposition traits in simmental beef cattle

    Directory of Open Access Journals (Sweden)

    Karolyi D.

    2012-01-01

    Full Text Available This study investigated diacylglycerol O-acyltransferase 1 (DGAT1 gene K232A mutation in Simmental cattle and its effects on fat deposition traits. The sample (n=26 consisted of yearling bulls and beef heifers from an intensive rearing system in Croatia. Carcass fatness was assessed by total dissection method, whereas intramuscular fat (m. longissimus dorsi content was determined using Soxhlet extraction with hydrolysis. Intramuscular fatty acid composition was determined by gas liquid chromatography using in situ transesterification. The muscle DNA was extracted and Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCRRFLP analysis of the 411 bp fragment of DGAT1 gene was applied. The DGAT1 K allele was less frequent in heifers than in bulls, with the overall allelic frequency of 17% K allele. Only KA and AA genotypes were obtained, without deviation from the Hardy-Weinberg equilibrium. Heifers showed a higher degree of carcass and muscle fattening with more unsaturated intramuscular fat than bulls; however, there was no interaction between sex and DGAT1 gene. Generally, no significant difference between DGAT1 AA and KA animals was observed for any of the examined traits, except the slightly higher carcass share of the fattest beef category and higher intramuscular C14:0 desaturation index in KA heterozygous.

  12. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Directory of Open Access Journals (Sweden)

    Daniel F. Markgraf

    2014-01-01

    Full Text Available Eukaryotic cells store neutral lipids such as triacylglycerol (TAG in lipid droplets (LDs. Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER. We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG. During LD breakdown in early exponential phase, an ER membrane protein (Ice2p facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  13. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER

    Science.gov (United States)

    Markgraf, Daniel F.; Klemm, Robin W.; Junker, Mirco; Hannibal-Bach, Hans K.; Ejsing, Christer S.; Rapoport, Tom A.

    2014-01-01

    Eukaryotic cells store neutral lipids, such as triacylglycerol (TAG), in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show in S. cerevisiae that LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein, Ice2p, facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG-degradation and -synthesis, promoting the rapid re-localization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER, and explain how cells switch neutral lipid metabolism from storage to consumption. PMID:24373967

  14. Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian.

    Science.gov (United States)

    Nakatsuka, Takashi; Mishiba, Kei-ichiro; Kubota, Akiko; Abe, Yoshiko; Yamamura, Saburo; Nakamura, Noriko; Tanaka, Yoshikazu; Nishihara, Masahiro

    2010-02-15

    Ornamental gentian plants have vivid-blue flowers. The main factor contributing to the flower colour is the accumulation of a polyacylated delphinidin 'gentiodelphin' in their petals. Although in vitro studies proposed that acylation plays an important role in the stability and development of gentian blue colour, the in vivo stability of the polyacylated anthocyanin was not clearly demonstrated. Thus, to reveal the importance of anthocyanin modification, especially acylation, and to engineer new colours of gentian flowers, we used chimeric RNAi technology to produce transgenic gentian plants with downregulated anthocyanin 5,3'-aromatic acyltransferase (5/3'AT) and flavonoid 3',5'-hydroxylase (F3'5'H) activities, which are both essential enzymes for gentiodelphin biosynthesis. Two lines of flower colour-modified plants were obtained from fifteen transgenic gentian plants. Clone no. 1 exhibited a lilac flower colour and clone no. 15 exhibited pale-blue flowers. RNA gel blot analysis confirmed that both transgenic lines had markedly suppressed 5/3'AT transcripts, whereas clone no. 15 had fewer F3'5'H transcripts than clone no. 1 and untransformed control plants. HPLC analysis of anthocyanin compositions showed that downregulation of the 5/3'AT gene led to increased accumulation of non-acylated anthocyanins, as expected. These results demonstrated that genetic engineering to reduce the accumulation of polyacylated anthocyanins could cause modulations of flower colour.

  15. The crystal structure of Rv1347c, a putative antibiotic resistance protein from Mycobacterium tuberculosis, reveals a GCN5-related fold and suggests an alternative function in siderophore biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Card, G L; Peterson, N A; Smith, C A; Rupp, B; Schick, B M; Baker, E N

    2005-02-15

    Mycobacterium tuberculosis, the cause of TB, is a devastating human pathogen. The emergence of multi-drug resistance in recent years has prompted a search for new drug targets and for a better understanding of mechanisms of resistance. Here we focus on the gene product of an open reading frame from M. tuberculosis, Rv1347c, which is annotated as a putative aminoglycoside N-acetyltransferase. The Rv1347c protein does not show this activity, however, and we show from its crystal structure, coupled with functional and bioinformatic data, that its most likely role is in the biosynthesis of mycobactin, the M. tuberculosis siderophore. The crystal structure of Rv1347c was determined by MAD phasing from selenomethionine-substituted protein and refined at 2.2 {angstrom} resolution (R = 0.227, R{sub free} = 0.257). The protein is monomeric, with a fold that places it in the GCN5-related N-acetyltransferase (GNAT) family of acyltransferases. Features of the structure are an acylCoA binding site that is shared with other GNAT family members, and an adjacent hydrophobic channel leading to the surface that could accommodate long-chain acyl groups. Modeling the postulated substrate, the N{sup {var_epsilon}}-hydroxylysine side chain of mycobactin, into the acceptor substrate binding groove identifies two residues at the active site, His130 and Asp168, that have putative roles in substrate binding and catalysis.

  16. Effect of C-Terminal S-Palmitoylation on D2 Dopamine Receptor Trafficking and Stability.

    Directory of Open Access Journals (Sweden)

    Brittany Ebersole

    Full Text Available We have used bioorthogonal click chemistry (BCC, a sensitive non-isotopic labeling method, to analyze the palmitoylation status of the D2 dopamine receptor (D2R, a G protein-coupled receptor (GPCR crucial for regulation of processes such as mood, reward, and motor control. By analyzing a series of D2R constructs containing mutations in cysteine residues, we found that palmitoylation of the D2R most likely occurs on the C-terminal cysteine residue (C443 of the polypeptide. D2Rs in which C443 was deleted showed significantly reduced palmitoylation levels, plasma membrane expression, and protein stability compared to wild-type D2Rs. Rather, the C443 deletion mutant appeared to accumulate in the Golgi, indicating that palmitoylation of the D2R is important for cell surface expression of the receptor. Using the full-length D2R as bait in a membrane yeast two-hybrid (MYTH screen, we identified the palmitoyl acyltransferase (PAT zDHHC4 as a D2R interacting protein. Co-immunoprecipitation analysis revealed that several other PATs, including zDHHC3 and zDHHC8, also interacted with the D2R and that each of the three PATs was capable of affecting the palmitoylation status of the D2R. Finally, biochemical analyses using D2R mutants and the palmitoylation blocker, 2-bromopalmitate indicate that palmitoylation of the receptor plays a role in stability of the D2R.

  17. Foliar application of amino acids modulates aroma components of 'FUJI' apple (malus domestica L.)

    International Nuclear Information System (INIS)

    Volatile flavor compounds play a key role in determining the perception and acceptability as well as enhancing market competitiveness of apple (Malus domestica L.). In our study, we evaluated the effects of foliar-applied four different amino acids, i.e. leucine (Leu), isoleucine (Ile), valine (Val) and alanine (Ala), on aroma components and two key enzymes activities involved in aroma metabolism of Fuji apple. The total amount of aromatic components under Ala treatment was significantly higher than those under other treatments. There was a considerable increase in total aroma content, including hexanal, 2-methyl-butanol, nonanal, (E)-2-hexenal, methyleugenol, ethyl acetate, butanoic acid-pentyl ester, butanoic acid-hexyl ester, butyric acid ethyl ester, acetic acid-2-methyl-butyl ester, treated with spraying amino acids compared with the control. More specifically, hexanal, 2-methyl-butanol, methyleugenol and acetic acid-2-methyl-butyl ester exhibited a greater substantial increase of their contents than those of in other ingredients. However, butanoic acid-2-methyl-2-methyl butyl ester maintained a highest level among all aroma components regardless of different amino acids application. Furthermore, the activities of alcohol dehydrogenase (ADH) and alcohol acyltransferase (AAT) were much higher under Ala treatment than those under other treatments. We concluded that foliar-applied organic nitrogen (N), especially for Ala, can improve aroma metabolism and it could be used in production to enhance fruit quality on a commercial scale. (author)

  18. Ghrelin and the brain-gut axis as a pharmacological target for appetite control.

    Science.gov (United States)

    Seim, Inge; El-Salhy, Magdy; Hausken, Trygve; Gundersen, Doris; Chopin, Lisa

    2012-01-01

    Appetite regulation is highly complex and involves a large number of orexigenic and anorexigenic peptide hormones. These are small, processed, secreted peptides derived from larger prepropeptide precursors. These peptides are important targets for the development of therapeutics for obesity, a global health epidemic. As a case study, we consider the ghrelin axis. The ghrelin axis is likely to be a particularly useful drug target, as it also plays a role in energy homeostasis, adipogenesis, insulin regulation and reward associated with food intake. Ghrelin is the only known circulating gut orexigenic peptide hormone. As it appears to play a role in diet-induced obesity, blocking the action of ghrelin is likely to be effective for treating and preventing obesity. The ghrelin peptide has been targeted using a number of approaches, with ghrelin mirror-image oligonucleotides (Spiegelmers) and immunotherapy showing some promise. The ghrelin receptor, the growth hormone secretagogue receptor, may also provide a useful target and a number of antagonists and inverse agonists have been developed. A particularly promising new target is the enzyme which octanoylates ghrelin, ghrelin O-acyltransferase (GOAT), and drugs that inhibit GOAT are likely to circumvent pharmacological issues associated with approaches that directly target ghrelin or its receptor.

  19. Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl and sour (citric acid tastants.

    Directory of Open Access Journals (Sweden)

    Yu-Kyong Shin

    Full Text Available BACKGROUND: The gustatory system plays a critical role in determining food preferences, food intake and energy balance. The exact mechanisms that fine tune taste sensitivity are currently poorly defined, but it is clear that numerous factors such as efferent input and specific signal transduction cascades are involved. METHODOLOGY/PRINCIPAL FINDINGS: Using immunohistochemical analyses, we show that ghrelin, a hormone classically considered to be an appetite-regulating hormone, is present within the taste buds of the tongue. Prepro-ghrelin, prohormone convertase 1/3 (PC 1/3, ghrelin, its cognate receptor (GHSR, and ghrelin-O-acyltransferase (GOAT , the enzyme that activates ghrelin are expressed in Type I, II, III and IV taste cells of mouse taste buds. In addition, ghrelin and GHSR co-localize in the same taste cells, suggesting that ghrelin works in an autocrine manner in taste cells. To determine a role for ghrelin in modifying taste perception, we performed taste behavioral tests using GHSR null mice. GHSR null mice exhibited significantly reduced taste responsivity to sour (citric acid and salty (sodium chloride tastants. CONCLUSIONS/SIGNIFICANCE: These findings suggest that ghrelin plays a local modulatory role in determining taste bud signaling and function and could be a novel mechanism for the modulation of salty and sour taste responsivity.

  20. MGAT2 deficiency ameliorates high-fat diet-induced obesity and insulin resistance by inhibiting intestinal fat absorption in mice

    Directory of Open Access Journals (Sweden)

    Tsuchida Takuma

    2012-06-01

    Full Text Available Abstract Background Resynthesis of triglycerides in enterocytes of the small intestine plays a critical role in the absorption of dietary fat. Acyl-CoA:monoacylglycerol acyltransferase-2 (MGAT2 is highly expressed in the small intestine and catalyzes the synthesis of diacylglycerol from monoacylglycerol and acyl-CoA. To determine the physiological importance of MGAT2 in metabolic disorders and lipid metabolism in the small intestine, we constructed and analyzed Mgat2-deficient mice. Results In oral fat tolerance test (OFTT, Mgat2-deficient mice absorbed less fat into the circulation. When maintained on a high-fat diet (HFD, Mgat2-deficient mice were protected from HFD-induced obesity and insulin resistance. Heterozygote (Mgat2+/− mice had an intermediate phenotype between Mgat2+/+ and Mgat2−/− and were partially protected from metabolic disorders. Despite of a decrease in fat absorption in the Mgat2-deficient mice, lipid levels in the feces and small intestine were comparable among the genotypes. Oxygen consumption was increased in the Mgat2-deficient mice when maintained on an HFD. A prominent upregulation of the genes involved in fatty acid oxidation was observed in the duodenum but not in the liver of the Mgat2-deficient mice. Conclusion These results suggest that MGAT2 has a pivotal role in lipid metabolism in the small intestine, and the inhibition of MGAT2 activity may be a promising strategy for the treatment of obesity-related metabolic disorders.

  1. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    Directory of Open Access Journals (Sweden)

    Jose L S Lopes

    Full Text Available Diacylglycerol acyltransferase 1 (DGAT1 is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  2. Rapid screening of an ordered fosmid library to clone multiple polyketide synthase genes of the phytopathogenic fungus Cladosporium phlei.

    Science.gov (United States)

    So, Kum-Kang; Kim, Jung-Mi; Nguyen, Ngoc-Luong; Park, Jin-Ah; Kim, Beom-Tae; Park, Seung-Moon; Hwang, Ki-Jun; Kim, Dae-Hyuk

    2012-12-01

    In previous studies, the biological characteristics of the fungus Cladosporium phlei and its genetic manipulation by transformation were assessed to improve production of the fungal pigment, phleichrome, which is a fungal perylenequinone that plays an important role in the production of a photodynamic therapeutic agent. However, the low production of this metabolite by the wild-type strain has limited its application. Thus, we attempted to clone and characterize the genes that encode polyketide synthases (PKS), which are responsible for the synthesis of fungal pigments such as perylenequinones including phleichrome, elsinochrome and cercosporin. Thus, we performed genomic DNA PCR using 11 different combinations of degenerate primers targeting conserved domains including β-ketoacyl synthase and acyltransferase domains. Sequence comparison of the PCR amplicons revealed a high homology to known PKSs, and four different PKS genes showing a high similarity to three representative types of PKS genes were amplified. To obtain full-length PKS genes, an ordered gene library of a phleichrome-producing C. phlei strain (ATCC 36193) was constructed in a fosmid vector and 4800 clones were analyzed using a simple pyramidal arrangement system. This hierarchical clustering method combines the efficiency of PCR with enhanced specificity. Among the three representative types of PKSs, two reducing, one partially reducing, and one non-reducing PKS were identified. These genes were subsequently cloned, sequenced, and characterized. Biological characterization of these genes to determine their roles in phleichrome production is underway, with the ultimate aim of engineering this pathway to overproduce the desired substance.

  3. Oxidation-labile subfraction of human plasma low density lipoprotein isolated by ion-exchange chromatography.

    Science.gov (United States)

    Shimano, H; Yamada, N; Ishibashi, S; Mokuno, H; Mori, N; Gotoda, T; Harada, K; Akanuma, Y; Murase, T; Yazaki, Y

    1991-05-01

    We isolated subfractions of human plasma low density lipoprotein (LDL) using ion-exchange chromatography. Plasma LDL from normolipidemic subjects were applied to a DEAE Sepharose 6B column. After elution of the bulk of LDL at 150 mM NaCl (the major fraction), the residual LDL was eluted at 500 mM NaCl and designated as the minor fraction. The minor fraction, only less than 1% of total LDL, tended to be somewhat similar in certain properties to oxidized LDL, e.g., an increased negative charge, higher protein/cholesterol ratio, and a higher flotation density than native LDL. These results were consistent with data reported by Avogaro et al. (1988. Arteriosclerosis. 8: 79-87). However, assays of 125I-labeled LDL binding activity for LDL receptors equal to that of the major fraction. Incorporation of [14C]oleate into cholesteryl ester [acyl-CoA:cholesterol acyltransferase (ACAT) activity] in mouse peritoneal macrophages incubated with the minor fraction was only slightly greater than that with the major fraction. Incubation of the minor fraction with 0.5 microM Cu2+ caused a remarkable stimulation of ACAT activity, while stimulation by the major fraction required incubation with 5 microM Cu2+, suggesting that the minor fraction was relatively labile to oxidation. The minor but definite presence of a plasma LDL subfraction more negative and susceptible to oxidation implicates the possibility of its association with atherogenesis. PMID:2072039

  4. Effect of casein genes - beta-LGB, DGAT1, GH, and LHR - on milk production and milk composition traits in crossbred Holsteins.

    Science.gov (United States)

    Molee, A; Poompramun, C; Mernkrathoke, P

    2015-03-30

    The objectives of this study were to determine the effects of a single gene and composite genotype of the casein gene family, including the beta-lactoglobulin gene (beta-LGB), acyl-CoA: diacylglycerol acyltransferase 1 gene (DGAT1), growth hormone gene (GH), and luteinizing hormone receptor gene (LHR) on milk yield, milk composition, the percentage of fat, protein, solids-not-fat, and total solid in crossbred Holsteins. A total of 231 crossbred Holstein cows were examined for the study. The genotype of the beta-casein gene was analyzed by allele-specific polymerase chain reaction, while the alpha-S1, alpha-S2, kappa-casein, DGAT1, beta-LGB, and GH genes were analyzed using a polymerase chain reaction-restriction fragment length polymorphism assay. The association between genes and milk yield and milk composition was analyzed. Three pairs of genes, for which significant associations were detected, were beta + kappa-casein, DGAT1 + beta-casein, and GH + beta-LGB. In the single-gene model, most loci are significantly associated with traits. A significant association between the composite genotype and the traits was detected in all composite genotypes. GH + beta-LGB appears to be the most suitable variants for improving milk production and percentage of milk protein. Overall, the effects of the composite genotype and single gene were different. A physical or functional relationship between genes is necessary for investigating gene markers.

  5. Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast, Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids.

    Science.gov (United States)

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2006-07-15

    Pseudozyma antarctica T-34 secretes a large amount of biosurfactants (BS), mannosylerythritol lipids (MEL), from different carbon sources such as hydrocarbons and vegetable oils. The detailed biosynthetic pathway of MEL remained unknown due to lack of genetic information on the anamorphic basidiomycetous yeasts, including the genus Pseudozyma. Here, in order to obtain genetic information on P. antarctica T-34, we constructed a cDNA library from yeast cells producing MEL from soybean oil and identified the genes expressed through the creation of an expressed sequence tags (EST) library. We generated 398 ESTs, assembled into 146 contiguous sequences. Based upon a BLAST search similarity cut-off of Eacyltransferase, were demonstrated to be highly involved in MEL biosynthesis in soybean oil-grown cells. PMID:16845679

  6. Peroxisomes contribute to biosynthesis of extracellular glycolipids in fungi.

    Science.gov (United States)

    Freitag, Johannes; Ast, Julia; Linne, Uwe; Stehlik, Thorsten; Martorana, Domenica; Bölker, Michael; Sandrock, Björn

    2014-07-01

    Many microorganisms secrete surface-active glycolipids. The basidiomycetous fungus Ustilago maydis produces two different classes of glycolipids, mannosylerythritol lipids (MEL) and ustilagic acids (UAs). Here we report that biosynthesis of MELs is partially localized in peroxisomes and coupled to peroxisomal fatty acid degradation. The acyltransferases, Mac1 and Mac2, which acylate mannosylerythritol with fatty acids of different length, contain a type 1 peroxisomal targeting signal (PTS1). We demonstrate that Mac1 and Mac2 are targeted to peroxisomes, while other enzymes involved in MEL production reside in different compartments. Mis-targeting of Mac1 and Mac2 to the cytosol did not block MEL synthesis but promoted production of MEL species with altered acylation pattern. This is in contrast to peroxisome deficient mutants that produced MELs similar to the wild type. We could show that cytosolic targeting of Mac1 and Mac2 reduces the amount of UA presumably due to competition for overlapping substrates. Interestingly, hydroxylated fatty acids characteristic for UAs appear in MELs corroborating cross-talk between both biosynthesis pathways. Therefore, peroxisomal localization of MEL biosynthesis is not only prerequisite for generation of the natural spectrum of MELs, but also facilitates simultaneous assembly of different glycolipids in a single cell. PMID:24835306

  7. The Tomato MIXTA-Like Transcription Factor Coordinates Fruit Epidermis Conical Cell Development and Cuticular Lipid Biosynthesis and Assembly.

    Science.gov (United States)

    Lashbrooke, Justin; Adato, Avital; Lotan, Orfa; Alkan, Noam; Tsimbalist, Tatiana; Rechav, Katya; Fernandez-Moreno, Josefina-Patricia; Widemann, Emilie; Grausem, Bernard; Pinot, Franck; Granell, Antonio; Costa, Fabrizio; Aharoni, Asaph

    2015-12-01

    The epidermis of aerial plant organs is the primary source of building blocks forming the outer surface cuticular layer. To examine the relationship between epidermal cell development and cuticle assembly in the context of fruit surface, we investigated the tomato (Solanum lycopersicum) MIXTA-like gene. MIXTA/MIXTA-like proteins, initially described in snapdragon (Antirrhinum majus) petals, are known regulators of epidermal cell differentiation. Fruit of transgenically silenced SlMIXTA-like tomato plants displayed defects in patterning of conical epidermal cells. They also showed altered postharvest water loss and resistance to pathogens. Transcriptome and cuticular lipids profiling coupled with comprehensive microscopy revealed significant modifications to cuticle assembly and suggested SlMIXTA-like to regulate cutin biosynthesis. Candidate genes likely acting downstream of SlMIXTA-like included cytochrome P450s (CYPs) of the CYP77A and CYP86A subfamilies, LONG-CHAIN ACYL-COA SYNTHETASE2, GLYCEROL-3-PHOSPHATE SN-2-ACYLTRANSFERASE4, and the ATP-BINDING CASSETTE11 cuticular lipids transporter. As part of a larger regulatory network of epidermal cell patterning and L1-layer identity, we found that SlMIXTA-like acts downstream of SlSHINE3 and possibly cooperates with homeodomain Leu zipper IV transcription factors. Hence, SlMIXTA-like is a positive regulator of both cuticle and conical epidermal cell formation in tomato fruit, acting as a mediator of the tight association between fruit cutin polymer formation, cuticle assembly, and epidermal cell patterning.

  8. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.

    Science.gov (United States)

    Metz, J G; Pollard, M R; Anderson, L; Hayes, T R; Lassner, M W

    2000-03-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.

  9. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis.

    Science.gov (United States)

    Lardizabal, K D; Metz, J G; Sakamoto, T; Hutton, W C; Pollard, M R; Lassner, M W

    2000-03-01

    Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a beta-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. (13)C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds.

  10. Triton X-114 cloud point extraction to subfractionate blood plasma proteins for two-dimensional gel electrophoresis.

    Science.gov (United States)

    Jessen, Flemming; Wulff, Tune

    2015-09-15

    A simple and reproducible procedure for enrichment of a plasma protein subfraction suitable for two-dimensional polyacrylamide gel electrophoresis (2DE) was developed, using a Triton X-114-based cloud point extraction (CPE). Appropriate conditions for such a CPE procedure were found by SDS-PAGE to be a plasma protein concentration of about 10mg/ml in 3% (w/v) Triton X-114. 2DE of proteins obtained by CPE of 400 μl of human plasma revealed about 200 spots constituting a spot pattern very different from the pattern of total plasma. The CPE procedure only had a limited contribution to the technical variation. Identification of about 60 spots, representing only 22 proteins, revealed that several proteins in the obtained subfraction were present in more isoforms or modifications. Among these were apolipoproteins (A-1, D, E, L1, and M), haptoglobin-related protein, phosphatidylcholine-sterol acyltransferase, serum amyloid A, and serum paraoxonase/arylesterase 1, which are proteins of a hydrophobic nature, as in plasma they relate to lipoprotein particles. Thus, Triton X-114-based CPE is a simple plasma prefractionation tool, attractive for detailed 2DE studies of hydrophobic plasma proteins and their isoforms or modifications.

  11. Evaluation of different lipid sources in diet of pacific white shrimp Litopenaeus vannamei at low salinity

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2015-11-01

    Full Text Available Litopenaeus vannamei (1.98 ± 0.28 g were fed diets containing soybean oil (SBO, beef tallow (BFT, fish oil (FIO, linseed oil (LNO, and an equal combination of SBO + BFT + FIO (SBF or SBO + BFT + LNO (SBL as dietary lipid source respectively for 8 weeks at low salinity of 3‰. The shrimp fed the SBL diet had the highest weight gain and survival rate. The whole body fatty acid composition including the EPA and DHA of L. vannamei generally reflected the composition of dietary fatty acids with the highest DHA and EPA found in L. vannamei fed FIO. The activities of fatty acid synthetase, acyl-CoA, diacylgycerol acyltransferase 2, elongase of long-chain fatty acids family member 6, Δ5 and Δ6 fatty acid desaturases of shrimp fed SBL were significantly lower than those fed BFT. The results indicated that fish oil could not be the only lipid source for L. vannamei cultured at low salinity, and the shrimp fed non-fish oil diet with a suitable proportion of PUFAs could obtain the same growth and survival rate as those fed diets with fish oil.

  12. Corrective effects of hepatotoxicity by hepatic Dyrk1a gene delivery in mice with intermediate hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Alizée Latour

    2015-03-01

    Full Text Available Hyperhomocysteinemia results from hepatic metabolism dysfunction and is characterized by a high plasma homocysteine level, which is also an independent risk factor for cardiovascular disease. Elevated levels of homocysteine in plasma lead to hepatic lesions and abnormal lipid metabolism. Therefore, lowering homocysteine levels might offer therapeutic benefits. Recently, we were able to lower plasma homocysteine levels in mice with moderate hyperhomocysteinemia using an adenoviral construct designed to restrict the expression of DYRK1A, a serine/threonine kinase involved in methionine metabolism (and therefore homocysteine production, to hepatocytes. Here, we aimed to extend our previous findings by analyzing the effect of hepatocyte-specific Dyrk1a gene transfer on intermediate hyperhomocysteinemia and its associated hepatic toxicity and liver dysfunction. Commensurate with decreased plasma homocysteine and alanine aminotransferase levels, targeted hepatic expression of DYRK1A in mice with intermediate hyperhomocysteinemia resulted in elevated plasma paraoxonase-1 and lecithin:cholesterol acyltransferase activities and apolipoprotein A–I levels. It also rescued hepatic apolipoprotein E, J, and D levels. Further, Akt/GSK3/cyclin D1 signaling pathways in the liver of treated mice were altered, which may help prevent homocysteine-induced cell cycle dysfunction. DYRK1A gene therapy could be useful in the treatment of hyperhomocysteinemia in populations, such as end-stage renal disease patients, who are unresponsive to B-complex vitamin therapy.

  13. Fructus xanthii improves lipid homeostasis in the epididymal adipose tissue of rats fed a high-fat diet.

    Science.gov (United States)

    Li, Xiumin; Yang, Mingxing; Li, Zhipeng; Xue, Mei; Shangguan, Zhaoshui; Ou, Zhimin; Liu, Ming; Liu, Suhuan; Yang, Shuyu; Li, Xuejun

    2016-01-01

    High fat diet (HFD)-induced obesity triggers common features of human metabolic syndrome in rats. Our previous study showed that Fructus xanthii (FX) attenuates HFD-induced hepatic steatosis. The present study was designed to investigate the effects of FX on lipid metabolism in epididymal fat (EF), and examine its underlying mechanisms. Aqueous extraction fractions of FX or vehicle were orally administered by gavage for 6 weeks to rats fed either a HFD or a normal chow diet (NCD). The levels of circulating free fatty acid (FFA) were determined in plasma, and the expression levels of lipid metabolism‑ and inflammation‑associated genes in the EF were measured using reverse transcription‑quantitative polymerase chain reaction analysis. The general morphology, size and number of adipocytes in the EF, and the levels of macrophage infiltration were evaluated using hematoxylin and eosin staining or immunohistochemical staining. FX decreased circulating levels of FFA, increased the expression levels of sterol‑regulatory‑element‑binding protein‑1c, FAS, acetyl coenzyme A carboxylase, diacylglycerol acyltransferase and lipoprotein lipase lipogenic genes in the EF. FX increased the numbers of adipocytes in the EF, and featured a shift towards smaller adipocyte size. Compared with the vehicle‑treated rats, positive staining of F4/80 was more dispersed in the FX‑treated rats, and the percentage of F4/80 positive cells was significantly decreased. FX attenuated HFD‑induced lipid dyshomeostasis in the epididymal adipose tissue. PMID:26648271

  14. LPS impairs oxygen utilization in epithelia by triggering degradation of the mitochondrial enzyme Alcat1.

    Science.gov (United States)

    Zou, Chunbin; Synan, Matthew J; Li, Jin; Xiong, Sheng; Manni, Michelle L; Liu, Yuan; Chen, Bill B; Zhao, Yutong; Shiva, Sruti; Tyurina, Yulia Y; Jiang, Jianfei; Lee, Janet S; Das, Sudipta; Ray, Anuradha; Ray, Prabir; Kagan, Valerian E; Mallampalli, Rama K

    2016-01-01

    Cardiolipin (also known as PDL6) is an indispensable lipid required for mitochondrial respiration that is generated through de novo synthesis and remodeling. Here, the cardiolipin remodeling enzyme, acyl-CoA:lysocardiolipin-acyltransferase-1 (Alcat1; SwissProt ID, Q6UWP7) is destabilized in epithelia by lipopolysaccharide (LPS) impairing mitochondrial function. Exposure to LPS selectively decreased levels of carbon 20 (C20)-containing cardiolipin molecular species, whereas the content of C18 or C16 species was not significantly altered, consistent with decreased levels of Alcat1. Alcat1 is a labile protein that is lysosomally degraded by the ubiquitin E3 ligase Skp-Cullin-F-box containing the Fbxo28 subunit (SCF-Fbxo28) that targets Alcat1 for monoubiquitylation at residue K183. Interestingly, K183 is also an acetylation-acceptor site, and acetylation conferred stability to the enzyme. Histone deacetylase 2 (HDAC2) interacted with Alcat1, and expression of a plasmid encoding HDAC2 or treatment of cells with LPS deacetylated and destabilized Alcat1, whereas treatment of cells with a pan-HDAC inhibitor increased Alcat1 levels. Alcat1 degradation was partially abrogated in LPS-treated cells that had been silenced for HDAC2 or treated with MLN4924, an inhibitor of Cullin-RING E3 ubiquitin ligases. Thus, LPS increases HDAC2-mediated Alcat1 deacetylation and facilitates SCF-Fbxo28-mediated disposal of Alcat1, thus impairing mitochondrial integrity. PMID:26604221

  15. Engineering plant oils as high-value industrial feedstocks for biorefining - the need for underpinning cell biology research

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J.M. (US Arid-Land Agricultural Research Center, United States Dept. of Agriculture, Maricopa (US)); Mullen, R.T. (University of Guelph, Dept. of Molecular and Cellular Biology, Ontario (CA))

    2008-01-15

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of industrially important fatty acids, expression of these genes in transgenic plants has routinely resulted in a low accumulation of the desired fatty acids, indicating that significantly more knowledge of seed oil production is required before any future rational engineering designs are attempted. Here, we provide an overview of the cellular features of fatty acid desaturases, the so-called diverged desaturases, and diacylglycerol acyltransferases, three sets of enzymes that play a central role in determining the types and amounts of fatty acids that are present in seed oil, and as such, the final application and value of the oil. Recent studies of the intracellular trafficking, assembly and regulation of these enzymes have provided new insights to the mechanisms of storage oil production, and suggest that the compartmentalization of enzyme activities within specific regions or subdomains of the ER may be essential for both the synthesis of novel fatty acid structures and the channeling of these important fatty acids into seed storage oils. (au)

  16. Characterisation of Aeromonas spp. isolated from frozen fish intended for human consumption in Mexico.

    Science.gov (United States)

    Castro-Escarpulli, G; Figueras, M J; Aguilera-Arreola, G; Soler, L; Fernández-Rendón, E; Aparicio, G O; Guarro, J; Chacón, M R

    2003-07-15

    A total of 82 strains of presumptive Aeromonas spp. were identified biochemically and genetically (16S rDNA-RFLP). The strains were isolated from 250 samples of frozen fish (Tilapia, Oreochromis niloticus niloticus) purchased in local markets in Mexico City. In the present study, we detected the presence of several genes encoding for putative virulence factors and phenotypic activities that may play an important role in bacterial infection. In addition, we studied the antimicrobial patterns of those strains. Molecular identification demonstrated that the prevalent species in frozen fish were Aeromonas salmonicida (67.5%) and Aeromonas bestiarum (20.9%), accounting for 88.3% of the isolates, while the other strains belonged to the species Aeromonas veronii (5.2%), Aeromonas encheleia (3.9%) and Aeromonas hydrophila (2.6%). Detection by polymerase chain reaction (PCR) of genes encoding putative virulence factors common in Aeromonas, such as aerolysin/hemolysin, lipases including the glycerophospholipid-cholesterol acyltransferase (GCAT), serine protease and DNases, revealed that they were all common in these strains. Our results showed that first generation quinolones and second and third generation cephalosporins were the drugs with the best antimicrobial effect against Aeromonas spp. In Mexico, there have been few studies on Aeromonas and its putative virulence factors. The present work therefore highlights an important incidence of Aeromonas spp., with virulence potential and antimicrobial resistance, isolated from frozen fish intended for human consumption in Mexico City. PMID:12781953

  17. Inherited and de novo deletion of the tyrosine aminotransferase gene locus at 16q22.1----q22.3 in a patient with tyrosinemia type II.

    Science.gov (United States)

    Natt, E; Westphal, E M; Toth-Fejel, S E; Magenis, R E; Buist, N R; Rettenmeier, R; Scherer, G

    1987-12-01

    Tyrosinemia II is an autosomal-recessively inherited condition caused by deficiency in the liver-specific enzyme tyrosine aminotransferase (TAT; EC 2.6.1.5). We have restudied a patient with typical symptoms of tyrosinemia II who in addition suffers from multiple congenital anomalies including severe mental retardation. Southern blot analysis using a human TAT cDNA probe revealed a complete deletion of both TAT alleles in the patient. Molecular and cytogenetic analysis of the patient and his family showed one deletion to be maternally inherited, extending over at least 27 kb and including the complete TAT structural gene, whereas loss of the second TAT allele results from a small de novo interstitial deletion, del 16 (pter----q22.1::q22.3----qter), in the paternally inherited chromosome 16. Three additional loci previously assigned to 16q22 were studied in our patient: haptoglobin (HP), lecithin: cholesterol acyltransferase (LCAT), and the metallothionein gene cluster MT1,MT2. Of these three markers, only the HP locus was found to be codeleted with the TAT locus on the del(16) chromosome.

  18. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    Science.gov (United States)

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  19. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.;

    2000-01-01

    N-acyl-ethanolamine phospholipids (NAPE) can be formed as a stress response during neuronal injury, and they are precursors for N-acyl- ethanolamines (NAE), some of which are endocannabinoids. The levels of NAPE accumulated during post-decapitative ischemia (6 h at 37°C) were studied in rat brains...... of various age (1, 6, 12, 19, 30, and ~70 days) by the use of P NMR spectroscopy of lipid extracts. This ability to accumulate NAPE was compared with the activity of N-acyltransferase and of NAPE-hydrolyzing phospholipase D (NAPE-PLD) in brain microsomes. These two enzymes are involved in the formation...... and degradation of NAPE, respectively. The results showed that 1) the ability to accumulate NAPE during post-decapitative ischemia is especially high in the youngest rats and is markedly reduced in older brains [in 1-day-old rat brains NAPE accumulated to 1.5% of total phospholipids, while in 30-day-old rat...

  20. Vitamin A derivatives as treatment options for retinal degenerative diseases.

    Science.gov (United States)

    Perusek, Lindsay; Maeda, Tadao

    2013-07-12

    The visual cycle is a sequential enzymatic reaction for vitamin A, all-trans-retinol, occurring in the outer layer of the human retina and is essential for the maintenance of vision. The central source of retinol is derived from dietary intake of both retinol and pro-vitamin A carotenoids. A series of enzymatic reactions, located in both the photoreceptor outer segment and the retinal pigment epithelium, transform retinol into the visual chromophore 11-cis-retinal, regenerating visual pigments. Retina specific proteins carry out the majority of the visual cycle, and any significant interruption in this sequence of reactions is capable of causing varying degrees of blindness. Among these important proteins are Lecithin:retinol acyltransferase (LRAT) and retinal pigment epithelium-specific 65-kDa protein (RPE65) known to be responsible for esterification of retinol to all-trans-retinyl esters and isomerization of these esters to 11-cis-retinal, respectively. Deleterious mutations in these genes are identified in human retinal diseases that cause blindness, such as Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Herein, we discuss the pathology of 11-cis-retinal deficiency caused by these mutations in both animal disease models and human patients. We also review novel therapeutic strategies employing artificial visual chromophore 9-cis-retinoids which have been employed in clinical trials involving LCA patients.

  1. Vitamin A Derivatives as Treatment Options for Retinal Degenerative Diseases

    Directory of Open Access Journals (Sweden)

    Tadao Maeda

    2013-07-01

    Full Text Available The visual cycle is a sequential enzymatic reaction for vitamin A, all-trans-retinol, occurring in the outer layer of the human retina and is essential for the maintenance of vision. The central source of retinol is derived from dietary intake of both retinol and pro-vitamin A carotenoids. A series of enzymatic reactions, located in both the photoreceptor outer segment and the retinal pigment epithelium, transform retinol into the visual chromophore 11-cis-retinal, regenerating visual pigments. Retina specific proteins carry out the majority of the visual cycle, and any significant interruption in this sequence of reactions is capable of causing varying degrees of blindness. Among these important proteins are Lecithin:retinol acyltransferase (LRAT and retinal pigment epithelium-specific 65-kDa protein (RPE65 known to be responsible for esterification of retinol to all-trans-retinyl esters and isomerization of these esters to 11-cis-retinal, respectively. Deleterious mutations in these genes are identified in human retinal diseases that cause blindness, such as Leber congenital amaurosis (LCA and retinitis pigmentosa (RP. Herein, we discuss the pathology of 11-cis-retinal deficiency caused by these mutations in both animal disease models and human patients. We also review novel therapeutic strategies employing artificial visual chromophore 9-cis-retinoids which have been employed in clinical trials involving LCA patients.

  2. The Epigenetic Drug 5-Azacytidine Interferes with Cholesterol and Lipid Metabolism*

    Science.gov (United States)

    Poirier, Steve; Samami, Samaneh; Mamarbachi, Maya; Demers, Annie; Chang, Ta Yuan; Vance, Dennis E.; Hatch, Grant M.; Mayer, Gaétan

    2014-01-01

    DNA methylation and histone acetylation inhibitors are widely used to study the role of epigenetic marks in the regulation of gene expression. In addition, several of these molecules are being tested in clinical trials or already in use in the clinic. Antimetabolites, such as the DNA-hypomethylating agent 5-azacytidine (5-AzaC), have been shown to lower malignant progression to acute myeloid leukemia and to prolong survival in patients with myelodysplastic syndromes. Here we examined the effects of DNA methylation inhibitors on the expression of lipid biosynthetic and uptake genes. Our data demonstrate that, independently of DNA methylation, 5-AzaC selectively and very potently reduces expression of key genes involved in cholesterol and lipid metabolism (e.g. PCSK9, HMGCR, and FASN) in all tested cell lines and in vivo in mouse liver. Treatment with 5-AzaC disturbed subcellular cholesterol homeostasis, thereby impeding activation of sterol regulatory element-binding proteins (key regulators of lipid metabolism). Through inhibition of UMP synthase, 5-AzaC also strongly induced expression of 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) and promoted triacylglycerol synthesis and cytosolic lipid droplet formation. Remarkably, complete reversal was obtained by the co-addition of either UMP or cytidine. Therefore, this study provides the first evidence that inhibition of the de novo pyrimidine synthesis by 5-AzaC disturbs cholesterol and lipid homeostasis, probably through the glycerolipid biosynthesis pathway, which may contribute mechanistically to its beneficial cytostatic properties. PMID:24855646

  3. The epigenetic drug 5-azacytidine interferes with cholesterol and lipid metabolism.

    Science.gov (United States)

    Poirier, Steve; Samami, Samaneh; Mamarbachi, Maya; Demers, Annie; Chang, Ta Yuan; Vance, Dennis E; Hatch, Grant M; Mayer, Gaétan

    2014-07-01

    DNA methylation and histone acetylation inhibitors are widely used to study the role of epigenetic marks in the regulation of gene expression. In addition, several of these molecules are being tested in clinical trials or already in use in the clinic. Antimetabolites, such as the DNA-hypomethylating agent 5-azacytidine (5-AzaC), have been shown to lower malignant progression to acute myeloid leukemia and to prolong survival in patients with myelodysplastic syndromes. Here we examined the effects of DNA methylation inhibitors on the expression of lipid biosynthetic and uptake genes. Our data demonstrate that, independently of DNA methylation, 5-AzaC selectively and very potently reduces expression of key genes involved in cholesterol and lipid metabolism (e.g. PCSK9, HMGCR, and FASN) in all tested cell lines and in vivo in mouse liver. Treatment with 5-AzaC disturbed subcellular cholesterol homeostasis, thereby impeding activation of sterol regulatory element-binding proteins (key regulators of lipid metabolism). Through inhibition of UMP synthase, 5-AzaC also strongly induced expression of 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) and promoted triacylglycerol synthesis and cytosolic lipid droplet formation. Remarkably, complete reversal was obtained by the co-addition of either UMP or cytidine. Therefore, this study provides the first evidence that inhibition of the de novo pyrimidine synthesis by 5-AzaC disturbs cholesterol and lipid homeostasis, probably through the glycerolipid biosynthesis pathway, which may contribute mechanistically to its beneficial cytostatic properties. PMID:24855646

  4. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  5. A metabolomics study of the inhibitory effect of 17-beta-estradiol on osteoclast proliferation and differentiation.

    Science.gov (United States)

    Liu, Xiaoyan; Liu, Yanqiu; Cheng, Mengchun; Zhang, Xiaozhe; Xiao, Hongbin

    2015-02-01

    Estradiol is a major drug used clinically to alleviate osteoporosis, partly through inhibition of the activity of osteoclasts, which play a crucial role in bone resorption. So far, little is known about the effects of estradiol on osteoclast metabolism. In this study, ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC/MS)-based metabolomics strategy was used to investigate the metabolite response to 17β-estradiol in mouse osteoclast RAW264.7, a commonly used cell model for studying osteoporosis. Our results showed that the application of estradiol altered the levels of 27 intracellular metabolites, including lysophosphatidylcholines (LysoPCs), other lipids and amino acid derivants. The changes of all the 27 metabolites were observed in the study of estradiol induced osteoclast proliferation inhibition (1 μM estradiol applied), while the changes of only 18 metabolites were observed in the study of differentiation inhibition (0.1 μM estradiol applied). Further pathway impact analysis determined glycerophospholipid metabolism as the main potential target pathway of estradiol, which was further confirmed by LCAT (phosphatidylcholine-sterol acyltransferase) activity changes and lipid peroxidative product (MDA, methane dicarboxylic aldehyde) changes caused by estradiol. Additionally, we found that estradiol significantly decreased intracellular oxidative stress during cell proliferation but not during cell differentiation. Our study suggested that estradiol generated a highly condition-dependent influence on osteoclast metabolism.

  6. Ghrelin's second life: From appetite stimulator to glucose regulator

    Institute of Scientific and Technical Information of China (English)

    Pieter-Jan Verhulst; Inge Depoortere

    2012-01-01

    Ghrelin,a 28 amino acid peptide hormone produced by the stomach,was the first orexigenic hormone to be discovered from the periphery.The octanoyl modification at Ser3,mediated by ghrelin O-acyltransferase (GOAT),is essential for ghrelin's biological activity.Ghrelin stimulates food intake through binding to its receptor (GRLN-R) on neurons in the arcuate nucleus of the hypothalamus.Ghrelin is widely expressed throughout the body; accordingly,it is implicated in several other physiological functions,which include growth hormone release,gastric emptying,and body weight regulation.Ghrelin and GRLN-R expression are also found in the pancreas,suggesting a local physiological role.Accordingly,several recent studies now point towards an important role for ghrelin and its receptor in the regulation of blood glucose homeostasis,which is the main focus of this review.Several mechanisms of this regulation by ghrelin have been proposed,and one possibility is through the regulation of insulin secretion.Despite some controversy,most studies suggest that ghrelin exerts an inhibitory effect on insulin secretion,resulting in increased circulating glucose levels.Ghrelin may thus be a diabetogenic factor.Obesity-related type 2 diabetes has become an increasingly important health problem,almost reaching epidemic proportions in the world; therefore,antagonists of the ghrelin-GOAT signaling pathway,which will tackle both energy-and glucose homeostasis,may be considered as promising new therapies for this disease.

  7. DGAT1 and ABCG2 polymorphism in Indian cattle (Bos indicus and buffalo (Bubalus bubalis breeds

    Directory of Open Access Journals (Sweden)

    Mishra Bina

    2006-11-01

    Full Text Available Abstract Background Indian cattle (Bos indicus and riverine buffalo (Bubalus bubalis give a poor yield of milk but it has a high fat and protein percentage compared to taurine cattle. The identification of QTLs (Quantitative Trait Loci on BTA14 and BTA6 and its subsequent fine mapping has led to identification of two non conservative mutations affecting milk production and composition. Our objective was to estimate the frequency of K232A (DGAT1 – diacylglycerol – acyltransferase 1 and Y581S (ABCG2 – ATP binding cassette sub family G member 2 polymorphisms in diverse cattle and buffalo breeds of India having large variation in terms of milk production. Results We screened the reported missense mutations in six cattle and five buffalo breeds. The DGAT1K and ABCG2Y alleles were found to be fixed in Indian cattle and buffalo breeds studied. Conclusion This study provides an indirect evidence that all the Indian cattle and buffalo breeds have fixed alleles with respect to DGAT1 and ABCG2 genes reported to be responsible for higher milk fat yield, higher fat and protein percent.

  8. Determination of internal controls for quantitative gene expression of Isochrysis zhangjiangensis at nitrogen stress condition

    Science.gov (United States)

    Wu, Shuang; Zhou, Jiannan; Cao, Xupeng; Xue, Song

    2016-02-01

    Isochrysis zhangjiangensis is a potential marine microalga for biodiesel production, which accumulates lipid under nitrogen limitation conditions, but the mechanism on molecular level is veiled. Quantitative real-time polymerase chain reaction (qPCR) provides the possibility to investigate the gene expression levels, and a valid reference for data normalization is an essential prerequisite for firing up the analysis. In this study, five housekeeping genes, actin (ACT), α-tubulin (TUA), ß-tubulin (TUB), ubiquitin (UBI), 18S rRNA (18S) and one target gene, diacylglycerol acyltransferase (DGAT), were used for determining the reference. By analyzing the stabilities based on calculation of the stability index and on operating the two types of software, geNorm and bestkeeper, it showed that the reference genes widely used in higher plant and microalgae, such as UBI, TUA and 18S, were not the most stable ones in nitrogen-stressed I. zhangjiangensis, and thus are not suitable for exploring the mRNA expression levels under these experimental conditions. Our results show that ACT together with TUB is the most feasible internal control for investigating gene expression under nitrogen-stressed conditions. Our findings will contribute not only to future qPCR studies of I. zhangjiangensis, but also to verification of comparative transcriptomics studies of the microalgae under similar conditions.

  9. Lack of essential enzymes for the biosynthesis of C19 and C18 steroids in gonads of the migratory locust, Locusta migratoria.

    Science.gov (United States)

    Swevers, L; Lambert, J G; Novak, F; Paesen, G; De Loof, A

    1991-11-01

    Ovaries and testes of the African migratory locust, Locusta migratoria migratorioides, were incubated in vitro with six tritiated steroid precursors. Three developmental stages were investigated--1 day, 14 days, and 6 weeks after adult moulting. 20 alpha-Hydroxysteroid dehydrogenase (HSD), 20 beta-HSD, 17 beta-HSD, 3 beta-HSD/isomerase, C17-C20 lyase, glucuronyl-transferase, sulfotransferase, and acyltransferase were identified in both sexes. A synthesis of androgens or estrogens comparable to the vertebrate type, however, was not apparent in the locust gonads. 20 alpha-HSD, 20 beta-HSD, and 17 beta-HSD activities were high, while more important steps in steroid synthesis such as 3 beta-HSD and C17-C20 lyase were far less intense. Ovarian 17 alpha-hydroxylase activity was slight. Aromatase activity was not demonstrated. Water-soluble conjugate formation was high in the incubations of "14th-day" and "6th-week" gonads but was absent in "1st-day" ovaries and testes. Active ester formation of pregnenolone was demonstrated in "6th-week" testes. The other steroid conversions were similar in all developmental stages investigated. Major differences between testes and ovaries were not observed. The gonads of the migratory locust are concluded not to produce androgens or estrogens. PMID:1783269

  10. Expansion of first-in-class drug candidates that sequester toxic all-trans-retinal and prevent light-induced retinal degeneration.

    Science.gov (United States)

    Zhang, Jianye; Dong, Zhiqian; Mundla, Sreenivasa Reddy; Hu, X Eric; Seibel, William; Papoian, Ruben; Palczewski, Krzysztof; Golczak, Marcin

    2015-01-01

    All-trans-retinal, a retinoid metabolite naturally produced upon photoreceptor light activation, is cytotoxic when present at elevated levels in the retina. To lower its toxicity, two experimentally validated methods have been developed involving inhibition of the retinoid cycle and sequestration of excess of all-trans-retinal by drugs containing a primary amine group. We identified the first-in-class drug candidates that transiently sequester this metabolite or slow down its production by inhibiting regeneration of the visual chromophore, 11-cis-retinal. Two enzymes are critical for retinoid recycling in the eye. Lecithin:retinol acyltransferase (LRAT) is the enzyme that traps vitamin A (all-trans-retinol) from the circulation and photoreceptor cells to produce the esterified substrate for retinoid isomerase (RPE65), which converts all-trans-retinyl ester into 11-cis-retinol. Here we investigated retinylamine and its derivatives to assess their inhibitor/substrate specificities for RPE65 and LRAT, mechanisms of action, potency, retention in the eye, and protection against acute light-induced retinal degeneration in mice. We correlated levels of visual cycle inhibition with retinal protective effects and outlined chemical boundaries for LRAT substrates and RPE65 inhibitors to obtain critical insights into therapeutic properties needed for retinal preservation. PMID:25538117

  11. In Vivo Lipid Regulation Mechanism of Polygoni Multiflori Radix in High-Fat Diet Fed Rats

    Directory of Open Access Journals (Sweden)

    Pei Lin

    2014-01-01

    Full Text Available Mechanisms of the water extracts of Polygoni Multiflori Radix (PMR and its processed products (PMRP on liver lipid metabolism were observed in this paper. Aqueous extract of PMR and PMRP was given to nonalcoholic fatty liver model rats, respectively. PMR was better in reducing the contents of very low density lipoprotein (VLDL than PMRP and the positive control groups. In the aspect of regulating TG, medium dose PMR reduced the activity of diacylglycerol acyltransferase (DGAT to 1536±47.69 pg/mL (P<0.001 and promoted the expression of hepatic lipase (HL to 23.59±0.2758 U/mL (P<0.05. HL promotion ability of medium dose PMR was similar with the simvastatin positive control. Both medium and high dose of PMR showed significant alterations in TC, which were related to the downregulation effects on hydroxyl methyl-glutaryl coenzyme A reductase (HMGCR and upregulation effects on cholesterol 7-alpha-hydroxylase or cytochrome P450 7A (CYP7A. Quantitative relationships research indicated that the prominent effect on inhibiting the content of HMGCR (r=0.756, P<0.05 was strongly positive correlated with to the TC regulation effects. Effects of PMR on enhancing decomposition rate or reducing de novo synthesis rate of TG and TC were better than PMRP.

  12. Cloning and Sequencing Analysis of the 3' and 5' Fragment of GPAT Gene (LiGPAT) from L. pensylvanicum%毛百合L iG PA T基因3'端与5'端克隆及其序列分析

    Institute of Scientific and Technical Information of China (English)

    相恒佐; 苗琰; 陈丽静; 王利; 张丽; 林景卫; 赵兴华; 李天来

    2013-01-01

    Full length cDNA cloning not only contains the complete reading frame, also has 5' and 3' end non-coding regions, cDNA sequence is correctly characterizing genome sequence, the function of the gene and essential basis and premise of the product analysis. In This study, we use blade as material, the lily glycerin-3-phosphate acyltransferase (glycerol-3-phosphate acyltransferase, GPAT) gene 3' and 5' end sequences successfully cloned by rapid amplification (3' 5'RACE and RACE) technology, got a length of 777 bp and 496 bp, respectively. Joining the sequences and published L iG PA T conservative region (Genbank login for HQ654523), get over 1 544 bp cDNA, which contains a 1 233 bp open reading frame (ORF), flanked by 10 bp, 5'-UTR region and 311 bp 3'-UTR region and contains 19 bp poly(A), encoding 410 amino acids, its molecular mass is 45.9 kD, this sequence’s GenBank re-gistration number is JX524741. Amino acid homology analysis indicated that the sequence and other species of GPAT gene homology are higher and further evolution analysis demonstrated that it has closer relation with the rice and oil palm etc., the bioinformatics analysis results show that the gene sequence has the typical GPAT gene stru-cture characteristics, containing phosphate acyltransferase function domain PIsC structure domain, the lily GPAT gene is cloned successfully, this will lay foundation for subsequent downstream analysis and the further research.%全长cDNA克隆不仅包含完整的阅读框,还拥有5'和3'端的非编码区,全长cDNA序列的获取是正确地注释基因组序列、进行基因的功能及产物分析的必要基础和前提。本研究以叶片为材料,利用3'和5'末端快速扩增(3'RACE和5'RACE)技术成功克隆了毛百合甘油-3-磷酸酰基转移酶(glycerol-3-phosphate acyltransferase, GPAT)基因3'和5'末端序列,分别得到了长度为777 bp和496 bp的片段。通过与已发表的L iG PA T保守区

  13. Sphingomyelin in High-Density Lipoproteins: Structural Role and Biological Function

    Directory of Open Access Journals (Sweden)

    Jesús Osada

    2013-04-01

    Full Text Available High-density lipoprotein (HDL levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin–cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat, drugs (statins or diuretics and modified in diseases such as diabetes, renal failure or Niemann–Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future.

  14. pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence.

    Science.gov (United States)

    Boritsch, Eva C; Frigui, Wafa; Cascioferro, Alessandro; Malaga, Wladimir; Etienne, Gilles; Laval, Françoise; Pawlik, Alexandre; Le Chevalier, Fabien; Orgeur, Mickael; Ma, Laurence; Bouchier, Christiane; Stinear, Timothy P; Supply, Philip; Majlessi, Laleh; Daffé, Mamadou; Guilhot, Christophe; Brosch, Roland

    2016-01-01

    Mycobacterium tuberculosis is a major, globally spread, aerosol-transmitted human pathogen, thought to have evolved by clonal expansion from a Mycobacterium canettii-like progenitor. In contrast, extant M. canettii strains are rare, genetically diverse, and geographically restricted mycobacteria of only marginal epidemiological importance. Here, we show that the contrasting evolutionary success of these two groups is linked to loss of lipooligosaccharide biosynthesis and subsequent morphotype changes. Spontaneous smooth-to-rough M. canettii variants were found to be mutated in the polyketide-synthase-encoding pks5 locus and deficient in lipooligosaccharide synthesis, a phenotype restored by complementation. Importantly, these rough variants showed an altered host-pathogen interaction and increased virulence in cellular- and animal-infection models. In one variant, lipooligosaccharide deficiency occurred via homologous recombination between two pks5 genes and removal of the intervening acyltransferase-encoding gene. The resulting single pks5 configuration is similar to that fixed in M. tuberculosis, which is known to lack lipooligosaccharides. Our results suggest that pks5-recombination-mediated bacterial surface remodelling increased virulence, driving evolution from putative generalist mycobacteria towards professional pathogens of mammalian hosts. PMID:27571976

  15. Identification of Elaiophylin Skeletal Variants from the Indonesian Streptomyces sp. ICBB 9297.

    Science.gov (United States)

    Sheng, Yan; Lam, Phillip W; Shahab, Salmah; Santosa, Dwi Andreas; Proteau, Philip J; Zabriskie, T Mark; Mahmud, Taifo

    2015-11-25

    Four new elaiophylin macrolides (1-4), together with five known elaiophylins (5-9), have been isolated from cultures of the Indonesian soil bacterium Streptomyces sp. ICBB 9297. The new compounds have macrocyclic skeletons distinct from those of the known dimeric elaiophylins in that one or both of the polyketide chains contain(s) an additional pendant methyl group. Further investigations revealed that 1 and 2 were derived from 3 and 4, respectively, during isolation processes. Compounds 1-3 showed comparable antibacterial activity to elaiophylin against Staphylococcus aureus. However, interestingly, only compounds 1 and 3, which contain a pendant methyl group at C-2, showed activity against Mycobacterium smegmatis, whereas compound 2, which has two pendant methyl groups at C-2 and C-2', and the known elaiophylin analogues (5-7), which lack pendant methyl groups at C-2 and/or C-2', showed no activity. The production of 3 and 4 in strain ICBB 9297 indicates that one of the acyltransferase (AT) domains in the elaiophylin polyketide synthases (PKSs) can recruit both malonyl-CoA and methylmalonyl-CoA as substrates. Bioinformatic analysis of the AT domains of the elaiophylin PKSs revealed that the ela_AT7 domain contains atypical active site amino acid residues, distinct from those conserved in malonyl-CoA- or methylmalonyl-CoA-specific ATs.

  16. Families with familial combined hyperlipidemia and families enriched for coronary artery disease share genetic determinants for the atherogenic lipoprotein phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Allayee, H.; Aouizerat, B.E.; Lusis, A.J. [Univ. of California, Los Angeles, CA (United States); Cantor, R.M.; Lanning, C.D.; Rotter, J.I. [Cedars-Sinai Research Inst., Los Angeles, CA (United States); Dallinga-Thie, G.M. [University Hospital, Utrecht (Netherlands). Dept. of Medicine; Krauss, R.M. [Lawrence Berkeley Lab., CA (United States); Bruin, T.W.A. de [University Hospital, Utrecht (Netherlands). Dept. of Medicine]|[University Hospital, Maastricht (Netherlands). Dept. of Medicine and Endocrinology

    1998-08-01

    Small, dense LDL particles consistently have been associated with hypertriglyceridemia, premature coronary artery disease (CAD), and familial combined hyperlipidemia (FCH). Previously, the authors have observed linkage of LDL particle size with four separate candidate-gene loci in a study of families enriched for CAD. These loci contain the genes for manganese superoxide dismutase (MnSOD), on chromosome 6q; for apolipoprotein AI-CIII-AIV, on chromosome 11q; for cholesteryl ester transfer protein (CETP) and lecithin:cholesterol acyl-transferase (LCAT), on chromosome 16q; and for the LDL receptor (LDLR), on chromosome 19p. The authors have now tested whether these loci also contribute to LDL particle size in families ascertained for FCH. The members of 18 families (481 individuals) were typed for genetic markers at the four loci, and linkage to LDL particle size was assessed by nonparametric sib-pair linkage analysis. The presence of small, dense LDL (pattern B) was much more frequent in the FCH probands than in the spouse controls. Evidence for linkage was observed at the MnSOD (P = .02), CETP/LCAT (P = .03), and apolipoprotein AI0CIII0AIV loci (P = .005) but not at the LDLR locus. The authors conclude that there is a genetically based association between FCH and small, dense LDL and that the genetic determinants for LDL particle size are shared, at least in part, among FCH families and the more general population at risk for CAD.

  17. Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids.

    Science.gov (United States)

    Légeret, B; Schulz-Raffelt, M; Nguyen, H M; Auroy, P; Beisson, F; Peltier, G; Blanc, G; Li-Beisson, Y

    2016-04-01

    Studying how photosynthetic cells modify membrane lipids in response to heat stress is important to understand how plants and microalgae adapt to daily fluctuations in temperature and to investigate new lipid pathways. Here, we investigate changes occurring in lipid molecular species and lipid metabolism genes during early response to heat stress in the model photosynthetic microorganism Chlamydomonas reinhardtii. Lipid molecular species analyses revealed that, after 60 min at 42 °C, a strong decrease in specific polyunsaturated membrane lipids was observed together with an increase in polyunsaturated triacylglycerols (TAGs) and diacylglycerols (DAGs). The fact that decrease in the major chloroplastic monogalactosyldiacylglycerol sn1-18:3/sn2-16:4 was mirrored by an accumulation of DAG sn1-18:3/sn2-16:4 and TAG sn1-18:3/sn2-16:4/sn3-18:3 indicated that newly accumulated TAGs were formed via direct conversion of monogalactosyldiacylglycerols to DAGs then TAGs. Lipidomic analyses showed that the third fatty acid of a TAG likely originated from a phosphatidylethanolamine or a diacylglyceryl-O-4'-(N,N,N,-trimethyl)-homoserine betaine lipid species. Candidate genes for this TAG synthesis pathway were provided through comparative transcriptomic analysis and included a phospholipase A2 homolog and the DAG acyltransferase DGTT1. This study gives insights into the molecular events underlying changes in membrane lipids during heat stress and reveals an alternative route for TAG synthesis. PMID:26477535

  18. In vivo kinetic analysis of the penicillin biosynthesis pathway using PAA stimulus response experiments.

    Science.gov (United States)

    Deshmukh, Amit T; Verheijen, Peter J T; Maleki Seifar, Reza; Heijnen, Joseph J; van Gulik, Walter M

    2015-11-01

    In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT).

  19. Stage-Specific Fatty Acid Fluxes Play a Regulatory Role in Glycerolipid Metabolism during Seed Development in Jatropha curcas L.

    Science.gov (United States)

    Chaitanya, Bharatula Sri Krishna; Kumar, Sumit; Kaki, Shiva Shanker; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Prasad, Rachapudi Badari Narayana; Sastry, Pidaparty Seshadri; Reddy, Attipalli Ramachandra

    2015-12-23

    The present study describes the changes in lipid profile as well as fatty acid fluxes during seed development in Jatropha curcas L. Endosperm from 34, 37, and 40 days after anthesis (DAA), incubated with [(14)C]acetate, showed significant synthesis of phosphatidylcholine (PC) at seed maturation. The fatty acid methyl ester profile showed PC from 34 DAA was rich in palmitic acid (16:0), whereas PC from 37 and 40 DAA was rich in oleic acid (18:1n-9). Molecular species analysis of diacylglycerol (DAG) indicated DAG (16:0/18:2n-6) was in abundance at 34 DAA, whereas DAG (18:1n-9/18:2n-6) was significantly high at 40 DAA. Triacylglycerol (TAG) analysis revealed TAG (16:0/18:2n-6/16:0) was abundant at 34 DAA, whereas TAG (18:1n-9/18:2n-6/18:1n-9) formed the majority at 40 DAA. Expression of two types of diacylglycerol acyltransferases varied with seed maturation. These data demonstrate stage-specific distinct pools of PC and DAG synthesis during storage TAG accumulation in Jatropha seed.

  20. Palmitoylation regulates epidermal homeostasis and hair follicle differentiation.

    Directory of Open Access Journals (Sweden)

    Pleasantine Mill

    2009-11-01

    Full Text Available Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs. Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear beta-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis.

  1. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells.

    Science.gov (United States)

    Ma, Guangzhong; Zhou, Junyu; Tian, Chunxiu; Jiang, Dechen; Fang, Danjun; Chen, Hongyuan

    2013-04-16

    A luminol electrochemiluminescence assay was reported to analyze active cholesterol at the plasma membrane in single mammalian cells. The cellular membrane cholesterol was activated by the exposure of the cells to low ionic strength buffer or the inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT). The active membrane cholesterol was reacted with cholesterol oxidase in the solution to generate a peak concentration of hydrogen peroxide on the electrode surface, which induced a measurable luminol electrochemiluminescence. Further treatment of the active cells with mevastatin decreased the active membrane cholesterol resulting in a drop in luminance. No change in the intracellular calcium was observed in the presence of luminol and voltage, which indicated that our analysis process might not interrupt the intracellular cholesterol trafficking. Single cell analysis was performed by placing a pinhole below the electrode so that only one cell was exposed to the photomultiplier tube (PMT). Twelve single cells were analyzed individually, and a large deviation on luminance ratio observed exhibited the cell heterogeneity on the active membrane cholesterol. The smaller deviation on ACAT/HMGCoA inhibited cells than ACAT inhibited cells suggested different inhibition efficiency for sandoz 58035 and mevastatin. The new information obtained from single cell analysis might provide a new insight on the study of intracellular cholesterol trafficking. PMID:23527944

  2. Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress.

    Science.gov (United States)

    Zhang, Jianjun; Xue, Jie; Wang, Hengbin; Zhang, Yan; Xie, Meilin

    2011-05-01

    The aim of our study was to examine the therapeutic effect of osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, on alcohol-induced fatty liver in mice and investigate its potential mechanisms of treatment. A mouse alcoholic fatty liver model was established by feeding 52% alcohol for 4 weeks. These experimental mice were then treated with osthole 10, 20 and 40 mg/kg for 6 weeks. The levels of serum total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C) and hepatic tissue contents of TC, TG and malondialdehyde (MDA) in osthole-treated groups were significantly decreased, while the level of superoxide dismutase (SOD) was significantly increased compared with the model group. Moreover, the cytochrome P450 (CYP) 2E1 and diacylglycerol acyltransferase (DGAT) mRNA expressions in mouse liver were significantly decreased, and the carnitine palmitoyltransferase (CPT) 1A mRNA expression was increased by osthole treatment. Importantly, the histological evaluation of liver demonstrated that osthole dramatically decreased lipid accumulation. It was concluded that osthole was effective in treating mouse alcoholic fatty liver, and its main mechanisms might be related to reduction of hepatic oxidative stress, including the inhibition of reactive oxygen species (ROS) production, enhancement of antioxidative enzyme activity, and reduction of lipid accumulation and peroxidation. PMID:20981870

  3. Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism.

    Science.gov (United States)

    Yao, Lin; Tan, Chong; Song, Jinzhu; Yang, Qian; Yu, Lijie; Li, Xinling

    2016-01-01

    Metabolites of mycoparasitic fungal species such as Trichoderma harzianum 88 have important biological roles. In this study, two new ketoacyl synthase (KS) fragments were isolated from cultured Trichoderma harzianum 88 mycelia using degenerate primers and analysed using a phylogenetic tree. The gene fragments were determined to be present as single copies in Trichoderma harzianum 88 through southern blot analysis using digoxigenin-labelled KS gene fragments as probes. The complete sequence analysis in formation of pksT-1 (5669bp) and pksT-2 (7901bp) suggests that pksT-1 exhibited features of a non-reducing type I fungal PKS, whereas pksT-2 exhibited features of a highly reducing type I fungal PKS. Reverse transcription polymerase chain reaction indicated that the isolated genes are differentially regulated in Trichoderma harzianum 88 during challenge with three fungal plant pathogens, which suggests that they participate in the response of Trichoderma harzianum 88 to fungal plant pathogens. Furthermore, disruption of the pksT-2 encoding ketosynthase-acyltransferase domains through Agrobacterium-mediated gene transformation indicated that pksT-2 is a key factor for conidial pigmentation in Trichoderma harzianum 88. PMID:26991299

  4. Use of De Novo Transcriptome Libraries to Characterize a Novel Oleaginous Marine Chlorella Species during the Accumulation of Triacylglycerols.

    Science.gov (United States)

    Mansfeldt, Cresten B; Richter, Lubna V; Ahner, Beth A; Cochlan, William P; Richardson, Ruth E

    2016-01-01

    Marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. "SAG-211-18" including its heterotrophic growth and tolerance to low salt. We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark. We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioning from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes-a galactoglycerolipid lipase and a diacylglyceride acyltransferase-were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems.

  5. Intestine-targeted DGAT1 inhibition improves obesity and insulin resistance without skin aberrations in mice.

    Directory of Open Access Journals (Sweden)

    Naoto Tsuda

    Full Text Available OBJECTIVE: Diacylglycerol O-acyltransferase 1 (DGAT1 catalyzes the final committed step in triglyceride biosynthesis. DGAT1 null mice are known to be resistant to diet-induced obesity, and more insulin sensitive relative to the wild-type; however, the mice exhibit abnormalities in the skin. This work determined whether the intestine-targeted DGAT1 inhibitor could improve obesity and insulin resistance without skin aberrations in mice. DESIGN AND METHODS: We synthesized 2 DGAT1 inhibitors: Compound A, described in the patent application from the Japan Tobacco, and Compound B (A-922500, reported by Abbott Laboratories. Both compounds were evaluated for inhibitory activities against DGAT1 enzymes and effects on the skin in mice in vivo. Compound B was further investigated for effects on obesity and insulin resistance in diet-induced-obese (DIO mice. RESULTS: The 2 compounds comparably inhibited the DGAT1 enzyme activity and the cellular triglyceride synthesis in vitro, while they showed different distribution patterns in mice in vivo. Compound A, which distributed systemically, caused skin aberrations, while Compound B, which preferentially distributed to the intestine, improved obesity and insulin resistance without skin aberrations in DIO mice. CONCLUSIONS: Our results suggest that the intestine is the key tissue in which DGAT1 plays a role in promoting obesity and insulin resistance.

  6. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation.

    Directory of Open Access Journals (Sweden)

    Yangkai Duan

    Full Text Available Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs and fatty acid ethyl esters (FAEEs, and is currently produced through the transesterification reaction of methanol (or ethanol and triacylglycerols (TAGs. TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L(-1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate.

  7. Targeting a polyketide synthase gene for Aspergillus carbonarius quantification and ochratoxin A assessment in grapes using real-time PCR

    International Nuclear Information System (INIS)

    Aspergillus carbonarius is an ochratoxin producing fungus that has been considered to be responsible of the ochratoxin A (OTA) contamination in grapes and wine. In order to monitor and quantify A. carbonarius, a specific primer pair Ac12RLOTAF/Ac12RLOTAR has been designed from the acyltransferase (AT) domain of the polyketide synthase sequence Ac12RL3 to amplify 141 bp PCR product. Among the mycotoxigenic fungi tested, only A. carbonarius gave a positive result. This specific primer pair was also successfully employed in real-time PCR conjugated with SYBR Green I dye for the direct quantification of this fungus in grape samples. A positive correlation (R2 = 0.81) was found between A. carbonarius DNA content and OTA concentration in 72 grape samples, allowing for the estimation of the potential risk from OTA contamination. Consequently, this work offers a quick alternative to conventional methods of OTA quantification and mycological detection and quantification of A. carbonarius in grapes. (author)

  8. Piperine potentiates the hypocholesterolemic effect of curcumin in rats fed on a high fat diet.

    Science.gov (United States)

    Tu, Yaosheng; Sun, Dongmei; Zeng, Xiaohui; Yao, Nan; Huang, Xuejun; Huang, Dane; Chen, Yuxing

    2014-07-01

    It has previously been demonstrated that curcumin possesses a hypocholesterolemic effect and potentiates numerous pharmacological effects of curcumin, however, the mechanisms underlying this hypocholesterolemic effect and the interaction between curcumin and piperine remain to be elucidated. In the present study, male Sprague-Dawley rats were fed on a high-fat diet (HFD) to establish a hyperlipidemia (HLP) model. Co-administration of curcumin plus piperine was found to decrease the levels of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol in the serum and liver, as well as increase the levels of fecal TC, TG and total bile acid, compared with administration of curcumin alone. Curcumin plus piperine also markedly increased the levels of high-density lipoprotein cholesterol. Furthermore, compared with administration of curcumin alone, administration of curcumin plus piperine resulted in a significant upregulation of the activity and gene expression of apolipoprotein AI (ApoAI), lecithin cholesterol acyltransferase (LCAT), cholesterol 7α-hydroxylase (CYP7A1) and low-density lipoprotein receptor (LDLR). In conclusion, these results indicated that co-administration of curcumin plus piperine potentiates the hypocholesterolemic effects of curcumin by increasing the activity and gene expression of ApoAI, CYP7A1, LCAT and LDLR, providing a promising combination for the treatment of HLP.

  9. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters.

    Science.gov (United States)

    Jang, Eun-Mi; Choi, Myung-Sook; Jung, Un Ju; Kim, Myung-Joo; Kim, Hye-Jin; Jeon, Seon-Min; Shin, Su-Kyung; Seong, Chi-Nam; Lee, Mi-Kyung

    2008-11-01

    This study investigated the effect of curcumin (0.05-g/100-g diet) supplementation on a high-fat diet (10% coconut oil, 0.2% cholesterol, wt/wt) fed to hamsters, one of the rodent species that are most closely related to humans in lipid metabolism. Curcumin significantly lowered the levels of free fatty acid, total cholesterol, triglyceride, and leptin and the homeostasis model assessment of insulin resistance index, whereas it elevated the levels of high-density lipoprotein cholesterol and apolipoprotein (apo) A-I and paraoxonase activity in plasma, compared with the control group. The levels of hepatic cholesterol and triglyceride were also lower in the curcumin group than in the control group. In the liver, fatty acid beta-oxidation activity was significantly higher in the curcumin group than in the control group, whereas fatty acid synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and acyl coenzyme A:cholesterol acyltransferase activities were significantly lower. Curcumin significantly lowered the lipid peroxide levels in the erythrocyte and liver compared with the control group. These results indicate that curcumin exhibits an obvious hypolipidemic effect by increasing plasma paraoxonase activity, ratios of high-density lipoprotein cholesterol to total cholesterol and of apo A-I to apo B, and hepatic fatty acid oxidation activity with simultaneous inhibition of hepatic fatty acid and cholesterol biosynthesis in high-fat-fed hamsters.

  10. Assessment of liver fibrosis by a noninvasive method of transient elastography and biochemical markers

    Institute of Scientific and Technical Information of China (English)

    Masaki Kawamoto; Toru Mizuguchi; Tadashi Katsuramaki; Minoru Nagayama; Hideki Oshima; Hiroyuki Kawasaki; Takayuki Nobuoka; Yasutoshi Kimura; Koichi Hirata

    2006-01-01

    AIM: To assess the correlation between the fibrotic area (FA) as calculated by a digital image analysis (DIA), and to compare the diagnostic accuracy of FibroScan to the other existing Liver fibrosis (LF) markers using the receiver operating curve analysis.METHODS: We recruited 30 patients who underwent a liver resection for three different etiologies including normal liver, hepatitis B, and hepatitis C. Liver stiffness was measured by using a FibroScan. The FA was then calculated by DIA to evaluate LF in order to avoid any sampling bias.RESULTS: The FA negatively correlated with Prothrombin time (PT), platelet count, lecithin-cholesterol acyltransferase (LCAT), and pre-albumin (ALB). On the other hand, the findings of FibroScan correlated with similar markers. The FA positively correlated with FibroScan, serum hyaluronate level, and type Ⅳ collagen level, and aspartate transaminase to platelet ratio index (APRI). The area under the receiver operating curve for FibroScan was higher than that for the other markers,even though the statistical significance was minimal.CONCLUSION: Our findings suggest that FibroScan can initially be used to assess LF as an alternative to a liver biopsy (LB) and serum diagnosis, because it is a safe method with comparable diagnostic accuracy regarding the existing LF markers.

  11. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters

    Directory of Open Access Journals (Sweden)

    Yuguang Lin

    2011-01-01

    Full Text Available Hawthorn (Crataegus pinnatifida is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA and ursolic acid (UA contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w cholesterol (control or the same diet supplemented with (i 0.37% hawthorn dichloromethane extract, (ii 0.24% PSE, (iii hawthorn dichloromethane extract (0.37% plus PSE (0.24% or (iv OA/UA mixture (0.01% for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA enhanced the cholesterol lowering effect of plant sterols.

  12. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle.

    Science.gov (United States)

    Casas, E; White, S N; Riley, D G; Smith, T P L; Brenneman, R A; Olson, T A; Johnson, D D; Coleman, S W; Bennett, G L; Chase, C C

    2005-01-01

    Objective of this study was to assess the association of SNP in the diacylglycerol O-acyltransferase 1 (DGAT1), thyroglobulin (TG), and micromolar calcium-activated neutral protease (CAPN1) genes with carcass composition and meat quality traits in Bos indicus cattle. A population of Brahman calves (n = 479) was developed in central Florida from 1996 to 2000. Traits analyzed were ADG, hip height, slaughter weight, fat thickness, HCW, marbling score, LM area, estimated KPH fat, yield grade, retail yield, sensory panel tenderness score, carcass hump height, and cooked meat tenderness measured as Warner-Bratzler shear force at 7, 14, and 21 d postmortem. Single nucleotide polymorphisms previously reported in the TG and DGAT1 genes were used as markers on chromosome 14. Two previously reported and two new SNP in the CAPN1 gene were used as markers on chromosome 29. One SNP in CAPN1 was uninformative, and another one was associated with tenderness score (P Brahman population than in reported allele frequencies in Bos taurus populations. The results suggest that the use of molecular marker information developed in Bos taurus populations to Bos indicus populations may require development of appropriate additional markers. PMID:15583037

  13. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle.

    Science.gov (United States)

    Casas, E; White, S N; Riley, D G; Smith, T P L; Brenneman, R A; Olson, T A; Johnson, D D; Coleman, S W; Bennett, G L; Chase, C C

    2005-01-01

    Objective of this study was to assess the association of SNP in the diacylglycerol O-acyltransferase 1 (DGAT1), thyroglobulin (TG), and micromolar calcium-activated neutral protease (CAPN1) genes with carcass composition and meat quality traits in Bos indicus cattle. A population of Brahman calves (n = 479) was developed in central Florida from 1996 to 2000. Traits analyzed were ADG, hip height, slaughter weight, fat thickness, HCW, marbling score, LM area, estimated KPH fat, yield grade, retail yield, sensory panel tenderness score, carcass hump height, and cooked meat tenderness measured as Warner-Bratzler shear force at 7, 14, and 21 d postmortem. Single nucleotide polymorphisms previously reported in the TG and DGAT1 genes were used as markers on chromosome 14. Two previously reported and two new SNP in the CAPN1 gene were used as markers on chromosome 29. One SNP in CAPN1 was uninformative, and another one was associated with tenderness score (P Brahman population than in reported allele frequencies in Bos taurus populations. The results suggest that the use of molecular marker information developed in Bos taurus populations to Bos indicus populations may require development of appropriate additional markers.

  14. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl β-Diol Lipids

    Energy Technology Data Exchange (ETDEWEB)

    Touchette, Megan H.; Bommineni, Gopal R.; Delle Bovi, Richard J.; Gadbery, John; Nicora, Carrie D.; Shukla, Anil K.; Kyle, Jennifer E.; Metz, Thomas O.; Martin, Dwight W.; Sampson, Nicole S.; Miller, W. T.; Tonge, Peter J.; Seeliger, Jessica C.

    2015-09-08

    Although classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl beta-diol, phthiocerol, with branched-chain fatty acids know as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. We here show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl beta-diol substrate analogues. Applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinase PknB modifies PapA5 on three Thr residues, including two (T196, T198) located on an unresolved loop. These results clarify the DIM biosynthetic pathway and suggest possible mechanisms by which DIM biosynthesis may be regulated by the post-translational modification of PapA5.

  15. Effect of various eicosanoid products of arachidonic acid on the acyl CoA: Cholesterol acyl transferase activity in three different mammalian cell lines

    International Nuclear Information System (INIS)

    Acylcoenzyme A:cholesterol acyltransferase (ACAT) catalyzes cholesterol ester synthesis intracellularly and has been implicated in the development of atherosclerosis. An in vitro assay has been adapted for determining ACAT activity from rat FU5AH hepatoma, Chinese hamster ovary (CHO) and rat thoracic aortic smooth muscle (RSM) cells. Formation of 14C-labelled cholesteryl oleate at 0 to 60 min ± cholesterol was determined; in the presence of exogenous cholesterol, ACAT activity was approximately linear and surpassed the plateau observed in ACAT activity without cholesterol. Increasing exogenous cholesterol concentration, the amount of oleoyl CoA or the amount of microsomal protein produced a corresponding increase in ACAT activity, while ester formation was slightly increased by decreasing the ratio of Triton WR-1339 to cholesterol. Both the thromboxane A2 (TxA2) mimic, U-44069, and the inflammatory lipoxygenase product, LTB4, decreased optimal in vitro microsomal ACAT activity from RSM, but not form FU5AH, while CHO ACAT activity was suppressed by LTBr only. PGI2, PGE2 and PGF2α had minimal effects for each cell type

  16. Fumonisins--mycotoxins produced by Fusarium moniliforme.

    Science.gov (United States)

    Norred, W P

    1993-03-01

    Fumonisins are toxic metabolites of the fungus Fusarium moniliforme, which is a common contaminant of corn everywhere in the world. The fumonisins are carcinogenic in laboratory rats, and cause acute toxicity of domestic animals that mimics field cases of disease attributed to contamination of feed by F. moniliforme. These include both equine leukoencephalomalacia and porcine pulmonary edema. Fusarium moniliforme contamination of corn consumed by humans in certain areas of the world is associated with higher than average incidence of esophageal cancer, and fumonisins may be responsible. Analytical methods have been developed for fumonisins, but improvements are needed so that more accurate, less expensive, and more rapid assays of food and feedstuffs can be done. Fumonisins are structurally similar to sphingosine, and may exert their biological activity through their ability to block key enzymes (sphinganine- and sphingosine-N-acyltransferases) involved in sphingolipid biosynthesis. Much more research is needed to define the extent to which this mycotoxin adversely affects the food supply, and its involvement in animal and human diseases.

  17. Esterification of vertebrate like steroids in molluscs: a target of endocrine disruptors?

    Science.gov (United States)

    Giusti, Arnaud; Joaquim-Justo, Célia

    2013-11-01

    Alterations of the reproductive organs of gastropod molluscs exposed to pollutants have been reported in natural populations for more than 40 years. In some cases, these impacts have been linked to exposure to endocrine-disrupting chemicals (EDCs), which are known to induce adverse impacts on vertebrates, mainly by direct binding to steroid receptors or by altering hormone synthesis. Investigations on the mechanisms of action of endocrine disruptors in molluscs show that EDCs induce modifications of endogenous titres of androgens (e.g., testosterone, androstenedione) and oestrogens (e.g., 17ß-oestradiol). Alterations of the activity of enzymes related to steroid metabolism (i.e., cytochrome P-450 aromatase, acyltransferases) are also often observed. In bivalves and gastropods, fatty acid esterification of steroids might constitute the major regulation of androgen and oestrogen homeostasis. The present review indicates that metabolism of steroid hormones to fatty acid esters might be a target of synthetic EDCs. Alterations of this process would impact the concentrations of free, potentially bioactive, form of steroids. PMID:24004916

  18. Moro orange juice prevents fatty liver in mice

    Institute of Scientific and Technical Information of China (English)

    Federico Salamone; Marco Giorgio; Fabio Galvano; Giovanni Li Volti; Lucilla Titta; Lidia Puzzo; Ignazio Barbagallo; Francesco La Delia; Shira Zelber-Sagi; Michele Malaguarnera; Pier Giuseppe Pelicci

    2012-01-01

    AIM:To establish if the juice of Moro,an anthocyaninrich orange,may improve liver damage in mice with diet-induced obesity.METHODS:Eight-week-old mice were fed a high-fat diet (HFD) and were administrated water or Moro juice for 12 wk.Liver morphology,gene expression of lipid transcription factors,and metabolic enzymes were assessed.RESULTS:Mice fed HFD displayed increased body weight,insulin resistance and dyslipidemia.Moro juice administration limited body weight gain,enhanced insulin sensitivity,and decreased serum triglycerides and total cholesterol.Mice fed HFD showed liver steatosis associated with ballooning.Dietary Moro juice markedly improved liver steatosis by inducing the expression of peroxisome proliferator-activated receptor-a and its target gene acylCoA-oxidase,a key enzyme of lipid oxidation.Consistently,Moro juice consumption suppressed the expression of liver X receptor-o and its target gene fatty acid synthase,and restored liver glycerol-3-phosphate acyltransferase 1 activity.CONCLUSION:Moro juice counteracts liver steatogenesis in mice with diet-induced obesity and thus may represent a promising dietary option for the prevention of fatty liver.

  19. TRIAGEM METABÓLICA POR PKS E NRPS EM ACTINOBACTÉRIAS ENDOFÍTICAS DE Citrus reticulata

    Directory of Open Access Journals (Sweden)

    Pedro L. R. da Cruz

    2015-03-01

    Full Text Available Polyketides and non-ribosomal peptides are natural products widely found in bacteria, fungi and plants. The biological activities associated with these metabolites have attracted special attention in biopharmaceutical studies. Polyketide synthases act similarly to fatty acids synthetases and the whole multi-enzymatic set coordinating precursor and extending unit selection and reduction levels during chain growth. Acting in a similarly orchestrated model, non-ribosomal peptide synthetases biosynthesize NRPs. PKSs-I and NRPSs enzymatic modules and domains are collinearly organized with the parent gene sequence. This arrangement allows the use of degenerated PCR primers to amplify targeted regions in the genes corresponding to specific enzymatic domains such as ketosynthases and acyltransferases in PKSs and adenilation domains in NRPSs. Careful analysis of these short regions allows the classifying of a set of organisms according to their potential to biosynthesize PKs and NRPs. In this work, the biosynthetic potential of a set of 13 endophytic actinobacteria from Citrus reticulata for producing PKs and NRP metabolites was evaluated. The biosynthetic profile was compared to antimicrobial activity. Based on the inhibition promoted, 4 strains were considered for cluster analysis. A PKS/NRPS phylogeny was generated in order to classify some of the representative sequences throughout comparison with homologous genes. Using this approach, a molecular fingerprint was generated to help guide future studies on the most promising strains.

  20. Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Nagao Koji

    2008-10-01

    Full Text Available Abstract Background Higher concentrations of serum lipids and apolipoprotein B100 (apoB are major individual risk factors of atherosclerosis and coronary heart disease. Therefore ameliorative effects of food components against the diseases are being paid attention in the affluent countries. The present study was undertaken to investigate the effect of taurine on apoB secretion and lipid metabolism in human liver model HepG2 cells. Results The results demonstrated that an addition of taurine to the culture media reduces triacylglycerol (TG-mass in the cells and the medium. Similarly, cellular cholesterol-mass was decreased. Taurine inhibited the incorporation of [14C] oleate into cellular and medium TG, suggesting the inhibition of TG synthesis. In addition, taurine reduced the synthesis of cellular cholesterol ester and its secretion, suggesting the inhibition of acyl-coenzyme A:cholesterol acyltransferase activity. Furthermore, taurine reduced the secretion of apoB, which is a major protein component of very low-density lipoprotein. Conclusion This is a first report to demonstrate that taurine inhibits the secretion of apoB from HepG2 cells.

  1. Sphingomyelin in High-Density Lipoproteins: Structural Role and Biological Function

    Science.gov (United States)

    Martínez-Beamonte, Roberto; Lou-Bonafonte, Jose M.; Martínez-Gracia, María V.; Osada, Jesús

    2013-01-01

    High-density lipoprotein (HDL) levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM) is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin–cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat), drugs (statins or diuretics) and modified in diseases such as diabetes, renal failure or Niemann–Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future. PMID:23571495

  2. Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis.

    Science.gov (United States)

    Bordewick, U; Heese, M; Börchers, T; Robenek, H; Spener, F

    1989-03-01

    Fatty-acid-binding proteins are known to occur in the cytosol of mammalian cells and to bind fatty acids and their CoA-esters. Application of the postembedding protein A-gold labeling method with antibody against the hepatic type fatty-acid-binding protein (hFABP) to cross-sections of liver cells and a newly developed gel-chromatographic immunofluorescence assay established qualitatively (1) that hFABP in mitochondria was confined to outer mitochondrial membranes, (2) the presence of this protein in microsomes and (3) that nuclei were also filled with hFABP. Quantitative data elaborated with a non-competitive ELISA confirmed these results. A significant difference to the distribution of cardiac FABP in heart muscle cells, where this type of protein was found in cytosol, matrix and nuclei, was observed (Börchers et al. (1989) Biochim. Biophys. Acta, in the press). hFABP-containing rat liver microsomes were incubated with long-chain acyl-CoAs in the presence of hFABP (isolated from rat liver cytosol) in a study on the acylation of sn-glycerol-3-phosphate and lysophosphatidic acid. Both acyltransferases were stimulated by addition of hFABP to the incubation medium. The morphological, immunochemical as well as kinetic data infer a direct interaction of hFABP with microsomal membranes in liver cells.

  3. Glycerophosphate acylation by microsomes and mitochondria of normal and dystrophic human muscle.

    Science.gov (United States)

    Kunze, D; Rüstow, B; Olthoff, D

    1984-07-16

    The incorporation of [14C]glycerophosphate into phosphatidic acid, diacylglycerol, triacylglycerol and phosphatidylcholine by microsomes and mitochondria prepared from normal and dystrophic human muscle incubated in vitro in the presence of 0.3 mmol/l CDP-choline was measured. In mitochondria only phosphatidic acid and diacylglycerol are labelled; the rate of incorporation into these two compounds showed no difference between dystrophic and normal mitochondria. In dystrophic microsomes the incorporation into phosphatidic acid was delayed and decreased. No incorporation of glycerol into diacylglycerol, phosphatidylcholine and triacylglycerol could be measured. Thus in dystrophic muscle microsomes only PA was labelled during an incubation of up to 45 min. In both types of microsomes the concentration of endogenous free fatty acids and diacylglycerol was nearly identical. The level of phosphatidylcholine was 186 and 79 nmol/mg microsomal protein in normal and dystrophic muscle microsomes, respectively. Whether the results could be explained as secondary changes was discussed. Despite some unsolved problems the conclusion was drawn that a better explanation of the results is to assume a primary defect involving microsomal-bound phosphatidic acid phosphohydrolase and possibly glycerol-P-acyltransferases.

  4. The role of palmitoylation for protein recruitment to the inner membrane complex of the malaria parasite.

    Science.gov (United States)

    Wetzel, Johanna; Herrmann, Susann; Swapna, Lakshmipuram Seshadri; Prusty, Dhaneswar; John Peter, Arun T; Kono, Maya; Saini, Sidharth; Nellimarla, Srinivas; Wong, Tatianna Wai Ying; Wilcke, Louisa; Ramsay, Olivia; Cabrera, Ana; Biller, Laura; Heincke, Dorothee; Mossman, Karen; Spielmann, Tobias; Ungermann, Christian; Parkinson, John; Gilberger, Tim W

    2015-01-16

    To survive and persist within its human host, the malaria parasite Plasmodium falciparum utilizes a battery of lineage-specific innovations to invade and multiply in human erythrocytes. With central roles in invasion and cytokinesis, the inner membrane complex, a Golgi-derived double membrane structure underlying the plasma membrane of the parasite, represents a unique and unifying structure characteristic to all organisms belonging to a large phylogenetic group called Alveolata. More than 30 structurally and phylogenetically distinct proteins are embedded in the IMC, where a portion of these proteins displays N-terminal acylation motifs. Although N-terminal myristoylation is catalyzed co-translationally within the cytoplasm of the parasite, palmitoylation takes place at membranes and is mediated by palmitoyl acyltransferases (PATs). Here, we identify a PAT (PfDHHC1) that is exclusively localized to the IMC. Systematic phylogenetic analysis of the alveolate PAT family reveals PfDHHC1 to be a member of a highly conserved, apicomplexan-specific clade of PATs. We show that during schizogony this enzyme has an identical distribution like two dual-acylated, IMC-localized proteins (PfISP1 and PfISP3). We used these proteins to probe into specific sequence requirements for IMC-specific membrane recruitment and their interaction with differentially localized PATs of the parasite.

  5. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  6. Grape Polyphenols Increase the Activity of HDL Enzymes in Old and Obese Rats

    Directory of Open Access Journals (Sweden)

    Andriy L. Zagayko

    2013-01-01

    Full Text Available HDL particles are protein-rich particles that act as a vehicle for reverse cholesterol transport from tissues to the liver. The purpose of this study was to investigate age-dependent changes in the functional activity of HDL and the effect of high-energy diet on this index, as well as to correct it under the influence of grape polyphenols from “Enoant” obtained from Vitis vinifera grapes. We observed the age-dependent composition changes in HDL particle. It was shown that total lipids and triacylglycerol (TG levels were higher in 24-month-old animals. In obese rats, HDL total lipids and TG levels were higher in 24-month-old than in the 3-month-old and 12-month-old groups but did not differ from 24-month-old group. The plasma HDL paraoxonase (PON and lecithin:cholesterol acyltransferase (LCAT activity levels were decreased in old-aged rats, and cholesteryl ester transfer protein (CETP activity was higher in old rats. Keeping 12-month-old animals on high-fructose diet completely leveled the age differences in the data that have been measured between 12-month-old and 24-month-old rats. After “Enoant” administration, an increase of HDL PON and LCAT activity levels and a reduction of CETP activity were found in 24-month-old and obese rats.

  7. The mechanism of dietary cholesterol effects on lipids metabolism in rats

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    2010-01-01

    Full Text Available Abstract Background Cholesterol administration has been reported to influence hepatic lipid metabolism in rats. In the present study, the effect of dietary cholesterol on hepatic activity and mRNA expression of the enzymes involved in lipid metabolism were investigated. Fourteen male Wistar rats were randomly divided into 2 groups and fed 1% cholesterol or cholesterol free AIN76 diets for 4 weeks. Results The serum triglyceride and high density lipoprotein cholesterol levels were significantly decreased but the total cholesterol and non high density lipoprotein cholesterol levels were significantly increased in the cholesterol-fed rats compared with the control rats. And the concentrations of the hepatic total cholesterol and triglyceride increased about 4-fold and 20-fold separately by dietary cholesterol. The activities of hepatic malic enzyme, glucose-6-phosphate dehydrogenase, fatty acid synthase, phosphatidate phophatase and carnitine palmitoyl transferase were depressed by the cholesterol feeding (40%, 70%, 50%, 15% and 25% respectively. The results of mRNA expression showed that fatty acid synthase, carnitine palmitoyl transferase 1, carnitine palmitoyl transferase 2, and HMG-CoA reductase were down-regulated (35%, 30%, 50% and 25% respectively and acyl-CoA: cholesterol acyltransferase and cholesterol 7α-hydroxylase were up regulated (1.6 and 6.5 folds in liver by the cholesterol administration. Conclusions The dietary cholesterol increased the triglyceride accumulation in liver, but did not stimulate the activity and the gene expression of hepatic enzymes related to triglyceride and fatty acid biosynthesis.

  8. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism.

    Science.gov (United States)

    Sachdev, Vinay; Leopold, Christina; Bauer, Raimund; Patankar, Jay V; Iqbal, Jahangir; Obrowsky, Sascha; Boverhof, Renze; Doktorova, Marcela; Scheicher, Bernhard; Goeritzer, Madeleine; Kolb, Dagmar; Turnbull, Andrew V; Zimmer, Andreas; Hoefler, Gerald; Hussain, M Mahmood; Groen, Albert K; Kratky, Dagmar

    2016-09-01

    Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1(-/-)) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1(-/-) and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia. PMID:27344248

  9. Hypolipidemic effect of methanol fraction of Aconitum heterophyllum wall ex Royle and the mechanism of action in diet-induced obese rats.

    Directory of Open Access Journals (Sweden)

    Arun Koorappally Subash

    2012-01-01

    Full Text Available Aconitum heterophyllum is an endangered Himalayan plant included in "lekhaneyagana," a pharmacological classification mentioned by Charaka in "Charakasamhita" which means reduce excess fat. The subterranean part of the plant is used for the treatment of diseases like nervous system disorders, fever, diarrhea, obesity, etc. In the present study, we are reporting the hypolipidemic effect of methanol fraction of A. heterophyllum. The methanol extract of A. heterophyllum was orally administered in diet-induced obese rats. After four weeks treatment, blood samples were collected for the estimation of serum lipids and lecithin-cholesterol acyltransferase (LCAT. Liver was collected for the assay of HMG-CoA reductase (HMGR. The fecal samples were also collected to estimate the fecal fat content. The A. heterophyllum treatment markedly lowered total cholesterol, triglycerides and apolipoprotein B concentrations in blood serum. It also showed positive effects (increase on serum high-density lipoprotein cholesterol (HDL-c and apolipoprotein A1 concentrations. On the other hand, A. heterophyllum treatment lowered HMGR activity, which helps to reduce endogenous cholesterol synthesis and also activated LCAT, helping increase in HDL-c. An increase in fecal fat content is also an indication of the hypolipidemic effect of A. heterophyllum. The significant hypolipidemic effect of A. heterophyllum may be linked to its ability to inhibit HMGR activity and block intestinal fat absorption. The increase in HDL-c may be linked to its ability to activate LCAT enzyme.

  10. Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph W McFadden

    Full Text Available Modification of hypothalamic fatty acid (FA metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1 and fatty acid oxidation (FAOx, exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS, and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.

  11. Ghrelin and eating behavior: evidence and insights from genetically-modified mouse models

    Directory of Open Access Journals (Sweden)

    Aki eUchida

    2013-07-01

    Full Text Available Ghrelin is an octanoylated peptide hormone, produced by endocrine cells of the stomach, which acts in the brain to increase food intake and body weight. Our understanding of the mechanisms underlying ghrelin’s effects on eating behaviors has been greatly improved by the generation and study of several genetically manipulated mouse models.These models include mice overexpressing ghrelin and also mice with genetic deletion of ghrelin, the ghrelin receptor [the growth hormone secretagogue receptor (GHSR] or the enzyme that post-translationally modifies ghrelin [ghrelin O-acyltransferase (GOAT]. In addition, a GHSR-null mouse model in which GHSR transcription is globally blocked but can be cell-specifically reactivated in a Cre recombinase-mediated fashion has been generated. Here, we summarize findings obtained with these genetically manipulated mice, with the aim to highlight the significance of the ghrelin system in the regulation of both homeostatic and hedonic eating, including that occurring in the setting of chronic psychosocial stress.

  12. Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum.

    Science.gov (United States)

    Teigler, Andre; Komljenovic, Dorde; Draguhn, Andreas; Gorgas, Karin; Just, Wilhelm W

    2009-06-01

    Ether lipids (ELs), particularly plasmalogens, are essential constituents of the mammalian central nervous system. The physiological role of ELs, in vivo, however is still enigmatic. In the present study, we characterized a mouse model carrying a targeted deletion of the peroxisomal dihydroxyacetonephosphate acyltransferase gene that results in the complete lack of ELs. Investigating the cerebellum of these mice, we observed: (i) defects in foliation patterning and delay in precursor granule cell migration, (ii) defects in myelination and concomitant reduction in the level of myelin basic protein, (iii) disturbances in paranode organization by extending the Caspr distribution and disrupting axo-glial septate-like junctions, (iv) impaired innervation of Purkinje cells by both parallel fibers and climbing fibers and (v) formation of axon swellings by the accumulation of inositol-tris-phosphate receptor 1 containing smooth ER-like tubuli. Functionally, conduction velocity of myelinated axons in the corpus callosum was significantly reduced. Most of these phenotypes were already apparent at P20 but still persisted in 1-year-old animals. In summary, these data show that EL deficiency results in severe developmental and lasting structural alterations at the cellular and network level of the cerebellum, and reveal an important role of ELs for proper brain function. Common molecular mechanisms that may underlie these phenotypes are discussed. PMID:19270340

  13. Label-free quantitative proteomic analysis of right ventricular remodeling in infant Tetralogy of Fallot patients.

    Science.gov (United States)

    Xia, Yu; Hong, Haifa; Ye, Lincai; Wang, Yanlin; Chen, Huiwen; Liu, Jinfen

    2013-06-12

    Tetralogy of Fallot (TOF) results in chronic progressive right ventricular (RV) pressure overload and shunt hypoxemia. We investigated the global changes in the proteome of RV among infant patients with and without TOF to gain an insight into early RV remodeling. One hundred and thirty-six differentially expressed proteins were identified using label-free LC-ESI-MS/MS analysis. Western blot results revealed that the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2) increased significantly in TOF patients; and levels of lysocardiolipin acyltransferase 1 (LCLAT1), lumican (LUM), and versican (VCAN) decreased significantly. QRT-PCR analysis showed that levels of PFKFB2 mRNA were markedly increased, but those of LCLAT1 and LUM were significantly decreased. VCAN mRNA showed no significant change in response to pathophysiology of TOF. The results of immunohistochemical staining were similar to those of Western blot analysis. Results of the proteomic analysis indicated that the level of glycolysis-related proteins had increased and levels of lipid-metabolism-related proteins had decreased. ECM proteins were found to be more down-regulated in TOF in the present study than in previous reports. Taken together, our findings may provide clues to both the metabolic inflexibility and ECM remodeling during the early RV remodeling, which occur in response to chronic hypoxia and long-term pressure overload in TOF patients. PMID:23571024

  14. Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos

    Energy Technology Data Exchange (ETDEWEB)

    Bao, X.; Ohlrogge, J.

    1999-08-01

    The metabolic factors that determine oil yield in seeds are still not well understood. To begin to examine the limits on triacylglycerol (TAG) production, developing Cuphea lanceolata, Ulmus carpinifolia, and Ulmus parvifolia embryos were incubated with factors whose availability might limit oil accumulation. The addition of glycerol or sucrose did not significantly influence the rate of TAG synthesis. However, the rate of {sup 14}C-TAG synthesis upon addition of 2.1 mM {sup 14}C-decanoic acid (10:0) was approximately four times higher than the in vivo rate of TAG accumulation in C. lanceolata and two times higher than the in vivo rate in U. carpinifolia and U. parvifolia. In C. lanceolata embryos, the highest rate of {sup 14}C-TAG synthesis (14.3 nmol h{sup {minus}1} embryo {sup {minus}1}) was achieved with the addition of 3.6 mM decanoic acid. {sup 14}C-Decanoic acid was incorporated equally well in all three acyl positions of TAG. The results suggest that C. lancelata, U. Carpinifolia, and U. parvifolia embryos have sufficient acyltransferase activities and glycerol-3-phosphate levels to support rates of TAG synthesis in excess of those found in vivo. Consequently, the amount of TAG synthesized in these oilseeds may be in part determined by the amount of fatty acid produced in plastids.

  15. A functional slow recycling pathway of transferrin is required for growth of chlamydia

    Directory of Open Access Journals (Sweden)

    Scot eOuellette

    2010-10-01

    Full Text Available An inhibitor of host cell lysophospholipid acyltransferase (LPAT, an enzyme involved in lipid metabolism blocked growth of the obligate intracellular pathogen Chlamydia through its action on the transport of transferrin (Tf via the slow pathway of recycling. A detailed characterization of this inhibition revealed that Tf accumulated in vesicles positive for Rab11, with a concomitant reduction in the level of Tf found within the transport intermediate Rab4/11 hybrid vesicles. The net result was the failure to be recycled to the plasma membrane. In chlamydiae-infected cells, the Tf-containing Rab11-positive vesicles were typically found intimately associated with the inclusion, and treatment with the inhibitor caused their accumulation, suggesting that the timely progression and completion of Tf recycling was necessary for proper chlamydial growth. Growth inhibition by the compound could be negated by the simple removal of the Tf-containing fraction of the serum, a further indication that accumulation of Tf around the chlamydial inclusion was deleterious to the pathogen. Thus, it appears that manipulating the slow recycling pathway can have biological consequences for Chlamydia and implies the need to regulate carefully the interaction of the inclusion with this host trafficking pathway.

  16. Altered hypothalamic protein expression in a rat model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP, heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4, glycogen synthase1 (Gys1 and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1. In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.

  17. Nuclear Magnetic Resonance Approaches in the Study of 2-Oxo Acid Dehydrogenase Multienzyme Complexes—A Literature Review

    Directory of Open Access Journals (Sweden)

    Mulchand S. Patel

    2013-09-01

    Full Text Available The 2-oxoacid dehydrogenase complexes (ODHc consist of multiple copies of three enzyme components: E1, a 2-oxoacid decarboxylase; E2, dihydrolipoyl acyl-transferase; and E3, dihydrolipoyl dehydrogenase, that together catalyze the oxidative decarboxylation of 2-oxoacids, in the presence of thiamin diphosphate (ThDP, coenzyme A (CoA, Mg2+ and NAD+, to generate CO2, NADH and the corresponding acyl-CoA. The structural scaffold of the complex is provided by E2, with E1 and E3 bound around the periphery. The three principal members of the family are pyruvate dehydrogenase (PDHc, 2-oxoglutarate dehydrogenase (OGDHc and branched-chain 2-oxo acid dehydrogenase (BCKDHc. In this review, we report application of NMR-based approaches to both mechanistic and structural issues concerning these complexes. These studies revealed the nature and reactivity of transient intermediates on the enzymatic pathway and provided site-specific information on the architecture and binding specificity of the domain interfaces using solubilized truncated domain constructs of the multi-domain E2 component in its interactions with the E1 and E3 components. Where studied, NMR has also provided information about mobile loops and the possible relationship of mobility and catalysis.

  18. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    Science.gov (United States)

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively. PMID:25745068

  19. Study of Valproic Acid-Enhanced Hepatocyte Steatosis

    Directory of Open Access Journals (Sweden)

    Renin Chang

    2016-01-01

    Full Text Available Valproic acid (VPA is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA- induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36, low-density lipoprotein receptor-related protein 1 (Lrp1, diacylglycerol acyltransferase 2 (Dgat2, and perilipin 2 (Plin2 were increased, that of carnitine palmitoyltransferase I a (Cpt1a was not affected, and those of acetyl-Co A carboxylase α (Acca and fatty acid synthase (Fasn were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation.

  20. In vivo kinetic analysis of the penicillin biosynthesis pathway using PAA stimulus response experiments.

    Science.gov (United States)

    Deshmukh, Amit T; Verheijen, Peter J T; Maleki Seifar, Reza; Heijnen, Joseph J; van Gulik, Walter M

    2015-11-01

    In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT). PMID:26476338

  1. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  2. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits.

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    2014-01-01

    Full Text Available Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains and one time-series transcriptome dataset for triacylglycerol (TAG synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2 in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels.

  3. Effects of d-norgestrel on lipid metabolism in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Khokha, R.

    1985-01-01

    The effects of the progestin d-norgestrel (d-Ng) on lipid and lipoprotein metabolism and elucidate its mechanism of action using the rat as the experimental model were investigated. d-Ng fed to female rats (18 days) in conventional doses, significantly lowered the plasma total and very low density lipoprotein (VLDL)-triglycerides. In contrast, the plasma total and low density lipoprotein (LDL)-cholesterol rose significantly. The triglyceride synthesis was studied using isolated rate hepatocytes. d-Ng (0.1 mM), in the presence of 0.1% dimethylsulfoxide concentration of the medium, significantly inhibited the incorporation of both (9,10-/sup 3/H) palmitate and (U-/sup 14/C) glycerol into triglycerides synthesized and triglycerides released by the hepatocytes. The inhibition of triglyceride synthesis by d-Ng was dose-dependent. Further studies of the effect of d-Ng on the rate limiting enzymes of triglyceride synthesis showed a significant reduction in the specific activity of hepatic glycerol phosphate acyltransferase (GPAT) and phosphatidic acid aqueous dependent phosphatidic acid phosphatase (PAPase) specifically in the microsomes. However, the specific activity of mitochondrial GPAT and phosphatidic acid membrane bound dependent PAPase in microsomes as well as cytosol remained unchanged. These findings suggest that d-Ng acts by inhibiting specifically the hepatic lipogenic enzymes in the microsomes. This subsequently reduces the triglyceride synthesis and secretion by the liver resulting in lower plasma and VLDL triglycerides levels in d-Ng-treated rats.

  4. Clinical perspectives for ghrelin-derived therapeutic products.

    Science.gov (United States)

    Allas, Soraya; Abribat, Thierry

    2013-01-01

    Because of its orexigenic, adipogenic and diabetogenic activities, acylated ghrelin (AG) has emerged as an attractive target for the treatment of obesity and type 2 diabetes. Pharmacological tools have been designed in order to antagonize or block the hormone's activity, or inhibit ghrelin O-acyltransferase (GOAT), the enzyme that catalyzes its acylation. AG antagonists, shown to be potent inhibitors of growth hormone (GH) secretion, were not able to consistently induce the desirable metabolic effects. Some of them, on the contrary, acted as AG agonists. Similarly, AG-blocking agents including Spiegelmers, vaccines, and monoclonal antibodies, gave mixed results. More encouraging yet very preliminary data were obtained with a novel GOAT inhibitor. However, although significant, the observed decrease in circulating AG levels was partial and improvement work remains to be done. Unacylated ghrelin (UAG) and analogs were shown to potently and rapidly inhibit plasma AG levels, and to improve glucose metabolism in addition to displaying beneficial effects on a variety of cells. These data support the rationale for further development of this new therapeutic class in type 2 diabetes and the Prader-Willi syndrome. A development program is underway with AZP-531, a cyclized UAG(6-13) analog with improved pharmacokinetic properties. PMID:23652401

  5. 豚鼠早期动脉粥样硬化模型的建立、机制研究及与大鼠模型的比较%The establishment and evaluation of early atherosclerosis models in guinea pigs and rats

    Institute of Scientific and Technical Information of China (English)

    杨润梅; 李金莲; 高南南; 陈慧敏; 蔡大勇; 屠宴会

    2011-01-01

    目的 建立豚鼠早期动脉粥样硬化模型,探讨模型形成机制,并与大鼠模型进行比较,为豚鼠模型优势提供科学依据.方法 应用高脂饲料诱导法,观察豚鼠和大鼠是否可形成早期动脉粥样硬化模型,并应用免疫组化和酶联免疫分析技术探讨模型形成机制.结果 豚鼠模型组摄入高脂饲料6周后主动脉内膜-中膜明显增厚、内膜单核细胞、巨噬细胞浸润与聚集增多,同时比例为0.40的动物动脉内膜表层进一步发展形成脂纹脂斑病变.而大鼠模型组未见类似病变.机制研究表明,血清脂蛋白(a)[Lipoprotein(a),LP(a)]、胆固醇酯转运蛋白(Cholesteryl ester transfer protein,CETP)、氧化型低密度脂蛋白(ox-LDL)浓度,肝脏脂酰辅酶A:胆固醇酰基转移酶(Acyl-CoA:cholesterol acyltransferase,ACAT)活性和主动脉增殖细胞核抗原(Proliferating cell nuclear antigen,PCNA)、分化抗原簇-36(Cluster of differentiation 36,CD36)和血管细胞黏附分子(Vascular cell adhesion molecule,VCAM-1)表达的变化是动脉病理改变的重要机制.结论 豚鼠可能是一种模拟早期动脉粥样硬化的适宜动物模型.%Aim To build up the model of early atherosclerosis in guinea pig and rats and to compare the differences in mechanisms underlying the development of atherosclerosis between the two species.Methods Whether the guinea pig and the rat can develop early atherosclerosis with high lipid diets was investigated,and the mechanisms were explored hy immunohistochemistry and enzyme-linked immunoassay.Results After fed with high fat diet for 6 weeks.the serum TC and LDL-C level increased,the aortic aortic intima-media area significantly thickened.and the infiltration and aggregation of monocytes of intima and macrophages significantly increased in guinea pigs.In addition.40 percent of the arterial intimal surface developed into fatty streak formation of plaque lesions.But such changes were not observed in rats

  6. Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening.

    Science.gov (United States)

    Zhang, Bo; Shen, Ji-Yuan; Wei, Wen-Wen; Xi, Wan-Peng; Xu, Chang-Jie; Ferguson, Ian; Chen, Kunsong

    2010-05-26

    Changes in characteristic aroma volatiles, levels of fatty acids as aroma precursors, and expression patterns of related genes, including lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase (ADH), alcohol acyltransferase (AAT), and fatty acid desaturase (FAD), were studied in peach ( Prunus persica L. Batsch., cv. Yulu) fruit during postharvest ripening at 20 degrees C. Concentrations of n-hexanal, (E)-2-hexenal, (E)-2-hexenol, and (Z)-3-hexenol decreased, whereas the production of (Z)-3-hexenyl acetate, gamma-hexalactone, gamma-octalactone, gamma-decalactone, and delta-decalactone increased with fruit ripening. Lactones showed a clear pattern concomitant with the climacteric rise in ethylene production, with gamma-decalactone being the principal volatile compound at the late ripening stage. Of the LOX family genes, PpLOX2 and PpLOX3 had relatively high transcript levels initially followed by a decline with fruit ripening, while levels of PpLOX1 and PpLOX4 transcripts were upregulated by accumulated ethylene production. Expression of PpHPL1, PpADH1, PpADH2, and PpADH3 showed similar decreasing patterns during ripening. Expression levels of PpAAT1 showed a rapid increase during the first 2 days of postharvest ripening followed by a gradual decrease. Contents of polyunsaturated linoleic and linolenic acids increased, and saturated palmitic acid levels tended to decline as the fruit ripened. The increased levels of unsaturated fatty acids closely paralleled increasing expression of PpFAD1 and PpFAD2. The significance of gene expression changes in relation to aroma volatile production is discussed. PMID:20415420

  7. Molecular cloning, sequence characterization, and gene expression profiling of a novel water buffalo (Bubalus bubalis) gene, AGPAT6.

    Science.gov (United States)

    Song, S; Huo, J L; Li, D L; Yuan, Y Y; Yuan, F; Miao, Y W

    2013-01-01

    Several 1-acylglycerol-3-phosphate-O-acyltransferases (AGPATs) can acylate lysophosphatidic acid to produce phosphatidic acid. Of the eight AGPAT isoforms, AGPAT6 is a crucial enzyme for glycerolipids and triacylglycerol biosynthesis in some mammalian tissues. We amplified and identified the complete coding sequence (CDS) of the water buffalo AGPAT6 gene by using the reverse transcription-polymerase chain reaction, based on the conversed sequence information of the cattle or expressed sequence tags of other Bovidae species. This novel gene was deposited in the NCBI database (accession No. JX518941). Sequence analysis revealed that the CDS of this AGPAT6 encodes a 456-amino acid enzyme (molecular mass = 52 kDa; pI = 9.34). Water buffalo AGPAT6 contains three hydrophobic transmembrane regions and a signal 37-amino acid peptide, localized in the cytoplasm. The deduced amino acid sequences share 99, 98, 98, 97, 98, 98, 97 and 95% identity with their homologous sequences from cattle, horse, human, mouse, orangutan, pig, rat, and chicken, respectively. The phylogenetic tree analysis based on the AGPAT6 CDS showed that water buffalo has a closer genetic relationship with cattle than with other species. Tissue expression profile analysis shows that this gene is highly expressed in the mammary gland, moderately expressed in the heart, muscle, liver, and brain; weakly expressed in the pituitary gland, spleen, and lung; and almost silently expressed in the small intestine, skin, kidney, and adipose tissues. Four predicted microRNA target sites are found in the water buffalo AGPAT6 CDS. These results will establish a foundation for further insights into this novel water buffalo gene. PMID:24114207

  8. Apolipoprotein and lipid abnormalities in chronic liver failure

    Directory of Open Access Journals (Sweden)

    Spósito A.C.

    1997-01-01

    Full Text Available Total serum lipids, as well as apolipoproteins A-I (apo A-I and B (apo B, were determined in 74 patients with chronic liver failure without cholestasis and in 82 normal subjects. The VLDL, LDL and HDL lipid fractions were reduced in the liver failure group by 36%, 24% and 46%, respectively (P<0.001. Apolipoproteins A-I and B were also reduced by 26% and 25%, respectively (P<0.001. However, the reduction of HDL cholesterol (HDLc was more pronounced than that of apo A-I and the HDLc:apo A-I ratio was significantly lower in the liver failure group. After separating these patients into groups with plasma albumin lower than 3.0, between 3.0 and 3.5, and higher than 3.5 g/dl, the HDLc:apo A-I ratio was proportional to plasma albumin, but the correlation was not statistically significant. When these patients were separated by the Child classification of liver function, there was a correlation between the HDLc:apo A-I ratio and liver function. The differences in the HDLc:apo A-I ratio between the Child groups B and C, and A and C were statistically significant (P<0.05. We conclude that there is a more pronounced reduction in HDL cholesterol than in apo A-I in liver failure patients. Therefore, the HDLc:apo A-I ratio is a marker of liver function, probably because there is a decreased lecithin-cholesterol acyltransferase production by the diseased liver

  9. C-S bond cleavage by a polyketide synthase domain.

    Science.gov (United States)

    Ma, Ming; Lohman, Jeremy R; Liu, Tao; Shen, Ben

    2015-08-18

    Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM's antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering.

  10. Molecular Structure of WlbB, a Bacterial N-Acetyltransferase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Thoden, James B.; Holden, Hazel M. (UW)

    2010-09-08

    The pathogenic bacteria Pseudomonas aeruginosa and Bordetella pertussis contain in their outer membranes the rare sugar 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Five enzymes are required for the biosynthesis of this sugar starting from UDP-N-acetylglucosamine. One of these, referred to as WlbB, is an N-acetyltransferase that converts UDP-2-acetamido-3-amino-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NA) to UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NAcA). Here we report the three-dimensional structure of WlbB from Bordetella petrii. For this analysis, two ternary structures were determined to 1.43 {angstrom} resolution: one in which the protein was complexed with acetyl-CoA and UDP and the second in which the protein contained bound CoA and UDP-GlcNAc3NA. WlbB adopts a trimeric quaternary structure and belongs to the L{beta}H superfamily of N-acyltransferases. Each subunit contains 27 {beta}-strands, 23 of which form the canonical left-handed {beta}-helix. There are only two hydrogen bonds that occur between the protein and the GlcNAc3NA moiety, one between O{sup {delta}1} of Asn 84 and the sugar C-3{prime} amino group and the second between the backbone amide group of Arg 94 and the sugar C-5{prime} carboxylate. The sugar C-3{prime} amino group is ideally positioned in the active site to attack the si face of acetyl-CoA. Given that there are no protein side chains that can function as general bases within the GlcNAc3NA binding pocket, a reaction mechanism is proposed for WlbB whereby the sulfur of CoA ultimately functions as the proton acceptor required for catalysis.

  11. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ploier, Birgit; Korber, Martina; Schmidt, Claudia; Koch, Barbara; Leitner, Erich; Daum, Günther

    2015-07-01

    Steryl esters and triacylglycerols are the major storage lipids of the yeast Saccharomyces cerevisiae. Steryl esters are formed in the endoplasmic reticulum by the two acyl-CoA:sterol acyltransferases Are1p and Are2p, whereas steryl ester hydrolysis is catalyzed by the three steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p. To shed light on the regulatory link between steryl ester formation and hydrolysis in the maintenance of cellular sterol and free fatty acid levels we employed yeast mutants which lacked the enzymes catalyzing the degradation of steryl esters. These studies revealed feedback regulation of steryl ester formation by steryl ester hydrolysis although in a Δtgl1Δyeh1Δyeh2 triple mutant the gene expression levels of ARE1 and ARE2 as well as protein levels and stability of Are1p and Are2p were not altered. Nevertheless, the capacity of the triple mutant to synthesize steryl esters was significantly reduced as shown by in vitro and in vivo labeling of lipids with [(14)C]oleic acid and [(14)C]acetate. Enzymatic analysis revealed that inhibition of steryl ester formation occurred at the enzyme level. As the amounts and the formation of sterols and fatty acids were also decreased in the triple mutant we concluded that defects in steryl ester hydrolysis also caused feedback inhibition on the formation of sterols and fatty acids which serve as precursors for steryl ester formation. In summary, this study demonstrates a regulatory link within the steryl ester metabolic network which contributes to non-polar lipid homeostasis in yeast cells.

  12. Intervention effects of aerobic exercise and hawthorn seed oil on lipid metabolism、anti-oxidative capacity、endothelial function of SD rats fed with high fat diet%有氧运动与山楂籽油干预对高脂饮食大鼠脂代谢、抗氧化能力及内皮细胞功能的影响

    Institute of Scientific and Technical Information of China (English)

    范学辉; 张清安; 胡柏平; 宋伟

    2011-01-01

    While the SD rats were fed with high fat diet,the aerobic exercise training was conducted and hawthorn seed oil was supplemented for three weeks.The serum triglyceride(TG),total cholesterol(TC),high-density lipoprotein-cholesterol(HDL-C),lecithin cholesterol acyltransferase(LCAT),superoxide dismutase(SOD),malondialdehyde(MDA),nitricoxide(NO),and the endothelin(ET) were determined at the end of the experiment.Conclusions:In Hyperlipidemia exercise group(HE),Hyperlipidemia Hawthorn seed oil group(HH) and Hyperlipidemia Hawthorn seed oil exercise group(HHE),the levels of TC、TG、HDL-C、LCAT、 SOD、 MDA 、NO、 ET in blood had significant changes or relatively significant changes(P0.05 or P0.01),compared with Hyper lipidemia model group.Hawthorn seed oil and aerobic training both improve activity of LCAT and antioxidant effects,improve endothelial dysfunction regulating the balance between ET and NO,and better blood lipid metabolism disorder;the appropriate combination of both will help to make use of advantage in synergy and enhance the role of prevention of atherosclerosis.%在给SD(Sprague Dawley)大鼠喂饲高脂饮食的同时,进行有氧运动锻炼或/和补充山楂籽油,实验结束测定大鼠血清总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、高密度脂蛋白(high-density lipoprotein-cholesterol,HDL-C)、一氧化氮(nitric oxide,NO)及内皮素(endothelin,ET)、血浆卵磷脂胆固醇酰基转移酶(lecithin cholesterol acyltransferase,LCA

  13. Expression of mouse MGAT in Arabidopsis results in increased lipid accumulation in seeds

    Directory of Open Access Journals (Sweden)

    Anna eEl Tahchy

    2015-12-01

    Full Text Available Worldwide demand for vegetable oil is projected to double within the next thirty years due to increasing food, fuel and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyses monoacylglycerol (MAG to form diacylglycerol (DAG, and then triacylglycerol (TAG. In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate (G-3-P by a series of three subsequent acylation reactions, or originate from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabelled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes.

  14. The GOAT-ghrelin system is not essential for hypoglycemia prevention during prolonged calorie restriction.

    Directory of Open Access Journals (Sweden)

    Chun-Xia Yi

    Full Text Available OBJECTIVE: Ghrelin acylation by ghrelin O-acyltransferase (GOAT has recently been reported to be essential for the prevention of hypoglycemia during prolonged negative energy balance. Using a unique set of four different genetic loss-of-function models for the GOAT/ghrelin/growth hormone secretagogue receptor (GHSR system, we thoroughly tested the hypothesis that lack-of-ghrelin activation or signaling would lead to hypoglycemia during caloric deprivation. METHODOLOGY: Male and female knockout (KO mice for GOAT, ghrelin, GHSR, or both ghrelin and GHSR (dKO were subjected to prolonged calorie restriction (40% of ad libitum chow intake. Body weight, fat mass, and glucose levels were recorded daily and compared to wildtype (WT controls. Forty-eight hour blood glucose profiles were generated for each individual mouse when 2% or less body fat mass was reached. Blood samples were obtained for analysis of circulating levels of acyl- and desacyl-ghrelin, IGF-1, and insulin. PRINCIPAL FINDINGS: Chronic calorie restriction progressively decreased body weight and body fat mass in all mice regardless of genotype. When fat mass was depleted to 2% or less of body weight for 2 consecutive days, random hypoglycemic events occurred in some mice across all genotypes. There was no increase in the incidence of hypoglycemia in any of the four loss-of-function models for ghrelin signaling including GOAT KO mice. Furthermore, no differences in insulin or IGF-1 levels were observed between genotypes. CONCLUSION: The endogenous GOAT-ghrelin-GHSR system is not essential for the maintenance of euglycemia during prolonged calorie restriction.

  15. Effects of white lupin associated with wheat or oat on hyperglycemia, dyslipidemia and reverse cholesterol transport in obese rats

    Directory of Open Access Journals (Sweden)

    Mounia Besbes

    2013-06-01

    Full Text Available Objective: In this study, we investigated the beneficial effects of cereals and legumes association on hyperglycemia, dyslipidemia, serum high density lipoproteins (HDL2 and HDL3 amounts and compositions and lecithin-cholesterol acyltransferase (LCAT activity in rats fed a high-fat-diet. Methods: Obesity was induced by feeding a high-fat-diet (20% animal fats during 3 months. At 400 ± 10 g, sixteen obese rats were divided into two homogenous groups and fed a diet containing either 1/3 white lupin + 2/3 wheat (wheat-lupin group or 1/3 white lupin + 2/3 oat (oat-lupin group for 28 days. Results: After 28 days of experimentation, wheat-lupin and oat-lupin diets significantly decreased hyperglycemia 1.4-fold, hypercholesterolemia 1.6- and 1.4-fold, and hypertriacylglycerolemia 2.4- and 3.2-fold, respectively, when compared with baseline values (day 0. At day 28, in the wheat-lupin group compared with the oat-lupin group glycemia was similar, whereas triacylglycerolemia was significantly enhanced (+25%. Furthermore, cholesterolemia value had a tendency to decrease (but not significantly and the content of very low density lipoproteins-cholesterol (VLDL-C was decreased by 43%. Despite similar concentrations of HDL3-PL (phospholipid, a preferential substrate of LCAT, HDL3-UC (unesterified cholesterol, an acceptor of lecithinacyl group, and HDL2-CE (cholesteryl esters, product of enzymatic reaction, wheat-lupin increased serum LCAT activity by 31% when compared with the oat-lupin group. Conclusion: In rats fed a high-fat-diet, wheat-lupin compared with oat-lupin association had no effect on hypertriacylglycerolemia but it acts slightly on hypercholesterolemia and improves reverse cholesterol transport by enhancing LCAT activity leading to anti-atherogenic effects. [J Exp Integr Med 2013; 3(3.000: 205-212

  16. Modeling the mechanism of action of a DGAT1 inhibitor using a causal reasoning platform.

    Directory of Open Access Journals (Sweden)

    Ahmed E Enayetallah

    Full Text Available Triglyceride accumulation is associated with obesity and type 2 diabetes. Genetic disruption of diacylglycerol acyltransferase 1 (DGAT1, which catalyzes the final reaction of triglyceride synthesis, confers dramatic resistance to high-fat diet induced obesity. Hence, DGAT1 is considered a potential therapeutic target for treating obesity and related metabolic disorders. However, the molecular events shaping the mechanism of action of DGAT1 pharmacological inhibition have not been fully explored yet. Here, we investigate the metabolic molecular mechanisms induced in response to pharmacological inhibition of DGAT1 using a recently developed computational systems biology approach, the Causal Reasoning Engine (CRE. The CRE algorithm utilizes microarray transcriptomic data and causal statements derived from the biomedical literature to infer upstream molecular events driving these transcriptional changes. The inferred upstream events (also called hypotheses are aggregated into biological models using a set of analytical tools that allow for evaluation and integration of the hypotheses in context of their supporting evidence. In comparison to gene ontology enrichment analysis which pointed to high-level changes in metabolic processes, the CRE results provide detailed molecular hypotheses to explain the measured transcriptional changes. CRE analysis of gene expression changes in high fat habituated rats treated with a potent and selective DGAT1 inhibitor demonstrate that the majority of transcriptomic changes support a metabolic network indicative of reversal of high fat diet effects that includes a number of molecular hypotheses such as PPARG, HNF4A and SREBPs. Finally, the CRE-generated molecular hypotheses from DGAT1 inhibitor treated rats were found to capture the major molecular characteristics of DGAT1 deficient mice, supporting a phenotype of decreased lipid and increased insulin sensitivity.

  17. Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Gu, Min; Kortner, Trond M; Penn, Michael; Hansen, Anne Kristine; Krogdahl, Åshild

    2014-02-01

    Altered lipid metabolism has been shown in fish fed plant protein sources. The present study aimed to gain further insights into how intestinal and hepatic lipid absorption and metabolism are modulated by plant meal (PM) and soya-saponin (SA) inclusion in salmon feed. Post-smolt Atlantic salmon were fed for 10 weeks one of four diets based on fishmeal or PM, with or without 10 g/kg SA. PM inclusion resulted in decreased growth performance, excessive lipid droplet accumulation in the pyloric caeca and liver, and reduced plasma cholesterol levels. Intestinal and hepatic gene expression profiling revealed an up-regulation of the expression of genes involved in lipid absorption and lipoprotein (LP) synthesis (apo, fatty acid transporters, microsomal TAG transfer protein, acyl-CoA cholesterol acyltransferase, choline kinase and choline-phosphate cytidylyltransferase A), cholesterol synthesis (3-hydroxy-3-methylglutaryl-CoA reductase) and associated transcription factors (sterol regulatory element-binding protein 2 and PPARγ). SA inclusion resulted in reduced body pools of cholesterol and bile salts. The hepatic gene expression of the rate-limiting enzyme in bile acid biosynthesis (cytochrome P450 7A1 (cyp7a1)) as well as the transcription factor liver X receptor and the bile acid transporter abcb11 (ATP-binding cassette B11) was down-regulated by SA inclusion. A significant interaction was observed between PM inclusion and SA inclusion for plasma cholesterol levels. In conclusion, gene expression profiling suggested that the capacity for LP assembly and cholesterol synthesis was up-regulated by PM exposure, probably as a compensatory mechanism for excessive lipid droplet accumulation and reduced plasma cholesterol levels. SA inclusion had hypocholesterolaemic effects on Atlantic salmon, accompanied by decreased bile salt metabolism.

  18. Purification and Characterization of a Novel Galloyltransferase Involved in Catechin Galloylation in the Tea Plant (Camellia sinensis)*

    Science.gov (United States)

    Liu, Yajun; Gao, Liping; Liu, Li; Yang, Qin; Lu, Zhongwei; Nie, Zhiyin; Wang, Yunsheng; Xia, Tao

    2012-01-01

    Catechins (flavan-3-ols), the most important secondary metabolites in the tea plant, have positive effects on human health and are crucial in defense against pathogens of the tea plant. The aim of this study was to elucidate the biosynthetic pathway of galloylated catechins in the tea plant. The results suggested that galloylated catechins were biosynthesized via 1-O-glucose ester-dependent two-step reactions by acyltransferases, which involved two enzymes, UDP-glucose:galloyl-1-O-β-d-glucosyltransferase (UGGT) and a newly discovered enzyme, epicatechin:1-O-galloyl-β-d-glucose O-galloyltransferase (ECGT). In the first reaction, the galloylated acyl donor β-glucogallin was biosynthesized by UGGT from gallic acid and uridine diphosphate glucose. In the second reaction, galloylated catechins were produced by ECGT catalysis from β-glucogallin and 2,3-cis-flavan-3-ol. 2,3-cis-Flavan-3-ol and 1-O-galloyl-β-d-glucose were appropriate substrates of ECGT rather than 2,3-trans-flavan-3-ol and 1,2,3,4,6-pentagalloylglucose. Purification by more than 1641-fold to apparent homogeneity yielded ECGT with an estimated molecular mass of 241 to 121 kDa by gel filtration. Enzyme activity and SDS-PAGE analysis indicated that the native ECGT might be a dimer, trimer, or tetramer of 60- and/or 58-kDa monomers, and these monomers represent a heterodimer consisting of pairs of 36- or 34- of and 28-kDa subunits. MALDI-TOF-TOF MS showed that the protein SCPL1199 was identified. Epigallocatechin and epicatechin exhibited higher substrate affinities than β-glucogallin. ECGT had an optimum temperature of 30 °C and maximal reaction rates between pH 4.0 and 6.0. The enzyme reaction was inhibited dramatically by phenylmethylsulfonyl fluoride, HgCl2, and sodium deoxycholate. PMID:23132863

  19. Infantile Refsum Disease: Influence of Dietary Treatment on Plasma Phytanic Acid Levels.

    Science.gov (United States)

    Sá, Maria João Nabais; Rocha, Júlio C; Almeida, Manuela F; Carmona, Carla; Martins, Esmeralda; Miranda, Vasco; Coutinho, Miguel; Ferreira, Rita; Pacheco, Sara; Laranjeira, Francisco; Ribeiro, Isaura; Fortuna, Ana Maria; Lacerda, Lúcia

    2016-01-01

    Infantile Refsum disease (IRD) is one of the less severe of Zellweger spectrum disorders (ZSDs), a group of peroxisomal biogenesis disorders resulting from a generalized peroxisomal function impairment. Increased plasma levels of very long chain fatty acids (VLCFA) and phytanic acid are biomarkers used in IRD diagnosis. Furthermore, an increased plasma level of phytanic acid is known to be associated with neurologic damage. Treatment of IRD is symptomatic and multidisciplinary.The authors report a 3-year-old child, born from consanguineous parents, who presented with developmental delay, retinitis pigmentosa, sensorineural deafness and craniofacial dysmorphisms. While the relative level of plasma C26:0 was slightly increased, other VLCFA were normal. Thus, a detailed characterization of the phenotype was essential to point to a ZSD. Repeatedly increased levels of plasma VLCFA, along with phytanic acid and pristanic acid, deficient dihydroxyacetone phosphate acyltransferase activity in fibroblasts and identification of the homozygous pathogenic mutation c.2528G>A (p.Gly843Asp) in the PEX1 gene, confirmed this diagnosis. Nutritional advice and follow-up was proposed aiming phytanic acid dietary intake reduction. During dietary treatment, plasma levels of phytanic acid decreased to normal, and the patient's development evaluation showed slow progressive acquisition of new competences.This case report highlights the relevance of considering a ZSD in any child with developmental delay who manifests hearing and visual impairment and of performing a systematic biochemical investigation, when plasma VLCFA are mildly increased. During dietary intervention, a biochemical improvement was observed, and the long-term clinical effect of this approach needs to be evaluated.

  20. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    Science.gov (United States)

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism. PMID:26174858

  1. Surfactant metabolism and anti-oxidative capacity in hyperoxic neonatal rat lungs: effects of keratinocyte growth factor on gene expression in vivo.

    Science.gov (United States)

    Koslowski, Roland; Kasper, Michael; Schaal, Katharina; Knels, Lilla; Lange, Marco; Bernhard, Wolfgang

    2013-03-01

    Development of preterm infant lungs is frequently impaired resulting in bronchopulmoary dysplasia (BPD). BPD results from interruption of physiologic anabolic intrauterine conditions, the inflammatory basis and therapeutic consequences of premature delivery, including increased oxygen supply for air breathing. The latter requires surfactant, produced by alveolar type II (AT II) cells to lower surface tension at the pulmonary air:liquid interface. Its main components are specific phosphatidylcholine (PC) species including dipalmitoyl-PC, anionic phospholipids and surfactant proteins. Local antioxidative enzymes are essential to cope with the pro-inflammatory side effects of normal alveolar oxygen pressures. However, respiratory insufficiency frequently requires increased oxygen supply. To cope with the injurious effects of hyperoxia to epithelia, recombinant human keratinocyte growth factor (rhKGF) was proposed as a surfactant stimulating, non-catabolic and epithelial-protective therapeutic. The aim of the present study was to examine the qualification of rhKGF to improve expression parameters of lung maturity in newborn rats under hyperoxic conditions (85% O(2) for 7 days). In response to rhKGF proliferating cell nuclear antigen mRNA, as a feature of stimulated proliferation, was elevated. Similarly, the expressions of ATP-binding cassette protein A3 gene, a differentiation marker of AT II cells and of peroxiredoxin 6, thioredoxin and thioredoxin reductase, three genes involved in oxygen radical protection were increased. Furthermore, mRNA levels of acyl-coA:lysophosphatidylcholine acyltransferase 1, catalyzing dipalmitoyl-PC synthesis by acyl remodeling, and adipose triglyceride lipase, considered as responsible for fatty acid supply for surfactant PC synthesis, were elevated. These results, together with a considerable body of other confirmative evidence, suggest that rhKGF should be developed into a therapeutic option to treat preterm infants at risk for

  2. Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening

    Directory of Open Access Journals (Sweden)

    Richardson Annette C

    2008-07-01

    Full Text Available Abstract Background Kiwifruit (Actinidia spp. are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs. Results The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons. Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases and pathways (terpenoid biosynthesis is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. Conclusion This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia.

  3. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density.

    Science.gov (United States)

    Winichayakul, Somrutai; Scott, Richard William; Roldan, Marissa; Hatier, Jean-Hugues Bertrand; Livingston, Sam; Cookson, Ruth; Curran, Amy Christina; Roberts, Nicholas John

    2013-06-01

    Our dependency on reduced carbon for energy has led to a rapid increase in the search for sustainable alternatives and a call to focus on energy densification and increasing biomass yields. In this study, we generated a uniquely stabilized plant structural protein (cysteine [Cys]-oleosin) that encapsulates triacylglycerol (TAG). When coexpressed with diacylglycerol O-acyltransferase (DGAT1) in Arabidopsis (Arabidopsis thaliana), we observed a 24% increase in the carbon dioxide (CO2) assimilation rate per unit of leaf area and a 50% increase in leaf biomass as well as approximately 2-, 3-, and 5-fold increases in the fatty acid content of the mature leaves, senescing leaves, and roots, respectively. We propose that the coexpression led to the formation of enduring lipid droplets that prevented the futile cycle of TAG biosynthesis/lipolysis and instead created a sustained demand for de novo lipid biosynthesis, which in turn elevated CO2 recycling in the chloroplast. Fatty acid profile analysis indicated that the formation of TAG involved acyl cycling in Arabidopsis leaves and roots. We also demonstrate that the combination of Cys-oleosin and DGAT1 resulted in the highest accumulation of fatty acids in the model single-cell eukaryote, Saccharomyces cerevisiae. Our results support the notion that the prevention of lipolysis is vital to enabling TAG accumulation in vegetative tissues and confirm the earlier speculation that elevating fatty acid biosynthesis in the leaf would lead to an increase in CO2 assimilation. The Cys-oleosins have applications in biofuels, animal feed, and human nutrition as well as in providing a tool for investigating fatty acid biosynthesis and catabolism. PMID:23616604

  4. Bioinformatics Reveal Five Lineages of Oleosins and the Mechanism of Lineage Evolution Related to Structure/Function from Green Algae to Seed Plants.

    Science.gov (United States)

    Huang, Ming-Der; Huang, Anthony H C

    2015-09-01

    Plant cells contain subcellular lipid droplets with a triacylglycerol matrix enclosed by a layer of phospholipids and the small structural protein oleosin. Oleosins possess a conserved central hydrophobic hairpin of approximately 72 residues penetrating into the lipid droplet matrix and amphipathic amino- and carboxyl (C)-terminal peptides lying on the phospholipid surface. Bioinformatics of 1,000 oleosins of green algae and all plants emphasizing biological implications reveal five oleosin lineages: primitive (in green algae, mosses, and ferns), universal (U; all land plants), and three in specific organs or phylogenetic groups, termed seed low-molecular-weight (SL; seed plants), seed high-molecular-weight (SH; angiosperms), and tapetum (T; Brassicaceae) oleosins. Transition from one lineage to the next is depicted from lineage intermediates at junctions of phylogeny and organ distributions. Within a species, each lineage, except the T oleosin lineage, has one to four genes per haploid genome, only approximately two of which are active. Primitive oleosins already possess all the general characteristics of oleosins. U oleosins have C-terminal sequences as highly conserved as the hairpin sequences; thus, U oleosins including their C-terminal peptide exert indispensable, unknown functions. SL and SH oleosin transcripts in seeds are in an approximately 1:1 ratio, which suggests the occurrence of SL-SH oleosin dimers/multimers. T oleosins in Brassicaceae are encoded by rapidly evolved multitandem genes for alkane storage and transfer. Overall, oleosins have evolved to retain conserved hairpin structures but diversified for unique structures and functions in specific cells and plant families. Also, our studies reveal oleosin in avocado (Persea americana) mesocarp and no acyltransferase/lipase motifs in most oleosins.

  5. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    Directory of Open Access Journals (Sweden)

    Huan Cai

    Full Text Available Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT, ghrelin knockout (ghrelin(-/-, and GOAT knockout (GOAT(-/- mice. Ghrelin(-/- mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/- mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/- and GOAT(-/- mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/- mice, yet potentiated in GOAT(-/- mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/- mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/- and GOAT(-/- mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  6. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    Science.gov (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  7. The mechanisms underlying the hypolipidaemic effects of Grifola frondosa in the liver of rats

    Directory of Open Access Journals (Sweden)

    Yinrun Ding

    2016-08-01

    Full Text Available The present study investigated the hypolipidaemic effects of Grifola frondosa and its regulation mechanism involved in lipid metabolism in liver of rats fed a high-cholesterol diet. The body weights and serum lipid levels of control rats, of hyperlipidaemic rats and of hyperlipidaemic rats treated with oral Grifola frondosa were determined. mRNA expression and concentration of key lipid metabolism enzymes were investigated. Serum cholesterol, triacylglycerol and low-density lipoprotein cholesterol levels were markedly decreased in hyperlipidaemic rats treated with Grifola frondosa compared with untreated hyperlipidaemic rats. mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR, acyl-coenzyme A: cholesterol acyltransferase (ACAT2, apolipoprotein B (ApoB, fatty acid synthase (FAS and acetyl-CoA carboxylase (ACC1 were significantly down-regulated, while expression of cholesterol 7-alpha-hydroxylase (CYP7A1 was significantly up-regulated in the livers of treated rats compared with untreated hyperlipidaemic rats. The concentrations of these enzymes also paralleled the observed changes in mRNA expression. Two-dimensional polyacrylamide gel electrophoresis (2-DE and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS were used to identify twenty proteins differentially expressed in livers of rats treated with Grifola frondosa compared with untreated hyperlipidemic rats. Of these twenty proteins, seven proteins were down-regulated and thirteen proteins were up-regulated. These findings indicate that the hypolipidaemic effects of Grifola frondosa reflected its modulation of key enzymes involved in cholesterol and triacylglycerol biosynthesis, absorption and catabolic pathways. Grifola frondosa may exert anti-atherosclerotic effects by inhibiting LDL oxidation through down-regulation and up-regulating proteins expression in the liver of rats. Therefore, Grifola frondosa may produce both hypolipidaemic

  8. Pathways of Lipid Metabolism in Marine Algae, Co-Expression Network, Bottlenecks and Candidate Genes for Enhanced Production of EPA and DHA in Species of Chromista

    Directory of Open Access Journals (Sweden)

    Alice Mühlroth

    2013-11-01

    Full Text Available The importance of n-3 long chain polyunsaturated fatty acids (LC-PUFAs for human health has received more focus the last decades, and the global consumption of n-3 LC-PUFA has increased. Seafood, the natural n-3 LC-PUFA source, is harvested beyond a sustainable capacity, and it is therefore imperative to develop alternative n-3 LC-PUFA sources for both eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3. Genera of algae such as Nannochloropsis, Schizochytrium, Isochrysis and Phaedactylum within the kingdom Chromista have received attention due to their ability to produce n-3 LC-PUFAs. Knowledge of LC-PUFA synthesis and its regulation in algae at the molecular level is fragmentary and represents a bottleneck for attempts to enhance the n-3 LC-PUFA levels for industrial production. In the present review, Phaeodactylum tricornutum has been used to exemplify the synthesis and compartmentalization of n-3 LC-PUFAs. Based on recent transcriptome data a co-expression network of 106 genes involved in lipid metabolism has been created. Together with recent molecular biological and metabolic studies, a model pathway for n-3 LC-PUFA synthesis in P. tricornutum has been proposed, and is compared to industrialized species of Chromista. Limitations of the n-3 LC-PUFA synthesis by enzymes such as thioesterases, elongases, acyl-CoA synthetases and acyltransferases are discussed and metabolic bottlenecks are hypothesized such as the supply of the acetyl-CoA and NADPH. A future industrialization will depend on optimization of chemical compositions and increased biomass production, which can be achieved by exploitation of the physiological potential, by selective breeding and by genetic engineering.

  9. Effect of phenolic compounds and osmotic stress on the expression of penicillin biosynthetic genes from Penicillium chrysogenum var. halophenolicum strain

    Directory of Open Access Journals (Sweden)

    Sumaya Ferreira Guedes

    2012-01-01

    Full Text Available Phenol and phenolic compounds are aromatic pollutants that inhibit biological treatment of wastewaters. Penicillium chrysogenum var. halophenolicum is a halotolerant fungus that previously showed the ability to degrade phenol and resorcinol in high salinity conditions. The presence of the penicillin biosynthetic cluster in P. chrysogenum var. halophenolicum was recently described. In this article, we examined the expression of pcbAB, pcbC and penDE, genes responsible for δ-(L-α-aminoadipyl-L-cysteinyl-D-valine synthetase, isopenicillin N synthase and isopenicillin N acyltransferase activities, respectively, in P. chrysogenum var. halophenolicum. A quantitative PCR (qPCR approach was used to determine how these genes were expressed in media with 2% and 5.9% NaCl supplemented with phenol, catechol, hydroquinone and resorcinol as the sole carbon source. The effect of salt on the capability of P. chrysogenum var. halophenolicum to degrade aromatic compounds was measured using HPLC. qPCR analysis of RNA extracted from P. chrysogenum var. halophenolicum indicated that the expression levels of pcbAB, pcbC and penDE decreased in high saline concentrations compared to the levels expressed in media with glucose. High concentrations of salt significantly repress the expression of pcbAB and penDE. The pcbC gene was expressed differentially in catechol containing medium. There was no evident relationship between the expression levels of penicillin biosynthetic genes and yields of penicillin. Meanwhile, the presence of phenol and phenolic compounds seems to positively influence the antibiotic production; high concentrations of salt stimulated penicillin production. These results support the hypothesis that phenol, phenolic compounds and high concentrations of salt could act like a stress factor for P. chrysogenum var. halophenolicum resulting in higher yields of β-lactam antibiotic production.

  10. Analysis of the population structure of Uruguayan Creole cattle as inferred from milk major gene polymorphisms

    Directory of Open Access Journals (Sweden)

    Gonzalo Rincón

    2006-01-01

    Full Text Available The ancestors of Uruguayan Creole cattle were introduced by the Spanish conquerors in the XVII century, following which the population grew extensively and became semi-feral before the introduction of selected breeds. Today the Uruguayan Creole cattle genetic reserve consists of 575 animals. We used the tetra primer amplification refractory mutation system polymerase chain reaction (ARMS-PCR to analyze the kappa-casein, beta-casein, alphaS1-casein and alpha-lactoalbumin gene polymorphisms and restriction fragment length polymorphism PCR (RFLP-PCR for the beta-lactoglobulin and the acylCoA:diacyl glycerol acyltransferase 1 (DGAT1 genes. The kappa-casein and beta-lactoglobulin genes presented very similar A and B allele frequencies, while the alphas1-casein and alpha-lactoalbumin gene B alleles showed much higher frequencies than the corresponding A alleles. The beta-casein B allele was not found in the population sampled. There was a very high frequency of the DGAT1 gene A allele which is associated with low milk fat content and high milk yield. All loci were in Hardy-Weinberg equilibrium and the level of heterozygosity agreed with the high genetic diversity observed in a previous analysis of this population. Preservation of the allelic richness observed in the Uruguayan Creole cattle should be considered for future dairy management and livestock genetic improvement. The results also emphasize the value of the tetra primers ARMS-PCR technique as a rapid, easy and economical way of genotyping cattle breeds for milk gene single nucleotide polymorphisms.

  11. Overexpression of two penicillin structural genes in Aspergillus nidulans.

    Science.gov (United States)

    Fernández-Cañón, J M; Peñalva, M A

    1995-01-01

    We have placed two different penicillin structural genes from Aspergillus nidulans, ipnA (encoding isopenicillin N synthetase, IPNS) and acyA (encoding acyl-CoA:6-aminopenicillanic acid acyltransferase, AAT), under the control of the strong alcA promoter [alcA(p)]. Single copies of these transcriptional fusions were targeted to the same chromosomal location and conditions have been worked out which simultaneously allow induction of the alcA(p) and support penicillin biosynthesis. Transcriptional induction of the chimeric genes alcA(p)::ipnA or alcA(p)::acyA(cdna) in the relevant recombinant strains results in 10-fold higher levels of the ipnA or acyA transcripts than those resulting from transcription of the corresponding endogenous genes. This increase causes a 40-fold rise in IPNS activity or a 8-fold rise in AAT activity. Despite this rise in enzyme levels, forced expression of the ipnA gene results in only a modest increase in levels of exported penicillin, whereas forced expression of the acyA gene reduces penicillin production, showing that neither of these enzymes is rate-limiting for penicillin biosynthesis in A. nidulans. A genomic version of the alcA(p)::acyA fusion in which the acyA gene is interrupted by three small introns, is inducible by threonine to a lesser extent (as determined by both acyA mRNA levels and AAT enzyme levels) than the corresponding cDNA version, suggesting that processing of the introns present in the primary transcript may limit acyA expression.

  12. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants.

    Science.gov (United States)

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Go, Young Sam; Jung, Jin Hee; Suh, Mi-Chung; Kim, Jong Bum

    2011-06-01

    Ricinoleic acid (12-hydroxy-octadeca-9-enoic acid) is a major unusual fatty acid in castor oil. This hydroxy fatty acid is useful in industrial materials. This unusual fatty acid accumulates in triacylglycerol (TAG) in the seeds of the castor bean (Ricinus communis L.), even though it is synthesized in phospholipids, which indicates that the castor plant has an editing enzyme, which functions as a phospholipid:diacylglycerol acyltransferase (PDAT) that is specific to ricinoleic acid. Transgenic plants containing fatty acid Δ12-hydroxylase encoded by the castor bean FAH12 gene produce a limited amount of hydroxy fatty acid, a maximum of around 17% of TAGs present in Arabidopsis seeds, and this unusual fatty acid remains in phospholipids of cell membranes in seeds. Identification of ricinoleate-specific PDAT from castor bean and manipulation of the phospholipid editing system in transgenic plants will enhance accumulation of the hydroxy fatty acid in transgenic seeds. The castor plant has three PDAT genes; PDAT1-1 and PDAT2 are homologs of PDAT, which are commonly found in plants; however, PDAT1-2 is newly grouped as a castor bean-specific gene. PDAT1-2 is expressed in developing seeds and localized in the endoplasmic reticulum, similar to FAH12, indicating its involvement in conversion of ricinoleic acid into TAG. PDAT1-2 significantly enhances accumulation of total hydroxy fatty acid up to 25%, with a significant increase in castor-like oil, 2-OH TAG, in seeds of transgenic Arabidopsis, which is an identification of the key gene for oilseed engineering in production of unusual fatty acids.

  13. Age-Associated Lipidome Changes in Metaphase II Mouse Oocytes.

    Directory of Open Access Journals (Sweden)

    Hyuck Jun Mok

    Full Text Available The quality of mammalian oocytes declines with age, which negatively affects fertilization and developmental potential. The aging process often accompanies damages to macromolecules such as proteins, DNA, and lipids. To investigate if aged oocytes display an altered lipidome compared to young oocytes, we performed a global lipidomic analysis between oocytes from 4-week-old and 42 to 50-week-old mice. Increased oxidative stress is often considered as one of the main causes of cellular aging. Thus, we set up a group of 4-week-old oocytes treated with hydrogen peroxide (H2O2, a commonly used oxidative stressor, to compare if similar lipid species are altered between aged and oxidative-stressed oocytes. Between young and aged oocytes, we identified 26 decreased and 6 increased lipids in aged oocytes; and between young and H2O2-treated oocytes, we identified 35 decreased and 26 increased lipids in H2O2-treated oocytes. The decreased lipid species in these two comparisons were overlapped, whereas the increased lipid species were distinct. Multiple phospholipid classes, phosphatidic acid (PA, phosphatidylinositol (PI, phosphatidylserine (PS, and lysophosphatidylserine (LPS significantly decreased both in H2O2-treated and aged oocytes, suggesting that the integrity of plasma membrane is similarly affected under these conditions. In contrast, a dramatic increase in diacylglycerol (DG was only noted in H2O2-treated oocytes, indicating that the acute effect of H2O2-caused oxidative stress is distinct from aging-associated lipidome alteration. In H2O2-treated oocytes, the expression of lysophosphatidylcholine acyltransferase 1 increased along with increases in phosphatidylcholine. Overall, our data reveal that several classes of phospholipids are affected in aged oocytes, suggesting that the integrity of plasma membrane is associated with maintaining fertilization and developmental potential of mouse oocytes.

  14. Characteristic, polymorphism and expression distribution of LCAT gene in a Mongolian gerbil model for hyperlipidemia.

    Science.gov (United States)

    Liu, Yue huan; Wu, Jiu sheng; Wang, Zhi yuan; Yu, Chen huan; Ying, Hua zhong; Xu, Ning ying

    2014-10-01

    This study aims to evaluate the genetic basis and activity of lecithin cholesterol acyltransferase (LCAT) in a novel Mongolian gerbil model for hyperlipidemia. Gerbils may be susceptible to high fat and cholesterol (HF/HC) diets, which can rapidly lead to the development of hyperlipidemia. Approximately 10-30% of gerbils that are over 8months old and fed controlled diets spontaneously develop hyperlipidemia. Using the HF/HC diet model, we detected triglycerides (TG), total cholesterol (TC), HDL (high density lipoprotein)-C, LDL (low density lipoprotein)-C and LCAT in both old (>8months) and young gerbils. The TC and HDL-C levels were two times higher in old gerbils compared with young gerbils (Phyperlipidemia. The entire LCAT gene was cloned by splicing sequences of RACE (rapid amplification of cDNA ends) and nest-PCR products (AN: KC533867.1). The results showed that the 3683base pair gene consists of six exons and five introns. The LCAT protein consists of 444 amino acid (AA) residues, which are analogous to the human LCAT gene, and includes 24 signal peptide AA and 420 mature protein AA. Expression of LCAT was detected in the kidney, spleen and adrenal tissue, apart from the liver, by immunohistochemistry. The abundance of the protein was greater in the older group compared with the control group. Polymorphisms were analyzed by PCR-SSCP (PCR-single-strand conformation polymorphism) but none were found in 444 animals of the ZCLA closed population (a Chinese cultured laboratory gerbil population).

  15. Long-Term Boron-Excess-Induced Alterations of Gene Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by cDNA-AFLP

    Science.gov (United States)

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Ye, Xin; Huang, Jing-Hao; Chen, Li-Song

    2016-01-01

    Boron (B) toxicity is observed in some citrus orchards in China. However, limited data are available on the molecular mechanisms of citrus B-toxicity and B-tolerance. Using cDNA-AFLP, we identified 20 up- and 52 down-regulated genes, and 44 up- and 66 down-regulated genes from excess B-treated Citrus sinensis and Citrus grandis roots, respectively, thereby demonstrating that gene expression profiles were more affected in the latter. In addition, phosphorus and total soluble protein concentrations were lowered only in excess B-treated C. grandis roots. Apparently, C. sinensis had higher B-tolerance than C. grandis. Our results suggested that the following several aspects were responsible for the difference in the B-tolerance between the two citrus species including: (a) B-excess induced Root Hair Defective 3 expression in C. sinensis roots, and repressed villin4 expression in C. grandis roots; accordingly, root growth was less inhibited by B-excess in the former; (b) antioxidant systems were impaired in excess B-treated C. grandis roots, hence accelerating root senescence; (c) genes related to Ca2+ signals were inhibited (induced) by B-excess in C. grandis (C. sinensis) roots. B-excess-responsive genes related to energy (i.e., alternative oxidase and cytochrome P450), lipid (i.e., Glycerol-3-phosphate acyltransferase 9 and citrus dioxygenase), and nucleic acid (i.e., HDA19, histone 4, and ribonucleotide reductase RNR1 like protein) metabolisms also possibly accounted for the difference in the B-tolerance between the two citrus species. These data increased our understanding of the mechanisms on citrus B-toxicity and B-tolerance at transcriptional level. PMID:27446128

  16. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ting-I Lee

    2016-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5′ adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1, DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines.

  17. Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation.

    Science.gov (United States)

    Lemarié, Fanny; Beauchamp, Erwan; Legrand, Philippe; Rioux, Vincent

    2016-01-01

    Caprylic acid (octanoic acid, C8:0) belongs to the class of medium-chain saturated fatty acids (MCFAs). Dairy products and specific oils like coconut oil are natural sources of dietary C8:0 but higher intakes of this fatty acid can be provided with MCT (Medium-Chain Triglycerides) oil that consists in 75% of C8:0. MCFAs have physical and metabolic properties that are distinct from those of long-chain saturated fatty acids (LCFAs ≥ 12 carbons). Beneficial physiological effects of dietary C8:0 have been studied for a long time and MCT oil has been used as a special energy source for patients suffering from pancreatic insufficiency, impaired lymphatic chylomicron transport and fat malabsorption. More recently, caprylic acid was also shown to acylate ghrelin, the only known peptide hormone with an orexigenic effect. Through its covalent binding to the ghrelin peptide, caprylic acid exhibits an emerging and specific role in modulating physiological functions themselves regulated by octanoylated ghrelin. Dietary caprylic acid is therefore now suspected to provide the ghrelin O-acyltransferase (GOAT) enzyme with octanoyl-CoA co-substrates necessary for the acyl modification of ghrelin. This review tries to highlight the discrepancy between the formerly described beneficial effects of dietary MCFAs on body weight loss and the C8:0 newly reported effect on appetite stimulation via ghrelin octanoylation. The subsequent aim of this review is to demonstrate the relevance of carrying out further studies to better understand the physiological functions of this particular fatty acid.

  18. The important role of epidermal triacylglycerol metabolism for maintenance of the skin permeability barrier function.

    Science.gov (United States)

    Radner, Franz P W; Fischer, Judith

    2014-03-01

    Survival in a terrestrial, dry environment necessitates a permeability barrier for regulated permeation of water and electrolytes in the cornified layer of the skin (the stratum corneum) to minimize desiccation of the body. This barrier is formed during cornification and involves a cross-linking of corneocyte proteins as well as an extensive remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by various hydrolytic enzymes generates ceramides, cholesterol, and non-esterified fatty acids for the extracellular lipid lamellae in the stratum corneum. However, the important role of epidermal triacylglycerol (TAG) metabolism during formation of a functional permeability barrier in the skin was only recently discovered. Humans with mutations in the ABHD5/CGI-58 (α/β hydrolase domain containing protein 5, also known as comparative gene identification-58, CGI-58) gene suffer from a defect in TAG catabolism that causes neutral lipid storage disease with ichthyosis. In addition, mice with deficiencies in genes involved in TAG catabolism (Abhd5/Cgi-58 knock-out mice) or TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2, Dgat2 knock-out mice) also develop severe skin permeability barrier dysfunctions and die soon after birth due to increased dehydration. As a result of these defects in epidermal TAG metabolism, humans and mice lack ω-(O)-acylceramides, which leads to malformation of the cornified lipid envelope of the skin. In healthy skin, this epidermal structure provides an interface for the linkage of lamellar membranes with corneocyte proteins to maintain permeability barrier homeostasis. This review focuses on recent advances in the understanding of biochemical mechanisms involved in epidermal neutral lipid metabolism and the generation of a functional skin permeability barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous

  19. Supplementation of glycerol or fructose via drinking water to enhance marbling deposition and meat quality of finishing cattle.

    Science.gov (United States)

    Volpi-Lagreca, Gabriela; Duckett, Susan K

    2016-02-01

    Thirty-six Angus-cross steers (667 ± 34.4 kg initial BW, 24.5 mo) were used to assess the impact of short-term glycerin or high-fructose corn syrup administration via drinking water on meat quality and marbling deposition. Steers blocked by BW (3 blocks) were assigned randomly to 1 of 3 drinking water treatments: 1) control (CON), 2) 4.3% crude glycerin (GLYC), or 3) 4.3% high-fructose corn syrup (HFCS) for the final 25 d before slaughter. Average daily gain was lower ( = 0.01) and final live weight was lower ( adipocyte diameter was greater ( = 0.02) for steers offered HFCS compared with steers offered GLYC, with CON steers being intermediate. These differences in mean adipocyte size were related to changes in the adipocyte size distribution. There were greater proportions of small (20 to 30 μm) adipocytes in GLYC compared with HFCS and CON. In contrast, HFCS and CON had greater proportions of medium (40 to 50 μm) adipocytes than GLYC. The relative mRNA expression of lipogenic genes (acetyl Co-A carboxylase [ACC], fatty acid binding protein 4 [FABP4], fatty acid synthase [FASN], glycerol-3-phosphate acyltransferase [GPAT], retinol-binding protein 4 [RBP4], and stearoyl-CoA desaturase [SCD]), adipocyte differentiation genes (delta-like 1 homolog [DLK1]), and transcription factors (CCAAT/enhancer-binding protein α [C/EBPα], and PPARγ) was similar for GLYC and HFCS compared with CON. Longissimus glycogen and lactate concentrations and glycolytic potential were not affected by drinking water treatments. Overall, HFCS or GLYC supplementation via drinking water did not alter carcass or meat quality variables but did alter the size and distribution of intramuscular adipocytes. These results indicate that a longer supplementation time or a higher substrate level may be needed to obtain differences in meat quality. PMID:27065156

  20. Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates.

    Directory of Open Access Journals (Sweden)

    Eugenia Poliakov

    Full Text Available In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE, a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT, which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona or cephalochordates (Branchiostoma, but occur in Petromyzon marinus (Sea Lamprey, a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa (previously annotated as an RPE65 has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO to the isomerohydrolase functionality (RPE65, coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates

  1. Untargeted Metabolomics To Ascertain Antibiotic Modes of Action.

    Science.gov (United States)

    Vincent, Isabel M; Ehmann, David E; Mills, Scott D; Perros, Manos; Barrett, Michael P

    2016-04-01

    Deciphering the mode of action (MOA) of new antibiotics discovered through phenotypic screening is of increasing importance. Metabolomics offers a potentially rapid and cost-effective means of identifying modes of action of drugs whose effects are mediated through changes in metabolism. Metabolomics techniques also collect data on off-target effects and drug modifications. Here, we present data from an untargeted liquid chromatography-mass spectrometry approach to identify the modes of action of eight compounds: 1-[3-fluoro-4-(5-methyl-2,4-dioxo-pyrimidin-1-yl)phenyl]-3-[2-(trifluoromethyl)phenyl]urea (AZ1), 2-(cyclobutylmethoxy)-5'-deoxyadenosine, triclosan, fosmidomycin, CHIR-090, carbonyl cyanidem-chlorophenylhydrazone (CCCP), 5-chloro-2-(methylsulfonyl)-N-(1,3-thiazol-2-yl)-4-pyrimidinecarboxamide (AZ7), and ceftazidime. Data analysts were blind to the compound identities but managed to identify the target as thymidylate kinase for AZ1, isoprenoid biosynthesis for fosmidomycin, acyl-transferase for CHIR-090, and DNA metabolism for 2-(cyclobutylmethoxy)-5'-deoxyadenosine. Changes to cell wall metabolites were seen in ceftazidime treatments, although other changes, presumably relating to off-target effects, dominated spectral outputs in the untargeted approach. Drugs which do not work through metabolic pathways, such as the proton carrier CCCP, have no discernible impact on the metabolome. The untargeted metabolomics approach also revealed modifications to two compounds, namely, fosmidomycin and AZ7. An untreated control was also analyzed, and changes to the metabolome were seen over 4 h, highlighting the necessity for careful controls in these types of studies. Metabolomics is a useful tool in the analysis of drug modes of action and can complement other technologies already in use. PMID:26833150

  2. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells

    Science.gov (United States)

    Mulas, Maria Franca; Mandas, Antonella; Abete, Claudia; Dessì, Sandra; Mocali, Alessandra; Paoletti, Francesco

    2011-01-01

    Cholesterol is an essential constituent of all mammalian cell membranes and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3) and acylCoA: cholesterol acyltransferase (ACAT) and cholesterol export (caveolin-1) in Friend virus-induced erythroleukemia cells (MELC), in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA). FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells. PMID:22184540

  3. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend cells

    Directory of Open Access Journals (Sweden)

    Maria Franca Mulas

    2011-10-01

    Full Text Available Cholesterol is an essential constituent of all mammalian cell membranes, and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3 and acylCoA:cholesterol acyltransferase (ACAT and cholesterol export (caveolin-1 in Friend virus-induced erythroleukemia cells (MELC, in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA. FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells.

  4. Low birth weight male guinea pig offspring display increased visceral adiposity in early adulthood.

    Directory of Open Access Journals (Sweden)

    Ousseynou Sarr

    Full Text Available Uteroplacental insufficiency (UPI-induced intrauterine growth restriction (IUGR predisposes individuals to adult visceral obesity. We postulated that low birth weight (LBW offspring, from UPI-induced IUGR pregnancies, would display a visceral adipose lipogenic molecular signature involving altered gene expression, phosphorylation status of proteins of the lipid synthesis pathway and microRNA (miR expression profile, occurring in association with increased visceral adiposity. Normal birth weight (NBW and LBW (obtained by uterine artery ablation male guinea pig pups were fed a control diet from weaning to 145 days and sacrificed. Despite being lighter at birth, LBW pups displayed body weights similar to NBW offspring at 145 days. At this age, which represents young adulthood, the relative weights of LBW epididymal white adipose tissue (EWAT and lipid content were increased; which was consistent with adipocyte hypertrophy in the LBW offspring. Additionally, the mRNA expression of lipid synthesis-related genes including acetyl-CoA carboxylase 1 (ACC1, diglyceride acyltransferase 2 (DGAT2 and peroxisome proliferator-activated receptor gamma 1 (PPARγ1, was increased in LBW EWAT. Further, LBW EWAT displayed decreased phospho-ACC (Ser79 and phospho-PPARγ (Ser273 proteins. Moreover, the mRNA expression of hormone-sensitive lipase (HSL and fatty acid binding protein 4 (FABP4, both involved in promoting adipose lipid storage, was increased in LBW EWAT. Finally, miR-24 and miR-103-2, miRs related to adipocyte development, were both increased in LBW EWAT. These findings indicate that, following an adverse in utero environment, lipid synthesis-related genes and miR expression, along with phosphorylation status of key regulators of lipid synthesis, appear to be chronically altered and occur in association with increased visceral adiposity in young adult IUGR male offspring.

  5. Seasonal changes in the expression of energy metabolism-related genes in white adipose tissue and skeletal muscle in female Japanese black bears.

    Science.gov (United States)

    Shimozuru, Michito; Nagashima, Akiko; Tanaka, Jun; Tsubota, Toshio

    2016-01-01

    Bears undergo annual cycles in body mass: rapid fattening in autumn (i.e., hyperphagia), and mass loss in winter (i.e., hibernation). To investigate how Japanese black bears (Ursus thibetanus japonicus) adapt to such extreme physiological conditions, we analyzed changes in the mRNA expression of energy metabolism-related genes in white adipose tissues and skeletal muscle throughout three physiological stages: normal activity (June), hyperphagia (November), and hibernation (March). During hyperphagia, quantitative real-time polymerase chain reaction analysis revealed the upregulation of de novo lipogenesis-related genes (e.g., fatty acid synthase and diacylglycerol O-acyltransferase 2) in white adipose tissue, although the bears had been maintained with a constant amount of food. In contrast, during the hibernation period, we observed a downregulation of genes involved in glycolysis (e.g., glucose transporter 4) and lipogenesis (e.g., acetyl-CoA carboxylase 1) and an upregulation of genes in fatty acid catabolism (e.g., carnitine palmitoyltransferase 1A) in both tissue types. In white adipose tissues, we observed upregulation of genes involved in glyceroneogenesis, including pyruvate carboxylase and phosphoenolpyruvate carboxykinase 1, suggesting that white adipose tissue plays a role in the recycling of circulating free fatty acids via re-esterification. In addition, the downregulation of genes involved in amino acid catabolism (e.g., alanine aminotransferase) and the TCA cycle (e.g., pyruvate carboxylase) indicated a role of skeletal muscle in muscle protein sparing and pyruvate recycling via the Cori cycle. These examples of coordinated transcriptional regulation would contribute to rapid mass gain during the pre-hibernation period and to energy preservation and efficient energy production during the hibernation period. PMID:26880364

  6. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone

    Institute of Scientific and Technical Information of China (English)

    Li YANG; Ta Yuan CHANG; Bo Liang LI; Jin Bo YANG; Jia CHEN; Guang Yao YU; Pei ZHOU; Lei LEI; Zhen Zhen WANG; Catherine CY CHANG; XinYing YANG

    2004-01-01

    In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study,with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP- 1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-l-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP- 1-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner.Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex,which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.

  7. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases

    Energy Technology Data Exchange (ETDEWEB)

    Lohman, Jeremy; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne E.; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, B G

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.

  8. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats.

    Science.gov (United States)

    Parnell, Jill A; Reimer, Raylene A

    2012-02-01

    There is a growing interest in modulating gut microbiota with diet in the context of obesity. The purpose of the present study was to evaluate the dose-dependent effects of prebiotics (inulin and oligofructose) on gut satiety hormones, energy expenditure, gastric emptying and gut microbiota. Male lean and obese JCR:LA-cp rats were randomised to either of the following: lean 0 % fibre (LC), lean 10 % fibre (LF), lean 20 % fibre (LHF), obese 0 % fibre (OC), obese 10 % fibre (OF) or obese 20 % fibre (OHF). Body composition, gastric emptying, energy expenditure, plasma satiety hormone concentrations and gut microbiota (using quantitative PCR) were measured. Caecal proglucagon and peptide YY mRNA levels were up-regulated 2-fold in the LF, OF and OHF groups and 3-fold in the LHF group. Ghrelin O-acyltransferase mRNA levels were higher in obese v. lean rats and decreased in the OHF group. Plasma ghrelin response was attenuated in the LHF group. Microbial species measured in the Bacteroidetes division decreased, whereas those in the Firmicutes increased in obese v. lean rats and improved with prebiotic intake. Bifidobacterium and Lactobacillus increased in the OHF v. OC group. Bacteroides and total bacteria negatively correlated with percentage of body fat and body weight. Enterobacteriaceae increased in conjunction with glucose area under the curve (AUC) and glucagon-like peptide-1 AUC. Bacteroides and total bacteria correlated positively with ghrelin AUC yet negatively with insulin AUC and energy intake (P < 0·05). Several of the mechanisms through which prebiotics act (food intake, satiety hormones and alterations in gut microbiota) are regulated in a dose-dependent manner. The combined effects of prebiotics may have therapeutic potential for obesity.

  9. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Chui Sun; Sinha, Rohit Anthony [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore); Ota, Sho; Katsuki, Masahito [Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Yen, Paul Michael, E-mail: paul.yen@duke-nus.edu.sg [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore)

    2013-11-01

    Highlights: •Thyroid hormone induces miR-181d expression in human hepatic cells and mouse livers. •Thyroid hormone downregulates CDX2 and SOAT2 (or ACAT2) via miR-181d. •miR-181d reduces cholesterol output from human hepatic cells. -- Abstract: Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we used a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.

  10. Programmed cell death in Saccharomyces cerevisiae is hampered by the deletion of GUP1 gene

    Directory of Open Access Journals (Sweden)

    Tulha Joana

    2012-05-01

    Full Text Available Abstract Background During the past years, yeast has been successfully established as a model to study mechanisms of programmed cell death regulation. Saccharomyces cerevisiae commits to cell death showing typical hallmarks of metazoan apoptosis, in response to different stimuli. Gup1p, an O-acyltransferase, is required for several cellular processes that are related to apoptosis development, such as rafts integrity and stability, lipid metabolism including GPI anchor correct remodeling, proper mitochondrial and vacuole function, bud site selection and actin dynamics. Therefore, we hypothesize that apoptotic process would be affected by GUP1 deletion. Results In the present work we used two known apoptosis inducing conditions, chronological aging and acetic acid, to assess several apoptotic markers in gup1∆ mutant strain. We found that this mutant presents a significantly reduced chronological lifespan as compared to Wt and it is also highly sensitive to acetic acid treatment. In addition, it presents extremely high levels of ROS. There were notorious differences on apoptotic markers between Wt and gup1∆ mutant strains, namely on the maintenance of plasma membrane integrity, on the phosphatidylserine externalization, on the depolarization of mitochondrial membrane and on the chromatin condensation. Those suggested that the mutant, under either condition, probably dies of necrosis and not from apoptosis. Conclusions To Gup1p has been assigned an important function on lipid rafts assembly/integrity, lipid metabolism and GPI anchor remodeling. Our results provide, for the first time, the connection of the integrity of yeast lipid rafts and apoptosis induction and/or signaling, giving new insights into the molecular mechanisms underlying this process in yeast.

  11. Lipase-catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)-diricinolein.

    Science.gov (United States)

    Turner, Charlotta; He, Xiaohua; Nguyen, Tasha; Lin, Jiann-Tsyh; Wong, Rosalind Y; Lundin, Robert E; Harden, Leslie; McKeon, Thomas

    2003-11-01

    The objective of this study was to find the optimal parameters for lipase-catalyzed methanolysis of triricinolein to produce 1,2(2,3)-diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n-Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (a(w)), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)-diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)-diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)-diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at a(w) of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)-isomer vs. the 1,3-isomer was achieved at higher a(w) (88% at a(w) = 0.53), compared to lower a(w) (71% at a(w) = 0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at a(w) 0.53 is considered optimal for the synthesis of 1,2(2,3)-diricinolein from triricinolein. PMID:14733366

  12. A Toxoplasma palmitoyl acyl transferase and the palmitoylated armadillo repeat protein TgARO govern apical rhoptry tethering and reveal a critical role for the rhoptries in host cell invasion but not egress.

    Directory of Open Access Journals (Sweden)

    Josh R Beck

    2013-02-01

    Full Text Available Apicomplexans are obligate intracellular parasites that actively penetrate their host cells to create an intracellular niche for replication. Commitment to invasion is thought to be mediated by the rhoptries, specialized apical secretory organelles that inject a protein complex into the host cell to form a tight-junction for parasite entry. Little is known about the molecular factors that govern rhoptry biogenesis, their subcellular organization at the apical end of the parasite and subsequent release of this organelle during invasion. We have identified a Toxoplasma palmitoyl acyltransferase, TgDHHC7, which localizes to the rhoptries. Strikingly, conditional knockdown of TgDHHC7 results in dispersed rhoptries that fail to organize at the apical end of the parasite and are instead scattered throughout the cell. While the morphology and content of these rhoptries appears normal, failure to tether at the apex results in a complete block in host cell invasion. In contrast, attachment and egress are unaffected in the knockdown, demonstrating that the rhoptries are not required for these processes. We show that rhoptry targeting of TgDHHC7 requires a short, highly conserved C-terminal region while a large, divergent N-terminal domain is dispensable for both targeting and function. Additionally, a point mutant lacking a key residue predicted to be critical for enzyme activity fails to rescue apical rhoptry tethering, strongly suggesting that tethering of the organelle is dependent upon TgDHHC7 palmitoylation activity. We tie the importance of this activity to the palmitoylated Armadillo Repeats-Only (TgARO rhoptry protein by showing that conditional knockdown of TgARO recapitulates the dispersed rhoptry phenotype of TgDHHC7 knockdown. The unexpected finding that apicomplexans have exploited protein palmitoylation for apical organelle tethering yields new insight into the biogenesis and function of rhoptries and may provide new avenues for therapeutic

  13. Seasonal changes in the expression of energy metabolism-related genes in white adipose tissue and skeletal muscle in female Japanese black bears.

    Science.gov (United States)

    Shimozuru, Michito; Nagashima, Akiko; Tanaka, Jun; Tsubota, Toshio

    2016-01-01

    Bears undergo annual cycles in body mass: rapid fattening in autumn (i.e., hyperphagia), and mass loss in winter (i.e., hibernation). To investigate how Japanese black bears (Ursus thibetanus japonicus) adapt to such extreme physiological conditions, we analyzed changes in the mRNA expression of energy metabolism-related genes in white adipose tissues and skeletal muscle throughout three physiological stages: normal activity (June), hyperphagia (November), and hibernation (March). During hyperphagia, quantitative real-time polymerase chain reaction analysis revealed the upregulation of de novo lipogenesis-related genes (e.g., fatty acid synthase and diacylglycerol O-acyltransferase 2) in white adipose tissue, although the bears had been maintained with a constant amount of food. In contrast, during the hibernation period, we observed a downregulation of genes involved in glycolysis (e.g., glucose transporter 4) and lipogenesis (e.g., acetyl-CoA carboxylase 1) and an upregulation of genes in fatty acid catabolism (e.g., carnitine palmitoyltransferase 1A) in both tissue types. In white adipose tissues, we observed upregulation of genes involved in glyceroneogenesis, including pyruvate carboxylase and phosphoenolpyruvate carboxykinase 1, suggesting that white adipose tissue plays a role in the recycling of circulating free fatty acids via re-esterification. In addition, the downregulation of genes involved in amino acid catabolism (e.g., alanine aminotransferase) and the TCA cycle (e.g., pyruvate carboxylase) indicated a role of skeletal muscle in muscle protein sparing and pyruvate recycling via the Cori cycle. These examples of coordinated transcriptional regulation would contribute to rapid mass gain during the pre-hibernation period and to energy preservation and efficient energy production during the hibernation period.

  14. Niacin and cholesterol: role in cardiovascular disease (review).

    Science.gov (United States)

    Ganji, Shobha H; Kamanna, Vaijinath S; Kashyap, Moti L

    2003-06-01

    Niacin has been widely used as a pharmacologic agent to regulate abnormalities in plasma lipid and lipoprotein metabolism and in the treatment of atherosclerotic cardiovascular disease. Although the use of niacin in the treatment of dyslipidemia has been reported as early as 1955, only recent studies have yielded an understanding about the cellular and molecular mechanism of action of niacin on lipid and lipoprotein metabolism. In brief, the beneficial effect of niacin to reduce triglycerides and apolipoprotein-B containing lipoproteins (e.g., VLDL and LDL) are mainly through: a) decreasing fatty acid mobilization from adipose tissue triglyceride stores, and b) inhibiting hepatocyte diacylglycerol acyltransferase and triglyceride synthesis leading to increased intracellular apo B degradation and subsequent decreased secretion of VLDL and LDL particles. The mechanism of action of niacin to raise HDL is by decreasing the fractional catabolic rate of HDL-apo AI without affecting the synthetic rates. Additionally, niacin selectively increases the plasma levels of Lp-AI (HDL subfraction without apo AII), a cardioprotective subfraction of HDL in patients with low HDL. Using human hepatocytes (Hep G2 cells) as an in vitro model system, recent studies indicate that niacin selectively inhibits the uptake/removal of HDL-apo AI (but not HDL-cholesterol ester) by hepatocytes, thereby increasing the capacity of retained HDL-apo AI to augment cholesterol efflux through reverse cholesterol transport pathway. The studies discussed in this review provide evidence to extend the role of niacin as a lipid-lowering drug beyond its role as a vitamin.

  15. Very low levels of HDL cholesterol and atherosclerosis, a variable relationship – a review of LCAT deficiency

    Directory of Open Access Journals (Sweden)

    Savel J

    2012-06-01

    Full Text Available Julia Savel,1,2 Marianne Lafitte,1 Yann Pucheu,1,3 Vincent Pradeau,1 Antoine Tabarin,2,3 Thierry Couffinhal1,3,41Centre d'Exploration, de Prévention et de Traitement de l'Athérosclérose, Hôpital Cardiologique, 2Service d'endocrinologie, CHU Bordeaux, Université Bordeaux Segalen, Bordeaux, France; 3Université de Bordeaux Adaptation cardiovasculaire à l'ischémie, 4INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, Pessac, FranceAbstract: A number of epidemiological and clinical studies have demonstrated that plasma high-density lipoprotein (HDL level is a strong inverse predictor of cardiovascular events. HDL is believed to retard the formation of atherosclerotic lesions by removing excess cholesterol from cells and preventing endothelial dysfunction. Lecithin cholesterol acyltransferase (LCAT plays a central role in the formation and maturation of HDL, and in the intravascular stage of reverse cholesterol transport: a major mechanism by which HDL modulates the development and progression of atherosclerosis. A defect in LCAT function would be expected to enhance atherosclerosis, by interfering with the reverse cholesterol transport step. As such, one would expect to find more atherosclerosis and cardiovascular events in LCAT-deficient patients. But this relationship is not always evident. In this review, we describe contradictory reports in the literature about cardiovascular risks in this patient population. We discuss the paradoxical finding of severe HDL deficiency and an absence of subclinical atherosclerosis in LCAT-deficient patients, which has been used to reject the hypothesis that HDL level is important in the protection against atherosclerosis. Furthermore, to illustrate this paradoxical finding, we present a case study of one patient, referred for evaluation of global cardiovascular risk in the presence of a low HDL cholesterol level, who was diagnosed with LCAT gene mutations.Keywords: atherosclerosis, LCAT function

  16. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes.

    Science.gov (United States)

    Chang, Wenguang; Chen, Li; Hatch, Grant M

    2016-04-01

    Dysfunction of lipid metabolism and accumulation of 1,2-diacyl-sn-glycerol (DAG) may be a key factor in the development of insulin resistance in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid extract that has shown promise as a hypoglycemic agent in the management of diabetes in animal and human studies. However, its mechanism of action is not well understood. To determine the effect of BBR on lipid synthesis and its relationship to insulin resistance in H9c2 cardiomyocytes, we measured neutral lipid and phospholipid synthesis and their relationship to glucose uptake. Compared with controls, BBR treatment stimulated 2-[1,2-(3)H(N)]deoxy-D-glucose uptake and consumption in palmitate-mediated insulin resistant H9c2 cells. The mechanism was though an increase in protein kinase B (AKT) activity and GLUT-4 glucose transporter expression. DAG accumulated in palmitate-mediated insulin resistant H9c2 cells and treatment with BBR reduced this DAG accumulation and increased accumulation of 1,2,3-triacyl-sn-glycerol (TAG) compared to controls. Treatment of palmitate-mediated insulin resistant H9c2 cells with BBR increased [1,3-(3)H]glycerol and [1-(14)C]glucose incorporation into TAG and reduced their incorporation into DAG compared to control. In addition, BBR treatment of these cells increased [1-(14)C]palmitic acid incorporation into TAG and decreased its incorporation into DAG compared to controls. BBR treatment did not alter phosphatidylcholine or phosphatidylethanolamine synthesis. The mechanism for the BBR-mediated decreased precursor incorporation into DAG and increased incorporation into TAG in palmitate-incubated cells was an increase in DAG acyltransferase-2 activity and its expression and a decrease in TAG hydrolysis. Thus, BBR treatment attenuates palmitate-induced reduction in glucose uptake and consumption, in part, through reduction in cellular DAG levels and accumulation of TAG in H9c2 cells. PMID:26774040

  17. A cellular lipidomic study on the Aβ-induced neurotoxicity and neuroprotective effects of EGCG by using UPLC/MS-based glycerolipids profiling and multivariate analysis.

    Science.gov (United States)

    Zhang, Hongyang; Wang, Jing-Rong; Yau, Lee Fong; Ho, Hing Man; Chan, Chi Leung; Hu, Ping; Liu, Liang; Jiang, Zhi-Hong

    2012-10-30

    The aim of this study was to investigate the cellular lipid metabolism associated with β-amyloid peptide (Aβ)-induced neurotoxicity as well as the neuroprotective effect of (-)-epigallocatechin gallate (EGCG), a major polyphenol in green tea. An ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS)-based lipidomic approach was developed to screen and identify changes of the glycerolipids (GL) upon Aβ treatment with or without the presence of EGCG in PC12 cells. Principle component analysis (PCA) showed that the Aβ-treated group was well separated from the control group, whereas the EGCG group was closer to the control group. The GL levels were significantly elevated in Aβ-treated cells compared with the control group, but were restored near to normal levels after EGCG treatment. The elevated phosphatidylcholines (PCs) levels observed in the Aβ-treated PC12 cells were quite probably the integrated results of the reduced phospholipase A(2) (PLA(2)) activity and the enhanced activity of lysophospholipid acyltransferases. Moreover, an increased liberation of arachidonic acid (AA) from PCs was observed as another important response of PC12 cells to the Aβ aggregates, implying an active inflammatory process occurring in Aβ induced neurotoxicity. EGCG treatment can reverse the deregulated metabolism of PCs, which might be one of the biochemical mechanisms contributing to its neuroprotective effect. Collectively, results obtained from the current lipidomic analyses of PC12 cells provided important insight into the biochemical mechanisms underlying Aβ-induced neurotoxicity and neuro protective effects of EGCG. This is the first report of the lipidomic study on the neuroprotective effect of EGCG. PMID:23032920

  18. Acylsugar Acylhydrolases: Carboxylesterase-Catalyzed Hydrolysis of Acylsugars in Tomato Trichomes.

    Science.gov (United States)

    Schilmiller, Anthony L; Gilgallon, Karin; Ghosh, Banibrata; Jones, A Daniel; Last, Robert L

    2016-03-01

    Glandular trichomes of cultivated tomato (Solanum lycopersicum) and many other species throughout the Solanaceae produce and secrete mixtures of sugar esters (acylsugars) on the plant aerial surfaces. In wild and cultivated tomato, these metabolites consist of a sugar backbone, typically glucose or sucrose, and two to five acyl chains esterified to various positions on the sugar core. The aliphatic acyl chains vary in length and branching and are transferred to the sugar by a series of reactions catalyzed by acylsugar acyltransferases. A phenotypic screen of a set of S. lycopersicum M82 × Solanum pennellii LA0716 introgression lines identified a dominant genetic locus on chromosome 5 from the wild relative that affected total acylsugar levels. Genetic mapping revealed that the reduction in acylsugar levels was consistent with the presence and increased expression of two S. pennellii genes (Sopen05g030120 and Sopen05g030130) encoding putative carboxylesterase enzymes of the α/β-hydrolase superfamily. These two enzymes, named ACYLSUGAR ACYLHYDROLASE1 (ASH1) and ASH2, were shown to remove acyl chains from specific positions of certain types of acylsugars in vitro. A survey of related genes in M82 and LA0716 identified another trichome-expressed ASH gene on chromosome 9 (M82, Solyc09g075710; LA0716, Sopen09g030520) encoding a protein with similar activity. Characterization of the in vitro activities of the SpASH enzymes showed reduced activities with acylsugars produced by LA0716, presumably contributing to the high-level production of acylsugars in the presence of highly expressed SpASH genes. PMID:26811191

  19. Mangiferin decreases plasma free fatty acids through promoting its catabolism in liver by activation of AMPK.

    Directory of Open Access Journals (Sweden)

    Yucun Niu

    Full Text Available Mangiferin has been shown to have the effect of improving dyslipidemia. Plasma free fatty acids (FFA are closely associated with blood lipid metabolism as well as many diseases including metabolic syndrome. This study is to investigate whether mangiferin has effects on FFA metabolism in hyperlipidemic rats. Wistar rats were fed a high-fat diet and administered mangiferin simultaneously for 6 weeks. Mangiferin (50, 100, 150 mg/kg BW decreased dose-dependently FFA and triglycerides (TG levels in plasma, and their accumulations in liver, but increased the β-hydroxybutyrate levels in both plasma and liver of hyperlipidemic rats. HepG2 cells were treated with oleic acid (OA, 0.2 mmol/L to simulate the condition of high level of plasma FFA in vitro, and were treated with different concentrations of mangiferin simultaneously for 24 h. We found that mangiferin significantly increased FFA uptake, significantly decreased intracellular FFA and TG accumulations in HepG2 cells. Mangiferin significantly increased AMP-activated protein kinase (AMPK phosphorylation and its downstream proteins involved in fatty acid translocase (CD36 and carnitine palmitoyltransferase 1 (CPT1, but significantly decreased acyl-CoA: diacylgycerol acyltransferase 2 (DGAT2 expression and acetyl-CoA carboxylase (ACC activity by increasing its phosphorylation level in both in vivo and in vitro studies. Furthermore, these effects were reversed by Compound C, an AMPK inhibitor in HepG2 cells. For upstream of AMPK, mangiferin increased AMP/ATP ratio, but had no effect on LKB1 phosphorylation. In conclusion, mangiferin decreased plasma FFA levels through promoting FFA uptake and oxidation, inhibiting FFA and TG accumulations by regulating the key enzymes expression in liver through AMPK pathway. Therefore, mangiferin is a possible beneficial natural compound for metabolic syndrome by improving FFA metabolism.

  20. Two Human ACAT2 mRNA Variants Produced by Alternative Splicing and Coding for Novel Isoenzymes

    Institute of Scientific and Technical Information of China (English)

    Xiao-Min YAO; Bo-Liang LI; Can-Hua WANG; Bao-Liang SONG; Xin-Ying YANG; Zhen-Zhen WANG; Wei QI; Zhi-Xin LIN; Catherine C. Y. CHANG; Ta-Yuan CHANG

    2005-01-01

    Acyl coenzyme A:cholesterol acyltransferase 2 (ACAT2) plays an important role in cholesterol absorption. Human ACAT2 is highly expressed in small intestine and fetal liver, but its expression is greatly diminished in adult liver. The full-length human ACAT2 mRNA encodes a protein, designated ACAT2a, with 522 amino acids. We have previously reported the organization of the human ACAT2 gene and the differentiation-dependent promoter activity in intestinal Caco-2 cells. In the current work, two human ACAT2 mRNA variants produced by alternative splicing are cloned and predicted to encode two novel ACAT2 isoforms,named ACAT2b and ACAT2c, with 502 and 379 amino acids, respectively. These mRNA variants differ from ACAT2a mRNA by lack of the exon 4 (ACAT2b mRNA) and exons 4-5 plus 8-9-10 (ACAT2c mRNA).Significantly, comparable amounts of the alternatively spliced ACAT2 mRNA variants were detected by RTPCR, and Western blot analysis confirmed the presence of their corresponding proteins in human liver and intestine cells. Furthermore, phosphorylation and enzymatic activity analyses demonstrated that the novel isoenzymes ACAT2b and ACAT2c lacked the phosphorylatable site SLLD, and their enzymatic activities reduced to 25%-35% of that of ACAT2a. These evidences indicate that alternative splicing produces two human ACAT2 mRNA variants that encode the novel ACAT2 isoenzymes. Our findings might help to understand the regulation of the ACAT2 gene expression under certain physiological and pathological conditions.

  1. Production of ACAT1 56-kDa isoform in human cells via trans-splicing involving the ampicillin resistance gene

    Institute of Scientific and Technical Information of China (English)

    Guang-Jing Hu; Jia Chen; Xiao-Nan Zhao; Jia-Jia Xu; Dong-Qing Guo; Ming Lu; Ming Zhu

    2013-01-01

    Trans-splicing,a process involving the cleavage and joining of two separate transcripts,can expand the transcriptome and proteome in eukaryotes.Chimeric RNAs generated by trans-splicing are increasingly described in literatures.The widespread presence of antibiotic resistance genes in natural environments and human intestines is becoming an important challenge for public health.Certain antibiotic resistance genes,such as ampicillin resistance gene (Amp),are frequently used in recombinant plasmids.Until now,trans-splicing involving recombinant plasmid-derived exogenous transcripts and endogenous cellular RNAs has not been reported.Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) is a key enzyme involved in cellular cholesterol homeostasis.The 4.3-kb human ACAT1 chimeric mRNA can produce 50-kDa and 56-kDa isoforms with different enzymatic activities.Here,we show that human ACAT1 56-kDa isoform is produced from an mRNA species generated through the trans-splicing of an exogenous transcript encoded by the antisense strand of Ampr (asAmp) present in common Ampr-plasmids and the 4.3-kb endogenous ACAT1 chimeric mRNA,which is presumably processed through a prior event of interchromosomal trans-splicing.Strikingly,DNA fragments containing the asAmp with an upstream recombined cryptic promoter and the corresponding exogenous asAmp transcripts have been detected in human cells.Our findings shed lights on the mechanism of human ACAT1 56-kDa isoform production,reveal an exogenous-endogenous trans-splicing system,in which recombinant plasmid-derived exogenous transcripts are linked with endogenous cellular RNAs in human cells,and suggest that exogenous DNA might affect human gene expression at both DNA and RNA levels.

  2. Phenotypic and Genetic Diversity of Aeromonas Species Isolated from Fresh Water Lakes in Malaysia.

    Directory of Open Access Journals (Sweden)

    Wei Ching Khor

    Full Text Available Gram-negative bacilli of the genus Aeromonas are primarily inhabitants of the aquatic environment. Humans acquire this organism from a wide range of food and water sources as well as during aquatic recreational activities. In the present study, the diversity and distribution of Aeromonas species from freshwater lakes in Malaysia was investigated using glycerophospholipid-cholesterol acyltransferase (GCAT and RNA polymerase sigma-factor (rpoD genes for speciation. A total of 122 possible Aeromonas strains were isolated and confirmed to genus level using the API20E system. The clonality of the isolates was investigated using ERIC-PCR and 20 duplicate isolates were excluded from the study. The specific GCAT-PCR identified all isolates as belonging to the genus Aeromonas, in agreement with the biochemical identification. A phylogenetic tree was constructed using the rpoD gene sequence and all 102 isolates were identified as: A. veronii 43%, A. jandaei 37%, A. hydrophila 6%, A. caviae 4%, A. salmonicida 2%, A. media 2%, A. allosaccharophila 1%, A. dhakensis 1% and Aeromonas spp. 4%. Twelve virulence genes were present in the following proportions--exu 96%, ser 93%, aer 87%, fla 83%, enolase 70%, ela 62%, act 54%, aexT 33%, lip 16%, dam 16%, alt 8% and ast 4%, and at least 2 of these genes were present in all 102 strains. The ascV, aexU and hlyA genes were not detected among the isolates. A. hydrophila was the main species containing virulence genes alt and ast either present alone or in combination. It is possible that different mechanisms may be used by each genospecies to demonstrate virulence. In summary, with the use of GCAT and rpoD genes, unambiguous identification of Aeromonas species is possible and provides valuable data on the phylogenetic diversity of the organism.

  3. (−-Epicatechin-3-O-β-d-allopyranoside from Davallia formosana, Prevents Diabetes and Hyperlipidemia by Regulation of Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Chun-Ching Shih

    2015-10-01

    Full Text Available The purpose of this experiment was to determine the antidiabetic and lipid-lowering effects of (−-epicatechin-3-O-β-d-allopyranoside (BB from the roots and stems of Davallia formosana in mice. Animal treatment was induced by high-fat diet (HFD or low-fat diet (control diet, CD. After eight weeks of HFD or CD exposure, the HFD mice were treating with BB or rosiglitazone (Rosi or fenofibrate (Feno or water through gavage for another four weeks. However, at 12 weeks, the HFD-fed group had enhanced blood levels of glucose, triglyceride (TG, and insulin. BB treatment significantly decreased blood glucose, TG, and insulin levels. Moreover, visceral fat weights were enhanced in HFD-fed mice, accompanied by increased blood leptin concentrations and decreased adiponectin levels, which were reversed by treatment with BB. Muscular membrane protein levels of glucose transporter 4 (GLUT4 were reduced in HFD-fed mice and significantly enhanced upon administration of BB, Rosi, and Feno. Moreover, BB treatment markedly increased hepatic and skeletal muscular expression levels of phosphorylation of AMP-activated (adenosine monophosphate protein kinase (phospho-AMPK. BB also decreased hepatic mRNA levels of phosphenolpyruvate carboxykinase (PEPCK, which are associated with a decrease in hepatic glucose production. BB-exerted hypotriglyceridemic activity may be partly associated with increased mRNA levels of peroxisome proliferator activated receptor α (PPARα, and with reduced hepatic glycerol-3-phosphate acyltransferase (GPAT mRNA levels in the liver, which decreased triacylglycerol synthesis. Nevertheless, we demonstrated BB was a useful approach for the management of type 2 diabetes and dyslipidemia in this animal model.

  4. Influence of DGAT1 K232A polymorphism on milk fat percentage and fatty acid profiles in Romanian holstein cattle.

    Science.gov (United States)

    Tăbăran, A; Balteanu, V A; Gal, E; Pusta, D; Mihaiu, R; Dan, S D; Tăbăran, A F; Mihaiu, M

    2015-01-01

    Milk and dairy products are considered the main sources of saturated fatty acids, which are a valuable source of nutrients in the human diet. Fat composition can be adjusted through guided nutrition of dairy animals but also through selective breeding. Recently, a dinucleotide substitution located in the exon 8 of the gene coding for acyl CoA: diacylglycerol acyltransferase 1 (DGAT1), that alters the amino acid sequence from a lysine to an alanine (p.Lys232Ala) in the mature protein, was shown to have a strong effect on milk fat content in some cattle breeds. Therefore, the objectives of this work were to study the occurrence of the DGAT1 p.Lys232Ala polymorphism in Romanian Holstein cattle and Romanian Buffalo breeds and to further investigate its possible influence on fat percentage and fatty acid profiles. The results obtained in this study show that in Romanian Holstein cattle the K allele is associated with increased fat percentage and higher levels of C16:0 and C18:0 fatty acids. The ratio of saturated fatty acids versus unsaturated fatty acids (SFA/UFA) was also higher in KK homozygous individuals, whereas the fractions of C14:0, unsaturated C18 decreased. The DGAT1 p.Lys232Ala polymorphism revealed a high genetic variance for fat percentage, unsaturated C18, C16:0, and SFA/UFA. Although the effect of this polymorphism was not so evident for short chain fatty acids such as C4:0-C8:0, it was significant for C14:0 fatty acids. We concluded that selective breeding of carriers of the A allele in Romanian Holsteins can contribute to improvement in unsaturated fatty acids content of milk. However, in buffalo, the lack of the A allele makes selection inapplicable because only the K allele, associated with higher saturated fatty acids contents in milk, was identified.

  5. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Grazia M. Borrelli

    2015-09-01

    Full Text Available Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.

  6. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice.

    Science.gov (United States)

    Seo, Kwon-Il; Choi, Myung-Sook; Jung, Un Ju; Kim, Hye-Jin; Yeo, Jiyoung; Jeon, Seon-Min; Lee, Mi-Kyung

    2008-09-01

    We investigated the effect of curcumin on insulin resistance and glucose homeostasis in male C57BL/KsJ-db/db mice and their age-matched lean non-diabetic db/+ mice. Both db/+ and db/db mice were fed with or without curcumin (0.02%, wt/wt) for 6 wks. Curcumin significantly lowered blood glucose and HbA 1c levels, and it suppressed body weight loss in db/db mice. Curcumin improved homeostasis model assessment of insulin resistance and glucose tolerance, and elevated the plasma insulin level in db/db mice. Hepatic glucokinase activity was significantly higher in the curcumin-supplemented db/db group than in the db/db group, whereas glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities were significantly lower. In db/db mice, curcumin significantly lowered the hepatic activities of fatty acid synthase, beta-oxidation, 3-hydroxy-3-methylglutaryl coenzyme reductase, and acyl-CoA: cholesterol acyltransferase. Curcumin significantly lowered plasma free fatty acid, cholesterol, and triglyceride concentrations and increased the hepatic glycogen and skeletal muscle lipoprotein lipase in db/db mice. Curcumin normalized erythrocyte and hepatic antioxidant enzyme activities (superoxide dismutase, catalase, gluthathione peroxidase) in db/db mice that resulted in a significant reduction in lipid peroxidation. However, curcumin showed no effect on the blood glucose, plasma insulin, and glucose regulating enzyme activities in db/+ mice. These results suggest that curcumin seemed to be a potential glucose-lowering agent and antioxidant in type 2 diabetic db/db mice, but had no affect in non-diabetic db/+ mice.

  7. Trivalent chromium alleviates oleic acid induced steatosis in SMMC-7721 cells by decreasing fatty acid uptake and triglyceride synthesis.

    Science.gov (United States)

    Wang, Song; Wang, Jian; Zhang, Xiaonan; Hu, Linlin; Fang, Zhijia; Huang, Zhiwei; Shi, Ping

    2016-10-01

    Trivalent chromium [Cr(III)] has been shown as an essential trace element for human health. Previous studies depict that Cr(III) plays important roles in maintaining normal glucose and lipid metabolism, whereas its effect on the hepatic lipid metabolism is still unknown. In the present study, we investigated the effects and underlying mechanisms of Cr on hepatic steatosis induced by oleic acid (OA) in human hepatoma SMMC-7721 cells. Hepatic steatosis model was co-administered with Cr. Indexes of lipid accumulation were determined and associated genes expression were analyzed. The data showed that OA could induce lipid accumulation and triglyceride (TG) content in SMMC-7721 cells, and significantly increase the expression of cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase 2 (DGAT2). This steatosis effect of OA was ameliorated by Cr. The TG accumulation and up-regulation of CD36 and DGAT2 genes followed steatosis induction were inhibited by Cr. After the treatment of Cr, excessive intracellular OA content was also attenuated. Furthermore, Cr still performed inhibitory effect of DGAT2 expression at the presence of DGAT2 agonist or inhibitor, which indicated that the inhibitory effect of Cr on lipogenesis is associated with the downregulation of DGAT2 expression. These findings demonstrate that Cr alleviates hepatic steatosis via suppressing CD36 expression to prevent fatty acid uptake, as well as suppressing DGAT2 expression to inhibit TG synthesis. It suggests that CD36 and DGAT2 might become the novel drug targets for their properties in hepatic steatosis. Most importantly, Cr may be a potential anti-steatosis candidate to offer protective effects against liver damage. PMID:27497686

  8. Multiple cytochrome P-450 genes are concomitantly regulated by vitamin A under steady-state conditions and by retinoic acid during hepatic first-pass metabolism.

    Science.gov (United States)

    Ross, A Catharine; Cifelli, Christopher J; Zolfaghari, Reza; Li, Nan-Qian

    2011-01-01

    Vitamin A (retinol) is an essential precursor for the production of retinoic acid (RA), which in turn is a major regulator of gene expression, affecting cell differentiation throughout the body. Understanding how vitamin A nutritional status, as well as therapeutic retinoid treatment, regulates the expression of retinoid homeostatic genes is important for improvement of dietary recommendations and therapeutic strategies using retinoids. This study investigated genes central to processes of retinoid uptake and storage, release to plasma, and oxidation in the liver of rats under steady-state conditions after different exposures to dietary vitamin A (deficient, marginal, adequate, and supplemented) and acutely after administration of a therapeutic dose of all-trans-RA. Over a very wide range of dietary vitamin A, lecithin:retinol acyltransferase (LRAT) as well as multiple cytochrome P-450s (CYP26A1, CYP26B1, and CYP2C22) differed by diet and were highly correlated with one another and with vitamin A status assessed by liver retinol concentration (all correlations, P < 0.05). After acute treatment with RA, the same genes were rapidly and concomitantly induced, preceding retinoic acid receptor (RAR)β, a classical direct target of RA. CYP26A1 mRNA exhibited the greatest dynamic range (change of log 2(6) in 3 h). Moreover, CYP26A1 increased more rapidly in the liver of RA-primed rats than naive rats, evidenced by increased CYP26A1 gene expression and increased conversion of [(3)H]RA to polar metabolites. By in situ hybridization, CYP26A1 mRNA was strongly regulated within hepatocytes, closely resembling retinol-binding protein (RBP)4 in location. Overall, whether RA is produced endogenously from retinol or administered exogenously, changes in retinoid homeostatic gene expression simultaneously favor both retinol esterification and RA oxidation, with CYP26A1 exhibiting the greatest dynamic change.

  9. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae.

    Science.gov (United States)

    He, Xiuping; Guo, Xuena; Liu, Nan; Zhang, Borun

    2007-05-01

    Ergosterol is an economically important metabolite produced by fungi. Recombinant Saccharomyces cerevisiae YEH56(pHXA42) with increased capacity of ergosterol formation was constructed by combined overexpression of sterol C-24(28) reductase and sterol acyltransferase in the yeast strain YEH56. The production of ergosterol by this recombinant strain using cane molasses (CM) as an inexpensive carbon source was investigated. An ergosterol content of 52.6 mg/g was obtained with 6.1 g/l of biomass from CM medium containing 60 g/l of total sugar in 30 h in shake flask. The ergosterol yield was enhanced through the increasing cell biomass by supplementation of urea to a concentration of 6 g/l in molasses medium. Fermentation was performed in 5-l bioreactor using the optimized molasses medium. In batch fermentation, the effect of agitation velocity on ergosterol production was examined. The highest ergosterol yield was obtained at 400 rpm that increased 60.4 mg/l in comparison with the shake flask culture. In fed-batch fermentation, yeast cells were cultivated, firstly, in the starting medium containing molasses with 20 g/l of total sugar, 1.68 g/l of phosphate acid, and 6 g/l of urea (pH 5.4) for 5 h, then molasses containing 350 g/l of total sugar was fed exponentially into the bioreactor to keep the ethanol level in the broth below 0.5%. After 40 h of cultivation, the ergosterol yield reached 1,707 mg/l, which was 3.1-fold of that in the batch fermentation. PMID:17225097

  10. Pathology of congenital generalized lipodystrophy in Agpat2-/- mice.

    Science.gov (United States)

    Vogel, P; Read, R; Hansen, G; Wingert, J; Dacosta, C M; Buhring, L M; Shadoan, M

    2011-05-01

    Congenital generalized lipodystrophy (CGL) comprises a heterogeneous group of rare diseases associated with partial or total loss of adipose tissue. Of these, autosomal recessive Berardinelli-Seip congenital lipodystrophy (BSCL) is characterized by the absence of metabolically active subcutaneous and visceral adipose tissues. Metabolic abnormalities associated with lipodystrophy include insulin resistance, hypertriglyceridemia, hepatic steatosis, and diabetes. One form of BSCL has been linked to genetic mutations affecting the lipid biosynthetic enzyme 1-acyl-sn-glycerol 3-phosphate O-acyltransferase 2 (AGPAT2), which is highly expressed in adipose tissue. Precisely how AGPAT2 deficiency causes lipodystrophy remains unresolved, but possible mechanisms include impaired lipogenesis (triglyceride synthesis and storage), blocked adipogenesis (differentiation of preadipocytes to adipocytes), or apoptosis/necrosis of adipocytes. Agpat2(-/-) mice share important pathophysiologic features of CGL previously reported in humans. However, the small white adipose tissue (WAT) depots consisting largely of amoeboid adipocytes with microvesiculated basophilic cytoplasm showed that adipogenesis with deficient lipogenesis was present in all usual locations. Although well-defined lobules of brown adipose tissue (BAT) were present, massive necrosis resulted in early ablation of BAT. Although necrotic or apoptotic adipocytes were not detected in WAT of 10-day-old Agpat2(-/-), the absence of adipocytes in aged mice indicates that these cells must undergo necrosis/apoptosis at some point. Another significant finding in aged lipodystrophic mice was massive pancreatic islet hypertrophy in the face of chronic hyperglycemia, which suggests that glucotoxicity is insufficient by itself to cause β-cell loss and that adipocyte-derived factors help regulate total β-cell mass.

  11. Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration.

    Science.gov (United States)

    Sasaki, Nobuhiro; Nakayama, Toru

    2015-01-01

    Genetic engineering of roses and other plants of floricultural importance to give them a truly blue petal color is arguably one of the holy grails of plant biotechnology. Toward this goal, bluish carnations and roses were previously engineered by establishing an exclusive accumulation of delphinidin (Dp)-type anthocyanins in their petals via the heterologous expression of a flavonoid 3',5'-hydroxylase gene. Very recently, purple-blue varieties of chrysanthemums were also genetically engineered via a similar biochemical strategy. Although the floral colors of these transgenic plants still lack a true blue color, the basis for the future molecular breeding of truly blue flowers is via the engineering of anthocyanin pathways. Anthocyanins with multiple aromatic acyl groups (often referred to as polyacylated anthocyanins) in the 3'- or 7-position tend to display a more stable blue color than non-acylated anthocyanins. The 7-polyacylation process during the biosynthesis of purple-blue anthocyanins in delphinium (Delphinium grandiflorum) was found to occur in vacuoles using acyl-glucose as both the glucosyl and acyl donor. Glucosyltransferases and acyltransferases involved in anthocyanin 7-polyacylation in delphinium are vacuolar acyl-glucose-dependent enzymes belonging to the glycoside hydrolase family 1 and serine carboxypeptidae-like protein family, respectively. The 7-polyacylation proceeds through the alternate glucosylation and p-hydroxybenzoylation catalyzed by these enzymes. p-Hydroxybenzoyl-glucose serves as the p-hydroxybenzoyl and glucosyl donor to produce anthocyanins modified with a p-hydroxybenzoyl-glucose concatemer at the 7-position. This novel finding has provided a potential breakthrough for the genetic engineering of truly blue flowers, where polyacylated Dp-type anthocyanins are accumulated exclusively in the petals.

  12. Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles.

    Science.gov (United States)

    Castro, Carolina; Corraze, Geneviève; Firmino-Diógenes, Alexandre; Larroquet, Laurence; Panserat, Stéphane; Oliva-Teles, Aires

    2016-07-01

    The long-term effects on growth performance, body composition, plasma metabolites, liver and intestine glucose and lipid metabolism were assessed in gilthead sea bream juveniles fed diets without carbohydrates (CH-) or carbohydrate-enriched (20 % gelatinised starch, CH+) combined with two lipid sources (fish oil; or vegetable oil (VO)). No differences in growth performance among treatments were observed. Carbohydrate intake was associated with increased hepatic transcripts of glucokinase but not of 6-phosphofructokinase. Expression of phosphoenolpyruvate carboxykinase was down-regulated by carbohydrate intake, whereas, unexpectedly, glucose 6-phosphatase was up-regulated. Lipogenic enzyme activities (glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthase) and ∆6 fatty acyl desaturase (FADS2) transcripts were increased in liver of fish fed CH+ diets, supporting an enhanced potential for lipogenesis and long-chain PUFA (LC-PUFA) biosynthesis. Despite the lower hepatic cholesterol content in CH+ groups, no influence on the expression of genes related to cholesterol efflux (ATP-binding cassette G5) and biosynthesis (lanosterol 14 α-demethylase, cytochrome P450 51 cytochrome P450 51 (CYP51A1); 7-dehydrocholesterol reductase) was recorded at the hepatic level. At the intestinal level, however, induction of CYP51A1 transcripts by carbohydrate intake was recorded. Dietary VO led to decreased plasma phospholipid and cholesterol concentrations but not on the transcripts of proteins involved in phospholipid biosynthesis (glycerol-3-phosphate acyltransferase) and cholesterol metabolism at intestinal and hepatic levels. Hepatic and muscular fatty acid profiles reflected that of diets, despite the up-regulation of FADS2 transcripts. Overall, this study demonstrated that dietary carbohydrates mainly affected carbohydrate metabolism, lipogenesis and LC-PUFA biosynthesis, whereas effects of dietary lipid source were mostly related with tissue fatty acid composition

  13. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition

    Science.gov (United States)

    Gao, Lu; Rabbitt, Elizabeth H.; Condon, Jennifer C.; Renthal, Nora E.; Johnston, John M.; Mitsche, Matthew A.; Chambon, Pierre; Xu, Jianming; O’Malley, Bert W.; Mendelson, Carole R.

    2015-01-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A–deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2–deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2–deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2–deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2–dependent production of SP-A and PAF is crucial for this process. PMID:26098214

  14. Análisis genómico del resistoma de la cepa de Acinetobacter baumannii ABIBUN 107m multi-resistente y persistente en hospitales colombianos

    Directory of Open Access Journals (Sweden)

    Maria Teresa Reguero

    2014-12-01

    Full Text Available Acinetobacter baumannii is a bacterium causing health care associated infections such as pneumonia, septicemia, meningitis and urinary infections amongst others. It has great capacity to quickly develop and gather a big variety of drug resistance mechanisms. In this research, the genome of strain A. baumannii ABIBUN 107m was analyzed wich forms part of a persistent clon in Colombian hospitals and it’s also resistant to carbapenems (imipenem and meropenem, which are the election antibiotics for treatment of infections caused by this microorganism. The genome was sequenced using high performance technology, assembled and annotated. As a result, we obtained a 3954000 bp genome, with 56 contigs; 4256 genes with average size of 912 bp; 3796 CDS; 2884 were assigned to COG; 57 tRNA and GC percentage of 38,74%. The A. baumannii strain ABIBUN 107m, is resistant to the following antibiotic groups: b-lactams, aminoglycosides, quinolones, tetracycline, sulfonamide and colistin. Genes associated with this resistance profile were found in A. baumannii ABIBUN 107m genome serino b-lactamases (blaADC-38, blaOXA-64, blaOXA-23, blaampC-like, blaamp(H-like, metallo b-lactamase_B; High Molecular Mass penicillin binding proteins, ISAba1 type insertion sequences, mutations of DNA gyrase and topoisomerase IV subunit A (gyrA and parC; aminoglycoside modifying enzymes (aphA-like, aadA-like; choramphenicol acyltransferase (cat and dehydropteroate synthase (sul-1. Genes belonging to five different efflux systems were identified (RND, MATE, MSF, ATP, SMR.

  15. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Guodong Zheng

    Full Text Available In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD, and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK, carnitine acyltransferase (CAT and hormone-sensitive lipase (HSL were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2 was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases.

  16. Human urotensin II promotes hypertension and atherosclerotic cardiovascular diseases.

    Science.gov (United States)

    Watanabe, Takuya; Arita, Shigeko; Shiraishi, Yuji; Suguro, Toshiaki; Sakai, Tetsuo; Hongo, Shigeki; Miyazaki, Akira

    2009-01-01

    Human urotensin II (U-II), the most potent vasoconstrictor undecapeptide identified to date, and its receptor (UT) are involved in the pathogenesis of systemic and pulmonary hypertension. Here, we review recent advances in our understanding of the pathophysiology of U-II with particular reference to its role in atherosclerotic cardiovascular diseases. Single-nucleotide polymorphisms of U-II gene (S89N) are associated with onset of essential hypertension, type II diabetes mellitus, and insulin resistance in the Asian population. Plasma U-II levels are elevated in patients with vascular endothelial dysfunction-related diseases such as essential hypertension, diabetes mellitus, atherosclerosis, ischemic heart disease, and heart failure. Chronic infusion of U-II enhances atherosclerotic lesions in the aorta in apolipoprotein E-knockout mice. In human atherosclerotic plaques from the aorta and coronary and carotid arteries, U-II is expressed at high levels in endothelial cells (ECs) and lymphocytes, whereas UT is expressed at high levels in vascular smooth muscle cells (VSMCs), ECs, monocytes, and macrophages. U-II stimulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in human ECs as chemoattractant for monocytes, and accelerates foam cell formation by up-regulation of acyl-coenzyme A:cholesterol acyltransferase-1 in human monocyte-derived macrophages. U-II produces reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate oxidase activation in human VSMCs, and stimulates VSMC proliferation with synergistic effects when combined with ROS, oxidized LDL, and serotonin. Clinical studies demonstrated increased plasma U-II levels in accordance with the severity of carotid atherosclerosis in patients with essential hypertension and that of coronary artery lesions in patients with ischemic heart disease. Here, we summarize the key roles of U-II in progression of hypertension and atherosclerotic cardiovascular diseases

  17. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia.

    Science.gov (United States)

    Backes, James; Anzalone, Deborah; Hilleman, Daniel; Catini, Julia

    2016-01-01

    Hypertriglyceridemia (triglycerides > 150 mg/dL) affects ~25 % of the United States (US) population and is associated with increased cardiovascular risk. Severe hypertriglyceridemia (≥ 500 mg/dL) is also a risk factor for pancreatitis. Three omega-3 fatty acid (OM3FA) prescription formulations are approved in the US for the treatment of adults with severe hypertriglyceridemia: (1) OM3FA ethyl esters (OM3EE), a mixture of OM3FA ethyl esters, primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Lovaza®, Omtryg™, and generics); (2) icosapent ethyl (IPE), EPA ethyl esters (Vascepa®); and (3) omega-3 carboxylic acids (OM3CA), a mixture of OM3FAs in free fatty acid form, primarily EPA, DHA, and docosapentaenoic acid (Epanova®). At approved doses, all formulations substantially reduce triglyceride and very-low-density lipoprotein levels. DHA-containing formulations may also increase low-density lipoprotein cholesterol. However, this is not accompanied by increased non-high-density lipoprotein cholesterol, which is thought to provide a better indication of cardiovascular risk in this patient population. Proposed mechanisms of action of OM3FAs include inhibition of diacylglycerol acyltransferase, increased plasma lipoprotein lipase activity, decreased hepatic lipogenesis, and increased hepatic β-oxidation. OM3CA bioavailability (area under the plasma concentration-time curve from zero to the last measurable concentration) is up to 4-fold greater than that of OM3FA ethyl esters, and unlike ethyl esters, the absorption of OM3CA is not dependent on pancreatic lipase hydrolysis. All three formulations are well tolerated (the most common adverse events are gastrointestinal) and demonstrate a lack of drug-drug interactions with other lipid-lowering drugs, such as statins and fibrates. OM3FAs appear to be an effective treatment option for patients with severe hypertriglyceridemia. PMID:27444154

  18. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    Science.gov (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  19. 孕早期高蛋白膳食对子代大鼠CPT1的影响%Effects of high protein diet during early pregnancy on CPT1 of offspring

    Institute of Scientific and Technical Information of China (English)

    董艳梅; 李省三; 赵剑飞; 冯海英; 徐坤; 谢志平; 李继媛; 刘吉成

    2013-01-01

    Objective To study the effects of high protein diet(HPD) during early pregnancy on offspring carnitine acyltransferase 1 (CPT1) mRNA, and find out optimal pregnant diet. Methods Rats were fed with a HPD and standard diet (SD) during early pregnancy, respectively. Male offspring were high protein (HP) and control (CON) group, respectively. Offspring were fed with a SD until adult. Rats were fed with high fat diet to induce obesity. CPT1 gene was analyzed by FQ-PCR. Results Body weight were decreased and CPT1 mRNA were increased in HP group (P<0.05). Conclusion HPD during early pregnancy can prevent offspring from obesity by mediating lipolysis.%目的:探讨孕早期高蛋白质膳食(HPD)对子代肥胖和肉碱酰基转移酶1(CPT1)表达的影响,寻找肥胖防治的靶标和合理的孕期膳食。方法孕早期大鼠分别给予HPD和标准膳食(SD),其后代分别为高蛋白质组(HP)和对照组(CON),SD喂养至成年,高脂膳食诱导肥胖,FQ-PCR法检测CPT1 mRNA的水平。结果与对照组相比,HPD大鼠子代的体重持续降低(P<0.05),CPT1 mRNA水平持续升高。结论孕早期HPD可通过程序性升高子代CPT1 mRNA的水平,降低肥胖的发生。

  20. Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation.

    Science.gov (United States)

    Klipsic, Devon; Landrock, Danilo; Martin, Gregory G; McIntosh, Avery L; Landrock, Kerstin K; Mackie, John T; Schroeder, Friedhelm; Kier, Ann B

    2015-09-01

    While a high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x [double knockout (DKO)] would impact hepatic lipids (cholesterol and cholesteryl ester), especially in high-cholesterol-fed mice. DKO did not alter food consumption, and body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so in males. DKO-induced steatosis in control-fed wild-type (WT) mice was associated with 1) loss of SCP-2; 2) upregulation of liver fatty acid binding protein (L-FABP); 3) increased mRNA and/or protein levels of sterol regulatory element binding proteins (SREBP1 and SREBP2) as well as increased expression of target genes of cholesterol synthesis (Hmgcs1 and Hmgcr) and fatty acid synthesis (Acc1 and Fas); and 4) cholesteryl ester accumulation was also associated with increased acyl-CoA cholesterol acyltransferase-2 (ACAT2) in males. DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and glyceride accumulation, without further increasing SREBP1, SREBP2, or target genes. This exacerbation was associated both with loss of SCP-2 and concomitant downregulation of Ceh/Hsl, apolipoprotein B (ApoB), MTP, and/or L-FABP protein expression. DKO diminished the ability to secrete excess cholesterol into bile and oxidize cholesterol to bile acid for biliary excretion, especially in females. This suggested that SCP-2/SCP-x affects cholesterol transport to particular intracellular compartments, with ablation resulting in less to the endoplasmic reticulum for SREBP regulation, making more available for cholesteryl ester synthesis, for cholesteryl-ester storage in lipid droplets, and for bile salt synthesis and/or secretion. These alterations are significant findings, since they affect key processes in regulation of sterol metabolism. PMID:26113298