WorldWideScience

Sample records for acylation stimulating protein

  1. The effects of acylation stimulating protein supplementation VS antibody neutralization on energy expenditure in wildtype mice

    Directory of Open Access Journals (Sweden)

    Gao Ying

    2010-04-01

    Full Text Available Abstract Background Acylation stimulating protein (ASP is an adipogenic hormone that stimulates triglyceride (TG synthesis and glucose transport in adipocytes. Previous studies have shown that ASP-deficient C3 knockout mice are hyperphagic yet lean, as they display increased oxygen consumption and fatty acid oxidation compared to wildtype mice. In the present study, antibodies against ASP (Anti-ASP and human recombinant ASP (rASP were tested in vitro and in vivo. Continuous administration for 4 weeks via osmotic mini-pump of Anti-ASP or rASP was evaluated in wildtype mice on a high-fat diet (HFD to examine their effects on body weight, food intake and energy expenditure. Results In mature murine adipocytes, rASP significantly stimulated fatty acid uptake (+243% vs PBS, P Conclusion In vitro, Anti-ASP effectively neutralized ASP stimulated fatty acid uptake. In vivo, Anti-ASP treatment increased whole body energy utilization while rASP increased energy storage. Therefore, ASP is a potent anabolic hormone that may also be a mediator of energy expenditure.

  2. Recombinant acylation stimulating protein administration to C3-/- mice increases insulin resistance via adipocyte inflammatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Mercedes Nancy Munkonda

    Full Text Available BACKGROUND: Complement 3 (C3, a key component of the innate immune system, is involved in early inflammatory responses. Acylation stimulating protein (ASP; aka C3adesArg, a C3 cleavage product, is produced in adipose tissue and stimulates lipid storage. We hypothesized that, depending on the diet, chronic ASP administration in C3(-/- mice would affect lipid metabolism and insulin sensitivity via an adaptive adipose tissue inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: C3(-/- mice on normal low fat diet (ND or high fat diet (HFD were chronically administered recombinant ASP (rASP for 25 days via an osmotic mini-pump. While there was no effect on food intake, there was a decrease in activity, with a relative increase in adipose tissue weight on ND, and a shift in adipocyte size distribution. While rASP administration to C3(-/- mice on a ND increased insulin sensitivity, on a HFD, rASP administration had the opposite effect. Specifically, rASP administration in C3(-/- HFD mice resulted in decreased gene expression of IRS1, GLUT4, SREBF1 and NFκB in muscle, and decreased C5L2 but increased JNK, CD36, CD11c, CCR2 and NFκB gene expression in adipose tissue as well as increased secretion of proinflammatory cytokines (Rantes, KC, MCP-1, IL-6 and G-CSF. In adipose tissue, although IRS1 and GLUT4 mRNA were unchanged, insulin response was reduced. CONCLUSION: The effects of chronic rASP administration are tissue and diet specific, rASP administration enhances the HFD induced inflammatory response leading to an insulin-resistant state. These results suggest that, in humans, the increased plasma ASP associated with obesity and cardiovascular disease could be an additional factor directly contributing to development of metabolic syndrome, insulin resistance and diabetes.

  3. Acylation stimulating protein, complement C3 and lipid metabolism in ketosis-prone diabetic subjects.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Ketosis-prone diabetes (KPDM is new-onset diabetic ketoacidosis without precipitating factors in non-type 1 diabetic patients; after management, some are withdrawn from exogenous insulin, although determining factors remain unclear.Twenty KPDM patients and twelve type 1 diabetic patients (T1DM, evaluated at baseline, 12 and 24 months with/without insulin maintenance underwent a standardized mixed-meal tolerance test (MMTT for 2 h.At baseline, triglyceride and C3 were higher during MMTT in KPDM vs. T1DM (p<0.0001 with no differences in non-esterified fatty acids (NEFA while Acylation Stimulating Protein (ASP tended to be higher. Within 12 months, 11 KPDM were withdrawn from insulin treatment (KPDM-ins, while 9 were maintained (KPDM+ins. NEFA was lower in KPDM-ins vs. KPDM+ins at baseline (p = 0.0006, 12 months (p<0.0001 and 24 months (p<0.0001 during MMTT. NEFA in KPDM-ins decreased over 30-120 minutes (p<0.05, but not in KPDM+ins. Overall, C3 was higher in KPDM-ins vs KPDM+ins at 12 months (p = 0.0081 and 24 months (p = 0.0019, while ASP was lower at baseline (p = 0.0024 and 12 months (p = 0.0281, with a decrease in ASP/C3 ratio.Notwithstanding greater adiposity in KPDM-ins, greater NEFA decreases and lower ASP levels during MMTT suggest better insulin and ASP sensitivity in these patients.

  4. Thyroid status influence on adiponectin, acylation stimulating protein (ASP and complement C3 in hyperthyroid and hypothyroid subjects

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2006-02-01

    Full Text Available Abstract Background Thyroid abnormalities (hyperthyroid and hypothyroid are accompanied by changes in intermediary metabolism including alterations in body weight, insulin resistance and lipid profile. The aims of this study were to examine plasma ASP, its precursor C3 and adiponectin in hyperthyroid and hypothyroid subjects as compared to controls. Methods A total of 99 subjects were recruited from endocrinology/out-patient clinics: 46 hyperthyroid subjects, 23 hypothyroid subjects and 30 control subjects. Subjects were evaluated for FT4, FT3, TSH, glucose, insulin, complete lipid profile and the adipokines: adiponectin, acylation stimulating protein (ASP and complement C3. Results Hyperthyroidism was associated with a 95% increase in adiponectin (p = 0.0002, a 47% decrease in C3 (p Conclusion These changes suggest that thyroid disease may be accompanied by changes in adipokines, which may contribute to the phenotype expressed.

  5. Versatility of acyl-acyl carrier protein synthetases.

    Science.gov (United States)

    Beld, Joris; Finzel, Kara; Burkart, Michael D

    2014-10-23

    The acyl carrier protein (ACP) requires posttranslational modification with a 4'-phosphopantetheine arm for activity, and this thiol-terminated modification carries cargo between enzymes in ACP-dependent metabolic pathways. We show that acyl-ACP synthetases (AasSs) from different organisms are able to load even, odd, and unnatural fatty acids onto E. coli ACP in vitro. Vibrio harveyi AasS not only shows promiscuity for the acid substrate, but also is active upon various alternate carrier proteins. AasS activity also extends to functional activation in living organisms. We show that exogenously supplied carboxylic acids are loaded onto ACP and extended by the E. coli fatty acid synthase, including unnatural fatty acid analogs. These analogs are further integrated into cellular lipids. In vitro characterization of four different adenylate-forming enzymes allowed us to disambiguate CoA-ligases and AasSs, and further in vivo studies show the potential for functional application in other organisms. PMID:25308274

  6. Acyl-coenzyme A binding protein (ACBP)

    DEFF Research Database (Denmark)

    Kragelund, B B; Knudsen, J; Poulsen, F M

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four alpha-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located...... at the helix-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  7. Acyl-coenzyme A binding protein, ACBP

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Knudsen, J.; Poulsen, Flemming

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four a-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located at the helix......-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  8. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    Science.gov (United States)

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  9. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K;

    1999-01-01

    Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport...

  10. Evolution of the acyl-CoA binding protein (ACBP)

    DEFF Research Database (Denmark)

    Burton, Mark; Rose, Timothy M; Faergeman, Nils J;

    2005-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein that binds C12-C22 acyl-CoA esters with high affinity. In vitro and in vivo experiments suggest that it is involved in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, regulation of the intracellular ac......-specific paralogues have evolved altered functions. The appearance of ACBP very early on in evolution points towards a fundamental role of ACBP in acyl-CoA metabolism, including ceramide synthesis and in signalling....

  11. Trapping of the Enoyl-Acyl Carrier Protein Reductase-Acyl Carrier Protein Interaction.

    Science.gov (United States)

    Tallorin, Lorillee; Finzel, Kara; Nguyen, Quynh G; Beld, Joris; La Clair, James J; Burkart, Michael D

    2016-03-30

    An ideal target for metabolic engineering, fatty acid biosynthesis remains poorly understood on a molecular level. These carrier protein-dependent pathways require fundamental protein-protein interactions to guide reactivity and processivity, and their control has become one of the major hurdles in successfully adapting these biological machines. Our laboratory has developed methods to prepare acyl carrier proteins (ACPs) loaded with substrate mimetics and cross-linkers to visualize and trap interactions with partner enzymes, and we continue to expand the tools for studying these pathways. We now describe application of the slow-onset, tight-binding inhibitor triclosan to explore the interactions between the type II fatty acid ACP from Escherichia coli, AcpP, and its corresponding enoyl-ACP reductase, FabI. We show that the AcpP-triclosan complex demonstrates nM binding, inhibits in vitro activity, and can be used to isolate FabI in complex proteomes. PMID:26938266

  12. Influence of Lipid A Acylation Pattern on Membrane Permeability and Innate Immune Stimulation

    Directory of Open Access Journals (Sweden)

    Robert K. Ernst

    2013-08-01

    Full Text Available Lipid A, the hydrophobic anchor of lipopolysaccharide (LPS, is an essential component in the outer membrane of Gram-negative bacteria. It can stimulate the innate immune system via Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD2, leading to the release of inflammatory cytokines. In this study, six Escherichia coli strains which can produce lipid A with different acylation patterns were constructed; the influence of lipid A acylation pattern on the membrane permeability and innate immune stimulation has been systematically investigated. The lipid A species were isolated and identified by matrix assisted laser ionization desorption-time of flight/tandem mass spectrometry. N-Phenyl naphthylamine uptake assay and antibiotic susceptibility test showed that membrane permeability of these strains were different. The lower the number of acyl chains in lipid A, the stronger the membrane permeability. LPS purified from these strains were used to stimulate human or mouse macrophage cells, and different levels of cytokines were induced. Compared with wild type hexa-acylated LPS, penta-acylated, tetra-acylated and tri-acylated LPS induced lower levels of cytokines. These results suggest that the lipid A acylation pattern influences both the bacterial membrane permeability and innate immune stimulation. The results would be useful for redesigning the bacterial membrane structure and for developing lipid A vaccine adjuvant.

  13. Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence

    International Nuclear Information System (INIS)

    Pulse-chase experiments with [3H]tetradecanoic acid and ATP showed that the bioluminescence-related 32-kDa acyltransferase from Vibrio harveyi can specifically catalyze the deacylation of a 3H-labeled 18-kDa protein observed in extracts of this bacterium. The 18-kDa protein has been partially purified and its physical and chemical properties strongly indicate that it is fatty acyl-acyl carrier protein (acyl-ACP). Both this V. harveyi [3H]acylprotein and [3H]palmitoyl-ACP from Escherichia coli were substrates in vitro for either the V. harveyi 32-kDa acyltransferase or the analogous enzyme (34K) from Photobacterium phosphoreum. TLC analysis indicated that the hexane-soluble product of the reaction is fatty acid. No significant cleavage of either E. coli or V. harveyi tetradecanoyl-ACP was observed in extracts of these bacteria unless the 32-kDa or 34K acyltransferase was present. Since these enzymes are believed to be responsible for the supply of fatty acids for reduction to form the aldehyde substrate of luciferase, the above results suggest that long-chain acyl-ACP is the source of fatty acids for bioluminescence

  14. Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation.

    Science.gov (United States)

    Percher, Avital; Ramakrishnan, Srinivasan; Thinon, Emmanuelle; Yuan, Xiaoqiu; Yount, Jacob S; Hang, Howard C

    2016-04-19

    Fatty acylation of cysteine residues provides spatial and temporal control of protein function in cells and regulates important biological pathways in eukaryotes. Although recent methods have improved the detection and proteomic analysis of cysteine fatty (S-fatty) acylated proteins, understanding how specific sites and quantitative levels of this posttranslational modification modulate cellular pathways are still challenging. To analyze the endogenous levels of protein S-fatty acylation in cells, we developed a mass-tag labeling method based on hydroxylamine-sensitivity of thioesters and selective maleimide-modification of cysteines, termed acyl-PEG exchange (APE). We demonstrate that APE enables sensitive detection of protein S-acylation levels and is broadly applicable to different classes of S-palmitoylated membrane proteins. Using APE, we show that endogenous interferon-induced transmembrane protein 3 is S-fatty acylated on three cysteine residues and site-specific modification of highly conserved cysteines are crucial for the antiviral activity of this IFN-stimulated immune effector. APE therefore provides a general and sensitive method for analyzing the endogenous levels of protein S-fatty acylation and should facilitate quantitative studies of this regulated and dynamic lipid modification in biological systems.

  15. Ethanol metabolism modifies hepatic protein acylation in mice.

    Directory of Open Access Journals (Sweden)

    Kristofer S Fritz

    Full Text Available Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated

  16. Ethanol Metabolism Modifies Hepatic Protein Acylation in Mice

    Science.gov (United States)

    Fritz, Kristofer S.; Green, Michelle F.; Petersen, Dennis R.; Hirschey, Matthew D.

    2013-01-01

    Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated metabolism, induce specific

  17. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B;

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  18. Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds.

    Science.gov (United States)

    Martínez-Force, E; Cantisán, S; Serrano-Vega, M J; Garcés, R

    2000-10-01

    During sunflower (Helianthus annuus L.) seed formation there was an active period of lipid biosynthesis between 12 and 28 days after flowering (DAF). The maximum in-vitro acyl-acyl carrier protein (ACP) thioesterase activities (EC 3.1.2.14) were found at 15 DAF, preceding the largest accumulation of lipid in the seed. Data from the apparent kinetic parameters, Vmax and Km, from seeds of 15 and 30 DAF, showed that changes in acyl-ACP thioesterase activity are not only quantitative, but also qualitative, since, although the preferred substrate was always oleoyl-ACP, the affinity for palmitoyl-ACP decreased, whereas that for stearoyl-ACP increased with seed maturation. Bisubstrate assays carried out at 30 DAF seemed to indicate that the total activity found in mature seeds is due to a single enzyme with 100/75/15 affinity for oleoyl-ACP/stearoyl-ACP/ palmitoyl-ACP. In contrast, at 15 DAF, enzymatic data together with partial sequences from cDNAs indicated the presence of at least two enzymes with different properties, a FatA-like thioesterase, with a high affinity for oleoyl-ACP, plus a FatB-like enzyme, with preference for long-chain saturated fatty acids, both being expressed during the active lipid biosynthesis period. Competition assays carried out with CAS-5, a mutant with a higher content of palmitic acid in the seed oil, indicated that a modified FatA-type thioesterase is involved in the mutant phenotype.

  19. Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size

    DEFF Research Database (Denmark)

    Knudsen, J; Faergeman, N J; Skøtt, H;

    1994-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein characterized in vertebrates. We have isolated two ACBP homologues from the yeast Saccharomyces carlsbergensis, named yeast ACBP types 1 and 2. Both proteins contain 86 amino acid residues and are identical except for four conservative substitut...... resulted in a significant expansion of the intracellular acyl-CoA pool. Finally, Southern-blotting analysis of the two genes encoding ACBP types 1 and 2 in S. carlsbergensis strongly indicated that this species is a hybrid between S. cerevisiae and Saccharomyces monacensis....

  20. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Wadum, Majken; Feddersen, Søren;

    2007-01-01

    -CoA binding protein, ACBP, has been proposed to play a pivotal role in the intracellular trafficking and utilization of long-chain fatty acyl-CoA esters. Depletion of acyl-CoA binding protein in yeast results in aberrant organelle morphology incl. fragmented vacuoles, multi-layered plasma membranes...

  1. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.

    Science.gov (United States)

    Yao, Jiangwei; Dodson, V Joshua; Frank, Matthew W; Rock, Charles O

    2015-09-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  2. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions

    OpenAIRE

    Beld, Joris; Jillian L Blatti; Behnke, Craig; Mendez, Michael; Burkart, Michael D.

    2013-01-01

    The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the p...

  3. Fatty acid acylation of proteins: specific roles for palmitic, myristic and caprylic acids

    Directory of Open Access Journals (Sweden)

    Rioux Vincent

    2016-05-01

    Full Text Available Fatty acid acylation of proteins corresponds to the co- or post-translational covalent linkage of an acyl-CoA, derived from a fatty acid, to an amino-acid residue of the substrate protein. The cellular fatty acids which are involved in protein acylation are mainly saturated fatty acids. Palmitoylation (S-acylation corresponds to the reversible attachment of palmitic acid (C16:0 via a thioester bond to the side chain of a cysteine residue. N-terminal myristoylation refers to the covalent attachment of myristic acid (C14:0 by an amide bond to the N-terminal glycine of many eukaryotic and viral proteins. Octanoylation (O-acylation typically concerns the formation of an ester bond between octanoic acid (caprylic acid, C8:0 and the side chain of a serine residue of the stomach peptide ghrelin. An increasing number of proteins (enzymes, hormones, receptors, oncogenes, tumor suppressors, proteins involved in signal transduction, eukaryotic and viral structural proteins have been shown to undergo fatty acid acylation. The addition of the acyl moiety is required for the protein function and usually mediates protein subcellular localization, protein-protein interaction or protein-membrane interaction. Therefore, through the covalent modification of proteins, these saturated fatty acids exhibit emerging specific and important roles in modulating protein functions. This review provides an overview of the recent findings on the various classes of protein acylation leading to the biological ability of saturated fatty acids to regulate many pathways. Finally, the nutritional links between these elucidated biochemical mechanisms and the physiological roles of dietary saturated fatty acids are discussed.

  4. Selective acylation of primary amines in peptides and proteins

    NARCIS (Netherlands)

    Abello, N.; Kerstjens, H.A.M.; Postma, D.S; Bischoff, Rainer

    2007-01-01

    N-hydroxysuccinimide (NHS) esters are derivatizing agents that target primary amine groups. However, even a small molar excess of NHS may lead to acylation of hydroxyl-containing amino acids as a side reaction. We report a straightforward method for the selective removal of ester-linked acyl groups

  5. Acyl-CoA binding protein is an essential protein in mammalian cell lines

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Knudsen, Jens; Færgeman, Nils J.

    2002-01-01

    In the present work, small interference RNA was used to knock-down acyl-CoA binding protein (ACBP) in HeLa, HepG2 and Chang cells. Transfection with ACBP-specific siRNA stopped growth, detached cells from the growth surface and blocked thymidine and acetate incorporation. The results show...... that depletion of ACBP in mammalian cells results in lethality, suggesting that ACBP is an essential protein....

  6. Fat Metabolism in Higher Plants: LXII. Stearl-acyl Carrier Protein Desaturase from Spinach Chloroplasts.

    Science.gov (United States)

    Jacobson, B S; Jaworski, J G; Stumpf, P K

    1974-10-01

    Stearyl-acyl carrier protein desaturase (EC 1.14.99.6), present in the stroma fraction of spinach (Spinacia oleracea) chloroplasts, rapidly desaturated enzymatically prepared stearyl-acyl carrier protein to oleic acid. No other substrates were desaturated. In addition to stearyl-acyl carrier protein, reduced ferredoxin was an essential component of the system. The electron donor systems were either ascorbate, dichlorophenolindophenol, photosystem I and light, or NADPH and ferredoxin-NADP reductase. The desaturase was more active in extracts prepared from chloroplasts obtained from immature spinach leaves than from mature leaves. Stearyl-acyl carrier protein desaturase also occurs in soluble extracts of avocado (Persea americana Mill.) mesocarp and of developing safflower (Carthamus tinctorius) seeds.

  7. Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis

    DEFF Research Database (Denmark)

    Rasmussen, J T; Færgeman, Nils J.; Kristiansen, K;

    1994-01-01

    The dissociation constants for octanoyl-CoA, dodecanoyl-CoA and hexadecanoyl-CoA binding to acyl-CoA-binding protein (ACBP) were determined by using titration microcalorimetry. The KD values obtained, (0.24 +/- 0.02) x 10(-6) M, (0.65 +/- 0.2) x 10(-8) M and (0.45 +/- 0.2) x 10(-13) M respectivel...... on a nitrocellulose membrane, and to donate them to beta-oxidation or glycerolipid synthesis in mitochondria or microsomes, respectively....

  8. Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids

    DEFF Research Database (Denmark)

    Wadum, M.C.; Villadsen, J.K.; Feddersen, S.;

    2002-01-01

    Long-chain acyl-CoA esters are key metabolites in lipid synthesis and b-oxidation but, at the same time, are important regulators of intermediate metabolism, insulin secretion, vesicular trafficking and gene expression. Key tools in studying the regulatory functions of acyl-CoA esters are reliable...... methods for the determination of free acyl-CoA concentrations. No such method is presently available. In the present study, we describe the synthesis of two acyl-CoA sensors for measuring free acyl-CoA concentrations using acyl-CoA-binding protein as a scaffold. Met24 and Ala53 of bovine acyl......-CoA-binding protein were replaced by cysteine residues, which were covalently modified with 6-bromoacetyl-2-dimethylaminonaphthalene to make the two fluorescent acyl-CoA indicators (FACIs) FACI-24 and FACI-53. FACI-24 and FACI-53 showed fluorescence emission maximum at 510 and 525nm respectively, in the absence of...

  9. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Halavaty, Andrei S. [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Kim, Youngchang [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Zhou, Min [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Onopriyenko, Olena; Skarina, Tatiana [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N. [Center for Structural Genomics of Infectious Diseases, (United States); J. Craig Venter Institute, Rockville, MD 20850 (United States); Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Savchenko, Alexei [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Anderson, Wayne F., E-mail: wf-anderson@northwestern.edu [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States)

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  10. Systems Analysis of Protein Fatty Acylation in Herpes Simplex Virus-Infected Cells Using Chemical Proteomics

    Science.gov (United States)

    Serwa, Remigiusz A.; Abaitua, Fernando; Krause, Eberhard; Tate, Edward W.; O’Hare, Peter

    2015-01-01

    Summary Protein fatty acylation regulates diverse aspects of cellular function and organization and plays a key role in host immune responses to infection. Acylation also modulates the function and localization of virus-encoded proteins. Here, we employ chemical proteomics tools, bio-orthogonal probes, and capture reagents to study myristoylation and palmitoylation during infection with herpes simplex virus (HSV). Using in-gel fluorescence imaging and quantitative mass spectrometry, we demonstrate a generalized reduction in myristoylation of host proteins, whereas palmitoylation of host proteins, including regulators of interferon and tetraspanin family proteins, was selectively repressed. Furthermore, we found that a significant fraction of the viral proteome undergoes palmitoylation; we identified a number of virus membrane glycoproteins, structural proteins, and kinases. Taken together, our results provide broad oversight of protein acylation during HSV infection, a roadmap for similar analysis in other systems, and a resource with which to pursue specific analysis of systems and functions. PMID:26256475

  11. Securiosides A and B, novel acylated triterpene bisdesmosides with selective cytotoxic activity against M-CSF-stimulated macrophages.

    Science.gov (United States)

    Kuroda, M; Mimaki, Y; Sashida, Y; Kitahara, M; Yamazaki, M; Yui, S

    2001-02-12

    We report the discovery of securiosides A (1) and B (2), novel acylated triterpene bisdesmosides, isolated from the roots of Securidaca inappendiculata. Securiosides A and B showed potent selective cytotoxic activity against M-CSF-stimulated macrophages and were suggested to have potential as new agents for the treatment of inflammatory diseases such as RA and atherosclerosis. PMID:11212113

  12. Profiling Protein Kinases and Other ATP Binding Proteins in Arabidopsis Using Acyl-ATP Probes*

    OpenAIRE

    Villamor, J. G.; Kaschani, F.; Colby, T; Oeljeklaus, J.; Zhao, D; Kaiser, M.; Patricelli, M. P.; R. A. L. van der Hoorn

    2013-01-01

    Many protein activities are driven by ATP binding and hydrolysis. Here, we explore the ATP binding proteome of the model plant Arabidopsis thaliana using acyl-ATP (AcATP)1 probes. These probes target ATP binding sites and covalently label lysine residues in the ATP binding pocket. Gel-based profiling using biotinylated AcATP showed that labeling is dependent on pH and divalent ions and can be competed by nucleotides. The vast majority of these AcATP-labeled proteins are known ATP binding prot...

  13. Cardiolipin Molecular Species with Shorter Acyl Chains Accumulate in Saccharomyces cerevisiae Mutants Lacking the Acyl Coenzyme A-binding Protein Acb1p

    Science.gov (United States)

    Rijken, Pieter J.; Houtkooper, Riekelt H.; Akbari, Hana; Brouwers, Jos F.; Koorengevel, Martijn C.; de Kruijff, Ben; Frentzen, Margrit; Vaz, Frédéric M.; de Kroon, Anton I. P. M.

    2009-01-01

    The function of the mitochondrial phospholipid cardiolipin (CL) is thought to depend on its acyl chain composition. The present study aims at a better understanding of the way the CL species profile is established in Saccharomyces cerevisiae by using depletion of the acyl-CoA-binding protein Acb1p as a tool to modulate the cellular acyl chain content. Despite the presence of an intact CL remodeling system, acyl chains shorter than 16 carbon atoms (C16) were found to accumulate in CL in cells lacking Acb1p. Further experiments revealed that Taz1p, a key CL remodeling enzyme, was not responsible for the shortening of CL in the absence of Acb1p. This left de novo CL synthesis as the only possible source of acyl chains shorter than C16 in CL. Experiments in which the substrate specificity of the yeast cardiolipin synthase Crd1p and the acyl chain composition of individual short CL species were investigated, indicated that both CL precursors (i.e. phosphatidylglycerol and CDP-diacylglycerol) contribute to comparable extents to the shorter acyl chains in CL in acb1 mutants. Based on the findings, we conclude that the fatty acid composition of mature CL in yeast is governed by the substrate specificity of the CL-specific lipase Cld1p and the fatty acid composition of the Taz1p substrates. PMID:19656950

  14. NMR structure of an acyl-carrier protein from Borrelia burgdorferi

    International Nuclear Information System (INIS)

    The high-resolution NMR structure of the acyl-carrier protein from the pathogen B. burgdorferi determined to a r.m.s. deviation of 0.4 Å over the protein backbone is reported. The NMR structure was determined using multidimensional NMR spectroscopy and consists of four α-helices and two 310-helices. Structural comparison reveals that this protein is highly similar to the acyl-carrier protein from A. aeolicus. Nearly complete resonance assignment and the high-resolution NMR structure of the acyl-carrier protein from Borrelia burgdorferi, a target of the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure-determination pipeline, are reported. This protein was chosen as a potential target for drug-discovery efforts because of its involvement in fatty-acid biosynthesis, an essential metabolic pathway, in bacteria. It was possible to assign >98% of backbone resonances and >92% of side-chain resonances using multidimensional NMR spectroscopy. The NMR structure was determined to a backbone r.m.s.d. of 0.4 Å and contained four α-helices and two 310-helices. A structure-homology search revealed that this protein is highly similar to the acyl-carrier protein from Aquifex aeolicus

  15. The acyl-CoA binding protein is required for normal epidermal barrier function in mice

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt;

    2012-01-01

    The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling...

  16. Cardiolipin molecular species with shorter acyl chains accumulate in Saccharomyces cerevisiae mutants lacking the acyl coenzyme A-binding protein Acb1p: new insights into acyl chain remodeling of cardiolipin.

    Science.gov (United States)

    Rijken, Pieter J; Houtkooper, Riekelt H; Akbari, Hana; Brouwers, Jos F; Koorengevel, Martijn C; de Kruijff, Ben; Frentzen, Margrit; Vaz, Frédéric M; de Kroon, Anton I P M

    2009-10-01

    The function of the mitochondrial phospholipid cardiolipin (CL) is thought to depend on its acyl chain composition. The present study aims at a better understanding of the way the CL species profile is established in Saccharomyces cerevisiae by using depletion of the acyl-CoA-binding protein Acb1p as a tool to modulate the cellular acyl chain content. Despite the presence of an intact CL remodeling system, acyl chains shorter than 16 carbon atoms (C16) were found to accumulate in CL in cells lacking Acb1p. Further experiments revealed that Taz1p, a key CL remodeling enzyme, was not responsible for the shortening of CL in the absence of Acb1p. This left de novo CL synthesis as the only possible source of acyl chains shorter than C16 in CL. Experiments in which the substrate specificity of the yeast cardiolipin synthase Crd1p and the acyl chain composition of individual short CL species were investigated, indicated that both CL precursors (i.e. phosphatidylglycerol and CDP-diacylglycerol) contribute to comparable extents to the shorter acyl chains in CL in acb1 mutants. Based on the findings, we conclude that the fatty acid composition of mature CL in yeast is governed by the substrate specificity of the CL-specific lipase Cld1p and the fatty acid composition of the Taz1p substrates. PMID:19656950

  17. Reprogramming Acyl Carrier Protein Interactions of an Acyl-CoA Promiscuous trans-Acyltransferase

    DEFF Research Database (Denmark)

    Ye, Zhixia; Musiol-Kroll, Ewa Maria; Weber, Tilmann;

    2014-01-01

    on the ACP surface that contribute to specific recognition by KirCII. This information proved sufficient to modify a noncognate ACP from a different biosynthetic system to be a substrate for KirCII. The findings form a foundation for further understanding the specificity of trans-AT:ACP protein interactions...... and for engineering modular polyketide synthases to produce analogs....

  18. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis.

    Science.gov (United States)

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4'-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. PMID:27540631

  19. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins.

    Science.gov (United States)

    Peitzsch, R M; McLaughlin, S

    1993-10-01

    We studied the binding of fatty acids and acylated peptides to phospholipid vesicles by making electrophoretic mobility and equilibrium dialysis measurements. The binding energies of the anionic form of the fatty acids and the corresponding acylated glycines were identical; the energies increased by 0.8 kcal/mol per number of carbons in the acyl chain (Ncarbon = 10, 12, 14, 16), a value identical to that for the classical entropy-driven hydrophobic effect discussed by Tanford [The Hydrophobic Effect (1980) Wiley, New York]. The unitary Gibbs free binding energy, delta Gou, of myristoylated glycine, 8 kcal/mol, is independent of the nature of the electrically neutral lipids used to form the vesicles. Similar binding energies were obtained with other myristoylated peptides (e.g., Gly-Ala, Gly-Ala-Ala). The 8 kcal/mol, which corresponds to an effective dissociation constant of 10(-4) M for myristoylated peptides with lipids, provides barely enough energy to attach a myristoylated protein in the cytoplasm to the plasma membrane. Thus, other factors that reduce (e.g., hydrophobic interaction of myristate with the covalently attached protein) or enhance (e.g., electrostatic interactions of basic residues with acidic lipids; protein-protein interactions with intrinsic receptor proteins) the interaction of myristoylated proteins with membranes are likely to be important and may cause reversible translocation of these proteins to the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. NMR structure of an acyl-carrier protein from Borrelia burgdorferi

    OpenAIRE

    Barnwal, Ravi P.; Van Voorhis, Wesley C.; Varani, G

    2011-01-01

    Nearly complete resonance assignment and the high-resolution NMR structure of the acyl-carrier protein from Borrelia burgdorferi, a target of the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure-determination pipeline, are reported. This protein was chosen as a potential target for drug-discovery efforts because of its involvement in fatty-acid biosynthesis, an essential metabolic pathway, in bacteria. It was possible to assign >98% of backbone resonances and >92% ...

  1. Arabidopsis acyl-acyl carrier protein synthetase AAE15 with medium chain fatty acid specificity is functional in cyanobacteria

    OpenAIRE

    Kaczmarzyk, Danuta; Hudson, Elton P.; Fulda, Martin

    2016-01-01

    Cyanobacteria are potential hosts for the biosynthesis of oleochemical compounds. The metabolic precursors for such compounds are fatty acids and their derivatives, which require chemical activation to become substrates in further conversion steps. We characterized the acyl activating enzyme AAE15 of Arabidopsis encoded by At4g14070, which is a homologue of a cyanobacterial acyl-ACP synthetase (AAS). We expressed AAE15 in insect cells and demonstrated its AAS activity with medium chain fatty ...

  2. Structure of armadillo ACBP: a new member of the acyl-CoA-binding protein family

    International Nuclear Information System (INIS)

    The X-ray structure of the tetragonal form of apo acyl-CoA-binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. The X-ray structure of the tetragonal form of apo acyl-CoA-binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. ACBP is a carrier for activated long-chain fatty acids and has been associated with many aspects of lipid metabolism. Its secondary structure is highly similar to that of the corresponding form of bovine ACBP and exhibits the unique flattened α-helical bundle (up–down–down–up) motif reported for animal, yeast and insect ACBPs. Conformational differences are located in loops and turns, although these structural differences do not suffice to account for features that could be related to the unusual biochemistry and lipid metabolism of the Harderian gland

  3. Structure of armadillo ACBP: a new member of the acyl-CoA-binding protein family

    Energy Technology Data Exchange (ETDEWEB)

    Costabel, Marcelo D., E-mail: costabel@criba.edu.ar [Grupo de Biofísica, Departamento de Física, Universidad Nacional del Sur, Bahía Blanca (Argentina); Ermácora, Mario R. [Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal (Argentina); Santomé, José A. [Instituto de Química y Fisicoquímica Biológicas (IQUIFYB), Facultad de Farmacia y Bioquímica (UBA-CONICET), Buenos Aires (Argentina); Alzari, Pedro M. [Unité de Biochimie Structurale, Institut Pasteur, Paris (France); Guérin, Diego M. A. [Unidad de Biofisica (CSIC-UPV/EHU), PO Box 644, E-48080 Bilbao (Spain); Grupo de Biofísica, Departamento de Física, Universidad Nacional del Sur, Bahía Blanca (Argentina)

    2006-10-01

    The X-ray structure of the tetragonal form of apo acyl-CoA-binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. The X-ray structure of the tetragonal form of apo acyl-CoA-binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. ACBP is a carrier for activated long-chain fatty acids and has been associated with many aspects of lipid metabolism. Its secondary structure is highly similar to that of the corresponding form of bovine ACBP and exhibits the unique flattened α-helical bundle (up–down–down–up) motif reported for animal, yeast and insect ACBPs. Conformational differences are located in loops and turns, although these structural differences do not suffice to account for features that could be related to the unusual biochemistry and lipid metabolism of the Harderian gland.

  4. Identification and Characterization of Inhibitors of Bacterial Enoyl-Acyl Carrier Protein Reductase

    OpenAIRE

    Ling, Losee L.; Xian, Jun; Ali, Syed; Geng, Bolin; Fan, Jun; Mills, Debra M.; Arvanites, Anthony C.; Orgueira, Hernan; Ashwell, Mark A.; Carmel, Gilles; Xiang, Yibin; Moir, Donald T.

    2004-01-01

    Bacterial enoyl-acyl carrier protein reductase (ENR) catalyzes an essential step in fatty acid biosynthesis. ENR is an attractive target for narrow-spectrum antibacterial drug discovery because of its essential role in metabolism and its sequence conservation across many bacterial species. In addition, the bacterial ENR sequence and structural organization are distinctly different from those of mammalian fatty acid biosynthesis enzymes. High-throughput screening to identify inhibitors of Esch...

  5. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis.

    Science.gov (United States)

    Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee

    2016-01-22

    Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3-17), helix II (residues 39-53), helix III (residues 60-64), and helix IV (residues 68-78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe(45) in helix II and Phe(18) in the α1α2 loop and a hydrogen bonding between Ser(15) in helix I and Ile(20) in the α1α2 loop, resulting in its high thermal stability. Phe(45)-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser(58) in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.

  6. Exploring the Leishmania Hydrophilic Acylated Surface Protein B (HASPB) Export Pathway by Live Cell Imaging Methods.

    Science.gov (United States)

    MacLean, Lorna; Price, Helen; O'Toole, Peter

    2016-01-01

    Leishmania major is a human-infective protozoan parasite transmitted by the bite of the female phlebotomine sand fly. The L. major hydrophilic acylated surface protein B (HASPB) is only expressed in infective parasite stages suggesting a role in parasite virulence. HASPB is a "nonclassically" secreted protein that lacks a conventional signal peptide, reaching the cell surface by an alternative route to the classical ER-Golgi pathway. Instead HASPB trafficking to and exposure on the parasite plasma membrane requires dual N-terminal acylation. Here, we use live cell imaging methods to further explore this pathway allowing visualization of key events in real time at the individual cell level. These methods include live cell imaging using fluorescent reporters to determine the subcellular localization of wild type and acylation site mutation HASPB18-GFP fusion proteins, fluorescence recovery after photobleaching (FRAP) to analyze the dynamics of HASPB in live cells, and live antibody staining to detect surface exposure of HASPB by confocal microscopy. PMID:27665560

  7. Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ohlrogge, J.B.

    1989-01-01

    Previous research from my lab has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP) and therefore this trait appears highly conserved among higher plants. This level of conservation suggests that the existence of ACP isoforms is not merely the results of neutral gene duplications. We have developed techniques to examine a wider range of species. Acyl carrier proteins can be labelled very specifically and to high specific activity using H-palmitate and the E. coli enzyme acyl-ACP synthetase. Isoforms were then resolved by western blotting and native PAGE of H-palmitate labelled ACP's. Multiple isoforms of ACP were observed the leaf tissue of the monocots Avena sativa and Hordeum vulgare and dicots including Arabidopsis thallina, Cuphea wrightii, and Brassica napus. Lower vascular plants including the cycad, Dioon edule, Ginkgo biloba, the gymnosperm Pinus, the fern Anernia phyllitidis and Psilotum nudum, the most primitive known extant vascular plant, were also found to have multiple ACP isoforms as were the nonvascular liverwort, Marchantia and moss, Polytrichum. Therefore, the development of ACP isoforms occurred early in evolution. However, the uniellular alge Chlamydomonas and Dunaliella and the photosynthetic cyanobacteria Synechocystis and Agmnellum have only a single elecrophotetic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants.

  8. Cloning of a palmitoyl-acyl carrier protein thioesterase from oil palm.

    Science.gov (United States)

    Othman, A; Lazarus, C; Fraser, T; Stobart, K

    2000-12-01

    A palmitoyl-acyl carrier protein (ACP) thioesterase cDNA clone was isolated from an oil palm cDNA library. The cDNA was expressed in Escherichia coli as a glutathione S-transferase fusion protein and a crude bacterial extract was assayed for acyl-CoA-hydrolysing activity. The recombinant enzyme was able to hydrolyse medium- and long-chain acyl-CoAs. Northern-blot analysis showed a high level of gene expression in leaf, flower and 15-, 17- and 18-week mesocarp tissues. Low-level gene expression was detected in germinated seedlings and 8- and 12-week mesocarp tissues, but no transcript was detected in any kernel tissues. Southern-blot analysis indicated the presence of a single gene and we have also isolated a genomic clone using the cDNA as a probe. Two genomic fragments were subcloned and a 7 kb contiguous stretch of the oil palm genome was sequenced. Comparison of this sequence with the cDNA sequence identified a putative 93 amino acid transit peptide, most of which is missing from the cDNA. The coding region of the gene consisted of seven exons and six introns. PMID:11171146

  9. Proteomic Analysis of a Poplar Cell Suspension Culture Suggests a Major Role of Protein S-Acylation in Diverse Cellular Processes.

    Science.gov (United States)

    Srivastava, Vaibhav; Weber, Joseph R; Malm, Erik; Fouke, Bruce W; Bulone, Vincent

    2016-01-01

    S-acylation is a reversible post-translational modification of proteins known to be involved in membrane targeting, subcellular trafficking, and the determination of a great variety of functional properties of proteins. The aim of this work was to identify S-acylated proteins in poplar. The use of an acyl-biotin exchange method and mass spectrometry allowed the identification of around 450 S-acylated proteins, which were subdivided into three major groups of proteins involved in transport, signal transduction, and response to stress, respectively. The largest group of S-acylated proteins was the protein kinase superfamily. Soluble N-ethylmaleimide-sensitive factor-activating protein receptors, band 7 family proteins and tetraspanins, all primarily related to intracellular trafficking, were also identified. In addition, cell wall related proteins, including cellulose synthases and other glucan synthases, were found to be S-acylated. Twenty four of the identified S-acylated proteins were also enriched in detergent-resistant membrane microdomains, suggesting S-acylation plays a key role in the localization of proteins to specialized plasma membrane subdomains. This dataset promises to enhance our current understanding of the various functions of S-acylated proteins in plants. PMID:27148305

  10. Changes of acylation stimulating protein,adiponectin level in simple obese children and their clinical significance%单纯性肥胖症儿童促酰化蛋白和脂联素水平变化的临床意义

    Institute of Scientific and Technical Information of China (English)

    龚雪萍; 廖均梅

    2015-01-01

    Objective To explore the relationship between acylation stimulating protein(ASP),adiponectin(ADPN)and the inci-dence of childhood obesity and the significance of them in diagnoses and therapy of children's obesity. Methods 200 children including 62 obese children,73 overweight children and 65 healthy control children were recruited. Fasting plasma glucose (FPG),fasting insulin (FINS),total cholesterol(TC),triglyeerides (TG),low density lipoprotein-cholesterol (LDL-C),and HDL-C (high density lipoprotein-cholesterol)were determined by automatic blood analyses machine. Serum ASP and ADPN levels were determined by enzyme linked immu-nosorbent assay(ELISA). Results Compared with healthy children group,FPG,FINS,LDL-C,TC,TG,insulin resistance index(IRI), ASP of obese and overweight children groups were significantly higher(P < 0. 05),while the level of HDL-C,ADPN and insulin sensitivity index(ISI)were significantly lower(P < 0. 05). And there was significant difference in the levels of FPG,FINS,LDL-C,TC,TG and IRI between obese and overweight children groups(P < 0. 05). ASP was negatively connected with ADPN in neonates with HIE. Conclusion In simple obesity children,there was a significant change in serum ASP and ADPN. And ASP and ADPN were involved in the disorder of lipid metabolism in obese children. Serum ASP and ADPN levels can be used as a new indicator to evaluate the risk of childhood obesity trends and future evaluation of diabetes and cardiovascular diseases.%目的:探讨单纯性肥胖症儿童促酰化蛋白(ASP)和脂联素(ADPN)水平变化的临床意义。方法选取2014年1月至2014年12月惠州市第一妇幼保健院儿科内分泌门诊就诊及健康体检的200例儿童作为研究对象,其中单纯性肥胖组62例,超重组73例和健康对照组65例。根据患者的身高和体质量计算出体质量指数(BMI)。测定空腹血糖(FPG)、空腹胰岛素(FINS)、总胆固醇( TC)、三酰甘油(TG)、低

  11. Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB).

    OpenAIRE

    Hoang, T.T.; Schweizer, H P

    1997-01-01

    The Pseudomonas aeruginosa fabA and fabB genes, encoding beta-hydroxyacyl-acyl carrier protein dehydratase and beta-ketoacyl-acyl carrier protein synthase I, respectively, were cloned, sequenced, and expressed in Escherichia coli. Northern analysis demonstrated that fabA and fabB are cotranscribed and most probably form a fabAB operon. The FabA and FabB proteins were similar in size and amino acid composition to their counterparts from Escherichia coli and to the putative homologs from Haemop...

  12. Role of adipocyte lipid-binding protein (ALBP) and acyl-coA binding protein (ACBP) in PPAR-mediated transactivation

    DEFF Research Database (Denmark)

    Helledie, Torben; Jørgensen, Claus; Antonius, Marianne;

    2002-01-01

    lipid binding protein (ALBP), the keratinocyte lipid binding protein (KLBP) and the acyl-CoA binding protein (ACBP) exhibit a prominent nuclear localization in differentiating 3T3-L1 adipocytes. Similarly, ectopic expression of these proteins in CV-1 cells resulted in a primarily nuclear localization...

  13. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered. PMID:26938582

  14. Deciphering the roles of acyl-CoA-binding proteins in plant cells.

    Science.gov (United States)

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-09-01

    Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed. PMID:26340904

  15. Handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins in transgenic mice

    DEFF Research Database (Denmark)

    Kragh, Peter M; Pedersen, Christina B; Schmidt, Stine P;

    2007-01-01

    Abstract To investigate the in vivo handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins, three transgenic mouse lines were produced by pronuclear injection of cDNA encoding the wild-type, hSCAD-wt, and two disease causing folding variants hSCAD-319C > T and hSCAD-625G > A...

  16. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism.

    Science.gov (United States)

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-09-01

    Acyl-CoA esters are the activated form of fatty acids and play important roles in lipid metabolism and the regulation of cell functions. They are bound and transported by nonenzymic proteins such as the acyl-CoA-binding proteins (ACBPs). Although plant ACBPs were so named by virtue of amino acid homology to existing yeast and mammalian counterparts, recent studies revealed that ligand specificities of plant ACBPs are not restricted to acyl-CoA esters. Arabidopsis and rice ACBPs also interact with phospholipids, and their affinities to different acyl-CoA species and phospholipid classes vary amongst isoforms. Their ligands also include heavy metals. Interactors of plant ACBPs are further diversified due to the evolution of protein-protein interacting domains. This review summarizes our current understanding of plant ACBPs with a focus on their binding versatility. Their broad ligand range is of paramount significance in serving a multitude of functions during development and stress responses as discussed herein. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:26747650

  17. MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Larsen, Morten K; Tuck, Simon; Færgeman, Nils J.;

    2006-01-01

    membrane-associated member of the acyl-CoA-binding protein family. We show that in Caenorhabditis elegans, MAA-1 localizes to intracellular membrane organelles in the secretory and endocytic pathway and that mutations in maa-1 reduce the rate of endosomal recycling. A lack of maa-1 activity causes a change...... in endosomal morphology. Although in wild type, many endosomal organelles have long tubular protrusions, loss of MAA-1 activity results in loss of the tubular domains, suggesting the maa-1 is required for the generation or maintenance of these domains. Furthermore, we demonstrate that MAA-1 binds fatty acyl...

  18. Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest an alternative mechanism for medium-chain production in seeds.

    Science.gov (United States)

    Voelker, T A; Jones, A; Cranmer, A M; Davies, H M; Knutzon, D S

    1997-06-01

    In the current model of medium-chain (C8-14) fatty acid biosynthesis in seeds, specialized FatB acyl-acyl-carrier-protein (ACP) thioesterases are responsible for the production of medium chains. We have isolated and characterized FatB cDNAs from the maturing seeds of elm (Ulmus americana) and nutmeg (Myristica fragrans), which accumulate predominantly caprate (10:0)- and myristate (14:0)-containing oils, respectively. In neither species were we able to find cDNAs encoding enzymes specialized for these chain lengths. Nutmeg FatB hydrolyses C14-18 substrates in vitro and expression in Brassica napus seeds leads to an oil enriched in C14-18 saturates. Elm FatB1 displays a binary specificity: one activity is centered on 10:0-ACP, and a second is centered on palmitate (16:0)-ACP. After expression in B. napus seeds the oil is enriched in C10-18 saturates, predominantly 16:0, 14:0, and 10:0. The composition of free fatty acids produced by elm FatB1 in Escherichia coli shifts from C14-16 to mostly C8-10 by increasing the rate of chain termination by this enzyme. These results suggest the existence of an alternative mechanism used in the evolution of medium-chain production, a model of which is presented. PMID:9193098

  19. Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand-dependent manner in mammalian cells

    DEFF Research Database (Denmark)

    Hansen, Jesper S; Færgeman, Nils J; Kragelund, Birthe B;

    2008-01-01

    In the present study, we microinjected fluorescently labelled liver bovine ACBP (acyl-CoA-binding protein) [FACI-50 (fluorescent acyl-CoA indicator-50)] into HeLa and BMGE (bovine mammary gland epithelial) cell lines to characterize the localization and dynamics of ACBP in living cells. Results...... vesicular trafficking....

  20. Determination of hydrophobic coenzyme a esters and other lipids using a biosensor comprising a modified coenzyme a- and acyl-coa binding protein (acbp)

    DEFF Research Database (Denmark)

    2002-01-01

    , food and feed preparations, tissue extracts, acyl-CoA synthetase reaction media and various laboratory conditions using a modified Coenzyme A- and acyl-CoA binding protein (ACBP) is provided. Furthermore the invention relates to a construct comprising a peptide and a signal moiety for performing...

  1. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio.

    Science.gov (United States)

    Liu, Qingqing; Gauthier, Marie-Soleil; Sun, Lei; Ruderman, Neil; Lodish, Harvey

    2010-11-01

    Adiponectin activates AMP-activated protein kinase (AMPK) in adipocytes, but the underlying mechanism remains unclear. Here we tested the hypothesis that AMP, generated in activating fatty acids to their CoA derivatives, catalyzed by acyl-CoA synthetases, is involved in AMPK activation by adiponectin. Moreover, in adipocytes, insulin affects the subcellular localization of acyl-CoA synthetase FATP1. Thus, we also tested whether insulin activates AMPK in these cells and, if so, whether it activates through a similar mechanism. We examined these hypotheses by measuring the AMP/ATP ratio and AMPK activation on adiponectin and insulin stimulation and after knocking down acyl-CoA synthetases in adipocytes. We show that adiponectin activation of AMPK is accompanied by an ∼2-fold increase in the cellular AMP/ATP ratio. Moreover, FATP1 and Acsl1, the 2 major acyl-CoA synthetase isoforms in adipocytes, are essential for AMPK activation by adiponectin. We also show that after 40 min. insulin activated AMPK in adipocytes, which was coupled with a 5-fold increase in the cellular AMP/ATP ratio. Knockdown studies show that FATP1 and Acsl1 are required for these processes, as well as for stimulation of long-chain fatty acid uptake by adiponection and insulin. These studies demonstrate that a change in cellular energy state is associated with AMPK activation by both adiponectin and insulin, which requires the activity of FATP1 and Acsl1.

  2. The acyl-CoA binding protein is required for normal epidermal barrier function in mice.

    Science.gov (United States)

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt; Neess, Ditte; Brewer, Jonathan; Hannibal-Bach, Hans Kristian; Helledie, Torben; Fenger, Christina; Due, Marianne; Berzina, Zane; Neubert, Reinhard; Chemnitz, John; Finsen, Bente; Clemmensen, Anders; Wilbertz, Johannes; Saxtorph, Henrik; Knudsen, Jens; Bagatolli, Luis; Mandrup, Susanne

    2012-10-01

    The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling with age. Morphology and development of skin and appendages are normal in ACBP(-/-) mice; however, the stratum corneum display altered biophysical properties with reduced proton activity and decreased water content. Mass spectrometry analyses of lipids from epidermis and stratum corneum of ACBP(+/+) and ACBP(-/-) mice showed very similar composition, except for a significant and specific decrease in the very long chain free fatty acids (VLC-FFA) in stratum corneum of ACBP(-/-) mice. This finding indicates that ACBP is critically involved in the processes that lead to production of stratum corneum VLC-FFAs via complex phospholipids in the lamellar bodies. Importantly, we show that ACBP(-/-) mice display a ∼50% increased transepidermal water loss compared with ACBP(+/+) mice. Furthermore, skin and fur sebum monoalkyl diacylglycerol (MADAG) levels are significantly increased, suggesting that ACBP limits MADAG synthesis in sebaceous glands. In summary, our study shows that ACBP is required for production of VLC-FFA for stratum corneum and for maintaining normal epidermal barrier function. PMID:22829653

  3. ACYL-ACYL CARRIER PROTEIN DESATURASE2 and 3 Are Responsible for Making Omega-7 Fatty Acids in the Arabidopsis Aleurone.

    Science.gov (United States)

    Bryant, Fiona M; Munoz-Azcarate, Olaya; Kelly, Amélie A; Beaudoin, Frédéric; Kurup, Smita; Eastmond, Peter J

    2016-09-01

    Omega-7 monounsaturated fatty acids (ω-7s) are specifically enriched in the aleurone of Arabidopsis (Arabidopsis thaliana) seeds. We found significant natural variation in seed ω-7 content and used a Multiparent Advanced Generation Inter-Cross population to fine-map a major quantitative trait loci to a region containing ACYL-ACYL CARRIER PROTEIN DESATURASE1 (AAD1) and AAD3 We found that AAD3 expression is localized to the aleurone where mutants show an approximately 50% reduction in ω-7 content. By contrast, AAD1 is localized to the embryo where mutants show a small reduction in ω-9 content. Enzymatic analysis has previously shown that AAD family members possess both stearoyl- and palmitoyl-ACP Δ(9) desaturase activity, including the predominant isoform SUPPRESSOR OF SALICYLIC ACID INSENSITIVE2. However, aad3 ssi2 aleurone contained the same amount of ω-7s as aad3 Within the AAD family, AAD3 shares the highest degree of sequence similarity with AAD2 and AAD4. Mutant analysis showed that AAD2 also contributes to ω-7 production in the aleurone, and aad3 aad2 exhibits an approximately 85% reduction in ω-7s Mutant analysis also showed that FATTY ACID ELONGASE1 is required for the production of very long chain ω-7s in the aleurone. Together, these data provide genetic evidence that the ω-7 pathway proceeds via Δ(9) desaturation of palmitoyl-ACP followed by elongation of the product. Interestingly, significant variation was also identified in the ω-7 content of Brassica napus aleurone, with the highest level detected being approximately 47% of total fatty acids. PMID:27462083

  4. ACYL-ACYL CARRIER PROTEIN DESATURASE2 and 3 Are Responsible for Making Omega-7 Fatty Acids in the Arabidopsis Aleurone.

    Science.gov (United States)

    Bryant, Fiona M; Munoz-Azcarate, Olaya; Kelly, Amélie A; Beaudoin, Frédéric; Kurup, Smita; Eastmond, Peter J

    2016-09-01

    Omega-7 monounsaturated fatty acids (ω-7s) are specifically enriched in the aleurone of Arabidopsis (Arabidopsis thaliana) seeds. We found significant natural variation in seed ω-7 content and used a Multiparent Advanced Generation Inter-Cross population to fine-map a major quantitative trait loci to a region containing ACYL-ACYL CARRIER PROTEIN DESATURASE1 (AAD1) and AAD3 We found that AAD3 expression is localized to the aleurone where mutants show an approximately 50% reduction in ω-7 content. By contrast, AAD1 is localized to the embryo where mutants show a small reduction in ω-9 content. Enzymatic analysis has previously shown that AAD family members possess both stearoyl- and palmitoyl-ACP Δ(9) desaturase activity, including the predominant isoform SUPPRESSOR OF SALICYLIC ACID INSENSITIVE2. However, aad3 ssi2 aleurone contained the same amount of ω-7s as aad3 Within the AAD family, AAD3 shares the highest degree of sequence similarity with AAD2 and AAD4. Mutant analysis showed that AAD2 also contributes to ω-7 production in the aleurone, and aad3 aad2 exhibits an approximately 85% reduction in ω-7s Mutant analysis also showed that FATTY ACID ELONGASE1 is required for the production of very long chain ω-7s in the aleurone. Together, these data provide genetic evidence that the ω-7 pathway proceeds via Δ(9) desaturation of palmitoyl-ACP followed by elongation of the product. Interestingly, significant variation was also identified in the ω-7 content of Brassica napus aleurone, with the highest level detected being approximately 47% of total fatty acids.

  5. Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases.

    Science.gov (United States)

    Yuan, Yanqiu; Sachdeva, Meena; Leeds, Jennifer A; Meredith, Timothy C

    2012-10-01

    The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes.

  6. Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development

    OpenAIRE

    Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Chen, Qin-Fang; Sooriyaarachchi, Sanjeewani; Mowbray, Sherry L.; Napier, Johnathan A.; Tanner, Julian A.; Chye, Mee-Len

    2014-01-01

    Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein-lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isot...

  7. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids

    Energy Technology Data Exchange (ETDEWEB)

    Schluter, P.M.; Shanklin, J.; Xu, S.; Gagliardini, V.; Whittle, E.; Grossniklaus, U.; Schiestl, F. P.

    2011-04-05

    The orchids Ophrys sphegodes and O. exaltata are reproductively isolated from each other by the attraction of two different, highly specific pollinator species. For pollinator attraction, flowers chemically mimic the pollinators sex pheromones, the key components of which are alkenes with different double-bond positions. This study identifies genes likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturase (SAD) homologs. The expression of two isoforms, SAD1 and SAD2, is flower-specific and broadly parallels alkene production during flower development. SAD2 shows a significant association with alkene production, and in vitro assays show that O. sphegodes SAD2 has activity both as an 18:0-ACP {Delta}{sup 9} and a 16:0-ACP {Delta}{sup 4} desaturase. Downstream metabolism of the SAD2 reaction products would give rise to alkenes with double-bonds at position 9 or position 12, matching double-bond positions observed in alkenes in the odor bouquet of O. sphegodes. SAD1 and SAD2 show evidence of purifying selection before, and positive or relaxed purifying selection after gene duplication. By contributing to the production of species-specific alkene bouquets, SAD2 is suggested to contribute to differential pollinator attraction and reproductive isolation among these species. Taken together, these data are consistent with the hypothesis that SAD2 is a florally expressed barrier gene of large phenotypic effect and, possibly, a genic target of pollinator-mediated selection.

  8. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves

    International Nuclear Information System (INIS)

    Fatty acid synthesis from [1-14C]acetate by chloroplasts isolated from peas and amaranthus was linear for at least 15 min, whereas incorporation of the tracer into long-chain acyl-acyl carrier protein (ACP) did not increase after 2-3 min. When reactions were transferred to the dark after 3-5 min, long-chain acyl-ACPs lost about 90% of their radioactivity and total fatty acids retained all of theirs. Half-lives of the long-chain acyl-ACPs were estimated to be 10-15 s. Concentrations of palmitoyl-, stearoyl-, and oleoyl-ACP as indicated by equilibrium labeling during steady-state fatty acid synthesis, ranged from 0.6-1.1, 0.2-0.7, and 0.4-1.6 microM, respectively, for peas and from 1.6-1.9, 1.3-2.6, and 0.6-1.4 microM, respectively, for amaranthus. These values are based on a chloroplast volume of 47 microliters/mg chlorophyll and varied according to the mode of the incubation. A slow increase in activity of the fatty acid synthetase in safflower chloroplasts resulted in long-chain acyl-ACPs continuing to incorporate labeled acetate for 10 min. Upon re-illumination following a dark break, however, both fatty acid synthetase activity and acyl-ACP concentrations increased very rapidly. Palmitoyl-ACP was present at concentrations up to 2.5 microM in safflower chloroplasts, whereas those of stearoyl- and oleoyl-ACPs were in the lower ranges measured for peas. Acyl-ACPs were routinely separated from extracts of chloroplasts that had been synthesising long-chain fatty acids from labeled acetate by a minor modification of the method of Mancha et al. The results compared favorably with those obtained using alternative analytical methods such as adsorption to filter paper and partition chromatography on silicic acid columns

  9. Apolipoprotein A-I Helsinki promotes intracellular acyl-CoA cholesterol acyltransferase (ACAT) protein accumulation.

    Science.gov (United States)

    Toledo, Juan D; Garda, Horacio A; Cabaleiro, Laura V; Cuellar, Angela; Pellon-Maison, Magali; Gonzalez-Baro, Maria R; Gonzalez, Marina C

    2013-05-01

    Reverse cholesterol transport is a process of high antiatherogenic relevance in which apolipoprotein AI (apoA-I) plays an important role. The interaction of apoA-I with peripheral cells produces through mechanisms that are still poorly understood the mobilization of intracellular cholesterol depots toward plasma membrane. In macrophages, these mechanisms seem to be related to the modulation of the activity of acyl-CoA cholesterol acyltransferase (ACAT), the enzyme responsible for the intracellular cholesterol ester biosynthesis that is stored in lipid droplets. The activation of ACAT and the accumulation of lipid droplets play a key role in the transformation of macrophages into foam cells, leading to the formation of atheroma or atherosclerotic plaque. ApoA-I Helsinki (or ∆K107) is a natural apoA-I variant with a lysine deletion in the central protein region, carriers of which have increased atherosclerosis risk. We herein show that treatment of cultured RAW macrophages or CHOK1 cells with ∆K107, but not with wild-type apoA-I or a variant containing a similar deletion at the C-terminal region (∆K226), lead to a marked increase (more than 10 times) in the intracellular ACAT1 protein level as detected by western blot analysis. However, we could only detect a slight increase in cholesteryl ester produced by ∆K107 mainly when Chol loading was supplied by low-density lipoprotein (LDL). Although a similar choline-phospholipid efflux is evoked by these apoA-I variants, the change in phosphatidylcholine/sphyngomyelin distribution produced by wild-type apoA-I is not observed with either ∆K107 or ∆K226. PMID:23456478

  10. Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses.

    Science.gov (United States)

    Du, Zhi-Yan; Arias, Tatiana; Meng, Wei; Chye, Mee-Len

    2016-07-01

    Acyl-CoA-binding protein (ACBP) was first identified in mammals as a neuropeptide, and was demonstrated to belong to an important house-keeping protein family that extends across eukaryotes and some prokaryotes. In plants, the Arabidopsis ACBP family consists of six AtACBPs (AtACBP1 to AtACBP6), and has been investigated using gene knock-out mutants and overexpression lines. Herein, recent findings on the AtACBPs are examined to provide an insight on their functions in various plant developmental processes, such as embryo and seed development, seed dormancy and germination, seedling development and cuticle formation, as well as their roles under various environmental stresses. The significance of the AtACBPs in acyl-CoA/lipid metabolism, with focus on their interaction with long to very-long-chain (VLC) acyl-CoA esters and their potential role in the formation of lipid droplets in seeds and vegetative tissues are discussed. In addition, recent findings on the rice ACBP family are presented. The similarities and differences between ACBPs from Arabidopsis and rice, that represent eudicot and monocot model plants, respectively, are analyzed and the evolution of plant ACBPs by phylogenetic analysis reviewed. Finally, we propose potential uses of plant ACBPs in phytoremediation and in agriculture related to the improvement of environmental stress tolerance and seed oil production. PMID:27368137

  11. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  12. Liver fatty acid binding protein (LFABP) transfers fatty acids and fatty acyl coas to membranes

    OpenAIRE

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C.; Córsico, Betina

    2010-01-01

    The objective of this work was to analyze LFABP´s capacity to transfer acyl CoAs to artificial membranes and compare it to LCFA transfer employing natural ligands, in order to better understand the specific physiological role of LFABP in the cell.

  13. Construction of efficient and effective transformation vectors for palmitoyl-acyl carrier protein thioesterase gene silencing in oil palm

    OpenAIRE

    Bhore, Subhash Janardhan; Shah, Farida Habib

    2011-01-01

    Palm oil obtained from E. guineensis Jacq. Tenera is known to have about 44% of palmitic acid (C16:0). Palmitoyl-Acyl Carrier Protein Thioesterase (PATE) is one of the key enzymes involved in plastidial fatty acid biosynthesis; and it determines the level of the C16:0 assimilation in oilseeds. This enzyme's activity in oil palm is responsible for high (> 44 % in E. guineensis Jacq. Tenera and 25 % in E. oleifera) content of C16:0 in its oil. By post-transcriptional PATE gene silencing, C16:0 ...

  14. Structure of 3-ketoacyl-(acyl-carrier-protein) reductase from Rickettsia prowazekii at 2.25 Å resolution

    International Nuclear Information System (INIS)

    The R. prowazekii 3-ketoacyl-(acyl-carrier-protein) reductase is similar to those from other prokaryotic pathogens but differs significantly from the mammalian orthologue, strengthening its case as a potential drug target. Rickettsia prowazekii, a parasitic Gram-negative bacterium, is in the second-highest biodefense category of pathogens of the National Institute of Allergy and Infectious Diseases, but only a handful of structures have been deposited in the PDB for this bacterium; to date, all of these have been solved by the SSGCID. Owing to its small genome (about 800 protein-coding genes), it relies on the host for many basic biosynthetic processes, hindering the identification of potential antipathogenic drug targets. However, like many bacteria and plants, its metabolism does depend upon the type II fatty-acid synthesis (FAS) pathway for lipogenesis, whereas the predominant form of fatty-acid biosynthesis in humans is via the type I pathway. Here, the structure of the third enzyme in the FAS pathway, 3-ketoacyl-(acyl-carrier-protein) reductase, is reported at a resolution of 2.25 Å. Its fold is highly similar to those of the existing structures from some well characterized pathogens, such as Mycobacterium tuberculosis and Burkholderia pseudomallei, but differs significantly from the analogous mammalian structure. Hence, drugs known to target the enzymes of pathogenic bacteria may serve as potential leads against Rickettsia, which is responsible for spotted fever and typhus and is found throughout the world

  15. Interactions of the C-terminus of lung surfactant protein B with lipid bilayers are modulated by acyl chain saturation.

    Science.gov (United States)

    Antharam, Vijay C; Farver, R Suzanne; Kuznetsova, Anna; Sippel, Katherine H; Mills, Frank D; Elliott, Douglas W; Sternin, Edward; Long, Joanna R

    2008-11-01

    Lung surfactant protein B (SP-B) is critical to minimizing surface tension in the alveoli. The C-terminus of SP-B, residues 59-80, has much of the surface activity of the full protein and serves as a template for the development of synthetic surfactant replacements. The molecular mechanisms responsible for its ability to restore lung compliance were investigated with circular dichroism, differential scanning calorimetry, and (31)P and (2)H solid-state NMR spectroscopy. SP-B(59-80) forms an amphipathic helix which alters lipid organization and acyl chain dynamics in fluid lamellar phase 4:1 DPPC:POPG and 3:1 POPC:POPG MLVs. At higher levels of SP-B(59-80) in the POPC:POPG lipid system a transition to a nonlamellar phase is observed while DPPC:POPG mixtures remain in a lamellar phase. Deuterium NMR shows an increase in acyl chain order in DPPC:POPG MLVs on addition of SP-B(59-80); in POPC:POPG MLVs, acyl chain order parameters decrease. Our results indicate SP-B(59-80) penetrates deeply into DPPC:POPG bilayers and binds more peripherally to POPC:POPG bilayers. Similar behavior has been observed for KL(4), a peptide mimetic of SP-B which was originally designed using SP-B(59-80) as a template and has been clinically demonstrated to be successful in treating respiratory distress syndrome. The ability of these helical peptides to differentially partition into lipid lamellae based on their degree of monounsaturation and subsequent changes in lipid dynamics suggest a mechanism for lipid organization and trafficking within the dynamic lung environment. PMID:18694722

  16. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia).

    Science.gov (United States)

    Ghosh, Santosh K; Bhattacharjee, Ashish; Jha, Jyoti K; Mondal, Ashis K; Maiti, Mrinal K; Basu, Asitava; Ghosh, Dolly; Ghosh, Sudhamoy; Sen, Soumitra K

    2007-12-01

    Deposition of oleate, stearate and palmitate at the later stages of seed development in Mahua (Madhuca longifolia (latifolia)), a tropical non-conventional oil seed plant, has been found to be the characteristic feature of the regulatory mechanism that produces the saturated fatty acid rich Mahua seed fat (commonly known as Mowrah fat). Although, the content of palmitate has been observed to be higher than that of stearate at the initial stages of seed development, it goes down when the stearate and oleate contents consistently rise till maturity. The present study was undertaken in order to identify the kind of acyl-ACP thioesterase(s) that drives the characteristic composition of signature fatty acids (oleate 37%, palmitate 25%, stearate 23%, linoleate 12.5%) in its seed oil at maturity. The relative Fat activities in the crude protein extracts of the matured seeds towards three thioester substrates (oleoyl-, stearoyl- and palmitoyl-ACP) have been found to be present in the following respective ratio 100:31:8. Upon further purification of the crude extract, the search revealed the presence of two partially purified thioesterases: a long-chain oleoyl preferring house-keeping LC-Fat and a novel stearoyl-oleoyl preferring SO-Fat. The characteristic accumulation of oleate and linoleate in the M. latifolia seed fat is believed to be primarily due to the thioesterase activity of the LC-Fat or MlFatA. On the other hand, the SO-Fat showed almost equal substrate specificity towards stearoyl- and oleoyl-ACP, when its activity towards palmitoyl-ACP compared to stearoyl-ACP was only about 12%. An RT-PCR based technique for cloning of a DNA fragment from the mRNA pool of the developing seed followed by nucleotide sequencing resulted in the identification of a FatB type of thioesterase gene (MlFatB). This gene was found to exist as a single copy in the mother plant genome. Ectopic expression of this MlFatB gene product in E. coli strain fadD88 further proved that it induced a

  17. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia).

    Science.gov (United States)

    Ghosh, Santosh K; Bhattacharjee, Ashish; Jha, Jyoti K; Mondal, Ashis K; Maiti, Mrinal K; Basu, Asitava; Ghosh, Dolly; Ghosh, Sudhamoy; Sen, Soumitra K

    2007-12-01

    Deposition of oleate, stearate and palmitate at the later stages of seed development in Mahua (Madhuca longifolia (latifolia)), a tropical non-conventional oil seed plant, has been found to be the characteristic feature of the regulatory mechanism that produces the saturated fatty acid rich Mahua seed fat (commonly known as Mowrah fat). Although, the content of palmitate has been observed to be higher than that of stearate at the initial stages of seed development, it goes down when the stearate and oleate contents consistently rise till maturity. The present study was undertaken in order to identify the kind of acyl-ACP thioesterase(s) that drives the characteristic composition of signature fatty acids (oleate 37%, palmitate 25%, stearate 23%, linoleate 12.5%) in its seed oil at maturity. The relative Fat activities in the crude protein extracts of the matured seeds towards three thioester substrates (oleoyl-, stearoyl- and palmitoyl-ACP) have been found to be present in the following respective ratio 100:31:8. Upon further purification of the crude extract, the search revealed the presence of two partially purified thioesterases: a long-chain oleoyl preferring house-keeping LC-Fat and a novel stearoyl-oleoyl preferring SO-Fat. The characteristic accumulation of oleate and linoleate in the M. latifolia seed fat is believed to be primarily due to the thioesterase activity of the LC-Fat or MlFatA. On the other hand, the SO-Fat showed almost equal substrate specificity towards stearoyl- and oleoyl-ACP, when its activity towards palmitoyl-ACP compared to stearoyl-ACP was only about 12%. An RT-PCR based technique for cloning of a DNA fragment from the mRNA pool of the developing seed followed by nucleotide sequencing resulted in the identification of a FatB type of thioesterase gene (MlFatB). This gene was found to exist as a single copy in the mother plant genome. Ectopic expression of this MlFatB gene product in E. coli strain fadD88 further proved that it induced a

  18. Regulatory elements in the promoter region of the rat gene encoding the acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Elholm, M; Bjerking, G; Knudsen, J;

    1996-01-01

    Acyl-CoA-binding protein (ACBP) is an ubiquitously expressed 10-kDa protein which is present in high amounts in cells involved in solute transport or secretion. Rat ACBP is encoded by a gene containing the typical hallmarks of a housekeeping gene. Analysis of the promoter region of the rat ACBP...... gene by electrophoretic mobility shift assay (EMSA) revealed specific binding of proteins from rat liver nuclear extracts to potential recognition sequences of NF-1/CTF, Sp1, AP-1, C/EBP and HNF-3. In addition, specific binding to a DR-1 type element was observed. By using in vitro translated...... for the ACBP DR-1 element. Addition of peroxisome proliferators (PP) to H4IIEC3 rat hepatoma cells led to an increase in the ACBP mRNA level, indicating that the DR-1 element could be a functional peroxisome proliferator responsive element (PPRE). Analysis of the ACBP promoter by transient transfection showed...

  19. Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development

    Science.gov (United States)

    Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Chen, Qin-Fang; Sooriyaarachchi, Sanjeewani; Mowbray, Sherry L.; Napier, Johnathan A.; Tanner, Julian A.; Chye, Mee-Len

    2014-01-01

    Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein–lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isothermal titration calorimetry) in combination with transgenic Arabidopsis lines were used to investigate the roles of these three ACBPs from Arabidopsis thaliana. The dissociation constants, stoichiometry and enthalpy change of AtACBP interactions with various acyl-CoA esters were determined using ITC. Strong binding of recombinant (r) AtACBP6 with long-chain acyl-CoA (C16- to C18-CoA) esters was observed with dissociation constants in the nanomolar range. However, the affinity of rAtACBP4 and rAtACBP5 to these acyl-CoA esters was much weaker (dissociation constants in the micromolar range), suggesting that they interact with acyl-CoA esters differently from rAtACBP6. When transgenic Arabidopsis expressing AtACBP6pro::GUS was generated, strong GUS (β-glucuronidase) expression in cotyledonary-staged embryos and seedlings prompted us to measure the acyl-CoA contents of the acbp6 mutant. This mutant accumulated higher levels of C18:1-CoA and C18:1- and C18:2-CoAs in cotyledonary-staged embryos and seedlings, respectively, in comparison with the wild type. The acbp4acbp5acbp6 mutant showed the lightest seed weight and highest sensitivity to abscisic acid during germination, suggesting their physiological functions in seeds. PMID:25423293

  20. A second gene for acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase in squash, Cucurbita moschata cv. Shirogikuza(*), codes for an oleate-selective isozyme: molecular cloning and protein purification studies.

    Science.gov (United States)

    Nishida, I; Sugiura, M; Enju, A; Nakamura, M

    2000-12-01

    A new isogene for acyl-(acyl-carrier-protein):glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) in squash has been cloned and the gene product was identified as oleate-selective GPAT. Using PCR primers that could hybridise with exons for a previously cloned squash GPAT, we obtained two PCR products of different size: one coded for a previously cloned squash GPAT corresponding to non-selective isoforms AT2 and AT3, and the other for a new isozyme, probably the oleate-selective isoform AT1. Full-length amino acid sequences of respective isozymes were deduced from the nucleotide sequences of genomic genes and cDNAs, which were cloned by a series of PCR-based methods. Thus, we designated the new gene CmATS1;1 and the other one CmATS1;2. Genome blot analysis revealed that the squash genome contained the two isogenes at non-allelic loci. AT1-active fractions were partially purified, and three polypeptide bands were identified as being AT1 polypeptides, which exhibited relative molecular masses of 39.5-40.5 kDa, pI values of 6.75-7.15, and oleate selectivity over palmitate. Partial amino-terminal sequences obtained from two of these bands verified that the new isogene codes for AT1 polypeptides.

  1. Perturbation of intracellular acyl-CoA metabolism induces the unfolded protein response pathway and autophagy in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Feddersen, Søren

    2008-01-01

    autophagy mainly is a response to the stress of nutrient limitation. In the present study, we demonstrate that perturbation of fatty acid synthesis and transport either through inhibition of fatty acid synthase (FAS) or by depleting cells for the acyl-CoA binding protein, Acb1p, leads to induction of Hac1p......, a transcription factor regulating the unfolded protein response and membrane biogenesis, as well as Hac1p target genes incl. KAR2 and PDI1. Under similar conditions, we find a massive upregulation of pre-autophagosomal structure (PAS) formation, indicative of upregulation of autophagy. Supplementation...... with exogenous fatty acids suppresses induction of both the UPR pathway and autophagy in cells lacking Acb1p. Activation of the Ras-cAMP signalling pathway by overexpressing TPK1 or the RAS1val19 allele in Acb1p-depleted cells reduced the number of pre-autophagosomal structures to wild type levels...

  2. Male Sterile2 Encodes a Plastid-Localized Fatty Acyl Carrier Protein Reductase Required for Pollen Exine Development in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.; Shanklin, J.; Yu, X.-H.; Zhang, K.; Shi, J.; De Oliveira, S.; Schreiber, L.; Zhang, D.

    2011-10-01

    Male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana). Transient expression of MS2 in tobacco (Nicotiana benthamiana) leaves resulted in the accumulation of significant levels of C16 and C18 fatty alcohols. Expression of MS2 fused with green fluorescent protein revealed that an amino-terminal transit peptide targets the MS2 to plastids. The plastidial localization of MS2 is biologically important because genetic complementation of MS2 in ms2 homozygous plants was dependent on the presence of its amino-terminal transit peptide or that of the Rubisco small subunit protein amino-terminal transit peptide. In addition, two domains, NAD(P)H-binding domain and sterile domain, conserved in MS2 and its homologs were also shown to be essential for MS2 function in pollen exine development by genetic complementation testing. Direct biochemical analysis revealed that purified recombinant MS2 enzyme is able to convert palmitoyl-Acyl Carrier Protein to the corresponding C16:0 alcohol with NAD(P)H as the preferred electron donor. Using optimized reaction conditions (i.e. at pH 6.0 and 30 C), MS2 exhibits a K{sub m} for 16:0-Acyl Carrier Protein of 23.3 {+-} 4.0 {mu}m, a V{sub max} of 38.3 {+-} 4.5 nmol mg{sup -1} min{sup -1}, and a catalytic efficiency/K{sub m} of 1,873 m{sup -1} s{sup -1}. Based on the high homology of MS2 to other characterized fatty acid reductases, it was surprising that MS2 showed no activity against palmitoyl- or other acyl-coenzyme A; however, this is consistent with its plastidial localization. In summary, genetic and biochemical evidence demonstrate an MS2-mediated conserved plastidial pathway for the production of fatty alcohols that are essential for pollen wall biosynthesis in Arabidopsis.

  3. Expression of the Acyl-Coenzyme A: Cholesterol Acyltransferase GFP Fusion Protein in Sf21 Insect Cells

    Science.gov (United States)

    Mahtani, H. K.; Richmond, R. C.; Chang, T. Y.; Chang, C. C. Y.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an important contributor to the pathological expression of plaque leading to artherosclerosis n a major health problem. Adequate knowledge of the structure of this protein will enable pharmaceutical companies to design drugs specific to the enzyme. ACAT is a membrane protein located in the endoplasmic reticulum.t The protein has never been purified to homogeneity.T.Y. Chang's laboratory at Dartmouth College provided a 4-kb cDNA clone (K1) coding for a structural gene of the protein. We have modified the gene sequence and inserted the cDNA into the BioGreen His Baculovirus transfer vector. This was successfully expressed in Sf2l insect cells as a GFP-labeled ACAT protein. The advantage to this ACAT-GFP fusion protein (abbreviated GCAT) is that one can easily monitor its expression as a function of GFP excitation at 395 nm and emission at 509 nm. Moreover, the fusion protein GCAT can be detected on Western blots with the use of commercially available GFP antibodies. Antibodies against ACAT are not readily available. The presence of the 6xHis tag in the transfer vector facilitates purification of the recombinant protein since 6xHis fusion proteins bind with high affinity to Ni-NTA agarose. Obtaining highly pure protein in large quantities is essential for subsequent crystallization. The purified GCAT fusion protein can readily be cleaved into distinct GFP and ACAT proteins in the presence of thrombin. Thrombin digests the 6xHis tag linking the two protein sequences. Preliminary experiments have indicated that both GCAT and ACAT are expressed as functional proteins. The ultimate aim is to obtain large quantities of the ACAT protein in pure and functional form appropriate for protein crystal growth. Determining protein structure is the key to the design and development of effective drugs. X-ray analysis requires large homogeneous crystals that are difficult to obtain in the gravity environment of earth

  4. Gene cloning, expression analysis of JcACP (Acyl Carrier Protein) in Jatropha curcas L. and its prokaryotical expression

    Institute of Scientific and Technical Information of China (English)

    JIANG Lu-ding; LI Xiao-hui

    2008-01-01

    Objective To clone the ACP (acyl carrier protein) gene in Jatropha curcas L., a potential antitumour and anti-fungal plant. And to determinate the expression of ACP in Jatropha curcas L. Methods A cDNA clone encoding ACP (acyl carrier protein) was isolated from Jatropha curcas L. endosperm eDNA library by random sequencing. The expression of ACP gene was investigated by semi-quantitative RT-PCR in leaves, stems and seeds of J. curca. The expression of ACP was also investigated in germinating seeds. The fragment encoding ACP protein in J. curca, was inserted into a prokaryotic expression vector pET28a( + ). The gene was overexpressed in E. coli BL21 to produce abundant protein. Immunohistochemical analysis was used to detect the expression of ACP in different tissues of J. curca. Results The cDNA sequence was 806 bp in length and the ORF was 393 bp. The predicted molecular weight of the putative protein was 14.4 kD, pI = 5.2. It contained a 4'-phosphopantetheine-binding motif. This prosthetic group can be combined with Serine of ACP protein. Semi-quantitative RT-PCR analysis showed that ACP gene was expressed in leaves, stems and seeds of J. curcas. The expression level of ACP was the highest in seeds and it was not detected in roots. After seeds germinated, the expression level of ACP in seeds increased progressively and reached a peak at 96 h. After induced by IPTG, SDS-PAGE analysis showed that the ACP protein of 20 kD was expressed. Immunohistochemical analysis showed that ACP specifical expressed abundantly in embyo of the seeds, and it was not detected in roots and the emdosperm while expressed in leaves and stems. Conclusions A cDNA clone encoding ACP which had all the typical characteristics of ACPs was isolated. It was expressed successfully in E. coli. The results of semi-quantitative RT-PCR analysis and immunohistochemieal analysis were very similar, which showed that the expression of ACP in J. curcas, was abundant in seeds. The results indicated the

  5. Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH).

    Science.gov (United States)

    Jiang, Wen; Jiang, Yanfang; Bentley, Gayle J; Liu, Di; Xiao, Yi; Zhang, Fuzhong

    2015-08-01

    Branched-chain fatty acids (BCFAs) are important precursors for the production of advanced biofuels with improved cold-flow properties. Previous efforts in engineering type II fatty acid synthase (FAS) for BCFA production suffered from low titers and/or the co-production of a large amount of straight-chain fatty acids (SCFAs), making it nearly impossible for further conversion of BCFAs to branched biofuels. Synthesis of both SCFAs and BCFAs requires FabH, the only β-ketoacyl-(acyl-carrier-protein) synthase in Escherichia coli that catalyzes the initial condensation reaction between malonyl-ACP and a short-chain acyl-CoA. In this study, we demonstrated that replacement of the acetyl-CoA-specific E. coli FabH with a branched-chain-acyl-CoA-specific FabH directed the flux to the synthesis of BCFAs, resulting in a significant enhancement in BCFA titer compared to a strain containing both acetyl-CoA- and branched-chain-acyl-CoA-specific FabHs. We further demonstrated that the composition of BCFAs can be tuned by engineering the upstream pathway to control the supply of different branched-chain acyl-CoAs, leading to the production either even-chain-iso-, odd-chain-iso-, or odd-chain-anteiso-BCFAs separately. Overall, the top-performing strain from this study produced BCFAs at 126 mg/L, comprising 52% of the total free fatty acids. PMID:25788017

  6. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs

    Energy Technology Data Exchange (ETDEWEB)

    Shanklin, J.; Somerville, C. (Michigan State Univ., East Lansing (United States))

    1991-03-15

    Stearoyl-acyl-carrier-protein (ACP) desaturase was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the {Delta}{sup 9} desaturase is developmentally regulated.

  7. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs

    International Nuclear Information System (INIS)

    Stearoyl-acyl-carrier-protein (ACP) desaturase was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the Δ9 desaturase is developmentally regulated

  8. Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis.

    Science.gov (United States)

    Miyanaga, Akimasa; Iwasawa, Shohei; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2016-02-16

    Acyltransferases (ATs) are key determinants of building block specificity in polyketide biosynthesis. Despite the importance of protein-protein interactions between AT and acyl carrier protein (ACP) during the acyltransfer reaction, the mechanism of ACP recognition by AT is not understood in detail. Herein, we report the crystal structure of AT VinK, which transfers a dipeptide group between two ACPs, VinL and VinP1LdACP, in vicenistatin biosynthesis. The isolated VinK structure showed a unique substrate-binding pocket for the dipeptide group linked to ACP. To gain greater insight into the mechanism of ACP recognition, we attempted to crystallize the VinK-ACP complexes. Because transient enzyme-ACP complexes are difficult to crystallize, we developed a covalent cross-linking strategy using a bifunctional maleimide reagent to trap the VinK-ACP complexes, allowing the determination of the crystal structure of the VinK-VinL complex. In the complex structure, Arg-153, Met-206, and Arg-299 of VinK interact with the negatively charged helix II region of VinL. The VinK-VinL complex structure allows, to our knowledge, the first visualization of the interaction between AT and ACP and provides detailed mechanistic insights into ACP recognition by AT. PMID:26831085

  9. Lipoprotein N-acyl transferase (Lnt1) is dispensable for protein O-mannosylation by Streptomyces coelicolor.

    Science.gov (United States)

    Córdova-Dávalos, Laura Elena; Espitia, Clara; González-Cerón, Gabriela; Arreguín-Espinosa, Roberto; Soberón-Chávez, Gloria; Servín-González, Luis

    2014-01-01

    A protein glycosylation system related to that for protein mannosylation in yeast is present in many actinomycetes. This system involves polyprenyl phosphate mannose synthase (Ppm), protein mannosyl transferase (Pmt), and lipoprotein N-acyl transferase (Lnt). In this study, we obtained a series of mutants in the ppm (sco1423), lnt1 (sco1014), and pmt (sco3154) genes of Streptomyces coelicolor, which encode Ppm, Lnt1, and Pmt, to analyze their requirement for glycosylation of the heterologously expressed Apa glycoprotein of Mycobacterium tuberculosis. The results show that both Ppm and Pmt were required for Apa glycosylation, but that Lnt1 was dispensable for both Apa and the bacteriophage φC31 receptor glycosylation. A bacterial two-hybrid assay revealed that contrary to M. tuberculosis, Lnt1 of S. coelicolor does not interact with Ppm. The D2 catalytic domain of M. tuberculosisPpm was sufficient for complementation of an S. coelicolor double mutant lacking Lnt1 and Ppm, both for Apa glycosylation and for glycosylation of φC31 receptor. On the other hand, M. tuberculosisPmt was not active in S. coelicolor, even when correctly localized to the cytoplasmic membrane, showing fundamental differences in the requirements for Pmt activity in these two species.

  10. Crystallization and X-ray diffraction analysis of the beta-ketoacyl-acyl carrier protein reductase FabG from Aquifex aeolicus VF5.

    Science.gov (United States)

    Mao, Qilong; Duax, William L; Umland, Timothy C

    2007-02-01

    The gene product of fabG from Aquifex aeolicus has been heterologously expressed in Escherichia coli. Purification of the protein took place using anion-exchange and size-exclusion chromatography and the protein was then crystallized. Diffraction data were collected to a maximum resolution of 1.8 A and the initial phases were determined by molecular replacement. The A. aeolicus FabG protein is a putative beta-ketoacyl-acyl carrier protein reductase. Structure-function studies of this protein are being performed as part of a larger project investigating naturally occurring deviations from highly conserved residues within the short-chain oxidoreductase (SCOR) family.

  11. Monitoring Wnt Protein Acylation Using an In Vitro Cyclo-Addition Reaction

    Science.gov (United States)

    Tuladhar, Rubina; Yarravarapu, Nageswari; Lum, Lawrence

    2016-01-01

    We describe here a technique for visualizing the lipidation status of Wnt proteins using azide-alkyne cycloaddition chemistry (click chemistry) and SDS-PAGE. This protocol incorporates in vivo labeling of a Wnt-IgG Fc fusion protein using an alkynylated palmitate probe but departs from a traditional approach by incorporating a secondary cycloaddition reaction performed on single-step purified Wnt protein immobilized on protein A resin. This approach mitigates experimental noise by decreasing the contribution of labeling from other palmitoylated proteins and by providing a robust method for normalizing labeling efficiency based on protein abundance. PMID:27590147

  12. Immunogold localization of acyl carrier protein in plants and Escherichia coli: Evidence for membrane association in plants.

    Science.gov (United States)

    Slabas, A R; Smith, C G

    1988-08-01

    Immunogold labelling was used to study the distribution of acyl carrier protein (ACP) in Escherichia coli and a variety of plant tissues. In E. coli, ACP is distributed throughout the cytoplasm, confirming the observation of S. Jackowski et al. (1985, J. Bacteriol., 162, 5-8_. In the mesocarp of Avocado (Persea americana) and maturing seeds of oil-seed rape (Brassica napus cv. Jet Neuf), over 95% of the ACP is localised to plastids. The protein is almost exclusively located in the chloroplasts of leaf material from oil-seed rape. Approximately 80% of the gold particles associated with the ACP were further localized to the thylakoid membrane of the chloroplast. Since acetyl-CoA carboxylase has been reported to be localized to the thylakoid membrane (C.G. Kannangara and C.J. Jensen, 1975, Eur. J. Biochem., 54, 25-30), these results are consistent with the view that the two sequential enzymes in fatty-acid synthesis are in close spacial proximity.

  13. Hypoximimetic activity of N-acyl-dopamines. N-arachidonoyl-dopamine stabilizes HIF-1α protein through a SIAH2-dependent pathway.

    Science.gov (United States)

    Soler-Torronteras, Rafael; Lara-Chica, Maribel; García, Victor; Calzado, Marco A; Muñoz, Eduardo

    2014-11-01

    The N-acyl conjugates of amino acids and neurotransmitters (NAANs) are a class of endogenous lipid messengers that are expressed in the mammalian central and peripheral nervous system. Hypoxia inducible factor-1α (HIF-1α) is a transcription factor that plays a key role in the cellular adaptation to hypoxia and ischemia, and hypoxic preconditioning through HIF-1α has been shown to be neuroprotective in ischemic models. This study showed that N-acyl-dopamines induce HIF-1α stabilization on human primary astrocytes and neurons as well as in transformed cell lines. N-arachidonoyl-dopamine (NADA)-induced HIF-1α stabilization depends on the dopamine moiety of the molecule and is independent of cannabinoid receptor-1 (CB1) and transient receptor potential vanilloid type I (TRPV1) activation. NADA increases the activity of the E3 ubiquitin ligase seven in absentia homolog-2 (SIAH2), inhibits prolyl-hydroxylase-3 (PHD3) and stabilizes HIF-1α. NADA enhances angiogenesis in endothelial vascular cells and promotes the expression of genes such as erythropoietin (EPO), vascular endothelial growth factor A (VEGFA), heme oxygenase 1 (HMOX-1), hexokinase 2 (HK2) and Bcl-2/E1B-nineteen kiloDalton interacting protein (BNIP3) in primary astrocytes. These findings indicate a link between N-acyl-dopamines and hypoxic preconditioning and suggest that modulation of the N-acyl-dopamine metabolism might prove useful for prevention against hypoxic diseases. PMID:25090972

  14. Hypoximimetic activity of N-acyl-dopamines. N-arachidonoyl-dopamine stabilizes HIF-1α protein through a SIAH2-dependent pathway.

    Science.gov (United States)

    Soler-Torronteras, Rafael; Lara-Chica, Maribel; García, Victor; Calzado, Marco A; Muñoz, Eduardo

    2014-11-01

    The N-acyl conjugates of amino acids and neurotransmitters (NAANs) are a class of endogenous lipid messengers that are expressed in the mammalian central and peripheral nervous system. Hypoxia inducible factor-1α (HIF-1α) is a transcription factor that plays a key role in the cellular adaptation to hypoxia and ischemia, and hypoxic preconditioning through HIF-1α has been shown to be neuroprotective in ischemic models. This study showed that N-acyl-dopamines induce HIF-1α stabilization on human primary astrocytes and neurons as well as in transformed cell lines. N-arachidonoyl-dopamine (NADA)-induced HIF-1α stabilization depends on the dopamine moiety of the molecule and is independent of cannabinoid receptor-1 (CB1) and transient receptor potential vanilloid type I (TRPV1) activation. NADA increases the activity of the E3 ubiquitin ligase seven in absentia homolog-2 (SIAH2), inhibits prolyl-hydroxylase-3 (PHD3) and stabilizes HIF-1α. NADA enhances angiogenesis in endothelial vascular cells and promotes the expression of genes such as erythropoietin (EPO), vascular endothelial growth factor A (VEGFA), heme oxygenase 1 (HMOX-1), hexokinase 2 (HK2) and Bcl-2/E1B-nineteen kiloDalton interacting protein (BNIP3) in primary astrocytes. These findings indicate a link between N-acyl-dopamines and hypoxic preconditioning and suggest that modulation of the N-acyl-dopamine metabolism might prove useful for prevention against hypoxic diseases.

  15. Acyl-CoA-binding protein, Acb1p, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Feddersen, Søren; Christiansen, Janne K;

    2004-01-01

    In the present study, we show that depletion of acyl-CoA-binding protein, Acb1p, in yeast affects ceramide levels, protein trafficking, vacuole fusion and structure. Vacuoles in Acb1p-depleted cells are multi-lobed, contain significantly less of the SNAREs (soluble N -ethylmaleimide......-sensitive fusion protein attachment protein receptors) Nyv1p, Vam3p and Vti1p, and are unable to fuse in vitro. Mass spectrometric analysis revealed a dramatic reduction in the content of ceramides in whole-cell lipids and in vacuoles isolated from Acb1p-depleted cells. Maturation of yeast aminopeptidase I and...

  16. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs.

    Science.gov (United States)

    Shanklin, J; Somerville, C

    1991-03-15

    Stearoyl-acyl-carrier-protein (ACP) desaturase (EC 1.14.99.6) was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was no detectable identity between the deduced amino acid sequences of the castor delta 9-stearoyl-ACP desaturase and either the delta 9-stearoyl-CoA desaturase from rat or yeast or the delta 12 desaturase from Synechocystis, suggesting that these enzymes may have evolved independently. However, there was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the delta 9 desaturase is developmentally regulated.

  17. Distribution and Spectroscopy of Green Fluorescent Protein and Acyl-CoA: Cholesterol Acytransferase in Sf21 Insect Cells

    Science.gov (United States)

    Richmond, R. C.; Mahtani, H.; Lu, X.; Chang, T. Y.; Malak, H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is thought to significantly participate in the pathway of cholesterol esterification that underlies the pathology of artherosclerosis. This enzyme is a membrane protein known to be preferentially bound within the endoplasmic reticulum of mammalian cells, from which location it esterifies cholesterol derived from low density lipoprotein. Cultures of insect cells were separately infected with baculovirus containing the gene for green fluroescent protein (GFP) and with baculovirus containing tandem genes for GFP and ACAT. These infected cultures expressed GFP and the fusion protein GCAT, respectively, with maximum expression occurring on the fourth day after infection. Extraction of GFP- and of GCAT-expressing cells with urea and detergent resulted in recovery of fluorescent protein in aqueous solution. Fluorescence spectra at neutral pH were identical for both GFP and GCAT extracts in aqueous solution, indicating unperturbed tertiary structure for the GFP moiety within GCAT. In a cholesterol esterification assay, GCAT demonstrated ACAT activity, but with less efficiency compared to native ACAT. It was hypothesized that the membrane protein ACAT would lead to differences in localization of GCAT compared to GFP within the respective expressing insect cells. The GFP marker directly and also within the fusion protein GCAT was accordingly used as the intracellular probe that was fluorescently analyzed by the new biophotonics technique of hyperspectral imaging. In that technique, fluorescence imaging was obtained from two dimensional arrays of cells, and regions of interest from within those images were then retrospectively analyzed for the emission spectra that comprises the image. Results of hyperspectral imaging of insect cells on day 4 postinfection showed that GCAT was preferentially localized to the cytoplasm of these cells compared to GFP. Furthermore, the emission spectra obtained for the localized GCAT displayed a peak

  18. Crystal structure of enoyl–acyl carrier protein reductase (FabK) from Streptococcus pneumoniae reveals the binding mode of an inhibitor

    OpenAIRE

    Saito, Jun; Yamada, Mototsugu; Watanabe, Takashi; Iida, Maiko; Kitagawa, Hideo; Takahata, Sho; Ozawa, Tomohiro; Takeuchi, Yasuo; Ohsawa, Fukuichi

    2008-01-01

    Enoyl–acyl carrier protein (ACP) reductases are critical for bacterial type II fatty acid biosynthesis and thus are attractive targets for developing novel antibiotics. We determined the crystal structure of enoyl–ACP reductase (FabK) from Streptococcus pneumoniae at 1.7 Å resolution. There was one dimer per asymmetric unit. Each subunit formed a triose phosphate isomerase (TIM) barrel structure, and flavin mononucleotide (FMN) was bound as a cofactor in the active site. The overall structure...

  19. Triclosan Resistome from Metagenome Reveals Diverse Enoyl Acyl Carrier Protein Reductases and Selective Enrichment of Triclosan Resistance Genes.

    Science.gov (United States)

    Khan, Raees; Kong, Hyun Gi; Jung, Yong-Hoon; Choi, Jinhee; Baek, Kwang-Yeol; Hwang, Eul Chul; Lee, Seon-Woo

    2016-01-01

    Triclosan (TCS) is a widely used antimicrobial agent and TCS resistance is considered to have evolved in diverse organisms with extensive use of TCS, but distribution of TCS resistance has not been well characterized. Functional screening of the soil metagenome in this study has revealed that a variety of target enoyl acyl carrier protein reductases (ENR) homologues are responsible for the majority of TCS resistance. Diverse ENRs similar to 7-α-hydroxysteroid dehydrogenase (7-α-HSDH), FabG, or the unusual YX7K-type ENR conferred extreme tolerance to TCS. The TCS-refractory 7-α HSDH-like ENR and the TCS-resistant YX7K-type ENR seem to be prevalent in human pathogenic bacteria, suggesting that a selective enrichment occurred in pathogenic bacteria in soil. Additionally, resistance to multiple antibiotics was found to be mediated by antibiotic resistance genes that co-localize with TCS resistance determinants. Further comparative analysis of ENRs from 13 different environments has revealed a huge diversity of both prototypic and metagenomic TCS-resistant ENRs, in addition to a selective enrichment of TCS-resistant specific ENRs in presumably TCS-contaminated environments with reduced ENR diversity. Our results suggest that long-term extensive use of TCS can lead to the selective emergence of TCS-resistant bacterial pathogens, possibly with additional resistance to multiple antibiotics, in natural environments. PMID:27577999

  20. Triclosan Resistome from Metagenome Reveals Diverse Enoyl Acyl Carrier Protein Reductases and Selective Enrichment of Triclosan Resistance Genes

    Science.gov (United States)

    Khan, Raees; Kong, Hyun Gi; Jung, Yong-Hoon; Choi, Jinhee; Baek, Kwang-Yeol; Hwang, Eul Chul; Lee, Seon-Woo

    2016-01-01

    Triclosan (TCS) is a widely used antimicrobial agent and TCS resistance is considered to have evolved in diverse organisms with extensive use of TCS, but distribution of TCS resistance has not been well characterized. Functional screening of the soil metagenome in this study has revealed that a variety of target enoyl acyl carrier protein reductases (ENR) homologues are responsible for the majority of TCS resistance. Diverse ENRs similar to 7-α-hydroxysteroid dehydrogenase (7-α-HSDH), FabG, or the unusual YX7K-type ENR conferred extreme tolerance to TCS. The TCS-refractory 7-α HSDH-like ENR and the TCS-resistant YX7K-type ENR seem to be prevalent in human pathogenic bacteria, suggesting that a selective enrichment occurred in pathogenic bacteria in soil. Additionally, resistance to multiple antibiotics was found to be mediated by antibiotic resistance genes that co-localize with TCS resistance determinants. Further comparative analysis of ENRs from 13 different environments has revealed a huge diversity of both prototypic and metagenomic TCS-resistant ENRs, in addition to a selective enrichment of TCS-resistant specific ENRs in presumably TCS-contaminated environments with reduced ENR diversity. Our results suggest that long-term extensive use of TCS can lead to the selective emergence of TCS-resistant bacterial pathogens, possibly with additional resistance to multiple antibiotics, in natural environments. PMID:27577999

  1. Defective Pollen Wall is Required for Anther and Microspore Development in Rice and Encodes a Fatty Acyl Carrier Protein Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J.; Shanklin, J.; Tan, H.; Yu, X.-H.; Liu, Y.; Liang, W.; Ranathunge, K.; Franke, R. B.; Schreiber, L.; Wang, Y.; Kai, G.; Ma, H.; Zhang, D.

    2011-06-01

    Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.

  2. The Role of the β5-α11 Loop in the Active-Site Dynamics of Acylated Penicillin-Binding Protein A from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher [MUSC; (UNC)

    2013-04-22

    Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constants for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5–α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5–α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.

  3. STIMULATED PLATELETS RELEASE AMYLOID β–PROTEIN PRECURSOR

    OpenAIRE

    Cole, Gregory M.; Galasko, Douglas; Shapiro, I. Paul; Saitoh, Tsunao

    1990-01-01

    Human platelets can be stimulated by thrombin or ionomycin to secrete soluble truncated amyloid β–protein precursor and particulate membrane fragments which contain C-terminal and N-terminal immunoreactive amyloid β–protein precursor. This suggests a possible circulating source of β–protein in serum which may play a role in the formation of amyloid deposits. The release of soluble amyloid β-protein precursor could be involved in normal platelet physiology.

  4. Isolation and characterization of an enoyl-acyl carrier protein reductase gene from microalga Isochrysis galbana

    Science.gov (United States)

    Zheng, Minggang; Liang, Kepeng; Wang, Bo; Sun, Xiuqin; Yue, Yanyan; Wan, Wenwen; Zheng, Li

    2013-03-01

    In most bacteria, plants and algae, fatty acid biosynthesis is catalyzed by a group of freely dissociable proteins known as the type II fatty acid synthase (FAS II) system. In the FAS II system, enoylacyl carrier protein reductase (ENR) acts as a determinant for completing the cycles of fatty acid elongation. In this study, the cDNA sequence of ENR, designated as IgENR, was isolated from the microalga Isochrysis galbana CCMM5001. RACE (rapid amplification of cDNA ends) was used to isolate the full-length cDNA of IgENR (1 503 bp), which contains an open reading frame (ORF) of 1 044 bp and encodes a protein of 347 amino acids. The genomic DNA sequence of IgENR is interrupted by four introns. The putative amino acid sequence is homologous to the ENRs of seed plants and algae, and they contain common coenzymebinding sites and active site motifs. Under different stress conditions, real-time quantitative polymerase chain reaction (RT-qPCR) showed the expression of IgENR was upregulated by high temperature (35°C), and downregulated by depleted nitrogen (0 mol/L). To clarify the mechanism of lipids accumulating lipids, other genes involved in lipids accumulation should be studied.

  5. Isolation and characterization of an enoyl-acyl carrier protein reductase gene from microalga Isochrysis galbana

    Institute of Scientific and Technical Information of China (English)

    ZHENG Minggang; LIANG Kepeng; WANG Bo; SUN Xiuqin; YUE Yanyan; WAN Wenwen; ZHENG Li

    2013-01-01

    In most bacteria,plants and algae,fatty acid biosynthesis is catalyzed by a group of freely dissociable proteins known as the type Ⅱ fatty acid synthase (FAS Ⅱ) system.In the FAS Ⅱ system,enoylacyl carrier protein reductase (ENR) acts as a determinant for completing the cycles of fatty acid elongation.In this study,the cDNA sequence of ENR,designated as IgENR,was isolated from the microalga Isochrysis galbana CCMM5001.RACE (rapid amplification of cDNA ends) was used to isolate the full-length cDNA ofIgENR (1 503 bp),which contains an open reading frame (ORF) of 1 044 bp and encodes a protein of 347 amino acids.The genomic DNA sequence ofIgENR is interrupted by four introns.The putative amino acid sequence is homologous to the ENRs of seed plants and algae,and they contain common coenzymebinding sites and active site motifs.Under different stress conditions,real-time quantitative polymerase chain reaction (RT-qPCR) showed the expression ofIgENR was upregulated by high temperature (35℃),and downregulated by depleted nitrogen (0 mol/L).To clarify the mechanism of lipids accumulating lipids,other genes involved in lipids accumulation should be studied.

  6. 病毒蛋白脂酰化及其功能%Fatty acylation and its impacts on viral proteins

    Institute of Scientific and Technical Information of China (English)

    刘红; 叶荣

    2014-01-01

    Fatty acylation ,a posttranslational lipid modification process of proteins ,could be classified into four forms:palmitoylation , myristoylation , prenylation , and covalent binding of glycosylphosphatidylinositol (GPI) .All forms of fatty acylation may occur on viral proteins from a variety of viruses ,and may have the potential to change the functions of the targets .Palmitoylation regulates the intercellular transportation and location of viral transmembrane proteins via enhancing the hydrophobicity , which is involved in the membrane fusion ,assembly ,and release during viral infection and replication .Through the regulation of the positive charges of protein’s surfaces ,myristoylation changes the affinity between the cellular membrane and some viral proteins . For example , myristoylation of preS1 increases the receptor recognition and infectivity of both hepatitis B virus (HBV) and hepatitis D virus (HDV) ,and the myristoylation of Nef is necessary for regulation of human immunodeficiency virus (HIV) infection and immunity .The interaction of viral proteins with the membrane compartments or other proteins is increased after prenylation . For example , prenylation could facilitate large HDV antigen’s ( L-HDAg’s ) trafficking to endoplasmic reticulum ,in which the proteins are assembled into HDV virions together with HBV surface antigen (HBsAg) and HDV RNA .Additionally ,GPI binds to viral proteins covalently ,and the GPI moiety would change the membrane structure or cytoplasmic phospholipid components of infected cells .For example ,GPI modification induced the cross-linkage of cellular prion protein (PrPC ) and agglutination of scrapie prion protein (PrPSC ) ,which is involved in the spongiform pathogenesis induced by the prions .It would be greatly beneficial for both design and development of new antiviral drugs when the mechanism of lipid modification of viral proteins is further uncovered .%脂酰化是一种重要的蛋白翻译后修饰,主要

  7. Fatty acylation and its impacts on viral proteins%病毒蛋白脂酰化及其功能

    Institute of Scientific and Technical Information of China (English)

    刘红; 叶荣

    2014-01-01

    脂酰化是一种重要的蛋白翻译后修饰,主要包括棕榈酰化、豆蔻酰化、异戊烯化和糖基化磷脂酰肌醇(GPI)共价结合4种方式。不同的病毒蛋白可发生不同类型的脂酰化,其生物学功能也会发生相应改变。棕榈酰化通常能增强病毒跨膜蛋白的疏水性,调节这些蛋白的胞内运输及定位,进一步影响病毒感染过程中的膜融合、病毒颗粒装配及释放等步骤。豆蔻酰化则可调控病毒蛋白表面的正电荷强度,使病毒蛋白与脂质膜的亲和力改变,如preS1豆蔻酰化加强乙型肝炎病毒(HBV)和丁型肝炎病毒(HDV)的受体识别能力及感染性,而人类免疫缺陷病毒(HIV)Nef豆蔻酰化为病毒感染及免疫应答所必需。异戊烯化能使病毒游离的蛋白与膜结合,并介导蛋白间的相互作用,如大 HDV抗原(L-HDAg)异戊烯化有利于其运输至内质网膜上,与HBV表面抗原(HBsAg)及HDV RNA共同形成HDV颗粒。此外,一些病毒蛋白与GPI通过共价结合形成复合物,GPI基团可改变感染细胞的膜结构及胞质内磷脂构成,如GPI与朊蛋白(PrP)结合导致细胞型朊蛋白(PrPc )交联或羊痒疫朊蛋白(PrPsc )聚集,与朊病毒引起的海绵样病变有关。进一步了解病毒蛋白脂酰化机制,有利于设计和开发以此为靶点的特异性抗病毒新药。%Fatty acylation ,a posttranslational lipid modification process of proteins ,could be classified into four forms:palmitoylation , myristoylation , prenylation , and covalent binding of glycosylphosphatidylinositol (GPI) .All forms of fatty acylation may occur on viral proteins from a variety of viruses ,and may have the potential to change the functions of the targets .Palmitoylation regulates the intercellular transportation and location of viral transmembrane proteins via enhancing the hydrophobicity , which is involved in the membrane fusion ,assembly ,and

  8. The role of ß-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower

    DEFF Research Database (Denmark)

    González-Mellado, Damián; von Wettstein, Penny; Garcés, Rafael;

    2010-01-01

    The ß-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing...... proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons...

  9. Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents

    Energy Technology Data Exchange (ETDEWEB)

    Muench, Stephen P. [The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom); Prigge, Sean T. [Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); McLeod, Rima [Department of Ophthalmology and Visual Sciences, Paediatrics (Infectious Diseases) and Pathology and the Committees on Molecular Medicine, Genetics, Immunology and The College, The University of Chicago, Chicago, IL 60637 (United States); Rafferty, John B. [The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom); Kirisits, Michael J. [Department of Ophthalmology and Visual Sciences, Paediatrics (Infectious Diseases) and Pathology and the Committees on Molecular Medicine, Genetics, Immunology and The College, The University of Chicago, Chicago, IL 60637 (United States); Roberts, Craig W. [Department of Immunology, University of Strathclyde, Glasgow G4 0NR, Scotland (United Kingdom); Mui, Ernest J. [Department of Ophthalmology and Visual Sciences, Paediatrics (Infectious Diseases) and Pathology and the Committees on Molecular Medicine, Genetics, Immunology and The College, The University of Chicago, Chicago, IL 60637 (United States); Rice, David W., E-mail: d.rice@sheffield.ac.uk [The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom)

    2007-03-01

    The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. Recent studies have demonstrated that submicromolar concentrations of the biocide triclosan arrest the growth of the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii and inhibit the activity of the apicomplexan enoyl acyl carrier protein reductase (ENR). The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. The structures of T. gondii ENR have revealed that, as in its bacterial and plant homologues, a loop region which flanks the active site becomes ordered upon inhibitor binding, resulting in the slow tight binding of triclosan. In addition, the T. gondii ENR–triclosan complex reveals the folding of a hydrophilic insert common to the apicomplexan family that flanks the substrate-binding domain and is disordered in all other reported apicomplexan ENR structures. Structural comparison of the apicomplexan ENR structures with their bacterial and plant counterparts has revealed that although the active sites of the parasite enzymes are broadly similar to those of their bacterial counterparts, there are a number of important differences within the drug-binding pocket that reduce the packing interactions formed with several inhibitors in the apicomplexan ENR enzymes. Together with other significant structural differences, this provides a possible explanation of the lower affinity of the parasite ENR enzyme family for aminopyridine-based inhibitors, suggesting that an effective antiparasitic agent may well be distinct from equivalent antimicrobials.

  10. Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents

    International Nuclear Information System (INIS)

    The crystal structures of T. gondii and P. falciparum ENR in complex with NAD+ and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. Recent studies have demonstrated that submicromolar concentrations of the biocide triclosan arrest the growth of the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii and inhibit the activity of the apicomplexan enoyl acyl carrier protein reductase (ENR). The crystal structures of T. gondii and P. falciparum ENR in complex with NAD+ and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. The structures of T. gondii ENR have revealed that, as in its bacterial and plant homologues, a loop region which flanks the active site becomes ordered upon inhibitor binding, resulting in the slow tight binding of triclosan. In addition, the T. gondii ENR–triclosan complex reveals the folding of a hydrophilic insert common to the apicomplexan family that flanks the substrate-binding domain and is disordered in all other reported apicomplexan ENR structures. Structural comparison of the apicomplexan ENR structures with their bacterial and plant counterparts has revealed that although the active sites of the parasite enzymes are broadly similar to those of their bacterial counterparts, there are a number of important differences within the drug-binding pocket that reduce the packing interactions formed with several inhibitors in the apicomplexan ENR enzymes. Together with other significant structural differences, this provides a possible explanation of the lower affinity of the parasite ENR enzyme family for aminopyridine-based inhibitors, suggesting that an effective antiparasitic agent may well be distinct from equivalent antimicrobials

  11. The mitochondrial precursor protein apocytochrome c strongly influences the order of the headgroup and acyl chains of phosphatidylserine dispersions. A 2H and 31P NMR study

    International Nuclear Information System (INIS)

    Deuterium and phosphorus nuclear magnetic resonance techniques were used to study the interaction of the mitochondrial precursor protein apocytochrome c with headgroup-deuterated (dioleoylphosphatidyl-L-[2-2H1]serine) and acyl chain deuterated (1,2-[11,11-2H2]dioleoylphosphatidylserine) dispersions. Binding of the protein to dioleoylphosphatidylserine liposomes results in phosphorus nuclear magnetic resonance spectra typical of phospholipids undergoing fast axial rotation in extended liquid-crystalline bilayers with a reduced residual chemical shift anisotropy and an increased line width. 2H NMR spectra on headgroup-deuterated dioleoylphosphatidylserine dispersions showed a decrease in quadrupolar splitting and a broadening of the signal on interaction with apocytochrome c. Addition of increasing amounts of apocytochrome c to the acyl chain deuterated dioleoylphosphatidylserine dispersions results in the gradual appearance of a second component in the spectra with a 44% reduced quadrupolar splitting. Such large reduction of the quadrupolar splitting has never been observed for any protein studied yet. The induction of a new spectral component with a well-defined reduced quadrupolar splitting seems to be confined to the N-terminus since addition of a small hydrophilic amino-terminal peptide (residues 1-38) also induces a second component with a strongly reduced quadrupolar splitting. A chemically synthesized peptide corresponding to amino acid residues 2-17 of the presequence of the mitochondrial protein cytochrome oxidase subunit IV also has a large perturbing effect on the order of the acyl chains, indicating that the observed effects may be a property shared by many mitochondrial precursor proteins. Implications of these data for the import of apocytochrome c into mitochondria will be discussed

  12. Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection.

    Science.gov (United States)

    Colquhoun, David R; Lyashkov, Alexey E; Ubaida Mohien, Ceereena; Aquino, Veronica N; Bullock, Brandon T; Dinglasan, Rhoel R; Agnew, Brian J; Graham, David R M

    2015-06-01

    Protein acylation plays a critical role in protein localization and function. Acylation is essential for human immunodeficiency virus 1 (HIV-1) assembly and budding of HIV-1 from the plasma membrane in lipid raft microdomains and is mediated by myristoylation of the Gag polyprotein and the copackaging of the envelope protein is facilitated by colocalization mediated by palmitoylation. Since the viral accessory protein NEF has been shown to alter the substrate specificity of myristoyl transferases, and alter cargo trafficking lipid rafts, we hypothesized that HIV-1 infection may alter protein acylation globally. To test this hypothesis, we labeled HIV-1 infected cells with biomimetics of acyl azides, which are incorporated in a manner analogous to natural acyl-Co-A. A terminal azide group allowed us to use a copper catalyzed click chemistry to conjugate the incorporated modifications to a number of substrates to carry out SDS-PAGE, fluorescence microscopy, and enrichment for LC-MS/MS. Using LC-MS/MS, we identified 103 and 174 proteins from the myristic and palmitic azide enrichments, with 27 and 45 proteins respectively that differentiated HIV-1 infected from uninfected cells. This approach has provided us with important insights into HIV-1 biology and is widely applicable to many virological systems.

  13. Crystallization and X-ray diffraction analysis of the β-ketoacyl-acyl carrier protein reductase FabG from Aquifex aeolicus VF5

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Qilong [Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); Duax, William L.; Umland, Timothy C., E-mail: umland@hwi.buffalo.edu [Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); Department of Structural Biology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY (United States)

    2007-02-01

    FabG from A. aeolicus, a putative component of fatty-acid synthase II, has been overexpressed, purified and crystallized. Diffraction data have been collected to 1.8 Å resolution. The gene product of fabG from Aquifex aeolicus has been heterologously expressed in Escherichia coli. Purification of the protein took place using anion-exchange and size-exclusion chromatography and the protein was then crystallized. Diffraction data were collected to a maximum resolution of 1.8 Å and the initial phases were determined by molecular replacement. The A. aeolicus FabG protein is a putative β-ketoacyl-acyl carrier protein reductase. Structure–function studies of this protein are being performed as part of a larger project investigating naturally occurring deviations from highly conserved residues within the short-chain oxidoreductase (SCOR) family.

  14. Crystallization and X-ray diffraction analysis of the β-ketoacyl-acyl carrier protein reductase FabG from Aquifex aeolicus VF5

    International Nuclear Information System (INIS)

    FabG from A. aeolicus, a putative component of fatty-acid synthase II, has been overexpressed, purified and crystallized. Diffraction data have been collected to 1.8 Å resolution. The gene product of fabG from Aquifex aeolicus has been heterologously expressed in Escherichia coli. Purification of the protein took place using anion-exchange and size-exclusion chromatography and the protein was then crystallized. Diffraction data were collected to a maximum resolution of 1.8 Å and the initial phases were determined by molecular replacement. The A. aeolicus FabG protein is a putative β-ketoacyl-acyl carrier protein reductase. Structure–function studies of this protein are being performed as part of a larger project investigating naturally occurring deviations from highly conserved residues within the short-chain oxidoreductase (SCOR) family

  15. Structural Characterisation of the Beta-Ketoacyl-Acyl Carrier Protein Synthases, FabF and FabH, of Yersinia pestis

    OpenAIRE

    Jeffrey D. Nanson; Himiari, Zainab; Swarbrick, Crystall M. D.; Forwood, Jade K.

    2015-01-01

    Yersinia pestis, the causative agent of bubonic, pneumonic, and septicaemic plague, remains a major public health threat, with outbreaks of disease occurring in China, Madagascar, and Peru in the last five years. The existence of multidrug resistant Y. pestis and the potential of this bacterium as a bioterrorism agent illustrates the need for new antimicrobials. The β-ketoacyl-acyl carrier protein synthases, FabB, FabF, and FabH, catalyse the elongation of fatty acids as part of the type II f...

  16. G protein activation stimulates phospholipase D signaling in plants

    NARCIS (Netherlands)

    Munnik, T.; Arisz, S.A.; Vrije, de T.; Musgrave, A.

    1995-01-01

    We provide direct evidence for phospholipase D (PLD) signaling in plants by showing that this enzyme is stimulated by the G protein activators mastoparan, ethanol, and cholera toxin. An in vivo assay for PLD activity in plant cells was developed based on the use of a "reporter alcohol" rather than w

  17. Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes

    International Nuclear Information System (INIS)

    Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of 32P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent protein kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca2+/calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF

  18. Crystallization and preliminary X-ray crystallographic studies of a new class of enoyl-(acyl-carrier protein) reductase, FabV, from Vibrio fischeri

    International Nuclear Information System (INIS)

    An orthorhombic crystal of an enoyl-(acyl-carrier protein) reductase from V. fischeri was obtained and diffraction data were collected to 2.7 Å resolution. Enoyl-(acyl-carrier protein) reductase (ENR) catalyzes the last step of the fatty-acid elongation cycle of the bacterial fatty-acid biosynthesis (FAS II) pathway. Recently, a new class of ENR has been identified from Vibrio cholerae and was named FabV. In order to understand the molecular mechanism of the new class of ENR at the structural level, FabV from V. fischeri was overexpressed, purified and crystallized. Diffraction data were collected to 2.7 Å resolution from a native crystal. The crystal belonged to the orthorhombic space group P21212, with unit-cell parameters a = 123.53, b = 164.14, c = 97.07 Å. The presence of four molecules of FabV in the asymmetric unit gave a VM value of 2.81 Å3 Da−1, with a corresponding solvent content of 54.5%

  19. Disrupting the Acyl Carrier Protein/SpoT interaction in vivo: identification of ACP residues involved in the interaction and consequence on growth.

    Directory of Open Access Journals (Sweden)

    Sandra Angelini

    Full Text Available In bacteria, Acyl Carrier Protein (ACP is the central cofactor for fatty acid biosynthesis. It carries the acyl chain in elongation and must therefore interact successively with all the enzymes of this pathway. Yet, ACP also interacts with proteins of diverse unrelated function. Among them, the interaction with SpoT has been proposed to be involved in regulating ppGpp levels in the cell in response to fatty acid synthesis inhibition. In order to better understand this mechanism, we screened for ACP mutants unable to interact with SpoT in vivo by bacterial two-hybrid, but still functional for fatty acid synthesis. The position of the selected mutations indicated that the helix II of ACP is responsible for the interaction with SpoT. This suggested a mechanism of recognition similar to one used for the enzymes of fatty acid synthesis. Consistently, the interactions tested by bacterial two-hybrid of ACP with fatty acid synthesis enzymes were also affected by the mutations that prevented the interaction with SpoT. Yet, interestingly, the corresponding mutant strains were viable, and the phenotypes of one mutant suggested a defect in growth regulation.

  20. Enzyme Mechanism and Slow-Onset Inhibition of Plasmodium falciparum Enoyl-Acyl Carrier Protein Reductase by an Inorganic Complex

    Directory of Open Access Journals (Sweden)

    Patrícia Soares de Maria de Medeiros

    2011-01-01

    Full Text Available Malaria continues to be a major cause of children's morbidity and mortality worldwide, causing nearly one million deaths annually. The human malaria parasite, Plasmodium falciparum, synthesizes fatty acids employing the Type II fatty acid biosynthesis system (FAS II, unlike humans that rely on the Type I (FAS I pathway. The FAS II system elongates acyl fatty acid precursors of the cell membrane in Plasmodium. Enoyl reductase (ENR enzyme is a member of the FAS II system. Here we present steady-state kinetics, pre-steady-state kinetics, and equilibrium fluorescence spectroscopy data that allowed proposal of P. falciparum ENR (PfENR enzyme mechanism. Moreover, building on previous results, the present study also evaluates the PfENR inhibition by the pentacyano(isoniazidferrateII compound. This inorganic complex represents a new class of lead compounds for the development of antimalarial agents focused on the inhibition of PfENR.

  1. Docking studies of flavonoid compounds as inhibitors of β-ketoacyl acyl carrier protein synthase I (Kas I) of Escherichia coli.

    Science.gov (United States)

    Sabbagh, Ghalia; Berakdar, Noura

    2015-09-01

    Escherichia coli is one of the most frequent causes of many common bacterial infections, including cholecystitis, bacteremia, cholangitis, urinary tract infection (UTI), traveler's diarrhea and other clinical infections such as neonatal meningitis and pneumonia. The fatty acid biosynthesis is essential for the bacterial viability and growth. There are three types of β-ketoacyl acyl carrier protein synthase (KAS) which are important for overcoming the bacterial resistance problem. β-ketoacyl acyl carrier protein synthase I (KAS I) is member of the condensing enzyme family, which is a key catalyst in bacterial fatty acid biosynthesis, and thus an attractive target for novel antibioticsis related to the elongation of unsaturated fatty acids in bacterial fatty acid synthesis and can be a good therapeutic target of designing novel antibiotics. In this report, we performed docking study of E. coli (KAS I) and 50 flavonoids. Out of these 50 flavonoids, there are two compounds, genistein and isorhamnetin, that showed the superior binding energy while fully satisfying the conditions of drug likeliness. The predicted binding energy of genistein and isorhamnetin toward KAS I are -135.76kcal/mol and -132.42kcal/mol, respectively. These energies favorably compare to the biding energy of known drugs thiolactomicin and cerulenin that are -90.26kcal/mol and -99.64kcal/mol, respectively. The method used was docking with the selected E. coli (KAS I-PDB ID-1FJ4) using iGemdock. This was also found to obey the Lipinski's guidelines of five and to show the drug likeliness and bioavailability. PMID:26292066

  2. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    Science.gov (United States)

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  3. Oxidative acylation using thioacids

    Science.gov (United States)

    Liu, R.; Orgel, L. E.

    1997-01-01

    Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.

  4. Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency

    DEFF Research Database (Denmark)

    Pedersen, Christina Bak; Bross, P.; Winter, V.S.;

    2003-01-01

    , and preliminary experiments suggested that the variant protein displayed prolonged association with chaperonins and delayed formation of active enzyme. Accordingly, the molecular pathogenesis of SCAD deficiency may rely on intramitochondrial protein quality control mechanisms, including degradation...

  5. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization

    Science.gov (United States)

    Wagner, Susanne; Green, Michael R.

    1993-10-01

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  6. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    Directory of Open Access Journals (Sweden)

    Uldaeliz Trujillo

    Full Text Available The polyunsaturated fatty acid (PUFA synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect and in structural stabilization of the multidomain protein (synergistic effect. While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of

  7. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    KAUST Repository

    Trujillo, Uldaeliz

    2013-02-28

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  8. Protein engineering of a bacterial N-acyl-d-glucosamine 2-epimerase for improved stability under process conditions.

    Science.gov (United States)

    Klermund, Ludwig; Riederer, Amelie; Hunger, Annique; Castiglione, Kathrin

    2016-06-01

    Enzymatic cascade reactions, i.e. the combination of several enzyme reactions in one pot without isolation of intermediates, have great potential for the establishment of sustainable chemical processes. However, many cascade reactions suffer from cross-inhibitions and enzyme inactivation by components of the reaction system. This study focuses on the two-step enzymatic synthesis of N-acetylneuraminic acid (Neu5Ac) using an N-acyl-d-glucosamine 2-epimerase from Anabaena variabilis ATCC 29413 (AvaAGE) in combination with an N-acetylneuraminate lyase (NAL) from Escherichia coli. AvaAGE epimerizes N-acetyl-d-glucosamine (GlcNAc) to N-acetyl-d-mannosamine (ManNAc), which then reacts with pyruvate in a NAL-catalyzed aldol condensation to form Neu5Ac. However, AvaAGE is inactivated by high pyruvate concentrations, which are used to push the NAL reaction toward the product side. A biphasic inactivation was observed in the presence of 50-800mM pyruvate resulting in activity losses of the AvaAGE of up to 60% within the first hour. Site-directed mutagenesis revealed that pyruvate modifies one of the four lysine residues in the ATP-binding site of AvaAGE. Because ATP is an allosteric activator of the epimerase and the binding of the nucleotide is crucial for its catalytic properties, saturation mutagenesis at position K160 was performed to identify the most compatible amino acid exchanges. The best variants, K160I, K160N and K160L, showed no inactivation by pyruvate, but significantly impaired kinetic parameters. For example, depending on the mutant, the turnover number kcat was reduced by 51-68% compared with the wild-type enzyme. A mechanistic model of the Neu5Ac synthesis was established, which can be used to select the AvaAGE variant that is most favorable for a given process condition. The results show that mechanistic models can greatly facilitate the choice of the right enzyme for an enzymatic cascade reaction with multiple cross-inhibitions and inactivation phenomena

  9. Stimulation of IGF-binding protein-1 secretion by AMP-activated protein kinase.

    Science.gov (United States)

    Lewitt, M S

    2001-04-20

    Insulin-like growth factor-binding protein-1 (IGFBP-1) is stimulated during intensive exercise and in catabolic conditions to very high concentrations, which are not completely explained by known regulators such as insulin and glucocorticoids. The role of AMP-activated protein kinase (AMPK), an important signaling system in lipid and carbohydrate metabolism, in regulating IGFBP-1 was studied in H4-II-E rat hepatoma cells. Arsenic(III) oxide and 5-aminoimidazole-4-carboxamide-riboside (AICAR) were used as activators. AICAR (150 microM) stimulated IGFBP-1 secretion twofold during a 5-h incubation (P = 0.002). Insulin (100 ng/ml) inhibited IGFBP-1 by 80% (P < 0.001), but this was completely abolished in the presence of 150 microM AICAR. The effect of dexamethasone in stimulating IGFBP-1 threefold was additive to the effect of AICAR (P < 0.001) and, in the presence of AICAR, was incompletely inhibited by insulin. In conclusion AMPK is identified as a novel regulatory pathway for IGFBP-1, stimulating secretion and blocking the inhibitory effect of insulin. PMID:11302732

  10. Labelling of endogenous target protein via N-S acyl transfer-mediated activation of N-sulfanylethylanilide.

    Science.gov (United States)

    Denda, Masaya; Morisaki, Takuya; Kohiki, Taiki; Yamamoto, Jun; Sato, Kohei; Sagawa, Ikuko; Inokuma, Tsubasa; Sato, Youichi; Yamauchi, Aiko; Shigenaga, Akira; Otaka, Akira

    2016-07-14

    The ligand-dependent incorporation of a reporter molecule (e.g., fluorescence dye or biotin) onto a endogenous target protein has emerged as an important strategy for elucidating protein function using various affinity-based labelling reagents consisting of reporter, ligand and reactive units. Conventional labelling reagents generally use a weakly activated reactive unit, which can result in the non-specific labelling of proteins in a ligand-independent manner. In this context, the activation of a labelling reagent through a targeted protein-ligand interaction could potentially overcome the problems associated with conventional affinity-based labelling reagents. We hypothesized that this type of protein-ligand-interaction-mediated activation could be accomplished using N-sulfanylethylanilide (SEAlide) as the reactive unit in the labelling reagent. Electrophilically unreactive amide-type SEAlide can be activated by its conversion to the corresponding active thioester in the presence of a phosphate salt, which can act as an acid-base catalyst. It has been suggested that protein surfaces consisting of hydrophilic residues such as amino, carboxyl and imidazole groups could function as acid-base catalysts. We therefore envisioned that a SEAlide-based labelling reagent (SEAL) bearing SEAlide as a reactive unit could be activated through the binding of the SEAL with a target protein. Several SEALs were readily prepared in this study using standard 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase protocols. These SEAL systems were subsequently applied to the ligand-dependent labelling of human carbonic anhydrase (hCA) and cyclooxyganese 1. Although we have not yet obtained any direct evidence for the target protein-mediated activation of the SEAlide unit, our results for the reaction of these SEALs with hCA1 or butylamine indirectly support our hypothesis. The SEALs reported in this study represent valuable new entries to the field of affinity-based labelling reagents

  11. Toxic response caused by a misfolding variant of the mitochondrial protein short-chain acyl-CoA dehydrogenase

    DEFF Research Database (Denmark)

    Schmidt, Stinne P; Corydon, Thomas J; Pedersen, Christina B;

    2011-01-01

    for investigation of SCAD with respect to expression, degree of misfolding, and enzymatic SCAD activity. Furthermore, cell proliferation and expression of selected stress response genes were investigated as well as proteomic analysis of mitochondria-enriched extracts in order to study the consequences of p.Arg107......Cys protein expression using a global approach. CONCLUSIONS: We found that expression of the p.Arg107Cys variant SCAD protein gives rise to inactive misfolded protein species, eliciting a mild toxic response manifested though a decreased proliferation rate and oxidative stress, as shown...

  12. Overexpression of the olive acyl carrier protein gene (OeACP1) produces alterations in fatty acid composition of tobacco leaves.

    Science.gov (United States)

    De Marchis, Francesca; Valeri, Maria Cristina; Pompa, Andrea; Bouveret, Emmanuelle; Alagna, Fiammetta; Grisan, Simone; Stanzione, Vitale; Mariotti, Roberto; Cultrera, Nicolò; Baldoni, Luciana; Bellucci, Michele

    2016-02-01

    Taking into account that fatty acid (FA) biosynthesis plays a crucial role in lipid accumulation in olive (Olea europaea L.) mesocarp, we investigated the effect of olive acyl carrier protein (ACP) on FA composition by overexpressing an olive ACP cDNA in tobacco plants. The OeACP1.1A cDNA was inserted in the nucleus or in the chloroplast DNA of different tobacco plants, resulting in extensive transcription of the transgenes. The transplastomic plants accumulated lower olive ACP levels in comparison to nuclear-transformed plants. Moreover, the phenotype of the former plants was characterized by pale green/white cotyledons with abnormal chloroplasts, delayed germination and reduced growth. We suggest that the transplastomic phenotype was likely caused by inefficient olive ACP mRNA translation in chloroplast stroma. Conversely, total lipids from leaves of nuclear transformants expressing high olive ACP levels showed a significant increase in oleic acid (18:1) and linolenic acid (18:3), and a concomitant significant reduction of hexadecadienoic acid (16:2) and hexadecatrienoic acid (16:3). This implies that in leaves of tobacco transformants, as likely in the mesocarp of olive fruit, olive ACP not only plays a general role in FA synthesis, but seems to be specifically involved in chain length regulation forwarding the elongation to C18 FAs and the subsequent desaturation to 18:1 and 18:3. PMID:26560313

  13. Stimulation of DNA Glycosylase Activities by XPC Protein Complex: Roles of Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Yuichiro Shimizu

    2010-01-01

    Full Text Available We showed that XPC complex, which is a DNA damage detector for nucleotide excision repair, stimulates activity of thymine DNA glycosylase (TDG that initiates base excision repair. XPC appeared to facilitate the enzymatic turnover of TDG by promoting displacement from its own product abasic site, although the precise mechanism underlying this stimulation has not been clarified. Here we show that XPC has only marginal effects on the activity of E. coli TDG homolog (EcMUG, which remains bound to the abasic site like human TDG but does not significantly interacts with XPC. On the contrary, XPC significantly stimulates the activities of sumoylated TDG and SMUG1, both of which exhibit quite different enzymatic kinetics from unmodified TDG but interact with XPC. These results point to importance of physical interactions for stimulation of DNA glycosylases by XPC and have implications in the molecular mechanisms underlying mutagenesis and carcinogenesis in XP-C patients.

  14. Calcium-myristoyl Tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclase-activating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity.

    Science.gov (United States)

    Peshenko, Igor V; Olshevskaya, Elena V; Lim, Sunghyuk; Ames, James B; Dizhoor, Alexander M

    2012-04-20

    Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca(2+)-bound and Mg(2+)-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca(2+) sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca(2+) binding to EF-hand 4 and Ca(2+) sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu(80) and Val(180)) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or "tug") between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca(2+) sensitivity. PMID:22383530

  15. Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Simonsen, Karina Trankjær; Olsen, Louise Cathrine Braun;

    2011-01-01

    of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs; four basal forms and three ACBP-domain proteins. We find that each of these paralogues is capable of complementing growth of ACBP......-deficient yeast cells, and that they exhibit distinct temporal- and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however we find that functional loss of ACBP-1 leads to reduced triglyceride...... storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans....

  16. Identification of Sirtuin4 (SIRT4) Protein Interactions: Uncovering Candidate Acyl-Modified Mitochondrial Substrates and Enzymatic Regulators

    Science.gov (United States)

    Mathias, Rommel A.; Greco, Todd M.; Cristea, Ileana M.

    2016-01-01

    Recent studies have highlighted the three mitochondrial human sirtuins (SIRT3, SIRT4, and SIRT5) as critical regulators of a wide range of cellular metabolic pathways. A key factor to understanding their impact on metabolism has been the discovery that, in addition to their ability to deacetylate substrates, mitochondrial sirtuins can have other prominent enzymatic activities. SIRT4, one of the least characterized mitochondrial sirtuins, was shown to be the first known cellular lipoamidase, removing lipoyl modifications from lysine residues of substrates. Specifically, SIRT4 was found to delipoylate and modulate the activity of the pyruvate dehydrogenase complex (PDH), a protein complex critical for the production of acetyl-CoA. Furthermore, SIRT4 is well known to have ADP-ribosyltransferase activity and to regulate the activity of the glutamate dehydrogenase complex (GDH). Adding to its impressive range of enzymatic activities are its ability to deacetylate malonyl-CoA decarboxylase (MCD) to regulate lipid catabolism, and its newly recognized ability to remove biotinyl groups from substrates that remain to be defined. Given the wide range of enzymatic activities and the still limited knowledge of its substrates, further studies are needed to characterize its protein interactions and its impact on metabolic pathways. Here, we present several proven protocols for identifying SIRT4 protein interaction networks within the mitochondria. Specifically, we describe methods for generating human cell lines expressing SIRT4, purifying mitochondria from crude organelles, and effectively capturing SIRT4 with its interactions and substrates. PMID:27246218

  17. Crystal structure of enoyl-acyl carrier protein reductase (FabK) from Streptococcus pneumoniae reveals the binding mode of an inhibitor.

    Science.gov (United States)

    Saito, Jun; Yamada, Mototsugu; Watanabe, Takashi; Iida, Maiko; Kitagawa, Hideo; Takahata, Sho; Ozawa, Tomohiro; Takeuchi, Yasuo; Ohsawa, Fukuichi

    2008-04-01

    Enoyl-acyl carrier protein (ACP) reductases are critical for bacterial type II fatty acid biosynthesis and thus are attractive targets for developing novel antibiotics. We determined the crystal structure of enoyl-ACP reductase (FabK) from Streptococcus pneumoniae at 1.7 A resolution. There was one dimer per asymmetric unit. Each subunit formed a triose phosphate isomerase (TIM) barrel structure, and flavin mononucleotide (FMN) was bound as a cofactor in the active site. The overall structure was similar to the enoyl-ACP reductase (ER) of fungal fatty acid synthase and to 2-nitropropane dioxygenase (2-ND) from Pseudomonas aeruginosa, although there were some differences among these structures. We determined the crystal structure of FabK in complex with a phenylimidazole derivative inhibitor to envision the binding site interactions. The crystal structure reveals that the inhibitor binds to a hydrophobic pocket in the active site of FabK, and this is accompanied by induced-fit movements of two loop regions. The thiazole ring and part of the ureido moiety of the inhibitor are involved in a face-to-face pi-pi stacking interaction with the isoalloxazine ring of FMN. The side-chain conformation of the proposed catalytic residue, His144, changes upon complex formation. Lineweaver-Burk plots indicate that the inhibitor binds competitively with respect to NADH, and uncompetitively with respect to crotonoyl coenzyme A. We propose that the primary basis of the inhibitory activity is competition with NADH for binding to FabK, which is the first step of the two-step ping-pong catalytic mechanism. PMID:18305197

  18. Acyl-coenzyme A-binding protein regulates Beta-oxidation required for growth and survival of non-small cell lung cancer.

    Science.gov (United States)

    Harris, Fredrick T; Rahman, S M Jamshedur; Hassanein, Mohamed; Qian, Jun; Hoeksema, Megan D; Chen, Heidi; Eisenberg, Rosana; Chaurand, Pierre; Caprioli, Richard M; Shiota, Masakazu; Massion, Pierre P

    2014-07-01

    We identified acyl-coenzyme A-binding protein (ACBP) as part of a proteomic signature predicting the risk of having lung cancer. Because ACBP is known to regulate β-oxidation, which in turn controls cellular proliferation, we hypothesized that ACBP contributes to regulation of cellular proliferation and survival of non-small cell lung cancer (NSCLC) by modulating β-oxidation. We used matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) and immunohistochemistry (IHC) to confirm the tissue localization of ABCP in pre-invasive and invasive NSCLCs. We correlated ACBP gene expression levels in NSCLCs with clinical outcomes. In loss-of-function studies, we tested the effect of the downregulation of ACBP on cellular proliferation and apoptosis in normal bronchial and NSCLC cell lines. Using tritiated-palmitate ((3)H-palmitate), we measured β-oxidation levels and tested the effect of etomoxir, a β-oxidation inhibitor, on proliferation and apoptosis. MALDI-IMS and IHC analysis confirmed that ACBP is overexpressed in pre-invasive and invasive lung cancers. High ACBP gene expression levels in NSCLCs correlated with worse survival (HR = 1.73). We observed a 40% decrease in β-oxidation and concordant decreases in proliferation and increases in apoptosis in ACBP-depleted NSCLC cells as compared with bronchial airway epithelial cells. Inhibition of β-oxidation by etomoxir in ACBP-overexpressing cells produced dose-dependent decrease in proliferation and increase in apoptosis (P = 0.01 and P oxidation.

  19. The stearoyl-acyl-carrier-protein desaturase promoter (Des) from oil palm confers fruit-specific GUS expression in transgenic tomato.

    Science.gov (United States)

    Saed Taha, Rima; Ismail, Ismanizan; Zainal, Zamri; Abdullah, Siti Nor Akmar

    2012-09-01

    The stearoyl-acyl-carrier-protein (ACP) desaturase is a plastid-localized enzyme that catalyzes the conversion of stearoyl-ACP to oleoyl-ACP and plays an important role in the determination of the properties of the majority of cellular glycerolipids. Functional characterization of the fatty acid desaturase genes and their specific promoters is a prerequisite for altering the composition of unsaturated fatty acids of palm oil by genetic engineering. In this paper, the specificity and strength of the oil palm stearoyl-ACP desaturase gene promoter (Des) was evaluated in transgenic tomato plants. Transcriptional fusions between 5' deletions of the Des promoter (Des1-4) and the β-glucuronidase (GUS) reporter gene were generated and their expression analyzed in different tissues of stably transformed tomato plants. Histochemical analysis of the Des promoter deletion series revealed that GUS gene expression was confined to the tomato fruits. No expression was detected in vegetative tissues of the transgenic plants. The highest levels of GUS activity was observed in different tissues of ripe red fruits (vascular tissue, septa, endocarp, mesocarp and columella) and in seeds, which harbored the promoter region located between -590 and +10. A comparison of the promoter-deletion constructs showed that the Des4 promoter deletion (314bp) produced a markedly low level of GUS expression in fruits and seeds. Fluorometric analysis of the GUS activity revealed a 4-fold increase in the activity of the full-length Des promoter compared to the CaMV35S promoter. RNA-hybridization analyses provided additional evidence of increased GUS expression in fruits driven by a Des fragment. Taken together, these results demonstrate the potential of the Des promoter as a tool for the genetic engineering of oil palms and other species, including dicots, in improving the quality and nutritional value of the fruits. PMID:22658816

  20. Enzymatic acylation of starch.

    Science.gov (United States)

    Alissandratos, Apostolos; Halling, Peter J

    2012-07-01

    Starch a cheap, abundant and renewable natural material has been chemically modified for many years. The popular modification acylation has been used to adjust rheological properties as well as deliver polymers with internal plasticizers and other potential uses. However the harsh reaction conditions required to produce these esters may limit their use, especially in sensitive applications (foods, pharmaceuticals, etc.). The use of enzymes to catalyse acylation may provide a suitable alternative due to high selectivities and mild reaction conditions. Traditional hydrolase-catalysed synthesis in non-aqueous apolar media is hard due to lack of polysaccharide solubility. However, acylated starch derivatives have recently been successfully produced in other non-conventional systems: (a) surfactant-solubilised subtilisin and suspended amylose in organic media; (b) starch nanoparticles dispersed in organic medium with immobilised lipase; (c) aqueous starch gels with lipase and dispersed fatty acids. We attempt a systematic review that draws parallels between the seemingly unrelated approaches described. PMID:22138593

  1. Disruption of the acyl-coa binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Bloksgaard, Maria; Sørensen, Signe Bek;

    2011-01-01

    , little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP-/-). These mice are viable and fertile and develop normally. However, around weaning the ACBP-/- mice go through a crisis with overall weakness, and a slightly decreased growth...... rate. Using microarray analysis we show that the liver of ACBP-/- mice display a significantly delayed adaptation to weaning with late induction of target genes of the sterol regulatory element binding protein (SREBP) family. As a result, hepatic de novo cholesterogenesis is decreased at weaning....... The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads...

  2. Early kinetic intermediate in the folding of acyl-CoA binding protein detected by fluorescence labeling and ultrarapid mixing

    DEFF Research Database (Denmark)

    Teilum, Kaare; Maki, Kosuke; Kragelund, Birthe B;

    2002-01-01

    state. The kinetic data are fully accounted for by three-state mechanisms with either on- or off-pathway intermediates. The intermediate accumulates to a maximum population of 40%, and its stability depends only weakly on denaturant concentration, which is consistent with a marginally stable ensemble...... energy transfer. Although the folding of ACBP was initially described as a concerted two-state process, the tryptophan fluorescence measurements revealed a previously unresolved phase with a time constant tau = 80 micros, indicating formation of an intermediate with only slightly enhanced fluorescence...... of partially collapsed states with approximately 1/3 of the solvent-accessible surface buried. The findings indicate that ultrafast mixing methods combined with sensitive conformational probes can reveal transient accumulation of intermediate states in proteins with apparent two-state folding mechanisms....

  3. The domain-specific and temperature-dependent protein misfolding phenotype of variant medium-chain acyl-CoA dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Johanna M Jank

    Full Text Available The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a molecular loss-of-function phenotype. Here we established a comprehensive experimental setup to analyze the structural consequences of eight ACADM missense mutations (p.Ala52Val, p.Tyr67His, p.Tyr158His, p.Arg206Cys, p.Asp266Gly, p.Lys329Glu, p.Arg334Lys, p.Arg413Ser identified after newborn screening and linked the corresponding protein misfolding phenotype to the site of side-chain replacement with respect to the domain. With fever being the crucial risk factor for metabolic decompensation of patients with MCADD, special emphasis was put on the analysis of structural and functional derangements related to thermal stress. Based on protein conformation, thermal stability and kinetic stability, the molecular phenotype in MCADD depends on the structural region that is affected by missense-induced conformational changes with the central β-domain being particularly prone to structural derangement and destabilization. Since systematic classification of conformational derangements induced by ACADM mutations may be a helpful tool in assessing the clinical risk of patients, we scored the misfolding phenotype of the variants in comparison to p.Lys329Glu (K304E, the classical severe mutation, and p.Tyr67His (Y42H, discussed to be mild. Experiments assessing the impact of thermal stress revealed that mutations in the ACADM gene lower the temperature threshold at which MCAD loss-of-function occurs. Consequently, increased temperature as it occurs during intercurrent infections, significantly increases the risk of further conformational derangement and loss of function of the MCAD enzyme explaining the life-threatening clinical courses observed during fever episodes

  4. The mitochondrial precursor protein apocytochrome c strongly influences the order of the headgroup and acyl chains of phosphatidylserine dispersions. A sup 2 H and sup 31 P NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Jordi, W.; de Kroon, A.I.P.M.; Killian, A.; de Kruijff, B. (State Univ. of Utrecht (Netherlands))

    1990-03-06

    Deuterium and phosphorus nuclear magnetic resonance techniques were used to study the interaction of the mitochondrial precursor protein apocytochrome c with headgroup-deuterated (dioleoylphosphatidyl-L-(2-{sup 2}H{sub 1})serine) and acyl chain deuterated (1,2-(11,11-{sup 2}H{sub 2})dioleoylphosphatidylserine) dispersions. Binding of the protein to dioleoylphosphatidylserine liposomes results in phosphorus nuclear magnetic resonance spectra typical of phospholipids undergoing fast axial rotation in extended liquid-crystalline bilayers with a reduced residual chemical shift anisotropy and an increased line width. {sup 2}H NMR spectra on headgroup-deuterated dioleoylphosphatidylserine dispersions showed a decrease in quadrupolar splitting and a broadening of the signal on interaction with apocytochrome c. Addition of increasing amounts of apocytochrome c to the acyl chain deuterated dioleoylphosphatidylserine dispersions results in the gradual appearance of a second component in the spectra with a 44% reduced quadrupolar splitting. Such large reduction of the quadrupolar splitting has never been observed for any protein studied yet. The induction of a new spectral component with a well-defined reduced quadrupolar splitting seems to be confined to the N-terminus since addition of a small hydrophilic amino-terminal peptide (residues 1-38) also induces a second component with a strongly reduced quadrupolar splitting. A chemically synthesized peptide corresponding to amino acid residues 2-17 of the presequence of the mitochondrial protein cytochrome oxidase subunit IV also has a large perturbing effect on the order of the acyl chains, indicating that the observed effects may be a property shared by many mitochondrial precursor proteins. Implications of these data for the import of apocytochrome c into mitochondria will be discussed.

  5. Histamine stimulates calcium-mediated protein phosphorylation in a colonic epithelial cell line.

    Science.gov (United States)

    Cohn, J A; Dougherty, N C; King, W F

    1989-12-15

    Protein phosphorylation responses in intact enterocytes were examined by stimulating 32Pi-labeled T84 cell monolayers with histamine and resolving proteins by two-dimensional gel electrophoresis. Histamine increases 32P-incorporation into two acidic proteins of Mr 83,000 and of Mr 29,000, designated p83 and p29. Labeling of p83 and p29 is also increased in cells exposed to ionomycin, but not in cells exposed to vasoactive intestinal peptide under conditions resulting in cAMP-mediated secretion and cAMP-stimulated protein phosphorylation. When T84 cell fractions are incubated with [gamma-32P]ATP, labeling of p83 is stimulated by Ca++, but not by cAMP. Thus, histamine stimulates Ca++-mediated protein phosphorylation during the regulation of Cl- secretion.

  6. Overexpression of PGC‑1α enhances cell proliferation and tumorigenesis of HEK293 cells through the upregulation of Sp1 and Acyl-CoA binding protein.

    Science.gov (United States)

    Shin, Sung-Won; Yun, Seong-Hoon; Park, Eun-Seon; Jeong, Jin-Sook; Kwak, Jong-Young; Park, Joo-In

    2015-03-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC‑1α), a coactivator interacting with multiple transcription factors, regulates several metabolic processes. Although recent studies have focused on the role of PGC‑1α in cancer, the underlying molecular mechanism has not been clarified. Therefore, we evaluated the role of PGC‑1α in cell proliferation and tumorigenesis using human embryonic kidney (HEK)293 cells and colorectal cancer cells. We established stable HEK293 cell lines expressing PGC‑1α and examined cell proliferation, anchorage-independent growth, and oncogenic potential compared to parental HEK293 cells. To identify the molecular PGC‑1α targets for increased cell proliferation and tumorigenesis, the GeneFishing™ DEG (differentially expressed genes) screening system was used. Western blot analysis and immunofluorescence staining were performed for a regulated gene product to confirm the results. Forced expression of PGC‑1α in HEK293 cells promoted cell proliferation and anchorage-independent growth in soft agar. In addition, HEK293 cells that highly expressed PGC‑1α showed enhanced tumor formation when subcutaneously injected into the bilateral flanks of immunodeficient mice. The results of the GeneFishing DEG screening system identified one upregulated gene (Acyl-CoA binding protein; ACBP). Real-time RT-PCR, western blot analysis, and immunofluorescence staining showed that ACBP was markedly increased in HEK293 cells stably overexpressing PGC‑1α (PGC‑1α-HEK293 cells) compared to those expressing an empty vector. In PGC‑1α, ACBP, and specificity protein 1 (Sp1) siRNA knockdown experiments in PGC‑1α-HEK293 and SNU-C4 cells, we also observed inhibition of cell proliferation, reduced expression of antioxidant enzymes, and increased H2O2-induced reactive oxygen species production and apoptosis. These findings suggest that PGC‑1α may promote cell proliferation and tumorigenesis through upregulation of ACBP

  7. The ETFDH c.158A>G Variation Disrupts the Balanced Binding of ESE and ESS Proteins Causing Missplicing and Multiple acyl-CoA Dehydrogenation Deficiency

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Brøner, Sabrina; Sabaratnam, Rugivan;

    2013-01-01

    Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only...

  8. Identification, cloning and lactonase activity of recombinant protein of N-acyl homoserine lactonase (AiiA from Bacillus thuringiensis 147-115-16 strain.

    Directory of Open Access Journals (Sweden)

    Alvaro Mauricio Florez Escobar

    2014-06-01

    Full Text Available Título en español: Identificación, clonación y actividad lactonasa de la proteína recombinante de N-ácil homoserina lactonasa (AiiA de Bacillus thuringiensis cepa 147-115-16 Short title: N-acyl homoserine lactonase (AiiA from Bacillus thuringiensis Abstract: The quorum-quenching N-acyl homoserine lactonases are a family of bacterial metalloenzymes that participate in degradation of N-acyl homoserine lactones (AHLs, disrupting the quorum sensing system of gram negative bacterial species. From a collection of Bacillus thuringiensis strains isolated in Colombia from plants and exhibiting toxic activity against lepidopteran insects, 310 bacterial isolates were tested to determine lactonase activity by using biosensor systems in presence of synthetic N-hexanoyl-L-homoserine lactone (C6-HSL and N-octanoyl-L-homoserine lactone (C8-HSL. From them, 251 strains showed degrading activity to both C6-HSL and C8-HSL, 57% exhibited degrading activity to C6-HSL and 43% to C8-HSL. One B. thuringiensis strain, denoted as 147-115-16, that exhibit high degrading activity to C6-HSL and C8-HSL, was able to attenuate soft rot symptoms in infected potato slices with Pectobacterium carotovorum. This strain contains an homologous of the aiiA gene that was cloned, sequenced and expressed in Esherichia coli DE3. The recombinant protein AiiA147-11516 displays activity to C6-HSL, C8-HSL, N-(β-ketocaproyl (3-O-C6-HSL and N-3-oxo-dodecanoyl (3-O-C12-HSL. The recombinant strain in the presence of P. caratovorum cultures was able to attenuate the infection, suggesting that it interferes either with the accumulation or with the response to the AHLs signals. Acording to this data and based on previous report from recombinant AiiA147-11516, this enzyme exhibits activity to a wide range of catalytic substrates suggesting its industrial application in the disease control programs through plants transformation.Key words: lactones, Quorum sensing, Quorum quenching, Lactonases

  9. Specificity of Acyl-Homoserine Lactone Synthases Examined by Mass Spectrometry

    OpenAIRE

    Gould, Ty A.; Herman, Jake; Krank, Jessica; Robert C. Murphy; Mair E A Churchill

    2006-01-01

    Many gram-negative bacteria produce a specific set of N-acyl-l-homoserine-lactone (AHL) signaling molecules for the purpose of quorum sensing, which is a means of regulating coordinated gene expression in a cell-density-dependent manner. AHLs are produced from acylated acyl-carrier protein (acyl-ACP) and S-adenosyl-l-methionine by the AHL synthase enzyme. The appearance of specific AHLs is due in large part to the intrinsic specificity of the enzyme for subsets of acyl-ACP substrates. Structu...

  10. Insulin and amino acids stimulate whole body protein synthesis in neonates

    Science.gov (United States)

    Insulin and amino acids (AA) stimulate muscle protein synthesis in neonatal pigs. To determine the effects of insulin and AA on whole body protein turnover, hyperinsulinemic (0 and 100 ng/(kg[0.66]/min))-euglycemic-AA clamps were performed during euaminoacidemia or hyperaminoacidemia in fasted 7-d-...

  11. Involvement of Protein Kinase C Activation in L-Leucine-Induced Stimulation of Protein Synthesis in L6 Myotubes

    OpenAIRE

    Yagasaki, Kazumi; Morisaki, Naoko; Kitahara, Yoshiro; Miura, Atsuhito; Funabiki, Ryuhei

    2003-01-01

    Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [3H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, α-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A2 and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhib...

  12. Thyroid hormone stimulation of plasma protein synthesis in cultured hepatocytes.

    Science.gov (United States)

    Hertzberg, K M; Pindyck, J; Mosesson, M W; Grieninger, G

    1981-01-25

    The direct effect of thyroid hormones on hepatocellular plasma protein synthesis has been studied in primary monolayer cultures derived from chick embryo liver. The chemically defined medium used for plating and maintaining the cultures contained no other hormones, protein, or serum supplement. Addition of physiological concentrations (10 nM) of triiodothyronine or thyroxine produced 3-fold or greater increases in the rates of synthesis of fibrinogen and three other major secreted proteins. By comparison albumin, transferrin, and total protein synthesis were not substantially increased. The enhanced synthesis of selected plasma proteins could be detected 6 h after initial addition of triiodothyronine. Exposure of the cells to the hormone for only 30 min was nearly as effective as continuous exposure in eliciting the ultimate response. Triiodothyronine exerted its half-maximal effect at a concentration of 1 nM. Diminished potency was associated with less iodination of the hormone; a marked reduction was noted with di-iodinated thyronine and no stimulatory activity at all with either mono- or non-iodinated thyronine. PMID:7451459

  13. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Knudsen, J

    1997-01-01

    The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or...

  14. Mechanical stimulation increases proliferation, differentiation and protein expression in culture

    DEFF Research Database (Denmark)

    Grossi, Alberto; Yadav, Kavita; Lawson, Moira Ann

    2007-01-01

    the cells are able to to regulate Myo-D and myogenin is poorly understood. In the present work, we investigate the role of mechanical loading, through specific receptors to intracellular matrix proteins such as laminin and fibronectin, in both Myo-D and myogenin expression in C(2)C(12) cells. We propose...... recepotors plays a role in myoblast differentiation and fusion....

  15. Response threshold to aversive stimuli in stimulated early protein-malnourished rats

    Directory of Open Access Journals (Sweden)

    L.F. Rocinholi

    1997-03-01

    Full Text Available Two animal models of pain were used to study the effects of short-term protein malnutrition and environmental stimulation on the response threshold to aversive stimuli. Eighty male Wistar rats were used. Half of the pups were submitted to malnutrition by feeding their mothers a 6% protein diet from 0 to 21 days of age while the mothers of the other half (controls were well nourished, receiving 16% protein. From 22 to 70 days all rats were fed commercial lab chow. Half of the animals in the malnourished and control groups were maintained under stimulating conditions, including a 3-min daily handling from 0 to 70 days and an enriched living cage after weaning. The other half was reared in a standard living cage. At 70 days, independent groups of rats were exposed to the shock threshold or to the tail-flick test. The results showed lower body and brain weights in malnourished rats when compared with controls at weaning and testing. In the shock threshold test the malnourished animals were more sensitive to electric shock and environmental stimulation increased the shock threshold. No differences due to diet or environmental stimulation were found in the tail-flick procedure. These results demonstrate that protein malnutrition imposed only during the lactation period is efficient in inducing hyperreactivity to electric shock and that environmental stimulation attenuates the differences in shock threshold produced by protein malnutrition

  16. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, K.A.; Toledo, S.P. (Univ. of California-San Diego, La Jolla (USA))

    1989-09-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of (3H)leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of (3H)aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons.

  17. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    International Nuclear Information System (INIS)

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of [3H]leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of [3H]aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons

  18. Applying Acylated Fucose Analogues to Metabolic Glycoengineering

    OpenAIRE

    Julia Rosenlöcher; Verena Böhrsch; Michael Sacharjat; Véronique Blanchard; Christoph Giese; Volker Sandig; Christian P R Hackenberger; Stephan Hinderlich

    2015-01-01

    Manipulations of cell surface glycosylation or glycan decoration of selected proteins hold immense potential for exploring structure-activity relations or increasing glycoprotein quality. Metabolic glycoengineering describes the strategy where exogenously supplied sugar analogues intercept biosynthetic pathways and are incorporated into glycoconjugates. Low membrane permeability, which so far limited the large-scale adaption of this technology, can be addressed by the introduction of acylated...

  19. A Novel Lactic Acid Bacteria Growth-stimulating Peptide from Broad Bean (Vicia faba .) Protein Hydrolysates

    OpenAIRE

    Ping Xiao; Yuan Liu; Rizwan-ur-Rehman; Ran Kang; Yanping Wang

    2015-01-01

    In this study, broad bean protein hydrolysates (BPH) produced by alcalase with strong-stimulating activity for lactic acid bacteria (LAB) was first time reported. In order to obtain the key peptide that have growth-stimulating activity for lactic acid bacteria (LAB), gel filtration chromatography and Reverse Phase High Performance Liquid Chromatography (RP-HPLC) were applied to isolate and purify the peptides from BPH. Finally, F4-2 elicited the highest activity for LAB, corresponding to amin...

  20. Leptin stimulates protein synthesis-activating translation machinery in human trophoblastic cells.

    Science.gov (United States)

    Pérez-Pérez, Antonio; Maymó, Julieta; Gambino, Yésica; Dueñas, José L; Goberna, Raimundo; Varone, Cecilia; Sánchez-Margalet, Víctor

    2009-11-01

    Leptin was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it may work as an autocrine hormone, mediating angiogenesis, growth, and immunomodulation. Leptin receptor (LEPR, also known as Ob-R) shows sequence homology to members of the class I cytokine receptor (gp130) superfamily. In fact, leptin may function as a proinflammatory cytokine. We have previously found that leptin is a trophic and mitogenic factor for trophoblastic cells. In order to further investigate the mechanism by which leptin stimulates cell growth in JEG-3 cells and trophoblastic cells, we studied the phosphorylation state of different proteins of the initiation stage of translation and the total protein synthesis by [(3)H]leucine incorporation in JEG-3 cells. We have found that leptin dose-dependently stimulates the phosphorylation and activation of the translation initiation factor EIF4E as well as the phosphorylation of the EIF4E binding protein EIF4EBP1 (PHAS-I), which releases EIF4E to form active complexes. Moreover, leptin dose-dependently stimulates protein synthesis, and this effect can be partially prevented by blocking mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PIK3) pathways. In conclusion, leptin stimulates protein synthesis, at least in part activating the translation machinery, via the activation of MAPK and PIK3 pathways.

  1. Involvement of protein kinase C activation in L-leucine-induced stimulation of protein synthesis in l6 myotubes.

    Science.gov (United States)

    Yagasaki, Kazumi; Morisaki, Naoko; Kitahara, Yoshiro; Miura, Atsuhito; Funabiki, Ryuhei

    2003-11-01

    Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [(3)H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, alpha-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A(2) and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of proteinkinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. L-Leucine caused a rapid activation of protein kinase C in both cytosol and membrane fractions of the cells. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in L6 myotubes through activation of phospholipase C and protein kinase C. PMID:19003213

  2. A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket.

    Science.gov (United States)

    Chai, Ai-Fen; Bulloch, Esther M M; Evans, Genevieve L; Lott, J Shaun; Baker, Edward N; Johnston, Jodie M

    2015-04-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Access to iron in host macrophages depends on iron-chelating siderophores called mycobactins and is strongly correlated with Mtb virulence. Here, the crystal structure of an Mtb enzyme involved in mycobactin biosynthesis, MbtN, in complex with its FAD cofactor is presented at 2.30 Å resolution. The polypeptide fold of MbtN conforms to that of the acyl-CoA dehydrogenase (ACAD) family, consistent with its predicted role of introducing a double bond into the acyl chain of mycobactin. Structural comparisons and the presence of an acyl carrier protein, MbtL, in the same gene locus suggest that MbtN acts on an acyl-(acyl carrier protein) rather than an acyl-CoA. A notable feature of the crystal structure is the tubular density projecting from N(5) of FAD. This was interpreted as a covalently bound polyethylene glycol (PEG) fragment and resides in a hydrophobic pocket where the substrate acyl group is likely to bind. The pocket could accommodate an acyl chain of 14-21 C atoms, consistent with the expected length of the mycobactin acyl chain. Supporting this, steady-state kinetics show that MbtN has ACAD activity, preferring acyl chains of at least 16 C atoms. The acyl-binding pocket adopts a different orientation (relative to the FAD) to other structurally characterized ACADs. This difference may be correlated with the apparent ability of MbtN to catalyse the formation of an unusual cis double bond in the mycobactin acyl chain.

  3. Stimulation of Cellular Proliferation by Hepatitis B Virus X Protein

    Directory of Open Access Journals (Sweden)

    Charles R. Madden

    2001-01-01

    Full Text Available Chronic infection with the hepatitis B virus (HBV is a known risk factor in the development of human hepatocellular carcinoma (HCC. The HBV-encoded X protein, HBx, has been investigated for properties that may explain its cancer cofactor role in transgenic mouse lines. We discuss here recent data showing that HBx is able to induce hepatocellular proliferation in vitro and in vivo. This property of HBx is predicted to sensitize hepatocytes to other HCC cofactors, including exposure to carcinogens and to other hepatitis viruses. Cellular proliferation is intimately linked to the mechanism(s by which most tumor-associated viruses transform virus-infected cells. The HBx alteration of the cell cycle provides an additional mechanism by which chronic HBV infection may contribute to HCC.

  4. Effects of light on protein patterns in gravitropically stimulated root caps of corn

    Science.gov (United States)

    Feldman, L. J.; Gildow, V.

    1984-01-01

    In certain cultivars of corn (Zea mays var. Merit), light stimulates gravitropic bending of the root by influencing events in the root cap. In this paper, we report on changes in root cap proteins which occur as a result of the light treatment and single out specific proteins as potentially having a role in mediating the gravitropic response. For this work, we have used root caps maintained aseptically in culture media supplemented with auxin. If auxin is deleted from the culture medium, the protein profiles observed following illumination differ from that seen in caps provided light while in auxin-supplemented media. We also report that several of the proteins for which synthesis is stimulated by light appear to turn over rapidly, usually within 0.5 hour of formation.

  5. S-naproxen-ss-1-O-acyl glucuronide degradation kinetic studies by stopped-flow high-performance liquid chromatography-H-1 NMR and high-performance liquid chromatography-UV

    DEFF Research Database (Denmark)

    Mortensen, R. W.; Corcoran, O.; Cornett, Claus;

    2001-01-01

    Acyl-migrated isomers of drug beta -1-O-acyl glucuronides have been implicated in drug toxicity because they can bind to proteins. The acyl migration and hydrolysis of S-naproxen-beta -1-O-acyl glucuronide (S-nap-g) was followed by dynamic stopped-flow HPLC-H-1 NMR and HPLC methods. Nine first or...

  6. A single session of neuromuscular electrical stimulation does not augment postprandial muscle protein accretion.

    Science.gov (United States)

    Dirks, Marlou L; Wall, Benjamin T; Kramer, Irene Fleur; Zorenc, Antoine H; Goessens, Joy P B; Gijsen, Annemie P; van Loon, Luc J C

    2016-07-01

    The loss of muscle mass and strength that occurs with aging, termed sarcopenia, has been (at least partly) attributed to an impaired muscle protein synthetic response to food intake. Previously, we showed that neuromuscular electrical stimulation (NMES) can stimulate fasting muscle protein synthesis rates and prevent muscle atrophy during disuse. We hypothesized that NMES prior to protein ingestion would increase postprandial muscle protein accretion. Eighteen healthy elderly (69 ± 1 yr) males participated in this study. After a 70-min unilateral NMES protocol was performed, subjects ingested 20 g of intrinsically l-[1-(13)C]phenylalanine-labeled casein. Plasma samples and muscle biopsies were collected to assess postprandial mixed muscle and myofibrillar protein accretion as well as associated myocellular signaling during a 4-h postprandial period in both the control (CON) and stimulated (NMES) leg. Protein ingestion resulted in rapid increases in both plasma phenylalanine concentrations and l-[1-(13)C]phenylalanine enrichments, which remained elevated during the entire 4-h postprandial period (P 0.05). In agreement, no differences were observed in the postprandial rise in myofibrillar protein bound l-[1-(13)C]phenylalanine enrichments between the CON and NMES legs (0.0115 ± 0.0014 vs. 0.0133 ± 0.0013 MPE, respectively, P > 0.05). Significant increases in mTOR and P70S6K phosphorylation status were observed in the NMES-stimulated leg only (P food intake does not augment postprandial muscle protein accretion in healthy older men. PMID:27279248

  7. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase

    Science.gov (United States)

    Sathyanarayanan, P. V.; Siems, W. F.; Jones, J. P.; Poovaiah, B. W.

    2001-01-01

    The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.

  8. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yoshizawa M.

    2013-03-01

    Full Text Available Ultrafast structural evolution in photoactive yellow protein (PYP is studied by femtosecond stimulated Raman spectroscopy. A comparison between wild-type PYP and E46Q mutant reveals that the hydrogen-bonding network surrounding the chromophore of PYP is immediately rearranged in the electronic excited state.

  9. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    International Nuclear Information System (INIS)

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  10. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    Science.gov (United States)

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  11. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Elaina M. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Center for Cardiovascular Sciences, Albany Medical College, Albany, NY (United States); Cerny, Ronald L. [Department of Chemistry, University of Nebraska, Lincoln, NE (United States); DiRusso, Concetta C. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Black, Paul N., E-mail: pblack2@unl.edu [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States)

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  12. Inactivation of enzymes and oxidative modification of proteins by stimulated neutrophils.

    Science.gov (United States)

    Oliver, C N

    1987-02-15

    Differentiated, stimulated HL-60 cells and freshly isolated, stimulated neutrophils inactivate glutamine synthetase (L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2) either inside or outside of Escherichia coli. Stimulated neutrophils also inactivate at least four endogenous enzymes which are inactivated by mixed-function oxidation (MFO) systems in vitro (L. Fucci, C.N. Oliver, M.J. Coon, and E.R. Stadtman (1983) Proc. Natl. Acad. Sci. USA 80, 1521-1525). The inactivation of glutamine synthetase by stimulated neutrophils exhibits characteristics similar to those previously described using both enzymic and nonenzymic MFO systems (R.L. Levine, C.N. Oliver, R.M. Fulks, and E.R. Stadtman (1981) Proc. Natl. Acad. Sci. USA 78, 2120-2124). Although the reaction occurs in the absence of Fe(III), it is stimulated by added Fe (III). Inactivation required molecular oxygen and is partially inhibited by Mn(II), catalase, superoxide dismutase, and metal chelators, ethylenediaminetetraacetic acid and o-phenanthroline. Both the kinetics and the extent of glutamine synthetase inactivation differ when neutrophils are stimulated with phorbol esters compared with formylated peptides. Glutamine synthetase inactivation catalyzed by MFO systems is accompanied by the formation of protein carbonyl derivatives which form stable hydrazones when treated with 2,4-dinitrophenylhydrazine. Multiple carbonyl derivatives are formed in the soluble protein fraction of stimulated neutrophils and these derivatives collectively exhibit an absorbance spectrum similar to that of glutamine synthetase inactivated by liver microsomal cytochrome P-450 MFO system (K. Nakamura, C.N. Oliver, and E.R. Stadtman (1985) Arch. Biochem. Biophys. 240, 319-329).

  13. Insulin-stimulated Na+ transport in a model renal epithelium: protein synthesis dependence and receptor interactions

    International Nuclear Information System (INIS)

    The urinary bladder of the toad, Bufo marinus, is a well characterized model of the mammalian distal nephron. Porcine insulin (∼ 0.5-5.0 μM) stimulates net mucosal to serosal Na+ flux within 10 minutes of hormone addition. The response is maintained for at least 5 hr and is completely abolished by low doses (10μM) of the epithelial Na+ channel blocker amiloride. Insulin-stimulated Na+ transport does not require new protein synthesis since it is actinomycin-D (10μg/ml) insensitive. Also in 3 separate experiments in which epithelial cell proteins were examined by 35S-methionine labeling, 2-dimensional polyacrylamide gel electrophoresis/autoradiography, no insulin induced proteins were observed. Equimolar concentrations of purified porcine proinsulin and insulin (0.64μM) stimulate Na+ transport to the same extent. Thus, the putative toad insulin receptor may have different affinity characteristics than those demonstrated for insulin and proinsulin in mammalian tissues. Alternatively, the natriferic action of insulin in toad urinary bladders may be mediated by occupancy of another receptor. Preliminary experiments indicating that nanomolar concentrations of IGF1 stimulate Na+ transport in this tissue support the latter contention

  14. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macro

  15. Heat shock protein 22 (HSPB8) limits TGF-β-stimulated migration of osteoblasts.

    Science.gov (United States)

    Yamamoto, Naohiro; Tokuda, Haruhiko; Kuroyanagi, Gen; Kainuma, Shingo; Matsushima-Nishiwaki, Rie; Fujita, Kazuhiko; Kozawa, Osamu; Otsuka, Takanobu

    2016-11-15

    Heat shock proteins (HSPs) are induced in response to various physiological and environmental conditions such as chemical and heat stress, and recognized to function as molecular chaperones. HSP22 (HSPB8), a low-molecular weight HSP, is ubiquitously expressed in many cell types. However, the precise role of HSP22 in bone metabolism remains to be clarified. In the present study, we investigated whether HSP22 is implicated in the transforming growth factor-β (TGF-β)-stimulated migration of osteoblast-like MC3T3-E1 cells. Although protein levels of HSP22 were clearly detected in unstimulated MC3T3-E1 cells, TGF-β failed to induce the protein levels. The TGF-β-stimulated migration was significantly up-regulated by knockdown of HSP22 expression. The cell migration stimulated by platelet-derived growth factor-BB was also enhanced by HSP22 knockdown. SB203580, an inhibitor of p38 mitogen-activated protein kinase, PD98059, an inhibitor of MEK1/2, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase had no effects on the TGF-β-induced migration. SIS3, a specific inhibitor of TGF-β-dependent Smad3 phosphorylation, significantly reduced the migration with or without TGF-β stimulation. Smad2, Smad3, Smad4 or Smad7 was not coimmunoprecipitated with HSP22. On the other hand, the TGF-β-induced Smad2 phosphorylation was enhanced by HSP22 down-regulation. The protein levels of TGF-β type II receptor (TGF-β RII) but not TGF-β type I receptor (TGF-β RI) was significantly up-regulated in HSP22 knockdown cells compared with those in the control cells. However, the levels of TGF-β RII mRNA in HSP22 knockdown cells were little different from those of the control cells. Neither TGF-β RI nor TGF-β RII was coimmunoprecipitated with HSP22. SIS3 reduced the amplification by HSP22 knockdown of the TGF-β-stimulated cell migration almost to the basal level. Our results strongly suggest that HSP22 functions as a negative regulator in the TGF-β-stimulated

  16. Cloning and Induced Expression of Acyl-CoA Binding Protein Gene from Sea Perch Lateolabrax japonicus%鲈鱼酰基辅酶A结合蛋白Acbp基因cDNA的克隆和诱导表达

    Institute of Scientific and Technical Information of China (English)

    钱云霞; 杨孙孝; 童丽娟; 宋娟娟; 钱伦

    2011-01-01

    Acyl-CoA-binding protein (ACBP) has been proposed to play a pivotal role in the intracellular trafficking and the utlization of long-chain fatty acyl-CoA esters.Full-length cDNA coding for Lateolabraxjaponicus ACBP was isolated from liver total RNA by RACE techniques.It was shown to be 679 bp, which included a 83 bp of 5'-untranslated region (UTR), a 326 bp 3'-UTR and a 270 bp open reading frame (ORF).The deduced ACBP was comprised of 89 amino acids with a theoretical isoelectric point of 5.44 and molecular weight of 10.14 kDa.The amino acid sequence comparision of ACBPs showed that Lateolabrax japonicus shared 87%, 84%, 78% and 68%identity with Medaka, sablefish, Atlantic salmon and human, respectively.Semi-quantitative RT-PCR and real-time PCR were used to characterize the expression profile of Acbp.The results showed that Lateolabrax japonicus Acbp was expressed in all ten tissues tested (muscle, heart, eye, brain, gill, liver, intestine, kidney, fat and spleen) with highest expression in kidney and liver, lowest in muscle, eye and brain.The Acbp expression in sea perch liver is down-regulated by fasting, up-regulated by insulin but not glucose.%酰基辅酶A结合蛋白(acyl-CoA-binding protein,AcBP)对长链脂酰基辅酶A(long-chainflatty acyl-CoA esters,LcAC0A)有很高的亲和力,因而对LCACoA在细胞内的运输和利用过程起重要的作用.本文采用RACE技术从鲈鱼肝脏中克隆了Acbp基因的全长cDNA序列,该基因全长cDNA 679 bp,5'端和3'端的非翻译区分别为83 bp和326 bp,开放阅读框为270 bp.推测编码89个氨基酸,理论等电点为5.44,分子量为10.14 kDa.鲈鱼Acbp与青鳝鱼,银鳕鱼、大西洋鲑和人的同源性分别为87%、84%、78%和68%.用RT-PCR和实时定量PCR检测鲈鱼肌肉、心脏、眼、大脑、消化道,肾脏、脂肪组织、脾脏、鳃和肝脏等10种组织的Acbp基因的表达情况,结果表明,在肾脏和肝脏的表达量高,肌肉、眼睛和大脑中表达低.定

  17. Synthesis of photoactivatable azido-acyl caged oxazine fluorophores for live-cell imaging.

    Science.gov (United States)

    Anzalone, Andrew V; Chen, Zhixing; Cornish, Virginia W

    2016-07-19

    We report the design and synthesis of a photoactivatable azido-acyl oxazine fluorophore. Photoactivation is achieved cleanly and rapidly with UV light, producing a single fluorescent oxazine photoproduct. We demonstrate the utility of azido-acyl caged oxazines for protein specific labeling in living mammalian cells using the TMP-tag technology. PMID:27377037

  18. Stimulation of protein synthesis in stage IV Xenopus oocytes by microinjected insulin

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.S. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA))

    1989-06-25

    The effects of intracellular insulin on protein synthesis were examined in intact cells and isolated, undiluted cellular components. (35S)Methionine incorporation into protein was measured in Stage IV oocytes from Xenopus laevis maintained under paraffin oil. Radiolabel and insulin were introduced into the cytoplasm by microinjection. After a short delay (approximately 15 min), injected insulin stimulated the rate of methionine incorporation. Stimulation was dose-dependent, increasing with injected doses in the 7-50-fmol range. Neither proinsulin nor insulin-like growth factor 1 were as effective as insulin in stimulating protein synthesis; microinjected epidermal growth factor and the A and B chains of insulin were without effect. When oocyte surface membranes were removed under oil, the resulting cytoplasm-nucleus samples exhibited methionine incorporation rates that were comparable to those found in intact cells. Microinjection of insulin increased rates of methionine incorporation in cytoplasm-nucleus samples; the effects of external (prior to transfer to oil) and internal (microinjection in oil) insulin exposure were additive. Cytoplasm samples (nuclei and surface membranes removed under oil) also synthesized protein and responded to microinjected insulin. However, insulin responses were reduced relative to cells and to cytoplasm-nucleus samples. 125I-Insulin was degraded rapidly after microinjection into oocytes. Degradation occurred in both the nucleus and cytoplasm. Degradation was delayed by injecting bacitracin into the cells and delaying degradation increased the effectiveness of a low dose of injected insulin.

  19. Stimulation of protein synthesis in stage IV Xenopus oocytes by microinjected insulin

    International Nuclear Information System (INIS)

    The effects of intracellular insulin on protein synthesis were examined in intact cells and isolated, undiluted cellular components. [35S]Methionine incorporation into protein was measured in Stage IV oocytes from Xenopus laevis maintained under paraffin oil. Radiolabel and insulin were introduced into the cytoplasm by microinjection. After a short delay (approximately 15 min), injected insulin stimulated the rate of methionine incorporation. Stimulation was dose-dependent, increasing with injected doses in the 7-50-fmol range. Neither proinsulin nor insulin-like growth factor 1 were as effective as insulin in stimulating protein synthesis; microinjected epidermal growth factor and the A and B chains of insulin were without effect. When oocyte surface membranes were removed under oil, the resulting cytoplasm-nucleus samples exhibited methionine incorporation rates that were comparable to those found in intact cells. Microinjection of insulin increased rates of methionine incorporation in cytoplasm-nucleus samples; the effects of external (prior to transfer to oil) and internal (microinjection in oil) insulin exposure were additive. Cytoplasm samples (nuclei and surface membranes removed under oil) also synthesized protein and responded to microinjected insulin. However, insulin responses were reduced relative to cells and to cytoplasm-nucleus samples. 125I-Insulin was degraded rapidly after microinjection into oocytes. Degradation occurred in both the nucleus and cytoplasm. Degradation was delayed by injecting bacitracin into the cells and delaying degradation increased the effectiveness of a low dose of injected insulin

  20. Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication.

    Directory of Open Access Journals (Sweden)

    Greicy H Goto

    2015-08-01

    Full Text Available Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage.

  1. Polyclonal B-cell response to stimulation with Escherichia coli lipopolysaccharide in dietary protein restriction.

    OpenAIRE

    Malavé, I; Pocino, M

    1982-01-01

    The polyclonal B-cell response to Escherichia coli lipopolysaccharide was studied in C57BL/6 mice maintained after weaning on either a moderate protein-restricted diet with 8% casein or a normal diet. After in vitro or in vivo stimulation with the endotoxin, autoreactive and anti-hapten antibody-producing cells were quantitated by direct plaque assay, using bromelain-treated mouse erythrocytes and trinitrophenylated sheep erythrocytes as targets. Larger numbers of plaque-forming cells were ge...

  2. Glucocorticoids both stimulate and inhibit production of pulmonary surfactant protein A in fetal human lung.

    OpenAIRE

    Liley, H G; White, R T; Benson, B J; Ballard, P L

    1988-01-01

    Pulmonary surfactant is a mixture of phospholipids and proteins which stabilizes lung alveoli and prevents respiratory failure. The surfactant-associated protein of Mr = 28,000-36,000 (SP-A) influences the structure, function (film formation), and metabolism of surfactant. We have characterized glucocorticoid regulation of SP-A and SP-A mRNA in explants of fetal human lung. The time course of response to dexamethasone was biphasic, with early stimulation and later inhibition of SP-A accumulat...

  3. Stimulation of Myofibrillar Protein Synthesis in Hindlimb Suspended Rats by Resistance Exercise and Growth Hormone

    Science.gov (United States)

    Linderman, Jon K.; Whittall, Justen B.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Booth, Frank W.; Grindeland, Richard E.

    1995-01-01

    The objective of this study was to determine the ability of a single bout of resistance exercise alone or in combination with recombinant human growth hormone (rhGH) to stimulate myofibrillar protein synthesis (Ks) in hindlimb suspended (HLS) adult female rats. Plantar flexor muscles were stimulated with resistance exercise, consisting of 10 repetitions of ladder climbing on a 1 m grid (85 deg.), carrying an additional 50% of their body weight attached to their tails. Saline or rhGH (1 mg/kg) was administered 30' prior to exercise, and Ks was determined with a constant infusion of H-3-Leucine at 15', 60', 180', and 360' following exercise. Three days of HLS depressed Ks is approx. equal to 65% and 30-40% in the soleus and gastrocnemius muscles, respectively (p is less than or equal to 0.05). Exercise increased soleus Ks in saline-treated rats 149% 60' following exercise (p less than or equal to 0.05), decaying to that of non-exercised animals during the next 5 hours. Relative to suspended, non-exercised rats rhGH + exercise increased soleus Ks 84%, 108%, and 72% at 15', 60' and 360' following exercise (p is less than or equal to 0.05). Gastrocnemius Ks was not significantly increased by exercise or the combination of rhGH and exercise up to 360' post-exercise. Results from this study indicate that resistance exercise stimulated Ks 60' post-exercise in the soleus of HLS rats, with no apparent effect of rhGH to enhance or prolong exercise-induced stimulation. Results suggests that exercise frequency may be important to maintenance of the slow-twitch soleus during non-weightbearing, but that the ability of resistance exercise to maintain myofibrillar protein content in the gastrocnemius of hindlimb suspended rats cannot be explained by acute stimulation of synthesis.

  4. The Acute Effects of Swimming on Appetite, Food Intake, and Plasma Acylated Ghrelin

    Directory of Open Access Journals (Sweden)

    James A. King

    2011-01-01

    Full Text Available Swimming may stimulate appetite and food intake but empirical data are lacking. This study examined appetite, food intake, and plasma acylated ghrelin responses to swimming. Fourteen healthy males completed a swimming trial and a control trial in a random order. Sixty min after breakfast participants swam for 60 min and then rested for six hours. Participants rested throughout the control trial. During trials appetite was measured at 30 min intervals and acylated ghrelin was assessed periodically (0, 1, 2, 3, 4, 6, and 7.5 h. =10. Appetite was suppressed during exercise before increasing in the hours after. Acylated ghrelin was suppressed during exercise. Swimming did not alter energy or macronutrient intake assessed at buffet meals (total trial energy intake: control 9161 kJ, swimming 9749 kJ. These findings suggest that swimming stimulates appetite but indicate that acylated ghrelin and food intake are resistant to change in the hours afterwards.

  5. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available PURPOSE: Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids. METHODS: Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS. RESULTS: In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid. CONCLUSION: Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  6. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase.

    Science.gov (United States)

    Chung, Jiwoung; Goo, Eunhye; Yu, Sangheon; Choi, Okhee; Lee, Jeehyun; Kim, Jinwoo; Kim, Hongsup; Igarashi, Jun; Suga, Hiroaki; Moon, Jae Sun; Hwang, Ingyu; Rhee, Sangkee

    2011-07-19

    Quorum sensing (QS) controls certain behaviors of bacteria in response to population density. In gram-negative bacteria, QS is often mediated by N-acyl-L-homoserine lactones (acyl-HSLs). Because QS influences the virulence of many pathogenic bacteria, synthetic inhibitors of acyl-HSL synthases might be useful therapeutically for controlling pathogens. However, rational design of a potent QS antagonist has been thwarted by the lack of information concerning the binding interactions between acyl-HSL synthases and their ligands. In the gram-negative bacterium Burkholderia glumae, QS controls virulence, motility, and protein secretion and is mediated by the binding of N-octanoyl-L-HSL (C8-HSL) to its cognate receptor, TofR. C8-HSL is synthesized by the acyl-HSL synthase TofI. In this study, we characterized two previously unknown QS inhibitors identified in a focused library of acyl-HSL analogs. Our functional and X-ray crystal structure analyses show that the first inhibitor, J8-C8, binds to TofI, occupying the binding site for the acyl chain of the TofI cognate substrate, acylated acyl-carrier protein. Moreover, the reaction byproduct, 5'-methylthioadenosine, independently binds to the binding site for a second substrate, S-adenosyl-L-methionine. Closer inspection of the mode of J8-C8 binding to TofI provides a likely molecular basis for the various substrate specificities of acyl-HSL synthases. The second inhibitor, E9C-3oxoC6, competitively inhibits C8-HSL binding to TofR. Our analysis of the binding of an inhibitor and a reaction byproduct to an acyl-HSL synthase may facilitate the design of a new class of QS-inhibiting therapeutic agents.

  7. Serum stimulation of plasma protein synthesis in culture is selective and rapidly reversible.

    Science.gov (United States)

    Plant, P W; Liang, T J; Pindyck, J; Grieninger, G

    1981-10-27

    Primary hepatocyte monolayers, derived from chick embryos, can be cultured from the onset in a completely chemically defined medium, free of added hormones. The liver cells synthesize and secrete a wide spectrum of plasma proteins for several days in this serum-free environment. Addition of fetal bovine serum elicits a 3-5-fold increase in the production of certain plasma proteins: fibrinogen, albumin, and the alpha1-globulin M. This effect of serum is selective; transferrin and plasminogen syntheses are enhanced less than 1.5-fold. Significant stimulation is observed with 0.1% fetal bovine serum, and half-maximal values for individual plasma proteins are obtained with concentrations ranging between 0.4 and 1%. The stimulatory activity of serum shows no developmental or species specificity. Plasma is active as serum derived from the same blood sample. The hepatocytes respond rapidly to serum, significant changes in albumin synthesis occurring less than 1 h after serum addition or removal. The effect of short exposure is fully reversible. These results establish the capacity of low concentrations of serum to stimulate plasma protein synthesis and underscore the importance of studying the effects of hormones and other factors under serum-free conditions. The findings suggest that, in addition to the classical hormones, ubiquitous but as yet uncharacterized serum components play a role in controlling this major hepatic function. PMID:7284395

  8. The Acute Effects of Swimming on Appetite, Food Intake, and Plasma Acylated Ghrelin

    OpenAIRE

    Stensel, David J.; Wasse, Lucy K.; King, James A

    2011-01-01

    Swimming may stimulate appetite and food intake but empirical data are lacking. This study examined appetite, food intake, and plasma acylated ghrelin responses to swimming. Fourteen healthy males completed a swimming trial and a control trial in a random order. Sixty min after breakfast participants swam for 60 min and then rested for six hours. Participants rested throughout the control trial. During trials appetite was measured at 30 min intervals and acylated ghrelin was assessed periodic...

  9. Bone Morphogenetic Proteins stimulate mammary fibroblasts to promote mammary carcinoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Philip Owens

    Full Text Available Bone Morphogenetic Proteins (BMPs are secreted cytokines that are part of the Transforming Growth Factor β (TGFβ superfamily. BMPs have been shown to be highly expressed in human breast cancers, and loss of BMP signaling in mammary carcinomas has been shown to accelerate metastases. Interestingly, other work has indicated that stimulation of dermal fibroblasts with BMP can enhance secretion of pro-tumorigenic factors. Furthermore, treatment of carcinoma-associated fibroblasts (CAFs derived from a mouse prostate carcinoma with BMP4 was shown to stimulate angiogenesis. We sought to determine the effect of BMP treatment on mammary fibroblasts. A large number of secreted pro-inflammatory cytokines and matrix-metallo proteases (MMPs were found to be upregulated in response to BMP4 treatment. Fibroblasts that were stimulated with BMP4 were found to enhance mammary carcinoma cell invasion, and these effects were inhibited by a BMP receptor kinase antagonist. Treatment with BMP in turn elevated pro-tumorigenic secreted factors such as IL-6 and MMP-3. These experiments demonstrate that BMP may stimulate tumor progression within the tumor microenvironment.

  10. A Novel Lactic Acid Bacteria Growth-stimulating Peptide from Broad Bean (Vicia faba . Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Ping Xiao

    2015-03-01

    Full Text Available In this study, broad bean protein hydrolysates (BPH produced by alcalase with strong-stimulating activity for lactic acid bacteria (LAB was first time reported. In order to obtain the key peptide that have growth-stimulating activity for lactic acid bacteria (LAB, gel filtration chromatography and Reverse Phase High Performance Liquid Chromatography (RP-HPLC were applied to isolate and purify the peptides from BPH. Finally, F4-2 elicited the highest activity for LAB, corresponding to amino acid sequence Ser-Ala-Gln (304.10Da was identified by Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF/TOF MS/MS. Thus, this study shows that broad bean peptide is a good source to promote the LAB growth and this function is reported for the first time.

  11. Ginsenosides stimulated the proliferation of mouse spermatogonia involving activation of protein kinase C

    Institute of Scientific and Technical Information of China (English)

    Da-lei ZHANG; Kai-ming WANG; Cai-qiao ZHANG

    2009-01-01

    The effect of ginsenosides on proliferation of type A spermatogonia was investigated in 7-day-old mice.Spermatogonia were characterized by c-kit expression and cell proliferation was assessed by immunocytochemical demonstration of proliferating cell nuclear antigen (PCNA).After 72-h culture,Sertoli cells formed a confluent monolayer to which numerous spermatogonial colonies attached.Spermatogonia were positive for c-kit staining and showed high proliferating activity by PCNA expression.Ginsenosides (1.0~10 μg/ml) significantly stimulated proliferation of spermatogonia.Activation of protein kinase C (PKC) elicited proliferation of spermatogonia at 10-8 to 107 mol/L and the PKC inhibitor H7 inhibited this effect.Likewise,ginsenosides-stimulated spermatogonial proliferation was suppressed by combined treatment of H7.These results indicate that the proliferating effect ofginsenosides on mouse type A spermatogonia might be mediated by a mechanism involving the PKC signal transduction pathway.

  12. Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Hvitby, Christina Poulsen; Popuri, Venkateswarlu;

    2014-01-01

    excision repair and base excision repair. Here, we describe a new interaction partner for CSB, the DNA glycosylase NEIL2. Using both cell extracts and recombinant proteins, CSB and NEIL2 were found to physically interact independently of DNA. We further found that CSB is able to stimulate NEIL2 glycosylase...... activity on a 5-hydroxyl uracil lesion in a DNA bubble structure substrate in vitro. A novel 4,6-diamino-5-formamidopyrimidine (FapyA) specific incision activity of NEIL2 was also stimulated by CSB. To further elucidate the biological role of the interaction, immunofluorescence studies were performed......, showing an increase in cytoplasmic CSB and NEIL2 co-localization after oxidative stress. Additionally, stalling of the progression of the transcription bubble with α-amanitin resulted in increased co-localization of CSB and NEIL2. Finally, CSB knockdown resulted in reduced incision of 8-hydroxyguanine...

  13. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  14. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.

    Science.gov (United States)

    Zhang, Xiujun; Li, Mai; Agrawal, Arpita; San, Ka-Yiu

    2011-11-01

    Microbial biosynthesis of fatty acid-like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Free fatty acids can be produced by introducing an acyl-acyl carrier protein thioesterase gene into Escherichia coli. The presence of the acyl-ACP thioesterase will break the fatty acid elongation cycle and release free fatty acid. Depending on their sequence similarity and substrate specificity, class FatA thioesterase is active on unsaturated acyl-ACPs and class FatB prefers saturated acyl group. Different acyl-ACP thioesterases have different degrees of chain length specificity. Although some of these enzymes have been characterized from a number of sources, information on their ability to produce free fatty acid in microbial cells has not been extensively examined until recently. In this study, we examined the effect of the overexpression of acyl-ACP thioesterase genes from Diploknema butyracea, Gossypium hirsutum, Ricinus communis and Jatropha curcas on free fatty acid production. In particular, we are interested in studying the effect of different acyl-ACP thioesterase on the quantities and compositions of free fatty acid produced by an E. coli strain ML103 carrying these constructs. It is shown that the accumulation of free fatty acid depends on the acyl-ACP thioesterase used. The strain carrying the acyl-ACP thioesterase gene from D. butyracea produced approximately 0.2g/L of free fatty acid while the strains carrying the acyl-ACP thioesterase genes from R. communis and J. curcas produced the most free fatty acid at a high level of more than 2.0 g/L at 48 h. These two strains accumulated three major straight chain free fatty acids, C14, C16:1 and C16 at levels about 40%, 35% and 20%, respectively. PMID:22001432

  15. Hypoxia stimulates prostacyclin synthesis in newborn pulmonary artery endothelium by increasing cyclooxygenase-1 protein.

    Science.gov (United States)

    North, A J; Brannon, T S; Wells, L B; Campbell, W B; Shaul, P W

    1994-07-01

    In newborn lambs, pulmonary prostacyclin (PGI2) production increases acutely in response to low oxygen. We tested the hypothesis that decreased oxygenation directly stimulates PGI2 synthesis in arterial segments and cultured endothelial cells from newborn lamb intrapulmonary arteries. In segments studied at PO2 of 680 mm Hg, the synthesis of PGI2 exceeded prostaglandin E2 (PGE2) by 73%. Endothelium removal lowered PGI2 by 77% and PGE2 by 66%. At low oxygen tension (PO2, 40 mm Hg), PGI2 and PGE2 synthesis rose by 96% and 102%, respectively. Similarly, in endothelial cells studied at PO2 of 680 mm Hg, the synthesis of PGI2 exceeded PGE2 by 50%, and at low oxygen tension both PGI2 and PGE2 increased (89% and 64%, respectively). Endothelial cell PGI2 synthesis maximally stimulated by bradykinin, A23187, or arachidonic acid was also increased at low PO2 by 50%, 66%, and 48%, respectively. PGE2 synthesis was similarly altered, increasing by 33%, 37%, and 41%, respectively. In contrast, lowering oxygen had minimal effect on PGI2 and PGE2 synthesis with exogenous PGH2, which is the product of cyclooxygenase. Immunoblot analyses revealed that there was a 2.6-fold greater abundance of cyclooxygenase-1 protein at PO2 of 40 versus 680 mm Hg, and the increase at lower oxygen tension was inhibited by cycloheximide. The cyclooxygenase-2 isoform was not detected. Thus, attenuated oxygenation directly stimulates PGI2 and PGE2 synthesis in intrapulmonary arterial segments and endothelial cells from newborn lambs. This process is due to enhanced cyclooxygenase activity related to increased abundance of the cyclooxygenase-1 protein, and this effect may be due to increased synthesis of the enzyme protein.

  16. Estrogen stimulates release of secreted amyloid precursor protein from primary rat cortical neurons via protein kinase C pathway

    Institute of Scientific and Technical Information of China (English)

    Sun ZHANG; Ying HUANG; Yi-chun ZHU; Tai YAO

    2005-01-01

    Aim: To investigate the mechanism of the action of estrogen, which stimulates the release of secreted amyloid precursor protein α (sAPPα) and decreases the gen eration of amyloid-β protein (Aβ), a dominant component in senile plaques in the brains of Alzheimer's disease patients. Methods: Experiments were carried out inprimary rat cortical neurons, and Western blot was used to detect sAPPα in aculture medium and the total amount of cellular amyloid precursor protein (APP) in neurons. Results: 17β-Estradiol (but not 17α-estradiol) and β-estradiol 6-(Ocarboxymethyl) oxime: BSA increased the secretion of sAPPα and this effect was blocked by protein kinase C (PKC) inhibitor calphostin C, but not by the classical estrogen receptor antagonist ICI 182,780. Meanwhile, 17β-estradiol did not alter the synthesis of cellular APP. Conclusion: The effect of 17β-estradiol on sAPPα secretion is likely mediated through the membrane binding sites, and needs molecular configuration specificity of the ligand. Furthermore, the action of the PKC dependent pathway might be involved in estrogen-induced sAPPα secretion.

  17. Preparation and Characterization of Acylated Chitosan

    Institute of Scientific and Technical Information of China (English)

    LI Ming-chun; LIU Chao; XIN Mei-hua; ZHAO Huang; WANG Min; FENG Zhen; SUN Xiao-li

    2005-01-01

    Fully acylated chitosan and N, N-diacyl chitosan were prepared. The products were characterized by elemental analysis, FTIR and 1H NMR. The experimental results indicate that the average degree of acylation depends on the volume ratio of pyridine to chloroform in the reaction medium, the chain length of the acylation agent used, and the molecular weight of chitosan raw materials. The XRD measurements were carried out for pure chitosan, fully acylated chitosan and N, N-diacyl chitosan to verify the crystallinity change caused by the acylation.

  18. Comparison of protein and DNA synthesis assays of guinea pig spleen lymphocytes after stimulation with influenza virus antigen and phytohemagglutinin

    International Nuclear Information System (INIS)

    Two in vitro methods for the demonstration of cell-mediated immune response are compared: Protein and DNA synthesis for detection of in vitro influenza virus antigen- and mitogen-induced lymphocyte stimulation. Guinea pig spleen lymphocytes sensitized with influenza virus antigen were tested in a microadaptation of the lymphocyte transformation test using 14C- or 3H-leucine and 3H-thymidine. As a positive control for T-cell stimulation phytohemagglutinin (PHA)-induced lymphocyte stimulation was measured. The following results were obtained: 1. Kinetics of the incorporation of 14C-leucine and 3H-thymidine in lymphocytes incubated with optimal and suboptimal PHA-doses respectively are quantitatively similar but different in time. 2. The results of the protein and DNA synthesis stimulation assays were correlated against influenza virus antigens. 3. The administration of influenza virus antigens in complete Freund's adjuvant induced a more intensive cell-mediated reaction than injections of antigens in aqueous suspensions, but the results of both methods of cell-mediated immune response (CMI) were correlated. 4. The optimal CMI under the experimental cinditions described is induced by an administration of 30 to 50 μg virus protein per animal and by a combined intramuscular - intraperitoneal immunization procedure. 5. The measurement of the early stimulation of protein synthesis in the protein synthesis stimulation test is substantially more rapid than for the classical lymphocyte transformation test. (author)

  19. The role of ß-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower

    DEFF Research Database (Denmark)

    González-Mellado, Damián; von Wettstein, Penelope Margaret; Garcés, Rafael;

    2010-01-01

    seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous...

  20. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    C Lin

    Full Text Available Our previous studies showed that bovine respiratory syncytial virus (BRSV followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2 epithelial cells with H. somni concentrated culture supernatant (CCS stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2 and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.

  1. Contribution of de novo synthesis of Gαs-proteins to 1-methyladenine production in starfish ovarian follicle cells stimulated by relaxin-like gonad-stimulating substance.

    Science.gov (United States)

    Mita, Masatoshi; Haraguchi, Shogo; Uzawa, Haruka; Tsutsui, Kazuyoshi

    2013-11-01

    In starfish, the peptide hormone gonad-stimulating substance (GSS) secreted from nervous tissue stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) production by ovarian follicle cells. The hormonal action of GSS on follicle cells involves its receptor, G-proteins and adenylyl cyclase. However, GSS failed to induce 1-MeAde and cAMP production in follicle cells of ovaries during oogenesis. At the maturation stage, follicle cells acquired the potential to respond to GSS by producing 1-MeAde and cAMP. Adenylyl cyclase activity in follicle cells of fully grown stage ovaries was also stimulated by GSS in the presence of GTP. These activations depended on the size of oocytes in ovaries. The α subunit of Gs-proteins was not detected immunologically in follicle cells of oogenesis stage ovaries, although Gαi and Gαq were detectable. Using specific primers for Gαs and Gαi, expression levels of Gαs in follicle cells were found to increase significantly as the size of oocytes in ovaries increased, whereas the mRNA levels of Gαi were almost constant regardless of oocyte size. These findings strongly suggest the potential of follicle cells to respond to GSS by producing 1-MeAde and cAMP is brought by de novo synthesis of Gαs-proteins.

  2. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine

    DEFF Research Database (Denmark)

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman;

    2004-01-01

    . Screening of antibodies from a hybridoma library led to the identification of an acyl-CoA synthetase 5-specific monoclonal antibody. Protein synthesis, mRNA expression, and the enzyme activity of acyl-CoA synthetase 5 were studied by several methods in human small intestinal tissues with Crohn's disease...

  3. Adiponectin Stimulates Angiogenesis by Promoting Cross-talk between AMP-activated Protein Kinase and Akt Signaling in Endothelial Cells*

    OpenAIRE

    Ouchi, Noriyuki; Kobayashi, Hideki; Kihara, Shinji; Kumada, Masahiro; Sato, Kaori; Inoue, Tatsuya; Funahashi, Tohru; Walsh, Kenneth

    2003-01-01

    Adiponectin is an adipocyte-specific adipocytokine with anti-atherogenic and anti-diabetic properties. Here, we investigated whether adiponectin regulates angiogenic processes in vitro and in vivo. Adiponectin stimulated the differentiation of human umbilical vein endothelium cells (HUVECs) into capillary-like structures in vitro and functioned as a chemoattractant in migration assays. Adiponectin promoted the phosphorylation of AMP-activated protein kinase (AMPK), protein kinase Akt/protein ...

  4. Suilysin Stimulates the Release of Heparin Binding Protein from Neutrophils and Increases Vascular Permeability in Mice.

    Science.gov (United States)

    Chen, Shaolong; Xie, Wenlong; Wu, Kai; Li, Ping; Ren, Zhiqiang; Li, Lin; Yuan, Yuan; Zhang, Chunmao; Zheng, Yuling; Lv, Qingyu; Jiang, Hua; Jiang, Yongqiang

    2016-01-01

    Most of the deaths that occurred during two large outbreaks of Streptococcus suis infections in 1998 and 2005 in China were caused by streptococcal toxic shock syndrome (STSS), which is characterized by increased vascular permeability. Heparin-binding protein (HBP) is thought to mediate the vascular leakage. The purpose of this study was to investigate the detailed mechanism underlying the release of HBP and the vascular leakage induced by S. suis. Significantly higher serum levels of HBP were detected in Chinese patients with STSS than in patients with meningitis or healthy controls. Suilysin (SLY) is an exotoxin secreted by the highly virulent strain 05ZYH33, and it stimulated the release of HBP from the polymorphonuclear neutrophils and mediated vascular leakage in mice. The release of HBP induced by SLY was caused by a calcium influx-dependent degranulation. Analyses using a pharmacological approach revealed that the release of HBP induced by SLY was related to Toll-like receptor 4, p38 mitogen-activated protein kinase, and the 1-phosphatidylinositol 3-kinase pathway. It was also dependent on a G protein-coupled seven-membrane spanning receptor. The results of this study provide new insights into the vascular leakage in STSS associated with non-Group A streptococci, which could lead to the discovery of potential therapeutic targets for STSS associated with S. suis. PMID:27617009

  5. Golli myelin basic proteins stimulate oligodendrocyte progenitor cell proliferation and differentiation in remyelinating adult mouse brain.

    Science.gov (United States)

    Paez, Pablo M; Cheli, Veronica T; Ghiani, Cristina A; Spreuer, Vilma; Handley, Vance W; Campagnoni, Anthony T

    2012-07-01

    Golli myelin basic proteins are necessary for normal myelination, acting via voltage and store-dependent Ca(2+) entry at multiple steps during oligodendrocyte progenitor cell (OPC) development. To date nothing is known regarding the role of golli proteins in demyelination or remyelination events. Here the effects of golli ablation and overexpression in myelin loss and recovery were examined using the cuprizone (CPZ) model of demyelination/remyelination. We found severe demyelination in the corpus callosum (CC) of golli-overexpressing mice (JOE) during the CPZ treatment, which was accompanied by an increased number of reactive astrocytes and activation of microglia/macrophages. During demyelination of JOE brains, a significant increase in the number of proliferating OPCs was found in the CC as well as in the subventricular zone, and our data indicate that these progenitors matured and fully remyelinated the CC of JOE animals after CPZ withdrawal. In contrast, in the absence of golli (golli-KO mice) delayed myelin loss associated with a smaller immune response, and a lower number of OPCs was found in these mice during the CPZ treatment. Furthermore, incomplete remyelination was observed after CPZ removal in large areas of the CC of golli-KO mice, reflecting irregular recovery of the oligodendrocyte population and subsequent myelin sheath formation. Our findings demonstrate that golli proteins sensitize mature oligodendrocytes to CPZ-induced demyelination, while at the same time stimulate the proliferation/recruitment of OPCs during demyelination, resulting in accelerated remyelination.

  6. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men

    OpenAIRE

    Fry, Christopher S.; Glynn, Erin L.; Drummond, Micah J.; Timmerman, Kyle L.; Fujita, Satoshi; Abe, Takashi; Dhanani, Shaheen; Volpi, Elena; Rasmussen, Blake B.

    2010-01-01

    The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian targ...

  7. Relations Between Atherogenic Index of Plasma, Ratio of Small Dense Low Density Lipoprotein/Lecithin Cholesterol Acyl Transferase and Ratio of Small Dense Low Density Lipoprotein/Cholesteryl Ester Transfer Protein of Controlled and Uncontrolled Type 2 DM

    Directory of Open Access Journals (Sweden)

    Ellis Susanti

    2009-08-01

    Full Text Available BACKGROUND: Patients with Diabetes Melitus are proven to be prone to atherosclerosis and coronary heart disease, especially type 2 Diabetes Melitus (T2DM patient who have higher risk and mortality for cardiovascular risk factor. The Dyslipidemia condition is very common in T2DM as one of the risk factors. Diabetic dyslipidemia is marked by the increased triglyceride (TG, low HDL cholesterol (HDL-C, and increased small dense LDL and apolipoprotein B. Therefore the aim of this study is to assess the differential and correlation between Atherogenic Index of Plasma (AIP, ratio of small dense low density lipoprotein (sdLDL/lecithin cholesterol acyl transferase (LCAT and ratio of sdLDL/cholesteryl ester transfer protein (CETP of controlled and uncontrolled T2DM. METHODS: This study was observational with cross sectional design. In total of 72 patients with T2DM consist of 36 controlled and 36 uncontrolled, participated in this study. The serum TG, HDL-C, sdLDL, LCAT and CETP were examined in their relationship with to T2DM risk. RESULTS: The results of the study indicate that the AIP (p<0.001 increase controlled and uncontrolled T2DM and the ratio of sdLDL/CETP (p=0.004, odds ratio of AIP was 4 (95% CI: 1.501-10.658 and odds ratio of sdLDL/CETP ratio was 4 (95% CI: 1.501-10.658 in uncontrolled T2DM. CONCLUSIONS: This study showed that the AIP and ratio of small dense LDL/CETP had a significant correlation with the uncontrolled T2DM. The AIP and ratio of small dense LDL/CETP increase was found at the uncontrolled T2DM to be 4 times greater than the controlled T2DM. KEYWORDS: T2DM, atherosclerosis, atherogenic index of plasma, small dense LDL, LCAT, CETP, ratio of sdLDL/LCAT, ratio of sdLDL/CETP.

  8. Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2.

    Science.gov (United States)

    Zheng, Hui; Qian, Juan; Varghese, Bentley; Baker, Darren P; Fuchs, Serge

    2011-02-01

    Alpha interferon (IFN-α) controls homeostasis of hematopoietic stem cells, regulates antiviral resistance, inhibits angiogenesis, and suppresses tumor growth. This cytokine is often used to treat cancers and chronic viral infections. The extent of cellular responses to IFN-α is limited by the IFN-induced ubiquitination and degradation of the IFN-α/β receptor chain 1 (IFNAR1) chain of the cognate receptor. IFNAR1 ubiquitination is facilitated by the βTrcp E3 ubiquitin ligase that is recruited to IFNAR1 upon its degron phosphorylation, which is induced by the ligand. Here we report identification of protein kinase D2 (PKD2) as a kinase that mediates the ligand-inducible phosphorylation of IFNAR1 degron and enables binding of βTrcp to the receptor. Treatment of cells with IFN-α induces catalytic activity of PKD2 and stimulates its interaction with IFNAR1. Expression and kinase activity of PKD2 are required for the ligand-inducible stimulation of IFNAR1 ubiquitination and endocytosis and for accelerated proteolytic turnover of IFNAR1. Furthermore, inhibition or knockdown of PKD2 robustly augments intracellular signaling induced by IFN-α and increases the efficacy of its antiviral effects. The mechanisms of the ligand-inducible elimination of IFNAR1 are discussed, along with the potential medical significance of this regulation. PMID:21173164

  9. Dynamic recruitment of protein tyrosine phosphatase PTPD1 to EGF stimulation sites potentiates EGFR activation.

    Directory of Open Access Journals (Sweden)

    Pedro Roda-Navarro

    Full Text Available Balanced activity of protein tyrosine kinases and phosphatases (PTPs controls tyrosine phosphorylation levels and, consequently, is needed to prevent pathologies like cancer. Phosphatase activity is tightly regulated in space and time. Thus, in order to understand how phospho-tyrosine signalling is regulated, the intracellular dynamics of PTPs should be investigated. Here, we have studied the intracellular dynamics of PTPD1, a FERM (four-point-one, ezrin, radixin, moesin domain-containing PTP that is over expressed in cancer cells and potentiates EGFR signalling. Whereas PTPD1 was excluded from E-cadherin rich cell-cell adhesions in epithelial cell monolayers, it diffused from the cytoplasm to those membranes in contact with the extracellular medium. Localisation of PTPD1 at the plasma membrane was mediated by its FERM domain and enabled the formation of EGFR/PTPD1-containing signalling complexes that pre-existed at the plasma membrane before EGF stimulation. PTPD1 and EGFR transiently co-localised at EGF stimulation sites until the formation of macropinosomes containing active species of EGFR. Interference of PTPD1 expression caused a decrease in EGFR phosphorylated species at the periphery of the cell. Presented data suggest that the transient formation of dynamic PTPD1/EGFR signalling complexes strengthens EGF signalling by promoting the spatial propagation of EGFR phosphorylated species.

  10. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells.

    Science.gov (United States)

    Zhang, Cheng Cheng; Kaba, Megan; Ge, Guangtao; Xie, Kathleen; Tong, Wei; Hug, Christopher; Lodish, Harvey F

    2006-02-01

    Successful ex vivo expansion of hematopoietic stem cells (HSCs) would greatly benefit the treatment of disease and the understanding of crucial questions of stem cell biology. Here we show, using microarray studies, that the HSC-supportive mouse fetal liver CD3(+) cells specifically express the proteins angiopoietin-like 2 (Angptl2) and angiopoietin-like 3 (Angptl3). We observed a 24- or 30-fold net expansion of long-term HSCs by reconstitution analysis when we cultured highly enriched HSCs for 10 days in the presence of Angptl2 or Angptl3 together with saturating levels of other growth factors. The coiled-coil domain of Angptl2 was capable of stimulating expansion of HSCs. Furthermore, angiopoietin-like 5, angiopoietin-like 7 and microfibril-associated glycoprotein 4 also supported expansion of HSCs in culture.

  11. Heat shock protein 90 is involved in IL-17-mediated skin inflammation following thermal stimulation.

    Science.gov (United States)

    Kim, Bo-Kyung; Park, Minhwa; Kim, Ji-Yon; Lee, Kyung-Ho; Woo, So-Youn

    2016-08-01

    The pathogenesis of inflammatory skin diseases involves interactions between immune cells and keratinocytes, including the T helper 17 (Th17)-mediated immune response. Several chemokines [chemokine (C-X-C motif) ligand (CXCL)1, CXCL5 and CXCL8] and antimicrobial peptides [β-defensin 1 (BD1), LL-37, S100A8 and S100A9] were transcriptionally upregulated in the keratinocyte cell line HaCaT upon stimulation with interleukin (IL)-17. Balneotherapy, the treatment of disease by bathing, is an alternative therapy that has frequently been used for the treatment of inflammatory skin diseases. Immersion in pools of thermal mineral water is often considered to have chemical, thermal, mechanical and immunomodulatory benefits. We examined the effect of thermal treatment on IL-17-mediated inflammation in a model of skin disease. As Act1 is required for IL-17 signaling and is a client protein of heat shock protein 90 (HSP90), we evaluated the effect of HSP90 inhibition on IL-17-mediated cytokine and antimicrobial peptide expression in keratinocytes following heat treatment. We found that after thermal stimulation, Act1 binding to HSP90α was significantly increased in the presence of IL-17 (100 ng/ml) and 17-N-allylamino-17-demethoxygeldanamycin (17-AAG, 1 µM). Antimicrobial peptide and chemokine expression generally increased after heat treatment; Act1 knockdown and 17‑AAG reversed this effect. These observations demonstrate the possible immunomodulatory effect of heat on keratinocytes during the progression of IL-17-mediated inflammatory skin diseases. PMID:27279135

  12. Hypoxia stimulates urokinase receptor expression through a heme protein-dependent pathway.

    Science.gov (United States)

    Graham, C H; Fitzpatrick, T E; McCrae, K R

    1998-05-01

    Hypoxia underlies a number of biologic processes in which cellular migration and invasion occur. Because earlier studies have shown that the receptor for urokinase-type plasminogen activator (uPAR) may facilitate such events, we studied the effect of hypoxia on the expression of uPAR by first trimester human trophoblasts (HTR-8/SVneo) and human umbilical vein endothelial cells (HUVEC). Compared with control cells cultured under standard conditions (20% O2), HTR-8/SVneo cells and HUVEC cultured in 1% O2 expressed more uPAR, as determined by flow cytometric and [125I]-prourokinase ligand binding analyses. Increased uPAR expression paralleled increases in uPAR mRNA. The involvement of a heme protein in the hypoxia-induced expression of uPAR was suggested by the observations that culture of cells with cobalt chloride, or sodium 4, 5-dihydroxybenzene-1,3-disulfonate (Tiron), an iron-chelating agent, also stimulated uPAR expression, and that the hypoxia-induced uPAR expression was inhibited by adding carbon monoxide to the hypoxic atmosphere. Culture of HTR-8/SVneo cells with vascular endothelial growth factor (VEGF) did not increase uPAR mRNA levels, suggesting that the hypoxia-mediated effect on uPAR expression by these cells did not occur through a VEGF-dependent mechanism. The functional importance of these findings is suggested by the fact that HTR-8/SVneo cells cultured under hypoxia displayed higher levels of cell surface plasminogen activator activity and greater invasion through a reconstituted basement membrane. These results suggest that hypoxia may promote cellular invasion by stimulating the expression of uPAR through a heme protein-dependent pathway. PMID:9558386

  13. cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation.

    Directory of Open Access Journals (Sweden)

    Mariarosaria Bucci

    Full Text Available A growing body of evidence suggests that hydrogen sulfide (H₂S is a signaling molecule in mammalian cells. In the cardiovascular system, H₂S enhances vasodilation and angiogenesis. H₂S-induced vasodilation is hypothesized to occur through ATP-sensitive potassium channels (K(ATP; however, we recently demonstrated that it also increases cGMP levels in tissues. Herein, we studied the involvement of cGMP-dependent protein kinase-I in H₂S-induced vasorelaxation. The effect of H₂S on vessel tone was studied in phenylephrine-contracted aortic rings with or without endothelium. cGMP levels were determined in cultured cells or isolated vessel by enzyme immunoassay. Pretreatment of aortic rings with sildenafil attenuated NaHS-induced relaxation, confirming previous findings that H₂S is a phosphodiesterase inhibitor. In addition, vascular tissue levels of cGMP in cystathionine gamma lyase knockouts were lower than those in wild-type control mice. Treatment of aortic rings with NaHS, a fast releasing H₂S donor, enhanced phosphorylation of vasodilator-stimulated phosphoprotein in a time-dependent manner, suggesting that cGMP-dependent protein kinase (PKG is activated after exposure to H₂S. Incubation of aortic rings with a PKG-I inhibitor (DT-2 attenuated NaHS-stimulated relaxation. Interestingly, vasodilatory responses to a slowly releasing H₂S donor (GYY 4137 were unaffected by DT-2, suggesting that this donor dilates mouse aorta through PKG-independent pathways. Dilatory responses to NaHS and L-cysteine (a substrate for H₂S production were reduced in vessels of PKG-I knockout mice (PKG-I⁻/⁻. Moreover, glibenclamide inhibited NaHS-induced vasorelaxation in vessels from wild-type animals, but not PKG-I⁻/⁻, suggesting that there is a cross-talk between K(ATP and PKG. Our results confirm the role of cGMP in the vascular responses to NaHS and demonstrate that genetic deletion of PKG-I attenuates NaHS and L-cysteine-stimulated

  14. Protein characterization of a candidate mechanism SNP for Crohn's disease: the macrophage stimulating protein R689C substitution.

    Directory of Open Access Journals (Sweden)

    Natalia Gorlatova

    Full Text Available High throughput genome wide associations studies (GWAS are now identifying a large number of genome loci related to risk of common human disease. Each such locus presents a challenge in identifying the relevant underlying mechanism. Here we report the experimental characterization of a proposed causal single nucleotide polymorphism (SNP in a locus related to risk of Crohn's disease and ulcerative colitis. The SNP lies in the MST1 gene encoding Macrophage Stimulating Protein (MSP, and results in an R689C amino acid substitution within the β-chain of MSP (MSPβ. MSP binding to the RON receptor tyrosine kinase activates signaling pathways involved in the inflammatory response. We have purified wild-type and mutant MSPβ proteins and compared biochemical and biophysical properties that might impact the MSP/RON signaling pathway. Surface plasmon resonance (SPR binding studies showed that MSPβ R689C affinity to RON is approximately 10-fold lower than that of the wild-type MSPβ and differential scanning fluorimetry (DSF showed that the thermal stability of the mutant MSPβ was slightly lower than that of wild-type MSPβ, by 1.6 K. The substitution was found not to impair the specific Arg483-Val484 peptide bond cleavage by matriptase-1, required for MSP activation, and mass spectrometry of tryptic fragments of the mutated protein showed that the free thiol introduced by the R689C mutation did not form an aberrant disulfide bond. Together, the studies indicate that the missense SNP impairs MSP function by reducing its affinity to RON and perhaps through a secondary effect on in vivo concentration arising from reduced thermodynamic stability, resulting in down-regulation of the MSP/RON signaling pathway.

  15. Increase in cell viability by polyamines through stimulation of the synthesis of ppGpp regulatory protein and ω protein of RNA polymerase in Escherichia coli.

    Science.gov (United States)

    Terui, Yusuke; Akiyama, Mariko; Sakamoto, Akihiko; Tomitori, Hideyuki; Yamamoto, Kaneyoshi; Ishihama, Akira; Igarashi, Kazuei; Kashiwagi, Keiko

    2012-02-01

    It is known that polyamines increase cell growth through stimulation of the synthesis of several kinds of proteins encoded by the so-called "polyamine modulon". We recently reported that polyamines also increase cell viability at the stationary phase of cell growth through stimulation of the synthesis of ribosome modulation factor, a component of the polyamine modulon. Accordingly, we looked for other proteins involved in cell viability whose synthesis is stimulated by polyamines. It was found that the synthesis of ppGpp regulatory protein (SpoT) and ω protein of RNA polymerase (RpoZ) was stimulated by polyamines at the level of translation. Stimulation of the synthesis of SpoT and RpoZ by polyamines was due to an inefficient initiation codon UUG in spoT mRNA and an unusual location of a Shine-Dalgarno (SD) sequence in rpoZ mRNA. Accordingly, the spoT and rpoZ genes are components of the polyamine modulon involved in cell viability. Reduced cell viability caused by polyamine deficiency was prevented by modified spoT and rpoZ genes whose synthesis was not influenced by polyamines. Under these conditions, the level of ppGpp increased in parallel with increase of SpoT protein. The results indicate that polyamine stimulation of synthesis of SpoT and RpoZ plays important roles for cell viability through stimulation of ppGpp synthesis by SpoT and modulation of RNA synthesis by ppGpp-RpoZ complex.

  16. Protective actions of des-acylated ghrelin on brain injury and blood-brain barrier disruption after stroke in mice.

    Science.gov (United States)

    Ku, Jacqueline M; Taher, Mohammadali; Chin, Kai Yee; Barsby, Tom; Austin, Victoria; Wong, Connie H Y; Andrews, Zane B; Spencer, Sarah J; Miller, Alyson A

    2016-09-01

    The major ghrelin forms, acylated ghrelin and des-acylated ghrelin, are novel gastrointestinal hormones. Moreover, emerging evidence indicates that these peptides may have other functions including neuro- and vaso-protection. Here, we investigated whether post-stroke treatment with acylated ghrelin or des-acylated ghrelin could improve functional and histological endpoints of stroke outcome in mice after transient middle cerebral artery occlusion (tMCAo). We found that des-acylated ghrelin (1 mg/kg) improved neurological and functional performance, reduced infarct and swelling, and decreased apoptosis. In addition, it reduced blood-brain barrier (BBB) disruption in vivo and attenuated the hyper-permeability of mouse cerebral microvascular endothelial cells after oxygen glucose deprivation and reoxygenation (OGD + RO). By contrast, acylated ghrelin (1 mg/kg or 5 mg/kg) had no significant effect on these endpoints of stroke outcome. Next we found that des-acylated ghrelin's vasoprotective actions were associated with increased expression of tight junction proteins (occludin and claudin-5), and decreased cell death. Moreover, it attenuated superoxide production, Nox activity and expression of 3-nitrotyrosine. Collectively, these results demonstrate that post-stroke treatment with des-acylated ghrelin, but not acylated ghrelin, protects against ischaemia/reperfusion-induced brain injury and swelling, and BBB disruption, by reducing oxidative and/or nitrosative damage. PMID:27303049

  17. Cholecystokinin (CCK) stimulates S6 phosphorylation and induced activation of S6 protein kinase in rat pancreatic acini

    Energy Technology Data Exchange (ETDEWEB)

    Sung, C.; Okabayashi, Y.; Williams, J.

    1987-05-01

    CCK and insulin stimulate pancreatic protein synthesis at a post transcriptional step. To better understand this regulation the authors evaluated the phosphorylation state of ribosomal protein S6 and the presence of a specific S6 protein kinase in pancreatic acini from diabetic rats. Both CCK and insulin increased S6 phosphorylation by up to 400% in intact TSP-labelled acini. The phorbol ester 12-0-tetradecanoylphorbol 13-acetate also stimulated both protein synthesis and S6 phosphorlyation suggesting a role for protein kinase C in mediating the effect of CCK. By contrast, the CaS ionophore ionomycin had no effect on either parameter. Recently, insulin has been shown to activate a unique S6 kinase in various cells. To test for its presence, cytosolic extracts were prepared from acini stimulated with CCK and insulin by homogenization in US -glycerophosphate buffer and assayed for the kinase using el-TSP ATP and rat pancreatic ribosomes followed by SDS-polyacrylamide gel electrophoresis. CCK and insulin both increased S6 kinase activity which required neither CaS or phospholipid. The dose response for CCk was similar to S6 phosphorlyation in the intact acini. TPA did not stimulate the S6 kinase. Thus, CCK may induce S6 phosphorylation both via C kinase and by activation of a unique S6 kinase.

  18. Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex.

    Science.gov (United States)

    Sgaravatti, Angela M; Magnusson, Alessandra S; de Oliveira, Amanda S; Rosa, Andréa P; Mescka, Caroline Paula; Zanin, Fernanda R; Pederzolli, Carolina D; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir; Dutra-Filho, Carlos Severo

    2009-09-01

    Tyrosine levels are abnormally elevated in tissues and physiological fluids of patients with inborn errors of tyrosine catabolism especially in tyrosinemia type II which is caused by deficiency of tyrosine aminotransferase (TAT) and provokes eyes, skin and central nervous system disturbances. We have recently reported that tyrosine promoted oxidative stress in vitro but the exact mechanisms of brain damage in these disorder are poorly known. In the present study, we investigated the in vivo effect of L-tyrosine (500 mg/Kg) on oxidative stress indices in cerebral cortex homogenates of 14-day-old Wistar rats. A single injection of L-tyrosine decreased glutathione (GSH) and thiol-disulfide redox state (SH/SS ratio) while thiobarbituric acid-reactive substances, protein carbonyl content and glucose-6-phosphate dehydrogenase activity were enhanced. In contrast, the treatment did not affect ascorbic acid content, and the activities of superoxide dismutase, catalase and glutathione peroxidase. These results indicate that acute administration of L-tyrosine may impair antioxidant defenses and stimulate oxidative damage to lipids and proteins in cerebral cortex of young rats in vivo. This suggests that oxidative stress may represent a pathophysiological mechanism in hypetyrosinemic patients.

  19. Stimulation of the UvrABC enzyme-catalyzed repair reactions by the UvrD protein (DNA helicase II).

    OpenAIRE

    Kumura, K; Sekiguchi, M.; Steinum, A L; Seeberg, E

    1985-01-01

    An in vitro assay system was constructed using highly purified preparations of UvrA, UvrB, UvrC, UvrD proteins and DNA polymerase I, the objective being to analyse the role of UvrD protein in excision repair of UV-induced DNA damage. UvrABC enzyme-initiated repair synthesis was greatly enhanced by the addition of UvrD protein to the reaction mixture. Further analysis revealed that UvrD protein stimulated introduction of strand breaks in irradiated DNA by UvrABC enzyme but had no effect on the...

  20. The human metapneumovirus matrix protein stimulates the inflammatory immune response in vitro.

    Directory of Open Access Journals (Sweden)

    Audrey Bagnaud-Baule

    Full Text Available Each year, during winter months, human Metapneumovirus (hMPV is associated with epidemics of bronchiolitis resulting in the hospitalization of many infants. Bronchiolitis is an acute illness of the lower respiratory tract with a consequent inflammation of the bronchioles. The rapid onset of inflammation suggests the innate immune response may have a role to play in the pathogenesis of this hMPV infection. Since, the matrix protein is one of the most abundant proteins in the Paramyxoviridae family virion, we hypothesized that the inflammatory modulation observed in hMPV infected patients may be partly associated with the matrix protein (M-hMPV response. By western blot analysis, we detected a soluble form of M-hMPV released from hMPV infected cell as well as from M-hMPV transfected HEK 293T cells suggesting that M-hMPV may be directly in contact with antigen presenting cells (APCs during the course of infection. Moreover, flow cytometry and confocal microscopy allowed determining that M-hMPV was taken up by dendritic cells (moDCs and macrophages inducing their activation. Furthermore, these moDCs enter into a maturation process inducing the secretion of a broad range of inflammatory cytokines when exposed to M-hMPV. Additionally, M-hMPV activated DCs were shown to stimulate IL-2 and IFN-γ production by allogeneic T lymphocytes. This M-hMPV-mediated activation and antigen presentation of APCs may in part explain the marked inflammatory immune response observed in pathology induced by hMPV in patients.

  1. Purification and characterization of a Ca2+ -dependent/calmodulin-stimulated protein kinase from moss chloronema cells

    Indian Academy of Sciences (India)

    Jacinta S D’souza; Man Mohan Johri

    2003-03-01

    We have demonstrated the presence of a Ca2+-dependent/calmodulin-stimulated protein kinase (PK) in chloronema cells of the moss Funaria hygrometrica. The kinase, with a molecular mass of 70,000 daltons (PK70), was purified to homogeneity using ammonium sulphate fractionation, DEAE-cellulose chromatography, and calmodulin (CaM)-agarose affinity chromatography. The kinase activity was stimulated at a concentration of 50 M free Ca2+, and was further enhanced 3–5-fold with exogenously added 3–1000 nm moss calmodulin (CaM). Autophosphorylation was also stimulated with Ca2+ and CaM. Under in vitro conditions, PK70 phosphorylated preferentially lysine-rich substrates such as HIIIS and HVS. This PK shares epitopes with the maize Ca2+-dependent/calmodulin-stimulated PK (CCaMK) and also exhibits biochemical properties similar to the maize, lily, and tobacco CCaMK. We have characterized it as a moss CCaMK.

  2. [Relationship between PTEN mutations and protein kinase B phosphorylation caused by insulin or recombinant human epidermal growth factor stimulation].

    Science.gov (United States)

    Zhong, Hailan; Hu, Xianfu; Lin, Jianhua

    2016-08-01

    Objective To study the effect of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) mutations on protein kinase B (Akt) phosphorylation of CNE-1 nasopharyngeal carcinoma cell line. Methods CNE-1 cells were cultured in RPMI1640 medium containing 100 mL/L fetal calf serum, and then transfected with wild-type PTEN (wtPTEN), mutant PTEN C124S and mutant PTEN G129E plasmid separately. After overnight serum starvation, the cells were stimulated with 0.15 IU/mL insulin or 0.3 μg/mL recombinant human epidermal growth factor (rhEGF). At last, Akt phosphorylation was evaluated by Western blotting. Results Insulin or rhEGF stimulation led to Akt activation in CNE-1 cells. The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt. PTEN C124S mutant activated insulin-stimulated phosphorylation of Akt, but not rhEGF-stimulated phosphorylation of Akt. PTEN G129E mutant inhibited insulin-stimulated phosphorylation of Akt. Conclusion The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt, while PTEN C124S and G129E mutants failed to activate the phosphorylation of Akt consistently. This suggested PTEN mutations might not be correlated with activated Akt. PMID:27412938

  3. Deficiency of macrophage stimulating protein results in spontaneous inflammation and increased susceptibility towards epithelial damage in zebrafish

    NARCIS (Netherlands)

    Witte, M.; Huitema, L.F.; Nieuwenhuis, E.E.S.; Brugman, S.

    2014-01-01

    Several genome-wide association studies have identified the genes encoding for macrophage-stimulating protein (MSP) and its receptor RON (Recepteur d'Origine Nantais) as possible susceptibility factors in inflammatory bowel disease. While it has been shown that the MSP–RON signaling pathway is invol

  4. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    Directory of Open Access Journals (Sweden)

    Siham eRaboune

    2014-08-01

    Full Text Available A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide, and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: 1 Additional N-acyl amides will have activity at TRPV1-4, 2 Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and 3 N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation.

  5. Acylated flavone glycosides from Veronica

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Jensen, Søren Rosendal;

    2003-01-01

    A survey of the flavonoid glycosides of selected taxa in the genus Veronica yielded two new acylated 5,6,7,3',4'-pentahydroxyflavone (6-hydroxyluteolin) glycosides and two rare allose-containing acylated 5,7,8,4'-tetrahydroxyflavone (isoscutellarein) glycosides. The new compounds were isolated from...... Veronica (melittoside and globularifolin) were also isolated from V. intercedens....

  6. Acyl-CoA metabolism and partitioning

    DEFF Research Database (Denmark)

    Grevengoed, Trisha J; Klett, Eric L; Coleman, Rosalind A

    2014-01-01

    Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue e...

  7. Arabinogalactan-proteins stimulate somatic embryogenesis and plant propagation of Pelargonium sidoides.

    Science.gov (United States)

    Duchow, Stefanie; Dahlke, Renate I; Geske, Thomas; Blaschek, Wolfgang; Classen, Birgit

    2016-11-01

    Root extracts of the medicinal plant Pelargonium sidoides, native to South Africa, are used globally for the treatment of common cold and cough. Due to an increasing economic commercialization of P. sidoides remedies, wild collections of root material should be accompanied by effective methods for plant propagation like somatic embryogenesis. Based on this, the influence of arabinogalactan-proteins (AGPs) on somatic embryogenesis and plant propagation of P. sidoides has been investigated. High-molecular weight AGPs have been isolated from dried roots as well as from cell cultures of P. sidoides with yields between 0.1% and 0.9%, respectively. AGPs are characterized by a 1,3-linked Galp backbone, branched at C6 to 1,6-linked Galp side chains terminated by Araf and to a minor extent by GlcpA, Galp or Rhap. Treatment of explants of P. sidoides with AGPs from roots or suspension culture over 5.5 weeks resulted in effective stimulation of somatic embryo development and plant regeneration. PMID:27516259

  8. Stability-increasing effects of anthocyanin glycosyl acylation.

    Science.gov (United States)

    Zhao, Chang-Ling; Yu, Yu-Qi; Chen, Zhong-Jian; Wen, Guo-Song; Wei, Fu-Gang; Zheng, Quan; Wang, Chong-De; Xiao, Xing-Lei

    2017-01-01

    This review comprehensively summarizes the existing knowledge regarding the chemical implications of anthocyanin glycosyl acylation, the effects of acylation on the stability of acylated anthocyanins and the corresponding mechanisms. Anthocyanin glycosyl acylation commonly refers to the phenomenon in which the hydroxyl groups of anthocyanin glycosyls are esterified by aliphatic or aromatic acids, which is synthetically represented by the acylation sites as well as the types and numbers of acyl groups. Generally, glycosyl acylation increases the in vitro and in vivo chemical stability of acylated anthocyanins, and the mechanisms primarily involve physicochemical, stereochemical, photochemical, biochemical or environmental aspects under specific conditions. Additionally, the acylation sites as well as the types and numbers of acyl groups influence the stability of acylated anthocyanins to different degrees. This review could provide insight into the optimization of the stability of anthocyanins as well as the application of suitable anthocyanins in food, pharmaceutical and cosmetic industries. PMID:27507456

  9. High-frequency magnetic stimulation attenuates beta-amyloid protein 1-42 neurotoxicity in organotypic hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    Don-Kyu Kim; Young Chul Yoon; Soo Ahn Chae; Kyung Mook Seo; Tai Ryoon Han; Si-Hyun Kang

    2010-01-01

    Repetitive transcranial magnetic stimulation(rTMS)has been utilized as a therapeutic tool for neurodegenerative disorders including Alzheimer's disease.However,the precise mechanisms of its clinical effects remain unknown.β-amyloid(Aβ)exhibits direct neurotoxic effects and is closely related to neuronal degeneration in Alzheimer's disease.Therefore,it has been hypothesized that the neuroprotective effects of rTMS are related to the mechanisms of protection against Aβneurotoxicity.Organotypic hippocampal slices were prepared from 8-day old,Sprague Dawley rats.The tissue slices were exposed to 100 μmol/L Aβ1-42 since day 12 in vitro with and without high-frequency(20 Hz)magnetic stimulation.Magnetic stimulation efficacy was evaluated by measuring neuronal nuclei(NeuN)protein expression and by observing cultures following propidium iodide fluorescence staining and bromodeoxyuridine(BrdU)immunohistochemistry.Lactate dehydrogenase activity was detected in the culture media to evaluate hippocampal neuronal damage.Our results demonstrated that high-frequency magnetic stimulation significantly reversed the reduction of NeuN protein expression because of Aβ1-42 exposure(P < 0.05)and significantly reduced the number of damaged cells in the hippocampal slices(P < 0.05).However,lactate dehydrogenase levels and anti-BrdU staining results did not reveal any statistical differences.These findings indicate that high-frequency magnetic stimulation might have protective effect on hippocampal neurons from Aβ1-42 neurotoxicity.

  10. Regulation of gap-junction protein connexin 43 by β-adrenergic receptor stimulation in rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yi XIA; Kai-zheng GONG; Ming XU; You-yi ZHANG; Ji-hong GUO; Yao SONG; Ping ZHANG

    2009-01-01

    Aim:β-adrenergic receptor (β-AR) agonists are among the most potent factors regulating cardiac electrophysiological properties.Connexin 43 (Cx43),the predominant gap-junction protein in the heart,has an indispensable role in modulating cardiac electric activities by affecting gap-junction function.The present study investigates the effects of short-term stimulation of β-AR subtypes on Cx43 expression and gap junction intercellular communication (GJIC) function.Methods:The level of Cx43 expression in neonatal rat cardiomyocytes (NRCM) was detected by a Western blotting assay.The GJIC function was evaluated by scrape loading/dye transfer assay.Results:Stimulation of β-AR by the agonist isoproterenol for 5 min induces the up-regulation of nonphosphorylated Cx43 protein level,but not total Cx43.Selective β2-AR inhibitor ICI 118551,but not β-AR inhibitor CGP20712,could fully abolish the effect.Moreover,pretreatment with both protein kinase A inhibitor H89 and G,protein inhibitor pertussis toxin also inhibited the isoproterenol-induced increase of nonphosphorylated Cx43 expression.Isoproterenol-induced up-regulation of nonphosphorylated Cx43 is accompanied with enhanced GJIC function.Conclusion:Taken together,β2-AR stimulation increases the expression of nonphosphorylated Cx43,thereby enhancing the gating function of gap junctions in cardiac myocytes in both a protein kinase A-and G1-dependent manner.

  11. Stimulated human peripheral T cells produce high amounts of IL-35 protein in a proliferation-dependent manner.

    Science.gov (United States)

    Guttek, Karina; Reinhold, Dirk

    2013-10-01

    The p35 subunit of IL-12 and the Epstein-Barr virus-induced gene 3 (EBI3) have been shown to form a heterodimeric cytokine, named interleukin-35 (IL-35). Recently, mRNA expression of both IL-12p35 and EBI3 was clearly shown in stimulated human T effector cells. Here, we investigated the production of IL-35 protein in human anti-CD3/CD28-stimulated pan T cells as well as T cell subpopulations using a specific human IL-35 ELISA system. We measured high concentrations of IL-35 (up to 3 ng/ml) in cell culture supernatants of stimulated pan T cells as well as CD4(+), CD8(+) and CD4(+)CD25(-) T cell subpopulations at 72 h after stimulation. Very low amounts of IL-35, in the range of 100pg/ml, were detectable in supernatants of resting T cells. These observations could be confirmed using a dot-blot assay for IL-12p35 and EBI3. High concentrations of IL-35 could be also measured in cell culture supernatants of both, resting and stimulated CD4(+)CD25(+) T cells. In order to learn more about the regulation of IL-35 production, we studied the effect of dexamethasone, cyclosporine A and rapamycin on IL-35 production of anti-CD3/CD28-stimulated human pan T cells as well as CD4(+) and CD8(+) T cell subpopulations. All three drugs significantly suppressed IL-35 production of these cells in a proliferation-dependent manner. In summary, we could show that stimulated human peripheral blood T cells of healthy donors produce high amounts of IL-35 protein. However, the biological function of this cytokine remains to be elucidated.

  12. Insulin-stimulated Na/sup +/ transport in a model renal epithelium: protein synthesis dependence and receptor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Blazer-Yost, B.L.; Cox, M.

    1987-05-01

    The urinary bladder of the toad, Bufo marinus, is a well characterized model of the mammalian distal nephron. Porcine insulin (approx. 0.5-5.0 ..mu..M) stimulates net mucosal to serosal Na/sup +/ flux within 10 minutes of hormone addition. The response is maintained for at least 5 hr and is completely abolished by low doses (10..mu..M) of the epithelial Na/sup +/ channel blocker amiloride. Insulin-stimulated Na/sup +/ transport does not require new protein synthesis since it is actinomycin-D (10..mu..g/ml) insensitive. Also in 3 separate experiments in which epithelial cell proteins were examined by /sup 35/S-methionine labeling, 2-dimensional polyacrylamide gel electrophoresis/autoradiography, no insulin induced proteins were observed. Equimolar concentrations of purified porcine proinsulin and insulin (0.64..mu..M) stimulate Na/sup +/ transport to the same extent. Thus, the putative toad insulin receptor may have different affinity characteristics than those demonstrated for insulin and proinsulin in mammalian tissues. Alternatively, the natriferic action of insulin in toad urinary bladders may be mediated by occupancy of another receptor. Preliminary experiments indicating that nanomolar concentrations of IGF/sub 1/ stimulate Na/sup +/ transport in this tissue support the latter contention.

  13. Regulation of major acute-phase plasma proteins by hepatocyte- stimulating factors of human squamous carcinoma cells

    OpenAIRE

    1986-01-01

    Human squamous carcinoma (COLO-16) cells release factors which specifically stimulate the synthesis of major acute-phase plasma proteins in human and rodent hepatic cells. Anion exchange, hydroxyapatite, lectin, and gel chromatography of conditioned medium of COLO-16 cells result in separation into three distinct forms of hepatocyte-stimulating factors (designated HSF-I, HSF-II, and HSF-III) with apparent molecular weights of 30,000, 50,000 and 70,000, respectively. None of the preparations c...

  14. Laser Stimulation of the Chloroplast/Endoplasmic Reticulum Nexus in Tobacco Transiently Produces Protein Aggregates (Boluses) within the Endoplasmic Reticulum and Stimulates Local ER Remodeling

    Institute of Scientific and Technical Information of China (English)

    Lawrence R. Griffing

    2011-01-01

    Does the ER subdomain that associates with the chloroplast in vivo,hereafter referred to as the chloroplast/ER nexus,play a role in protein flow within the ER? In studies of tobacco cells either constitutively or transiently expressing ER-retained luminal,GFP-HDEL,or trans-membrane,YFP-RHD3,fluorescent fusion proteins,brief 405-nm (3-6-mW) laser stimulation of the nexus causes a qualitative difference in the movement and behavior of proteins in the ER.Photostimulating the nexus produces fluorescent protein punctate aggregates (boluses) within the lumen and membrane of the ER.The aggregation propagates through the membrane network throughout the cell,but within minutes can revert to normal,with disaggregation propagating back toward the originally photostimulated nexus.In the meantime,the ER grows and anastomoses around the chloroplast,forming a dense cisternal and tubular network.If this network is again photostimulated,bolus formation does not recur and,if the photostimulation results in photobleaching,fluorescence recovery after photobleaching occurs as it would typically in areas away from the nexus.Bolus propagation is not mediated by the actin cytoskeleton,but can be reversed by pre-conditioning the cells for 30 min with high,40-45℃,temperature (heat stress).Because it is not reversed with heat stress,the reorganization of the ER at the nexus following photostimulation is a separate event.

  15. Minor modifications to the phosphate groups and the C3' acyl chain length of lipid A in two Bordetella pertussis strains, BP338 and 18-323, independently affect Toll-like receptor 4 protein activation.

    Science.gov (United States)

    Shah, Nita R; Albitar-Nehme, Sami; Kim, Emma; Marr, Nico; Novikov, Alexey; Caroff, Martine; Fernandez, Rachel C

    2013-04-26

    Lipopolysaccharides (LPS) of Bordetella pertussis are important modulators of the immune system. Interaction of the lipid A region of LPS with the Toll-like receptor 4 (TLR4) complex causes dimerization of TLR4 and activation of downstream nuclear factor κB (NFκB), which can lead to inflammation. We have previously shown that two strains of B. pertussis, BP338 (a Tohama I-derivative) and 18-323, display two differences in lipid A structure. 1) BP338 can modify the 1- and 4'-phosphates by the addition of glucosamine (GlcN), whereas 18-323 cannot, and 2) the C3' acyl chain in BP338 is 14 carbons long, but only 10 or 12 carbons long in 18-323. In addition, BP338 lipid A can activate TLR4 to a greater extent than 18-323 lipid A. Here we set out to determine the genetic reasons for the differences in these lipid A structures and the contribution of each structural difference to the ability of lipid A to activate TLR4. We show that three genes of the lipid A GlcN modification (Lgm) locus, lgmA, lgmB, and lgmC (previously locus tags BP0399-BP0397), are required for GlcN modification and a single amino acid difference in LpxA is responsible for the difference in C3' acyl chain length. Furthermore, by introducing lipid A-modifying genes into 18-323 to generate isogenic strains with varying penta-acyl lipid A structures, we determined that both modifications increase TLR4 activation, although the GlcN modification plays a dominant role. These results shed light on how TLR4 may interact with penta-acyl lipid A species.

  16. Generation of fatty acids by an acyl esterase in the bioluminescent system of Photobacterium phosphoreum

    International Nuclear Information System (INIS)

    The fatty acid reductase complex from Photobacterium phosphoreum has been discovered to have a long chain ester hydrolase activity associated with the 34K protein component of the complex. This protein has been resolved from the other components (50K and 58K) of the fatty acid reductase complex with a purity of > 95% and found to catalyze the transfer of acyl groups from acyl-CoA primarily to thiol acceptors with a low level of transfer to glycerol and water. Addition of the 50K protein of the complex caused a dramatic change in specificity increasing the transfer to oxygen acceptors. The acyl-CoA hydrolase activity increased almost 10-fold, and hence free fatty acids can be generated by the 34K protein when it is present in the fatty acid reductase complex. Hydrolysis of acyl-S-mercaptoethanol and acyl-1-glycerol and the ATP-dependent reduction of the released fatty acids to aldehyde for the luminescent reaction were also demonstrated for the reconstituted fatty acid reductase complex, raising the possibility that the immediate source of fatty acids for this reaction in vivo could be the membrane lipids and/or the fatty acid synthetase system

  17. A Novel, Stable, Estradiol-Stimulating, Osteogenic Yam Protein with Potential for the Treatment of Menopausal Syndrome.

    Science.gov (United States)

    Wong, Kam Lok; Lai, Yau Ming; Li, Ka Wan; Lee, Kai Fai; Ng, Tzi Bun; Cheung, Ho Pan; Zhang, Yan Bo; Lao, Lixing; Wong, Ricky Ngok-Shun; Shaw, Pang Chui; Wong, Jack Ho; Zhang, Zhang-Jin; Lam, Jenny Ka Wing; Ye, Wen-cai; Wencai, Y E; Sze, Stephen Cho Wing

    2015-01-01

    A novel protein, designated as DOI, isolated from the Chinese yam (Dioscorea opposita Thunb.) could be the first protein drug for the treatment of menopausal syndrome and an alternative to hormone replacement therapy (HRT), which is known to have undesirable side effects. DOI is an acid- and thermo-stable protein with a distinctive N-terminal sequence Gly-Ile-Gly-Lys-Ile-Thr-Thr-Tyr-Trp-Gly-Gln-Tyr-Ser-Asp-Glu-Pro-Ser-Leu-Thr-Glu. DOI was found to stimulate estradiol biosynthesis in rat ovarian granulosa cells; induce estradiol and progesterone secretion in 16- to 18-month-old female Sprague Dawley rats by upregulating expressions of follicle-stimulating hormone receptor and ovarian aromatase; counteract the progression of osteoporosis and augment bone mineral density; and improve cognitive functioning by upregulating protein expressions of brain-derived neurotrophic factor and TrkB receptors in the prefrontal cortex. Furthermore, DOI did not stimulate the proliferation of breast cancer and ovarian cancer cells, which suggest it could be a more efficacious and safer alternative to HRT. PMID:26160710

  18. Alternate reading frame protein (F protein of hepatitis C virus: paradoxical effects of activation and apoptosis on human dendritic cells lead to stimulation of T cells.

    Directory of Open Access Journals (Sweden)

    Subodh Kumar Samrat

    Full Text Available Hepatitis C virus (HCV leads to chronic infection in the majority of infected individuals due to lack, failure, or inefficiency of generated adaptive immune responses. In a minority of patients, acute infection is followed by viral clearance. The immune correlates of viral clearance are not clear yet but have been extensively investigated, suggesting that multispecific and multifunctional cellular immunity is involved. The generation of cellular immunity is highly dependent upon how antigen presenting cells (APCs process and present various viral antigens. Various structural and non-structural HCV proteins derived from the open reading frame (ORF have been implicated in modulation of dendritic cells (DCs and APCs. Besides the major ORF proteins, the HCV core region also encodes an alternate reading frame protein (ARFP or F, whose function in viral pathogenesis is not clear. In the current studies, we sought to determine the role of HCV-derived ARFP in modulating dendritic cells and stimulation of T cell responses. Recombinant adenovirus vectors containing F or core protein derived from HCV (genotype 1a were prepared and used to endogenously express these proteins in dendritic cells. We made an intriguing observation that endogenous expression of F protein in human DCs leads to contrasting effects on activation and apoptosis of DCs, allowing activated DCs to efficiently internalize apoptotic DCs. These in turn result in efficient ability of DCs to process and present antigen and to prime and stimulate F protein derived peptide-specific T cells from HCV-naive individuals. Taken together, our findings suggest important aspects of F protein in modulating DC function and stimulating T cell responses in humans.

  19. Stimulation of the cyclic AMP-dependent protein kinase-catalyzed phosphorylation of phosphorylase kinase by micromolar concentrations of spermine

    International Nuclear Information System (INIS)

    The phosphorylation of phosphorylase kinase by cyclic AMP-dependent protein kinase (A-kinase) is stimulated approximately 2-fold by spermine and spermidine. Half maximal effects were observed at 10 microM and 150 microM of spermine and spermidine, respectively. The phosphorylations of other substrates of A-kinase such as glycogen synthase, histone, and casein are not stimulated by these two polyamines. The rates, but not the final extents, of phosphorylation of both the alpha and beta subunits of phosphorylase kinase by A-kinase are stimulated by spermine. The results indicate that spermine and spermidine may play an important role in the activation of glycogenolysis in skeletal muscle

  20. Specificity of acyl-homoserine lactone synthases examined by mass spectrometry.

    Science.gov (United States)

    Gould, Ty A; Herman, Jake; Krank, Jessica; Murphy, Robert C; Churchill, Mair E A

    2006-01-01

    Many gram-negative bacteria produce a specific set of N-acyl-L-homoserine-lactone (AHL) signaling molecules for the purpose of quorum sensing, which is a means of regulating coordinated gene expression in a cell-density-dependent manner. AHLs are produced from acylated acyl-carrier protein (acyl-ACP) and S-adenosyl-L-methionine by the AHL synthase enzyme. The appearance of specific AHLs is due in large part to the intrinsic specificity of the enzyme for subsets of acyl-ACP substrates. Structural studies of the Pantoea stewartii enzyme EsaI and AHL-sensitive bioassays revealed that threonine 140 in the acyl chain binding pocket directs the enzyme toward production of 3-oxo-homoserine lactones. Mass spectrometry was used to examine the range of AHL molecular species produced by AHL synthases under a variety of conditions. An AHL selective normal-phase chromatographic purification with addition of a deuterated AHL internal standard was followed by reverse-phase liquid chromatography-tandem mass spectrometry in order to obtain estimates of the relative amounts of different AHLs from biological samples. The AHLs produced by wild-type and engineered EsaI and LasI AHL synthases show that intrinsic specificity and different cellular conditions influence the production of AHLs. The threonine at position 140 in EsaI is important for the preference for 3-oxo-acyl-ACPs, but the role of the equivalent threonine in LasI is less clear. In addition, LasI expressed in Escherichia coli produces a high proportion of unusual AHLs with acyl chains consisting of an odd number of carbons. Furthermore, these studies offer additional methods that will be useful for surveying and quantitating AHLs from different sources. PMID:16385066

  1. Pharmacokinetics of naproxen, its metabolite O-desmethylnaproxen, and their acyl glucuronides in humans.

    Science.gov (United States)

    Vree, T B; van den Biggelaar-Martea, M; Verwey-van Wissen, C P; Vree, J B; Guelen, P J

    1993-08-01

    The aim of this investigation was to assess the pharmacokinetics of naproxen in 10 human subjects after an oral dose of 500 mg using a direct HPLC analysis of the acyl glucuronide conjugates of naproxen and its metabolite O-desmethylnaproxen. The mean t1/2 of naproxen in 9 subjects was 24.7 +/- 6.4 h (range 16 to 36 h). The t1/2 of 7.4 as found in subject number 10 must, therefore, be regarded as an extraordinary case (p < 0.0153). Naproxen acyl glucuronide accounts for 50.8 +/- 7.32 per cent of the dose, its isomerized conjugate isoglucuronide for 6.5 +/- 2.0 per cent, O-desmethylnaproxen acyl glucuronide for 14.3 +/- 3.4 per cent, and its isoglucuronide for 5.5 +/- 1.3 per cent (n = 10; 100 h collection period). Naproxen and O-desmethylnaproxen are excreted in negligible amounts (< 1 per cent). Even though urine pH of the subjects was kept acid (range pH 5.0-5.5) in order to stabilize the acyl glucuronides, isomerization takes place in blood when the acyl glucuronide is released from the liver for excretion by the kidney. Binding to plasma proteins was measured as 98 per cent and 100 per cent, respectively for the unconjugated compounds naproxen and O-desmethylnaproxen. Binding of the acyl glucuronides was less, being 92 per cent; for naproxen acyl glucuronide, 66 per cent for naproxen isoglucuronide, 72 per cent for O-desmethylnaproxen acyl glucuronide and 42 per cent for O-desmethylnaproxen isoglucuronide. PMID:8218967

  2. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    International Nuclear Information System (INIS)

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  3. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Directory of Open Access Journals (Sweden)

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  4. Synthesis and biological activities of turkesterone 11?-acyl derivatives

    Directory of Open Access Journals (Sweden)

    Laurence Dinan

    2003-02-01

    Full Text Available Turkesterone is a phytoecdysteroid possessing an 11alpha-hydroxyl group. It is an analogue of the insect steroid hormone 20-hydroxyecdysone. Previous ecdysteroid QSAR and molecular modelling studies predicted that the cavity of the ligand-binding domain of the ecdysteroid receptor would possess space in the vicinity of C-11/C-12 of the ecdysteroid. We report the regioselective synthesis of a series of turkesterone 11alpha-acyl derivatives in order to explore this possibility. The structures of the analogues have been unambiguously determined by spectroscopic means (NMR and low-resolution mass spectrometry. Purity was verified by HPLC. Biological activities have been determined in Drosophila melanogaster BII cell-based bioassay for ecdysteroid agonists and in an in vitro radioligand-displacement assay using bacterially expressed D. melanogaster EcR/USP receptor proteins. The 11alpha-acyl derivatives do retain a significant amount of biological activity relative to the parent ecdysteroid. Further, although activity initially drops with the extension of the acyl chain length (C2 to C4, it then increases (C6 to C10, before decreasing again (C14 and C20. The implications of these findings for the interaction of ecdysteroids with the ecdysteroid receptor and potential applications in the generation of affinity-labelled and fluorescently-tagged ecdysteroids are discussed.

  5. Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C.

    Science.gov (United States)

    McConkey, D J; Hartzell, P; Jondal, M; Orrenius, S

    1989-08-15

    Glucocorticoid hormones and Ca2+ ionophores stimulate a suicide process in immature thymocytes, known as apoptosis or programmed cell death, that involves extensive DNA fragmentation. We have recently shown that a sustained increase in cytosolic Ca2+ concentration stimulates DNA fragmentation and cell killing in glucocorticoid- or ionophore-treated thymocytes. However, a sustained increase in the cytosolic Ca2+ level also mediates lymphocyte proliferation, suggesting that apoptosis is blocked in proliferating thymocytes. In this study we report that phorbol esters, which selectively stimulate protein kinase C (PKC), blocked DNA fragmentation and cell death in thymocytes exposed to Ca2+ ionophore or glucocorticoid hormone. The T cell mitogen, concanavalin A, which stimulates thymocytes by a mechanism that involves PKC activation, caused concentration-dependent increases in the cytosolic Ca2+ level that did not result in DNA fragmentation, but incubation with concanavalin A and the PKC inhibitor H-7 (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine) resulted in both DNA fragmentation and cell death. Phorbol ester directly inhibited Ca2+-dependent DNA fragmentation in isolated thymocyte nuclei. Our results strongly suggest that PKC activation blocks thymocyte apoptosis by preventing Ca2+-stimulated endonuclease activation. PMID:2503500

  6. Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats.

    Science.gov (United States)

    Ishikawa, Yuki; Hira, Tohru; Inoue, Daisuke; Harada, Yukikazu; Hashimoto, Hiroyuki; Fujii, Mikio; Kadowaki, Motoni; Hara, Hiroshi

    2015-08-01

    Rice has historically been consumed in Asia as a major source of carbohydrates, however, little is known regarding the functional roles of rice proteins as dietary factors. In the present study, we investigated whether peptides derived from rice proteins could stimulate GLP-1 secretion, which results in reducing glycemia via the incretin effect in normal rats. Hydrolysates were prepared from the protein fraction of rice endosperm or rice bran, and the effects of these hydrolysates on GLP-1 secretion were examined in a murine enteroendocrine cell line GLUTag. Plasma was collected after oral administration of the rice protein hydrolysates, under anesthesia, or during glucose tolerance tests in rats. In anesthetized rats, plasma dipeptidyl peptidase-IV (DPP-IV) activity was measured after ileal administration of the rice protein hydrolysates. GLP-1 secretion from GLUTag cells was potently stimulated by the rice protein hydrolysates, especially by the peptic digest of rice endosperm protein (REPH) and that of rice bran protein (RBPH). Oral administration of REPH or RBPH elevated plasma GLP-1 concentrations, which resulted in the reduction of glycemia under the intraperitoneal glucose tolerance test. In addition, the plasma DPP-IV activity was attenuated after ileal administration of REPH or RBPH, which resulted in a higher ratio of intact (active) GLP-1 to total GLP-1 in the plasma. These results demonstrate that rice proteins exert potent stimulatory effects on GLP-1 secretion, which could contribute to the reduction of postprandial glycemia. The inhibitory effect of these peptides on the plasma DPP-IV activity may potentiate the incretin effect of GLP-1. PMID:26107658

  7. Regulation of gap-junction protein connexin 43 by β-adrenergic receptor stimulation in rat cardiomyocytes

    OpenAIRE

    Xia, Yi; Gong, Kai-zheng; Xu, Ming; Zhang, You-Yi; Guo, Ji-Hong; Song, Yao; Zhang, Ping

    2009-01-01

    Aim: β-adrenergic receptor (β-AR) agonists are among the most potent factors regulating cardiac electrophysiological properties. Connexin 43 (Cx43), the predominant gap-junction protein in the heart, has an indispensable role in modulating cardiac electric activities by affecting gap-junction function. The present study investigates the effects of short-term stimulation of β-AR subtypes on Cx43 expression and gap junction intercellular communication (GJIC) function. Methods: The level of Cx43...

  8. Insulin is a prominent modulator of the cytokine-stimulated expression of acute-phase plasma protein genes.

    OpenAIRE

    Campos, S P; Baumann, H

    1992-01-01

    Several endocrine hormones which influence liver metabolism are known to increase in activity during the acute phase of injury or inflammation. We determined whether these hormones have the potential to influence acute-phase protein production in human and rat hepatoma cells. Catecholamines, glucagon, growth hormone, triiodothyronine, and cyclic nucleotides individually or in combination did not modulate the basal or the interleukin-1 (IL-1)-, IL-6-, and dexamethasone-stimulated levels of acu...

  9. Molecular, biochemical, and functional characterization of a nudix hydrolase protein that stimulates the activity of a nicotinoprotein alcohol dehydrogenase

    OpenAIRE

    Kloosterman, H; Vrijbloed, JW; Dijkhuizen, L.

    2002-01-01

    The cytoplasmic coenzyme NAD(+)-dependent alcohol (methanol) dehydrogenase (MDH) employed by Bacillus methanolicus during growth on C-1-C-4 primary alcohols is a decameric protein with 1 Zn2+-ion and 1-2 Mg2+-ions plus a tightly bound NAD(H) cofactor per subunit (a nicotinoprotein). Mg2+-ions are essential for binding of NAD(H) cofactor in MDH protein expressed in Escherichia coli. The low coenzyme NAD(+)-dependent activity of MDH with C-1-C-4 primary alcohols is strongly stimulated by a seco...

  10. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  11. Catalytic Acylation of Anisole over Some Zeolites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    4-Methoxyacetophenone(4-MAP) was synthesized by the acylation of anisole with acetic anhydride in the presence of HY zeolite.The addition of an appropriate amount of some solvent such as dichloromethane,chloroform,carbon disulfide or chlorobenzene to the reaction system can improve the yield of the acylated product to a certain extent.HY zeolite used can be recovered,and reused after being regenerated,obtaining almost the same yield of 4-MAP as the fresh zeolite.

  12. Involvement of protein kinase C, phospholipase C, and protein tyrosine kinase pathways in oxygen radical generation by asbestos-stimulated alveolar macrophage.

    OpenAIRE

    Lim, Y.; Kim, S. H.; Kim, K A; Oh, M W; Lee, K. H.

    1997-01-01

    Although asbestos stimulates oxygen radical generation in alveolar macrophages, the exact mechanism is still not clear. The purpose of this study was to compare the ability of three asbestos fibers (amosite, chrysotile, and crocidolite) to generate oxygen radicals in macrophages and examine the mechanism of this action. All asbestos fibers were able to induce chemiluminescence but chrysotile induced maximal chemiluminescence at higher concentrations than amosite and crocidolite. Protein kinas...

  13. Muoniated acyl and thioacyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Iain [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Brodovitch, Jean-Claude [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Ghandi, Khashayar [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Percival, Paul W. [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada)]. E-mail: percival@sfu.ca

    2006-03-31

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and {sup 14}N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and {sup 14}N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy.

  14. Characterization of Two Members among the Five ADP-Forming Acyl Coenzyme A (Acyl-CoA) Synthetases Reveals the Presence of a 2-(Imidazol-4-yl)Acetyl-CoA Synthetase in Thermococcus kodakarensis

    OpenAIRE

    Awano, Tomotsugu; Wilming, Anja; Tomita, Hiroya; Yokooji, Yuusuke; Fukui, Toshiaki; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-01-01

    The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining t...

  15. A new set of regulatory molecules in plants: A plant phospholipid similar to platelet-activating factor stimulates protein kinase and proton-translocating ATPase in membrane vesicles.

    Science.gov (United States)

    Scherer, G F; Martiny-Baron, G; Stoffel, B

    1988-08-01

    1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, an ether phospholipid from mammals known as platelet-activating factor (PAF), specifically stimulates proton transport in zucchini (Cucurbita pepo L.) microsomes (G.F.E. Scherer, 1985, Biochem. Biophys. Res. Commm. 133, 1160-1167). When plant lipids were analyzed by two-dimensional thin-layer chromatography a lipid was found with chromatographic properties very similar to the PAF (G.F.E. Scherer and B. Stoffel, 1987, Planta, 172, 127-130). This lipid was isolated from zucchini hypocotyls, red beet root, lupin root, maize seedlings and crude soybean phospholipids. It had biological activity similar to that of the PAF, based on phosphorus content, and stimulated the steady-state ΔpH in zucchini hypocotyl microsomes about twofold. Other phospholipids, monoglyceride, diglyceride, triglyceride, oleic acid, phorbol ester, and 1-O-alkylglycerol did not stimulate proton transport. When microsomes were washed the PAF was ineffective but when soluble protein was added the PAF stimulation of H(+) transport was reconstituted. The soluble protein responsible for the PAF-dependent stimulation of transport activity could be partially purified by diethylaminoethyl Sephacel column chromatography. In the same fractions where the PAF-dependent transport-stimulatory protien was found, a protein kinase was active. This protein kinase was stimulated twofold either by the PAF or by Ca(2+). When Ca(2+) was present the PAF did not stimulate protein-kinase activity. When either the PAF, protein kinase, or both were added to membranes isolated on a linear sucrose gradient, ATPase activity was stimulated up to 30%. Comparison with marker enzymes indicated the possibility that tonoplast and plasma-membrane H(+)-ATPase might be stimulated by the PAF and protein kinase. We speculate that a PAF-dependent protein kinase is involved in the regulation of proton transport in plants in vitro and in vivo.

  16. MutS and UvrD proteins stimulate exonuclease action: insights into exonuclease-mediated strand repair.

    Science.gov (United States)

    Noothi, Sunil K; Minda, Renu; Rao, Basuthkar J

    2009-08-25

    MutS and UvrD proteins individually stimulate Escherichia coli exonuclease VII activity on blunt-ended short duplex DNA substrates. Stimulation by both proteins is ATP-dependent but not mismatch-specific and is not accompanied by apparent strand separation. Under similar conditions, MutS and UvrD proteins in fact confer resistance to exonuclease VII action on ssDNA targets, thereby implying that a novel state of a double-stranded DNA intermediate, which we term a "destabilized duplex", is involved in exonuclease-mediated strand degradation. We find that DNA strands in such a destabilized duplex can be displaced by the challenge of a molar excess of homologous single- and double-stranded DNA targets, in trans. Such an action of the UvrD protein is ATP-dependent. We discuss these results in relation to the (i) directional excision repair of E. coli MMR, (ii) downregulation of repeat deletions by exonucleases during replication slippage, and (iii) the fork reversal function of UvrD at stalled replication forks. PMID:19618961

  17. Imaging N-acyl homoserine lactone quorum sensing in vivo

    DEFF Research Database (Denmark)

    Christensen, Louise Dahl; van Gennip, Maria; Jakobsen, Tim Holm;

    2011-01-01

    In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged...... intratracheally with alginate beads containing both a P. aeruginosa strain together with the E. coli monitor strain can be investigated at different time points postinfection. Epifluorescent or confocal scanning laser microscopy (CSLM) is used to detect the GFP-expressing E. coli monitor strain in the lung...

  18. Increase in c-Fos and Arc protein in retrosplenial cortex after memory-improving lateral hypothalamic electrical stimulation treatment.

    Science.gov (United States)

    Kádár, Elisabeth; Vico-Varela, Eva; Aldavert-Vera, Laura; Huguet, Gemma; Morgado-Bernal, Ignacio; Segura-Torres, Pilar

    2016-02-01

    Post-training Intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH), a kind of rewarding deep-brain stimulation, potentiates learning and memory and increases c-Fos protein expression in specific memory-related brain regions. In a previous study, Aldavert-Vera et al. (2013) reported that post-acquisition LH-ICSS improved 48 h retention of a delay two-way active avoidance conditioning (TWAA) and induced c-Fos expression increase in CA3 at 90 min after administration. Nevertheless, this c-Fos induction was only observed after the acquisition session and not after the retention test at 48 h, when the ICSS improving effect was observed on memory. This current study aims to examine the hypothesis that post-training ICSS treatment may stimulate c-Fos expression at the time of the TWAA retention test in retrosplenial cortex (RSC), a hippocampus-related brain region more closely related with long-lasting memory storage. Effects of ICSS on Arc protein, a marker of memory-associated synaptic plasticity, were also measured by immunohistochemistry in granular and agranular RSC. The most innovative results are that the ICSS treatment potentiates the c-Fos induction across TWAA conditions (no conditioning, acquisition and retention), specifically in layer V of the granular RSC, along with increases of Arc protein levels in the granular but not in agranular areas of RSC ipsilaterally few hours after ICSS. This leads us to suggest that plasticity-related protein activation in the granular RSC could be involved in the positive modulatory effects of ICSS on TWAA memory consolidation, opening a new approach for future research in ICSS memory facilitation. PMID:26774022

  19. Increase in c-Fos and Arc protein in retrosplenial cortex after memory-improving lateral hypothalamic electrical stimulation treatment.

    Science.gov (United States)

    Kádár, Elisabeth; Vico-Varela, Eva; Aldavert-Vera, Laura; Huguet, Gemma; Morgado-Bernal, Ignacio; Segura-Torres, Pilar

    2016-02-01

    Post-training Intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH), a kind of rewarding deep-brain stimulation, potentiates learning and memory and increases c-Fos protein expression in specific memory-related brain regions. In a previous study, Aldavert-Vera et al. (2013) reported that post-acquisition LH-ICSS improved 48 h retention of a delay two-way active avoidance conditioning (TWAA) and induced c-Fos expression increase in CA3 at 90 min after administration. Nevertheless, this c-Fos induction was only observed after the acquisition session and not after the retention test at 48 h, when the ICSS improving effect was observed on memory. This current study aims to examine the hypothesis that post-training ICSS treatment may stimulate c-Fos expression at the time of the TWAA retention test in retrosplenial cortex (RSC), a hippocampus-related brain region more closely related with long-lasting memory storage. Effects of ICSS on Arc protein, a marker of memory-associated synaptic plasticity, were also measured by immunohistochemistry in granular and agranular RSC. The most innovative results are that the ICSS treatment potentiates the c-Fos induction across TWAA conditions (no conditioning, acquisition and retention), specifically in layer V of the granular RSC, along with increases of Arc protein levels in the granular but not in agranular areas of RSC ipsilaterally few hours after ICSS. This leads us to suggest that plasticity-related protein activation in the granular RSC could be involved in the positive modulatory effects of ICSS on TWAA memory consolidation, opening a new approach for future research in ICSS memory facilitation.

  20. Is carbohydrate needed to further stimulate muscle protein synthesis/hypertrophy following resistance exercise?

    OpenAIRE

    Figueiredo, Vandré Casagrande; Cameron-Smith, David

    2013-01-01

    It is now well established that protein supplementation after resistance exercise promotes increased muscle protein synthesis, which ultimately results in greater net muscle accretion, relative to exercise alone or exercise with supplementary carbohydrate ingestion. However, it is not known whether combining carbohydrate with protein produces a greater anabolic response than protein alone. Recent recommendations have been made that the composition of the ideal supplement post-exercise would b...

  1. Stimulation of receptor protein-tyrosine phosphatase alpha activity and phosphorylation by phorbol ester

    DEFF Research Database (Denmark)

    den Hertog, J; Sap, J; Pals, C E;

    1995-01-01

    Receptor Protein-Tyrosine Phosphatase alpha (RPTP alpha) is a transmembrane protein with two cytoplasmic catalytic protein-tyrosine phosphatase (PTP) domains and a relatively short (123 amino acids) extracellular domain. Here we report that treatment of transfected cells that express RPTP alpha...

  2. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves

    Institute of Scientific and Technical Information of China (English)

    Shucheng Xu

    2010-01-01

     The role of a calcium-dependent and calmodulin(CaM)stimulated protein kinase in abscisic acid(ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays).In-gel kinase assays showed that treatments with ABA or H2O2 induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly.Furthermore,we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase Ⅱ (CaMK Ⅱ)inhibitor KN-93 or CaM antagonist W-7.Treatments with ABA or H2O2 not only induced the acti vation of the 52-kDa protein kinase,but also enhanced the total activities of the antioxidant enzymes,including catalase,ascorbate peroxidase,glutathione reductase,and superoxide dismutase.Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species(ROS)inhibitor or scavenger.Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H2O2 production.Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger.These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H2O2 plays a pivotal role in ABA signaling.We infer that CaMK acts both upstream and downstream of H2O2,but mainly acts between ABA and H2O2 in ABA-induced antioxidant-defensive signaling.

  3. Assay of adenosine 3',5' cyclic monophosphate by stimulation of protein kinase: a method not involving radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Handa, A.K.; Bressan, R.A.

    1980-03-01

    In order to meet a need for a cAMP assay which is not subject to interference by compounds in plant extracts, and which is suitable for use on occasions separated by many /sup 32/P half-lives, an assay based on cAMP-dependent protein kinase has been developed which does not require the use of (..gamma..-/sup 32/P)ATP. Instead of measuring the cAMP-stimulated increase in the rate of transfer of (..gamma..-/sup 32/P) phosphate from (..gamma..-/sup 32/P)ATP to protein, the rate of loss of ATP from the reaction mixture is determined. The ATP remaining after the protein kinase reaction is assayed by ATP-dependent chemiluminescence of the firefly luciferin-luciferase system. Under conditions of the protein kinase reaction in which a readily measurable decrease in ATP concentration occurs, the logarithm of the concentration of ATP decreases in proportion to the cAMP concentration, i.e., the reaction can be described by the equation: (ATP) = (ATP)/sub 0/ e/sup -(cAMP)kt/. The assay based on this relationship can detect less than 1 pmol of cAMP. The levels of cAMP found with this assay after partial purification of the cAMP from rat tissue, algal cells, and the media in which the cells were grown agreed with measurements made by the cAMP binding-competition assay of Gilman, and the potein kinase stimulation assay based on transfer of (/sup 32/P) phosphate from (..gamma..-/sup 32/P)ATP to protein. All of the enzymes and chemicals required for the assay of cAMP by protein kinase catalyzed loss of ATP can be stored frozen for months, making the assay suitable for occasional use.

  4. Polycationic ligands of different chemical classes stimulate DNA strand displacement between short oligonucleotides in a protein-free system.

    Science.gov (United States)

    Volodin, Alexander A; Bocharova, Tatiana N; Smirnova, Elena A

    2016-09-01

    The ability of polycationic ligands to stimulate DNA strand displacement between short oligonucleotides in a protein-free system is demonstrated. We show that two ligands, tetracationic aliphatic amine (spermine) and a dicationic intercalating drug (chloroquine), promote strand displacement in a concentration-dependent manner. At low concentrations both ligands decelerate spontaneous strand displacement because of their impact on the stability of the DNA duplex. At elevated concentrations they accelerate strand displacement via formation of intermediate structures containing three DNA strands. The rate of the last process does not correlate with the thermal dissociation rate of the entire DNA duplex. It indicates that, possibly, the action of these agents cannot be explained by their influence on the stability of the DNA duplex. In general, our results suggest that the ability to stimulate DNA strand displacement appears to be a common feature of polycations of different chemical and structural classes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 633-641, 2016. PMID:27106951

  5. Recombinant hybrid protein, Shiga toxin and granulocyte macrophage colony stimulating factor effectively induce apoptosis of colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Mehryar Habibi Roudkenar; Saeid Bouzari; Yoshikazu Kuwahara; Amaneh Mohammadi Roushandeh; Mana Oloomi; Manabu Fukumoto

    2006-01-01

    AIM: To investigate the selective cytotoxic effect of constructed hybrid protein on cells expressing granulocyte macrophage colony stimulating factor (GM-CSF) receptor.METHODS: HepG2 (human hepatoma) and LS174T (coIon carcinoma) were used in this study. The fused gene was induced with 0.02% of arabinose for 4 h and the expressed protein was detected by Western blotting. The chimeric protein expressed in E. coli was checked for its cytotoxic activity on these cells and apoptosis was measured by comet assay and nuclear staining. RESULTS: The chimeric protein was found to be cytotoxic to the colon cancer cell line expressing GM-CSFRs,but not to HepG2 lacking these receptors. Maximum activity was observed at the concentration of 40 ng/mL after 24 h incubation. The IC50 was 20±3.5 ng/mL.CONCLUSION: Selective cytotoxic effect of the hybrid protein on the colon cancer cell line expressing GMCSF receptors (GM-CSFRs) receptor and apoptosis can be observed in this cell line. The hybrid protein can be considered as a therapeutic agent.

  6. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Dajani Olav

    2011-10-01

    Full Text Available Abstract Background Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells. Methods Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF. DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting. Results Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC, whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K, TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells. Conclusions While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116

  7. Pregnancy-associated plasma protein-a production in rat granulosa cells: stimulation by follicle-stimulating hormone and inhibition by the oocyte-derived bone morphogenetic protein-15.

    Science.gov (United States)

    Matsui, Motozumi; Sonntag, Barbara; Hwang, Seong Soo; Byerly, Tara; Hourvitz, Ariel; Adashi, Eli Y; Shimasaki, Shunichi; Erickson, Gregory F

    2004-08-01

    Pregnancy-associated plasma protein-A (PAPP-A) is the major IGF binding protein-4 (IGFBP-4) protease in follicular fluid, consistent with its proposed role in folliculogenesis. Despite growing interest, almost nothing is known about how PAPP-A expression is regulated in any tissue. Here we show that FSH and oocytes regulate PAPP-A expression in granulosa cells (GCs). By in situ hybridization, ovary PAPP-A mRNA was markedly increased by pregnant mare serum gonadotropin treatment, and the message was localized to the membrana GCs but not cumulus GCs (CGCs) of dominant follicles. To explore the mechanism, we used primary cultures of rat GCs. Control (untreated) cells produced little or no PAPP-A spontaneously. Conversely, FSH markedly stimulated PAPP-A mRNA and protein in a dose- and time-dependent fashion. Interestingly, PAPP-A expression in isolated CGCs was also strongly induced by FSH, and the induction was inhibited by added oocytes. To investigate the nature of the inhibition, we tested the effect of oocyte-derived bone morphogenetic protein-15 (BMP-15). BMP-15 alone had no effect on basal levels of PAPP-A expression by cultures of membrana GCs or CGCs. However, BMP-15 markedly inhibited the FSH stimulation of PAPP-A production in a dose-dependent manner. The cleavage of IGFBP-4 by conditioned media from FSH-treated GCs was completely inhibited by anti-PAPP-A antibody, indicating the IGFBP-4 protease secreted by GCs is PAPP-A. These results demonstrate stimulatory and inhibitory roles for FSH and BMP-15, respectively, in regulating PAPP-A production by GCs. We propose that FSH and oocyte-derived BMP-15 form a controlling network that ensures the spatiotemporal pattern of GC PAPP-A expression in the dominant follicle. PMID:15087430

  8. Catalytic Acylation of Ethylidenecyclohexane over Zeolite Catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some environmentally friendly catalysts such as HY and H-β zeolites,various cation-exchanged β zeolites,and some other solids have been used in the acylation reaction of ethylidenecyclohexane with acetic anhydride at room temperature to synthesize 3-(1-cyclohexenyl)-2-butanone instead of conventional catalysts.The effect of the amount of HY zeolite used on the acylation reaction was investigated.The yield of the acylated product was 72% in the case of n(ethylidenecyclohexane)∶n(acetic anhydride)∶m(HY zeolite)=1 mmol∶10 mmol∶0.100 g,reaction temperature:25 ℃,and reaction time:2 h.The regenerated HY zeolite showed almost the same catalytic activity as the fresh zeolite.

  9. Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase

    DEFF Research Database (Denmark)

    Muftuoglu, Meltem; de Souza-Pinto, Nadja C; Dogan, Arin;

    2009-01-01

    for endonuclease VIII-like (NEIL1) DNA glycosylase. Results presented here show that csb(-/-) mice have a higher level of endogenous FapyAde and FapyGua in DNA from brain and kidney than wild type mice as well as higher levels of endogenous FapyAde in genomic DNA and mtDNA from liver. In addition, CSB stimulates...... NEIL1 incision activity in vitro, and CSB and NEIL1 co-immunoprecipitate and co-localize in HeLa cells. When CSB and NEIL1 are depleted from HeLa cells by short hairpin RNA knockdown, repair of induced FapyGua is strongly inhibited. These results suggest that CSB plays a role in repair...... of formamidopyrimidines, possibly by interacting with and stimulating NEIL1, and that accumulation of such modifications may have a causal role in the pathogenesis of CS....

  10. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    Science.gov (United States)

    Kumar, Manoj; Wightman, Raymond; Atanassov, Ivan; Gupta, Anjali; Hurst, Charlotte H; Hemsley, Piers A; Turner, Simon

    2016-07-01

    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment. PMID:27387950

  11. A novel lumazine synthase molecule from Brucella significantly promotes the immune-stimulation effects of antigenic protein.

    Science.gov (United States)

    Du, Z Q; Wang, J Y

    2015-10-27

    Brucella, an intracellular parasite that infects some livestock and humans, can damage or destroy the reproductive system of livestock. The syndrome is referred to as brucellosis and often occurs in pastoral areas; it is contagious from livestock to humans. In this study, the intact Brucella suis outer membrane protein 31 (omp31) gene was cloned, recombinantly expressed, and examined as a subunit vaccine candidate. The intact Brucella lumazine synthase (bls) gene was cloned and recombinantly expressed to study polymerization function in vitro. Non-reducing gel electrophoresis showed that rBs-BLS existed in different forms in vitro, including as a dimer and a pentamer. An enzyme-linked immunosorbent assay result showed that rOmp31 protein could induce production of an antibody in rabbits. However, the rOmp31-BLS fusion protein could elicit a much higher antibody titer in rabbits; this construct involved fusion of the Omp31 molecule with the BLS molecule. Our results indicate that Omp31 is involved in immune stimulation, while BLS has a polymerizing function based on rOmp31-BLS fusion protein immunogenicity. These data suggest that Omp31 is an ideal subunit vaccine candidate and that the BLS molecule is a favorable transport vector for antigenic proteins.

  12. Functional cross-modulation between SOCS proteins can stimulate cytokine signaling.

    Science.gov (United States)

    Piessevaux, Julie; Lavens, Delphine; Montoye, Tony; Wauman, Joris; Catteeuw, Dominiek; Vandekerckhove, Joël; Belsham, Denise; Peelman, Frank; Tavernier, Jan

    2006-11-01

    SOCS (suppressors of cytokine signaling) proteins are negative regulators of cytokine signaling that function primarily at the receptor level. Remarkably, in vitro and in vivo observations revealed both inhibitory and stimulatory effects of SOCS2 on growth hormone signaling, suggesting an additional regulatory level. In this study, we examined the possibility of direct cross-modulation between SOCS proteins and found that SOCS2 could interfere with the inhibitory actions of other SOCS proteins in growth hormone, interferon, and leptin signaling. This SOCS2 effect was SOCS box-dependent, required recruitment of the elongin BC complex, and coincided with degradation of target SOCS proteins. Detailed mammalian protein-protein interaction trap (MAPPIT) analysis indicated that SOCS2 can interact with all members of the SOCS family. SOCS2 may thus function as a molecular bridge between a ubiquitin-protein isopeptide ligase complex and SOCS proteins, targeting them for proteasomal turnover. We furthermore extended these observations to SOCS6 and SOCS7. Our findings point to a unique regulatory role for SOCS2, SOCS6, and SOCS7 within the SOCS family and provide an explanation for the unexpected phenotypes observed in SOCS2 and SOCS6 transgenic mice. PMID:16956890

  13. Feeding rapidly stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing translation initiation

    Science.gov (United States)

    Food consumption increases protein synthesis in most tissues by promoting translation initiation, and in the neonate, this increase is greatest in skeletal muscle. In this study, we aimed to identify the currently unknown time course of changes in the rate of protein synthesis and the activation of ...

  14. Ribosomal Protein S6 Kinase (RSK-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein

    Directory of Open Access Journals (Sweden)

    Zhang Rui-Wen

    2011-05-01

    Full Text Available Abstract Background Epithelial to mesenchymal transition (EMT occurs during cancer cell invasion and malignant metastasis. Features of EMT include spindle-like cell morphology, loss of epithelial cellular markers and gain of mesenchymal phenotype. Activation of the RON receptor tyrosine kinase by macrophage-stimulating protein (MSP has been implicated in cellular EMT program; however, the major signaling determinant(s responsible for MSP-induced EMT is unknown. Results The study presented here demonstrates that RSK2, a downstream signaling protein of the Ras-Erk1/2 pathway, is the principal molecule that links MSP-activated RON signaling to complete EMT. Using MDCK cells expressing RON as a model, a spindle-shape based screen was conducted, which identifies RSK2 among various intracellular proteins as a potential signaling molecule responsible for MSP-induced EMT. MSP stimulation dissociated RSK2 with Erk1/2 and promoted RSK2 nuclear translocation. MSP strongly induced RSK2 phosphorylation in a dose-dependent manner. These effects relied on RON and Erk1/2 phosphorylation, which is significantly potentiated by transforming growth factor (TGF-β1, an EMT-inducing cytokine. Specific RSK inhibitor SL0101 completely prevented MSP-induced RSK phosphorylation, which results in inhibition of MSP-induced spindle-like morphology and suppression of cell migration associated with EMT. In HT-29 cancer cells that barely express RSK2, forced RSK2 expression results in EMT-like phenotype upon MSP stimulation. Moreover, specific siRNA-mediated silencing of RSK2 but not RSK1 in L3.6pl pancreatic cancer cells significantly inhibited MSP-induced EMT-like phenotype and cell migration. Conclusions MSP-induced RSK2 activation is a critical determinant linking RON signaling to cellular EMT program. Inhibition of RSK2 activity may provide a therapeutic opportunity for blocking RON-mediated cancer cell migration and subsequent invasion.

  15. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats.

    Directory of Open Access Journals (Sweden)

    Adriana C Lambertucci

    Full Text Available In this study, we investigated the effect of glutamine (Gln supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1 and the degradation pathways (MuRF-1 and MAFbx were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1 control, non-supplemented with glutamine; 2 control, supplemented with glutamine; 3 diabetic, non-supplemented with glutamine; and 4 diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2; the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.

  16. Requirement for the POZ/BTB protein NAC1 in acute but not chronic psychomotor stimulant response.

    Science.gov (United States)

    Mackler, Scott; Pacchioni, Alejandra; Degnan, Ryan; Homan, Ying; Conti, Alana C; Kalivas, Peter; Blendy, Julie A

    2008-02-11

    NAC1 is a novel member of the POZ/BTB (Pox virus and Zinc finger/Bric-a-bracTramtrack Broad complex) but varies from other proteins of this class in that it lacks the characteristic DNA-binding motif, suggesting a novel role. We have employed constitutive gene deletion to elucidate the role of NAC1 in vivo. Nac1 mutant mice are viable with no obvious developmental or physiological impairments. Previous studies suggest a role for NAC1 in cocaine-mediated behaviors. Therefore, we evaluated a variety of behaviors associated with psychomotor stimulant effects in Nac1 mutant mice. Acute locomotor activating effects of cocaine or amphetamine are absent in Nac1 mutant mice, however longer exposure to these psychomotor stimulants result in the development of behavioral sensitization. Acute rewarding properties of cocaine and amphetamine are also blunted in mutant mice, yet repeated exposure resulted in conditioned place preference similar to that observed in wild-type mice. Lastly, increases in extracellular dopamine in the nucleus accumbens, which accompany acute cocaine administration, are blunted in mutant mice, but following chronic cocaine extracellular dopamine levels are increased to the same extent as in wild-type mice. Together these data indicate involvement of NAC1 in the acute behavioral and neurochemical responses to psychomotor stimulants.

  17. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism

    Science.gov (United States)

    Boo, Yong Chool; Hwang, Jinah; Sykes, Michelle; Michell, Belinda J.; Kemp, Bruce E.; Lum, Hazel; Jo, Hanjoong

    2002-01-01

    Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.

  18. Minimizing acylation of peptides in PLGA microspheres

    OpenAIRE

    Zhang, Ying; Schwendeman, Steven P.

    2012-01-01

    The main objective of this study was to characterize and find mechanisms to prevent acylation of therapeutic peptides encapsulated in glucose-star poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres. The effect of addition of divalent cation salts CaCl2, MnCl2 as well as carboxymethyl chitosan (CMCS) on inhibition of acylation of octreotide (Oct), salmon calcitonin (sCT), and human parathyroid hormone (hPTH) was evaluated. Peptide content and integrity inside the degrading microspheres was ...

  19. Cockayne syndrome protein A is a transcription factor of RNA polymerase I and stimulates ribosomal biogenesis and growth

    Science.gov (United States)

    Koch, Sylvia; Garcia Gonzalez, Omar; Assfalg, Robin; Schelling, Adrian; Schäfer, Patrick; Scharffetter-Kochanek, Karin; Iben, Sebastian

    2014-01-01

    Mutations in the Cockayne syndrome A (CSA) protein account for 20% of Cockayne syndrome (CS) cases, a childhood disorder of premature aging and early death. Hitherto, CSA has exclusively been described as DNA repair factor of the transcription-coupled branch of nucleotide excision repair. Here we show a novel function of CSA as transcription factor of RNA polymerase I in the nucleolus. Knockdown of CSA reduces pre-rRNA synthesis by RNA polymerase I. CSA associates with RNA polymerase I and the active fraction of the rDNA and stimulates re-initiation of rDNA transcription by recruiting the Cockayne syndrome proteins TFIIH and CSB. Moreover, compared with CSA deficient parental CS cells, CSA transfected CS cells reveal significantly more rRNA with induced growth and enhanced global translation. A previously unknown global dysregulation of ribosomal biogenesis most likely contributes to the reduced growth and premature aging of CS patients. PMID:24781187

  20. Inducing effects of macrophage stimulating protein on the expansion of early hematopoietic progenitor cells in liquid culture

    Institute of Scientific and Technical Information of China (English)

    MA Li-xia; HUANG Yan-hong; CHENG La-mei; LEI Jun; WANG Qi-ru

    2007-01-01

    Background Macrophage stimulating protein (MSP) is produced by human bone marrow endothelial cells. In this study,we sought to observe its effects on inducing the expansion of early hematopoietic progenitor cells which were cultured in a liquid culture system in the presence of the combination of stem cell factor (SCF), interleukin 3 (IL-3), interleukin 6 (IL-6), granulocyte macrophage-colony stimulating factor (GM-CSF), erythropoietin (EPO) (Cys) and MSP or of Cys and bone marrow endothelial cell conditioned medium (EC-CM).Methods Human bone marrow CD34+ cells were separated and cultured in a liquid culture system for 6 days.Granulocyte-macrophage colony forming unit (CFU-GM) and colony forming unit-granulocyte, erythrocyte, macrophage,megakaryocyte (CFU-GEMM) were employed to assay the effects of different treatment on the proliferation of hematopoeitic stem/progenitor cells. The nitroblue tetrazolium (NBT) reductive test and hoechest 33258 staining were employed to reflect the differentiation and apoptosis of the cells respectively.Results MSP inhibited the proliferation of CFU-GM and CFU-GEMM in semi-solid culture and the inhibitory effect on CFU-GEMM was stronger than on CFU-GM. MSP inhibited the differentiation of early hematopoietic progenitor cells induced by hematopoietic stimulators. Bone marrow (BM) CFU-GEMM was 2.3-fold or 1.7-fold increase or significantly decreased in either Cys+EC-CM, Cys+MSP or Cys compared with 0 hour control in liquid culture system after 6 days.Conclusion MSP, a hematopoietic inhibitor, inhibits the differentiation of early hematopoietic progenitor cells induced by hematopoietic stimulators and makes the early hematopoietic progenitor cells expand in a liquid culture system.

  1. Inhibition of breast cancer resistance protein (ABCG2 in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation.

    Directory of Open Access Journals (Sweden)

    Jun-O Jin

    Full Text Available Breast cancer resistance protein (ABCG2, a member of the ATP-binding cassette transporters has been identified as a major determinant of multidrug resistance (MDR in cancer cells, but ABC transporter inhibition has limited therapeutic value in vivo. In this research, we demonstrated that inhibition of efflux transporters ABCG2 induced the generation of tolerogenic DCs from human peripheral blood myeloid DCs (mDCs. ABCG2 expression was present in mDCs and was further increased by LPS stimulation. Treatment of CD1c+ mDCs with an ABCG2 inhibitor, Ko143, during LPS stimulation caused increased production of IL-10 and decreased production of pro-inflammatory cytokines and decreased expression of CD83 and CD86. Moreover, inhibition of ABCG2 in monocyte-derived DCs (MDDCs abrogated the up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in these cells in response to LPS. Furthermore, CD1c+ mDCs stimulated with LPS plus Ko143 inhibited the proliferation of allogeneic and superantigen-specific syngenic CD4+ T cells and promoted expansion of CD25+FOXP3+ regulatory T (Treg cells in an IL-10-dependent fashion. These tolerogenic effects of ABCG2 inhibition could be abolished by ERK inhibition. Thus, we demonstrated that inhibition of ABCG2 in LPS-stimulated mDCs can potently induce tolerogenic potentials in these cells, providing crucial new information that could lead to development of better strategies to combat MDR cancer.

  2. Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein).

    Science.gov (United States)

    Reinhard, M; Jouvenal, K; Tripier, D; Walter, U

    1995-08-15

    VASP (vasodilator-stimulated phosphoprotein), an established substrate of cAMP- and cGMP-dependent protein kinases in vitro and in living cells, is associated with focal adhesions, microfilaments, and membrane regions of high dynamic activity. Here, the identification of an 83-kDa protein (p83) that specifically binds VASP in blot overlays of different cell homogenates is reported. With VASP overlays as a detection tool, p83 was purified from porcine platelets and used to generate monospecific polyclonal antibodies. VASP binding to purified p83 in solid-phase binding assays and the closely matching subcellular localization in double-label immunofluorescence analyses demonstrated that both proteins also directly interact as native proteins in vitro and possibly in living cells. The subcellular distribution, the biochemical properties, as well as microsequencing data revealed that porcine platelet p83 is related to chicken gizzard zyxin and most likely represents the mammalian equivalent of the chicken protein. The VASP-p83 interaction may contribute to the targeting of VASP to focal adhesions, microfilaments, and dynamic membrane regions. Together with our recent identification of VASP as a natural ligand of the profilin poly-(L-proline) binding site, our present results suggest that, by linking profilin to zyxin/p83, VASP may participate in spatially confined profilin-regulated F-actin formation.

  3. Jatropha curcas Protein Concentrate Stimulates Insulin Signaling, Lipogenesis, Protein Synthesis and the PKCα Pathway in Rat Liver.

    Science.gov (United States)

    León-López, Liliana; Márquez-Mota, Claudia C; Velázquez-Villegas, Laura A; Gálvez-Mariscal, Amanda; Arrieta-Báez, Daniel; Dávila-Ortiz, Gloria; Tovar, Armando R; Torres, Nimbe

    2015-09-01

    Jatropha curcas is an oil seed plant that belongs to the Euphorbiaceae family. Nontoxic genotypes have been reported in Mexico. The purpose of the present work was to evaluate the effect of a Mexican variety of J. curcas protein concentrate (JCP) on weight gain, biochemical parameters, and the expression of genes and proteins involved in insulin signaling, lipogenesis, cholesterol and protein synthesis in rats. The results demonstrated that short-term consumption of JCP increased serum glucose, insulin, triglycerides and cholesterol levels as well as the expression of transcription factors involved in lipogenesis and cholesterol synthesis (SREBP-1 and LXRα). Moreover, there was an increase in insulin signaling mediated by Akt phosphorylation and mTOR. JCP also increased PKCα protein abundance and the activation of downstream signaling pathway targets such as the AP1 and NF-κB transcription factors typically activated by phorbol esters. These results suggested that phorbol esters are present in JCP, and that they could be involved in the activation of PKC which may be responsible for the high insulin secretion and consequently the activation of insulin-dependent pathways. Our data suggest that this Mexican Jatropha variety contains toxic compounds that produce negative metabolic effects which require caution when using in the applications of Jatropha-based products in medicine and nutrition. PMID:26243665

  4. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair

    OpenAIRE

    Scarfì, Sonia

    2016-01-01

    The extracellular matrix-associated bone morphogenetic proteins (BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed i...

  5. Templating Biomineralization: Surface Directed Protein Self-assembly and External Magnetic Field Stimulation of Osteoblasts

    Science.gov (United States)

    Ba, Xiaolan

    Biomineralization is a wide-spread phenomenon in the biological systems, which is the process of mineral formation by organisms through interaction between its organic contents and the inorganic minerals. The process is essential in a broad spectrum of biological phenomena ranging from bone and tooth formation to pathological mineralization under hypoxic conditions or cancerous formations. In this thesis I studied biomineralization at the earliest stages in order to obtain a better understanding of the fundamental principals involved. This knowledge is essential if we want to engineer devices which will increase bone regeneration or prevent unwanted mineral deposits. Extracellular matrix (ECM) proteins play an essential role during biomineralization in bone and engineered tissues. In this dissertation, I present an approach to mimic the ECM in vitro to probe the interactions of these proteins with calcium phosphate mineral and with each other. Early stage of mineralization is investigated by mechanical properties of the protein fibers using Scanning Probe Microscopy (SPM) and Shear Modulation Force Microscopy (SMFM). The development of mineral crystals on the protein matrices is also characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Grazing Incidence X-ray Diffraction (GIXRD). The results demonstrate complementary actions of the two ECM proteins to collect cations and template calcium phosphate mineral, respectively. Magnets have been clinically used as an "induction source" in various bone or orthodontic treatments. However, the mechanism and effects of magnetic fields remain unclear. In this dissertation, I also undertake the present investigation to study the effects of 150 mT static magnetic fields (SMF) on ECM development and cell biomineralization using MC3T3-E1 osteobalst-like cells. Early stage of biomineralization is characterized by SPM, SMFM and confocal laser scanning microscopy (CSLM). Late stage of

  6. Angiotensin II type 1 receptors stimulate protein synthesis in human cardiac fibroblasts via a Ca2+-sensitive PKC-dependent tyrosine kinase pathway

    DEFF Research Database (Denmark)

    Hou, M; Pantev, E; Möller, S;

    2000-01-01

    ) was obtained at a concentration of 10 nM. There were no significant alterations of cell number or total protein content, suggesting that Ang II stimulated protein synthesis but did not induce hypertrophy. The accumulation of 3H-leucine was blocked by the AT1 receptor antagonist candesartan but not by the AT2...

  7. First evidence of Okadaic acid acyl-derivative and Dinophysistoxin-3 in mussel samples collected in Chiloe Island, Southern Chile.

    Science.gov (United States)

    García, Carlos; Pruzzo, Matías; Rodríguez-Unda, Nelson; Contreras, Cristóbal; Lagos, Néstor

    2010-06-01

    This paper shows the detection of Diarrhetic Shellfish Poison (DSP) phycotoxins, using HPLC-FLD with pre-column derivatization procedure and HPLC-MS methods, in the analysis of shellfish extracts tested positive with the official DSP mouse bioassay. The shellfish samples were collected in Chiloe Island, Southern of Chile. The amount of Dinophysistoxin-3 (DTX-3) measured in the shellfish extracts were in average above the international safe limits for DSP content in the shellfish extracts analyzed. As internal control of detection and recovery, DTX-1 analytical standard was spiked into dichloromethane-clean shellfish extracts in order to calculate de extraction recovery of DTX-1. The average recovery was 97%. From all DSP toxins analyzed, the hydrolyzed extract samples appeared mainly DTX-3 in concentrations ranging from 99.40 +/- 1.22 to 257.73 +/- 12.46 ng/g digestive-glands. The acyl-Okadaic Acid (acyl-OA) was also detected in some samples, ranging from 1.02 +/- 1.4 to 3.07. +/- 1.6 ng of DSP toxin/g digestive-glands. This is the first report of acyl-OA ever found in Chilean shellfish samples. This data shows that shellfish samples were contaminated with a complex DSP toxins profile, in which DTX-3 is the major DSP toxin component, followed by DTX-1 and the acyl-OA as the minor one. The important findings showed in this study are the presence of both acyl-derivates (DTX-3 and Acyl-OA) which are the product of a main metabolic biotransformation that occurred inside the shellfish, in order to chelate DTX-1 and OA, transforming them into DTX-3 and the acyl-OA respectively. This metabolic biotransformation must be performed to avoid self-inhibition of their Protein Phosphatase 2A done by DTX-1 and OA, since both acyl-derivates (DTX-3 and acyl-OA) do not inhibit Protein Phosphatase 2A. This complex DSP toxins profile and the permanent presence of both acyl-derivates (DTX-3 and Acyl-OA) could explain the permanent diarrhea symptoms that experience patients who have

  8. Functional Analysis of Long-chain Acyl-CoA Synthetase 1 in 3T3-L1 Adipocytes*

    OpenAIRE

    Lobo, Sandra; Wiczer, Brian M.; Bernlohr, David A

    2009-01-01

    ACSL1 (acyl-CoA synthetase 1), the major acyl-CoA synthetase of adipocytes, has been proposed to function in adipocytes as mediating free fatty acid influx, esterification, and storage as triglyceride. To test this hypothesis, ACSL1 was stably silenced (knockdown (kd)) in 3T3-L1 cells, differentiated into adipocytes, and evaluated for changes in lipid metabolism. Surprisingly, ACSL1-silenced adipocytes exhibited no significant changes in basal or insulin-stimulated long-chain fatty acid uptak...

  9. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    International Nuclear Information System (INIS)

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10−7 and 2.0 × 10−8 mol L−1 Cd) under varying nitrogen (2.9 × 10−6, 1.1 × 10−5 and 1.1 × 10−3 mol L−1 N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production

  10. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Graça Gama Melão, Maria da [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Parrish, Christopher C. [Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7 (Canada)

    2015-03-15

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10{sup −7} and 2.0 × 10{sup −8} mol L{sup −1} Cd) under varying nitrogen (2.9 × 10{sup −6}, 1.1 × 10{sup −5} and 1.1 × 10{sup −3} mol L{sup −1} N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production.

  11. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1

    OpenAIRE

    Fischer, Nicole; Weis, Karsten

    2002-01-01

    An important control step in the regulation of cytoplasmic mRNA turnover is the removal of the m7G cap structure at the 5′ end of the message. Here, we describe the functional characterization of Dhh1, a highly conserved member of the family of DEAD box-containing proteins, as a regulator of mRNA decapping in Saccharomyces cerevisiae. Dhh1 is a cytoplasmic protein and is shown to be in a complex with the mRNA degradation factor Pat1/Mtr1 and with the 5′–3′ exoribonuclease Xrn1. Dhh1 specifica...

  12. Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines

    DEFF Research Database (Denmark)

    Case, R M; Conigrave, A D; Novak, I;

    1980-01-01

    1. A method is described for the isolation and vascular perfusion in vitro of the mandibular gland of the rabbit. The perfusate is a physiological salt solution containing glucose as the only metabolic substrate.2. During perfusion with solutions containing acetylcholine, the gland secretes....... Acetylcholine evoked a small secretory response at a concentration of 8 x 10(-9) mol l(-1) and a maximum response at 8 x 10(-7) mol l(-1). Eserine (2 x 10(-5) mol l(-1)) evoked secretory responses comparable to those evoked by acetylcholine in a concentration of 8 x 10(-9) mol l(-1). Secretion, whether...... unstimulated or evoked by acetylcholine or eserine, could be blocked completely by atropine.4. During prolonged stimulation with acetylcholine, the fluid secretory response declined rapidly over a period of about 15 min from an initial high value to a much lower plateau value. After 3 or more hours...

  13. Differential expression and functionality of TRPA1 protein genetic variants in conditions of thermal stimulation.

    Science.gov (United States)

    May, Denisa; Baastrup, Jonas; Nientit, Maria Raphaela; Binder, Andreas; Schünke, Michael; Baron, Ralf; Cascorbi, Ingolf

    2012-08-01

    The role of genetic modifications of the TRPA1 receptor has been well documented in inflammatory and neuropathic pain. We recently reported that the E179K variant of TRPA1 appears to be crucial for the generation of paradoxical heat sensation in pain patients. Here, we describe the consequences of the single amino acid exchange at position 179 in the ankyrin repeat 4 of human TRPA1. TRPA1 wild type Lys-179 protein expressed in HEK cells exhibited intact biochemical properties, inclusive trafficking into the plasma membrane, formation of large protein complexes, and the ability to be activated by cold. Additionally, a strong increase of Lys-179 protein expression was observed in cold (4 °C) and heat (49 °C)-treated cells. In contrast, HEK cells expressing the variant Lys-179 TRPA1 failed to get activated by cold possibly due to the loss of ability to interact with other proteins or other TRPA1 monomers during oligomerization. In conclusion, the detailed understanding of TRPA1 genetic variants might provide a fruitful strategy for future development of pain treatments. PMID:22665484

  14. Differential Expression and Functionality of TRPA1 Protein Genetic Variants in Conditions of Thermal Stimulation*

    Science.gov (United States)

    May, Denisa; Baastrup, Jonas; Nientit, Maria Raphaela; Binder, Andreas; Schünke, Michael; Baron, Ralf; Cascorbi, Ingolf

    2012-01-01

    The role of genetic modifications of the TRPA1 receptor has been well documented in inflammatory and neuropathic pain. We recently reported that the E179K variant of TRPA1 appears to be crucial for the generation of paradoxical heat sensation in pain patients. Here, we describe the consequences of the single amino acid exchange at position 179 in the ankyrin repeat 4 of human TRPA1. TRPA1 wild type Lys-179 protein expressed in HEK cells exhibited intact biochemical properties, inclusive trafficking into the plasma membrane, formation of large protein complexes, and the ability to be activated by cold. Additionally, a strong increase of Lys-179 protein expression was observed in cold (4 °C) and heat (49 °C)-treated cells. In contrast, HEK cells expressing the variant Lys-179 TRPA1 failed to get activated by cold possibly due to the loss of ability to interact with other proteins or other TRPA1 monomers during oligomerization. In conclusion, the detailed understanding of TRPA1 genetic variants might provide a fruitful strategy for future development of pain treatments. PMID:22665484

  15. H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang Chen; Ying Wang; Jing-Yan Li; Wen-Rong Xu; You-Li Zhang

    2006-01-01

    AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells.METHODS: A VacA (+) and CagA (+) standard Hpyloriline NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins.RESULTS: Incubation with Hpylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after incubation with Hpylori extract and appeared to be a sustained event. MAPK/ERK kinase (MEK) inhibitor PD98059abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pyloriextract increased c-Fos expression and SRE-dependentgene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract.CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal transduction cascade.

  16. Insulin stimulates muscle protein synthesis in neonates during endotoxemia despite repression of translation initiation

    Science.gov (United States)

    Skeletal muscle protein synthesis is reduced in neonatal pigs in response to endotoxemia. To examine the role of insulin in this response, neonatal pigs were infused with endotoxin (LPS, 0 and 10 µg•kg(-1)•h(-1)), whereas glucose and amino acids were maintained at fasting levels and insulin was clam...

  17. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells

    NARCIS (Netherlands)

    Multhoff, G; Mizzen, L; Winchester, CC; Milner, CM; Wenk, S; Eissner, G; Kampinga, HH; Laumbacher, B; Johnson, J

    1999-01-01

    We previously demonstrated that lysis of tumor cells that express Hsp70, the highly stress-inducible member of the HSP70 family, on their plasma membrane is mediated by natural killer (NK) cells. Here, we studied the effects of different proteins of the HSP70 family in combination with interleukin 2

  18. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  19. Chemerin Stimulates Vascular Smooth Muscle Cell Proliferation and Carotid Neointimal Hyperplasia by Activating Mitogen-Activated Protein Kinase Signaling

    Science.gov (United States)

    Xiong, Wei; Luo, Yu; Wu, Lin; Liu, Feng; Liu, Huadong; Li, Jianghua; Liao, Bihong; Dong, Shaohong

    2016-01-01

    Vascular neointimal hyperplasia and remodeling arising from local inflammation are characteristic pathogeneses of proliferative cardiovascular diseases, such as atherosclerosis and post angioplasty restenosis. The molecular mechanisms behind these pathological processes have not been fully determined. The adipokine chemerin is associated with obesity, metabolism, and control of inflammation. Recently, chemerin has gained increased attention as it was found to play a critical role in the development of cardiovascular diseases. In this study, we investigated the effects of chemerin on the regulation of vascular smooth muscle cells and carotid neointimal formation after angioplasty. We found that circulating chemerin levels increased after carotid balloon injury, and that knockdown of chemerin significantly inhibited the proliferative aspects of vascular smooth muscle cells induced by platelet-derived growth factor-BB and pro-inflammatory chemokines in vitro as well as prohibited carotid neointimal hyperplasia and pro-inflammatory chemokines in vivo after angioplasty. Additionally, inhibition of chemerin down-regulated the expression of several proteins, including phosphorylated p38 mitogen-activated protein kinase, phosphorylated extracellular signal regulated kinase 1/2, nuclear factor-kappa B p65, and proliferation cell nuclear antigen. The novel finding of this study is that chemerin stimulated vascular smooth muscle cells proliferation and carotid intimal hyperplasia through activation of the mitogen-activated protein kinase signaling pathway, which may lead to vascular inflammation and remodeling, and is relevant to proliferative cardiovascular diseases. PMID:27792753

  20. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  1. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Directory of Open Access Journals (Sweden)

    Hitomi Maruta

    Full Text Available Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4 genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A, which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  2. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elizabeth S.; Kawahara, Rebeca [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Kadowaki, Marina K. [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil); Amstalden, Hudson G.; Noleto, Guilhermina R.; Cadena, Silvia Maria S.C.; Winnischofer, Sheila M.B. [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Martinez, Glaucia R., E-mail: grmartinez@ufpr.br [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil)

    2012-09-10

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.

  3. Stimulation of muscle protein synthesis by whey and caseinate ingestion after resistance exercise in elderly individuals

    DEFF Research Database (Denmark)

    Dideriksen, Kasper; Reitelseder, Søren; Petersen, S.G.;

    2011-01-01

    protein synthesis (MPS) to intakes of whey and caseinate after heavy resistance exercise in healthy elderly individuals, and, furthermore, to compare the timing effect of caseinate intake. Twenty-four elderly men and women (mean ± SEM; 68 ± 1 years) were randomized to one of four groups: caseinate intake......-(13) C]leucine using labeled proteins during a 6-h recovery period. No differences were observed in muscle myofibrillar and collagen FSR with Whey (0.09 ± 0.01%/h) compared with CasPost (0.09 ± 0.003%/h), and it did not differ between CasPre (0.10 ± 0.01%/h) and CasPost. MPS does not differ with whey...

  4. Activation of resting human T cells requires prolonged stimulation of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Berry, N.; Ase, K.; Kishimoto, A.; Nishizuka, Y. (Kobe Univ. School of Medicine (Japan))

    1990-03-01

    Purified resting human T cells can be induced to express the {alpha} subunit of the interleukin 2 receptor and to proliferate by treatment with 12-0-tetradecanoylphorbol-13-acetate plus ionomycin but not with 1,2-dioctanoylglycerol plus ionomycin. Determination of the translocation of protein kinase C showed that 12-0-tetradecanoylphorbol-13-acetate plus ionomycin caused a prolonged membrane association of the enzyme for more than 4 hr, whereas 1,2-dioctanoylglycerol plus ionomycin induced a transient membrane association, which was maximal at 20 min. Delivery of multiple additions of 1,2-dioctanoylglycerol plus ionomycin to the T cells resulted in progressively increased expression of the {alpha} subunit of the interleukin 2 receptor and proliferation commensurate with the number of multiple additions delivered, suggesting that prolonged protein kinase C activity is required for T-cell activation.

  5. Stimulation of basal transcription from the mouse mammary tumor virus promoter by Oct proteins.

    OpenAIRE

    Kim, M. H.; Peterson, D O

    1995-01-01

    The steroid hormone-inducible promoter of mouse mammary tumor virus (MMTV) contains three overlapping sequences related to the consensus octamer motif ATGCAAAT. Basal promoter activity in the absence of hormone induction from a template in which all three octamer elements were mutated was decreased by two-to threefold in in vitro transcription assays. Oct-1 protein purified from HeLa cell nuclear extracts, as well as recombinant Oct-1 expressed in bacteria, recognized MMTV octamer-related seq...

  6. Activation of resting human T cells requires prolonged stimulation of protein kinase C.

    OpenAIRE

    Berry, N; Ase, K; Kishimoto, A.; Nishizuka, Y

    1990-01-01

    Purified resting human T cells can be induced to express the alpha subunit of the interleukin 2 receptor and to proliferate by treatment with 12-O-tetradecanoylphorbol-13-acetate plus ionomycin but not with 1,2-dioctanoylglycerol plus ionomycin. Determination of the translocation of protein kinase C showed that 12-O-tetradecanoylphorbol-13-acetate plus ionomycin caused a prolonged membrane association of the enzyme for more than 4 hr, whereas 1,2-dioctanoylglycerol plus ionomycin induced a tr...

  7. Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle.

    OpenAIRE

    Aronson, D; Violan, M A; Dufresne, S D; Zangen, D; FIELDING, R.A.; Goodyear, L J

    1997-01-01

    Physical exercise can cause marked alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling molecules and pathways that enable exercise to modulate cellular processes in skeletal muscle. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular responses. We tested the hypothesis that a single bout of exercise activates the MAPK signaling pat...

  8. Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells.

    Science.gov (United States)

    Sanchez-Rodriguez, Sandra P; Sauer, Jeremy P; Stanley, Sarah A; Qian, Xi; Gottesdiener, Andrew; Friedman, Jeffrey M; Dordick, Jonathan S

    2016-10-01

    Remote activation of specific cells of a heterogeneous population can provide a useful research tool for clinical and therapeutic applications. Here, we demonstrate that photostimulation of gold nanorods (AuNRs) using a tunable near-infrared (NIR) laser at specific longitudinal surface plasmon resonance wavelengths can induce the selective and temporal internalization of calcium in HEK 293T cells. Biotin-PEG-Au nanorods coated with streptavidin Alexa Fluor-633 and biotinylated anti-His antibodies were used to decorate cells genetically modified with His-tagged TRPV1 temperature-sensitive ion channel and AuNRs conjugated to biotinylated RGD peptide were used to decorate integrins in unmodified cells. Plasmonic activation can be stimulated at weak laser power (0.7-4.0 W/cm(2) ) without causing cell damage. Selective activation of TRPV1 channels could be controlled by laser power between 1.0 and 1.5 W/cm(2) . Integrin targeting robustly stimulated calcium signaling due to a dense cellular distribution of nanoparticles. Such an approach represents a functional tool for combinatorial activation of cell signaling in heterogeneous cell populations. Our results suggest that it is possible to induce cell activation via NIR-induced gold nanorod heating through the selective targeting of membrane proteins in unmodified cells to produce calcium signaling and downstream expression of specific genes with significant relevance for both in vitro and therapeutic applications. Biotechnol. Bioeng. 2016;113: 2228-2240. © 2016 Wiley Periodicals, Inc. PMID:27563853

  9. Both short intense and prolonged moderate in vitro stimulation reduce the mRNA expression of calcium-regulatory proteins in rat skeletal muscle

    DEFF Research Database (Denmark)

    Mänttäri, Satu; Ørtenblad, N; Madsen, Klavs;

    2013-01-01

    Sarcoplasmic and t-tubule membrane proteins regulating sarcoplasmic Ca(2+) concentration exhibit fibre-type-dependent isoform expression, and play central roles in muscle contraction and relaxation. The purpose of this study was to evaluate the effects of in vitro electrical stimulation on the mR......+)-regulating system in skeletal muscle. The down-regulation of both isoforms of SERCA and CASQ after a single electrical stimulation session suggests that adaptations to repeated stimulation involve further regulatory mechanisms in addition to acute mRNA responses....

  10. Enzymatic Acylation of Anthocyanin Isolated from Black Rice with Methyl Aromatic Acid Ester as Donor: Stability of the Acylated Derivatives.

    Science.gov (United States)

    Yan, Zheng; Li, Chunyang; Zhang, Lixia; Liu, Qin; Ou, Shiyi; Zeng, Xiaoxiong

    2016-02-10

    The enzymatic acylation of anthocyanin from black rice with aromatic acid methyl esters as acyl donors and Candida antarctica lipase B was carried out under reduced pressure. The highest conversion of 91% was obtained with benzoic acid methyl ester as acyl donor; cyanidin 3-(6″-benzoyl)-glucoside, cyanidin 3-(6″-salicyloyl)-glucoside, and cyanidin 3-(6″-cinnamoyl)-glucoside were successfully synthesized. This is the first report on the enzymatic acylation of anthocyanin from black rice with methyl aromatic esters as acyl donors and lipase as biocatalyst. Furthermore, the acylation with aromatic carboxylic acids enhanced both the thermostability and light resistivity of anthocyanin. In particular, cyanidin 3-(6″-cinnamoyl)-glucoside was the most stable among the three acylated anthocyanins synthesized. PMID:26766135

  11. Osmotic stress stimulates phosphorylation and cellular expression of heat shock proteins in rhesus macaque sperm.

    Science.gov (United States)

    Cole, Julie A; Meyers, Stuart A

    2011-01-01

    The cryosurvival of sperm requires cell signaling mechanisms to adapt to anisotonic conditions during the freezing and thawing process. Chaperone proteins heat shock protein 70 (HSP 70) and heat shock protein 90 (HSP 90; recently renamed HSPA and HSPC, respectively) facilitate some of these cell signaling events in somatic cells. Sperm were evaluated for their cellular expression and levels of phosphorylation of both HSP 70 and HSP 90 under anisotonic conditions as a potential model for cell signaling during the cryopreservation of macaque spermatozoa. In order to monitor the level of stress, the motility and viability parameters were evaluated at various time points. Cells were then either prepared for phosphoprotein enrichment or indirect immunocytochemistry. As controls, the phosphoserine, phosphothreonine, and phosphotyrosine levels were measured under capacitation and cryopreservation conditions and were compared with the phosphoprotein levels expressed under osmotic conditions. As expected, there was an increase in the level of tyrosine phosphorylation under capacitation and cryopreservation conditions. There was also a significant increase in the level of all phosphoproteins under hyperosmotic conditions. There was no change in the level of expression of HSP 70 or 90 under osmotic stress conditions as measured by Western blot. The enrichment of phosphoproteins followed by Western immunoblotting revealed an increase in the phosphorylation of HSP 70 but not HSP 90 under osmotic stress conditions. Indirect immunofluorescence localized HSP 70 to the postacrosomal region of sperm, and the level of membrane expression of HSP 70 was significantly affected by anisotonic conditions, as measured by flow cytometry. Taken together, these results suggest a differential role for HSP 70 and HSP 90 during osmotic stress conditions in rhesus macaque sperm. PMID:21088232

  12. Phagocytosis stimulates alternative glycosylation of macrosialin (mouse CD68), a macrophage-specific endosomal protein.

    Science.gov (United States)

    da Silva, R P; Gordon, S

    1999-03-15

    Macrosialin (mouse CD68), a macrophage-specific member of the lysosomal-associated membrane protein family, displays N-linked glycosylation and a heavily sialylated, mucin-like domain. We show that phagocytosis of zymosan by inflammatory peritoneal macrophages potently alters glycan processing of macrosialin in vitro. The phagocytic glycoform is not induced by other forms of endocytosis and depends on particle internalization. Zymosan uptake does not influence macrosialin protein synthesis, but increases the specific incorporation of D-[2-3H]mannose, D-[6-3H]galactose, N-acetyl-D-[1-3H]glucosamine and L-[5,6-3H]fucose by 2-15-fold. The phagocytic glycoform displays increased binding of agglutinins from peanut, Amaranthus caudatus and Galanthus nivalis, whereas binding of the sialic-acid-specific Maakia amurensis agglutinin is slightly reduced. Digestion by N-Glycanase abolishes the incorporation of [3H]mannose label and Galanthus nivalis agglutinin binding activity, but preserves the incorporation of galactose and N-acetylglucosamine and specific lectin binding. We also show that phagocytosis increases the complexity and length of O-linked chains. The data presented highlight the importance of differential glycosylation in the biology of macrosialin, phagosomes and macrophages in general.

  13. Recombinant lipidated dengue-3 envelope protein domain III stimulates broad immune responses in mice.

    Science.gov (United States)

    Chiang, Chen-Yi; Liu, Shih-Jen; Hsieh, Chun-Hsiang; Chen, Mei-Yu; Tsai, Jy-Ping; Liu, Hsueh-Hung; Chen, I-Hua; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-02-17

    The linkage of an immunogen with a toll-like receptor ligand has great potential to induce highly potent immune responses with the initial features of antigen-presenting cell activation. In the current study, we expressed recombinant dengue-3 envelope protein domain III (D3ED III) in lipidated form using an Escherichia coli-based system. The recombinant lipidated dengue-3 envelope protein domain III (LD3ED III) augments the expression levels of IL-12 family cytokines. LD3ED III-immunized mice enhance wide ranges of T cell responses as indicated by IFN-γ, IL-17, IL-21 production. Additionally, LD3ED III-immunized mice increase the frequencies of anti-D3ED III antibody producing cells. The boosted antibody titers cover various IgG isotypes, including IgG1, IgG2a, IgG2b, and IgG3. Importantly, LD3ED III-immunized mice induce neutralizing antibody capacity associated with a reduction of viremia levels after challenges. In contrast, mice that are immunized with D3ED III formulated with aluminum phosphate (D3ED III/Alum) only enhance Th2 responses and boost IgG1 antibody titers. Neither neutralizing antibody responses nor the inhibition of viremia levels after challenge is observed in mice that are immunized with D3ED III/Alum. These results suggest that LD3ED III can induce broad profiles of cellular and humoral immune responses.

  14. Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue

    Science.gov (United States)

    Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.

    2015-06-01

    Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.

  15. Age-related enhancement of a protein synthesis-dependent late phase of LTP induced by low frequency paired-pulse stimulation in hippocampus

    OpenAIRE

    Huang, Yan-You; Kandel, Eric R.

    2006-01-01

    Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by a brief 1-Hz paired-pulse stimulation (PP-1 Hz, 1 min). In contrast to L-LTP induced by HFS, the late phase of PP-1 Hz LTP does not exist in young ...

  16. Endogenous N-acyl taurines regulate skin wound healing.

    Science.gov (United States)

    Sasso, Oscar; Pontis, Silvia; Armirotti, Andrea; Cardinali, Giorgia; Kovacs, Daniela; Migliore, Marco; Summa, Maria; Moreno-Sanz, Guillermo; Picardo, Mauro; Piomelli, Daniele

    2016-07-26

    The intracellular serine amidase, fatty acid amide hydrolase (FAAH), degrades a heterogeneous family of lipid-derived bioactive molecules that include amides of long-chain fatty acids with taurine [N-acyl-taurines (NATs)]. The physiological functions of the NATs are unknown. Here we show that genetic or pharmacological disruption of FAAH activity accelerates skin wound healing in mice and stimulates motogenesis of human keratinocytes and differentiation of human fibroblasts in primary cultures. Using untargeted and targeted lipidomics strategies, we identify two long-chain saturated NATs-N-tetracosanoyl-taurine [NAT(24:0)] and N-eicosanoyl-taurine [NAT(20:0)]-as primary substrates for FAAH in mouse skin, and show that the levels of these substances sharply decrease at the margins of a freshly inflicted wound to increase again as healing begins. Additionally, we demonstrate that local administration of synthetic NATs accelerates wound closure in mice and stimulates repair-associated responses in primary cultures of human keratinocytes and fibroblasts, through a mechanism that involves tyrosine phosphorylation of the epidermal growth factor receptor and an increase in intracellular calcium levels, under the permissive control of transient receptor potential vanilloid-1 receptors. The results point to FAAH-regulated NAT signaling as an unprecedented lipid-based mechanism of wound-healing control in mammalian skin, which might be targeted for chronic wound therapy. PMID:27412859

  17. Towards an Understanding of How Protein Hydrolysates Stimulate More Efficient Biosynthesis in Cultured Cells

    Science.gov (United States)

    Siemensma, André; Babcock, James; Wilcox, Chris; Huttinga, Hans

    In the light of the growing demand for high quality plant-derived hydrolysates (i.e., HyPep™ and UltraPep™ series), Sheffield Bio-Science has developed a new hydrolysate platform that addresses the need for animal-free cell culture medium supplements while also minimizing variability concerns. The platform is based upon a novel approach to enzymatic digestion and more refined processing. At the heart of the platform is a rationally designed animal component-free (ACF) enzyme cocktail that includes both proteases and non-proteolytic enzymes (hydrolases) whose activities can also liberate primary components of the polymerized non-protein portion of the raw material. This enzyme system is added during a highly optimized process step that targets specific enzyme-substrate reactions to expand the range of beneficial nutritional factors made available to cells in culture. Such factors are fundamental to improving the bio-performance of the culture system, as they provide not merely growth-promoting peptides and amino acids, but also key carbohydrates, lipids, minerals, and vitamins that improve both rate and quality of protein expression, and serve to improve culture life due to osmo-protectant and anti-apoptotic properties. Also of significant note is that, compared to typical hydrolysates, the production process is greatly reduced and requires fewer steps, intrinsically yielding a better-controlled and therefore more reproducible product. Finally, the more sophisticated approach to enzymatic digestion renders hydrolysates more amenable to sterile filtration, allowing hydrolysate end users to experience streamlined media preparation and bioreactor supplementation activities. Current and future development activities will evolve from a better understanding of the complex interactions within a handful of key biochemical pathways that impact the growth and productivity of industrially relevant organisms. Presented in this chapter are some examples of the efforts that

  18. High resolution crystal structures of unliganded and liganded human liver ACBP reveal a new mode of binding for the acyl-CoA ligand

    DEFF Research Database (Denmark)

    Taskinen, Jukka P; van Aalten, Daan M; Knudsen, Jens;

    2007-01-01

    The acyl-CoA binding protein (ACBP) is essential for the fatty acid metabolism, membrane structure, membrane fusion, and ceramide synthesis. Here high resolution crystal structures of human cytosolic liver ACBP, unliganded and liganded with a physiological ligand, myristoyl-CoA are described...... are filled by other ligand fragments. This novel binding mode shows that the acyl moiety can flip out of its classical binding pocket and bind elsewhere, suggesting a mechanism for the acyl-CoA transfer between ACBP and the active site of a target enzyme. This mechanism is of possible relevance...

  19. Proteins from rat liver cytosol which stimulate mRNA transport. Purification and interactions with the nuclear envelope mRNA translocation system.

    Science.gov (United States)

    Schröder, H C; Rottmann, M; Bachmann, M; Müller, W E; McDonald, A R; Agutter, P S

    1986-08-15

    Two polysome-associated proteins with particular affinities for poly(A) have been purified from rat liver. These proteins stimulate the efflux of mRNA from isolated nuclei in conditions under which such efflux closely stimulates mRNA transport in vivo, and they are therefore considered as mRNA-transport-stimulatory proteins. Their interaction with the mRNA-translocation system in isolated nuclear envelopes has been studied. The results are generally consistent with the most recently proposed kinetic model of mRNA translocation. One protein, P58, has not been described previously. It inhibits the protein kinase that down-regulates the NTPase, it enhances the NTPase activity in both the presence and the absence of poly(A) and it seems to increase poly(A) binding in unphosphorylated, but not in phosphorylated, envelopes. The other protein, P31, which probably corresponds to the 35,000-Mr factor described by Webb and his colleagues, enhances the binding of poly(A) to the mRNA-binding site in the envelope, thus stimulating the phosphoprotein phosphatase and, in consequence, the NTPase. The possible physiological significance of these two proteins is discussed.

  20. Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2

    Institute of Scientific and Technical Information of China (English)

    YIN Xiao-xue; CHEN Zhong-qiang; LIU Zhong-jun; MA Qing-jun; DANG Geng-ting

    2007-01-01

    Background lcariine is a flavonoid isolated from a traditional Chinese medicine Epimedium pubescens and is the main active compound of it. Recently, Epimedium pubescens was found to have a therapeutic effect on osteoporosis. But the mechanism is unclear. The aim of the study was to research the effect of lcariine on the proliferation and differentiation of human osteoblasts.Methods Human osteoblasts were obtained byinducing human marrow mesenchymal stem cells (hMSCs) directionally and were cultured in the presence of various concentrations of lcariine. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used to observe the effect of lcariine on cell proliferation. The activity of alkaline phosphatase (ALP) and the amount of calcified nodules were assayed to observe the effect on cell differentiation.The expression of bone morphogenetic protein 2 (BMP-2) mRNA was detected by reverse transcriptase-polymerase chain reaction (RT-PCR).Results Icariine (20 μg/ml) increased significantly the proliferation of human osteoblasts. And, lcariine (10 μg/ml and 20μg/ml) increased the activity of ALP and the amount of calcified nodules of human osteoblasts significantly (P<0.05).BMP-2 mRNA synthesis was elevated significantly in response to lcariine (20 μg/ml).Conclusions lcariine has a direct stimulatory effect on the proliferation and differentiation of cultured human osteoblastcells in vitro, which may be mediated by increasing production of BMP-2 in osteoblasts.

  1. Use of bone morphogenetic proteins in mesenchymal stemcell stimulation of cartilage and bone repair

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    The extracellular matrix-associated bone morphogeneticproteins (BMPs) govern a plethora of biological processes.The BMPs are members of the transforming growthfactor-β protein superfamily, and they actively participateto kidney development, digit and limb formation,angiogenesis, tissue fibrosis and tumor development.Since their discovery, they have attracted attentionfor their fascinating perspectives in the regenerativemedicine and tissue engineering fields. BMPs havebeen employed in many preclinical and clinical studiesexploring their chondrogenic or osteoinductive potentialin several animal model defects and in human diseases.During years of research in particular two BMPs, BMP2and BMP7 have gained the podium for their use inthe treatment of various cartilage and bone defects.In particular they have been recently approved foremployment in non-union fractures as adjunct therapies.On the other hand, thanks to their potentialities inbiomedical applications, there is a growing interest instudying the biology of mesenchymal stem cell (MSC),the rules underneath their differentiation abilities, andto test their true abilities in tissue engineering. In fact,the specific differentiation of MSCs into targeted celltypelineages for transplantation is a primary goal of theregenerative medicine. This review provides an overviewon the current knowledge of BMP roles and signaling inMSC biology and differentiation capacities. In particularthe article focuses on the potential clinical use of BMPsand MSCs concomitantly, in cartilage and bone tissuerepair.

  2. Fatty acyl chain-dependent but charge-independent association of the SH4 domain of Lck with lipid membranes

    Indian Academy of Sciences (India)

    Anoop Rawat; Avaronnan Harishchandran; Ramakrishnan Nagaraj

    2013-03-01

    The SH4 domain of Src family of nonreceptor protein tyrosine kinases represents the extreme N-terminal 1–16 amino acid region which mediates membrane association of these proteins and facilitates their functions. The SH4 domains among Src members lack well-defined sequence consensus and vary in the net charge. However, they readily anchor to the cytoplasmic face of the plasma membrane upon fatty acid acylation. Here, we report the membrane association of differentially acylated SH4 domain of Lck kinase, which has net negative charge at physiological pH. Our results suggest that despite the net negative charge, the SH4 domain of Lck associates with membranes upon fatty acid acylation. While myristoylation at the N-terminus is sufficient for providing membrane anchorage, multiple acylation determines orientation of the peptide chain with respect to the lipid bilayer. Hence, fatty acylation serves more than just a lipid anchor. It has an important role in regulating the spatial orientation of the peptide domain with respect to the lipid bilayer, which could be important for the interaction of the other domains of these kinases with their partners.

  3. In Vitro Acylation of Okadaic Acid in the Presence of Various Bivalves’ Extracts

    Directory of Open Access Journals (Sweden)

    Mari Yotsu-Yamashita

    2013-01-01

    Full Text Available The dinoflagellate Dinophysis spp. is responsible for diarrhetic shellfish poisoning (DSP. In the bivalves exposed to the toxic bloom of the dinoflagellate, dinophysistoxin 3 (DTX3, the 7-OH acylated form of either okadaic acid (OA or DTX1, is produced. We demonstrated in vitro acylation of OA with palmitoyl CoA in the presence of protein extract from the digestive gland, but not other tissues of the bivalve Mizuhopecten yessoensis. The yield of 7-O-palmitoyl OA reached its maximum within 2 h, was the highest at 37 °C followed by 28 °C, 16 °C and 4 °C and was the highest at pH 8 in comparison with the yields at pH 6 and pH 4. The transformation also proceeded when the protein extract was prepared from the bivalves Corbicula japonica and Crassostrea gigas. The OA binding protein OABP2 identified in the sponge Halichondria okadai was not detected in the bivalve M. yessoensis, the bivalve Mytilus galloprovincialis and the ascidian Halocynthia roretzi, though they are known to accumulate diarrhetic shellfish poisoning toxins. Since DTX3 does not bind to protein phosphatases 1 and 2A, the physiological target for OA and DTXs in mammalian cells, the acylation of DSP toxins would be related to a detoxification mechanism for the bivalve species.

  4. Sulfated galactans from Gracilaria fisheri bind to shrimp haemocyte membrane proteins and stimulate the expression of immune genes.

    Science.gov (United States)

    Rudtanatip, Tawut; Withyachumnarnkul, Boonsirm; Wongprasert, Kanokpan

    2015-11-01

    Previous studies demonstrated that sulfated galactans (SG) from Gracilaria fisheri (G. fisheri) exhibit immunostimulant activity in shrimp. The present study was conducted to test the hypothesis that SG stimulates signaling molecules of the immune response of shrimp by binding to receptors on the host cell membrane. Accordingly, we evaluated the ability of SG to bind to shrimp haemocytes and showed that SG bound to the shrimp haemocyte membrane (SHM), potentially to specific receptors. Furthermore, this binding was associated with an activation of immune response genes of shrimp. Data from confocal laser scanning micrographs revealed that FITC-labeled SG bound to haemocytes. Far western blot analysis demonstrated that SHM peptides, with molecular sizes of 13, 14, 15, 17, and 25 kDa, were associated with SG. Peptide sequence analysis of the isolated bands using LC-MS/MS and NCBI blast search revealed the identity of the 13, 14, and 17 kDa peptides as lipopolysaccharide and β-1,3-glucan binding protein (LGBP). SG induced the expression of immune related genes and downstream signaling mediators of LGBP including IMD, IKKs, NF-κB, antimicrobial peptides (crustin and PEN-4), the antiviral immunity (dicer), and proPO system (proPO-I and proPO-II). A LGBP neutralizing assay with anti-LGBP antibody indicated a decrease in SG-induced expression of LGBP downstream signaling mediators and the immune related genes. In conclusion, this study demonstrated that the SG-stimulated immune activity in haemocytes is mediated, in part, through the LGBP, and IMD-NF-κB pathway.

  5. Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut.

    Science.gov (United States)

    Fescemyer, Howard W; Sandoya, Germán V; Gill, Torrence A; Ozkan, Seval; Marden, James H; Luthe, Dawn S

    2013-03-01

    Understanding the molecular mechanisms underlying insect compensatory responses to plant defenses could lead to improved plant resistance to herbivores. The Mp708 inbred line of maize produces the maize insect resistant 1-cysteine protease (Mir1-CP) toxin. Reduced feeding and growth of fall armyworm larvae fed on Mp708 was previously linked to impairment of nutrient utilization and degradation of the midgut (MG) peritrophic matrix (PM) by Mir1-CP. Here we examine the biochemical and transcriptional responses of fall armyworm larvae to Mir1-CP. Insect Intestinal Mucin (IIM) was severely depleted from pure PMs treated in vitro with recombinant Mir1-CP. Larvae fed on Mp708 midwhorls excrete frass largely depleted of IIM. Cracks, fissures and increased porosity previously observed in the PM of larvae fed on Mp708 midwhorls could ensue when Mir1-CP degrades the IIM that cross-links chitin fibrils in the PM. Both targeted and global transcriptome analyses were performed to determine how complete dissolution of the structure and function of the PM is prevented, enabling larvae to continue growing in the presence of Mir1-CP. The MGs from fall armyworm fed on Mp708 upregulate expression of genes encoding proteins involved in PM production as an apparent compensation to replace the disrupted PM structure and restore appropriate counter-current MG gradients. Also, several families of digestive enzymes (endopeptidases, aminopeptidases, lipases, amylase) were more highly expressed in MGs from larvae fed on Mp708 than MGs from larvae fed on diets lacking Mir1-CP (artificial diet, midwhorls from Tx601 or B73 maize). Impaired growth of larvae fed on Mp708 probably results from metabolic costs associated with higher production of PM constituents and digestive enzymes in a compensatory attempt to maintain MG function.

  6. Age-Related Enhancement of a Protein Synthesis-Dependent Late Phase of LTP Induced by Low Frequency Paired-Pulse Stimulation in Hippocampus

    Science.gov (United States)

    Huang, Yan-You; Kandel, Eric R.

    2006-01-01

    Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by…

  7. Prolonged agonist stimulation does not alter the protein composition of membrane domains in spite of dramatic changes induced in a specific signaling cascade.

    Science.gov (United States)

    Matousek, Petr; Novotny, Jirí; Rudajev, Vladimír; Svoboda, Petr

    2005-01-01

    Protein composition of membrane domains prepared by three different procedures (mechanical homogenization, alkaline treatment with 1 M Na2CO3 [pH 11.0], or extraction with nonionic detergent Triton X-100), and isolated from the bulk of plasma membranes by flotation on equilibrium sucrose density gradients, was analyzed by two-dimensional (2D) electrophoresis and compared in preparations from control (quiescent) and agonist-stimulated human embryonic kidney cells (HEK)293 or S49 cells. HEK293 cells (clone e2m11) stably expressing high levels of thyrotropin-releasing hormone receptor and G11alpha protein were stimulated by thyrotropin-releasing hormone and S49 lymphoma cells by the beta-adrenergic receptor agonist isoprenaline. Whereas sustained exposure (16 h) of both cell lines to the appropriate hormones led to substantial cellular redistribution and downregulation of the cognate G proteins (G(q)alpha/G11alpha and G(s)alpha, respectively), the distribution and levels of nonstimulated G(i) proteins remained unchanged. The 2D electrophoretic analysis of membrane domains distinguished approx 150-170 major proteins in these structures and none of these proteins was significantly altered by prolonged agonist stimulation. Furthermore, specific immunochemical determination of a number of plasma membrane markers, including transmembrane and glycosyl-phosphatidylinositol-anchored peripheral proteins, confirmed that their detergent-extractability/solubility was not influenced by hormone treatment. Collectively, our present data indicate that sustained hormone stimulation of target cells does not alter the basic protein composition of membrane domain/raft compartments of the plasma membrane in spite of marked changes proceeding in a given signaling cascade. PMID:15673926

  8. N-acylation of ethanolamine using lipase: a chemoselective catalyst

    OpenAIRE

    Mazaahir Kidwai; Roona Poddar; Poonam Mothsra

    2009-01-01

    The N-acylation of ethanolamine (2) with various fatty acids 1a–d and esters of fatty acids 1e–h using Candida antarctica B lipase (Novozym® 435) are described and optimum conditions for selective N-acylation rather than O-acylation are also discussed. Microwave assisted solution phase, solid supported and conventional methods were investigated and results were compared. There is a synergy between the enzyme catalysis and microwave irradiation.

  9. N-acylation of ethanolamine using lipase: a chemoselective catalyst

    Directory of Open Access Journals (Sweden)

    Mazaahir Kidwai

    2009-03-01

    Full Text Available The N-acylation of ethanolamine (2 with various fatty acids 1a–d and esters of fatty acids 1e–h using Candida antarctica B lipase (Novozym® 435 are described and optimum conditions for selective N-acylation rather than O-acylation are also discussed. Microwave assisted solution phase, solid supported and conventional methods were investigated and results were compared. There is a synergy between the enzyme catalysis and microwave irradiation.

  10. Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response

    NARCIS (Netherlands)

    Nagelkerke, A.; Bussink, J.; Mujcic, H.; Wouters, B.G.; Lehmann, S.; Sweep, F.C.; Span, P.N.

    2013-01-01

    ABSTRACT: INTRODUCTION: The hypoxia-inducible factor (HIF)-1 pathway can stimulate tumor cell migration and metastasis. Furthermore, hypoxic tumors are associated with a poor prognosis. Besides the HIF-1 pathway, the unfolded protein response (UPR) is also induced by hypoxic conditions. The PKR-like

  11. Plasma levels of acylated ghrelin in patients with functional dyspepsia

    Institute of Scientific and Technical Information of China (English)

    Yeon Soo Kim; Joon Seong Lee; Tae Hee Lee; Joo Young Cho; Jin Oh Kim; Wan Jung Kim; Hyun Gun Kim; Seong Ran Jeon; Hoe Su Jeong

    2012-01-01

    AIM:To investigate the relationship between plasma acylated ghrelin levels and the pathophysiology of functional dyspepsia.METHODS:Twenty-two female patients with functional dyspepsia and twelve healthy volunteers were recruited for the study.The functional dyspepsia patients were each diagnosed based on the Rome Ⅲ criteria.Eligible patients completed a questionnaire concerning the severity of 10 symptoms.Plasma acylated ghrelin levels before and after a meal were determined in the study participants using a commercial human acylated enzyme immunoassay kit; electrogastrograms were performed for 50 min before and after a standardized 10-min meal containing 265 kcal.RESULTS:There were no significant differences in plasma acylated ghrelin levels between healthy volunteers and patients with functional dyspepsia.However,in patients with functional dyspepsia,there was a negative correlation between fasting plasma acylated ghrelin levels and the sum score of epigastric pain (r =-0.427,P =0.047) and a positive correlation between the postprandial/fasting plasma acylated ghrelin ratio and the sum score of early satiety (r =0.428,P =0.047).Additionally,there was a negative correlation between fasting acylated ghrelin plasma levels and fasting normogastria (%) (r =-0.522,P =0.013).Interestingly,two functional dyspepsia patients showed paradoxically elevated plasma acylated ghrelin levels after the meal.CONCLUSION:Abnormal plasma acylated ghrelin levels before or after a meal may be related to several of the dyspeptic symptoms seen in patients with functional dyspepsia.

  12. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ko Eun [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Eun Young [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Chang Seong; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Kyung Keun [Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Lee, Jong Un [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Soo Wan, E-mail: skimw@chonnam.ac.kr [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of)

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in the presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  13. The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level

    DEFF Research Database (Denmark)

    Pedersen, Christina Bak; Kølvrå, Steen; Kølvraa, Agnete;

    2008-01-01

    , 26 missense, one start codon, and two stop codon variations. In vitro import studies of variant SCAD proteins in isolated mitochondria from SCAD deficient (SCAD-/-) mice demonstrated an increased tendency of the abnormal proteins to misfold and aggregate compared to the wild-type, a phenomenon that...... often leads to gain-of-function cellular phenotypes. However, no correlation was found between the clinical phenotype and the degree of SCAD dysfunction. We propose that SCAD deficiency should be considered as a disorder of protein folding that can lead to clinical disease in combination with other...

  14. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Z Zhang; R Zhou; J Sauder; P Tonge; S Burley; S Swaminathan

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  15. American Ginseng Stimulates Insulin Production and Prevents Apoptosis through Regulation of Uncoupling Protein-2 in Cultured β Cells

    Directory of Open Access Journals (Sweden)

    John Zeqi Luo

    2006-01-01

    Full Text Available American ginseng root displays the ability to achieve glucose homeostasis both experimentally and clinically but the unknown mechanism used by ginseng to achieve its therapeutic effects on diabetes limits its application. Disruption in the insulin secretion of pancreatic β cells is considered the major cause of diabetes. A mitochondrial protein, uncoupling protein-2 (UCP-2 has been found to play a critical role in insulin synthesis and β cell survival. Our preliminary studies found that the extracts of American ginseng inhibit UCP-2 expression which may contribute to the ability of ginseng protecting β cell death and improving insulin synthesis. Therefore, we hypothesized that ginseng extracts suppress UCP-2 in the mitochondria of pancreatic β cells, promoting insulin synthesis and anti-apoptosis (a programmed cell-death mechanism. To test the hypothesis, the serum-deprived quiescent β cells were cultured with or without interleukin-1β (IL-1β, (200 pg ml−1, a cytokine to induce β cell apoptosis and water extracts of American ginseng (25 μg per 5 μl administered to wells of 0.5 ml culture for 24 h. We evaluated effects of ginseng on UCP-2 expression, insulin production, anti-/pro-apoptotic factors Bcl-2/caspase-9 expression and cellular ATP levels. We found that ginseng suppresses UCP-2, down-regulates caspase-9 while increasing ATP and insulin production/secretion and up-regulates Bcl-2, reducing apoptosis. These findings suggest that stimulation of insulin production and prevention of β cell loss by American ginseng extracts can occur via the inhibition of mitochondrial UCP-2, resulting in increase in the ATP level and the anti-apoptotic factor Bcl-2, while down-regulation of pro-apoptotic factor caspase-9 occurs, lowering the occurrence of apoptosis, which support the hypothesis.

  16. Polymorphism rs11085226 in the gene encoding polypyrimidine tract-binding protein 1 negatively affects glucose-stimulated insulin secretion.

    Directory of Open Access Journals (Sweden)

    Martin Heni

    Full Text Available OBJECTIVE: Polypyrimidine tract-binding protein 1 (PTBP1 promotes stability and translation of mRNAs coding for insulin secretion granule proteins and thereby plays a role in β-cells function. We studied whether common genetic variations within the PTBP1 locus influence insulin secretion, and/or proinsulin conversion. METHODS: We genotyped 1,502 healthy German subjects for four tagging single nucleotide polymorphisms (SNPs within the PTBP1 locus (rs351974, rs11085226, rs736926, and rs123698 covering 100% of genetic variation with an r(2≥0.8. The subjects were metabolically characterized by an oral glucose tolerance test with insulin, proinsulin, and C-peptide measurements. A subgroup of 320 subjects also underwent an IVGTT. RESULTS: PTBP1 SNP rs11085226 was nominally associated with lower insulinogenic index and lower cleared insulin response in the OGTT (p≤0.04. The other tested SNPs did not show any association with the analyzed OGTT-derived secretion parameters. In the IVGTT subgroup, SNP rs11085226 was accordingly associated with lower insulin levels within the first ten minutes following glucose injection (p = 0.0103. Furthermore, SNP rs351974 was associated with insulin levels in the IVGTT (p = 0.0108. Upon interrogation of MAGIC HOMA-B data, our rs11085226 result was replicated (MAGIC p = 0.018, but the rs351974 was not. CONCLUSIONS: We conclude that common genetic variation in PTBP1 influences glucose-stimulated insulin secretion. This underlines the importance of PTBP1 for beta cell function in vivo.

  17. Induction of Zenk protein expression within the nucleus taeniae of the amygdala of pigeons following tone and shock stimulation

    Directory of Open Access Journals (Sweden)

    I. Brito

    2011-08-01

    Full Text Available In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia, weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG; with shock-alone presentations (shock group; SG; with tone-alone presentations (tone group; TG; with exposure to the training chamber without stimulation (context group; CG, and with daily handling (naive group; NG. The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05. The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.

  18. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity.

    Directory of Open Access Journals (Sweden)

    Sophiya Karki

    Full Text Available The zinc finger antiviral protein (ZAP is a host factor that mediates inhibition of viruses in the Filoviridae, Retroviridae and Togaviridae families. We previously demonstrated that ZAP blocks replication of Sindbis virus (SINV, the prototype Alphavirus in the Togaviridae family at an early step prior to translation of the incoming genome and that synergy between ZAP and one or more interferon stimulated genes (ISGs resulted in maximal inhibitory activity. The present study aimed to identify those ISGs that synergize with ZAP to mediate Alphavirus inhibition. Using a library of lentiviruses individually expressing more than 350 ISGs, we screened for inhibitory activity in interferon defective cells with or without ZAP overexpression. Confirmatory tests of the 23 ISGs demonstrating the largest infection reduction in combination with ZAP revealed that 16 were synergistic. Confirmatory tests of all potentially synergistic ISGs revealed 15 additional ISGs with a statistically significant synergistic effect in combination with ZAP. These 31 ISGs are candidates for further mechanistic studies. The number and diversity of the identified ZAP-synergistic ISGs lead us to speculate that ZAP may play an important role in priming the cell for optimal ISG function.

  19. 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice

    DEFF Research Database (Denmark)

    Wang, Yaoming; Zhao, Zhen; Rege, Sanket V;

    2016-01-01

    profile in humans, 3K3A-APC has advanced to clinical trials as a neuroprotectant in ischemic stroke. Recently, 3K3A-APC has been shown to stimulate neuronal production by human neural stem and progenitor cells (NSCs) in vitro via a PAR1-PAR3-sphingosine-1-phosphate-receptor 1-Akt pathway, which suggests......Activated protein C (APC) is a blood protease with anticoagulant activity and cell-signaling activities mediated by the activation of protease-activated receptor 1 (F2R, also known as PAR1) and F2RL1 (also known as PAR3) via noncanonical cleavage. Recombinant variants of APC, such as the 3K3A......-APC (Lys191-193Ala) mutant in which three Lys residues (KKK191-193) were replaced with alanine, and/or its other mutants with reduced (>90%) anticoagulant activity, engineered to reduce APC-associated bleeding risk while retaining normal cell-signaling activity, have shown benefits in preclinical models...

  20. Stimulation of a Gs-like G protein in the osteoclast inhibits bone resorption but enhances tartrate-resistant acid phosphatase secretion.

    Science.gov (United States)

    Moonga, B S; Pazianas, M; Alam, A S; Shankar, V S; Huang, C L; Zaidi, M

    1993-01-29

    Previous studies have demonstrated that G-protein agonists induce quiescence (Q effect) or retraction (R effect) in isolated osteoclasts. We now report the functional effects of such agonists on osteoclastic bone resorption and enzyme release. Exposure of osteoclasts to tetrafluoro-aluminate anions (AlF4-), a universal G protein stimulator, resulted in a marked concentration-dependent inhibition of bone resorption. This was associated with a dramatic increase in the secretion of the osteoclast-specific enzyme, tartrate-resistant acid phosphatase (TRAP). Cholera toxin, a Gs stimulator and a selective Q effect agonist, similarly abolished bone resorption and enhanced TRAP secretion. In contrast, pertussis toxin, a Gi inhibitor and a selective R effect agonist, inhibited bone resorption significantly, but slightly reduced enzyme release. The results suggest an involvement of a Gs-like G protein in TRAP secretion from the osteoclast, possibly through a cyclic AMP-dependent mechanism.

  1. Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation and cell differentiation

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann

    Abstract Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation and cell differentiation. A. Grossi, M. A. Lawson; Department of Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark The process of muscle...... development and growth is a complex sequence of events whereby muscle cells respond to a number of stimuli in order to form organised muscle tissue. Increase in muscle mass is greatly influenced by the rate of skeletal muscle protein synthesis and degradation, processes that can be altered by mechanical...... forces. Stretch- or load-induced signaling is now beginning to be understood as a factor which affects the mass and phenotype of muscles as well as the expression of a number of proteins within muscle cells. Use of magnetic field to produce mechanical forces to stimulate cell populations has been well...

  2. Veronica: Acylated flavone glycosides as chemosystematic markers

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Kite, Geoffrey C.;

    2005-01-01

    HPLC/DAD and LCeMS of an extract of Veronica spicata subgenus Pseudolysimachium, Plantaginaceae) revealed the presence of six 6-hydroxyluteolin glycosides acylated with phenolic acids, three of which are new compounds and which we called spicosides. A flavonoid survey of seven more species...... instead. Spicosides appeared to be common in subgenus Pseudolysimachium (detected in five out of eight species), but we did not find them in subgenus Pentasepalae. Previously, acetylated 8-hydroxyflavone glycosides have been isolated from or detected in eight species of V. subgenus Pentasepalae (in 13...

  3. Decreased cholinergic stimulation of insulin secretion by islets from rats fed a low protein diet is associated with reduced protein kinase calpha expression.

    Science.gov (United States)

    Ferreira, Fabiano; Filiputti, Eliane; Arantes, Vanessa C; Stoppiglia, Luis F; Araújo, Eliana P; Delghingaro-Augusto, Viviane; Latorraca, Márcia Q; Toyama, Marcos H; Boschero, Antonio C; Carneiro, Everardo M

    2003-03-01

    Undernutrition has been shown to affect the autonomic nervous system, leading to permanent alterations in insulin secretion. To understand these interactions better, we investigated the effects of carbamylcholine (CCh) and phorbol 12-myristate 13-acetate (PMA) on insulin secretion in pancreatic islets from rats fed a normal (17%; NP) or low (6%; LP) protein diet for 8 wk. Isolated islets were incubated for 1 h in Krebs-bicarbonate solution containing 8.3 mmol glucose/L, with or without PMA (400 nmol/L) and CCh. Increasing concentrations of CCh (0.1-1000 micro mol/L) dose dependently increased insulin secretion by islets from both groups of rats. However, insulin secretion by islets from rats fed the NP diet was significantly higher than that of rats fed the LP diet, and the dose-response curve to CCh was shifted to the right in islets from rats fed LP with a 50% effective concentration (EC(50)) of 2.15 +/- 0.7 and 4.64 +/- 0.1 micro mol CCh/L in islets of rats fed NP and LP diets, respectively (P < 0.05). PMA-induced insulin secretion was higher in islets of rats fed NP compared with those fed LP. Western blotting revealed that the protein kinase (PK)Calpha and phospholipase (PL)Cbeta(1) contents of islets of rats fed LP were 30% lower than those of islets of rats fed NP (P < 0.05). In addition, PKCalpha mRNA expression was reduced by 50% in islets from rats fed LP. In conclusion, a reduced expression of PKCalpha and PLCbeta(1) may be involved in the decreased insulin secretion by islets from LP rats after stimulation with CCh and PMA. PMID:12612139

  4. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  5. Enzymatic synthesis and NMR studies of acylated sucrose acetates

    NARCIS (Netherlands)

    Steverink-De Zoete, M.C.; Kneepkens, M.F.M.; Waard, de P.; Woudenberg-van Oosterom, M.; Gotlieb, K.F.; Slaghek, T.

    1999-01-01

    The lipase-catalyzed esterification of partially acetylated sucrose has been studied. It was shown that the chemical acetylation increased the reaction rate of the subsequent enzymatic acylation. Thus it was possible to perform the enzymatic acylation in the absence of solvents while underivatized s

  6. Oxidative activation of dihydropyridine amides to reactive acyl donors

    DEFF Research Database (Denmark)

    Funder, Erik Daa; Trads, Julie Brender; Gothelf, Kurt Vesterager

    2015-01-01

    Amides of 1,4-dihydropyridine (DHP) are activated by oxidation for acyl transfer to amines, alcohols and thiols. In the reduced form the DHP amide is stable towards reaction with amines at room temperature. However, upon oxidation with DDQ the acyl donor is activated via a proposed pyridinium...

  7. Immunomodulatory N-acyl Dopamine Glycosides from the Icelandic Marine Sponge Myxilla incrustans Collected at a Hydrothermal Vent Site.

    Science.gov (United States)

    Einarsdottir, Eydis; Liu, Hong-Bing; Freysdottir, Jona; Gotfredsen, Charlotte Held; Omarsdottir, Sesselja

    2016-06-01

    A chemical investigation of the sponge (Porifera) Myxilla incrustans collected from the unique submarine hydrothermal vent site Strytan, North of Iceland, revealed a novel family of closely related N-acyl dopamine glycosides. Three new compounds, myxillin A (1), B (2) and C (3), were isolated and structurally elucidated using several analytical techniques, such as HR-MS, 1D and 2D NMR spectroscopy. Myxillin A (1) and B (2)were shown to be structurally similar, composed of a dopamine moiety, but differ in the acyl chain length and saturation. The myxillin C (3) has a dehydrotyrosine moiety composing the same acyl chain and glycosylation as myxillin B (2). Myxillins A (1) and C (3) were tested for immunomodulating activity in an in vitro dendritic cell model. Dendritic cells matured and stimulated in the presence of myxillin A (1) secreted lower levels of IL-12p40, whilst dendritic cells matured and stimulated in the presence of myxillin C (3) secreted lower levels of IL-10 compared with dendritic cells matured and stimulated in the presence of the solvent alone. These opposing results indicate that the structural differences in the aromatic ring part of the molecules could have an impact on the immunological effects of dendritic cells. These molecules could, therefore, prove to be important in preventing inflammatory diseases on the one hand, and inducing a response to fight tumors and/or pathogens on the other hand. Further studies will be needed to confirm these potential uses. PMID:27135626

  8. Effect of extracranial electric stimulation at cerebellar fastigial nucleus on serum C-reactive protein of patients with acute cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Some reports indicate that electric and/or chemical stimulation at various brain sites of experimental animals can raise regional cerebral blood flow and improve cerebral circulation; however, its mechanism is still unclear.OBJECTIVE: To observe the effects of electric stimulation at cerebellar fastigial nucleus on serum C-reactive protein of patients with acute cerebral infarction.DESIGN: Non-randomized synchronized contrast study.SETTING: The Second People's Hospital of Xinxiang City.PARTICIPANTS: A total of 54 patients with acute cerebral infarction were selected from the Department of Neurology, the Second People's Hospital of Xinxiang from December 2005 to December 2006. There were 31 males and 23 females, and their ages ranged from 56 to 80 years. All patients met the diagnostic criteria of the Fourth National Cerebrovascular Academic Meeting, were finally diagnosed by using CT examination,and provided the confirmed consent. Based on therapeutic demands, patients were divided into electric stimulation group and routine treatment group with 27 cases in each group. In addition, 21 healthy subjects,including 11 males and 10 females and aging 53 - 78 years, were selected as the control group. All the subjects in the control group did not have any histories of cerebrovascular diseases and severe body diseases.METHODS: Based on routine drug therapy, patients in the electric stimulation group were also treated by using CVFT-010M cerebral circulation function therapeutic device (made in Shanghai). Electrode was fixed at bilateral mastoid in the first group and at extensible sides of upper limbs in the second group. Electric stimulation was given twice a day and lasted for 30 minutes each time. Ten days were regarded as a course.Parameters of device: mode Ⅲ, frequency 198%, and intensity 90% - 110% (bionic current). Patients in the routine treatment group received the routine drug treatment. Content of serum C-reactive protein was measured in both

  9. Effect of room temperature ionic liquid structure on the enzymatic acylation of flavonoids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2010-01-01

    Enzymatic acylation reactions of flavonoids (rutin, esculin) with long chain fatty acids (palmitic, oleic acids) were carried out in 14 different ionic liquid media containing a range of cation and anion structures. Classification of RTILs according to flavonoid solubility (using COSMO-RS) was th......Enzymatic acylation reactions of flavonoids (rutin, esculin) with long chain fatty acids (palmitic, oleic acids) were carried out in 14 different ionic liquid media containing a range of cation and anion structures. Classification of RTILs according to flavonoid solubility (using COSMO......-bonding ability) resulted in decreased yields, likely due to increased interactions with the protein structure of the lipase. Biosynthesis of rutin proceeded much slower than of esculin. All-in-all, judicious selection of RTILs was central to achieving high yields (>98% after 6 days for TOMA·TF2N) since a balance...

  10. Chronological Changes of C-Reactive Protein Levels Following Uncomplicated, Two-Staged, Bilateral Deep Brain Stimulation

    Science.gov (United States)

    Kim, Jae-hun; Ha, Sang-woo; Choi, Jin-gyu

    2015-01-01

    Objective The occurrence of acute cerebral infection following deep brain stimulation (DBS) is currently being reported with elevation of C-reactive protein (CRP) level. The aim of the present study was to establish normal range of the magnitude and time-course of CRP increases following routine DBS procedures in the absence of clinical and laboratory signs of infection. Methods A retrospective evaluation of serial changes of plasma CRP levels in 46 patients undergoing bilateral, two-staged DBS was performed. Because DBS was performed as a two-staged procedure involving; implantation of lead and internal pulse generator (IPG), CRP was measured preoperatively and postoperatively every 2 days until normalization of CRP (post-lead implantation day 2 and 4, post-IPG implantation day 2, 4, and 6). Results Compared with preoperative CRP levels (0.12±0.17 mg/dL, n=46), mean CRP levels were significantly elevated after lead insertion day 2 and 4 (1.68±1.83 mg/dL, n=46 and 0.76±0.38 mg/dL, n=16, respectively, p0.05). Mean CRP levels after IPG implantation were significantly higher in patients whose IPGs were implanted at post-lead day 3 than those at post-lead day 5-6 (3.99±2.80 mg/dL, n=30, and 2.31±1.56 mg/dL, n=16, respectively, p0.05). Conclusion The mean postoperative CRP levels were highest on post-IPG insertion day 2 and decreased rapidly, returning to the normal range on post-IPG implantation day 6. The duration of post-lead implantation period influenced the magnitude of CRP elevation at post-IPG insertion day 2. Information about the normal response of CRP following DBS could help to avoid unnecessary diagnostic and therapeutic efforts. PMID:26587192

  11. Inhibitor of apoptosis-stimulating protein of p53 (iASPP is required for neuronal survival after axonal injury.

    Directory of Open Access Journals (Sweden)

    Ariel M Wilson

    Full Text Available The transcription factor p53 mediates the apoptosis of post-mitotic neurons exposed to a wide range of stress stimuli. The apoptotic activity of p53 is tightly regulated by the apoptosis-stimulating proteins of p53 (ASPP family members: ASPP1, ASPP2 and iASPP. We previously showed that the pro-apoptotic members ASPP1 and ASPP2 contribute to p53-dependent death of retinal ganglion cells (RGCs. However, the role of the p53 inhibitor iASPP in the central nervous system (CNS remains to be elucidated. To address this, we asked whether iASPP contributes to the survival of RGCs in an in vivo model of acute optic nerve damage. We demonstrate that iASPP is expressed by injured RGCs and that iASPP phosphorylation at serine residues, which increase iASPP affinity towards p53, is significantly reduced following axotomy. We show that short interference RNA (siRNA-induced iASPP knockdown exacerbates RGC death, whereas adeno-associated virus (AAV-mediated iASPP expression promotes RGC survival. Importantly, our data also demonstrate that increasing iASPP expression in RGCs downregulates p53 activity and blocks the expression of pro-apoptotic targets PUMA and Fas/CD95. This study demonstrates a novel role for iASPP in the survival of RGCs, and provides further evidence of the importance of the ASPP family in the regulation of neuronal loss after axonal injury.

  12. Erbium trifluoromethanesulfonate-catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hansen, Poul Erik; Nguyen, Hai Truong;

    2015-01-01

    Erbium trifluoromethanesulfonate is found to be a good catalyst for the Friedel–Crafts acylation of arenes containing electron-donating substituents using aromatic carboxylic acids as the acylating agents under microwave irradiation. An effective, rapid and waste-free method allows the preparation...... of a wide range of aryl ketones in good yields and in short reaction times with minimum amounts of waste...

  13. Friedel-Craft Acylation of ar-Himachalene: Synthesis of Acyl-ar-Himachalene and a New Acyl-Hydroperoxide

    Directory of Open Access Journals (Sweden)

    Abdallah Karim

    2011-07-01

    Full Text Available Friedel-Craft acylation at 100 °C of 2,5,9,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocycloheptene [ar-himachalene (1], a sesquiterpenic hydrocarbon obtained by catalytic dehydrogenation of α-, β- and γ-himachalenes, produces a mixture of two compounds: (3,5,5,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-yl-ethanone (2, in 69% yield, with a conserved reactant backbone, and 3, with a different skeleton, in 21% yield. The crystal structure of 3 reveals it to be 1-(8-ethyl-8-hydroperoxy-3,5,5-trimethyl-5,6,7,8-tetrahydronaphthalen-2-yl-ethanone. In this compound O-H…O bonds form dimers. These hydrogen-bonds, in conjunction with weaker C-H…O interactions, form a more extended supramolecular arrangement in the crystal.

  14. Reduced response of splenocytes after mitogen-stimulation in the prion protein (PrP) gene-deficient mouse: PrPLP/Doppel production and cerebral degeneration

    International Nuclear Information System (INIS)

    Splenocytes of wild-type (Prnp +/+) and prion protein gene-deficient (Prnp -/-) mice were treated with various activation stimuli such as T cell mitogen concanavalin A (ConA), phorbol 12-myristate 13-acetate (PMA) + ionomycin (Io), or B cell mitogen lipopolysaccharide (LPS). Cellular prion protein (PrPC) expression was enhanced following ConA stimulation, but not PMA + Io or LPS in Prnp +/+ splenocytes. Rikn Prnp -/- splenocytes elicited lower cell proliferations than Prnp +/+ or Zrch I Prnp -/- splenocytes after LPS stimulation and showed sporadic nerve cells in the cerebral cortex and deeper structure. Around the degenerated nerve cells, mild vacuolation in the neuropil was observed. This neural alteration correlated well to the suppressed response of B cells in the spleen. The finding that discrete lesions within the central nervous systems induced marked modulation of immune function probably indicates the existence of a delicately balanced neural-endocrine network by PrPC and PrPLP/Doppel

  15. A Toxoplasma palmitoyl acyl transferase and the palmitoylated armadillo repeat protein TgARO govern apical rhoptry tethering and reveal a critical role for the rhoptries in host cell invasion but not egress.

    Directory of Open Access Journals (Sweden)

    Josh R Beck

    2013-02-01

    Full Text Available Apicomplexans are obligate intracellular parasites that actively penetrate their host cells to create an intracellular niche for replication. Commitment to invasion is thought to be mediated by the rhoptries, specialized apical secretory organelles that inject a protein complex into the host cell to form a tight-junction for parasite entry. Little is known about the molecular factors that govern rhoptry biogenesis, their subcellular organization at the apical end of the parasite and subsequent release of this organelle during invasion. We have identified a Toxoplasma palmitoyl acyltransferase, TgDHHC7, which localizes to the rhoptries. Strikingly, conditional knockdown of TgDHHC7 results in dispersed rhoptries that fail to organize at the apical end of the parasite and are instead scattered throughout the cell. While the morphology and content of these rhoptries appears normal, failure to tether at the apex results in a complete block in host cell invasion. In contrast, attachment and egress are unaffected in the knockdown, demonstrating that the rhoptries are not required for these processes. We show that rhoptry targeting of TgDHHC7 requires a short, highly conserved C-terminal region while a large, divergent N-terminal domain is dispensable for both targeting and function. Additionally, a point mutant lacking a key residue predicted to be critical for enzyme activity fails to rescue apical rhoptry tethering, strongly suggesting that tethering of the organelle is dependent upon TgDHHC7 palmitoylation activity. We tie the importance of this activity to the palmitoylated Armadillo Repeats-Only (TgARO rhoptry protein by showing that conditional knockdown of TgARO recapitulates the dispersed rhoptry phenotype of TgDHHC7 knockdown. The unexpected finding that apicomplexans have exploited protein palmitoylation for apical organelle tethering yields new insight into the biogenesis and function of rhoptries and may provide new avenues for therapeutic

  16. Classic 18.5- and 21.5-kDa myelin basic protein isoforms associate with cytoskeletal and SH3-domain proteins in the immortalized N19-oligodendroglial cell line stimulated by phorbol ester and IGF-1.

    Science.gov (United States)

    Smith, Graham S T; Homchaudhuri, Lopamudra; Boggs, Joan M; Harauz, George

    2012-06-01

    The 18.5-kDa classic myelin basic protein (MBP) is an intrinsically disordered protein arising from the Golli (Genes of Oligodendrocyte Lineage) gene complex and is responsible for compaction of the myelin sheath in the central nervous system. This MBP splice isoform also has a plethora of post-translational modifications including phosphorylation, deimination, methylation, and deamidation, that reduce its overall net charge and alter its protein and lipid associations within oligodendrocytes (OLGs). It was originally thought that MBP was simply a structural component of myelin; however, additional investigations have demonstrated that MBP is multi-functional, having numerous protein-protein interactions with Ca²⁺-calmodulin, actin, tubulin, and proteins with SH3-domains, and it can tether these proteins to a lipid membrane in vitro. Here, we have examined cytoskeletal interactions of classic 18.5-kDa MBP, in vivo, using early developmental N19-OLGs transfected with fluorescently-tagged MBP, actin, tubulin, and zonula occludens 1 (ZO-1). We show that MBP redistributes to distinct 'membrane-ruffled' regions of the plasma membrane where it co-localizes with actin and tubulin, and with the SH3-domain-containing proteins cortactin and ZO-1, when stimulated with PMA, a potent activator of the protein kinase C pathway. Moreover, using phospho-specific antibody staining, we show an increase in phosphorylated Thr98 MBP (human sequence numbering) in membrane-ruffled OLGs. Previously, Thr98 phosphorylation of MBP has been shown to affect its conformation, interactions with other proteins, and tethering of other proteins to the membrane in vitro. Here, MBP and actin were also co-localized in new focal adhesion contacts induced by IGF-1 stimulation in cells grown on laminin-2. This study supports a role for classic MBP isoforms in cytoskeletal and other protein-protein interactions during membrane and cytoskeletal remodeling in OLGs.

  17. Recombinant human granulocyte-colony stimulating factor and differential expression of cerebral cortical proteins in the subacute stage of cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Baohua Liu; Jing Dong; Lei Lu; Ying Sha; Lei Song; Qun Liu

    2011-01-01

    Recombinant human granulocyte-colony stimulating factor(hG-CSF)has been shown to protect the nervous system after brain ischemia.However,the neuroprotective mechanism of hG-CSF remains unclear.The present study established a rat model of cerebral ischemia/reperfusion and subcutaneously injected recombinant hG-CSF after reperfusion for 2 hours.Cerebral cortical protein was extracted following 14 days of reperfusion and subjected to two-dimensional electrophoresis.In brain ischemic rats,56 different protein spots were screened,including 17 that were upregulated and 17 that were downregulated,compared with the sham-surgery group.Matrix assisted laser desorption ionization/time of flight mass spectrometry was used to determine peptide mass fingerprinting.Following a National Center for Biotechnology Information database search and confirmation with the Swiss-Prot database,19 spots were identified as known proteins.Following hG-CSF treatment,35 different protein spots were found,including 16 that were downregulated and 19 that were upregulated.Six were known proteins,including dihydropyrimidinase-associated protein 2,glial fibrillary acidic protein,endomucin,Rho GDP dissociation inhibitor,Rab GDP dissociation inhibitor and guanine-nucleotide-binding protein.Results indicate that hG-CSF is involved in neuroprotection after brain ischemia,possibly by regulating the expression of various neural regeneration-associated proteins at the subacute stage.

  18. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    OpenAIRE

    Chiang, Wen-Dee; Huang, Chih-Yang; Paul, Catherine Reena; Lee, Zong-Yan; Lin, Wan-Teng

    2016-01-01

    Background: Non-alcoholic fatty liver disease (NAFLD) is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications.Objective: In this study, alcalase treatment derived potato protein hydrolysate (APPH) with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection...

  19. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    OpenAIRE

    Wen-Dee Chiang; Chih Yang Huang; Catherine Reena Paul; Zong-Yan Lee; Wan-Teng Lin

    2016-01-01

    Background: Non-alcoholic fatty liver disease (NAFLD) is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective: In this study, alcalase treatment derived potato protein hydrolysate (APPH) with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protectio...

  20. Attenuated Expression of Apoptosis Stimulating Protein of p53-2 (ASPP2) in Human Acute Leukemia Is Associated with Therapy Failure

    OpenAIRE

    Schittenhelm, Marcus M.; Barbara Illing; Figen Ahmut; Katharina Henriette Rasp; Gunnar Blumenstock; Konstanze Döhner; Lopez, Charles D.; Kerstin M Kampa-Schittenhelm

    2013-01-01

    Inactivation of the p53 pathway is a universal event in human cancers and promotes tumorigenesis and resistance to chemotherapy. Inactivating p53 mutations are uncommon in non-complex karyotype leukemias, thus the p53-pathway must be inactivated by other mechanisms. The Apoptosis Stimulating Protein of p53-2 (ASPP2) is a damage-inducible p53-binding protein that enhances apoptosis at least in part through a p53-mediated pathway. We have previously shown, that ASPP2 is an independent haploinsu...

  1. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway

    OpenAIRE

    Scott, Pamela H; Brunn, Gregory J.; Kohn, Aimee D; Roth, Richard A.; Lawrence, John C.

    1998-01-01

    The effects of insulin on the mammalian target of rapamycin, mTOR, were investigated in 3T3-L1 adipocytes. mTOR protein kinase activity was measured in immune complex assays with recombinant PHAS-I as substrate. Insulin-stimulated kinase activity was clearly observed when immunoprecipitations were conducted with the mTOR antibody, mTAb2. Insulin also increased by severalfold the 32P content of mTOR that was determined after purifying the protein from 32P-labeled adipocytes with rapamycin⋅FKBP...

  2. Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament.

    KAUST Repository

    Fornander, Louise H

    2013-12-03

    The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.

  3. Human interleukin 1β stimulates islet insulin release by a mechanism not dependent on changes in phospholipase C and protein kinase C activities or Ca2+ handling

    International Nuclear Information System (INIS)

    Isolated islets from adult rats or obese hyperglycemic (ob/ob) mice were incubated with human recombinant interleukin 1β in order to study whether the acute effects of the cytokine on islet insulin release are associated with changes in islet phospholipase C activity, Ca2+ handling or protein phosphorylation. The cytokine stimulated insulin release both at low and high glucose concentrations during one hour incubations. In shortterm incubations (2+ concentration at rest nor that observed subsequent to stimulation with a high concentration of glucose. Furthermore, the endogenous protein kinase C activity, as visualized by immunoprecipitation of a 32P-labelled substrate for this enzyme, was not altered by interleukin 1β. Separation of 32P-labelled proteins by means of 2-dimensional gel electrophoresis failed to reveal any specific effects of the cytokine on the total protein phosphorylation activity. These results suggest that the stimulatory effects on insulin release exerted by interleukin 1β are not caused by acute activation of phospholipase C and protein kinase C or by an alternation of islet Ca2+ handling of the B-cells. (author)

  4. Grafting of chitosan with fatty acyl derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Chiandotti, Roberto S.; Rodrigues, Paula C.; Akcelrud, Leni, E-mail: leni@leniak.ne [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept de Quimica

    2010-07-01

    The internal plasticization of chitosan with covalently linked long aliphatic branches, typically 12C, was accomplished through the condensation of the amino groups of chitosan with acidic derivatives of lauric acid, as lauroyl anhydride or lauroyl chloride, that are more reactive than the fatty acid itself. The chemical pathway led to selective N-acylation. The degree of substitution was quantitatively determined by FTIR and {sup 1}H NMR and varied between 3 and 35%. The FTIR quantitative analysis was based in a calibration method with good accuracy. The modified chitosan products were soluble in neutral water and/or DMF according to the degree of substitution. The modified chitosan films were more flexible than the pristine, non-modified ones. (author)

  5. Palladium-Catalyzed Environmentally Benign Acylation.

    Science.gov (United States)

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-01

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone. PMID:27377566

  6. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Bernhard [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany); Lecker, Laura S. M.; Zoltner, Martin [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Jaenicke, Elmar [Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz (Germany); Schnell, Robert [Karolinska Institutet, 17 177 Stockholm (Sweden); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Brenk, Ruth, E-mail: w.n.hunter@dundee.ac.uk [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany)

    2015-07-28

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  7. Expression and Characterization of a Thermostable Acyl-peptide Releasing Enzyme ST0779 from Sulfolobus tokodaii

    Institute of Scientific and Technical Information of China (English)

    LI Rong; ZHANG Fei; CAO Shu-gui; XIE Gui-qiu; GAO Ren-jun

    2012-01-01

    Acyl-peptide releasing enzyme(AARE) belongs to a serine peptidase family and catalyzes the NH2-terminal hydrolysis of Nα-acylpeptides to release Nα-acylated amino acids.ORF0779(ORF=open reading frame)from thermophilic archaea Sulfolobus tokodaii(ST0779) was cloned and expressed in E.coti BL21 and the expressed protein was identified as a thermostable AARE.The target protein could be optimally overexpressed in E.coli at 30 ℃ for 8 h with 0.1 mmol/L isopropyl β-dthiogalactoside(IPTG).The crude enzyme was heated at 70 ℃ for 30 min,and then the target protein could account for above 40% of the total protein.The purification fold was 27 and the enzyme showed both esterase activity and peptidase activity.The optimal temperature and pH for ST0779 were 70 ℃and 8.0 when Ac-Ala3 was used as substrate.The half-life of the enzyme(0.2 mg/mL) at 90 ℃ was about 16 h,indicating that the enzyme exhibits a favorable thermostability.The activity of ST0779 could still remain over 85% after being treated at 25 ℃ in different buffers with pH range from 6.0 to10.0 for 24 h,which indicates ST0779 is stable in neutral or slight alkali environment.Under neutral or slightly alkali conditions,the enzyme exhibits really high catalytic efficiency against acyl-peptide,and the optimal substrate is Ac-Ala3.Most metal ions have no inhibition effect on the activity of ST0779,while 4% activity of ST0779 is inhibited in the presence of K+.This enzyme was supposed to be applied in the analysis of protein sequencing and the synthesis of small peptides.

  8. Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.

    Science.gov (United States)

    Awano, Tomotsugu; Wilming, Anja; Tomita, Hiroya; Yokooji, Yuusuke; Fukui, Toshiaki; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-01-01

    The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales. PMID:24163338

  9. Caffeine and contraction synergistically stimulate 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle.

    Science.gov (United States)

    Tsuda, Satoshi; Egawa, Tatsuro; Kitani, Kazuto; Oshima, Rieko; Ma, Xiao; Hayashi, Tatsuya

    2015-10-01

    5'-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr(172) phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser(473) phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction.

  10. Stimulation of Superficial Zone Protein/Lubricin/PRG4 by Transforming Growth Factor-β in Superficial Zone Articular Chondrocytes and Modulation by Glycosaminoglycans.

    Science.gov (United States)

    Cuellar, Araceli; Reddi, A Hari

    2015-07-01

    Superficial zone protein (SZP), also known as lubricin and proteoglycan 4 (PRG4), plays an important role in the boundary lubrication of articular cartilage and is regulated by transforming growth factor (TGF)-β. Here, we evaluate the role of cell surface glycosaminoglycans (GAGs) during TGF-β1 stimulation of SZP/lubricin/PRG4 in superficial zone articular chondrocytes. We utilized primary monolayer superficial zone articular chondrocyte cultures and treated them with various concentrations of TGF-β1, in the presence or absence of heparan sulfate (HS), heparin, and chondroitin sulfate (CS). The cell surface GAGs were removed by pretreatment with either heparinase I or chondroitinase-ABC before TGF-β1 stimulation. Accumulation of SZP/lubricin/PRG4 in the culture medium in response to stimulation with TGF-β1 and various exogenous GAGs was demonstrated by immunoblotting and quantitated by enzyme-linked immunosorbent assay. We show that TGF-β1 and exogenous HS enhanced SZP accumulation of superficial zone chondrocytes in the presence of surface GAGs. At the dose of 1 ng/mL of TGF-β1, the presence of exogenous heparin inhibited SZP accumulation whereas the presence of exogenous CS stimulated SZP accumulation in the culture medium. Enzymatic depletion of GAGs on the surface of superficial zone chondrocytes enhanced the ability of TGF-β1 to stimulate SZP accumulation in the presence of both exogenous heparin and CS. Collectively, these results suggest that GAGs at the surface of superficial zone articular chondrocytes influence the response to TGF-β1 and exogenous GAGs to stimulate SZP accumulation. Cell surface GAGs modulate superficial zone chondrocytes' response to TGF-β1 and exogenous HS.

  11. Structure of YciA from Haemophilus influenzae (HI0827), a Hexameric Broad Specificity Acyl-Coenzyme A Thioesterase

    Energy Technology Data Exchange (ETDEWEB)

    Willis, Mark A.; Zhuang, Zhihao; Song, Feng; Howard, Andrew; Dunaway-Mariano, Debra; Herzberg, Osnat (UNM); (IIT); (UMBI)

    2008-04-02

    The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated 'hypothetical protein' in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase 'hot dog' fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupied by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.

  12. The effect of charge reversal mutations in the alpha-helical region of liver fatty acid binding protein on the binding of fatty-acyl CoAs, lysophospholipids and bile acids.

    Science.gov (United States)

    Hagan, Robert M; Davies, Joanna K; Wilton, David C

    2002-10-01

    Liver fatty acid binding protein (LFABP) is unique among the various types of FABPs in that it can bind a variety of ligands in addition to fatty acids. LFABP is able to bind long chain fatty acids with a 2:1 stoichiometry and the crystal structure has identified two fatty acid binding sites in the binding cavity. The presumed primary site (site 1) involves the fatty acid binding with the carboxylate group buried in the cavity whereas the fatty acid at site 2 has the carboxylate group solvent-exposed within the ligand portal region and in the vicinity of alpha-helix II. The alpha-helical region contains three cationic residues, K20, K31, K33 and modelling studies suggest that K31 on alpha-helix II could make an electrostatic contribution to anionic ligands binding to site 2. The preparation of three charge reversal mutants of LFABP, K20E, K31E and K33E has allowed an investigation of the role of site 2 in ligand binding, particularly those ligands with a bulky anionic head group. The binding of oleoyl CoA, lysophosphatidic acid, lysophosphatidylcholine, lithocholic acid and taurolithocholate 3-sulphate to LFABP has been studied using the alpha-helical mutants. The results support the concept that such ligands bind at site 2 of LFABP where solvent exposure allows the accommodation of their bulky anionic group. PMID:12479568

  13. Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    Science.gov (United States)

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavón, Francisco J.; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca2+ fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca2+-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα+/calbindin+ cells were closely surrounded by NAPE-PLD+ fiber varicosities. No pyramidal PPARα+/calbindin+ cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD+/calretinin+ cells were specifically detected in CA3. NAPE-PLD+ puncta surrounded the calretinin+ cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions. PMID:24672435

  14. Granulocyte-macrophage colony-stimulating factor DNA prime-protein boost strategy to enhance efficacy of a recombinant pertussis DNA vaccine

    Institute of Scientific and Technical Information of China (English)

    Qing-tian LI; Yong-zhang ZHU; Jia-you CHU; Ke DONG; Ping HE; Chun-yan FENG; Bao-yu HU; Shu-min ZHANG; Xiao-kui GUO

    2006-01-01

    Aim: To investigate a new strategy to enhance the efficacy of a recombinant pertussis DNA vaccine. The strategy is co-injection with cytokine plasmids as prime, and boosted with purified homologous proteins. Method: A recombinant pertussis DNA vaccine containing the pertussis toxin subunit 1 (PTS1), fragments of the filamentous hemagglutinin (FHA) gene and pertactin (PRN) gene encoding filamentous hemagglutinin and pertactin were constructed. Balb/c mice were immunized with several DNA vaccines and antigen-specific antibodies anti-PTSl, anti-PRN, anti-FHA, cytokines interleukin (IL)-10, IL-4, IFN-γ, TNF-oc, and spleno-cyte-proliferation assay were used to describe immune responses. Results: The recombinant DNA vaccine could elicit similar immune responses in mice as that of separate plasmids encoding the 3 fragments, respectively. Mice immunized with DNA and boosted with the corresponding protein elicited more antibodies than those that received DNA as boost. In particular, when the mice were co-immunized with murine granulocyte-macrophage colony-stimulating factor plasmids and boosted with proteins, all 4 cytokines and the 3 antigen-specific antibodies were significantly increased compared to the pVAXl group. Anti-PTSl, anti-FHA, IL-4 and TNF-α elicited in the colony stimulating factor (CSF) prime-protein boost group showed significant increase compared to all the other groups. Conclusion: This prime and boost strategy has proven to be very useful in improving the immunogenicity of DNA vaccines against pertussis.

  15. α-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK

    Science.gov (United States)

    Enriori, Pablo J.; Jensen, Thomas Elbenhardt; Garcia-Rudaz, Cecilia; Litwak, Sara A.; Raun, Kirsten; Wojtaszewski, Jørgen; Wulff, Birgitte Schjellerup; Cowley, Michael A.

    2016-01-01

    The melanocortin system includes five G-protein coupled receptors (family A) defined as MC1R-MC5R, which are stimulated by endogenous agonists derived from proopiomelanocortin (POMC). The melanocortin system has been intensely studied for its central actions in body weight and energy expenditure regulation, which are mainly mediated by MC4R. The pituitary gland is the source of various POMC-derived hormones released to the circulation, which raises the possibility that there may be actions of the melanocortins on peripheral energy homeostasis. In this study, we examined the molecular signaling pathway involved in α-MSH-stimulated glucose uptake in differentiated L6 myotubes and mouse muscle explants. In order to examine the involvement of AMPK, we investigate α-MSH stimulation in both wild type and AMPK deficient mice. We found that α-MSH significantly induces phosphorylation of TBC1 domain (TBC1D) family member 1 (S237 and T596), which is independent of upstream PKA and AMPK. We find no evidence to support that α-MSH-stimulated glucose uptake involves TBC1D4 phosphorylation (T642 and S704) or GLUT4 translocation. PMID:27467141

  16. Backbone and Ile-δ1, Leu, Val Methyl 1H, 13C and 15N NMR chemical shift assignments for human interferon-stimulated gene 15 protein

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Cuifeng; Aramini, James M.; Ma, LiChung; Cort, John R.; Swapna, G.V.T.; Krug, R. M.; Montelione, Gaetano

    2011-10-01

    Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing two ubiquitin-like domains fused in tandem. The active form of ISG15 is conjugated to target proteins via the C-terminal glycine residue through an isopeptide bond in a manner similar to ubiquitin. The biological role of ISG15 is strongly associated with the modulation of cell immune function, and there is mounting evidence suggesting that many viral pathogens evade the host innate immune response by interfering with ISG15 conjugation to both host and viral proteins in a variety of ways. Here we report nearly complete backbone 1HN, 15N, 13CO, and 13Ca, as well as side chain 13Cb, methyl (Ile-d1, Leu, Val), amide (Asn, Gln), and indole NH (Trp) NMR resonance assignments for the 157-residue human ISG15 protein. These resonance assignments provide the basis for future structural and functional solution NMR studies of the biologically important human ISG15 protein.

  17. The Pseudomonas syringae Type III Effector AvrRpt2 Promotes Pathogen Virulence via Stimulating Arabidopsis Auxin/Indole Acetic Acid Protein Turnover1[C][W][OA

    Science.gov (United States)

    Cui, Fuhao; Wu, Shujing; Sun, Wenxian; Coaker, Gitta; Kunkel, Barbara; He, Ping; Shan, Libo

    2013-01-01

    To accomplish successful infection, pathogens deploy complex strategies to interfere with host defense systems and subvert host physiology to favor pathogen survival and multiplication. Modulation of plant auxin physiology and signaling is emerging as a common virulence strategy for phytobacteria to cause diseases. However, the underlying mechanisms remain largely elusive. We have previously shown that the Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis (Arabidopsis thaliana) auxin physiology. Here, we report that AvrRpt2 promotes auxin response by stimulating the turnover of auxin/indole acetic acid (Aux/IAA) proteins, the key negative regulators in auxin signaling. AvrRpt2 acts additively with auxin to stimulate Aux/IAA turnover, suggesting distinct, yet proteasome-dependent, mechanisms operated by AvrRpt2 and auxin to control Aux/IAA stability. Cysteine protease activity is required for AvrRpt2-stimulated auxin signaling and Aux/IAA degradation. Importantly, transgenic plants expressing the dominant axr2-1 mutation recalcitrant to AvrRpt2-mediated degradation ameliorated the virulence functions of AvrRpt2 but did not alter the avirulent function mediated by the corresponding RPS2 resistance protein. Thus, promoting auxin response via modulating the stability of the key transcription repressors Aux/IAA is a mechanism used by the bacterial type III effector AvrRpt2 to promote pathogenicity. PMID:23632856

  18. Fos-like protein is induced in neurons of the medulla oblongata after stimulation of the carotid sinus nerve in awake and anesthetized rats.

    Science.gov (United States)

    Erickson, J T; Millhorn, D E

    1991-12-13

    The protooncogene c-fos is expressed rapidly, transiently and polysynaptically within neurons in response to synaptic activation and voltage-gated calcium entry into the cell. The nuclear protein product of this gene (Fos) is detectable immunohistochemically 20-90 min after cell activation and remains within the nucleus for hours after expression. The present study was undertaken to identify cells within the rat medulla oblongata that express Fos-like protein in response to stimulation of afferent fibers of the carotid sinus nerve (CSN). Direct electrical stimulation of the CSN in anesthetized animals or hypoxic stimulation in either anesthetized or awake animals resulted in a consistent and discrete distribution of Fos-like immunoreactivity (Fos-LI). Fos-LI was observed bilaterally within nucleus tractus solitarius (NTS) and the ventrolateral medulla (VLM), within area postrema and nucleus raphe pallidus, and bilaterally along the ventral medullary surface. Unstimulated animals were devoid of Fos-LI within the medulla oblongata. Furthermore, neither the surgical preparations alone nor the effects of anesthesia could account for the extent of Fos-LI observed. We believe these cells represent second- and higher-order neurons within the baroreceptor and chemoreceptor reflex pathways. PMID:1815818

  19. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E;

    1995-01-01

    converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues...... glucagon-like peptide-1 and pituitary adenylate cyclase-activating polypeptide. Activation of 44-kDa MAP kinase by glucose was dependent on Ca2+ influx and may in part be mediated by MEK-1, a MAP kinase kinase. Stimulation of Ca2+ influx by KCl was in itself sufficient to activate 44-kDa MAP kinase and MEK......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  20. Reduction of Monocyte Chemoattractant Protein-1 and Interleukin-8 Levels by Ticlopidine in TNF-α Stimulated Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Chaur-Jong Hu

    2009-01-01

    Full Text Available Atherosclerosis and its associated complications represent major causes of morbidity and mortality in the industrialized or Western countries. Monocyte chemoattractant protein-1 (MCP-1 is critical for the initiating and developing of atherosclerotic lesions. Interleukin-8 (IL-8, a CXC chemokine, stimulates neutrophil chemotaxis. Ticlopidine is one of the antiplatelet drugs used to prevent thrombus formation relevant to the pathophysiology of atherothrombosis. In this study, we found that ticlopidine dose-dependently decreased the mRNA and protein levels of TNF-α-stimulated MCP-1, IL-8, and vascular cell adhesion molecule-1 (VCAM-1 in human umbilical vein endothelial cells (HUVECs. Ticlopidine declined U937 cells adhesion and chemotaxis as compared to TNF-α stimulated alone. Furthermore, the inhibitory effects were neither due to decreased HUVEC viability, nor through NF-kB inhibition. These results suggest that ticlopidine decreased TNF-α induced MCP-1, IL-8, and VCAM-1 levels in HUVECs, and monocyte adhesion. Therefore, the data provide additional therapeutic machinery of ticlopidine in treatment and prevention of atherosclerosis.

  1. Effects of the protein kinase C stimulant bryostatin 1 on the proliferation and colony formation of irradiated human T-lymphocytes

    International Nuclear Information System (INIS)

    The protein kinase C stimulant bryostatin 1 (Bryo) was used in examining human peripheral blood T-lymphocyte radiosensitivities in proliferation assays. Bryo was similar to PMA in inducing T-cell proliferation by the CD3, CD28 and CD69 pathways. No difference in radiosensitivities was observed in T-cells stimulated by the three independent surface antigen-mediated activation pathways. CD3 was chosen as the second signal for comparing the potencies of the three different first signals Bryo, phorbol 12-myristate, 13-acetate (PMA), and interleukin 2 (IL-2) in stimulating T-cell proliferation and in maintaining this response after radiation. Though there were radioresponse differences among various individuals, the irradiated lymphocytes consistently showed significantly greater proliferation when treated with Bryo or PMA than with IL-2. These results support the important tole of protein kinase C in T-cell radiation responses, and suggest a potential role for Bryo in enhancing T-lymphocyte survival during radiation therapy. (author)

  2. A New Acylated Flavonoid from Anaphalis aureo-punctata

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new acylated tlavonoid glycoside, 3-O-kaempferol-3-O-acetyl-6-O-(P-coumaroyl)-β-D-glucopyranoside 1 was isolated from the whole plant of Anaphalis aureo-punctata. The structure was established by spectral methods.

  3. Regioselective self-acylating cyclodextrins in organic solvent

    OpenAIRE

    Eunae Cho; Deokgyu Yun; Daham Jeong; Jieun Im; Hyunki Kim; Dindulkar, Someshwar D.; Youngjin Choi; Seunho Jung

    2016-01-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrat...

  4. The binding of in vitro synthesized adenovirus DNA binding protein to single-stranded DNA is stimulated by zinc ions

    NARCIS (Netherlands)

    Vos, H.L.; Lee, F.M. van der; Sussenbach, J.S.

    1988-01-01

    We have synthesized wild type DNA binding protein (DBP) of adenovirus type 5 (Ad5) and several truncated forms of this protein by a combination of in vitro transcription and translation. The proteins obtained were tested for binding to a single-stranded DNA-cellulose column. It could be shown that f

  5. Growth hormone and prolactin stimulate the expression of rat preadipocyte factor-1/delta-like protein in pancreatic islets

    DEFF Research Database (Denmark)

    Carlsson, C; Tornehave, D; Lindberg, Karen;

    1997-01-01

    GH and PRL have been shown to stimulate proliferation and insulin production in islets of Langerhans. To identify genes regulated by GH/PRL in islets, we performed differential screening of a complementary DNA library from neonatal rat islets cultured for 24 h with human GH (hGH). One hGH-induced...

  6. Effects of moderately enhanced levels of ozone on the acyl lipid composition and dynamical properties of plasma membranes isolated from garden pea (Pisum sativum)

    DEFF Research Database (Denmark)

    Hellgren, Lars; Sellden, G.; Sandelius, A.S.

    2001-01-01

    Plasma membranes were isolated from leaves of 16-day-old garden pea, Pisum sativum L., that had been grown in the absence or presence of 65 nl l(-1) ozone for 4 days prior to membrane isolation, Plasma membranes from ozone-fumigated plants contained significantly more acyl lipids per protein than...... those from leaves of plants grown in filtered air on a molar/weight ratio, The ratio between the major acyl lipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), also increased due to the ozone fumigation, while the fatty acid unsaturation level was unaltered in total plasma membrane acyl...... lipids, as well as in PC and PE, The amount of free sterols per protein was unaltered, but the percentage of campesterol increased, concomitant with a decrease in stigmasterol, The dynamical properties of the isolated plasma membranes were assessed using Laurdan fluorescence spectroscopy, which monitors...

  7. Acerogenin A, a natural compound isolated from Acer nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, Tasuku [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan); Ichikawa, Saki [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yonezawa, Takayuki; Lee, Ji-Won [Research Institute for Biological Functions, Chubu University, Kasugai, Aichi (Japan); Akihisa, Toshihiro [College of Science and Technology, Nihon University, Tokyo (Japan); Woo, Je Tae [Research Institute for Biological Functions, Chubu University, Kasugai, Aichi (Japan); Michi, Yasuyuki; Amagasa, Teruo [Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Akira, E-mail: akira.mpa@tmd.ac.jp [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan)

    2011-03-11

    Research highlights: {yields} Acerogenin A stimulated osteoblast differentiation in osteogenic cells. {yields} Acerogenin A-induced osteoblast differentiation was inhibited by noggin. {yields} Acerogenin A increased Bmp-2, Bmp-4 and Bmp-7 mRNA expression in MC3T3-E1 cells. {yields} Acerogenin A is a candidate agent for stimulating bone formation. -- Abstract: We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.

  8. 2',3'-cyclic nucleotide-3'-phosphodiesterase in the central nervous system is fatty-acylated by thioester linkage.

    Science.gov (United States)

    Agrawal, H C; Sprinkle, T J; Agrawal, D

    1990-07-15

    2',3'-Cyclic nucleotide-3'-phosphodiesterase (CNP1 and CNP2 with Mr of 46,000 and 48,000, respectively) is the major enzyme of central nervous system myelin. It is associated with oligodendroglial plasma membrane and uncompacted myelin (myelin-like fraction), which are in contact with glial cytoplasm. Proteins of the myelin-like fraction were labeled with [3H]palmitic acid in brain slices from 17-day-old rats and immunoprecipitated with anti-CNP antiserum. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material revealed intense acylation of CNP1 and CNP2, and radioactivity was released by hydroxylamine. Palmitic acid was covalently bound to CNP because radioactivity was not removed by extraction of immunoprecipitated CNP with organic solvent or by boiling in sodium dodecyl sulfate and dithiothreitol. However, treatment of immunoprecipitated CNP with (a) hydroxylamine-released palmitohydroxamate and palmitic acid, (b) sodium borohydride-released hexadecanol, and (c) methanolic-KOH-released methyl palmitate. Synthesis, acylation, or transport of CNP was not affected by monensin or colchicine. However, acylation of CNP was inhibited 24-32% by cycloheximide. These results provide conclusive evidence that CNP1 and CNP2 are fatty acid acylated with palmitate through a thioester linkage and is posttranslationally modified sometime after synthesis. PMID:2164018

  9. Gq protein mediates UVB-induced cyclooxygenase-2 expression by stimulating HB-EGF secretion from HaCaT human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, MiRan [Department of Biochemistry and Molecular Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr [Department of Biochemistry and Molecular Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2010-03-05

    Ultraviolet (UV) radiation induces cyclooxygenase-2 expression to produce cellular responses including aging and carcinogenesis in skin. We hypothesised that heterotrimeric G proteins mediate UV-induced COX-2 expression by stimulating secretion of soluble HB-EGF (sHB-EGF). In this study, we aimed to elucidate the role and underlying mechanism of the {alpha} subunit of Gq protein (G{alpha}q) in UVB-induced HB-EGF secretion and COX-2 induction. We found that expression of constitutively active G{alpha}q (G{alpha}qQL) augmented UVB-induced HB-EGF secretion, which was abolished by knockdown of G{alpha}q with shRNA in HaCaT human keratinocytes. G{alpha}q was found to mediate the UVB-induced HB-EGF secretion by sequential activation of phospholipase C (PLC), protein kinase C{delta} (PKC{delta}), and matrix metaloprotease-2 (MMP-2). Moreover, G{alpha}qQL mediated UVB-induced COX-2 expression in an HB-EGF-, EGFR-, and p38-dependent manner. From these results, we concluded that G{alpha}q mediates UV-induced COX-2 expression through activation of EGFR by HB-EGF, of which ectodomain shedding was stimulated through sequential activation of PLC, PKC{delta} and MMP-2 in HaCaT cells.

  10. Cloning of a human insulin-stimulated protein kinase (ISPK-1) gene and analysis of coding regions and mRNA levels of the ISPK-1 and the protein phosphatase-1 genes in muscle from NIDDM patients

    DEFF Research Database (Denmark)

    Bjørbaek, C; Vik, T A; Echwald, S M;

    1995-01-01

    Complementary DNA encoding three catalytic subunits of protein phosphatase 1 (PP1 alpha, PP1 beta, and PP1 gamma) and the insulin-stimulated protein kinase 1 (ISPK-1) was analyzed for variations in the coding regions related to insulin-resistant glycogen synthesis in skeletal muscle of 30 patients...... of the PP1 genes: two in PP1 alpha at codons 90 and 255; one in PP1 beta at codon 67; and three in PP1 gamma at codons 11,269, and 273, respectively. All were, however, silent single nucleotide substitutions. SSCP analysis of the ISPK-1 gene identified one silent polymorphism at codon 266 and one amino acid...

  11. Dual Mechanisms of CYP3A Protein Regulation by Proinflammatory Cytokine Stimulation in Primary Hepatocyte CulturesS⃞

    OpenAIRE

    Lee, Choon-myung; Pohl, Jan; Edward T. Morgan

    2009-01-01

    Whereas many cytochrome P450 enzymes are transcriptionally suppressed by inflammatory stimuli, down-regulation of CYP2B protein by the inflammatory cytokine interleukin (IL)-1β is nitric oxide (NO)-dependent and occurs via polyubiquitination and proteasomal degradation. Here, we used iTRAQ proteomic analysis to search for other proteins that are potentially down-regulated by cellular NO in cultured rat hepatocytes, and we identified CYP3A1 as one such protein. Therefor...

  12. Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells

    OpenAIRE

    Brueggemann, Lioubov I.; Moran, Christopher J.; Barakat, John A.; Yeh, Jay Z.; Cribbs, Leanne L.; Byron, Kenneth L.

    2006-01-01

    [Arg8]-vasopressin (AVP), at low concentrations (10–500 pM), stimulates oscillations in intracellular Ca2+ concentration (Ca2+ spikes) in A7r5 rat aortic smooth muscle cells. Our previous studies provided biochemical evidence that protein kinase C (PKC) activation and phosphorylation of voltage-sensitive K+ (Kv) channels are crucial steps in this process. In the present study, Kv currents (IKv) and membrane potential were measured using patch clamp techniques. Treatment of A7r5 cells with 100...

  13. Prolonged high frequency electrical stimulation is lethal to motor axons of mice heterozygously deficient for the myelin protein P0 gene

    DEFF Research Database (Denmark)

    Alvarez, Susana; Moldovan, Mihai; Krarup, Christian

    2013-01-01

    The relationship between dysmyelination and the progression of neuropathy in Charcot-Marie-Tooth (CMT) hereditary polyneuropathy is unclear. Mice heterozygously deficient for the myelin protein P₀ gene (P₀+/-) are indistinguishable from wild-type (WT) at birth and then develop a slowly progressing...... demyelinating neuropathy reminiscent of CMT Type 1b. Accumulating evidence suggests that impulse conduction can become lethal to acutely demyelinated central and peripheral axons. Here we investigated the vulnerability of motor axons to long-lasting, high-frequency repetitive stimulation (RS) in P₀+/- mice...

  14. α-MSH stimulates glucose uptake in mouse muscle and phosphorylates Rab-GTPase-activating protein TBC1D1 independently of AMPK

    DEFF Research Database (Denmark)

    Møller, Cathrine Laustrup; Kjøbsted, Rasmus; Enriori, Pablo J;

    2016-01-01

    The melanocortin system includes five G-protein coupled receptors (family A) defined as MC1R-MC5R, which are stimulated by endogenous agonists derived from proopiomelanocortin (POMC). The melanocortin system has been intensely studied for its central actions in body weight and energy expenditure...... regulation, which are mainly mediated by MC4R. The pituitary gland is the source of various POMC-derived hormones released to the circulation, which raises the possibility that there may be actions of the melanocortins on peripheral energy homeostasis. In this study, we examined the molecular signaling...

  15. Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes

    DEFF Research Database (Denmark)

    Hu, Liping; Deeney, Jude T; Nolan, Christopher J;

    2005-01-01

    normal and hormone-sensitive lipase (HSL)-null mice and in phosphatase-treated islets, indicating that the stimulatory effect was neither on HSL nor phosphorylation dependent. In contrast, we reproduced the previously published observations showing inhibition of HSL activity by LC-CoA in adipocytes....... The inhibitory effect of LC-CoA on adipocyte HSL was dependent on phosphorylation and enhanced by acyl-CoA-binding protein (ACBP). In contrast, the stimulatory effect on islet lipase activity was blocked by ACBP, presumably due to binding and sequestration of LC-CoA. These data suggest the following intertissue...

  16. Hydrolysates of egg white proteins modulate T- and B-cell responses in mitogen-stimulated murine cells.

    Science.gov (United States)

    Lozano-Ojalvo, Daniel; Molina, Elena; López-Fandiño, Rosina

    2016-02-01

    This work assessed the effects of hydrolysates of ovalbumin (OVA), lysozyme (LYS), ovomucoid (OM) and whole egg white (EW) on cytokine secretion, antibody production, oxidative stress and proliferation of murine spleen and mesenteric lymph node cells stimulated with T- (concanavalin A - ConA) or B-cell mitogens (lipopolysaccharide - LPS). The hydrolysates of OVA, LYS and EW with alcalase reduced ConA-stimulated lymphocyte proliferation and production of Th2-biased cytokines, such as IL-13 and IL-10, and decreased the secretion of the Th1 cytokine TNF-α. In addition, these hydrolysates considerably inhibited IgG1-class switching induced by LPS and counteracted the release of reactive oxygen species. EW peptides modulated the immune responses of murine cells to mitogen stimuli, revealing potential activities that could be used for different purposes as Th1- or Th2-skewing mediators. PMID:26778535

  17. Helicobacter pylori water soluble surface proteins prime human neutrophils for enhanced production of reactive oxygen species and stimulate chemokine production

    OpenAIRE

    Shimoyama, T.; Fukuda, S.; Liu, Q.; Nakaji, S; Fukuda, Y.; Sugawara, K

    2003-01-01

    Backgrounds/Aims: Chronic gastritis induced by Helicobacter pylori is characterised by considerable neutrophil infiltration into the gastric mucosa without mucosal invasion of bacteria. Bacteria have different characteristics with respect to their ability to stimulate human neutrophils to produce reactive oxygen species and chemokines. The aim of this study was to examine the effects of H pylori water extracts on the oxidative burst and chemokine production of human neutrophils.

  18. Acyl-CoA binding protein and epidermal barrier function

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Neess, Ditte; Færgeman, Nils J;

    2014-01-01

    levels of non-esterified very long chain fatty acids in the stratum corneum of ACBP(-/-) mice. Here we review the current knowledge of ACBP with special focus on the function of ACBP in the epidermal barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis...

  19. S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses

    Institute of Scientific and Technical Information of China (English)

    Oliver Batisti(c); Marion Rehers; Amir Akerman; Kathrin Schlücking; Leonie Steinhorst; Shaul Yalovsky; J(o)rg Kudla

    2012-01-01

    Calcineurin B-like (CBL) proteins contribute to decoding calcium signals by interacting with CBL-interacting protein kinases (CIPKs).Currently,there is still very little information about the function and specific targeting mechanisms of CBL proteins that are localized at the vacuolar membrane.In this study,we focus on CBL2,an abundant vacuolar membrane-localized calcium sensor of unknown function from Arabidopsis thaliana.We show that vacuolar targeting of CBL2 is specifically brought about by S-acylation of three cysteine residues in its N-terminus and that CBL2 S-acylation and targeting occur by a Brefeldin A-insensitive pathway.Loss of CBL2 function renders plants hypersensitive to the phytohormone abscisic acid (ABA) during seed germination and only fully S-acylated and properly vacuolar-targeted CBL2 proteins can complement this mutant phenotype.These findings define an S-acylation-dependent vacuolar membrane targeting pathway for proteins and uncover a crucial role of vacuolar calcium sensors in ABA responses.

  20. Regioselective Acylation of Diols and Triols: The Cyanide Effect.

    Science.gov (United States)

    Peng, Peng; Linseis, Michael; Winter, Rainer F; Schmidt, Richard R

    2016-05-11

    Central topics of carbohydrate chemistry embrace structural modifications of carbohydrates and oligosaccharide synthesis. Both require regioselectively protected building blocks that are mainly available via indirect multistep procedures. Hence, direct protection methods targeting a specific hydroxy group are demanded. Dual hydrogen bonding will eventually differentiate between differently positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide or acetyl cyanide as an acylating agent, and DMAP as a catalyst yield at -78 °C the thermodynamically unfavorable axial O-acylation product; acyl migration is not observed under these conditions. This phenomenon was substantiated with 3,4-O-unproteced galacto- and fucopyranosides and 2,3-O-unprotected mannopyranosides. Even for 3,4,6-O-unprotected galactopyranosides as triols, axial 4-O-acylation is appreciably faster than O-acylation of the primary 6-hydroxy group. The importance of hydrogen bonding for this unusual regioselectivity could be confirmed by NMR studies and DFT calculations, which indicate favorable hydrogen bonding of cyanide to the most acidic axial hydroxy group supported by hydrogen bonding of the equatorial hydroxy group to the axial oxygen. Thus, the "cyanide effect" is due to dual hydrogen bonding of the axial hydroxy group which enhances the nucleophilicity of the respective oxygen atom, permitting an even faster reaction for diols than for mono-ols. In contrast, fluoride as a counterion favors dual hydrogen bonding to both hydroxy groups leading to equatorial O-acylation. PMID:27104625

  1. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    International Nuclear Information System (INIS)

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  2. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Keryer-Bibens, Cecile, E-mail: cecile.keryer-bibens@univ-rennes1.fr [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Legagneux, Vincent; Namanda-Vanderbeken, Allen [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Cosson, Bertrand [UPMC Universite de Paris 06, UMR 7150, Equipe Traduction Cycle Cellulaire et Developpement, Station Biologique de Roscoff, 29682 Roscoff (France); CNRS, UMR 7150, Station Biologique de Roscoff, 29682 Roscoff (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Paillard, Luc [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Poncet, Didier [Virologie Moleculaire et Structurale, UMR CNRS, 2472, INRA, 1157, 91198 Gif sur Yvette (France); Osborne, H. Beverley, E-mail: beverley.osborne@univ-rennes1.fr [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France)

    2009-12-11

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  3. Leishmania amazonensis: heme stimulates (Na(+)+K(+))ATPase activity via phosphatidylinositol-specific phospholipase C/protein kinase C-like (PI-PLC/PKC) signaling pathways.

    Science.gov (United States)

    Almeida-Amaral, Elmo Eduardo; Cardoso, Viviane Carrozino; Francioli, Fernanda Gomes; Meyer-Fernandes, José Roberto

    2010-04-01

    In the present paper we studied the involvement of the phosphatidylinositol-specific PLC (PI-PLC)/protein kinase C (PKC) pathway in (Na(+)+K(+))ATPase stimulation by heme in Leishmania amazonensis promastigotes. Heme stimulated the PKC-like activity with a concentration of 50nM. Interestingly, the maximal stimulation of the PKC-like activity promoted by phorbol ester was of the same magnitude promoted by heme. However, the stimulatory effect of heme is completely abolished by ET-18-OCH(3) and U73122, specific inhibitors of PI-PLC. (Na(+)+K(+))ATPase activity is increased in the presence of increased concentrations of heme, being maximally affected at 50nM. This effect was completely reversed by 10nM calphostin C, an inhibitor of PKC. Thus, the effect of 50nM heme on (Na(+)+K(+))ATPase activity is completely abolished by ET-18-OCH(3) and U73122. Taken together, these results demonstrate that the heme receptor mediates the stimulatory effect of heme on the (Na(+)+K(+))ATPase activity through a PI-PLC/PKC signaling pathway. PMID:20045694

  4. An Evaluation of Acylated Ghrelin and Obestatin Levels in Childhood Obesity and Their Association with Insulin Resistance, Metabolic Syndrome, and Oxidative Stress

    Science.gov (United States)

    Razzaghy-Azar, Maryam; Nourbakhsh, Mitra; Pourmoteabed, Abdolreza; Nourbakhsh, Mona; Ilbeigi, Davod; Khosravi, Mohsen

    2016-01-01

    Background: Ghrelin is a 28-amino acid peptide with an orexigenic property, which is predominantly produced by the stomach. Acylated ghrelin is the active form of this hormone. Obestatin is a 23-amino acid peptide which is produced by post-translational modification of a protein precursor that also produces ghrelin. Obestatin has the opposite effect of ghrelin on food intake. The aim of this study was to evaluate acylated ghrelin and obestatin levels and their ratio in obese and normal-weight children and adolescents, and their association with metabolic syndrome (MetS) parameters. Methods: Serum acyl-ghrelin, obestatin, leptin, insulin, fasting plasma glucose (FPG), lipid profile, and malondialdehyde (MDA) were evaluated in 73 children and adolescents (42 obese and 31 control). Insulin resistance was calculated by a homeostasis model assessment of insulin resistance (HOMA-IR). MetS was determined according to IDF criteria. Results: Acyl-ghrelin levels were significantly lower in obese subjects compared to the control group and lower in obese children with MetS compared to obese subjects without MetS. Obestatin was significantly higher in obese subjects compared to that of the control, but it did not differ significantly among those with or without MetS. Acyl-ghrelin to obestatin ratio was significantly lower in obese subjects compared to that in normal subjects. Acyl-ghrelin showed significant negative and obestatin showed significant positive correlations with body mass index (BMI), BMI Z-score, leptin, insulin, and HOMA-IR. Acyl-ghrelin had a significant negative correlation with MDA as an index of oxidative stress. Conclusion: Ghrelin is decreased and obestatin is elevated in obesity. Both of these hormones are associated with insulin resistance, and ghrelin is associated with oxidative stress. The balance between ghrelin and obestatin seems to be disturbed in obesity. PMID:27348010

  5. Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation

    Science.gov (United States)

    Zhao, Ying; Zhang, Chenxu; Wei, Xuge; Li, Pei; Cui, Ying; Qin, Yuanhua; Wei, Xiaoqing; Jin, Minli; Kohama, Kazuhiro; Gao, Ying

    2015-01-01

    Accumulating evidence indicates that heat shock protein (HSP) 60 is strongly associated with the pathology of atherosclerosis (AS). However, the precise mechanisms by which HSP60 promotes atherosclerosis remain unclear. In the present study, we found that HSP60 mRNA and protein expression levels in the thoracic aorta are enhanced not only in a mouse model of AS but also in high-fat diet (HFD) mice. HSP60 expression and secretion was activated by platelet-derived growth factor-BB (PDGF-BB) and interleukin (IL)-8 in both human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs). HSP60 was found to induce VSMC migration, and exposure to HSP60 activated ERK MAPK signaling. U0126, an inhibitor of ERK, reduced VSMC migration. The HSP60-stimulated VSMCs were found to express TLR4 mRNA but not TLR2 mRNA. Knockdown of TLR4 by siRNA reduced HSP60-induced VSMC migration and HSP60-induced ERK activation. Finally, HSP60 induced IL-8 secretion in VSMCs. Together these results suggest that HSP60 is involved in the stimulation of VSMC migration, via TLR4 and ERK MAPK activation. Meanwhile, activation of HSP60 is one of the most powerful methods of sending a ‘danger signal’ to the immune system to generate IL-8, which assists in the management of an infection or disease. PMID:26477505

  6. Two Novel Class II Hydrophobins from Trichoderma spp. Stimulate Enzymatic Hydrolysis of Poly(Ethylene Terephthalate) when Expressed as Fusion Proteins

    Science.gov (United States)

    Espino-Rammer, Liliana; Ribitsch, Doris; Przylucka, Agnieszka; Marold, Annemarie; Greimel, Katrin J.; Herrero Acero, Enrique; Guebitz, Georg M.; Kubicek, Christian P.

    2013-01-01

    Poly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET. Species of the fungal genus Trichoderma have the most proliferated arsenal of class II hydrophobin-encoding genes among fungi. To this end, we studied two novel class II HFBs (HFB4 and HFB7) of Trichoderma. HFB4 and HFB7, produced in Escherichia coli as fusions to the C terminus of glutathione S-transferase, exhibited subtle structural differences reflected in hydrophobicity plots that correlated with unequal hydrophobicity and hydrophily, respectively, of particular amino acid residues. Both proteins exhibited a dosage-dependent stimulation effect on PET hydrolysis by cutinase from Humicola insolens, with HFB4 displaying an adsorption isotherm-like behavior, whereas HFB7 was active only at very low concentrations and was inhibitory at higher concentrations. We conclude that class II HFBs can stimulate the activity of cutinases on PET, but individual HFBs can display different properties. The present findings suggest that hydrophobins can be used in the enzymatic hydrolysis of aromatic-aliphatic polyesters such as PET. PMID:23645195

  7. The conserved dual phosphorylation sites of the Candida albicans Hog1 protein are crucial for white-opaque switching, mating, and pheromone-stimulated cell adhesion.

    Science.gov (United States)

    Chang, Wen-Han; Liang, Shen-Huan; Deng, Fu-Sheng; Lin, Ching-Hsuan

    2016-08-01

    Candida albicans is an opportunistic human pathogen capable of causing life-threatening infections in immunocompromised patients. C. albicans has a unique morphological transition between white and opaque phases. These two cells differ in virulence, mating capability, biofilm formation, and host-cell interaction. Previous studies revealed that deletion of the SSK2, PBS2, or HOG1 gene resulted in 100% opaque cell formation and suppressed the mating response. Thr-174 and Tyr-176 of the Hog1 protein are important phosphoacceptors and can be activated in response to stimuli. In this study, we first demonstrated the importance of two conserved phosphorylation sites in white-opaque switching, mating, and pheromone-stimulated cell adhesion. Six Hog1 point-mutated strains were generated, including nonphosphorylated strains (Hog1(T174A), Hog1(Y176F), and Hog1(T174A,Y176F)) and negatively charged phosphorylated strains (Hog1(T174D), Hog1(Y176D), and Hog1(T174D,Y176D)). Point mutation on Thr-174, Tyr-176 or in combination with the Hog1 protein in C. albicans MTL homozygous strains stimulated opaque cell formation at a frequency of 100%. Furthermore, mating projections of point-mutated strains were significantly shorter and their mating efficiencies and pheromone-stimulated cell adhesive numbers were lower than those of the wild-type. By investigating the effects of Hog1 phosphorylation in ssk1Δ and sln1Δ, we also demonstrate that the phosphorylation intensity of Hog1p is directly involved in the white-opaque switching. Taken together, the results of our study demonstrate that dual phosphorylation sites of C. albicans are crucial for white-opaque transition, sexual mating, and pheromone-induced cell adhesion. PMID:27118797

  8. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis

    Science.gov (United States)

    Hwang, I.; Sze, H.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The magnitude and duration of a cytosolic Ca(2+) release can potentially be altered by changing the rate of Ca(2+) efflux. In plant cells, Ca(2+) efflux from the cytoplasm is mediated by H(+)/Ca(2+)-antiporters and two types of Ca(2+)-ATPases. ACA2 was recently identified as a calmodulin-regulated Ca(2+)-pump located in the endoplasmic reticulum. Here, we show that phosphorylation of its N-terminal regulatory domain by a Ca(2+)-dependent protein kinase (CDPK isoform CPK1), inhibits both basal activity ( approximately 10%) and calmodulin stimulation ( approximately 75%), as shown by Ca(2+)-transport assays with recombinant enzyme expressed in yeast. A CDPK phosphorylation site was mapped to Ser(45) near a calmodulin binding site, using a fusion protein containing the N-terminal domain as an in vitro substrate for a recombinant CPK1. In a full-length enzyme, an Ala substitution for Ser(45) (S45/A) completely blocked the observed CDPK inhibition of both basal and calmodulin-stimulated activities. An Asp substitution (S45/D) mimicked phosphoinhibition, indicating that a negative charge at this position is sufficient to account for phosphoinhibition. Interestingly, prior binding of calmodulin blocked phosphorylation. This suggests that, once ACA2 binds calmodulin, its activation state becomes resistant to phosphoinhibition. These results support the hypothesis that ACA2 activity is regulated as the balance between the initial kinetics of calmodulin stimulation and CDPK inhibition, providing an example in plants for a potential point of crosstalk between two different Ca(2+)-signaling pathways.

  9. Regioselective self-acylating cyclodextrins in organic solvent

    Science.gov (United States)

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-03-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods.

  10. Specific growth stimulation by linoleic acid in hepatoma cell lines transfected with the target protein of a liver carcinogen.

    OpenAIRE

    Keler, T; Barker, C. S.; Sorof, S

    1992-01-01

    The hepatic carcinogen N-2-fluorenylacetamide (2-acetylaminofluorene) was shown previously to interact specifically with its target protein, liver fatty acid binding protein (L-FABP), early during hepatocarcinogenesis in rats. In search of the significance of the interaction, rat L-FABP cDNA in the sense and antisense orientations was transfected into a subline of the rat hepatoma HTC cell line that did not express L-FABP. After the transfections, the basal doubling times of the cells were no...

  11. Regulation of activity-regulated cytoskeleton protein (Arc) mRNA after acute and chronic electroconvulsive stimulation in the rat

    DEFF Research Database (Denmark)

    Larsen, M H; Olesen, M; Woldbye, D P D;

    2005-01-01

    The temporal profile of Arc gene expression after acute and chronic electroconvulsive stimulations (ECS) was studied using semi-quantitative in situ hybridisation in the rat cortex. A single ECS strongly and temporarily increased Arc mRNA levels in dentate granular cells with maximal induction se...... stimulus, but not accumulated by long term repetitive ECS and therefore not a molecular biomarker for antidepressant properties. More likely, Arc is likely a molecular link to the decline in memory consolidation seen in depressive patients subjected to electroconvulsive therapy....

  12. Stimulation of TLR4 by recombinant HSP70 requires structural integrity of the HSP70 protein itself

    Directory of Open Access Journals (Sweden)

    Luong Michael

    2012-03-01

    Full Text Available Abstract Background Toll-like receptor 4 (TLR4 is activated by bacterial endotoxin, a prototypical pathogen-associated molecular pattern (PAMP. It has been suggested that TLR4 can also be activated by damage-associated molecular pattern (DAMP proteins such as HSP70. It remains a challenge to provide unequivocal evidence that DAMP proteins themselves play a role in TLR4 activation, as the DAMP proteins used are often contaminated with endotoxin and other TLR ligands introduced during protein expression and/or purification. Results Here we report that the activation of TLR4 on primary human macrophage cultures by recombinant HSP70 is not solely due to contaminating endotoxin. Polymyxin B pretreatment of HSP70 preparations to neutralize contaminating endotoxin caused significant reductions in the amount of TNF-α induced by the recombinant protein as determined by ELISA. However, digestion of HSP70 with Proteinase K-agarose beads also dramatically reduced the TNF-α response of macrophages to HSP70, while leaving levels of contaminating endotoxin largely unchanged relative to controls. Conclusions These results indicate that the stimulatory effect of recombinant HSP70 requires both the presence of endotoxin and structural integrity of the heat shock protein itself.

  13. Substantial species differences in relation to formation and degradation of N-acyl-ethanolamine phospholipids in heart tissue

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.;

    2002-01-01

    beneficial effects on the heart, but in the literature there are indications of species differences in the activity of these enzymes. We have examined heart microsomes from rats, mice, guinea pigs, rabbits, frogs, cows, dogs, cats, mini pigs and human beings for activities of these two enzymes. N......-Acyl-transferase activity was very high in dogs and cats (>13 pmol/min/mg protein) whereas it was very low to barely detectable in the other species (45 pmol/min/mg protein) whereas it was 9 pmol/min/mg protein in frogs and below that in the other species. The ratio of activity between the two enzymes varied from 0...

  14. Corticotropin-releasing hormone stimulates mitotic kinesin-like protein 1 expression via a PLC/PKC-dependent signaling pathway in hippocampal neurons.

    Science.gov (United States)

    Sheng, Hui; Xu, Yongjun; Chen, Yanming; Zhang, Yanmin; Ni, Xin

    2012-10-15

    Corticotropin-releasing hormone (CRH) has been shown to modulate dendritic development in hippocampus. Mitotic kinesin-like protein 1 (MKLP1) plays key roles in dendritic differentiation. In the present study, we examined the effects of CRH on MKLP1 expression in cultured hippocampal neurons and determine subsequent signaling pathways involved. CRH dose-dependently increased MKLP1 mRNA and protein expression. This effect can be reversed by CRHR1 antagonist but not by CRHR2 antagonist. CRHR1 knockdown impaired this effect of CRH. CRH stimulated GTP-bound Gαs protein and phosphorylated phospholipase C (PLC)-β3 expression, which were blocked by CRHR1 antagonist. Transfection of GP antagonist-2A, an inhibitory peptide of Gαq protein, blocked CRH-induced phosphorylated PLC-β3 expression. PLC and PKC inhibitors completely blocked whereas adenylyl cyclase (AC) and PKA inhibitors did not affect CRH-induced MKLP1 expression. Our results indicate that CRH act on CRHR1 to induce MKLP1 expression via PLC/PKC signaling pathway. CRH may regulate MKLP1 expression, thereby modulating dendritic development.

  15. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com [Whittemore Peterson Institute, University of Nevada-Reno, Reno (United States); Morzunov, Sergey P. [Department of Pathology and Nevada State Health Laboratory, University of Nevada-Reno, Reno (United States); Boichuk, Sergei V. [Kazan State Medical University, Kazan (Russian Federation); Palotás, András [Asklepios-Med (private medical practice and research center), Szeged (Hungary); Jeor, Stephen St. [Department of Microbiology and Immunology, University of Nevada-Reno, Reno (United States); Lombardi, Vincent C. [Whittemore Peterson Institute, University of Nevada-Reno, Reno (United States); Rizvanov, Albert A. [Department of Genetics, Kazan (Volga Region) Federal University, Kazan (Russian Federation)

    2013-09-01

    Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirus triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.

  16. A novel approach for predicting acyl glucuronide reactivity via Schiff base formation: development of rapidly formed peptide adducts for LC/MS/MS measurements.

    Science.gov (United States)

    Wang, Jianyao; Davis, Margaret; Li, Fangbiao; Azam, Farooq; Scatina, JoAnn; Talaat, Rasmy

    2004-09-01

    A novel technique to study the reactivity of acyl glucuronide metabolites to protein has been developed and is described herein. Considered here are acyl glucuronide metabolites, which have undergone the rearrangement of the glucuronic acid moiety at physiological temperature and pH. The investigation of the reactivity of these electrophilic metabolites was carried out by measuring the rate of reaction of rearranged AG metabolites in forming the corresponding acyl glucuronide-peptide adduct in the presence of Lys-Phe. This differs from the parallel technique used in forming AG adducts of proteins that have been previously reported. In the study described here, the Schiff base adduct, diclofenac acyl glucuronide-Lys-Phe product, was generated and structurally elucidated by liquid chromatography tandem mass spectrometry (LC/MS/MS) analysis. The product structure was proved to be a Schiff base adduct by chemical derivatization by nucleophilic addition of HCN and chemical reduction with NaCNBH(3), followed by LC/MS/MS analysis. It is proposed here that the degree of reactivity of acyl glucuronides as measured by covalent binding to protein is proportional to the amount of its peptide adduct generated with the peptide technique described. The application of this technique to the assessment of the degree of reactivity of acyl glucuronide metabolites was validated by developing a reactivity rank of seven carboxylic acid-containing drugs. Consistency was achieved between the ranking of reactivity in the peptide technique for these seven compounds and the rankings found in the literature. In addition, a correlation (R(2) = 0.95) was revealed between the formation of a peptide adduct and the rearrangement rate of the primary acyl glucuronide of seven tested compounds. A structure effect on the degree of reactivity has demonstrated the rate order: acetic acid > propionic acid > benzoic acid derivatives. A rational explanation of this order was proposed, based on the inherent

  17. Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds.

    Science.gov (United States)

    Moreno-Pérez, Antonio Javier; Venegas-Calerón, Mónica; Vaistij, Fabián E; Salas, Joaquin J; Larson, Tony R; Garcés, Rafael; Graham, Ian A; Martínez-Force, Enrique

    2014-03-01

    The substrate specificity of the acyl-acyl carrier protein (ACP) thioesterases significantly determines the type of fatty acids that are exported from plastids. Thus, designing acyl-ACP thioesterases with different substrate specificities or kinetic properties would be of interest for plant lipid biotechnology to produce oils enriched in specialty fatty acids. In the present work, the FatA thioesterase from Helianthus annuus was used to test the impact of changes in the amino acids present in the binding pocket on substrate specificity and catalytic efficiency. Amongst all the mutated enzymes studied, Q215W was especially interesting as it had higher specificity towards saturated acyl-ACP substrates and higher catalytic efficiency compared to wild-type H. annuus FatA. Null, wild type and high-efficiency alleles were transiently expressed in tobacco leaves to check their effect on lipid biosynthesis. Expression of active FatA thioesterases altered the composition of leaf triacylglycerols but did not alter total lipid content. However, the expression of the wild type and the high-efficiency alleles in Arabidopsis thaliana transgenic seeds resulted in a strong reduction in oil content and an increase in total saturated fatty acid content. The role and influence of acyl-ACP thioesterases in plant metabolism and their possible applications in lipid biotechnology are discussed.

  18. Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds.

    Science.gov (United States)

    Moreno-Pérez, Antonio Javier; Venegas-Calerón, Mónica; Vaistij, Fabián E; Salas, Joaquin J; Larson, Tony R; Garcés, Rafael; Graham, Ian A; Martínez-Force, Enrique

    2014-03-01

    The substrate specificity of the acyl-acyl carrier protein (ACP) thioesterases significantly determines the type of fatty acids that are exported from plastids. Thus, designing acyl-ACP thioesterases with different substrate specificities or kinetic properties would be of interest for plant lipid biotechnology to produce oils enriched in specialty fatty acids. In the present work, the FatA thioesterase from Helianthus annuus was used to test the impact of changes in the amino acids present in the binding pocket on substrate specificity and catalytic efficiency. Amongst all the mutated enzymes studied, Q215W was especially interesting as it had higher specificity towards saturated acyl-ACP substrates and higher catalytic efficiency compared to wild-type H. annuus FatA. Null, wild type and high-efficiency alleles were transiently expressed in tobacco leaves to check their effect on lipid biosynthesis. Expression of active FatA thioesterases altered the composition of leaf triacylglycerols but did not alter total lipid content. However, the expression of the wild type and the high-efficiency alleles in Arabidopsis thaliana transgenic seeds resulted in a strong reduction in oil content and an increase in total saturated fatty acid content. The role and influence of acyl-ACP thioesterases in plant metabolism and their possible applications in lipid biotechnology are discussed. PMID:24327259

  19. Ghrelin O-Acyl Transferase: Bridging Ghrelin and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Andrew Shlimun

    2011-01-01

    Full Text Available Ghrelin O-acyl transferase (GOAT is a recently identified enzyme responsible for the unique n-acyl modification of ghrelin, a multifunctional metabolic hormone. GOAT structure and activity appears to be conserved from fish to man. Since the acyl modification is critical for most of the biological actions of ghrelin, especially metabolic functions, GOAT emerged as a very important molecule of interest. The research on GOAT is on the rise, and several important results reiterating its significance have been reported. Notable among these discoveries are the identification of GOAT tissue expression patterns, effects on insulin secretion, blood glucose levels, feeding, body weight, and metabolism. Several attempts have been made to design and test synthetic compounds that can modulate endogenous GOAT, which could turn beneficial in favorably regulating whole body energy homeostasis. This paper will focus to provide an update on recent advances in GOAT research and its broader implications in the regulation of energy balance.

  20. Virus-like particles of SARS-like coronavirus formed by membrane proteins from different origins demonstrate stimulating activity in human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Bingke Bai

    Full Text Available The pathogenesis of SARS coronavirus (CoV remains poorly understood. In the current study, two recombinant baculovirus were generated to express the spike (S protein of SARS-like coronavirus (SL-CoV isolated from bats (vAcBS and the envelope (E and membrane (M proteins of SARS-CoV, respectively. Co-infection of insect cells with these two recombinant baculoviruses led to self-assembly of virus-like particles (BVLPs as demonstrated by electron microscopy. Incorporation of S protein of vAcBS (BS into VLPs was confirmed by western blot and immunogold labeling. Such BVLPs up-regulated the level of CD40, CD80, CD86, CD83, and enhanced the secretion of IL-6, IL-10 and TNF-alpha in immature dendritic cells (DCs. Immune responses were compared in immature DCs inoculated with BVLPs or with VLPs formed by S, E and M proteins of human SARS-CoV. BVLPs showed a stronger ability to stimulate DCs in terms of cytokine induction as evidenced by 2 to 6 fold higher production of IL-6 and TNF-alpha. Further study indicated that IFN-gamma+ and IL-4+ populations in CD4+ T cells increased upon co-cultivation with DCs pre-exposed with BVLPs or SARS-CoV VLPs. The observed difference in DC-stimulating activity between BVLPs and SARS CoV VLPs was very likely due to the S protein. In agreement, SL-CoV S DNA vaccine evoked a more vigorous antibody response and a stronger T cell response than SARS-CoV S DNA in mice. Our data have demonstrated for the first time that SL-CoV VLPs formed by membrane proteins of different origins, one from SL-CoV isolated from bats (BS and the other two from human SARS-CoV (E and M, activated immature DCs and enhanced the expression of co-stimulatory molecules and the secretion of cytokines. Finding in this study may provide important information for vaccine development as well as for understanding the pathogenesis of SARS-like CoV.

  1. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    DEFF Research Database (Denmark)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A;

    2010-01-01

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3...... mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine...... program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans....

  2. Involvement of Gαs-proteins in the action of relaxin-like gonad-stimulating substance on starfish ovarian follicle cells.

    Science.gov (United States)

    Mita, Masatoshi; Haraguchi, Shogo; Watanabe, Miho; Takeshige, Yuki; Yamamoto, Kazutoshi; Tsutsui, Kazuyoshi

    2014-09-01

    Gonad-stimulating substance (GSS) in starfish is the only known invertebrate peptide hormone responsible for final gamete maturation, rendering it functionally analogous to gonadotropins in vertebrates. In breeding season (stage V), GSS stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) by ovarian follicle cells. The hormonal action of GSS is mediated through the activation of its receptor, G-proteins and adenylyl cyclase. It has been reported that GSS fails to induce 1-MeAde and cyclic AMP (cAMP) production in follicle cells of ovaries during oogenesis (stage IV). This study examined the regulatory mechanism how ovarian follicle cells acquire the potential to respond to GSS by producing 1-MeAde and cAMP. Because the failure of GSS action was due to G-proteins of follicle cells, the molecular structures of Gαs, Gαi, Gαq and Gβ were identified in follicle cells of starfish Asterina pectinifera. The cDNA sequences of Gαs, Gαi, Gαq and Gβ consisted of ORFs encoding 379, 354, 353 and 353 amino acids. The expression levels of Gαs were extremely low in follicle cells at stage IV, whereas the mRNA levels increased markedly in stage V. On contrary, the mRNA levels of Gαi were almost constant regardless of stage IV and V. These findings strongly suggest that de novo synthesis of Gαs-proteins is contributed to the action of GSS on follicle cells to produce 1-MeAde and cAMP.

  3. A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor.

    Science.gov (United States)

    Yan, Fang; Liu, Liping; Dempsey, Peter J; Tsai, Yu-Hwai; Raines, Elaine W; Wilson, Carole L; Cao, Hailong; Cao, Zheng; Liu, LinShu; Polk, D Brent

    2013-10-18

    p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17(-/-) MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17(-/-) MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR.

  4. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N;

    2000-01-01

    , inhibitors of the nonreceptor tyrosine kinase p59(fyn), PLC, PKC and MEK and an activator of PKC, phorbol-12-myristate-13-acetate (PMA). MEK2 transfection rescued cells treated with all inhibitors. The same was found for PMA treatment, except when cells concomitantly were treated with the MEK inhibitor....... Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate...

  5. Identification of unusual phospholipid fatty acyl compositions of Acanthamoeba castellanii.

    Directory of Open Access Journals (Sweden)

    Marta Palusinska-Szysz

    Full Text Available Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL. The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0, octadecenoyl (18∶1 Δ9 and hexadecanoyl (16∶0. However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE, phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24 and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of

  6. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C-14-peptides

    DEFF Research Database (Denmark)

    Pedersen, T.B.; Kaasgaard, Thomas; Jensen, M.O.;

    2005-01-01

    The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated...

  7. Studies on acylation of lysolecithin in chicken intestine

    International Nuclear Information System (INIS)

    The enzymatic acylation of lysolecithin to lecithin is shown to occur in the brush border-free particulate fraction of the small intestines of neonatal chicken. It requires ATP, coenzyme A and Mg2+ or Mn2+ for maximal activity. The system is specific for oleic acid. The fatty acid composition at the α-position of lysolecithin does not seem to influence the rate of acylation. The fatty acid incorporated into lysolecithin is shown to occupy exclusively, the β-position. [32P]lecithin and [1-14C]oleic acid has been used as tracers in the studies. (author)

  8. Funktionelle Analysen zum Acyl-CoA-Bindeprotein (ACBP)

    OpenAIRE

    Klausz, Katja

    2009-01-01

    Das Fettsäurebindeprotein mit der höchsten Spezifität für langkettige, Acyl-CoA ist das Acyl-CoA-Bindeprotein (ACBP). Der Vergleich transgener, ACBP-überexprimierender Ratten mit Wildtypen nach einmonatiger Fütterung einer Niedrig- (LFD) bzw. Hochfettdiät (HFD) zeigt bei den transgenen Tieren höhere Konzentrationen an freien Fettsäuren und Triglyzeriden, sowie veränderte Glukose- und Insulinwerte. Zudem führt die ACBP-Überexpression unter LFD in der Leber zur verringerten SREBP-1c- und L-FABP...

  9. Molecular, biochemical, and functional characterization of a nudix hydrolase protein that stimulates the activity of a nicotinoprotein alcohol dehydrogenase

    NARCIS (Netherlands)

    Kloosterman, H; Vrijbloed, JW; Dijkhuizen, L

    2002-01-01

    The cytoplasmic coenzyme NAD(+)-dependent alcohol (methanol) dehydrogenase (MDH) employed by Bacillus methanolicus during growth on C-1-C-4 primary alcohols is a decameric protein with 1 Zn2+-ion and 1-2 Mg2+-ions plus a tightly bound NAD(H) cofactor per subunit (a nicotinoprotein). Mg2+-ions are es

  10. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco

    International Nuclear Information System (INIS)

    In tobacco (Nicotiana tabacum L. cv. Xanthinc), salicylic acid (SA) levels increase in leaves inoculated by necrotizing pathogens and in healthy leaves located above the inoculated site. Systemic SA increase may trigger disease resistance and synthesis of pathogenesis-related proteins (PR proteins). Here we report that ultraviolet (UV)-C light or ozone induced biochemical responses similar to those induced by necrotizing pathogens. Exposure of leaves to UV-C light or ozone resulted in a transient ninefold increase in SA compared to controls. In addition, in UV-light-irradiated plants, SA increased nearly fourfold to 0.77 μg·g−1 fresh weight in leaves that were shielded from UV light. Increased SA levels were accompanied by accumulation of an SA conjugate and by an increase in the activity of benzoic acid 2-hydroxylase which catalyzes SA biosynthesis. In irradiated and in unirradiated leaves of plants treated with UV light, as well as in plants fumigated with ozone, PR proteins 1a and 1b accumulated. This was paralleled by the appearance of induced resistance to a subsequent challenge with tobacco mosaic virus. The results suggest that UV light, ozone fumigation and tobacco mosaic virus can activate a common signal-transduction pathway that leads to SA and PR-protein accumulation and increased disease resistance. (author)

  11. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition.

    Science.gov (United States)

    Rodríguez-Rodríguez, Manuel Fernando; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2014-11-01

    Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that terminate de novo fatty acid biosynthesis in the plastids of higher plants by hydrolyzing the thioester bond between ACP and the fatty acid synthesized. Free fatty acids are then esterified with coenzyme A prior to being incorporated into the glycerolipids synthesized through the eukaryotic pathway. Acyl-ACP thioesterases belong to the TE14 family of thioester-active enzymes and can be classified as FatAs and FatBs, which differ in their amino acid sequence and substrate specificity. Here, the FatA and FatB thioesterases from Camelina sativa seeds, a crop of interest in plant biotechnology, were cloned, sequenced and characterized. The mature proteins encoded by these genes were characterized biochemically after they were heterologously expressed in Escherichia coli and purified. C. sativa contained three different alleles of both the FatA and FatB genes. These genes were expressed most strongly in expanding tissues in which lipids are very actively synthesized, such as developing seed endosperm. The CsFatA enzyme displayed high catalytic efficiency on oleoyl-ACP and CsFatB acted efficiently on palmitoyl-ACP. The contribution of these two enzymes to the synthesis of C. sativa oil was discussed in the light of these results.

  12. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition.

    Science.gov (United States)

    Rodríguez-Rodríguez, Manuel Fernando; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2014-11-01

    Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that terminate de novo fatty acid biosynthesis in the plastids of higher plants by hydrolyzing the thioester bond between ACP and the fatty acid synthesized. Free fatty acids are then esterified with coenzyme A prior to being incorporated into the glycerolipids synthesized through the eukaryotic pathway. Acyl-ACP thioesterases belong to the TE14 family of thioester-active enzymes and can be classified as FatAs and FatBs, which differ in their amino acid sequence and substrate specificity. Here, the FatA and FatB thioesterases from Camelina sativa seeds, a crop of interest in plant biotechnology, were cloned, sequenced and characterized. The mature proteins encoded by these genes were characterized biochemically after they were heterologously expressed in Escherichia coli and purified. C. sativa contained three different alleles of both the FatA and FatB genes. These genes were expressed most strongly in expanding tissues in which lipids are very actively synthesized, such as developing seed endosperm. The CsFatA enzyme displayed high catalytic efficiency on oleoyl-ACP and CsFatB acted efficiently on palmitoyl-ACP. The contribution of these two enzymes to the synthesis of C. sativa oil was discussed in the light of these results. PMID:25212866

  13. A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium.

    Science.gov (United States)

    Matsuba, Yuki; Sasaki, Nobuhiro; Tera, Masayuki; Okamura, Masachika; Abe, Yutaka; Okamoto, Emi; Nakamura, Haruka; Funabashi, Hisakage; Takatsu, Makoto; Saito, Mikako; Matsuoka, Hideaki; Nagasawa, Kazuo; Ozeki, Yoshihiro

    2010-10-01

    Glucosylation of anthocyanin in carnations (Dianthus caryophyllus) and delphiniums (Delphinium grandiflorum) involves novel sugar donors, aromatic acyl-glucoses, in a reaction catalyzed by the enzymes acyl-glucose-dependent anthocyanin 5(7)-O-glucosyltransferase (AA5GT and AA7GT). The AA5GT enzyme was purified from carnation petals, and cDNAs encoding carnation Dc AA5GT and the delphinium homolog Dg AA7GT were isolated. Recombinant Dc AA5GT and Dg AA7GT proteins showed AA5GT and AA7GT activities in vitro. Although expression of Dc AA5GT in developing carnation petals was highest at early stages, AA5GT activity and anthocyanin accumulation continued to increase during later stages. Neither Dc AA5GT expression nor AA5GT activity was observed in the petals of mutant carnations; these petals accumulated anthocyanin lacking the glucosyl moiety at the 5 position. Transient expression of Dc AA5GT in petal cells of mutant carnations is expected to result in the transfer of a glucose moiety to the 5 position of anthocyanin. The amino acid sequences of Dc AA5GT and Dg AA7GT showed high similarity to glycoside hydrolase family 1 proteins, which typically act as β-glycosidases. A phylogenetic analysis of the amino acid sequences suggested that other plant species are likely to have similar acyl-glucose-dependent glucosyltransferases.

  14. The preparation and application of N-terminal 57 amino acid protein of the follicle-stimulating hormone receptor as a candidate male contraceptive vaccine

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2014-08-01

    Full Text Available Follicle-stimulating hormone receptor (FSHR, which is expressed only on Sertoli cells and plays a key role in spermatogenesis, has been paid attention for its potential in male contraception vaccine research and development. This study introduces a method for the preparation and purification of human FSHR 57-amino acid protein (FSHR-57aa as well as determination of its immunogenicity and antifertility effect. A recombinant pET-28a(+-FSHR-57aa plasmid was constructed and expressed in Escherichia coli strain BL21 Star TM (DE3 and the FSHR-57aa protein was separated and collected by cutting the gel and recovering activity by efficient refolding dialysis. The protein was identified by Western blot and high-performance liquid chromatography analysis with a band of nearly 7 kDa and a purity of 97.4%. Male monkeys were immunized with rhFSHR-57aa protein and a gradual rising of specific serum IgG antibody was found which reached a plateau on day 112 (16 weeks after the first immunization. After mating of one male with three female monkeys, the pregnancy rate of those mated with males immunized against FSHR-57aa was significantly decreased while the serum hormone levels of testosterone and estradiol were not disturbed in the control or the FSHR-57aa groups. By evaluating pathological changes in testicular histology, we found that the blood-testis barrier remained intact, in spite of some small damage to Sertoli cells. In conclusion, our study demonstrates that the rhFSHR-57aa protein might be a feasible male contraceptive which could affect sperm production without disturbing hormone levels.

  15. Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

    NARCIS (Netherlands)

    J. Nouws; L. Nijtmans; S.M. Houten; M. Brand; M. Huynen; H. Venselaar; S. Hoefs; J. Gloerich; J. Kronick; T. Hutchin; P. Willems; R. Rodenburg; R. Wanders; L. van den Heuvel; J. Smeitink; R.O. Vogel

    2010-01-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondria! (3 oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid

  16. Influence of acylation on the adsorption of GLP-2 to hydrophobic surfaces

    DEFF Research Database (Denmark)

    Pinholt, Charlotte; Kapp, Sebastian J; Bukrinsky, Jens T;

    2013-01-01

    of this work was to study the effect of acylation on the adsorption of GLP-2 from aqueous solution to a hydrophobic surface by comparing the adsorption of the 3766 Da GLP-2 with that of a GLP-2 variant acylated with a 16-carbon fatty acid chain through a ß-alanine linker. Adsorption of GLP-2 and acylated GLP-2...

  17. Repression of protein kinase C and stimulation of cyclic AMP response elements by fumonisin, a fungal encoded toxin which is a carcinogen.

    Science.gov (United States)

    Huang, C; Dickman, M; Henderson, G; Jones, C

    1995-04-15

    Fusarium moniliforme (FM) is a major fungal pathogen of corn and is involved with stalk rot disease. FM is widely spread throughout the world, including the United States. Most strains of FM produce several mycotoxins, the most prominent of which is called fumonisin. Recent epidemiological studies indicated that ingestion of fumonisin correlates with a higher incidence of esophageal cancer in Southern and Northern Africa and China. Furthermore, fumonisin causes a neurodegenerative disease in horses, induces hepatic cancer in rats, and induces pulmonary edema in swine. Considering that high levels of fumonisin have been detected in healthy and diseased corn grown in the United States, fumonisin may pose a health threat to humans and livestock animals. Structurally, fumonisin resembles sphingolipids which are present in the membranes of animal and plant cells. At the present time, very little is known concerning the mechanism by which fumonisin elicits its carcinogenic effect. Our studies indicate that fumonisin represses expression of protein kinase C and AP-1-dependent transcription. In contrast, fumonisin stimulated a simple promoter containing a single cyclic AMP response element. Since fumonisin did not alter protein kinase A activity, it appears that cyclic AMP response element activation was independent of protein kinase A. It is hypothesized that the ability of fumonisin to alter signal transduction pathways plays a role in carcinogenesis.

  18. 20-Hydroxyecdysone stimulates nuclear accumulation of BmNep1, a nuclear ribosome biogenesis-related protein in the silkworm, Bombyx mori.

    Science.gov (United States)

    Ji, M-M; Liu, A-Q; Sima, Y-H; Xu, S-Q

    2016-10-01

    The pathway of communication between endocrine hormones and ribosome biogenesis critical for physiological adaptation is largely unknown. Nucleolar essential protein 1 (Nep1) is an essential gene for ribosome biogenesis and is functionally conserved in many in vertebrate and invertebrate species. In this study, we cloned Bombyx mori Nep1 (BmNep1) due to its high expression in silk glands of silkworms on day 3 of the fifth instar. We found that BmNep1 mRNA and protein levels were upregulated in silk glands during fourth-instar ecdysis and larval-pupal metamorphosis. By immunoprecipitation with the anti-BmNep1 antibody and liquid chromatography-tandem mass spectrometry analyses, it was shown that BmNep1 probably interacts with proteins related to ribosome structure formation. Immunohistochemistry, biochemical fractionation and immunocytochemistry revealed that BmNep1 is localized to the nuclei in Bombyx cells. Using BmN cells originally derived from ovaries, we demonstrated that 20-hydroxyecdysone (20E) induced BmNep1 expression and stimulated nuclear accumulation of BmNep1. Under physiological conditions, BmNep1 was also upregulated in ovaries during larval-pupal metamorphosis. Overall, our results indicate that the endocrine hormone 20E facilitates nuclear accumulation of BmNep1, which is involved in nuclear ribosome biogenesis in Bombyx. PMID:27329527

  19. Nonstructural protein (NS1) of human parvovirus B19 stimulates host innate immunity and blunts the exogenous type I interferon signaling in vitro.

    Science.gov (United States)

    Wu, Jianqin; Chen, Xu; Ye, Haiyan; Yao, Min; Li, Shilin; Chen, Limin

    2016-08-15

    B19 virus is a non-enveloped DNA virus and belongs to the family of parvoviridae. There are two large open reading frames (ORFs), nonstructural protein (NS1) and two capsid proteins (VP1 and VP2). Host innate immune responses form the first line of defense against many pathogen invasion. How B19 virus, especially its encoded viral proteins interacts with host innate immune system remains unknown. In this study we aim to investigate the effect of NS1 on the host innate immune response and exogenous type I IFN signaling. Here we found that the type I IFN can be stimulated by NS1. Interestingly, NS1 also plays an important role in inhibiting the exogenous type I IFN signaling at p-STAT1, ISRE and ISGs levels. We concluded that NS1 may play pivotal role in evading the host immune surveillance. Our data shed novel light on the pathogenesis of B19 viral infection and virus evasion strategies. PMID:27270128

  20. Tendon protein synthesis rate in classic Ehlers-Danlos patients can be stimulated with insulin-like growth factor-I

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Holm, Lars; Jensen, Jacob Kildevang;

    2014-01-01

    The classic form of Ehlers-Danlos syndrome (cEDS) is an inherited connective tissue disorder, where mutations in type V collagen-encoding genes result in abnormal collagen fibrils. Thus the cEDS patients have pathological connective tissue morphology and low stiffness, but the rate of connective...... tissue protein turnover is unknown. We investigated whether cEDS affected the protein synthesis rate in skin and tendon, and whether this could be stimulated in tendon tissue with insulin-like growth factor-I (IGF-I). Five patients with cEDS and 10 healthy, matched controls (CTRL) were included. One...... patellar tendon of each participant was injected with 0.1 ml IGF-I (Increlex, Ipsen, 10 mg/ml) and the contralateral tendon with 0.1 ml isotonic saline as control. The injections were performed at both 24 and 6 h prior to tissue sampling. The fractional synthesis rate (FSR) of proteins in skin and tendon...

  1. Repression of protein kinase C and stimulation of cyclic AMP response elements by fumonisin, a fungal encoded toxin which is a carcinogen.

    Science.gov (United States)

    Huang, C; Dickman, M; Henderson, G; Jones, C

    1995-04-15

    Fusarium moniliforme (FM) is a major fungal pathogen of corn and is involved with stalk rot disease. FM is widely spread throughout the world, including the United States. Most strains of FM produce several mycotoxins, the most prominent of which is called fumonisin. Recent epidemiological studies indicated that ingestion of fumonisin correlates with a higher incidence of esophageal cancer in Southern and Northern Africa and China. Furthermore, fumonisin causes a neurodegenerative disease in horses, induces hepatic cancer in rats, and induces pulmonary edema in swine. Considering that high levels of fumonisin have been detected in healthy and diseased corn grown in the United States, fumonisin may pose a health threat to humans and livestock animals. Structurally, fumonisin resembles sphingolipids which are present in the membranes of animal and plant cells. At the present time, very little is known concerning the mechanism by which fumonisin elicits its carcinogenic effect. Our studies indicate that fumonisin represses expression of protein kinase C and AP-1-dependent transcription. In contrast, fumonisin stimulated a simple promoter containing a single cyclic AMP response element. Since fumonisin did not alter protein kinase A activity, it appears that cyclic AMP response element activation was independent of protein kinase A. It is hypothesized that the ability of fumonisin to alter signal transduction pathways plays a role in carcinogenesis. PMID:7712470

  2. Nerve growth factor stimulates interaction of Cayman ataxia protein BNIP-H/Caytaxin with peptidyl-prolyl isomerase Pin1 in differentiating neurons.

    Directory of Open Access Journals (Sweden)

    Jan Paul Buschdorf

    Full Text Available Mutations in ATCAY that encodes the brain-specific protein BNIP-H (or Caytaxin lead to Cayman cerebellar ataxia. BNIP-H binds to glutaminase, a neurotransmitter-producing enzyme, and affects its activity and intracellular localization. Here we describe the identification and characterization of the binding between BNIP-H and Pin1, a peptidyl-prolyl cis/trans isomerase. BNIP-H interacted with Pin1 after nerve growth factor-stimulation and they co-localized in the neurites and cytosol of differentiating pheochromocytoma PC12 cells and the embryonic carcinoma P19 cells. Deletional mutagenesis revealed two cryptic binding sites within the C-terminus of BNIP-H such that single point mutants affecting the WW domain of Pin1 completely abolished their binding. Although these two sites do not contain any of the canonical Pin1-binding motifs they showed differential binding profiles to Pin1 WW domain mutants S16E, S16A and W34A, and the catalytically inert C113A of its isomerase domain. Furthermore, their direct interaction would occur only upon disrupting the ability of BNIP-H to form an intramolecular interaction by two similar regions. Furthermore, expression of Pin1 disrupted the BNIP-H/glutaminase complex formation in PC12 cells under nerve growth factor-stimulation. These results indicate that nerve growth factor may stimulate the interaction of BNIP-H with Pin1 by releasing its intramolecular inhibition. Such a mechanism could provide a post-translational regulation on the cellular activity of BNIP-H during neuronal differentiation.

  3. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis

    DEFF Research Database (Denmark)

    Doessing, Simon; Heinemeier, Katja; Holm, Lars;

    2010-01-01

    matrix collagen synthesis in skeletal muscle and tendon, but without any effect upon myofibrillar protein synthesis. The results suggest that GH is more important in strengthening the matrix tissue than for muscle cell hypertrophy in adult human musculotendinous tissue.......In skeletal muscle and tendon the extracellular matrix confers important tensile properties and is crucially important for tissue regeneration after injury. Musculoskeletal tissue adaptation is influenced by mechanical loading, which modulates the availability of growth factors, including growth...... young individuals. rhGH administration caused an increase in serum GH, serum IGF-I, and IGF-I mRNA expression in tendon and muscle. Tendon collagen I mRNA expression and tendon collagen protein synthesis increased by 3.9-fold and 1.3-fold, respectively (P muscle collagen I m...

  4. Colonization of epidermal tissue by Staphylococcus aureus produces localized hypoxia and stimulates secretion of antioxidant and caspase-14 proteins.

    Science.gov (United States)

    Lone, Abdul G; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R; Call, Douglas R

    2015-08-01

    A partial-thickness epidermal explant model was colonized with green fluorescent protein (GFP)-expressing Staphylococcus aureus, and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. The oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using elevated-energy mass spectrometry (MS(E)). S. aureus biofilm grows predominantly in lipid-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2- to 3-fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after 4 days of culture. The colonized explants released significantly (P < 0.01) more antioxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentrations found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in the media from the colonized explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface.

  5. Colonization of Epidermal Tissue by Staphylococcus aureus Produces Localized Hypoxia and Stimulates Secretion of Antioxidant and Caspase-14 Proteins

    Science.gov (United States)

    Lone, Abdul G.; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R.

    2015-01-01

    A partial-thickness epidermal explant model was colonized with green fluorescent protein (GFP)-expressing Staphylococcus aureus, and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. The oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using elevated-energy mass spectrometry (MSE). S. aureus biofilm grows predominantly in lipid-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2- to 3-fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after 4 days of culture. The colonized explants released significantly (P < 0.01) more antioxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentrations found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in the media from the colonized explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface. PMID:25987705

  6. Regulation of mitogen-stimulated human T-cell proliferation, interleukin-2 production, and interleukin-2 receptor expression by protein kinase C inhibitor, H-7

    Energy Technology Data Exchange (ETDEWEB)

    Atluru, D.; Polam, S.; Atluru, S. (Kansas State Univ., Manhattan (United States)); Woloschak, G.E. (Argonne National Lab., IL (United States))

    1990-01-01

    Recently published reports suggest that the activation of protein kinase C (PKC) plays an important role in the activation pathway of many cell types. In this study, the authors examined the role of PKC in human T-cell proliferation, IL-2 production, and IL-2R expression, when cultured with the mitogen PHA, the PKC inhibitor H-7, and H-7 control HA1004. H-7 inhibited the PHA-simulated ({sup 3}H)thymidine uptake, IL-2production, and IL-2R expression in a dose-related manner. Further, they found H-7 inhibited T-cell proliferation, IL-2 production, and IL-2mRNA from PHA plus PMA-stimulated cultures. They also found that H-7 inhibited the early-stage activation of PHA-stimulated cells. The presence of exogenous purified human IL-2 or rIL-4 partly reversed the immunosuppression caused by H-7. In contrast, HA1004 had no effect on cell proliferation, IL-2 production, or IL-2R expression. The results demonstrate that PKC activation is one major pathway through which T-cells become activated.

  7. Activity of the acyl-CoA synthetase ACSL6 isoforms: role of the fatty acid Gate-domains

    Directory of Open Access Journals (Sweden)

    Siliakus Melvin

    2010-04-01

    Full Text Available Abstract Background Activation of fatty acids by acyl-CoA synthetase enzymes is required for de novo lipid synthesis, fatty acid catabolism, and remodeling of biological membranes. Human long-chain acyl-CoA synthetase member 6, ASCL6, is a form present in the plasma membrane of cells. Splicing events affecting the amino-terminus and alternative motifs near the ATP-binding site generate different isoforms of ACSL6. Results Isoforms with different fatty acid Gate-domain motifs have different activity and the form lacking this domain, isoform 3, showed no detectable activity. Enzymes truncated of the first 40 residues generate acyl-CoAs at a faster rate than the full-length protein. The gating residue, which prevents entry of the fatty acid substrate unless one molecule of ATP has already accessed the catalytic site, was identified as a tyrosine for isoform 1 and a phenylalanine for isoform 2 at position 319. All isoforms, with or without a fatty acid Gate-domain, as well as recombinant protein truncated of the N-terminus, can interact to form enzymatic complexes with identical or different isoforms. Conclusion The alternative fatty acid Gate-domain motifs are essential determinants for the activity of the human ACSL6 isoforms, which appear to act as homodimeric enzyme as well as in complex with other spliced forms. These findings provide evidence that the diversity of these enzyme species could produce the variety of acyl-CoA synthetase activities that are necessary to generate and repair the hundreds of lipid species present in membranes.

  8. Expansion of the Lysine Acylation Landscape

    DEFF Research Database (Denmark)

    Olsen, Christian A.

    2012-01-01

    Leaving marks: The number of known posttranslational modifications for lysine has been expanded considerably. In addition to acetylation of side-chain amino functionalities of lysine residues in proteins, crotonylation, succinylation, and malonylation have now been identified as posttranslational...

  9. A new acylated isoflavone glucoside from Pterocarpus santalinus.

    Science.gov (United States)

    Krishnaveni, K S; Srinivasa Rao, J V

    2000-09-01

    Phytochemical investigation on the constituents of heartwood of Pterocarpus santalinus resulted in the isolation of a new acylated isoflavone glucoside. The structure of the new compound was elucidated on the basis of spectral studies as 4',5-dihydroxy-7-O-methyl isoflavone 3'-O-D-(3''-E-cinnamoyl)glucoside. PMID:10993243

  10. Acyl migration kinetics of vegetable oil 1,2-diacylglycerols

    Science.gov (United States)

    The acyl migration kinetics of long-chain 1,2-diacylglycerol (1,2-DAG) to form 1,3-diacylglycerol (1,3-DAG) over the temperature range of 25 to 80 degrees Celsius were examined using proton NMR spectroscopy. The 1,2-DAG mole fraction of 0.32 at equilibrium was found to be insensitive to temperature...

  11. Antileishmanial Activity of Aldonamides and N-Acyl-Diamine Derivatives

    Directory of Open Access Journals (Sweden)

    Elaine S. Coimbra

    2008-01-01

    Full Text Available A number of lipophilic N-acyl-diamines and aldonamides have been synthesized and tested for their in vitro antiproliferative activity against Leishmania amazonensis and L. chagasi. Ribonamides, having one amino group, displayed good to moderate inhibition of parasite growth. The best result was obtained for compounds 10 and 15 with IC50 against L. chagasi below 5 μM.

  12. Enzymatic process for acylation of resveratrol at position 3

    OpenAIRE

    Torres, Pamela; Plou Gasca, Francisco José; Ballesteros Olmo, Antonio

    2008-01-01

    [EN] Enzymatic procedure for the regioselective acylation at position 3 of resveratrol utilising a vinyl ester and specific fungal and bacterial lipases, immobilised, as biocatalyst. The lipases utilised in said procedure come from bacteria or fungi selected from among Alcaligenes, Pseudomonas or Thermomyces.

  13. Fatty Acyl-CoA Reductase 1 Deficiency

    Directory of Open Access Journals (Sweden)

    Charles N Swisher

    2015-01-01

    Full Text Available Investigators from Erlangen, Germany; Calgary, CA; and Kafranbel, Syria, identified mutations in the gene, fatty acyl-CoA reductase 1 (FAR1 deficiency, adding to three other genes involved in plasmalogen biosynthesis, in two families affected by severe intellectual disability, early-onset epilepsy, microcephaly, congenital cataracts, growth retardation, and spasticity.

  14. Erythropoietin enhancer stimulates production of a recombinant protein by Chinese hamster ovary (CHO) cells under hypoxic condition

    OpenAIRE

    Moon, Sung-Kwon; Takeuchi, Shunsuke; Kambe, Taiho; Tsuchiya, Terumasa; Masuda, Seiji; Nagao, Masaya; Sasaki, Ryuzo

    1997-01-01

    Oxygen is a limiting nutrient in animal cell culture and its supply is still worthy of improvement for production of useful proteins with a high efficiency. From a different point of view, development of the system by which a high productivity can be maintained even under hypoxic condition as well as under normoxic condition may be important. A number of hypoxia-inducible genes have been found in eucaryotic cells and the induction in most cases, if not all, is due to hypoxic activation of the...

  15. Transcriptional stimulation via SC site of Bombyx sericin-1 gene through an interaction with a DNA binding protein SGF-3.

    OpenAIRE

    Matsuno, K.; Takiya, S; Hui, C C; Suzuki, T.; Fukuta, M.; Ueno, K.; Suzuki, Y

    1990-01-01

    Three protein binding sites have been identified in the upstream region of the sericin-1 gene. Two of them, SA and SC sites, have been known as putative cis-acting elements. Using synthetic oligonucleotides of these binding sites, it was found that silk gland factor-1 (SGF-1) binds to the SA site, and silk gland factor-3 (SGF-3) binds to the SC site but not to a mutated SC site, SCM. Tissue distribution of the two factors was different. SGF-3 is present abundantly in the middle silk gland (MS...

  16. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    Science.gov (United States)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  17. Expression of adhesion molecules on human granulocytes after stimulation with Helicobacter pylori membrane proteins: comparison with membrane proteins from other bacteria.

    OpenAIRE

    Enders, G; Brooks, W.; von Jan, N; Lehn, N.; Bayerdörffer, E; Hatz, R

    1995-01-01

    Type B gastritis in its active form is characterized by a dense infiltration of the lamina propria with granulocytes. Since the bacterium Helicobacter pylori does not invade the epithelial barrier, a signaling pathway chemoattractive for granulocytes must exist across this mucosal boarder. One possible mechanism tested was whether granulocytes are directly activated by water-soluble membrane proteins (WSP) from H. pylori. These findings were compared with the effects of WSP from other bacteri...

  18. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Teng, Yun; Radde, Brandie N; Litchfield, Lacey M; Ivanova, Margarita M; Prough, Russell A; Clark, Barbara J; Doll, Mark A; Hein, David W; Klinge, Carolyn M

    2015-06-19

    Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3-12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction.

  19. Colonization of epidermal tissue by Staphylococcus aureus produces localized hypoxia and stimulates secretion of antioxidant and caspase-14 proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lone , Abdul G.; Atci, Erhan; Renslow, Ryan S.; Beyenal, Haluk; Noh, S.; Fransson, B.; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R.; Call, Douglas R.

    2015-08-31

    A partial-thickness epidermal explant model was colonized with GFP-expressing S. aureus and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. Oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using MSE mass spectrometry. We found that S. aureus biofilm grows predominantly in sebum-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2-3 fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after four days of culture. The colonized explants released significantly (P< 0.01) more anti-oxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentration found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in media from infected explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface.

  20. Translational Control Protein 80 Stimulates IRES-Mediated Translation of p53 mRNA in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    2015-01-01

    Full Text Available Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES that is located at the 5′-untranslated region (UTR of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80 has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.

  1. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  2. Coptidis Rhizoma Water Extract Stimulates 5'-AMP-Activated Protein Kinase in Rat Skeletal Muscle%Coptidis Rhizoma Water Extract Stimulates5'-AMP-Activated Protein Kinase in Rat Skeletal Muscle

    Institute of Scientific and Technical Information of China (English)

    Xiao Ma; Tatsuro Egawa; Rieko Oshima; Eriko Kurogi; Hiroko Tanabe; Satoshi Tsuda; Tatsuya Hayashi

    2011-01-01

    AIM: Coptidis Rhizoma (CR), the dried rhizomes of Asian herbs (including Coptis chinensis French), has been used to treat diabetes mellitus for thousands of years. We explored the possibility that CR acts directly on skeletal muscle, the major organ responsible for glucose homeostasis, and activates 5'-AMP-activated protein kinase (AMPK), a signaling intermediary leading to metabolic enhancement of skeletal muscle. METHODS: Isolated rat epitrochlearis and soleus muscles were incubated in a buffer containing a CR water extract (CE), and activation of AMPK and related events were examined. RESULTS: In response to CE treatment, phosphorylation of Thr172 at the catalytic α subunit of AMPK, an essential step for full kinase activation, increased in both muscles. Phosphorylation of Ser79 of acetyl CoA carboxylase (ACC), an endogenous substrate of AMPK, increased concotnitantly. Analysis of isoform-specific AMPK activity revealed that CE activated both the α1 and α2 isoforms of the catalytic subunit. Importantly, the maximal effect of CE on AMPK phosphorylation was significantly greater than that of berberine (BBR), indicating that the action of CE is not totally ascribed to BBR. CONCLUSION: We propose that CE is an acute activator of AMPK in both fast- and slow-twitch skeletal muscles.

  3. β-Adrenergic stimulation increases Cav3.1 activity in cardiac myocytes through protein kinase A.

    Directory of Open Access Journals (Sweden)

    Yingxin Li

    Full Text Available The T-type Ca(2+ channel (TTCC plays important roles in cellular excitability and Ca(2+ regulation. In the heart, TTCC is found in the sinoatrial nodal (SAN and conduction cells. Cav3.1 encodes one of the three types of TTCCs. To date, there is no report regarding the regulation of Cav3.1 by β-adrenergic agonists, which is the topic of this study. Ventricular myocytes (VMs from Cav3.1 double transgenic (TG mice and SAN cells from wild type, Cav3.1 knockout, or Cav3.2 knockout mice were used to study β-adrenergic regulation of overexpressed or native Cav3.1-mediated T-type Ca(2+ current (I(Ca-T(3.1. I(Ca-T(3.1 was not found in control VMs but was robust in all examined TG-VMs. A β-adrenergic agonist (isoproterenol, ISO and a cyclic AMP analog (dibutyryl-cAMP significantly increased I(Ca-T(3.1 as well as I(Ca-L in TG-VMs at both physiological and room temperatures. The ISO effect on I(Ca-L and I(Ca-T in TG myocytes was blocked by H89, a PKA inhibitor. I(Ca-T was detected in control wildtype SAN cells but not in Cav3.1 knockout SAN cells, indicating the identity of I(Ca-T in normal SAN cells is mediated by Cav3.1. Real-time PCR confirmed the presence of Cav3.1 mRNA but not mRNAs of Cav3.2 and Cav3.3 in the SAN. I(Ca-T in SAN cells from wild type or Cav3.2 knockout mice was significantly increased by ISO, suggesting native Cav3.1 channels can be upregulated by the β-adrenergic (β-AR system. In conclusion, β-adrenergic stimulation increases I(Ca-T(3.1 in cardiomyocytes(, which is mediated by the cAMP/PKA pathway. The upregulation of I(Ca-T(3.1 by the β-adrenergic system could play important roles in cellular functions involving Cav3.1.

  4. A novel splice variant of calcium and integrin-binding protein 1 mediates protein kinase D2-stimulated tumour growth by regulating angiogenesis.

    Science.gov (United States)

    Armacki, M; Joodi, G; Nimmagadda, S C; de Kimpe, L; Pusapati, G V; Vandoninck, S; Van Lint, J; Illing, A; Seufferlein, T

    2014-02-27

    Protein kinase D2 (PKD2) is a member of the PKD family of serine/threonine kinases, a subfamily of the CAMK super-family. PKDs have a critical role in cell motility, migration and invasion of cancer cells. Expression of PKD isoforms is deregulated in various tumours and PKDs, in particular PKD2, have been implicated in the regulation of tumour angiogenesis. In order to further elucidate the role of PKD2 in tumours, we investigated the signalling context of this kinase by performing an extensive substrate screen by in vitro expression cloning (IVEC). We identified a novel splice variant of calcium and integrin-binding protein 1, termed CIB1a, as a potential substrate of PKD2. CIB1 is a widely expressed protein that has been implicated in angiogenesis, cell migration and proliferation, all important hallmarks of cancer, and CIB1a was found to be highly expressed in various cancer cell lines. We identify Ser(118) as the major PKD2 phosphorylation site in CIB1a and show that PKD2 interacts with CIB1a via its alanine and proline-rich domain. Furthermore, we confirm that CIB1a is indeed a substrate of PKD2 also in intact cells using a phosphorylation-specific antibody against CIB1a-Ser(118). Functional analysis of PKD2-mediated CIB1a phosphorylation revealed that on phosphorylation, CIB1a mediates tumour cell invasion, tumour growth and angiogenesis by mediating PKD-induced vascular endothelial growth factor secretion by the tumour cells. Thus, CIB1a is a novel mediator of PKD2-driven carcinogenesis and a potentially interesting therapeutic target. PMID:23503467

  5. RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq

    OpenAIRE

    Argaman, Liron; Elgrably-Weiss, Maya; Hershko, Tal; Vogel, Jörg; Altuvia, Shoshy

    2012-01-01

    The conserved RNA-binding protein Hfq and its associated small regulatory RNAs (sRNAs) are increasingly recognized as the players of a large network of posttranscriptional control of gene expression in Gram-negative bacteria. The role of Hfq in this network is to facilitate base pairing between sRNAs and their trans-encoded target mRNAs. Although the number of known sRNA–mRNA interactions has grown steadily, cellular factors that influence Hfq, the mediator of these interactions, have remaine...

  6. Angiotensin Ⅱ stimulates phosphorylation of 4E-binding protein 1 and p70 S6 kinase in cultured vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Na LI; Ke-gui WU; Xiang-yu WANG; Liang-di XIE; Chang-sheng XU; Hua-jun WANG

    2004-01-01

    AIM: To examine the regulatory effects of angiotensin Ⅱ (Ang Ⅱ) on the phosphorylation of 4E-binding protein 1 (4E-BP1) and p70 S6 kinase in cultured vascular smooth muscle cells (VSMC), and the contribution of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling pathway in this process. METHODS: VSMC obtained from rat thoracic aortas were cultured. The phosphorylation of 4E-BP1 and p70 S6 kinase was detected by immunoblotting. RESULTS: Ang Ⅱ significantly increased the phosphorylation of 4E-BP1 and p70 S6 kinase,with the peaks occurring at, respectively, 10 min and 30 min, after stimulation with Ang Ⅱ. The stimulatory effect of Ang Ⅱ on 4E-BP1 and p70 S6 kinase phosphorylation was abrogated by Ang Ⅱ type 1 receptor (AT1 receptor)antagonist losartan, and suppressed by PI3K inhibitor LY294002 in a concentration-dependent manner.CONCLUSION: Ang Ⅱ treatment of VSMC induces the phosphorylation of 4E-BP1 and p70 S6 kinase via AT1 receptor, and PI3K signaling pathway is involved in this process.

  7. Adenosine Diphosphate Ribosylation Factor-GTPaseActivating Protein Stimulates the Transport of AUX1Endosome, Which Relies on Actin Cytoskeletal Organization in Rice Root DevelopmentF

    Institute of Scientific and Technical Information of China (English)

    Cheng Du; Yunyuan XU; Yingdian Wang; Kang Chong

    2011-01-01

    Polar auxin transport,which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers,mediates various processes of plant growth and development.Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein,GNOM.However,the mediation of auxin influx carrier recycling is poorly understood.Here,we report that overexpression of OsAGAP,an ARF-GTPase-activating protein in rice,stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1.AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption.Furthermore,OsAGAP is involved in actin cytoskeletal organization,and its overexpression tends to reduce the thickness and bundling of actin filaments.Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells,and was only slightly promoted when the actin filaments were completely disrupted by Lat B.Thus,we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.

  8. Palmitate action to inhibit glycogen synthase and stimulate protein phosphatase 2A increases with risk factors for type 2 diabetes.

    Science.gov (United States)

    Mott, David M; Stone, Karen; Gessel, Mary C; Bunt, Joy C; Bogardus, Clifton

    2008-02-01

    Recent studies have suggested that abnormal regulation of protein phosphatase 2A (PP2A) is associated with Type 2 diabetes in rodent and human tissues. Results with cultured mouse myotubes support a mechanism for palmitate activation of PP2A, leading to activation of glycogen synthase kinase 3. Phosphorylation and inactivation of glycogen synthase by glycogen synthase kinase 3 could be the mechanism for long-chain fatty acid inhibition of insulin-mediated carbohydrate storage in insulin-resistant subjects. Here, we test the effects of palmitic acid on cultured muscle glycogen synthase and PP2A activities. Palmitate inhibition of glycogen synthase fractional activity is increased in subjects with high body mass index compared with subjects with lower body mass index (r = -0.43, P = 0.03). Palmitate action on PP2A varies from inhibition in subjects with decreased 2-h plasma glucose concentration to activation in subjects with increased 2-h plasma glucose concentration (r = 0.45, P < 0.03) during oral glucose tolerance tests. The results do not show an association between palmitate effects on PP2A and glycogen synthase fractional activity. We conclude that subjects at risk for Type 2 diabetes have intrinsic differences in palmitate regulation of at least two enzymes (PP2A and glycogen synthase), contributing to abnormal insulin regulation of glucose metabolism.

  9. Functional properties of acetylated and succinylated cowpea protein concentrate and effect of enzymatic hydrolysis on solubility.

    Science.gov (United States)

    Mune Mune, Martin Alain; Minka, Samuel René; Mbome, Israël Lape

    2011-06-01

    The present study was undertaken to improve functional properties of cowpea protein concentrate by acylation and partial hydrolysis with pepsin. The acylated concentrate showed significant improvement in protein solubility and water solubility index, at neutral pH. In addition, acylation increased fat absorption capacity compared with the untreated concentrate, and the maximum was obtained at 0.75 g succinic anhydride/g concentrate. Acetylation at concentrations of 0.25-0.50 g/g led to the higher emulsifying activity, and a markedly improvement in emulsifying stability was observed at 1.0 g anhydride/g concentrate. Foaming activity increased following acylation, particularly at 0.25 and 1.00 g/g succinic anhydride/g concentrate, while foam stability decreased. At pH 3.5, protein solubility of the acylated concentrates was low ( < 8%). Partial hydrolysis of cowpea protein concentrate with pepsin increased protein solubility at the isoelectric and neutral pH.

  10. Construction of Global Acyl Lipid Metabolic Map by Comparative Genomics and Subcellular Localization Analysis in the Red Alga Cyanidioschyzon merolae

    Science.gov (United States)

    Mori, Natsumi; Moriyama, Takashi; Toyoshima, Masakazu; Sato, Naoki

    2016-01-01

    Pathways of lipid metabolism have been established in land plants, such as Arabidopsis thaliana, but the information on exact pathways is still under study in microalgae. In contrast with Chlamydomonas reinhardtii, which is currently studied extensively, the pathway information in red algae is still in the state in which enzymes and pathways are estimated by analogy with the knowledge in plants. Here we attempt to construct the entire acyl lipid metabolic pathways in a model red alga, Cyanidioschyzon merolae, as an initial basis for future genetic and biochemical studies, by exploiting comparative genomics and localization analysis. First, the data of whole genome clustering by Gclust were used to identify 121 acyl lipid-related enzymes. Then, the localization of 113 of these enzymes was analyzed by GFP-based techniques. We found that most of the predictions on the subcellular localization by existing tools gave erroneous results, probably because these tools had been tuned for plants or green algae. The experimental data in the present study as well as the data reported before in our laboratory will constitute a good training set for tuning these tools. The lipid metabolic map thus constructed show that the lipid metabolic pathways in the red alga are essentially similar to those in A. thaliana, except that the number of enzymes catalyzing individual reactions is quite limited. The absence of fatty acid desaturation to produce oleic and linoleic acids within the plastid, however, highlights the central importance of desaturation and acyl editing in the endoplasmic reticulum, for the synthesis of plastid lipids as well as other cellular lipids. Additionally, some notable characteristics of lipid metabolism in C. merolae were found. For example, phosphatidylcholine is synthesized by the methylation of phosphatidylethanolamine as in yeasts. It is possible that a single 3-ketoacyl-acyl carrier protein synthase is involved in the condensation reactions of fatty acid

  11. Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Dominique Rainteau

    Full Text Available BACKGROUND: Phospholipases D (PLD are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA. PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor. METHODOLOGY/PRINCIPAL FINDINGS: Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA. As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut, which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18:2- and 16:0/18:3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates. CONCLUSIONS: MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18:2- and 16:0/18:3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains.

  12. Proteinase K improves quantitative acylation studies.

    Science.gov (United States)

    Fränzel, Benjamin; Fischer, Frank; Steegborn, Clemens; Wolters, Dirk Andreas

    2015-01-01

    Acetylation is a common PTM of proteins but is still challenging to analyze. Only few acetylome studies have been performed to tackle this issue. Yet, the detection of acetylated proteins in complex cell lysates remains to be improved. Here, we present a proteomic approach with proteinase K as a suitable protease to identify acetylated peptides quantitatively. We first optimized the digestion conditions using an artificial system of purified bovine histones to find the optimal protease. Subsequently, the capability of proteinase K was demonstrated in complex HEK293 cell lysates. Finally, SILAC in combination with MudPIT was used to show that quantification with proteinase K is possible. In this study, we identified a sheer number of 557 unique acetylated peptides originating from 633 acetylation sites.

  13. Effects of repetitive transcranial magnetic stimulation on adenosine triphosphate content and microtubule associated protein-2 expression after cerebral ischemia-reperfusion injury in rat brain

    Institute of Scientific and Technical Information of China (English)

    FENG Hong-lin; YAN Li; CUI Li-ying

    2008-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) research has mainly been focused on the therapeutic effect of psychiatric disorders and Parkinson's disease. A few studies have shown that rTMS might protect against delayed neuronal death induced by transient ischemia, enhance long-term potentiation in ischemic conditions and affect regional brain blood flow and metabolism. The aim of this study was to determine the effects of repetitive transcranial magnetic stimulation (rTMS) on adenosine triphosphate (ATP) content and microtubule associated protein-2 (MAP-2) expression in rat brain after middle cerebral artery occlusion (MCAO)/reperfusion.Methods To study the effects of different timecourses of rTMS on ATP content and MAP-2 expression, 90 rats were randomly divided into three groups (30 rats in each group). To study the effects of multiple rTMS parameters on ATP content and MAP-2 expression, the rats in each group were further divided into six subgroups (five rats each). The rats were sacrificr, 24-hour and 48-hour intervals after reperfusion, and the brain tissues were collected for the detection of ATP and MAP-2.Results rTMS could significantly increase ATP content and MAP-2 expression in the left brain following ischemic insult (P<0.01) and different rTMS parameters had different effects on the ATP level and the MAP-2 expression in the left striatum. A high-frequency rTMS played an important role in MAP-2 expression and ATP preservation.Conclusions This study revealed that rTMS induced significant increase of ATP content and MAP-2 expression in the injured area of the brain, suggesting that the regulation of both ATP and MAP-2 may be involved in the biological mechanism of the effect of rTMS on neural recovery. Therefore, rTMS may become a potential adjunctive therapy for ischemic cerebrovascular disease.

  14. In vitro TNF-α- and noradrenaline-stimulated lipolysis is impaired in adipocytes from growing rats fed a low-protein, high-carbohydrate diet.

    Science.gov (United States)

    Feres, Daniel D S; Dos Santos, Maísa P; Buzelle, Samyra L; Pereira, Mayara P; de França, Suélem A; Garófalo, Maria A R; Andrade, Cláudia M B; Froelich, Mendalli; de Almeida, Fhelipe J S; Frasson, Danúbia; Chaves, Valéria E; Kawashita, Nair H

    2013-08-01

    The aim of this study was to investigate tumor necrosis factor alpha (TNF-α)- and noradrenaline (NE)-stimulated lipolysis in retroperitoneal (RWAT) and epididymal (EAT) white adipose tissue as a means of understanding how low-protein, high-carbohydrate (LPHC) diet-fed rats maintain their lipid storage in a catabolic environment (marked by increases in serum TNF-α and corticosterone and sympathetic flux to RWAT and EAT), as previously observed. Adipocytes or tissues from the RWAT and EAT of rats fed an LPHC diet and rats fed a control (C) diet for 15 days were used in the experiments. The adipocytes from both tissues of the LPHC rats exhibited lower TNF-α- stimulated lipolysis compared to adipocytes from the C rats. The intracellular lipolytic agents IBMX, DBcAMPc and FSK increased lipolysis in both tissues from rats fed the C and LPHC diets compared to basal lipolysis; however, the effect was approximately 2.5-fold lower in adipocytes from LPHC rats. The LPHC diet induced a marked reduction in the β3 and α2-AR, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) content in RWAT and EAT. The LPHC diet did not affect TNF-α receptor 1 content but did induce a reduction in ERK p44/42 in both tissues. The present work indicates that RWAT and EAT from LPHC rats have an impairment in the lipolysis signaling pathway activated by NE and TNF-α, and this impairment explains the reduced response to these lipolytic stimuli, which may be fundamental to the maintenance of lipid storage in LPHC rats.

  15. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte-macrophage Colony Stimulating Factor by Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2016-01-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2 to 3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte-macrophage-colony stimulating factor (GM-CSF, but not macrophage-colony stimulating factor, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently up-regulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly up-regulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment.

  16. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells.

    OpenAIRE

    Gauldie, J.; C. Richards; Harnish, D; Lansdorp, P.; Baumann, H

    1987-01-01

    One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibrob...

  17. Large GLUT4 vesicles are stationary while locally and reversibly depleted during transient insulin stimulation of skeletal muscle of living mice: imaging analysis of GLUT4-enhanced green fluorescent protein vesicle dynamics

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M M; Galbo, Henrik; Brandauer, Josef;

    2007-01-01

    -state recycling and subsequent re-internalization of GLUT4 on an insulin bolus. RESEARCH DESIGN AND METHODS: A confocal imaging technique was used in GLUT4-enhanced green fluorescent protein-transfected superficial muscle fibers in living mice. RESULTS: During the first 30 min of insulin stimulation, very few...

  18. Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis.

    Science.gov (United States)

    Bordewick, U; Heese, M; Börchers, T; Robenek, H; Spener, F

    1989-03-01

    Fatty-acid-binding proteins are known to occur in the cytosol of mammalian cells and to bind fatty acids and their CoA-esters. Application of the postembedding protein A-gold labeling method with antibody against the hepatic type fatty-acid-binding protein (hFABP) to cross-sections of liver cells and a newly developed gel-chromatographic immunofluorescence assay established qualitatively (1) that hFABP in mitochondria was confined to outer mitochondrial membranes, (2) the presence of this protein in microsomes and (3) that nuclei were also filled with hFABP. Quantitative data elaborated with a non-competitive ELISA confirmed these results. A significant difference to the distribution of cardiac FABP in heart muscle cells, where this type of protein was found in cytosol, matrix and nuclei, was observed (Börchers et al. (1989) Biochim. Biophys. Acta, in the press). hFABP-containing rat liver microsomes were incubated with long-chain acyl-CoAs in the presence of hFABP (isolated from rat liver cytosol) in a study on the acylation of sn-glycerol-3-phosphate and lysophosphatidic acid. Both acyltransferases were stimulated by addition of hFABP to the incubation medium. The morphological, immunochemical as well as kinetic data infer a direct interaction of hFABP with microsomal membranes in liver cells.

  19. Proteolytic cleavage of cellubrevin and vesicle-associated membrane protein (VAMP) by tetanus toxin does not impair insulin-stimulated glucose transport or GLUT4 translocation in rat adipocytes.

    Science.gov (United States)

    Hajduch, E; Aledo, J C; Watts, C; Hundal, H S

    1997-01-01

    Acute insulin stimulation of glucose transport in fat and skeletal muscle occurs principally as a result of the hormonal induced translocation of the GLUT4 glucose transporter from intracellular vesicular stores to the plasma membrane. The precise mechanisms governing the fusion of GLUT4 vesicles with the plasma membrane are very poorly understood at present but may share some similarities with synaptic vesicle fusion, as vesicle-associated membrane protein (VAMP) and cellubrevin, two proteins implicated in the process of membrane fusion, are resident in GLUT4-containing vesicles isolated from rat and murine 3T3-L1 adipocytes respectively. In this study we show that proteolysis of both cellubrevin and VAMP, induced by electroporation of isolated rat adipocytes with tetanus toxin, does not impair insulin-stimulated glucose transport or GLUT4 translocation. The hormone was found to stimulate glucose uptake by approx. 16-fold in freshly isolated rat adipocytes. After a single electroporating pulse, the ability of insulin to activate glucose uptake was lowered, but the observed stimulation was nevertheless nearly 5-fold higher than the basal rate of glucose uptake. Electroporation of adipocytes with 600 nM tetanus toxin resulted in a complete loss of both cellubrevin and VAMP expression within 60 min. However, toxin-mediated proteolysis of both these proteins had no effect on the ability of insulin to stimulate glucose transport which was elevated approx. 5-fold, an activation of comparable magnitude to that observed in cells electroporated without tetanus toxin. The lack of any significant change in insulin-stimulated glucose transport was consistent with the finding that toxin-mediated proteolysis of both cellubrevin and VAMP had no detectable effect on insulin-induced translocation of GLUT4 in adipocytes. Our findings indicate that, although cellubrevin and VAMP are resident proteins in adipocyte GLUT4-containing vesicles, they are not required for the acute insulin

  20. Site-Selective Acylations with Tailor-Made Catalysts.

    Science.gov (United States)

    Huber, Florian; Kirsch, Stefan F

    2016-04-18

    The acylation of alcohols catalyzed by N,N-dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate-specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor-made catalysts for the site-specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site-selectivity compared with only DMAP. Furthermore, substrate-optimized catalysts of this type can be used to selectively convert "their" substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances. PMID:26970553

  1. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  2. A New Acylated Iridoid Glucoside from Avicennia marina

    Institute of Scientific and Technical Information of China (English)

    Yan FENG; Xiao Ming LI; Xiao Juan DUAN; Bin Gui WANG

    2006-01-01

    A new acylated iridoid glucoside, namely, 2'-O-(5-phenyl-2E, 4E-pentadienoyl)-mussaenosidic acid, was isolated from the aerial parts of the mangrove plant Avicennia marina.The structure of the new compound was established on the basis of various NMR spectroscopic analyses, including 2D NMR techniques (1H-1H COSY, HMQC, and HMBC) and HR-FAB-MS.This compound displayed moderate antioxidant activity.

  3. Synthesis and characterization of new amino acyl-4-thiazolidones

    Directory of Open Access Journals (Sweden)

    Ana Cristina Lima Leite

    2007-04-01

    Full Text Available A series of heterocyclic compounds with a 4-thiazolidone nucleus and amino acyl moiety were synthesized by protection reaction of thiosemicarbazide using the symmetrical anhydride (Boc2O and cyclization with chloroacetic acid under mild conditions. Trifluoroacetic acid was used to obtain 4-thiazolidone and the alpha-amino acid condensation reactions were carried out using strategies for peptide synthesis. The characterization of this new class of compounds was performed using IR and ¹H-NMR spectroscopy.

  4. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins.

    Science.gov (United States)

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T; Goss, Rebecca J M; Field, Robert A; Osbourn, Anne

    2013-02-01

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.

  5. Metabolism of acyl-lipids in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Li-Beisson, Yonghua; Beisson, Fred; Riekhof, Wayne

    2015-05-01

    Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted. PMID:25660108

  6. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    Science.gov (United States)

    Chiang, Wen-Dee; Huang, Chih Yang; Paul, Catherine Reena; Lee, Zong-Yan; Lin, Wan-Teng

    2016-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective In this study, alcalase treatment derived potato protein hydrolysate (APPH) with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD)-fed aging rats. Design Twenty-four-month-old SD rats were randomly divided into six groups (n=8): aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day) APPH treatment, HFD with moderate (45 mg/kg/day) APPH treatment, HFD with high (75 mg/kg/day) APPH treatment, and HFD with probucol. Results APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day), moderate (45 mg/kg/day), and high (75 mg/kg/day) doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage. PMID:27415158

  7. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    Directory of Open Access Journals (Sweden)

    Wen-Dee Chiang

    2016-07-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective: In this study, alcalase treatment derived potato protein hydrolysate (APPH with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD-fed aging rats. Design: Twenty-four-month-old SD rats were randomly divided into six groups (n=8: aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day APPH treatment, HFD with moderate (45 mg/kg/day APPH treatment, HFD with high (75 mg/kg/day APPH treatment, and HFD with probucol. Results: APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day, moderate (45 mg/kg/day, and high (75 mg/kg/day doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions: Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.

  8. Organometallic macromolecules with piano stool coordination repeating units: chain configuration and stimulated solution behaviour.

    Science.gov (United States)

    Cao, Kai; Ward, Jonathan; Amos, Ryan C; Jeong, Moon Gon; Kim, Kyoung Taek; Gauthier, Mario; Foucher, Daniel; Wang, Xiaosong

    2014-09-11

    Theoretical calculations illustrate that organometallic macromolecules with piano stool coordination repeating units (Fe-acyl complex) adopt linear chain configuration with a P-Fe-C backbone surrounded by aromatic groups. The macromolecules show molecular weight-dependent and temperature stimulated solution behaviour in DMSO.

  9. Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Vandavasi, Venu Gopal; Weiss, Kevin L.; Cooper, Jonathan B.; Erskine, Peter T.; Tomanicek, Stephen J.; Ostermann, Andreas; Schrader, Tobias E.; Ginell, Stephan L.; Coates, Leighton

    2016-01-14

    The catalytic mechanism of class A beta-lactamases is often debated due in part to the large number of amino acids that interact with bound beta-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type beta-lactamase enzymes is still not well understood after decades of scientific research. To better elucidate the functions of this vital residue, we used both neutron and high-resolution X-ray diffraction to examine both the structures of the ligand free protein and the acyl-enzyme complex of perdeuterated E166A Toho-1 beta-lactamase with the antibiotic cefotaxime. The E166A mutant lacks a critical glutamate residue that has a key role in the deacylation step of the catalytic mechanism, allowing the acyl-enzyme adduct to be captured for study. In our ligand free structures, Lys 73 is present in a single conformation, however in all of our acyl-enzyme structures, Lys 73 is present in two different conformations, in which one conformer is closer to Ser 70 while the other conformer is positioned closer to Ser 130, which supports the existence of a possible pathway by which proton transfer from Lys 73 to Ser 130 can occur. This and further clarifications of the role of Lys 73 in the acylation mechanism may facilitate the design of inhibitors that capitalize on the enzymes native machinery.

  10. Interplay between self-assembled structure of bone morphogenetic protein-2 (BMP-2) and osteoblast functions in three-dimensional titanium alloy scaffolds: Stimulation of osteogenic activity.

    Science.gov (United States)

    Nune, K C; Kumar, A; Murr, L E; Misra, R D K

    2016-02-01

    Three-dimensional cellular scaffolds are receiving significant attention in bone tissue engineering to treat segmental bone defects. However, there are indications of lack of significant osteoinductive ability of three-dimensional cellular scaffolds. In this regard, the objective of the study is to elucidate the interplay between bone morphogenetic protein (BMP-2) and osteoblast functions on 3D mesh structures with different porosities and pore size that were fabricated by electron beam melting. Self-assembled dendritic microstructure with interconnected cellular-type morphology of BMP-2 on 3D scaffolds stimulated osteoblast functions including adhesion, proliferation, and mineralization, with prominent effect on 2-mm mesh. Furthermore, immunofluorescence studies demonstrated higher density and viability of osteoblasts on lower porosity mesh structure (2 mm) as compared to 3- and 4-mm mesh structures. Enhanced filopodia cellular extensions with extensive cell spreading was observed on BMP-2 treated mesh structures, a behavior that is attributed to the unique self-assembled structure of BMP-2 that effectively communicates with the cells. The study underscores the potential of BMP-2 in imparting osteoinductive capability to the 3D printed scaffolds.

  11. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells.

    Science.gov (United States)

    Chi, Mengna; Evans, Hamish; Gilchrist, Jackson; Mayhew, Jack; Hoffman, Alexander; Pearsall, Elizabeth Ann; Jankowski, Helen; Brzozowski, Joshua Stephen; Skelding, Kathryn Anne

    2016-01-01

    Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a multi-functional kinase that controls a range of cellular functions, including proliferation, differentiation and apoptosis. The biological properties of CaMKII are regulated by multi-site phosphorylation. However, the role that CaMKII phosphorylation plays in cancer cell metastasis has not been examined. We demonstrate herein that CaMKII expression and phosphorylation at T286 is increased in breast cancer when compared to normal breast tissue, and that increased CAMK2 mRNA is associated with poor breast cancer patient prognosis (worse overall and distant metastasis free survival). Additionally, we show that overexpression of WT, T286D and T286V forms of CaMKII in MDA-MB-231 and MCF-7 breast cancer cells increases invasion, migration and anchorage independent growth, and that overexpression of the T286D phosphomimic leads to a further increase in the invasive, migratory and anchorage independent growth capacity of these cells. Pharmacological inhibition of CaMKII decreases MDA-MB-231 migration and invasion. Furthermore, we demonstrate that overexpression of T286D, but not WT or T286V-CaMKII, leads to phosphorylation of FAK, STAT5a, and Akt. These results demonstrate a novel function for phosphorylation of CaMKII at T286 in the control of breast cancer metastasis, offering a promising target for the development of therapeutics to prevent breast cancer metastasis. PMID:27605043

  12. Analogs of the hepatocyte growth factor and macrophage-stimulating protein hinge regions act as Met and Ron dual inhibitors in pancreatic cancer cells.

    Science.gov (United States)

    Church, Kevin J; Vanderwerff, Brett R; Riggers, Rachelle R; McMicheal, Michelle D; Mateo-Victoriano, Beatriz; Sukumar, Sudharsan R; Harding, Joseph W

    2016-09-01

    Pancreatic cancer is among the leading causes of cancer death in the USA, with limited effective treatment options. A major contributor toward the formation and persistence of pancreatic cancer is the dysregulation of the hepatocyte growth factor (HGF)/Met (HGF receptor) and the macrophage-stimulating protein (MSP)/Ron (MSP receptor) systems. These systems normally mediate a variety of cellular behaviors including proliferation, survival, and migration, but are often overactivated in pancreatic cancer and contribute toward cancer progression. Previous studies have shown that HGF must dimerize to activate Met. Small-molecule antagonists with homology to a 'hinge' region within the putative dimerization domain of HGF have been developed that bind to HGF and block dimerization, therefore inhibiting Met signaling. Because of the structural and sequence homology between MSP and HGF, we hypothesized that the inhibition of HGF by the hinge analogs may extend to MSP. The primary aim of this 'proof-of-concept' study was to determine whether hinge analogs could inhibit cellular responses to both HGF and MSP in pancreatic cancer cells. Our results showed that these compounds inhibited HGF and MSP activity. Hinge analog treatment resulted in decreased Met and Ron activation, and suppressed malignant cell behaviors including proliferation, migration, and invasion in pancreatic cancer cells in vitro. These results suggest that the hinge analogs represent a novel group of molecules that may offer a therapeutic approach for the treatment of pancreatic cancer and warrant further development and optimization. PMID:27314431

  13. miR-155, a Modulator of FOXO3a Protein Expression, Is Underexpressed and Cannot Be Upregulated by Stimulation of HOZOT, a Line of Multifunctional Treg.

    Directory of Open Access Journals (Sweden)

    Mayuko Yamamoto

    Full Text Available MicroRNAs (miRNAs play important roles in regulating post-transcriptional gene repression in a variety of immunological processes. In particular, much attention has been focused on their roles in regulatory T (Treg cells which are crucial for maintaining peripheral tolerance and controlling T cell responses. Recently, we established a novel type of human Treg cell line, termed HOZOT, multifunctional cells exhibiting a CD4(+CD8(+ phenotype. In this study, we performed miRNA profiling to identify signature miRNAs of HOZOT, and therein identified miR-155. Although miR-155 has also been characterized as a signature miRNA for FOXP3(+ natural Treg (nTreg cells, it was expressed quite differently in HOZOT cells. Under both stimulatory and non-stimulatory conditions, miR-155 expression remained at low levels in HOZOT, while its expression in nTreg and conventional T cells remarkably increased after stimulation. We next searched candidate target genes of miR-155 through bioinformatics, and identified FOXO3a, a negative regulator of Akt signaling, as a miR-155 target gene. Further studies by gain- and loss-of-function experiments supported a role for miR-155 in the regulation of FOXO3a protein expression in conventional T and HOZOT cells.

  14. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells

    Science.gov (United States)

    Chi, Mengna; Evans, Hamish; Gilchrist, Jackson; Mayhew, Jack; Hoffman, Alexander; Pearsall, Elizabeth Ann; Jankowski, Helen; Brzozowski, Joshua Stephen; Skelding, Kathryn Anne

    2016-01-01

    Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a multi-functional kinase that controls a range of cellular functions, including proliferation, differentiation and apoptosis. The biological properties of CaMKII are regulated by multi-site phosphorylation. However, the role that CaMKII phosphorylation plays in cancer cell metastasis has not been examined. We demonstrate herein that CaMKII expression and phosphorylation at T286 is increased in breast cancer when compared to normal breast tissue, and that increased CAMK2 mRNA is associated with poor breast cancer patient prognosis (worse overall and distant metastasis free survival). Additionally, we show that overexpression of WT, T286D and T286V forms of CaMKII in MDA-MB-231 and MCF-7 breast cancer cells increases invasion, migration and anchorage independent growth, and that overexpression of the T286D phosphomimic leads to a further increase in the invasive, migratory and anchorage independent growth capacity of these cells. Pharmacological inhibition of CaMKII decreases MDA-MB-231 migration and invasion. Furthermore, we demonstrate that overexpression of T286D, but not WT or T286V-CaMKII, leads to phosphorylation of FAK, STAT5a, and Akt. These results demonstrate a novel function for phosphorylation of CaMKII at T286 in the control of breast cancer metastasis, offering a promising target for the development of therapeutics to prevent breast cancer metastasis. PMID:27605043

  15. A novel C-terminal homologue of Aha1 co-chaperone binds to heat shock protein 90 and stimulates its ATPase activity in Entamoeba histolytica.

    Science.gov (United States)

    Singh, Meetali; Shah, Varun; Tatu, Utpal

    2014-04-17

    Cytosolic heat shock protein 90 (Hsp90) has been shown to be essential for many infectious pathogens and is considered a potential target for drug development. In this study, we have carried out biochemical characterization of Hsp90 from a poorly studied protozoan parasite of clinical importance, Entamoeba histolytica. We have shown that Entamoeba Hsp90 can bind to both ATP and its pharmacological inhibitor, 17-AAG (17-allylamino-17-demethoxygeldanamycin), with Kd values of 365.2 and 10.77 μM, respectively, and it has a weak ATPase activity with a catalytic efficiency of 4.12×10(-4) min(-1) μM(-1). Using inhibitor 17-AAG, we have shown dependence of Entamoeba on Hsp90 for its growth and survival. Hsp90 function is regulated by various co-chaperones. Previous studies suggest a lack of several important co-chaperones in E. histolytica. In this study, we describe the presence of a novel homologue of co-chaperone Aha1 (activator of Hsp90 ATPase), EhAha1c, lacking a canonical Aha1 N-terminal domain. We also show that EhAha1c is capable of binding and stimulating ATPase activity of EhHsp90. In addition to highlighting the potential of Hsp90 inhibitors as drugs against amoebiasis, our study highlights the importance of E. histolytica in understanding the evolution of Hsp90 and its co-chaperone repertoire.

  16. N-Acyl amino acids and N-acyl neurotransmitter conjugates: neuromodulators and probes for new drug targets

    OpenAIRE

    Connor, Mark; Vaughan, Chris W; Vandenberg, Robert J.

    2010-01-01

    The myriad functions of lipids as signalling molecules is one of the most interesting fields in contemporary pharmacology, with a host of compounds recognized as mediators of communication within and between cells. The N-acyl conjugates of amino acids and neurotransmitters (NAANs) have recently come to prominence because of their potential roles in the nervous system, vasculature and the immune system. NAAN are compounds such as glycine, GABA or dopamine conjugated with long chain fatty acids...

  17. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts.

    Science.gov (United States)

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2007-07-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids. PMID:17417694

  18. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators

    DEFF Research Database (Denmark)

    Stacy, Danielle M.; Le Quement, Sebastian T.; Hansen, Casper L.;

    2013-01-01

    Many bacterial species are capable of assessing their local population densities through a cell–cell signaling mechanism termed quorum sensing (QS). This intercellular communication process is mediated by small molecule or peptide ligands and their cognate protein receptors. Numerous pathogens use...... triazole-containing analogs of natural N-acyl l-homoserine lactone (AHL) signals as non-native QS agonists and antagonists in Gram-negative bacteria. We synthesized 72 triazole derivatives of five broad structure types in high yields and purities using efficient Cu(i)-catalyzed azide–alkyne couplings...

  19. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Li, Conghu [The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065 (China); College of Life Sciences, Anqing Normal University, Anqing 246011 (China); Tian, Zhenhua; Liu, Wentao [The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065 (China); Li, Guoying, E-mail: liguoyings@163.com [The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065 (China)

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen. - Highlights: • Acylated collagen retained the unique triple helix conformation. • Acylated collagen had stronger thermostability than native collagen. • Amide I was the most sensitive band to the temperature for acylated collagen. • Amide II was the most sensitive band to the temperature for native collagen. • Auto-peak at 1680 cm{sup −1} for acylated collagen disappeared at higher temperature.

  20. Production of structured lipids: acyl migration during enzymatic interesterification and downstream processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    1997-01-01

    -2 position or sn-1,3 positions of glycerol backbone. These kinds of lipids are reported to be promising for both enteral and parenteral nutrition. However, acyl migration occurs in the reaction stage and downstream purification process. This side-reaction causes by-products which are harmful to the...... required products. In this paper, the reasons of acyl migration and factors affecting the acyl migration were reviewed and discussed. The possible solutions were also evaluated....